WO2015162636A1 - エンジン駆動システムおよび船舶 - Google Patents
エンジン駆動システムおよび船舶 Download PDFInfo
- Publication number
- WO2015162636A1 WO2015162636A1 PCT/JP2014/002261 JP2014002261W WO2015162636A1 WO 2015162636 A1 WO2015162636 A1 WO 2015162636A1 JP 2014002261 W JP2014002261 W JP 2014002261W WO 2015162636 A1 WO2015162636 A1 WO 2015162636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel
- injection mechanism
- natural gas
- gas
- combustion chamber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B43/00—Engines characterised by operating on gaseous fuels; Plants including such engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Definitions
- the present invention relates to an engine drive system including an engine using natural gas and fuel oil as fuel, and a ship using the engine drive system.
- SO X and CO 2 emissions in the future are regulated in addition to the regulation by the tertiary regulation of the International Maritime Organization (IMO).
- IMO International Maritime Organization
- gas engines using natural gas as fuel have been developed in place of conventional diesel engines using heavy oil as fuel. Some engines use both fuel oil and natural gas.
- Patent Document 1 discloses a two-stroke gas engine that injects natural gas and pilot oil into air compressed in a combustion chamber.
- the expansion and exhaust strokes are generally performed while the piston descends from top dead center to slightly before bottom dead center, and the piston descends from slightly before bottom dead center to top dead center. And during the ascending, a scavenging stroke and a compression stroke are performed.
- natural gas is injected into the combustion chamber at the end of the compression stroke.
- Patent Document 2 discloses a two-stroke gas engine in which natural gas is injected into the combustion chamber in the second half of the scavenging stroke and / or the first half of the compression stroke. Note that the natural gas supplied to the gas engine is vaporized by a vaporizer after the natural gas stored in a tank in a liquid state is pressurized by a pump.
- an object of the present invention is to provide an engine drive system that can prevent knocking and misfire and that can use boil-off gas as a fuel at a low pressure, and a ship using the engine drive system.
- the present invention provides, from one side, a two-stroke engine having a combustion chamber formed by a cylinder provided with an air introduction port and an exhaust port and a piston reciprocating in the cylinder, A fuel gas injection mechanism that injects natural gas, which bears part of the fuel necessary for one-time combustion, into the combustion chamber at a low pressure when the piston rises from bottom dead center, and once into the combustion chamber.
- a fuel oil injection mechanism that injects fuel oil that bears the remaining amount of fuel necessary for combustion at a high pressure within a transition period immediately before and after the piston is located at top dead center, and natural gas in a liquid state
- an engine drive system comprising a tank for storing and a supply path for guiding natural gas vaporized in the tank to the fuel gas injection mechanism.
- the natural gas is injected at a low pressure and the fuel oil is injected at a high pressure. That is, since the natural gas compressed with air is not all the fuel required for one combustion, knocking can be prevented. Further, even if the air-fuel mixture is in the misfire region after the natural gas is injected from the fuel gas injection mechanism, the fuel oil for diffusion combustion is injected from the fuel oil injection mechanism, so that the problem of misfire does not occur. For this reason, in the compression stroke, control with a sufficient margin from the knocking region is possible. Furthermore, since the natural gas vaporized in the tank is injected from the fuel gas injection mechanism, the boil-off gas can be used as a fuel at a low pressure.
- the low-pressure gas air-fuel ratio which is the ratio of the amount of air introduced into the combustion chamber with respect to the amount of low-pressure natural gas injected from the fuel gas injection mechanism, is the air-fuel ratio / net average effective pressure.
- the fuel oil injection mechanism may inject fuel oil that bears 10% or more of the amount of fuel required for one fuel.
- a two-stroke engine having a combustion chamber formed by a cylinder provided with an air inlet and an exhaust port and a piston reciprocating in the cylinder, and once in the combustion chamber.
- the first fuel gas injection mechanism that injects natural gas, which bears a part of the amount of fuel necessary for combustion, at low pressure when the piston rises from bottom dead center
- a second fuel gas injection mechanism that injects natural gas, which bears a part of a certain amount of fuel, at a high pressure within a transition period immediately before and after the piston is located at the top dead center, and once into the combustion chamber.
- a fuel oil injection mechanism that injects fuel oil that bears the remaining amount of fuel necessary for combustion at a high pressure within the transition period, a tank that stores natural gas in a liquid state, and natural gas vaporized in the tank.
- the first A first supply path that leads to the fuel gas injection mechanism, a vaporizer that vaporizes the liquid natural gas extracted from the tank, and a second supply that guides the natural gas vaporized from the vaporizer to the second fuel gas injection mechanism And an engine drive system.
- natural gas is injected in two stages of low pressure and high pressure, and fuel oil is injected at high pressure. That is, since the natural gas compressed with air is not all the fuel required for one combustion, knocking can be prevented. Further, even if the air-fuel mixture is in the misfire region after the natural gas is injected from the first fuel gas injection mechanism, the natural gas and fuel oil for diffusion combustion are injected from the second fuel gas injection mechanism and the fuel oil injection mechanism. There is no problem of misfire. For this reason, in the compression stroke, control with a sufficient margin from the knocking region is possible.
- the amount of natural gas injected at a high pressure is reduced compared to the case where the entire amount of natural gas is injected at the end of the compression stroke, for example, facilities and power necessary for boosting the natural gas in the liquid state are reduced. Can be reduced.
- the injection ratio of natural gas and fuel oil for diffusion combustion can be adjusted, the degree of freedom of fuel selection by the driver is increased.
- the natural gas vaporized in the tank is injected from the first fuel gas injection mechanism, the boil-off gas can be used as a fuel at a low pressure.
- the low-pressure gas air-fuel ratio which is the ratio of the amount of air introduced into the combustion chamber to the amount of low-pressure natural gas injected from the first fuel gas injection mechanism, is the air-fuel ratio / net average.
- the fuel oil injection mechanism may inject fuel oil that bears 10% or more of the amount of fuel required for one fuel.
- the present invention provides a ship provided with the above-described engine drive system and a propulsion shaft driven by the engine drive system with a propeller attached to one end.
- knocking and misfire can be prevented, and boil-off gas can be used as fuel at low pressure.
- FIG. 1 is a schematic configuration diagram of a ship using an engine drive system according to a first embodiment of the present invention. It is sectional drawing of the 2-stroke engine which comprises the engine drive system shown in FIG. 1, and shows the state which a piston is located in a bottom dead center. It is sectional drawing of the 2-stroke engine which comprises the engine drive system shown in FIG. 1, and shows the state which a piston is located in a top dead center. It is a graph which shows the relationship between the rotation angle of a crankshaft, and the pressure in a combustion chamber. It is a figure for demonstrating the quantity of the low pressure natural gas injected from a fuel gas injection mechanism.
- the air-fuel ratio / net with the air-fuel ratio on the horizontal axis and the net average effective pressure on the vertical axis, showing the knocking region and misfire region when the natural gas is mixed as 100% of the fuel with the air before being introduced into the combustion chamber It is an average effective pressure graph.
- It is a schematic block diagram of the ship using the engine drive system which concerns on 2nd Embodiment of this invention. It is sectional drawing of the 2-stroke engine which comprises the engine drive system shown in FIG. 7, and shows the state which a piston is located in a bottom dead center.
- FIG. 1 shows a ship 1 using an engine drive system 10A according to a first embodiment of the present invention.
- the ship 1 includes a hull 11 equipped with an engine drive system 10A and a propulsion shaft 13 driven by the engine drive system 10A.
- a propeller 15 is attached to one end of the propulsion shaft 13.
- the engine drive system 10A includes a two-stroke engine 2E and a tank (so-called LNG tank) 3 that stores natural gas that is one of the fuels of the engine 2E in a liquid state.
- the engine 2E also uses the fuel oil stored in the fuel oil tank 91 (see FIG. 2) as fuel.
- the engine 2E includes a crankshaft 12 connected to the propulsion shaft 13, a casing 14 that covers the crankshaft 12, and a plurality of engines 2E arranged in the axial direction of the crankshaft 12 (only two are drawn in FIG. 1 for simplification of the drawing). Cylinder 2.
- Natural gas usually contains methane as the main component.
- the tank 3 has a heat insulating structure that prevents heat from entering from the outside of the tank into the tank so as to store the liquefied natural gas cooled to about ⁇ 162 ° C.
- the tank 3 may be shared with one or a plurality of tanks of the LNG carrier, or may be a tank dedicated to the engine 2E.
- each cylinder 2 includes, for example, a cylinder liner 21 extending in the vertical direction and a cylinder head 22 that closes the upper end of the cylinder liner 21.
- the cylinder liner 21 is provided with an air inlet 2a
- the cylinder head 22 is provided with an exhaust port 2b. That is, the cylinder 2 is a uniflow type.
- the cylinder 2 may be a cross type or a loop type in which an exhaust port 2b is provided in the cylinder liner 21.
- a piston 23 is disposed in the cylinder 2, and a combustion chamber 20 is formed by the cylinder 2 and the piston 23.
- the piston 23 reciprocates in the cylinder 2 and is connected to the crankshaft 12 by a connecting rod 24.
- the piston 23 may be directly pin-connected to the connecting rod 24, but may be pin-connected to the connecting rod 24 via a piston rod (not shown) that extends directly from the piston 23.
- the exhaust port 2b is opened and closed by an exhaust valve 25 operated by an actuator (not shown).
- the exhaust valve 25 is disposed before the pressure receiving surface (the upper surface in the present embodiment) of the piston 23 reaches the air inlet 2a when the piston 23 descends, in other words, before the air inlet 2a communicates with the combustion chamber 20.
- FIG. 3 shows a state where the piston 23 is located at the top dead center.
- each cylinder 2 The air inlet 2a of each cylinder 2 is connected to the scavenging manifold 15 via the scavenging pipe 16, and the exhaust port 2b of each cylinder 2 is connected to the exhaust manifold 18 via the exhaust pipe 17.
- the exhaust gas collected in the exhaust manifold 18 is sent to a supercharger (turbocharger) 19 and used as power for compressing air in the atmosphere, and is then discharged outside the system.
- the air compressed by the supercharger 19 is sent to the scavenging manifold 15, where it is distributed and supplied to each cylinder 2 as scavenging.
- Each cylinder 2 is provided with a fuel gas injection mechanism 41 for injecting natural gas as fuel into the combustion chamber 20 and a fuel oil injection mechanism 42 for injecting fuel oil as fuel into the combustion chamber 20.
- injection valves are used as the fuel gas injection mechanism 41 and the fuel oil injection mechanism 42
- the fuel gas injection mechanism 41 is provided in the cylinder liner 21
- the fuel oil injection mechanism 42 is provided in the cylinder head 22.
- one or both of the fuel gas injection mechanism 41 and the fuel oil injection mechanism 42 are configured by a through hole provided in the cylinder liner 21 or the cylinder head 22 and an electromagnetic valve provided in a pipe communicating with the through hole. May be.
- the fuel gas injection mechanism 41 causes the natural gas that bears a part of the amount of fuel necessary for one combustion to be low pressure when the piston 23 rises from the bottom dead center toward the cylinder head 22. Is to be injected.
- the fuel oil injection mechanism 42 injects fuel oil, which bears the remaining amount of fuel necessary for one combustion, at a high pressure within a transition period immediately before and after the piston 23 is located at the top dead center.
- the amount of fuel necessary for one-time combustion refers to the amount of fuel necessary for the required output.
- the fuel oil may carry 10% or more of the amount of fuel required for one combustion.
- the pressure of the natural gas 35 injected from the fuel gas injection mechanism 41 is slightly higher than the pressure of the air compressed by the supercharger 19 (for example, about 0.5 to 1.0 MPa).
- the pressure of the fuel oil 90 injected from the fuel oil injection mechanism 42 is much higher than the pressure in the combustion chamber 20 when the piston 23 is located at the top dead center, for example, 70 MPa or more.
- the transition period is, for example, the rotation angle of the crankshaft 12 and is ⁇ 10 degrees from the timing at which the piston 23 is located at the top dead center.
- the ratio of the low-pressure natural gas 35 (see FIG. 2) injected from the fuel gas injection mechanism 41 to the high-pressure fuel oil 90 (see FIG. 3) injected from the fuel oil injection mechanism 42 is the boil-off that vaporizes in the tank 3. It is controlled according to the gas amount and required output. For example, the low-pressure natural gas 35 and the high-pressure fuel oil 90 may carry 50% of the amount of fuel required for one combustion. Specifically, the fuel gas injection mechanism 41 and the fuel oil injection mechanism 42 are controlled by the control device 5 based on the detection value of the rotation angle detector 52 (see FIG. 2) that detects the rotation angle of the crankshaft 12. .
- the fuel gas injection mechanism 41 is desirably disposed at a position separated from the combustion chamber 20 by the piston 23 when the piston 23 is located at the top dead center. This is because the fuel gas injection mechanism 41 can be protected from impact during combustion.
- the fuel gas injection mechanism 41 may be disposed at substantially the same height as the air inlet 2a.
- the fuel gas injection mechanism 41 is not necessarily arranged at such a position, and may be provided in the cylinder head 22, for example.
- the fuel oil injection mechanism 42 is supplied with fuel oil 90 such as light oil or heavy oil from the fuel oil tank 91 through the fuel oil supply passage 92.
- the fuel oil supply path 92 is provided with an oil pump.
- the fuel oil may be 100% oil or a water emulsion that is a mixture of water and oil.
- the fuel oil injection mechanism 42 injects the fuel oil 90 at a high pressure within the transition period. When the fuel oil 90 is injected into the compressed air, the fuel oil 90 is ignited, whereby the mixture of compressed air and natural gas is combusted.
- natural gas (BOG) 35 vaporized in the tank 3 is guided to the fuel gas injection mechanism 41 of each cylinder 2 through the supply path 6.
- the upstream end of the supply path 6 is connected to the upper part of the tank 3.
- the supply path 6 is provided with a compressor 61 that boosts the natural gas 35 vaporized in the tank 3 to the above-described low pressure, that is, a pressure at which the fuel gas injection mechanism 41 can inject.
- FIG. 6 is an air-fuel ratio / net average effective pressure graph showing a knocking region and a misfire region when natural gas is mixed as 100% of the fuel into the air before being introduced into the combustion chamber 20.
- the air-fuel ratio is within a relatively narrow range R sandwiched between them in order to avoid a knocking region and a misfire region. To be controlled.
- the total amount of natural gas (that is, the amount of fuel necessary for one-time combustion) GT is obtained from the required output to the engine 2E.
- the knocking limit (upper limit value of gas amount) at the net average effective pressure PM at the engine speed at that time is GN
- the misfire limit (lower limit value of gas amount) is GS.
- a value obtained by dividing the amount of BOG generated in the tank 3 per minute by the engine speed (rpm) and the number of cylinders 2 is defined as GB.
- the amount GL of the low-pressure natural gas 35 is desirably GN or less, and is preferably the smaller of GB and GN.
- the control device 5 described above has a low-pressure gas air-fuel ratio that is a ratio of the amount of air introduced into the combustion chamber 20 with respect to the amount of low-pressure natural gas 35 injected from the fuel gas injection mechanism 41. It is desirable to control the fuel gas injection mechanism 41 so as to be larger than the knocking region in the air-fuel ratio / net average effective pressure graph. According to this configuration, knocking can be reliably prevented. More specifically, the control device 5 stores a map in which the knocking limit is determined for each net average effective pressure in advance, or is programmed so that the knocking limit can be calculated from the net average effective pressure. Controls the fuel gas injection mechanism 41 according to the current net average effective pressure.
- the net average effective pressure is calculated from an engine speed and an engine horsepower meter ascertained from the rotation angle detector 52, or measured by an engine cylinder in-cylinder pressure gauge (not shown). Further, the pressure of air introduced into the combustion chamber 20 detected by the pressure gauge 51 may be used for calculation of the low pressure gas air-fuel ratio.
- natural gas is injected at a low pressure and fuel oil is injected at a high pressure. That is, since the natural gas compressed with air is not all the fuel required for one combustion, knocking can be prevented. Further, even if the air-fuel mixture is in the misfire region after the natural gas is injected from the fuel gas injection mechanism 41, the fuel oil for diffusion combustion is injected from the fuel oil injection mechanism 42, so that the problem of misfire does not occur. For this reason, in the compression stroke, control with a sufficient margin from the knocking region is possible. Furthermore, since the natural gas 35 vaporized in the tank 3 is injected from the fuel gas injection mechanism 41, the boil-off gas can be used as a fuel at a low pressure.
- the amount of boil-off gas generated in the tank 3 varies depending on the temperature.
- the amount of the fuel oil 90 injected from the fuel oil injection mechanism 42 can be adjusted according to the boil-off gas amount, so that the operation using the boil-off gas to the maximum extent is possible. It can be performed.
- the air-fuel ratio changes at the beginning and end of the compression stroke. That is, only a part of the fuel necessary for one combustion is injected from the fuel gas injection mechanism 41, and the air-fuel ratio at the beginning of the compression stroke is high (the air-fuel mixture is lean). There is no possibility that knocking will occur even if the is subsequently compressed. Further, when the remaining amount of fuel necessary for one combustion is injected from the fuel oil injection mechanism 42, the fuel / air injection ratio shifts to a lower air-fuel ratio (a direction in which the air-fuel mixture is not lean), resulting in an air-fuel mixture with no risk of misfire. Thus, the engine output is controlled.
- the amount of either the low-pressure natural gas 35 or the high-pressure fuel oil 90 may be adjusted, or the amount of both may be adjusted.
- the engine drive system 10B of the present embodiment includes the fuel gas injection mechanism 41 and the supply path 6 described in the first embodiment as the first fuel gas injection mechanism 41 and the first supply path 6, and the second fuel gas injection mechanism. 43 and a second supply path 74 are further included.
- the first fuel gas injection mechanism 41 injects natural gas that bears a part of the amount of fuel necessary for one combustion at a low pressure when the piston 23 rises from the bottom dead center toward the cylinder head 22. is there.
- the second fuel gas injection mechanism 43 injects natural gas that bears a part of the amount of fuel necessary for one combustion at a high pressure within a transition period immediately before and after the piston 23 is located at the top dead center. It is.
- the fuel oil injection mechanism 42 injects the fuel oil that bears the remaining amount of fuel necessary for one combustion at a high pressure within the transition period.
- the fuel oil may carry 10% or more of the amount of fuel required for one combustion.
- the low-pressure natural gas 35 and the high-pressure natural gas 35 are responsible for 40% of the fuel required for one combustion
- the high-pressure fuel oil 90 is responsible for 20% of the fuel required for one combustion. May be.
- an injection valve is used as the second fuel gas injection mechanism 43, and the second fuel gas injection mechanism 43 is provided in the cylinder head 22.
- the second fuel gas injection mechanism 43 may include a through hole provided in the cylinder head 22 and an electromagnetic valve provided in a pipe communicating with the through hole.
- the pressure of the natural gas 32 injected from the second fuel gas injection mechanism 43 is slightly higher (for example, about 15 to 30 MPa) than the pressure in the combustion chamber 20 when the piston 23 is located at the top dead center. is there. Similar to the first fuel gas injection mechanism 41 and the fuel oil injection mechanism 42, the second fuel gas injection mechanism 43 is controlled by the control device 5.
- the second combustion gas injection mechanism 43 is connected to the vaporizer 73 via a second supply path 74, and the vaporizer 73 is connected to the tank 3 via a liquid supply path 71.
- the natural gas 31 in the liquid state stored in the tank 3 is guided to the vaporizer 73 through the liquid supply path 71. That is, the liquid natural gas 31 extracted from the tank 3 is vaporized by the vaporizer 73.
- the vaporized natural gas 32 is guided from the vaporizer 73 to the second fuel injection mechanism 5 of each cylinder 2 through the second supply path 74.
- the upstream portion of the liquid supply path 71 passes through the upper part of the tank 3 and is opened near the bottom of the tank 3.
- a booster pump 72 is provided in the liquid supply path 71.
- the booster pump 72 boosts the natural gas 31 in a liquid state so that the natural gas 32 vaporized by the vaporizer 73 has the above-described high pressure that can be injected from the second fuel injection mechanism 5.
- the control device 5 determines the amount of air introduced into the combustion chamber 20 with respect to the amount of the low-pressure natural gas 35 injected from the first fuel gas injection mechanism 41. It is desirable to control the first fuel gas injection mechanism 41 so that the low-pressure gas air-fuel ratio, which is the ratio, becomes larger than the knocking region in the air-fuel ratio / net average effective pressure graph.
- natural gas is injected in two stages of low pressure and high pressure, and fuel oil is injected at high pressure. That is, since the natural gas compressed with air is not all the fuel required for one combustion, knocking can be prevented. Further, even if the air-fuel mixture is in the misfire region after the natural gas is injected from the first fuel gas injection mechanism 41, the natural gas and fuel oil for diffusion combustion are injected from the second fuel gas injection mechanism 43 and the fuel oil injection mechanism 42. Therefore, the problem of misfire does not occur. For this reason, in the compression stroke, control with a sufficient margin from the knocking region is possible.
- the amount of natural gas injected at a high pressure is reduced as compared with the case where the entire amount of natural gas is injected at the end of the compression stroke, for example, the equipment and power necessary for boosting the liquid natural gas 31 are increased. Can be reduced. Furthermore, since the natural gas 35 vaporized in the tank 3 is injected from the first fuel gas injection mechanism 41, the boil-off gas can be used as a fuel at a low pressure.
- the amount of boil-off gas generated in the tank 3 varies depending on the temperature.
- the amount of the natural gas 32 injected from the second fuel gas injection mechanism 43 and the amount of the fuel oil 90 injected from the fuel oil injection mechanism 42 according to the boil-off gas amount can be performed.
- the fuel oil injection valve 42 may inject the fuel oil 90 as pilot oil for ignition (fuel oil mainly intended for ignition of gas fuel).
- the combustion chamber 20 may be divided into a main chamber for combustion of natural gas and a sub chamber for ignition, instead of a single chamber.
- a compressor may be provided in the second supply path 74.
- the engine drive system of the present invention is not necessarily used for ships, and may be used, for example, for power generation that drives a rotating shaft of a generator.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
エンジン駆動システム(10A)は、燃焼室(20)を有する2ストロークエンジン(2E)と、天然ガスを液体状態で貯蔵するタンク(3)を備えている。燃焼室(20)内には、一度の燃焼に必要な量の燃料の一部を担う天然ガスが燃料ガス噴射機構(41)から低圧で噴射され、一度の燃焼に必要な量の燃料の残りを担う燃料油が燃料油噴射機構(42)から高圧で噴射される。燃料ガス噴射機構(41)には、タンク(3)内で気化した天然ガスが供給路(6)により導かれる。
Description
本発明は、天然ガスおよび燃料油を燃料とするエンジンを備えたエンジン駆動システムおよびこのエンジン駆動システムを用いた船舶に関する。
船舶においては、大気汚染防止の観点から、国際海事機関(IMO)の3次規制による規制の他、SOXや将来的にはCO2の排出量が規制される。このような状況下、従来の重油を燃料とするディーゼルエンジンに代わる、天然ガスを燃料とするガスエンジンが開発されてきている。また、燃料油と天然ガスの双方を使用するエンジンもある。
例えば、特許文献1には、燃焼室で圧縮された空気中に天然ガスおよびパイロットオイルを噴射する2ストロークガスエンジンが開示されている。2ストロークガスエンジンでは、概略的に、ピストンが上死点から下死点の少し手前まで下降する間に膨張行程および排気行程が行われ、ピストンが下死点の少し手前から上死点まで下降および上昇する間に掃気行程および圧縮行程が行われる。特許文献1に開示されたガスエンジンでは、圧縮行程の終わりに天然ガスが燃焼室内に噴射される。しかしながら、このガスエンジンでは、天然ガスを圧縮空気よりも高い圧力(例えば、15~30MPa程度)に加圧する必要がある。
その問題点を解決するために、特許文献2には、燃焼室への天然ガスの噴射を掃気行程の後半および/または圧縮行程の前半で行うようにした2ストロークガスエンジンが開示されている。なお、このガスエンジンに供給される天然ガスは、液体状態でタンクに貯蔵された天然ガスがポンプにより加圧された後に気化器により気化されたものである。
しかしながら、特許文献2に開示されたガスエンジンでは、燃焼室に噴射された天然ガスが空気と共に圧縮されるため、従来の4ストロークガスエンジンと同様の問題を生じることになる。4ストロークガスエンジンでは、燃焼室に導入される吸気中に、要求出力に必要な量の燃料ガスが予め混合される。この場合、空燃比(燃料量QFに対する空気量QAの比:QA/QF)と正味平均有効圧(BMEP)との関係で、ノッキングあるいは失火が生じることがある。
また、天然ガスを液体状態でタンクに貯蔵する場合、タンク内で天然ガスが気化してボイルオフガス(BOG)が生じるため、このボイルオフガスをどう処理するかが問題となる。
ここで、燃料油と天然ガスの双方(いわゆる二元燃料)を使用する2ストロークエンジンにおいて、ボイルオフガスを燃料として使用することも考えられる。しかしながら、従来の二元燃料を使用する2ストロークエンジンは、燃料油と天然ガスの双方を圧縮行程の終わりに高圧で噴射するように構成されているので、特許文献1と同様の問題を有する。
そこで、本発明は、ノッキングおよび失火を防止でき、かつ、ボイルオフガスを燃料として低圧で使用することができるエンジン駆動システム、およびこのエンジン駆動システムを用いた船舶を提供することを目的とする。
前記課題を解決するために、本発明は、一つの側面から、空気導入口および排気口が設けられたシリンダならびに前記シリンダ内で往復運動するピストンにより形成された燃焼室を有する2ストロークエンジンと、前記燃焼室内に、一度の燃焼に必要な量の燃料の一部を担う天然ガスを、前記ピストンが下死点から上昇する際に低圧で噴射する燃料ガス噴射機構と、前記燃焼室内に、一度の燃焼に必要な量の燃料の残りを担う燃料油を、前記ピストンが上死点に位置する直前から直後までの遷移期間内に高圧で噴射する燃料油噴射機構と、天然ガスを液体状態で貯蔵するタンクと、前記タンク内で気化した天然ガスを前記燃料ガス噴射機構に導く供給路と、を備えた、エンジン駆動システムを提供する。
上記の構成によれば、天然ガスが低圧で噴射されるとともに、燃料油が高圧で噴射される。すなわち、空気と共に圧縮される天然ガスは一度の燃焼に必要な燃料の全てではないので、ノッキングを防止することができる。また、燃料ガス噴射機構からの天然ガスの噴射後に混合気が失火領域にあっても燃料油噴射機構から拡散燃焼用の燃料油が噴射されるため、失火の問題も生じない。このため、圧縮行程においてはノッキング領域から十分に余裕を持った制御が可能となる。さらに、タンク内で気化した天然ガスが燃料ガス噴射機構から噴射されるため、ボイルオフガスを燃料として低圧で使用することができる。
上記のエンジン駆動システムは、前記燃料ガス噴射機構から噴射される低圧の天然ガスの量に対する前記燃焼室内に導入される空気の量の比である低圧ガス空燃比が、空燃比/正味平均有効圧グラフにおけるノッキング領域よりも大きくなるように、前記燃料ガス噴射機構を制御する制御装置をさらに備えてもよい。この構成によれば、ノッキングを確実に防止することができる。
例えば、前記燃料油噴射機構は、一度の燃料に必要な量の燃料の10%以上を担う燃料油を噴射してもよい。
また、本発明は、他の側面から、空気導入口および排気口が設けられたシリンダならびに前記シリンダ内で往復運動するピストンにより形成された燃焼室を有する2ストロークエンジンと、前記燃焼室内に、一度の燃焼に必要な量の燃料の一部を担う天然ガスを、前記ピストンが下死点から上昇する際に低圧で噴射する第1燃料ガス噴射機構と、前記燃焼室内に、一度の燃焼に必要な量の燃料の一部を担う天然ガスを、前記ピストンが上死点に位置する直前から直後までの遷移期間内に高圧で噴射する第2燃料ガス噴射機構と、前記燃焼室内に、一度の燃焼に必要な量の燃料の残りを担う燃料油を、前記遷移期間内に高圧で噴射する燃料油噴射機構と、天然ガスを液体状態で貯蔵するタンクと、前記タンク内で気化した天然ガスを前記第1燃料ガス噴射機構に導く第1供給路と、前記タンクから抜き出した液体状態の天然ガスを気化する気化器と、前記気化器から前記第2燃料ガス噴射機構に気化した天然ガスを導く第2供給路と、を備えた、エンジン駆動システムを提供する。
上記の構成によれば、天然ガスが低圧と高圧の二段階で噴射されるとともに、燃料油が高圧で噴射される。すなわち、空気と共に圧縮される天然ガスは一度の燃焼に必要な燃料の全てではないので、ノッキングを防止することができる。また、第1燃料ガス噴射機構からの天然ガスの噴射後に混合気が失火領域にあっても第2燃料ガス噴射機構および燃料油噴射機構から拡散燃焼用の天然ガスおよび燃料油が噴射されるため、失火の問題も生じない。このため、圧縮行程においてはノッキング領域から十分に余裕を持った制御が可能となる。また、天然ガスの全量を例えば圧縮行程の終わりに噴射する場合に比べて、高圧で噴射される天然ガスの量が減少するため、液体状態の天然ガスを昇圧するのに必要な設備や動力を低減することができる。また、拡散燃焼用の天然ガスと燃料油の噴射割合を調節することができるので、運転者の燃料選択の自由度が増える。さらに、タンク内で気化した天然ガスが第1燃料ガス噴射機構から噴射されるため、ボイルオフガスを燃料として低圧で使用することができる。
上記のエンジン駆動システムは、前記第1燃料ガス噴射機構から噴射される低圧の天然ガスの量に対する前記燃焼室内に導入される空気の量の比である低圧ガス空燃比が、空燃比/正味平均有効圧グラフにおけるノッキング領域よりも大きくなるように、前記第1燃料ガス噴射機構を制御する制御装置をさらに備えてもよい。この構成によれば、ノッキングを確実に防止することができる。
例えば、前記燃料油噴射機構は、一度の燃料に必要な量の燃料の10%以上を担う燃料油を噴射してもよい。
また、本発明は、上記のエンジン駆動システムと、一端にプロペラが取り付けられた、前記エンジン駆動システムにより駆動される推進軸と、を備えた、船舶を提供する。
本発明によれば、ノッキングおよび失火を防止でき、かつ、ボイルオフガスを燃料として低圧で使用することができる。
以下、図面を参照して、本発明の実施形態を説明する。
(第1実施形態)
図1に、本発明の第1実施形態に係るエンジン駆動システム10Aを用いた船舶1を示す。この船舶1は、エンジン駆動システム10Aが装備された船体11と、エンジン駆動システム10Aにより駆動される推進軸13とを備えている。推進軸13の一端には、プロペラ15が取り付けられている。
図1に、本発明の第1実施形態に係るエンジン駆動システム10Aを用いた船舶1を示す。この船舶1は、エンジン駆動システム10Aが装備された船体11と、エンジン駆動システム10Aにより駆動される推進軸13とを備えている。推進軸13の一端には、プロペラ15が取り付けられている。
エンジン駆動システム10Aは、2ストロークエンジン2Eと、このエンジン2Eの燃料の1つである天然ガスを液体状態で貯蔵するタンク(いわゆるLNGタンク)3とを備えている。エンジン2Eは、燃料油タンク91(図2参照)に貯蔵された燃料油をも燃料として使用する。エンジン2Eは、推進軸13と連結されたクランク軸12と、クランク軸12を覆うケーシング14と、クランク軸12の軸方向に並ぶ複数(図1では図面の簡略化のために2つのみ作図)のシリンダ2とを含む。
天然ガスは、通常はメタンを主成分として含む。タンク3は、-162℃程度まで冷却され液化した天然ガスを貯蔵できるようにタンク外からタンク内への熱の侵入を阻止する断熱構造を有している。なお、タンク3は、LNG運搬船の1つまたは複数のタンクと兼用されていてもよいし、エンジン2Eに専用のタンクであってもよい。
各シリンダ2は、図2に示すように、例えば鉛直方向に延びるシリンダライナ21と、シリンダライナ21の上端を塞ぐシリンダヘッド22とを含む。本実施形態では、シリンダライナ21に空気導入口2aが設けられており、シリンダヘッド22に排気口2bが設けられている。すなわち、シリンダ2はユニフロー式となっている。ただし、シリンダ2は、シリンダライナ21に排気口2bが設けられたクロス式やループ式であってもよい。
シリンダ2内にはピストン23が配設されており、シリンダ2およびピストン23によって燃焼室20が形成されている。ピストン23は、シリンダ2内で往復運動するものであり、連結棒24によりクランク軸12と連結されている。なお、ピストン23は、連結棒24と直接ピン接合されていてもよいが、ピストン23から真下に延びるピストン棒(図示せず)を介して連結棒24とピン接合されていてもよい。
排気口2bは、図略のアクチュエータにより作動させられる排気弁25により開閉される。排気弁25は、ピストン23が下降する際に、ピストン23の受圧面(本実施形態では上面)が空気導入口2aに到達する前、換言すれば空気導入口2aが燃焼室20と連通する前に開かれる。すなわち、ピストン23の下降開始から排気弁25が開かれるまでが膨張行程であり、排気弁25が開かれてから空気導入口2aが燃焼室20と連通するまでが排気行程である。また、排気弁25は、ピストン23が上昇する際に、ピストン23の受圧面が空気導入口2aを通過した後、換言すれば空気導入口2aの燃焼室20との連通状態が解除された後に閉じられる。すなわち、空気導入口2aが燃焼室20と連通してから排気弁25が閉じられるまでが掃気行程であり、排気弁25が閉じられてからピストン23の上昇終了までが圧縮行程である。なお、図3では、ピストン23が上死点に位置した状態を示す。
各シリンダ2の空気導入口2aは、掃気管16を介して掃気マニホールド15に接続されており、各シリンダ2の排気口2bは、排気管17を介して排気マニホールド18に接続されている。排気マニホールド18に収集された排気は、過給機(ターボチャージャー)19に送られて大気中の空気を圧縮する動力として使用された後に、系外に排出される。過給機19で圧縮された空気は掃気マニホールド15に送られ、ここで分配されて各シリンダ2に掃気として供給される。
また、各シリンダ2には、燃料である天然ガスを燃焼室20内に噴射する燃料ガス噴射機構41、および燃料である燃料油を燃焼室20内に噴射する燃料油噴射機構42が設けられている。本実施形態では、燃料ガス噴射機構41および燃料油噴射機構42として噴射弁が用いられており、シリンダライナ21に燃料ガス噴射機構41が設けられ、シリンダヘッド22に燃料油噴射機構42が設けられている。ただし、燃料ガス噴射機構41および燃料油噴射機構42の一方または双方は、シリンダライナ21またはシリンダヘッド22に設けられた貫通穴と、この貫通穴と連通する配管に設けられた電磁弁とで構成されていてもよい。
図4に示すように、燃料ガス噴射機構41は、一度の燃焼に必要な量の燃料の一部を担う天然ガスを、ピストン23が下死点からシリンダヘッド22に向かって上昇する際に低圧で噴射するものである。燃料油噴射機構42は、一度の燃焼に必要な量の燃料の残りを担う燃料油を、ピストン23が上死点に位置する直前から直後までの遷移期間内に高圧で噴射するものである。ここで、「一度の燃焼に必要な量の燃料」とは、要求出力に必要な量の燃料のことである。例えば、燃料油は、一度の燃焼に必要な量の燃料の10%以上を担ってもよい。
燃料ガス噴射機構41から噴射される天然ガス35の圧力は、過給機19で圧縮された空気の圧力よりも僅かに高い程度(例えば、0.5~1.0MPa程度)である。燃料油噴射機構42から噴射される燃料油90の圧力は、ピストン23が上死点に位置するときの燃焼室20内の圧力よりも遥かに高く、例えば70MPa以上である。遷移期間とは、例えば、クランク軸12の回転角度で、ピストン23が上死点に位置するタイミングから±10度である。
燃料ガス噴射機構41から噴射される低圧の天然ガス35(図2参照)と燃料油噴射機構42から噴射される高圧の燃料油90(図3参照)の比率は、タンク3内で気化するボイルオフガス量や要求出力などに応じて制御される。例えば、低圧の天然ガス35および高圧の燃料油90は、一度の燃焼に必要な量の燃料の50%ずつを担ってもよい。具体的に、燃料ガス噴射機構41および燃料油噴射機構42は、制御装置5により、クランク軸12の回転角度を検出する回転角検出器52(図2参照)の検出値に基づいて制御される。
図3に示すように、燃料ガス噴射機構41は、ピストン23が上死点に位置したときに、ピストン23によって燃焼室20と隔離される位置に配置されることが望ましい。燃料ガス噴射機構41を燃焼時の衝撃から保護できるからである。例えば、燃料ガス噴射機構41は、空気導入口2aとほぼ同じ高さ位置に配置されてもよい。ただし、燃料ガス噴射機構41は、必ずしもそのような位置に配置されている必要はなく、例えばシリンダヘッド22に設けられていてもよい。
燃料油噴射機構42には、燃料油供給路92を通じて燃料油タンク91から軽油や重油などの燃料油90が供給される。図示は省略するが、燃料油供給路92には、オイルポンプが設けられている。なお、燃料油は、油100%であってもよいし、水と油の混合体である水エマルジョンであってもよい。上述したように、燃料油噴射機構42は、遷移期間内に燃料油90を高圧で噴射する。圧縮空気中に燃料油90が噴射されると燃料油90が発火し、これにより圧縮空気と天然ガスの混合気が燃焼する。
図1に示すように、各シリンダ2の燃料ガス噴射機構41には、タンク3内で気化した天然ガス(BOG)35が供給路6により導かれる。例えば、供給路6の上流端はタンク3の上部に接続されている。供給路6には、タンク3内で気化した天然ガス35を、上述した低圧、すなわち燃料ガス噴射機構41から噴射可能となる圧力まで昇圧する圧縮機61が設けられている。
図6は、燃焼室20内に導入される前の空気に燃料の100%として天然ガスを混合したときのノッキング領域および失火領域を示す空燃比/正味平均有効圧グラフである。一般に、燃焼室に導入される吸気中に燃料ガスが予め混合される4ストロークガスエンジンでは、ノッキング領域および失火領域を避けるために、それらで挟まれる比較的に狭い範囲R内に空燃比が収まるように制御される。
上述したように、燃焼室20内に導入される前の空気に燃料の100%として天然ガスを混合した場合には、図5に示すようなノッキング領域と失火領域が存在する。この場合の天然ガスの全量(すなわち、一度の燃焼に必要な燃料の量)GTは、エンジン2Eへの要求出力から求まる。そのときのエンジン回転数における正味平均有効圧PMでのノッキング限界(ガス量の上限値)をGN、失火限界(ガス量の下限値)をGSとする。また、タンク3内でのBOGの1分あたりの発生量をエンジン回転数(rpm)およびシリンダ2の数で割った値をGBとする。低圧の天然ガス35の量GLはGN以下であることが望ましく、GBとGNの小さい方とすると良い。
このような観点から、上述した制御装置5は、燃料ガス噴射機構41から噴射される低圧の天然ガス35の量に対する燃焼室20内に導入される空気の量の比である低圧ガス空燃比が、空燃比/正味平均有効圧グラフにおけるノッキング領域よりも大きくなるように、燃料ガス噴射機構41を制御することが望ましい。この構成によれば、ノッキングを確実に防止することができる。より詳しくは、制御装置5には、正味平均有効圧ごとにノッキング限界を定めたマップが予め格納されているか、もしくは正味平均有効圧からノッキング限界を算出できるようにプログラムされており、制御装置5は、現在の正味平均有効圧に応じて燃料ガス噴射機構41を制御する。正味平均有効圧は、回転角検出器52から把握されるエンジン回転数やエンジン馬力計より算出されるか、エンジンシリンダ筒内圧力計(図示せず)によって計測される。また、低圧ガス空燃比の算出には、圧力計51により検出される、燃焼室20に導入される空気の圧力を用いてもよい。
以上説明したように、本実施形態のエンジン駆動システム10Aでは、天然ガスが低圧で噴射されるとともに、燃料油が高圧で噴射される。すなわち、空気と共に圧縮される天然ガスは一度の燃焼に必要な燃料の全てではないので、ノッキングを防止することができる。また、燃料ガス噴射機構41からの天然ガスの噴射後に混合気が失火領域にあっても燃料油噴射機構42から拡散燃焼用の燃料油が噴射されるため、失火の問題も生じない。このため、圧縮行程においてはノッキング領域から十分に余裕を持った制御が可能となる。さらに、タンク3内で気化した天然ガス35が燃料ガス噴射機構41から噴射されるため、ボイルオフガスを燃料として低圧で使用することができる。
ところで、タンク3内で発生するボイルオフガス量は気温などに応じて変化する。これに対し、本実施形態のエンジン駆動システム10Aでは、ボイルオフガス量に応じて燃料油噴射機構42から噴射する燃料油90の量を調整することができ、これによりボイルオフガスを最大限利用した運転を行うことができる。
より詳しくは、本実施形態のエンジン駆動システム10Aでは、図6中にA点およびB点で示すように例えば圧縮行程の始めと終わりとで空燃比が変化する。すなわち、燃料ガス噴射機構41からは一度の燃焼に必要な量の燃料の一部のみが噴射され、圧縮行程の始めの空燃比が高い(混合気がリーンな)ために、そのリーンな混合気がその後に圧縮されてもノッキングが生じるおそれがない。また、燃料油噴射機構42から一度の燃焼に必要な量の燃料の残りが噴射されると、空燃比が低い方(混合気がリーンでない方向)に移り、失火のおそれがない混合気となるようにエンジン出力が制御される。さらには、燃料油噴射機構42から残りの燃料として燃料油90が噴射された後は直ちに混合気が燃焼するので、ノッキングが生じることもない。しかも、最終的には燃焼時の空燃比を適切に調整できるため、必要な出力が得られるとともに、負荷変動に対する耐性を向上させることができる。
なお、エンジン回転数を一定に保つガバーニングを行う際は、低圧の天然ガス35と高圧の燃料油90のどちらかの量を調整してもよいし、双方の量を調整してもよい。
<変形例>
ボイルオフガスの発生量が少ないときには、燃料ガス噴射機構41からの低圧の天然ガスの噴射を停止して、燃料の100%を燃料油としてもよい。
ボイルオフガスの発生量が少ないときには、燃料ガス噴射機構41からの低圧の天然ガスの噴射を停止して、燃料の100%を燃料油としてもよい。
(第2実施形態)
次に、図7および図8を参照して、本発明の第2実施形態に係るエンジン駆動システム10Bを説明する。なお、本実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。
次に、図7および図8を参照して、本発明の第2実施形態に係るエンジン駆動システム10Bを説明する。なお、本実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。
本実施形態のエンジン駆動システム10Bは、第1実施形態で説明した燃料ガス噴射機構41および供給路6を第1燃料ガス噴射機構41および第1供給路6として含むとともに、第2燃料ガス噴射機構43および第2供給路74をさらに含む。
第1燃料ガス噴射機構41は、一度の燃焼に必要な量の燃料の一部を担う天然ガスを、ピストン23が下死点からシリンダヘッド22に向かって上昇する際に低圧で噴射するものである。第2燃料ガス噴射機構43は、一度の燃焼に必要な量の燃料の一部を担う天然ガスを、ピストン23が上死点に位置する直前から直後までの遷移期間内に高圧で噴射するものである。燃料油噴射機構42は、一度の燃焼に必要な量の燃料の残りを担う燃料油を、遷移期間内に高圧で噴射するものである。本実施形態でも、燃料油が一度の燃焼に必要な量の燃料の10%以上を担ってもよい。例えば、低圧の天然ガス35および高圧の天然ガス35が一度の燃焼に必要な量の燃料の40%ずつを担い、高圧の燃料油90が一度の燃焼に必要な量の燃料の20%を担ってもよい。
本実施形態では、第1燃料ガス噴射機構41および燃料油噴射機構42と同様に、第2燃料ガス噴射機構43として噴射弁が用いられており、シリンダヘッド22に第2燃料ガス噴射機構43が設けられている。ただし、第2燃料ガス噴射機構43は、シリンダヘッド22に設けられた貫通穴と、この貫通穴と連通する配管に設けられた電磁弁とで構成されていてもよい。
第2燃料ガス噴射機構43から噴射される天然ガス32の圧力は、ピストン23が上死点に位置するときの燃焼室20内の圧力よりも僅かに高い程度(例えば、15~30MPa程度)である。第2燃料ガス噴射機構43は、第1燃料ガス噴射機構41および燃料油噴射機構42と同様に、制御装置5により制御される。
第2燃焼ガス噴射機構43は、第2供給路74により気化器73と接続されており、気化器73は、送液路71によりタンク3と接続されている。タンク3に貯蔵された液体状態の天然ガス31は、送液路71により気化器73に導かれる。すなわち、タンク3から抜き出された液体状態の天然ガス31は、気化器73により気化される。気化した天然ガス32は、第2供給路74により気化器73から各シリンダ2の第2燃料噴射機構5に導かれる。
例えば、送液路71の上流側部分は、タンク3の上部を貫通してタンク3の底付近で開口している。送液路71には、昇圧ポンプ72が設けられている。この昇圧ポンプ72は、気化器73により気化された天然ガス32が第2燃料噴射機構5から噴射可能な上述した高圧となるように、液体状態の天然ガス31を昇圧する。
本実施形態においても、ノッキングを確実に防止するために、制御装置5は、第1燃料ガス噴射機構41から噴射される低圧の天然ガス35の量に対する燃焼室20内に導入される空気の量の比である低圧ガス空燃比が、空燃比/正味平均有効圧グラフにおけるノッキング領域よりも大きくなるように、第1燃料ガス噴射機構41を制御することが望ましい。
以上説明したように、本実施形態のエンジン駆動システム10Bでは、天然ガスが低圧と高圧の二段階で噴射されるとともに、燃料油が高圧で噴射される。すなわち、空気と共に圧縮される天然ガスは一度の燃焼に必要な燃料の全てではないので、ノッキングを防止することができる。また、第1燃料ガス噴射機構41からの天然ガスの噴射後に混合気が失火領域にあっても第2燃料ガス噴射機構43および燃料油噴射機構42から拡散燃焼用の天然ガスおよび燃料油が噴射されるため、失火の問題も生じない。このため、圧縮行程においてはノッキング領域から十分に余裕を持った制御が可能となる。また、天然ガスの全量を例えば圧縮行程の終わりに噴射する場合に比べて、高圧で噴射される天然ガスの量が減少するため、液体状態の天然ガス31を昇圧するのに必要な設備や動力を低減することができる。さらに、タンク3内で気化した天然ガス35が第1燃料ガス噴射機構41から噴射されるため、ボイルオフガスを燃料として低圧で使用することができる。
ところで、タンク3内で発生するボイルオフガス量は気温などに応じて変化する。これに対し、本実施形態のエンジン駆動システム10Bでは、ボイルオフガス量に応じて第2燃料ガス噴射機構43から噴射する天然ガス32の量および燃料油噴射機構42から噴射する燃料油90の量を調整することができ、これによりボイルオフガスを最大限利用した運転を行うことができる。
<変形例>
燃料油噴射弁42は、場合によっては、燃料油90を着火用のパイロットオイル(ガス燃料への着火を主な目的とした燃料油)として噴射してもよい。この場合を想定して、燃焼室20は単室ではなく、天然ガスの燃焼用の主室と着火用の副室に分かれていてもよい。
燃料油噴射弁42は、場合によっては、燃料油90を着火用のパイロットオイル(ガス燃料への着火を主な目的とした燃料油)として噴射してもよい。この場合を想定して、燃焼室20は単室ではなく、天然ガスの燃焼用の主室と着火用の副室に分かれていてもよい。
また、送液路71に昇圧ポンプ72が設けられる代わりに、第2供給路74に圧縮機が設けられていてもよい。
本発明のエンジン駆動システムは、必ずしも船舶に用いられる必要はなく、例えば、発電機の回転軸を駆動させる発電用として使用されてもよい。
1 船舶
10A,10B エンジン駆動システム
12 クランク軸
2E 2ストロークエンジン
2a 空気導入口
2b 排気口
2 シリンダ
20 燃焼室
23 ピストン
3 タンク
31 液化天然ガス
32,35 天然ガス
41 燃料ガス噴射機構、第1燃料ガス噴射機構
42 燃料油噴射機構
43 第2燃料ガス噴射機構
5 制御装置
6 供給路、第1供給路
61 圧縮機
71 送液路
72 昇圧ポンプ
73 気化器
74 第2供給路
10A,10B エンジン駆動システム
12 クランク軸
2E 2ストロークエンジン
2a 空気導入口
2b 排気口
2 シリンダ
20 燃焼室
23 ピストン
3 タンク
31 液化天然ガス
32,35 天然ガス
41 燃料ガス噴射機構、第1燃料ガス噴射機構
42 燃料油噴射機構
43 第2燃料ガス噴射機構
5 制御装置
6 供給路、第1供給路
61 圧縮機
71 送液路
72 昇圧ポンプ
73 気化器
74 第2供給路
Claims (7)
- 空気導入口および排気口が設けられたシリンダならびに前記シリンダ内で往復運動するピストンにより形成された燃焼室を有する2ストロークエンジンと、
前記燃焼室内に、一度の燃焼に必要な量の燃料の一部を担う天然ガスを、前記ピストンが下死点から上昇する際に低圧で噴射する燃料ガス噴射機構と、
前記燃焼室内に、一度の燃焼に必要な量の燃料の残りを担う燃料油を、前記ピストンが上死点に位置する直前から直後までの遷移期間内に高圧で噴射する燃料油噴射機構と、
天然ガスを液体状態で貯蔵するタンクと、
前記タンク内で気化した天然ガスを前記燃料ガス噴射機構に導く供給路と、
を備えた、エンジン駆動システム。 - 前記燃料ガス噴射機構から噴射される低圧の天然ガスの量に対する前記燃焼室内に導入される空気の量の比である低圧ガス空燃比が、空燃比/正味平均有効圧グラフにおけるノッキング領域よりも大きくなるように、前記燃料ガス噴射機構を制御する制御装置をさらに備える、請求項1に記載のエンジン駆動システム。
- 前記燃料油噴射機構は、一度の燃料に必要な量の燃料の10%以上を担う燃料油を噴射する、請求項1または2に記載のエンジン駆動システム。
- 空気導入口および排気口が設けられたシリンダならびに前記シリンダ内で往復運動するピストンにより形成された燃焼室を有する2ストロークエンジンと、
前記燃焼室内に、一度の燃焼に必要な量の燃料の一部を担う天然ガスを、前記ピストンが下死点から上昇する際に低圧で噴射する第1燃料ガス噴射機構と、
前記燃焼室内に、一度の燃焼に必要な量の燃料の一部を担う天然ガスを、前記ピストンが上死点に位置する直前から直後までの遷移期間内に高圧で噴射する第2燃料ガス噴射機構と、
前記燃焼室内に、一度の燃焼に必要な量の燃料の残りを担う燃料油を、前記遷移期間内に高圧で噴射する燃料油噴射機構と、
天然ガスを液体状態で貯蔵するタンクと、
前記タンク内で気化した天然ガスを前記第1燃料ガス噴射機構に導く第1供給路と、
前記タンクから抜き出した液体状態の天然ガスを気化する気化器と、
前記気化器から前記第2燃料ガス噴射機構に気化した天然ガスを導く第2供給路と、
を備えた、エンジン駆動システム。 - 前記第1燃料ガス噴射機構から噴射される低圧の天然ガスの量に対する前記燃焼室内に導入される空気の量の比である低圧ガス空燃比が、空燃比/正味平均有効圧グラフにおけるノッキング領域よりも大きくなるように、前記第1燃料ガス噴射機構を制御する制御装置をさらに備える、請求項3に記載のエンジン駆動システム。
- 前記燃料油噴射機構は、一度の燃料に必要な量の燃料の10%以上を担う燃料油を噴射する、請求4または5に記載のエンジン駆動システム。
- 請求項1~6のいずれか一項に記載のエンジン駆動システムと、
一端にプロペラが取り付けられた、前記エンジン駆動システムにより駆動される推進軸と、
を備えた、船舶。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/002261 WO2015162636A1 (ja) | 2014-04-22 | 2014-04-22 | エンジン駆動システムおよび船舶 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/002261 WO2015162636A1 (ja) | 2014-04-22 | 2014-04-22 | エンジン駆動システムおよび船舶 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015162636A1 true WO2015162636A1 (ja) | 2015-10-29 |
Family
ID=54331837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/002261 WO2015162636A1 (ja) | 2014-04-22 | 2014-04-22 | エンジン駆動システムおよび船舶 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015162636A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0626390A (ja) * | 1992-07-08 | 1994-02-01 | Mazda Motor Corp | 2サイクルエンジンの制御装置 |
JP2004036538A (ja) * | 2002-07-04 | 2004-02-05 | Toyota Motor Corp | 混合気を圧縮自着火させる内燃機関、および内燃機関の制御方法 |
WO2012018071A1 (ja) * | 2010-08-05 | 2012-02-09 | 株式会社Ihi | 2サイクルエンジン |
JP2013217336A (ja) * | 2012-04-11 | 2013-10-24 | Mitsubishi Heavy Ind Ltd | 二元燃料ディーゼルエンジン |
WO2014034865A1 (ja) * | 2012-08-31 | 2014-03-06 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
-
2014
- 2014-04-22 WO PCT/JP2014/002261 patent/WO2015162636A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0626390A (ja) * | 1992-07-08 | 1994-02-01 | Mazda Motor Corp | 2サイクルエンジンの制御装置 |
JP2004036538A (ja) * | 2002-07-04 | 2004-02-05 | Toyota Motor Corp | 混合気を圧縮自着火させる内燃機関、および内燃機関の制御方法 |
WO2012018071A1 (ja) * | 2010-08-05 | 2012-02-09 | 株式会社Ihi | 2サイクルエンジン |
JP2013217336A (ja) * | 2012-04-11 | 2013-10-24 | Mitsubishi Heavy Ind Ltd | 二元燃料ディーゼルエンジン |
WO2014034865A1 (ja) * | 2012-08-31 | 2014-03-06 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5480961B1 (ja) | ガスエンジン駆動システムおよび船舶 | |
JP6334596B2 (ja) | 燃料ガス噴射圧力を制御する内燃エンジン | |
KR102455808B1 (ko) | 대형 2행정 단류 소기식 기체 연료 엔진 | |
CN112177762B (zh) | 具有气体燃料模式的大型二冲程直流扫气式发动机 | |
CN107448284B (zh) | 两冲程十字头型内燃发动机与直接喷射燃料和水到燃烧室的方法 | |
US20150000630A1 (en) | Rapid LNG Engine Warm-Up Utilizing Engine Compression Brakes | |
US20130055987A1 (en) | Internal combustion reciprocating piston engine and method of operating the same | |
RU2689239C1 (ru) | Топливный клапан и способ впрыска газообразного топлива в камеру сгорания большого двухтактного двигателя внутреннего сгорания с турбонаддувом с воспламенением от сжатия | |
WO2015162636A1 (ja) | エンジン駆動システムおよび船舶 | |
EP3983662B1 (en) | Method of operating piston engine and control system for piston engine | |
JP2021011869A (ja) | ガス燃料供給システム及びガス燃料供給システムを動作させる方法 | |
CN114746641A (zh) | 内燃发动机 | |
JP7449350B2 (ja) | 大型2ストロークユニフロー掃気ガス燃料機関及び液体燃料の供給制御方法 | |
DK180891B1 (en) | A large two-stroke uniflow scavenged engine with a gaseous fuel mode | |
KR101918864B1 (ko) | 오토 사이클 방식으로 운전되는 엔진 및 이를 포함하는 선박 및 이를 구동하는 방법 | |
KR101976713B1 (ko) | 오토 사이클 방식으로 운전되는 엔진 및 이를 포함하는 선박 및 이를 구동하는 방법 | |
JP5966316B2 (ja) | 液化ガスを燃料とする内燃機関 | |
KR20230119021A (ko) | 2-행정 피스톤 엔진의 작동 방법, 연료 분사 시스템,피스톤 엔진 및 2-행정 피스톤 엔진을 개조하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14889904 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14889904 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |