WO2015162324A1 - Motor rotativo - Google Patents

Motor rotativo Download PDF

Info

Publication number
WO2015162324A1
WO2015162324A1 PCT/ES2015/070314 ES2015070314W WO2015162324A1 WO 2015162324 A1 WO2015162324 A1 WO 2015162324A1 ES 2015070314 W ES2015070314 W ES 2015070314W WO 2015162324 A1 WO2015162324 A1 WO 2015162324A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
chamber
rotary
engine
motor
Prior art date
Application number
PCT/ES2015/070314
Other languages
English (en)
French (fr)
Inventor
Cruz Antonio Lopez Contreras
Original Assignee
Cruz Antonio Lopez Contreras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cruz Antonio Lopez Contreras filed Critical Cruz Antonio Lopez Contreras
Publication of WO2015162324A1 publication Critical patent/WO2015162324A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/08Charging, e.g. by means of rotary-piston pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a rotary motor, which has the particularity that its counterweight or counterweights have a special configuration that allows both to act as an engine stabilizing element or elements, also act as a compressor element intended to provide the flow of air or oxidizer that enters the engine chambers, either directly, or through a reservoir of compressed air.
  • the device has been designed to define a two-stroke engine.
  • rotary engines such as WO 9534749, in which a rotary motor with axial intake and exhaust is described, in which its pistons perform counter movements within of a circular explosion chamber, so that the admission of gases is produced by synchronizing the pistons with discs that open and close the corresponding ports, this process being considered equivalent to an atmospheric admission of a traditional internal combustion engine. Consequently, the performance of this type of engines is significantly limited compared to supercharged engines.
  • the rotary engine that is recommended solves in a fully satisfactory way the above-mentioned problem, thanks to a highly effective novel structuring in which the counterweight or counterweights of the engine not only act as a stabilizing element, but also allow the entry and exit of gases, as well as introducing air into a compressed air tank.
  • the engine is preferably materialized in a two-stroke engine, in which the intake ports are arranged axially to the combustion chamber or chambers, so that the secondary rotor, which rotates in In the opposite direction to the main rotor, it sucks and drives the air through these ports, from an auxiliary chamber, while the outflow of gases occurs radially, by means of a uniform sweep, through chambers established in correspondence with the vertices of The combustion chamber, although once the gases have access to these chambers, they also move axially to said chambers, by means of the corresponding rotary valves.
  • the intake ports of the combustion chambers are controlled by means of rotary valves, synchronized and coupled to the motor shaft, by means of which their sealing is controlled.
  • These ports communicate through internal ducts with a reservoir of compressed air, with which the chamber or chambers in which the secondary rotors play, ducts that adopt a radial arrangement, are communicated, while the air intake holes are arranged distributed equiangularly in axial arrangement on the chamber, they are also assisted by a rotary valve, synchronized and coupled to the motor shaft, responsible for controlling its sealing according to the angular position of said secondary rotor.
  • part of the torque that is necessary to apply in the braking of the vehicle in which the engine is installed is obtained in part by the friction made by the brake mechanism, plus the torque that is necessary to apply to move the secondary rotor and thus allow the braking torque to be distributed both in the braking system (removing tension from the brake discs) and to compress and store air in the compressed air reservoir for later use in another type of configuration. functioning.
  • the energy stored in the compressed air tanks can be optimized, using it to increase the engine power when required, as well as for, for example, the actuation of the pneumatic brakes or any system that requires it, eliminating the need to use an additional compressor to generate compressed air, as is necessary in some types of vehicles.
  • the engine of the invention has another advantage and, depending on the workload we need, it can be configured so that, for every revolution (360 °), the main rotor performs 0 (braking), 1, 2 0 3 explosions
  • the engine can be assisted by a turbocharger, driven by the engine's exhaust gases, so that the secondary rotor does not need to have the same size as the primary rotor to act as a pumping element which means an improvement over to the Miller cycle, so that, having smaller dimensions than said primary rotor, to compensate for the inertia of the primary rotor it is necessary to include a third or tertiary rotor, equally opposite to the direction of the primary rotor, which is used to generate energy electrical, by incorporating magnets or any material that meets said function that rotates with respect to a coil in which an electric current is induced.
  • the motor shaft connecting the first counterweight to the main rotor can be used to generate electric power, acting as an electric rotor, so that between the housings of The rotors, which communicate the discharge ducts from one chamber to another, provide the corresponding stator, thus allowing power to be generated with the engine without the need for the classic alternator, thus avoiding the use of transmissions that need continuous maintenance.
  • the second counterweight can be sized in functions of electric motor and flywheel, as well as constitute the driving axis of a compressed air generator.
  • Figure 1 shows a detail in front elevation of the exploded view of one of the combustion chambers of a rotary engine made in accordance with the object of the present invention, in which the main rotor plays.
  • Figure 2. Shows a view similar to that of Figure 1, but corresponding a cross section of the chamber in which the secondary rotor plays, responsible for managing the flow of incoming and outgoing gases from the combustion chamber of the figure previous.
  • Figure 3. Shows, according to a front elevation view of the different parts involved in the engine, a sequence of four phases, according to four columns, depending on the angular position of the primary and secondary rotors.
  • Figure 4.- Shows a schematic representation in profile of the motor, corresponding to a variant embodiment in which in the axis that relates the main rotor to the secondary rotor a third rotor is established, which can be used to generate electrical energy.
  • the present example of preferred embodiment has been carried out based on a two-stroke rotary engine, in which a combustion chamber with its corresponding main rotor and a secondary chamber with its secondary rotor in functions of first counterweight and of element of aspiration and discharge of the gases from the combustion chamber, so that the number of these chambers can be multiplied without affecting the essence of the invention, as well as the internal distribution of the same, which in this case has been chosen a triangle distribution, in which for every 120 ° the shaft rotates an explosion occurs.
  • a combustion chamber (1-1-1) participates, essentially in a triangle configuration, based on a central body (1), and two elements in function of side covers (1-1), in which a main rotor (2) plays, associated with the motor shaft (3), through the corresponding eccentric mechanism (4), by means of which the different positions for said rotor are made possible and as shown in Figure 3, defining internal sealing chambers (5) with their corresponding seals (6) that ensure the tightness in the angular displacements of the main rotor (2).
  • three ports (7) are established to allow the entry of oxidizer, coming from the secondary rotor chamber. It can also come from a pressurized air chamber, not shown in the figures, which is accessed through respective perimeter sockets (8), by means of the corresponding solenoid valves (28), these ports being assisted (7) by a rotary valve (9) discoidal, with three holes (10) that, as shown in figure 3, regulate the air inlet to the different temporary chambers that are formed in the combustion chamber depending on the position of the main rotor (one).
  • a housing (11) is defined for the injectors, ignition system, and similar elements, counting radially at its ends with assisted gas outlet chambers (12) by the corresponding rotary valves (13), affected by a recess (14) and a hole (15) for controlled escape of the exhaust gases.
  • the engine incorporates at least one secondary chamber (16), coaxial to the main or combustion chamber, in which a secondary rotor (17) also plays, which 180 ° out of phase with respect to the main rotor (2) in order to act as a counterweight, although said element also acts as a compressor, defining air intake ports (18) assisted by a rotary valve (19), with its corresponding orifice (20) for controlling the inlet flow, so that the air sucked by the spinning effect of the secondary rotor (17) leaves the secondary chamber through two chambers (21) established in correspondence with its vertices , which are assisted by the complementary rotary valves (22), which through air ducts (23) recirculate the sucked air into a reservoir of compressed air, not represented in the figures, so that in said Rotary valves (22) define a communication conduit (26) towards the main chamber, and a conduit (27) through which it communicates with said conduit (23).
  • both the main and secondary rotors are rotated in the opposite direction with respect to each other. From this structuring, and according to the graphic representation of Figure 3, the operation is as follows:
  • the air intake rotary valve (19) which rotates clockwise, has the upper right air inlet of the secondary rotor chamber (17) open .
  • the secondary rotor (17) is in an upright position and has directed the air from the lower chamber to the conduit that communicates (when the rotary valves of the main housing (9) open the ports) with the main housing (1) (lobe) from the lower right housing)
  • the main rotor (2) is in an upright position (opposite the secondary one) in the upper dead center of the upper lobe, ready to explode, and turn towards the lower right lobe.
  • the rotary exhaust valves (13) have the upper chamber, the lower right chamber closed and about to open the left one for the gas outlet and new air inlet or oxidizer.
  • the air intake rotary valve (19) which rotates clockwise, has the air inlet of the secondary rotor chamber open (17) lower.
  • Said secondary rotor (17) has rotated 60 ° towards the upper left lobe, directing the air from the left chamber towards the communicating conduit (when the rotary valves (9) of the main housing open the ports) with the main housing (1) (lobe of the lower left housing).
  • the main rotor (2) has turned 60 ° towards the lower right lobe (opposite the secondary one) in the upper dead center of said lobe, ready to make the explosion, and turn towards the lower left lobe.
  • the rotary exhaust valves (13) (all are in the same position and turn clockwise) are ready for; open the upper chamber, the lower right is closed just like the left.
  • the air intake rotary valve (19) has the air inlet of the upper left secondary rotor chamber (17) open, while said Secondary rotor (17) has turned 60 ° towards the upper right lobe, directing the air from the right chamber towards the conduit that communicates (when the rotary valves of the main housing (9) open the ports) with the main housing (1) (upper lobe of the main housing).
  • the main rotor (2) has rotated 60 ° towards the lower left lobe (opposite the secondary one) in the upper dead center of said lobe, ready to make the explosion, and turn towards the upper lobe and start again cycle.
  • the rotary exhaust valves (13) (all are in the same position and rotate clockwise) have the upper lobe chamber and the lower left lobe chamber closed, leaving the lower right lobe ready to open. It only remains to indicate finally that, in case of regenerative braking, low load, ... etc.
  • the secondary rotor valves (22) rotate and close the conduits (8) of the main rotor (1), uncovering the conduit (29) of the secondary chamber (16) from a hole (26) 5 established in the valve ( 22), to allow atmospheric air to pass to the ducts (8), while the duct (27) of said rotary valves, by turning said valves, communicates with the compressed air duct (23), and therefore, the air sucked by the secondary rotor (17) goes to the compressed air tank.
  • the shaft (3) of the motor that connects the main rotor (2) with the counterweight or secondary rotor (17) is capable of incorporating a tertiary rotor (30), which can be used to generate electric power, acting as an electric rotor, so that the corresponding stator (31) is arranged between the rotary housings, which communicate the discharge ducts from one chamber to another, thus allowing energy to be generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

La invención se basa en que partiendo de la configuración de cualquier tipo de motor rotativo, de combustión interna, el mismo incorpore al menos una segunda cámara, en la que juega un rotor secundario (17) que además de actuar como primer contrapeso que estabilice al motor, se utiliza como compresor para gestionar las maniobras de admisión y escape del motor, además de meter aire en un depósito de aire comprimido en caso de requerirlo, mejorando sensiblemente su rendimiento. Si bien esta cámara como se ha comentado puede incorporarse en cualquier tipo de motor rotativo la invención prevé su inclusión en un motor rotativo de dos tiempos.

Description

MOTOR ROTATIVO
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un motor rotativo, que presenta la particularidad de que su contrapeso o contrapesos presentan una especial configuración que permite a la vez de actuar como elemento o elementos estabilizadores del motor, también actúan como elemento compresor destinado a proporcionar el flujo de aire o comburente que entra en las cámaras del motor, bien de forma directa, o a través de un depósito de aire comprimido.
El dispositivo ha sido diseñado para definir un motor de dos tiempos.
ANTECEDENTES DE LA INVENCIÓN
En el ámbito de aplicación práctica de la invención, son conocidos una gran variedad de motores rotativos, como puede ser el documento WO 9534749, en el que se describe un motor rotativo con admisión y escape axiales, en la que sus pistones realizan movimientos contrarios dentro de una cámara de explosión circular, de manera que la admisión de gases se produce mediante la sincronización de los pistones con unos discos que abren y cierran las correspondientes lumbreras, pudiéndose este proceso considerarse equivalente a una admisión atmosférica de un motor de combustión interna tradicional. Consecuentemente, el rendimiento de este tipo de motores se ve sensiblemente limitado frente a motores sobrealimentados.
Si bien son conocidos diferentes tipos de mecanismos para llevar a cabo este tipo de sobrealimentación, ya sea a través de los gases de escape expulsados (turbocompresores), o bien mediante elementos mecánicos (compresores) accionados por la transmisión del motor, este tipo de elementos constituyen elementos independientes del motor, con esta única función, de manera que, no permiten aunar varias funciones en un mismo elemento, simplificando la estructura del motor, y consecuentemente mejorándolo.
Si bien es cierto que en la patente británica GB 943693 se describe un motor rotativo en el que se establece un ventilador que actúa como volante de inercia, al que se pueden aplicar pesos para equilibrar la excéntrica y el rotor, dicho elemento tiene como finalidad principal refrigerar el motor, de manera que el mismo no controla ni regula la entrada y salida de gases que entran en las cámaras de dicho motor, no previéndose el empleo de y llenado a partir de este elemento de uno o mas depósitos de aire comprimido.
DESCRIPCIÓN DE LA INVENCIÓN
El motor rotativo que se preconiza resuelve de forma plenamente satisfactoria la problemática anteriormente expuesta, merced a una novedosa estructuración sumamente efectiva en la que el contrapeso o contrapesos del motor no solo actúan como elemento estabilizador, sino que permiten controlar la entrada y salida de gases, así como introducir aire en un depósito de aire comprimido. Para ello, se parte de la estructura convencional de cualquier motor rotativo, en la que se establece una serie de cámaras en las que juegan respectivos rotores, con sus correspondientes lumbreras de entrada de aire y sus complementarias cámaras de salida de gases, así como con los clásicos alojamientos para los sistemas de encendido, inyectores etc, con la particularidad de que, se definen distintas cámaras paralelas en el motor en cada una de las cuales es desplazable un rotor secundario que en su giro provoca la admisión, compresión, y un rotor principal donde se realiza la explosión y el escape de la mezcla de combustible y comburente, mediante dos tiempos, en función de la disposición de las lumbreras y elementos de apertura y cierre asociadas a las mismas, con la particularidad de que, conjuntamente con estas cámaras de combustión participan paralelamente otras cámaras en las que se establece sendos rotores secundarios, en funciones de contrapeso, pero con la particularidad de que en dichas cámaras se produce por el propio desplazamiento del rotor, un efecto de aspiración e impulsión de gases que, a través de los correspondientes compartimentos entre unas y otras cámaras, se aprovechan para controlar la entrada y salida de gases a las cámaras de combustión.
A partir de esta estructuración, se ha previsto que el motor se materialice preferentemente en un motor de dos tiempos, en el que las lumbreras de admisión se disponen axialmente a la cámara o cámaras de combustión, de modo que el rotor secundario, que rota en dirección contraria al rotor principal, aspira e impulsa el aire a través de estas lumbreras, desde una cámara auxiliar, mientras que la salida de gases se produce de forma radial, mediante un barrido uniflujo, a través de cámaras establecidas en correspondencia con los vértices de la cámara de combustión, si bien una vez que los gases acceden a estas cámaras se desplazan igualmente en sentido axial a dichas cámaras, por medio de las correspondientes válvulas rotativas. De esta forma, las lumbreras de admisión de las cámaras de combustión se controlan mediante válvulas rotativas, sincronizadas y acopladas en el eje del motor, mediante las que se controla su obturación.
Estas lumbreras se comunican a través de conductos internos con un depósito de aire comprimido, con el que se comunican la cámara o cámaras en las que juegan los rotores secundarios, conductos que adoptan una disposición radial, mientras que los huecos de aspiración de aire se disponen distribuidos equiangularmente en disposición axial sobre la cámara, estando los mismos igualmente asistidos por una válvula rotativa, sincronizada y acoplada al eje del motor, encargada de controlar su obturación en función de la posición angular de dicho rotor secundario.
De acuerdo con otra de las características de la invención, se ha previsto que la recuperación de la energía que se degrada en la frenada en forma de calor, pueda ser aprovechada introduciendo aire en el depósito de aire comprimido.
Para ello, parte del par que es necesario aplicar en la frenada del vehículo en el que el motor se encuentre instalado, se obtiene en parte por la fricción realizada por el mecanismo de freno, más el par que es necesario aplicar para mover el rotor secundario y así permitir que el par de la frenada se reparta tanto en el sistema de frenado (quitando tensión a los discos de freno) como para comprimir y almacenar aire en el depósito de aire comprimido para un posterior empleo del mismo en otro tipo de configuración de funcionamiento.
Paralelamente, también es posible meter aire en el/los depósito/s de aire comprimido, cuando el motor requiera relaciones de baja potencia, como son los casos de velocidad constante en llano o velocidades bajas pero constantes, o cuando el vehículo se encuentre parado (atascos, semáforos...etc)
Con este tipo de configuración, tanto el flujo de combustible como la corriente eléctrica para encender el sistema de encendido son desconectados, por lo que el rotor principal deja de funcionar y solo actúa el rotor secundario movido por la inercia del vehículo que se quiere frenar.
Mediante este proceso de frenada regenerativa se puede optimizar la energía almacenada en los depósitos de aire comprimido, empleándola para aumentar la potencia del motor cuando se requiera, así como para, por ejemplo, el accionamiento de los frenos neumáticos o cualquier sistema que lo requiera, eliminando la necesidad de emplear un compresor adicional para generar aire comprimido, como es preciso en algunos tipos de vehículos.
Finalmente, el motor de la invención presenta otra ventaja y es que, dependiendo de la carga de trabajo que necesitemos, se puede configurar para que, por cada revolución (360°), el rotor principal realice 0 (frenada), 1, 2 0 3 explosiones.
Opcionalmente, el motor puede estar asistido por un turbocompresor, accionado por los gases de escape del motor, de manera que el rotor secundario no necesita presentar el mismo tamaño que el rotor primario para actuar en funciones de elemento de bombeo lo que supone una mejora frente al ciclo Miller, de manera que, al presentar unas dimensiones menores que dicho rotor primario, para compensar la inercia del rotor primario es preciso incluir un tercer rotor o terciario, igualmente opuesto a la dirección del rotor primario, el cual se aprovecha para generar energía eléctrica, al incorporar imanes o cualquier material que cumpla dicha función que gira con respecto a una bobina en la que se induce una corriente eléctrica.
La principal ventaja que presenta este sistema frente al ciclo Miller es debido al hecho de que la etapa de admisión y compresión se encuentra en un lóbulo independiente frente a la carrera de expansión y escape, esta configuración permite dimensionar ambos lóbulos de manera independiente sin tener que recurrir al sistema de cierre adelantado de válvulas de admisión para diferenciar la carrera de admisión frente a la carrera de expansión, por lo que con el presente sistema las pérdidas por bombeo se reducen al mínimo frente al citado ciclo Miller, mientras que el rendimiento volumétrico de llenado del lóbulo aumenta.
De acuerdo con otra de las características de la invención, se ha previsto que el eje del motor que conecta el primer contrapeso con el rotor principal pueda ser utilizado para generar energía eléctrica, actuando a modo de rotor eléctrico, de manera que entre las carcasas de los rotores, que comunican los conductos de descarga de una cámara a otra, se disponga el correspondiente estator, permitiendo así generar energía con el motor sin necesidad del clásico alternador, evitando así el empleo de transmisiones que necesitan de continuo mantenimiento.
Por su parte, el segundo contrapeso, puede dimensionarse en funciones de motor eléctrico y volante de inercia, así como constituir el eje motriz de un generador de aire comprimido.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, se acompaña a la presente memoria descriptiva, como parte integrante de la misma, un juego de planos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra un detalle en alzado frontal del despiece de una de las cámaras de combustión de un motor rotativo realizado de acuerdo con el objeto de la presente invención, en la que juega el rotor principal.
La figura 2.- Muestra una vista similar a la de la figura 1, pero correspondiente una sección transversal de la cámara en la que juega el rotor secundario, encargada de gestionar el flujo de gases entrantes y salientes de la cámara de combustión de la figura anterior.
La figura 3.- Muestra, de acuerdo con una vista en alzado frontal de las diferentes piezas que participan en el motor, una secuencia de cuatro fases, de acuerdo con cuatro columnas, en función de la posición angular de los rotores primario y secundario.
La figura 4.- Muestra una representación esquemática en perfil del motor, correspondiente a una variante de realización en la que en el eje que relaciona el rotor principal con el rotor secundario se establece un tercer rotor, que puede ser aprovechado para generar energía eléctrica.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
El presente ejemplo de realización preferente se ha realizado en base a un motor rotativo de dos tiempos, en el que participa una cámara de combustión con su correspondiente rotor principal y una cámara secundaria con su rotor secundario en funciones de primer contrapeso y de elemento de aspiración e impulsión de los gases de la cámara de combustión, de manera que, el número de estas cámaras puede multiplicarse sin que ello afecte a la esencia de la invención, así como la distribución interna de las mismas, que en este caso se ha elegido una distribución en triángulo, en la que por cada 120° que gira el eje se produce una explosión.
Pues bien, como se acaba de comentar, en el motor de la invención participa una cámara de combustión (1-1-1), de configuración esencialmente en triangulo, a base de un cuerpo central (1), y dos elementos en funciones de tapas laterales (1-1), en cuyo seno juega un rotor principal (2), asociado al eje (3) del motor, a través del correspondiente mecanismo excéntrico (4), mediante el que se posibilitan las diferentes posiciones para dicho rotor tal y como muestra la figura 3, definiéndose unas cámaras de sellado internas (5) con sus correspondientes sellos (6) que aseguran la estanqueidad en los desplazamientos angulares del rotor principal (2).
Axialmente a la cámara de combustión (1, 1) se establecen tres lumbreras (7) destinadas a permitir la entrada de comburente, proveniente de la cámara del rotor secundario. También puede provenir de una cámara de aire a presión, no representada en las figuras, a la que se accede a través de respectivas tomas perimetrales (8), por medio de las correspondientes electroválvulas (28), estando asistidas estas lumbreras (7) por una válvula rotativa (9) discoidal, con tres orificios (10) que, como se muestra en la figura 3, regulan la entrada de aire a las diferentes cámaras temporales que se forman en la cámara de combustión en función de la posición del rotor principal (1).
En dicha cámara (1) se define un alojamiento (11) para los inyectores, sistema de encendido, y elementos similares, contando radialmente en sus extremos con cámaras de salida de gases (12) asistidas por las correspondientes válvulas rotativas (13), afectadas de una escotadura (14) y de un orificio (15) para salida controlada de los gases de escape.
Pues bien, de acuerdo con la esencia de la invención, se ha previsto que el motor incorpore al menos una cámara secundaria (16), coaxial a la cámara principal o de combustión, en la que juega igualmente un rotor secundario (17), que esta desfasado 180° con respecto al rotor principal (2) en orden a actuar como contrapeso, si bien dicho elemento actúa igualmente a modo de compresor, definiéndose unas lumbreras de aspiración de aire (18) asistidas por una válvula rotativa (19), con su correspondiente orificio (20) de control del caudal de entrada, de manera que el aire aspirado por el propio efecto de giro del rotor secundario (17) sale de la cámara secundaria a través de sendas cámaras (21) establecidas en correspondencia con sus vértices, las cuales están asistidas por las complementarias válvulas rotativas (22), que a través de unos conductos (23) recirculan el aire aspirado hacia un depósito de aire comprimido, no representado en las figuras, de manera que en dichas válvulas rotativas (22) se define un conducto (26) de comunicación hacia la cámara principal, y un conducto (27) mediante el que se comunica con el citado conducto (23).
De forma análoga a como sucede en la cámara de combustión, para asegurar una perfecta estanqueidad en el movimiento rotativo del rotor secundario (17), se ha previsto que en la superficie interior de dicha cámara se definan cámaras de sellado (24) asistidas por los correspondientes sellos (25).
A partir de la correspondiente transmisión, no representada en las figuras, se hace que los rotores tanto principal como secundario giren en dirección opuesta uno respecto al otro. A partir de esta estructuración, y de acuerdo con la representación gráfica de la figura 3, el funcionamiento es el que sigue:
De acuerdo con la primera columna, y en orden ascendente, puede verse como la válvula rotativa (19), de aspiración de aire, que gira en sentido horario, tiene abierta la entrada de aire superior derecha de la cámara del rotor secundario (17).
El rotor secundario (17) se encuentra en posición vertical y ha dirigido el aire de la cámara inferior hacia el conducto que comunica (cuando las válvulas rotativas de la carcasa principal (9) abren las lumbreras) con la carcasa principal (1) (lóbulo de la carcasa inferior derecha)
Por su parte, el rotor principal (2) se encuentra en posición vertical (opuesto al secundario) en el punto muerto superior del lóbulo superior, listo para hacer la explosión, y girar hacia el lóbulo inferior derecho.
Las válvulas de escapes rotativas (13) tienen cerrada la cámara superior, la inferior derecha y a punto de abrir la izquierda para la salida de gases y entrada de aire o comburente nuevo.
De acuerdo ya con la segunda columna, una vez el cigüeñal ha girado 120°, la válvula rotativa (19), de aspiración de aire, que gira en sentido horario, tiene abierta la entrada de aire de la cámara del rotor secundario (17) inferior.
Dicho rotor secundario (17) ha girado 60° hacia el lóbulo de superior izquierdo, dirigiendo el aire de la cámara izquierda hacia el conducto que comunica (cuando las válvulas rotativas (9) de la carcasa principal abren las lumbreras) con la carcasa principal (1) (lóbulo de la carcasa inferior izquierda).
El rotor principal (2) ha girado 60° hacia el lóbulo inferior derecho (opuesto al secundario) en el punto muerto superior de dicho lóbulo, listo para hacer la explosión, y girar hacia el lóbulo inferior izquierdo.
Las válvulas de escapes rotativas (13) (todas se encuentran en la misma posición y giran en sentido horario) están listas para; abrir la cámara superior, la inferior derecha se encuentra cerrada al igual que la izquierda.
Una vez girado otros 120° el cigüeñal del motor, y de acuerdo con la columna tercera, la válvula rotativa (19) de aspiración de aire tiene abierta la entrada de aire de la cámara del rotor secundario (17) superior izquierda, mientras que dicho rotor secundario (17) ha girado 60° hacia el lóbulo superior derecho, dirigiendo el aire de la cámara derecha hacia el conducto que comunica (cuando las válvulas rotativas de la carcasa principal (9) abren las lumbreras) con la carcasa principal (1) (lóbulo superior de la carcasa principal).
En este punto, el rotor principal (2) ha girado 60° hacia el lóbulo inferior izquierdo (opuesto al secundario) en el punto muerto superior de dicho lóbulo, listo para hacer la explosión, y girar hacia el lóbulo superior y empezar otra vez el ciclo.
Las válvulas de escapes rotativas (13) (todas se encuentran en la misma posición y giran en sentido horario) tienen cerrada la cámara del lóbulo superior y la del lóbulo inferior izquierdo, quedando la del lóbulo inferior derecho listo para abrir. Solo resta señalar por ultimo que, en caso de frenada regenerativa, poca carga,...etc. Las válvulas del rotor secundario (22) giran y cierran los conductos (8) del rotor principal (1), destapando el conducto (29) de la cámara secundaria (16) a partir de un orificio (26) 5 establecido en la válvula (22), para que deje pasar aire atmosférico a los conductos (8), mientras que el conducto (27) de dichas válvulas rotativas, al girar dichas válvulas, se comunica con el conducto de aire comprimido (23), y por lo tanto, el aire aspirado por el rotor secundario (17) va a parar al depósito de aire comprimido.
Por su parte, cuando el conducto (26) permanece cerrado por el giro de la válvula (22), para que el rotor principal (2) no trabaje en vacío, se ha previsto la inclusión de un orificio (29) complementario de otro orificio de la carcasa extrema derecha de la figura 3, no representado en las figuras, que se comunica con el filtro de aire del motor, para la entrada de aire atmosférico.
Tal y como se puede observar en la figura 4, el eje (3) del motor que conecta el rotor principal (2) con el contrapeso o rotor secundario (17) es susceptible de incorporar un rotor terciario (30), que puede ser utilizado para generar energía eléctrica, actuando a modo de rotor eléctrico, de manera que entre las carcasas de los rotores, que comunican los conductos de descarga de una cámara a otra, se disponga el correspondiente estator (31), permitiendo así generar energía.

Claims

R E I V I N D I C A C I O N E S
Ia.- Motor rotativo, que siendo del tipo de los que incorporan al menos una cámara de combustión (Ι- - ') en la que juega el correspondiente rotor principal (2), con sus correspondientes lumbreras de entrada de aire (7) y sus complementarias cámaras de salida de gases (12), así como con los clásicos alojamientos (11) para los sistemas de encendido, inyectores y similares, se caracteriza porque el motor incluye al menos una cámara secundaria (16), axial a la cámara de combustión, en la que juega un rotor secundario en funciones de primer contrapeso y elemento de bombeo de los gases de entrada y salida de la cámara de combustión principal, con la particularidad de que entre una y otra cámara se definen conducciones de entrada y salida de dichos gases así como medios para controlar la obturación y desobturación de dichas conducciones; habiéndose previsto que el motor se materialice en un motor de dos tiempos, en el que por cada 120a que gira su eje se produce una explosión, con la particularidad de que axialmente a la cámara de combustión ( -Γ'), es decir, sobre sus paredes laterales, se establecen una serie de lumbreras (7) de entrada de comburente, que se comunican con respectivas tomas perimetrales (8), estando asistidas estas lumbreras (7) por una válvula rotativa (9) discoidal, con orificios (10) enfrentables selectivamente a dichas lumbreras.
2a.-Motor rotativo, según reivindicación Ia, caracterizado porque el mecanismo definido por el rotor secundario alimenta a un depósito de aire comprimido.
3a.- Motor rotativo, según reivindicación Ia, caracterizado porque en la cámara secundaria (16), se establecen axialmente unas lumbreras de aspiración de aire (18) asistidas por una válvula rotativa (19), con su correspondiente orificio (20) de control del caudal de entrada. 4a.- Motor rotativo, según reivindicación Ia, caracterizado porque la cámara de combustión (Ι- - '), presenta una sección esencialmente triangular, a base de un cuerpo central (1), y dos elementos en funciones de tapas laterales ( - '), en cuyo seno juega el rotor principal (2), asociado al eje (3) del motor, a través del correspondiente mecanismo excéntrico (4), incluyendo unas superficies de sellado internas (5) con sus correspondientes sellos (6) de estanqueidad del rotor principal (2) en sus desplazamientos angulares.
5a.- Motor rotativo, según reivindicaciones Ia y 4a, caracterizado porque la cámara secundaria (16) se comunica con un depósito de aire comprimido, de alimentación de las lumbreras de la cámara de combustión (7), a través de sendas cámaras (21) establecidas en correspondencia con sus vértices, las cuales están asistidas por las complementarias válvulas rotativas (22).
6a.- Motor rotativo, según reivindicaciones Ia y 3a, caracterizado porque la cámara (1) cuenta radialmente en sus extremos con cámaras de salida de gases (12) asistidas por las correspondientes válvulas rotativas (13), afectadas de una escotadura (14) y de un orificio (15) para salida controlada de los gases de escape.
7a.- Motor rotativo, según reivindicación Ia, caracterizado porque en la superficie interior de la cámara secundaria (16) se establecen cámaras de sellado (24) asistidas por los correspondientes sellos (25).
8a.- Motor rotativo, según reivindicaciones Ia y 2a, caracterizado porque la cámara secundaria (16), axial a la cámara de combustión, en la que juega el rotor secundario en funciones de primer contrapeso y elemento de bombeo de los gases de entrada y salida de la cámara de combustión principal, y que alimenta al depósito de aire comprimido, forma parte de un sistema neumático de accionamiento de los frenos del vehículo en el que se instale el motor.
9a.- Motor rotativo, según reivindicación Ia, caracterizado porque el motor está asistido por un turbocompresor, accionado por los gases de escape del motor, de manera que el rotor secundario presenta unas dimensiones o masas menores que el rotor primario habiéndose previsto que para compensar la inercia del rotor primario conjuntamente con el primer contrapeso participe un segundo contrapeso, opuesto a la dirección del rotor primario, asociado a un mecanismo generador de energía eléctrica en caso de requerirlo.
10a.- Motor rotativo, según reivindicaciones Ia, 2a y 5a, caracterizado porque en las válvulas rotativas (22), establecidas sobre los vértices de la cámara secundaria se definen dos recorridos posibles del aire aspirado en función de su posición relativa, uno hacia a través de unos conductos (23) con un depósito de aire comprimido, y otro, a través de un conducto (26') de comunicación hacia la cámara principal (1).
11a.- Motor rotativo, según reivindicación 10a, caracterizado porque en las válvulas rotativas (22) se define un tercer recorrido posible para el aire que comunica con la entrada de aire atmosférico del motor, materializado en un orificio (29) enfrentable a dicha válvula rotativa (22).
12a.- Motor rotativo, según reivindicación 9a, caracterizado porque el segundo contrapeso se dimensiona para que actúe en funciones de volante de inercia y motor eléctrico. 13a.- Motor rotativo, según reivindicación 9a, caracterizado porque en el eje que conecta el rotor primario con el primer contrapeso se establece un rotor terciario (30) que constituye el rotor eléctrico de un motor eléctrico.
14a.- Motor rotativo, según reivindicación 9a, caracterizado porque el segundo contrapeso constituye el eje motriz de un generador de aire comprimido.
PCT/ES2015/070314 2014-04-22 2015-04-20 Motor rotativo WO2015162324A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201430589A ES2492440B1 (es) 2014-04-22 2014-04-22 Motor rotativo
ESP201430589 2014-04-22

Publications (1)

Publication Number Publication Date
WO2015162324A1 true WO2015162324A1 (es) 2015-10-29

Family

ID=51454300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070314 WO2015162324A1 (es) 2014-04-22 2015-04-20 Motor rotativo

Country Status (2)

Country Link
ES (1) ES2492440B1 (es)
WO (1) WO2015162324A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073476A1 (es) * 2016-10-18 2018-04-26 Cruz Antonio Lopez Contreras Motor hibrido rotativo con ciclo cross

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1302568A (fr) * 1961-07-19 1962-08-31 Perfectionnements aux moteurs à combustion interne du type à piston rotatif
US3228183A (en) * 1963-11-27 1966-01-11 Rolls Royce Rotary internal combustion engine
US3918413A (en) * 1972-07-05 1975-11-11 Wankel Gmbh Compound rotary piston engine
US6434939B1 (en) * 2001-02-21 2002-08-20 John Herbert Beveridge Rotary piston charger
WO2003056157A1 (fr) * 2001-12-25 2003-07-10 Delas, Mykola Ivanovich Processus de fonctionnement d'un moteur a combustion interne a piston rotatif et moteur mettant en oeuvre ledit processus
US20060196464A1 (en) * 2003-01-09 2006-09-07 Conners James M External combustion rotary piston engine
US20120031369A1 (en) * 2009-05-06 2012-02-09 Dockjong Ki Separate-type rotary engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1302568A (fr) * 1961-07-19 1962-08-31 Perfectionnements aux moteurs à combustion interne du type à piston rotatif
US3228183A (en) * 1963-11-27 1966-01-11 Rolls Royce Rotary internal combustion engine
US3918413A (en) * 1972-07-05 1975-11-11 Wankel Gmbh Compound rotary piston engine
US6434939B1 (en) * 2001-02-21 2002-08-20 John Herbert Beveridge Rotary piston charger
WO2003056157A1 (fr) * 2001-12-25 2003-07-10 Delas, Mykola Ivanovich Processus de fonctionnement d'un moteur a combustion interne a piston rotatif et moteur mettant en oeuvre ledit processus
US20060196464A1 (en) * 2003-01-09 2006-09-07 Conners James M External combustion rotary piston engine
US20120031369A1 (en) * 2009-05-06 2012-02-09 Dockjong Ki Separate-type rotary engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073476A1 (es) * 2016-10-18 2018-04-26 Cruz Antonio Lopez Contreras Motor hibrido rotativo con ciclo cross

Also Published As

Publication number Publication date
ES2492440A1 (es) 2014-09-08
ES2492440B1 (es) 2015-03-24

Similar Documents

Publication Publication Date Title
US10006360B2 (en) Rotary directional pressure engine
MXPA06013598A (es) Motor orbital.
RU2392460C2 (ru) Роторно-поршневой двигатель внутреннего сгорания
CA2450542C (en) Arov engine/pump
RU2478803C2 (ru) Роторно-поршневой двигатель внутреннего сгорания
US4170978A (en) Rotary engine
US10260346B2 (en) Circulating piston engine having a rotary valve assembly
JP2017172574A (ja) 1ストローク内燃機関
WO2012004630A1 (es) Motor de combustión interna
JP6290159B2 (ja) 圧縮および減圧のための回転機械
WO2015162324A1 (es) Motor rotativo
US8800501B2 (en) Rotating and reciprocating piston device
ES2495890B1 (es) Motor rotativo de ciclo partido
CN101245732B (zh) 棘轮式转子发动机
ITPR20070071A1 (it) Dispositivo per convertire energia.
US8978619B1 (en) Pistonless rotary engine with multi-vane compressor and combustion disk
ITUD20070115A1 (it) Motore a scoppio a pistone rotante
ES2657038B1 (es) Motor hibrido rotativo con ciclo cross
WO2017146599A1 (en) A mechanism of the shift from sliding to rotation, and from rotation to sliding, with rotating pistons, and a set of such mechanisms
US1402057A (en) Rotary internal-combustion engine
RU2427716C1 (ru) Роторно-поршневой двигатель внутреннего сгорания
CN102588089A (zh) O型转子发动机
WO2014068543A1 (en) A rotary engine
CN104653232A (zh) 一种椭轮活塞式双驱动转子内燃发动机
TWM444429U (zh) 引擎結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782366

Country of ref document: EP

Kind code of ref document: A1