WO2015161735A1 - 路径检测方法、宿节点设备及通信系统 - Google Patents

路径检测方法、宿节点设备及通信系统 Download PDF

Info

Publication number
WO2015161735A1
WO2015161735A1 PCT/CN2015/075785 CN2015075785W WO2015161735A1 WO 2015161735 A1 WO2015161735 A1 WO 2015161735A1 CN 2015075785 W CN2015075785 W CN 2015075785W WO 2015161735 A1 WO2015161735 A1 WO 2015161735A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicast
tree
sink node
detection
node
Prior art date
Application number
PCT/CN2015/075785
Other languages
English (en)
French (fr)
Inventor
刘毅松
阴元斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15782518.3A priority Critical patent/EP3128703B1/en
Publication of WO2015161735A1 publication Critical patent/WO2015161735A1/zh
Priority to US15/332,159 priority patent/US10205652B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1863Arrangements for providing special services to substations for broadcast or conference, e.g. multicast comprising mechanisms for improved reliability, e.g. status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/48Routing tree calculation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast

Definitions

  • the embodiments of the present invention relate to a multicast technology, and in particular, to a path detection method, a sink node device, and a communication system.
  • IP multicasting by using a specific multicast address, transmits IP packets to all devices in a Multicast Group.
  • the basic method of IP multicasting is: when a device sends data to a group of devices, it does not have to send the data to each device, but sends the data to a specific multicast address, and all join the multicast. This data can be received by the group's devices. For the sender device, the data can be sent to all receivers only once, greatly reducing the load on the network and the burden on the sender.
  • IP Multicast can also be used to easily carry out some new value-added services, including live TV, distance education, telemedicine, Internet radio, multimedia conferences, Internet information services such as video surveillance.
  • IP multicast protection is implemented by Protocol Independent Multicast (PIM) Fast Reroute (FRR) technology.
  • PIM Protocol Independent Multicast
  • FRR Fast Reroute
  • the embodiments of the present invention provide a path detection method, a sink node device, and a communication system, so as to solve the problem that it is difficult to perform path switching in the prior art.
  • an embodiment of the present invention provides a path detection method, including:
  • the sink node determines whether the ingress node receives the detection packet sent by the initiating node by detecting the multicast tree, and the sink node is a node connected to the receiver, and the ingress node is a node connected to the multicast source,
  • the detection multicast tree has the same transmission path and different multicast address as the first multicast tree;
  • the sink node determines that the upstream node of the sink node in the first multicast tree has a path fault.
  • the method further includes:
  • the sink node switches the multicast stream in the first multicast tree to a second multicast tree, where the second multicast tree is an alternate multicast tree of the first multicast tree.
  • the sink node determines whether the ingress node is sent by detecting the multicast tree in a predetermined time. Before detecting the message, it also includes:
  • the sink node sends multicast join request information to the ingress node, so that the ingress node triggers establishment of the detection multicast tree, the first multicast tree, and the first part according to the multicast join request information.
  • Two multicast trees Two multicast trees.
  • the sink node determines whether the ingress node is detected by detecting in a predetermined time Detection packets sent by the multicast tree, including:
  • the detection packet is configured to: the detection multicast address is a multicast address of the detection multicast tree.
  • the sink node determines a multicast address carried in a multicast packet received within a predetermined time, and multicast forwarding Before detecting whether the multicast addresses are the same in the published item, it also includes:
  • the sink node starts a multicast protection function and adds the detected multicast address to the multicast forwarding entry.
  • the sink node starts a multicast protection function and adds the detection multicast address to the multicast forwarding entry before ,Also includes:
  • the sink node receives the detected multicast address sent by the ingress node by message flooding.
  • the multicast source includes at least one multicast source device;
  • the address includes at least one multicast address and is in one-to-one correspondence with the at least one multicast source device.
  • the embodiment of the present invention further provides a sink node device, including:
  • a judging module configured to determine whether the ingress node device receives the detection packet sent by the initiating node by detecting the multicast tree, where the sink node device is a device connected to the receiver, and the ingress node device is a group The device connected to the broadcast source, the detection multicast tree has the same transmission path and different multicast address as the first multicast tree;
  • a determining module configured to determine that the upstream node device of the sink node device in the first multicast tree has a path fault if the determining module does not detect the detection packet.
  • the sink node device further includes:
  • a switching module configured to switch the multicast stream in the first multicast tree to the second multicast tree, where the second multicast tree is an alternate multicast tree of the first multicast tree .
  • the sink node device further includes:
  • a sending module configured to send the multicast join request information to the ingress node device, so that the ingress node device triggers establishment of the detection multicast tree, the first multicast tree, and according to the multicast join request information The second multicast tree.
  • the determining module is specifically configured to determine the multicast received within a predetermined time. Whether the multicast address carried in the packet is the same as the detected multicast address in the multicast forwarding entry, and if so, the multicast packet is determined as the detection packet; wherein the detection multicast address is Place The multicast address of the multicast tree is detected.
  • the sink node device further includes:
  • a startup module configured to determine, by the determining module, a multicast address carried by the multicast packet received within a predetermined time, before the detection of the multicast address in the multicast forwarding entry is the same
  • the multicast protection function is activated and the detected multicast address is added to the multicast forwarding entry.
  • the sink node device further includes:
  • a receiving module configured to: after the initiating module starts a multicast protection function, and adds the detected multicast address to the multicast forwarding entry, receiving, by the ingress node device, the message sent by message flooding Detect the multicast address.
  • the multicast source includes at least one multicast source device;
  • the address includes at least one multicast address and is in one-to-one correspondence with the at least one multicast source device.
  • the embodiment of the present invention further provides a communication system, including at least two sink node devices as described above, and an ingress node device.
  • the path detection method, the sink node device, and the communication system of the embodiment of the present invention determine whether the ingress node receives the detection packet sent by the multicast tree by detecting the ingress node, thereby determining that the ingress node has the same transmission path as the detection multicast tree. Whether there is a path fault in a multicast tree, so as to achieve fast switching of the fault path.
  • FIG. 1 is a flowchart of a path detection method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a path detection method according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of a path detection method according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a communication system according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a sink node device according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of a communication system according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic structural diagram of a sink node device according to Embodiment 6 of the present invention.
  • FIG. 1 is a flowchart of a path detection method according to Embodiment 1 of the present invention.
  • the method in this embodiment is applicable to a fault detection method for a multicast forwarding path when the IP multicast network performs multicast stream forwarding.
  • the method is performed by a sink node, which can be implemented in hardware and/or software.
  • the method of this embodiment includes the following steps:
  • Step 101 The sink node determines whether the detection message sent by the ingress node by detecting the multicast tree is received within a predetermined time.
  • the sink node is a node connected to the receiver; the ingress node is a node connected by the multicast source.
  • the sink node includes at least one sink node device, which is a router at the receiving end.
  • the receiver may be a receiving end device of the multicast stream, such as a user equipment, or an access device of a local network.
  • the ingress node may be a designated ingress node in the IP multicast network, including an ingress node device.
  • the ingress device can be a router on the server side. It should be noted that, in this embodiment, the “connection” may be a wired direct connection, may be a wireless connection, or may be indirectly connected through other nodes. Therefore, the multicast source can be a remote multicast source.
  • the detection multicast tree has the same transmission path and different multicast address as the first multicast tree.
  • the method includes: detecting a multicast tree, a first multicast tree, and a second multicast tree as described below.
  • the first multicast tree and the second multicast tree are mutually active and standby, and the second multicast tree is a standby multicast tree of the first multicast tree.
  • the first multicast tree and the second multicast tree can be used to transmit multicast stream data, and the detection multicast tree is only used to transmit the detection packet.
  • the detection multicast tree has the same transmission path as the first multicast tree. Actually, each path branch of the detection multicast tree is the same as each path branch of the first multicast tree. For example, assume that the transmission path of the first multicast tree has two branches, and the two branches are: A->B->D and A->C.
  • the detection multicast tree also includes two branches A->B->D and A->C.
  • Step 102 If not, the sink node determines that the upstream node of the sink node in the first multicast tree has a path fault.
  • the detection packet is sent by the detection multicast tree, and the detection multicast tree is the same as the transmission path of the first multicast tree. If the detection node does not receive the detection packet, the first A path fault occurs on the upstream node of the sink node in the multicast tree, so that the sink node does not receive the detection packet. That is to say, the sink node also does not receive the multicast stream data sent by the ingress node through the first multicast tree having the same transmission path as the detection multicast tree.
  • This embodiment also provides a path detection method. Further, in the above solution, the method further includes:
  • the sink node switches the multicast stream in the first multicast tree to the second multicast tree, where the second multicast tree is an alternate multicast tree of the first multicast tree.
  • the first multicast tree and the second multicast tree both transmit multicast stream data.
  • the sink node abandons the received by the second multicast tree.
  • Multicast Stream data a normal case, that is, when there is no path failure.
  • the sink node passes the received multicast stream data sent by the second multicast tree to the path after the handover, that is, the path of the second multicast tree.
  • the broadcast stream is transmitted to other nodes on the second multicast tree.
  • the detection packet includes at least the device identifier of the ingress node, an IP address, or a multicast address of the detected multicast tree.
  • the ingress node when the ingress node sends the multicast stream through the first multicast tree, the ingress node also sends the multicast stream through the second multicast tree.
  • the first multicast tree and the second multicast tree have different forwarding paths.
  • the sink node may also pass the second multicast tree.
  • the upstream node of the sink node may also receive the multicast stream through the second multicast tree.
  • Switching the multicast stream in the first multicast tree to the second multicast tree may be, for example, switching the ingress and egress nodes of each node in the second multicast tree to implement switching of the multicast stream.
  • the configuration of the access interface according to the second multicast tree is that the input interface and the output interface of the multicast stream of the sink node are respectively configured according to the transmission path of the second multicast tree.
  • the multicast stream is switched to the second multicast tree, so that each sink node receives the multicast stream according to the second multicast tree.
  • the multicast stream data may be, for example, a video stream, a voice stream, or the like.
  • a smaller predetermined time may be configured.
  • the configuration of the predetermined time needs to consider the speed at which the second multicast tree is used to transmit the multicast stream.
  • FIG. 2 is a flowchart of a path detection method according to Embodiment 2 of the present invention.
  • the sink node determines whether the ingress node receives the detection packet sent by the ingress node before detecting the multicast tree in a predetermined time, and further includes:
  • Step 201 The sink node sends multicast join request information to the ingress node, so that the ingress node triggers establishment of the detection multicast tree, the first multicast tree, and the second multicast tree according to the multicast join request information. .
  • the multicast join request information may be protocol independent multicast (Protocol Independent) Multicast (PIM) refers to the active and standby Join messages.
  • PIM Protocol Independent Multicast
  • the multicast join request information sent by the sink node to the ingress node may be: the sink node sends the multicast join request information hop by hop to send the multicast join request information to the ingress node.
  • the detection multicast tree, the first multicast tree, and the second multicast tree each include a sink node device and the ingress node device.
  • the first multicast tree and the second multicast tree respectively have different multicast forwarding paths, and are mutually active and standby, and both can be used for transmitting multicast stream data.
  • the sink node determines whether the detection packet sent by the ingress node to detect the multicast tree is received in the predetermined time, which specifically includes:
  • Step 202 The sink node determines whether the multicast address carried in the multicast packet received in the predetermined time period is the same as the detected multicast address in the multicast forwarding entry, and if yes, determines that the multicast packet is The detection packet, wherein the detection multicast address is a multicast address of the detection multicast tree.
  • the multicast forwarding entry may be a PIM (S, G) entry.
  • the multicast forwarding entry may be in the process of establishing the detection multicast tree, the first multicast tree, and the second multicast tree, according to the pre-configured detection multicast address and the multicast stream forwarding address, and
  • the multicast forwarding entries stored in the sink node are associated with each other to form a multicast forwarding entry in this embodiment.
  • the foregoing is associated with the multicast forwarding entry stored by the sink node itself, and the detection multicast address and the multicast stream forwarding address are actually added to the multicast forwarding entry.
  • the packet is sent to the detection packet, and the detected packet carries the packet different from the multicast stream forwarding address. This detects the multicast address. It should be noted that, the sink node determines whether the received packet is the detection packet, and may also configure different packet formats for the detection packet.
  • the sink node determines whether the multicast address carried in the multicast packet received in the predetermined time period is the same as the detected multicast address in the multicast forwarding entry.
  • Step 202 The sink node starts a multicast protection function, and adds the detected multicast address to the multicast forwarding entry.
  • the multicast protection function can be independently initiated for the sink node. Add the detection multicast address Specifically, it may be performed after the sink node sends the multicast request join information to the ingress node.
  • the sink node starts the multicast protection function, and before adding the detected multicast address to the multicast forwarding entry, the method further includes:
  • Step 202b The sink node receives the detected multicast address sent by the ingress node by message flooding.
  • the sink node may also obtain the detected multicast address by using other configuration modes, such as receiving configuration information sent by the user.
  • the multicast source includes at least one multicast source device; the detected multicast address includes at least one multicast address, and is in one-to-one correspondence with the at least one multicast source device.
  • the sink node determines whether the address carried by the received packet is the same as the detected multicast address, thereby determining the detection packet, so that the sink node can be more accurately confirmed. Detecting packets ensures the accuracy of the switching of multicast paths.
  • FIG. 3 is a flowchart of a path detection method according to Embodiment 3 of the present invention.
  • 4 is a schematic structural diagram of a communication system according to Embodiment 3 of the present invention. As shown in FIG. 3, the method specifically includes the following:
  • Step 301 The sink node sends multicast join request information to the ingress node.
  • the ingress node can be the RTA device shown in FIG.
  • the sink node is an RTB device, an RTC device, and an RTD device shown in FIG.
  • the sink node sends the multicast join request information to the ingress node, and the RTB device, the RTC device, and the RTD device respectively send the multicast join information to the RTA device.
  • the RTA device is a router that connects to at least one multicast source device, and the multicast source devices may be hosts on the server side.
  • the RTB device, the RTC device, and the RTD device are respectively connected to at least one receiving device, thereby forwarding the multicast source data information sent by the received RTA device to the corresponding receiving device.
  • Step 302 The sink node starts a multicast protection function and adds the detected multicast address to the multicast forwarding entry.
  • the multicast protection function can be independently activated for the RTB device, the RTC device, and the RTD device.
  • the pre-configured multicast multicast addresses are added to the corresponding multicast forwarding entries.
  • the multicast source connected to the RTA device is at least one multicast source device, and the detected multicast address actually includes at least one multicast address, which corresponds to one multicast source device.
  • the detection multicast address is different from the multicast forwarding address in the prior art, and the detection multicast address is only used to transmit the detection packet.
  • Step 303 The ingress node triggers establishment of the detection multicast tree, the first multicast tree, and the second multicast tree according to the multicast join request information.
  • the detection multicast tree has the same transmission path as the first multicast tree, and is a first multicast path.
  • the first multicast path includes two branches: an RTA device->RTB device->RTD device and an RTA device->RTC device as shown in FIG. 5; correspondingly, the second multicast tree has a second multicast path,
  • the second multicast path is a ring network traffic, and the second multicast path includes an RTA device as shown in FIG. 4 -> RTC device -> RTD device -> RTB device and RTA device -> RTB device -> RTD device - > Two branches of the RTC device.
  • Step 304 The ingress node encapsulates the detected multicast address in the detection packet, and sends the detected multicast tree to the sink node through the detection multicast tree.
  • the RTA device sends the detection packet to the RTB device and the RTD device through the first branch of the first multicast tree, and sends the detection packet to the RTC device through the second branch of the first multicast tree.
  • Step 305 The sink node determines whether the detection packet sent by the ingress node through the detection multicast tree is received within a predetermined time.
  • Step 306 If no, the sink node determines that the upstream node of the sink node in the first multicast tree has a path fault.
  • Step 307 The sink node switches the multicast stream on the first multicast tree to the second multicast tree.
  • the downstream node does not receive the detection packet, there is a path failure between the upstream node of the sink node and the sink node. For example, if the RTB device does not receive the detection packet sent by the RTA device in FIG. 4, the RTD device does not receive the detection packet, that is, the inbound interface of the RTB device and the RTA device. If there is a path fault between the outgoing interfaces, the RTB device and the RTD device do not receive the multicast stream sent by the RTA device through the first multicast tree.
  • the RTA device also sends the multicast stream data to the RTC device, the RTD device, and the RTB device through the second multicast tree.
  • Switching the multicast stream of the first multicast tree to the second multicast tree may be, for example, switching the ingress and egress interfaces of the second multicast tree.
  • the RTC device, the RTD device, and the RTB device can actually receive the multicast stream, that is, the outbound interface of the RTA device has no problem, that is, the first inbound interface of the RTB device in the first multicast tree is determined to be faulty.
  • the second ingress interface of the RTB device in the second multicast tree is not faulty.
  • the first ingress interface of the RTB device is switched to the second ingress interface according to the second multicast tree.
  • there are two multicast trees that is, for any sink node device, having two inbound interfaces and at least two outbound interfaces, according to the second multicast tree, the sink node device
  • the first inbound interface is switched to the second inbound interface
  • the outbound interface set corresponding to the first ingress interface is switched to the outbound interface corresponding to the second ingress node.
  • the first inbound interface is an interface corresponding to the sink node device in the first multicast tree.
  • the second inbound interface is an interface corresponding to the sink node device in the second multicast tree.
  • FIG. 5 is a schematic structural diagram of a sink node device according to Embodiment 4 of the present invention. As shown in FIG. 5, the sink node device 500 includes a determining module 501 and a determining module 502.
  • the determining module 501 is configured to determine whether the ingress node device receives the detection packet sent by the initiating node by detecting the multicast tree, where the sink node device 500 is a device connected to the receiver, and the ingress node device is The device connected to the multicast source; the detection multicast tree has the same transmission path and different multicast address as the first multicast tree.
  • the determining module 502 is configured to determine that the upstream node device of the sink node device 500 in the first multicast tree has a path fault if the determining module 501 does not detect the detection packet.
  • the sink node device 500 further includes:
  • a switching module configured to switch the multicast stream in the first multicast tree to the second multicast tree, where the second multicast tree is an alternate multicast tree of the first multicast tree.
  • the sink node device 500 further includes:
  • a sending module configured to send multicast join request information to the ingress node, so that the ingress node triggers establishment of the detection multicast tree, the first multicast tree, and the second multicast according to the multicast join request information tree.
  • the determining module 501 is configured to determine whether the multicast address carried in the multicast packet received in the predetermined time period is the same as the detected multicast address in the multicast forwarding entry, and if yes, determine the The multicast packet is the detection packet.
  • the detection multicast address is the multicast address of the detection multicast tree.
  • the sink node device 500 described in the foregoing solution further includes:
  • the initiating module is configured to: after the determining module 501 determines whether the multicast address carried in the multicast packet received in the predetermined time period is the same as the detection of the multicast address in the multicast forwarding entry, the multicast protection function is started. And adding the detected multicast address to the multicast forwarding entry.
  • the foregoing sink node device 500 further includes:
  • the receiving module is configured to: before the startup module starts the multicast protection function, and adds the detection multicast address to the multicast forwarding entry, and receives the detected multicast address sent by the ingress node device by message flooding.
  • the multicast source in the foregoing solution includes at least one multicast source device; the detected multicast address includes at least one multicast address, and is in one-to-one correspondence with the at least one multicast source device.
  • the solution in this embodiment can be used to perform the path detection method of the above-mentioned sink node as the execution subject.
  • the specific implementation process and the beneficial effects are similar to those in the foregoing embodiment, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a communication system according to Embodiment 5 of the present invention. As shown in FIG. 6, the communication system 600 includes at least two sink node devices 601 and one ingress node device 602.
  • the sink node device 601 can be the sink node device described in any of the above embodiments.
  • the ingress node The device 602 can be any type of ingress device, which is not limited in this embodiment.
  • the communication in this embodiment includes the sink node device in the foregoing embodiment, and the solution in any of the foregoing embodiments may be implemented.
  • the specific implementation process and the beneficial effects are similar to the foregoing embodiments, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a sink node device according to Embodiment 6 of the present invention. As shown in FIG. 7, the sink node device 700 includes at least one processor 701 (e.g., a CPU), a memory 702, and at least one communication bus 703.
  • processor 701 e.g., a CPU
  • memory 702 e.g., a DDR4
  • the processor 701 is configured to execute the program 7031 stored in the memory 702 to implement the path detection method performed by the sink node device according to any one of the foregoing embodiments 1 to 3.
  • the memory 702 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • the sink node device in this embodiment may implement all the operations performed by the sink node in any of the foregoing embodiments, and the specific implementation process and the beneficial effects are similar to those in the foregoing embodiment, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种路径检测方法、宿节点设备及通信系统。本发明的路径检测方法包括:宿节点判断在预定时间内是否接收到入节点通过检测组播树发送的检测报文,其中,所述宿节点为与接收者连接的节点,所述入节点为与组播源相连的节点;所述检测组播树与第一组播树具有相同的传输路径、不同的组播地址;若否,所述宿节点确定所述第一组播树中所述宿节点的上游节点存在路径故障。本发明实施例可实现故障路径的快速切换。

Description

路径检测方法、宿节点设备及通信系统
本申请要求于2014年4月25日提交中国专利局、申请号为CN201410175190.0、发明名称为“路径检测方法、宿节点设备及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及组播技术,尤其涉及一种路径检测方法、宿节点设备及通信系统。
背景技术
互联网协议(Internet Protocol,简称IP)组播,通过使用特定的组播地址,将IP数据包传输到一个组播组(Multicast Group)内的所有的设备。该IP组播的基本方法是:当某一设备向一组设备发送数据时,不必向每个设备都发送该数据,而是将该数据发送到一个特定的组播地址,所有加入该组播组的设备均可以收到该数据。对发送端设备而言,数据只需发送一次即可以发送到所有接收者,大大减轻了网络的负载和发送者的负担。
IP组播作为一种与单播和广播并列的通信方式,更重要的是,还可利用其方便地开展一些新的增值业务,包括电视直播、远程教育、远程医疗、网络电台、多媒体会议、视频监控等互联网的信息服务。
现有技术中通过协议无关组播(Protocol Independent Multicast,简称PIM)快速重路由(Fast Reroute,简称FRR)技术进行IP组播保护。然而由于缺乏有效地组播路径的故障检测技术,难以快速进行路径快速。
发明内容
本发明实施例提供一种路径检测方法、宿节点设备及通信系统,以解决现有技术中无法进行路径检测难以快速进行路径切换的问题。
第一方面,本发明实施例提供一种路径检测方法,包括:
宿节点判断在预定时间内是否接收到入节点通过检测组播树发送的检测报文,其中,所述宿节点为与接收者连接的节点,所述入节点为与组播源相连的节点,所述检测组播树与第一组播树具有相同的传输路径、不同的组播地址;
若否,所述宿节点确定所述第一组播树中所述宿节点的上游节点存在路径故障。
根据第一方面,在第一方面的第一种可能实现的方式中,所述方法还包括:
所述宿节点将所述第一组播树上的组播流切换至第二组播树;其中,所述第二组播树为所述第一组播树的备用组播树。
根据第一方面或第一方面的第一种可能实现的方式,在第二种可能实现的方式中,所述宿节点判断在预定时间内是否接收到所述入节点通过检测组播树发送的检测报文之前,还包括:
所述宿节点向所述入节点发送组播加入请求信息,以使所述入节点根据所述组播加入请求信息触发建立所述检测组播树、所述第一组播树和所述第二组播树。
根据第一方面至第一方面的第二种可能实现的方式中任一一种,在第三种可能实现的方式中,所述宿节点判断在预定时间内是否接收到所述入节点通过检测组播树发送的检测报文,包括:
所述宿节点判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同,若是,则确定所述组播报文为所述检测报文;其中,所述检测组播地址为所述检测组播树的组播地址。
根据第二方面的第三种可能实现的方式,在第四种可能实现的方式中,所述宿节点判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同之前,还包括:
所述宿节点启动组播保护功能并在所述组播转发表项中添加所述检测组播地址。
根据第一方面的第四种可能实现的方式,在第五种可能实现的方式中,所述宿节点启动组播保护功能并在所述组播转发表项中添加所述检测组播地址之前,还包括:
所述宿节点接收所述入节点通过报文洪泛所发送的所述检测组播地址。
根据第一方面至第一方面的第五种可能实现的方式中任一一种,在第六种可能实现的方式中,所述组播源包括至少一个组播源设备;所述检测组播地址包括至少一个组播地址,且与所述至少一个组播源设备一一对应。
第二方面,本发明实施例还提供一种宿节点设备,包括:
判断模块,用于判断在预定时间内是否接收到入节点设备通过检测组播树发送的检测报文,其中,所述宿节点设备为与接收者连接的设备,所述入节点设备为与组播源连接的设备,所述检测组播树与第一组播树具有相同的传输路径、不同的组播地址;
确定模块,用于若所述判断模块未检测到所述检测报文,确定所述第一组播树中所述宿节点设备的上游节点设备存在路径故障。
根据第二方面,在第二方面的第一种可能实现的方式中,所述宿节点设备还包括:
切换模块,用于将所述第一组播树上的组播流切换至所述第二组播树;其中,所述第二组播树为所述第一组播树的备用组播树。
根据第二方面或第二方面的第一种可能实现的方式,在第二种可能实现的方式中,所述宿节点设备还包括:
发送模块,用于向所述入节点设备发送组播加入请求信息,以使所述入节点设备根据所述组播加入请求信息触发建立所述检测组播树、所述第一组播树和所述第二组播树。
根据第二方面至第二方面的第二种可能实现的方式中任一一种,在第三种可能实现的方式中,所述判断模块,具体用于判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同,若是,则确定所述组播报文为所述检测报文;其中,所述检测组播地址为所 述检测组播树的组播地址。
根据第二方面的第三种可能实现的方式,在第四种可能实现的方式中,所述宿节点设备还包括:
启动模块,用于在所述判断模块判断在预定时间内接收到的所述组播报文所携带的组播地址,与所述组播转发表项中的所述检测组播地址是否相同之前,启动组播保护功能并在所述组播转发表项中添加所述检测组播地址。
根据第二方面的第四种可能实现的方式,在第五种可能实现的方式中,所述宿节点设备还包括:
接收模块,用于在所述启动模块启动组播保护功能并在所述组播转发表项中添加所述检测组播地址之前,接收所述入节点设备通过报文洪泛所发送的所述检测组播地址。
根据第二方面至第二方面的第五种可能实现的方式中任一一种,在第六种可能实现的方式中,所述组播源包括至少一个组播源设备;所述检测组播地址包括至少一个组播地址,且与所述至少一个组播源设备一一对应。
第三方面,本发明实施例还提供一种通信系统,至少包括:两个如上任一所述的宿节点设备,和一个入节点设备。
本发明实施例的路径检测方法、宿节点设备及通信系统,通过判断宿节点是否接收到入节点通过检测组播树发送的检测报文,从而确定与该检测组播树具有相同传输路径的第一组播树是否存在路径故障,从而实现故障路径的快速切换。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一所提供的路径检测方法的流程图;
图2为本发明实施例二所提供的路径检测方法的流程图;
图3为本发明实施例三所提供的路径检测方法的流程图;
图4为本发明实施例三中通信系统的结构示意图;
图5为本发明实施例四所提供的宿节点设备的结构示意图;
图6为本发明实施例五所提供的通信系统的结构示意图;
图7为本发明实施例六所提供的宿节点设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
图1为本发明实施例一所提供的路径检测方法的流程图。本实施例的方法适用于在IP组播网络进行组播流转发时,对其组播转发路径的故障检测方法。该方法由宿节点执行,该方法可通过硬件和/或软件的方式来实现。本实施例的方法包括如下步骤:
步骤101、宿节点判断在预定时间内是否接收到入节点通过检测组播树发送的检测报文。
其中,该宿节点为与接收者连接的节点;该入节点为组播源连接的节点。该宿节点包括至少一个宿节点设备,该宿节点设备为接收端的路由器。该接收者可以为组播流的接收端设备,如用户设备,也可以为局部网络的接入设备。该入节点可以是IP组播网络中的所指定的进入(Ingress)节点,包括一个入节点设备。该入节点设备可以为服务器侧的路由器。需要说明的是,在本实施例中,“连接”可以是有线直连,可以是无线连接,还可以通过其他节点间接连接。因此,该组播源可以为位于远端的组播源。
该检测组播树与第一组播树具有相同的传输路径、不同的组播地址。本实施例中,包括检测组播树、第一组播树及如下所述的第二组播树。其中,该第一组播树与该第二组播树互为主备,该第二组播树为该第一组播树的备用组播树。该第一组播树及该第二组播树均可用于传输组播流数据,而该检测组播树仅用于传输该检测报文。
该检测组播树与第一组播树具有相同的传输路径,实际是说,该检测组播树具有的各路径分支与该第一组播树具有的各路径分支均相同。举例来说,假设,该第一组播树的传输路径具有两个分支,该两个分支别为:A->B->D和A->C。则该检测组播树也包括A->B->D和A->C两个分支。
步骤102、若否,该宿节点确定该第一组播树中该宿节点的上游节点存在路径故障。
由于该检测报文是通过该检测组播树发送的,而该检测组播树与该第一组播树的传输路径相同,如该宿节点未接收到该检测报文,则可知该第一组播树中该宿节点的上游节点存在路径故障,从而导致,该宿节点未接收到该检测报文。也就是说,该宿节点也未接收到该入节点通过与该检测组播树具有相同传输路径的该第一组播树发送的组播流数据。
本实施例方案,通过判断宿节点是否接收到入节点通过检测组播树发送的检测报文,从而确定与该检测组播树具有相同传输路径的该第一组播树是否存在路径故障,从而实现故障路径的快速切换,从而更好地保证组播流的发送。
实施例二
本实施例还提供一种路径检测方法。进一步地,如上方案中,该方法还包括:
该宿节点将该第一组播树上的组播流切换至第二组播树;其中,该第二组播树为该第一组播树的备用组播树。
具体地,该第一组播树及该第二组播树均传输组播流数据,正常情况下,也就是没有路径故障的情况下,该宿节点放弃该第二组播树所接收到的组播 流数据。而在确定该第一组播树发生路径故障,该宿节点将接收到的该第二组播树发送的组播流数据通过切换后的路径,也就是第二组播树的路径将该组播流传输至该第二组播树上其他节点。该检测报文至少包括该入节点的设备标识、IP地址或该检测组播树的组播地址。
需要说明的是,该入节点在通过该第一组播树发送组播流的同时,还通过该第二组播树发送该组播流。由于该第一组播树与该第二组播树具有不同的转发路径,当该第一组播树中该宿节点的上游节点发生路径故障,该宿节点还可通过该第二组播树接收到该组播流,该宿节点的上游节点也可通过该第二组播树接收到该组播流。
将第一组播树上的组播流切换至该第二组播树,例如可以是对该第二组播树上各节点的出入节点进行切换,从而实现组播流的切换。根据该第二组播树对出入接口进行配置实际是将该宿节点的组播流的输入接口和输出接口分别按照该第二组播树的传输路径进行配置。将该组播流切换至该第二组播树,从而使得各宿节点根据该第二组播树接收组播流。该组播流数据例如可以是视频流、语音流等。
需要说明的是,为保证该组播树的路径的切换更快速,可配置较小的预定时间。然而,该预定时间的配置,还需考虑采用该第二组播树传输组播流的快慢。优选的,需保证该预定时间内,该宿节点已接收到通过该第二组播树发送的组播流,从而减少该宿节点确定发生路径故障,与通过切换组播树实现路径切换时间的等待时间,实现组播路径的快速切换。
图2为本发明实施例二所提供的路径检测方法的流程图。如图2所示,上述实施例方案的步骤101中宿节点判断在预定时间内是否接收到入节点通过检测组播树发送的检测报文之前,还包括:
步骤201、该宿节点向该入节点发送组播加入请求信息,以使该入节点根据该组播加入请求信息触发建立该检测组播树、该第一组播树和该第二组播树。
该组播加入请求信息,可以是协议无关组播(Protocol Independent  Multicast,简称PIM)主备加入(Join)报文。宿节点向入节点发送的组播加入请求信息,具体可以是宿节点逐跳发送该组播加入请求信息,以将该组播加入请求信息发送至该入节点。
其中,该检测组播树、该第一组播树及该第二组播树均包括各宿节点设备,及该入节点设备。该第一组播树与该第二组播树分别具有不同组播转发路径,互为主备,且均可用于传输组播流数据。
进一步地,上述方案中步骤101中宿节点判断在预定时间内是否接收到入节点通过检测组播树发送的检测报文,具体包括:
步骤202、该宿节点判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同,若是,则确定该组播报文为该检测报文,其中,该检测组播地址为该检测组播树的组播地址。
该组播转发表项具体可以为PIM(S,G)表项。该组播转发表项可以是在该检测组播树、该第一组播树和该第二组播树的建立过程中,根据预先配置的检测组播地址和该组播流转发地址,与该宿节点本身存储的组播转发表项进行关联,从而形成本实施例中的组播转发表项。上述与该宿节点本身存储的组播转发表项进行关联,实际是将该检测组播地址和该组播流转发地址添加至组播转发表项中。
为区分该检测报文与组播流转发过程中的请求或确认报文,从而更快确定接收到报文即为该检测报文,在该检测报文中携带与组播流转发地址不同的该检测组播地址。需要说明的是,该宿节点确定接收报文是否为该检测报文还可以是为该检测报文配置不同的报文格式等。
优选的,上述方案步骤202中该宿节点判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同之前,还包括:
步骤202a、宿节点启动组播保护功能,在所述组播转发表项中添加该检测组播地址。
该组播保护功能可以为该宿节点独立自主启动的。添加该检测组播地址 具体可以是在该宿节点向该入节点发送该组播请求加入信息之后执行的。
进一步地,在上述步骤202a中该宿节点启动组播保护功能,在该组播转发表项中添加该检测组播地址之前,还包括:
步骤202b、该宿节点接收该入节点通过报文洪泛所发送的该检测组播地址。
该宿节点还可以通过其他配置方式,如接收用户发送的配置信息,获取该检测组播地址。
优选的,本实施例中该组播源包括至少一个组播源设备;该检测组播地址包括至少一个组播地址,且与该至少一个组播源设备一一对应。
本实施例方案,可在上述方案的基础上,通过该宿节点判断接收到的报文携带的地址与检测组播地址是否相同,从而确定该检测报文,可使得该宿节点更精确的确认检测报文,可保证组播路径的切换的准确性。
实施例三
本实施例还提供一种路径检测方法。本实施例方案通过具体实例进行解释说明。图3为本发明实施例三所提供的路径检测方法的流程图。图4为本发明实施例三中通信系统的结构示意图。如图3所示,该方法具体包括如下:
步骤301、宿节点向入节点发送组播加入请求信息。
该入节点可以为图4所示的RTA设备。该宿节点为图4所示的RTB设备、RTC设备、RTD设备。该宿节点向该入节点发送组播加入请求信息,实际为RTB设备、RTC设备、RTD设备分别向RTA设备发送组播Join信息。
其中,该RTA设备为连接至少一个组播源设备的路由器,该些组播源设备可以为服务器侧的主机。RTB设备、RTC设备及RTD设备分别为与至少一个接收设备连接的路由器,从而将接收到的RTA设备发送的组播源数据信息转发至对应的接收设备。
步骤302、该宿节点启动组播保护功能并在组播转发表项中添加该检测组播地址。
具体地,可以为该RTB设备、RTC设备、RTD设备独立启动组播保护功能, 并分别将预先配置的该检测组播地址,添加至各自对应的组播转发表项中。
在本实施例中,由于与该RTA设备连接的组播源为至少一个组播源设备,那么该检测组播地址实际包括至少一个组播地址,分别对应一个组播源设备。该检测组播地址与现有技术中的组播转发地址不同,该检测组播地址仅用于传输检测报文。
步骤303、该入节点根据该组播加入请求信息触发建立检测组播树、第一组播树和第二组播树。
该检测组播树与该第一组播树具有相同的传输路径,为第一组播路径。该第一组播路径包括如图5所示的RTA设备->RTB设备->RTD设备及RTA设备->RTC设备两个分支;对应的,该第二组播树具有第二组播路径,该第二组播路径为环网流量,该第二组播路径包括如图4所示的RTA设备->RTC设备->RTD设备->RTB设备和RTA设备->RTB设备->RTD设备->RTC设备两个分支。
步骤304、该入节点将该检测组播地址封装在该检测报文中,并通过该检测组播树发送至该宿节点。
RTA设备通过该第一组播树的第一分支,将该检测报文依次发送至RTB设备、RTD设备,通过该第一组播树的第二分支将该检测报文发送至RTC设备。
步骤305、该宿节点判断在预定时间内是否接收到该入节点通过该检测组播树发送的检测报文。
步骤306、若否,该宿节点确定该第一组播树中该宿节点的上游节点存在路径故障。
步骤307、该宿节点将该第一组播树上的组播流切换至第二组播树。
宿节点中任一节点设备若未接收到该检测报文,那么其下游节点也未接收到检测报文,则该宿节点的上游节点与该宿节点之间存在路径故障。举例来说,假设,图4中,RTB设备未接收到RTA设备发送的该检测报文,那么该RTD设备也未接收到该检测报文,也就是说该RTB设备的入接口与该RTA设 备的出接口之间存在路径故障,那么对于RTB设备、RTD设备也未接收到RTA设备通过第一组播树发送的组播流。由于在本实施例中还存在第二组播树,RTA设备还通过该第二组播树,将该组播流数据发送至RTC设备、RTD设备及RTB设备。将第一组播树的组播流切换至该第二组播树,例如可以是对该第二组播树的出入接口进行切换。该RTC设备、RTD设备及RTB设备实际均可接收到组播流,也就是说RTA设备的出接口没有问题,即确定在该第一组播树中该RTB设备的第一入接口故障,而该第二组播树中该RTB设备的第二入接口没有故障。因而,根据该第二组播树将该RTB设备的第一入接口切换至该第二入接口。由于在本实施例中,存在两个组播树,也就是说对于任一宿节点设备,均具有两个入接口和至少两个出接口,根据该第二组播树将该宿节点设备的第一入接口切换至第二入接口,将第一入接口对应的出接口集合切换至第二入节点对应的出接口结合。其中,该第一入接口为该第一组播树中该宿节点设备对应的接口;对应的,该第二入接口为该第二组播树中该宿节点设备对应的接口。
本实施例方案通过具体的实例进行解释说明,其具体的实现过程及解释说明与上述实施例类似,在此不再赘述。
实施例四
本实施例还提供一种宿节点设备。图5为本发明实施例四所提供的宿节点设备的结构示意图。如图5所示,该宿节点设备500包括:判断模块501、确定模块502。
其中,该判断模块501用于判断在预定时间内是否接收到入节点设备通过检测组播树发送的检测报文,其中,该宿节点设备500为与接收者连接的设备,该入节点设备为与组播源连接的设备;该检测组播树与第一组播树具有相同的传输路径、不同的组播地址。
该确定模块502,用于若判断模块501未检测到该检测报文,确定该第一组播树中该宿节点设备500的上游节点设备存在路径故障。
进一步地,该宿节点设备500还包括:
切换模块,用于将该第一组播树上的组播流切换至该第二组播树;其中,该第二组播树为该第一组播树的备用组播树。
如上所述的方案中,该宿节点设备500还包括:
发送模块,用于向该入节点设备发送组播加入请求信息,以使该入节点设备根据该组播加入请求信息触发建立该检测组播树、该第一组播树和该第二组播树。
优选的,上述判断模块501,具体用于判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同,若是,则确定该组播报文为该检测报文;其中,该检测组播地址为该检测组播树的组播地址。
进一步地,上述方案所述的宿节点设备500还包括:
启动模块,用于在该判断模块501判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同之前,启动组播保护功能并在该组播转发表项中添加该检测组播地址。
更进一步地,上述宿节点设备500还包括:
接收模块,用于在该启动模块启动组播保护功能并在该组播转发表项中添加该检测组播地址之前,接收该入节点设备通过报文洪泛所发送的该检测组播地址。
优选的,上述方案中的组播源包括至少一个组播源设备;该检测组播地址包括至少一个组播地址,且与该至少一个组播源设备一一对应。
本实施例方案可执行上述宿节点为执行主体的路经检测方法,其具体的实现过程及有益效果与上述实施例类似,在此不再赘述。
实施例五
本实施例还提供一种通信系统。图6为本发明实施例五所提供的通信系统的结构示意图。如图6所示,该通信系统600至少包括:两个宿节点设备601,和一个入节点设备602。
该宿节点设备601可以为任一上述实施例所述的宿节点设备。该入节点设 备602可以为任一一种入节点设备,本实施例对此不做限制。
本实施例的通信包括上述实施例所述的宿节点设备,可实施上述任一实施例的方案,其具体的实现过程及有益效果与上述实施例类似,在此不再赘述。
实施例六
本实施例还提供一种宿节点设备。图7为本发明实施例六所提供的宿节点设备的结构示意图。如图7所示,该宿节点设备700包括:至少一个处理器701(例如CPU)、存储器702和至少一个通信总线703。
处理器701用于执行存储器702所存储的程序7031,以实现上述实施例一至三中任一所述的宿节点设备执行的路径检测方法。存储器702可能包含高速随机存取存储器(Random Access Memory,简称RAM),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。
本实施例的宿节点设备可实施上述任一实施例中的宿节点所执行的全部操作,其具体的实现过程及有益效果与上述实施例类似,在此不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

  1. 一种路径检测方法,其特征在于,包括:
    宿节点判断在预定时间内是否接收到入节点通过检测组播树发送的检测报文,其中,所述宿节点为与接收者连接的节点,所述入节点为与组播源相连的节点,所述检测组播树与第一组播树具有相同的传输路径、不同的组播地址;
    若否,所述宿节点确定所述第一组播树中所述宿节点的上游节点存在路径故障。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述宿节点将所述第一组播树上的组播流切换至第二组播树;其中,所述第二组播树为所述第一组播树的备用组播树。
  3. 根据权利要求1或2所述的方法,其特征在于,所述宿节点判断在预定时间内是否接收到所述入节点通过检测组播树发送的检测报文之前,还包括:
    所述宿节点向所述入节点发送组播加入请求信息,以使所述入节点根据所述组播加入请求信息触发建立所述检测组播树、所述第一组播树和所述第二组播树。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述宿节点判断在预定时间内是否接收到所述入节点通过检测组播树发送的检测报文,包括:
    所述宿节点判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同,若是,则确定所述组播报文为所述检测报文,其中,所述检测组播地址为所述检测组播树的组播地址。
  5. 根据权利要求4所述的方法,其特征在于,所述宿节点判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同之前,还包括:
    所述宿节点启动组播保护功能并在所述组播转发表项中添加所述检测组播地址。
  6. 根据权利要求5所述的方法,其特征在于,所述宿节点启动组播保护功能并在所述组播转发表项中添加所述检测组播地址之前,还包括:
    所述宿节点接收所述入节点通过报文洪泛所发送的所述检测组播地址。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述组播源包括至少一个组播源设备;所述检测组播地址包括至少一个组播地址,且与所述至少一个组播源设备一一对应。
  8. 一种宿节点设备,其特征在于,包括:
    判断模块,用于判断在预定时间内是否接收到入节点设备通过检测组播树发送的检测报文,其中,所述宿节点设备为与接收者连接的设备,所述入节点设备为与组播源连接的设备,所述检测组播树与第一组播树具有相同的传输路径、不同的组播地址;
    确定模块,用于若所述判断模块未检测到所述检测报文,确定所述第一组播树中所述宿节点设备的上游节点设备存在路径故障。
  9. 根据权利要求8所述的宿节点设备,其特征在于,还包括:
    切换模块,用于将所述第一组播树上的组播流切换至所述第二组播树;其中,所述第二组播树为所述第一组播树的备用组播树。
  10. 根据权利要求8或9所述的宿节点设备,其特征在于,还包括:
    发送模块,用于向所述入节点设备发送组播加入请求信息,以使所述入节点设备根据所述组播加入请求信息触发建立所述检测组播树、所述第一组播树和所述第二组播树。
  11. 根据权利要求8-10中任一项所述的宿节点设备,其特征在于,
    所述判断模块,具体用于判断在预定时间内接收到的组播报文所携带的组播地址,与组播转发表项中的检测组播地址是否相同,若是,则确定所述组播报文为所述检测报文,其中,所述检测组播地址为所述检测组播树的组播地址。
  12. 根据权利要求11所述的宿节点设备,其特征在于,还包括:
    启动模块,用于在所述判断模块判断在预定时间内接收到的所述组播报 文所携带的组播地址,与所述组播转发表项中的所述检测组播地址是否相同之前,启动组播保护功能并在所述组播转发表项中添加所述检测组播地址。
  13. 根据权利要求12所述的宿节点设备,其特征在于,还包括:
    接收模块,用于在所述启动模块启动组播保护功能并在所述组播转发表项中添加所述检测组播地址之前,接收所述入节点设备通过报文洪泛所发送的所述检测组播地址。
  14. 根据权利要求8-13中任一项所述的宿节点设备,其特征在于,所述组播源包括至少一个组播源设备;所述检测组播地址包括至少一个组播地址,且与所述至少一个组播源设备一一对应。
  15. 一种通信系统,其特征在于,至少包括:两个如上述权利要求8-14中任一所述的宿节点设备,和一个入节点设备。
PCT/CN2015/075785 2014-04-25 2015-04-02 路径检测方法、宿节点设备及通信系统 WO2015161735A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15782518.3A EP3128703B1 (en) 2014-04-25 2015-04-02 Path detection method, destination node device and communication system
US15/332,159 US10205652B2 (en) 2014-04-25 2016-10-24 Path checking method, sink node device, and communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410175190.0 2014-04-25
CN201410175190.0A CN105099907B (zh) 2014-04-25 2014-04-25 路径检测方法、宿节点设备及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/332,159 Continuation US10205652B2 (en) 2014-04-25 2016-10-24 Path checking method, sink node device, and communications system

Publications (1)

Publication Number Publication Date
WO2015161735A1 true WO2015161735A1 (zh) 2015-10-29

Family

ID=54331725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075785 WO2015161735A1 (zh) 2014-04-25 2015-04-02 路径检测方法、宿节点设备及通信系统

Country Status (4)

Country Link
US (1) US10205652B2 (zh)
EP (1) EP3128703B1 (zh)
CN (1) CN105099907B (zh)
WO (1) WO2015161735A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372144B (zh) * 2020-03-23 2021-09-28 北京小鸟科技股份有限公司 组播视频码流的链路备份系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120396A1 (en) * 2004-12-02 2006-06-08 Kddi Corporation Communication system, delay insertion server, backup server and communication control apparatus
CN101136788A (zh) * 2006-08-30 2008-03-05 华为技术有限公司 一种mpls组播的故障定位方法及系统
CN101155124A (zh) * 2006-09-27 2008-04-02 华为技术有限公司 一种实现组播快速重路由的方法及一种节点
CN101827025A (zh) * 2010-04-02 2010-09-08 华为技术有限公司 一种通信网络组播保护方法、系统及设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088684B2 (en) * 2001-07-16 2006-08-08 International Business Machines Corporation Methods and arrangements for dynamically modifying subsource address multicast data distribution trees
US7088674B2 (en) * 2001-12-27 2006-08-08 Alcatel Canada Inc. Method and apparatus for checking continuity of leaf-to-root VLAN connections
KR100693052B1 (ko) 2005-01-14 2007-03-12 삼성전자주식회사 Mpls 멀티캐스트의 고속 재경로 설정 장치 및 방법
US7613979B1 (en) * 2005-12-07 2009-11-03 Sony Computer Entertainment Inc. Network communication protocol for large scale distribution of streaming content
CN100512128C (zh) * 2007-01-19 2009-07-08 华为技术有限公司 保护组播转发路径的方法和系统和业务路由器
US20090252033A1 (en) * 2008-04-08 2009-10-08 At&T Knowledge Ventures, L.P. System and method of distributing media content
US8136018B2 (en) * 2009-08-24 2012-03-13 Sony Computer Entertainment Inc. Network communication protocol for large scale distribution of streaming content
CN103004141B (zh) * 2011-07-12 2016-07-20 华为技术有限公司 网络环路检测方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120396A1 (en) * 2004-12-02 2006-06-08 Kddi Corporation Communication system, delay insertion server, backup server and communication control apparatus
CN101136788A (zh) * 2006-08-30 2008-03-05 华为技术有限公司 一种mpls组播的故障定位方法及系统
CN101155124A (zh) * 2006-09-27 2008-04-02 华为技术有限公司 一种实现组播快速重路由的方法及一种节点
CN101827025A (zh) * 2010-04-02 2010-09-08 华为技术有限公司 一种通信网络组播保护方法、系统及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3128703A4 *

Also Published As

Publication number Publication date
EP3128703A4 (en) 2017-05-03
EP3128703A1 (en) 2017-02-08
US10205652B2 (en) 2019-02-12
US20170041215A1 (en) 2017-02-09
CN105099907A (zh) 2015-11-25
EP3128703B1 (en) 2020-08-12
CN105099907B (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
US10129075B2 (en) Multicast only fast re-route over remote loop-free alternate backup path
KR102153019B1 (ko) 업스트림 활성화 패킷들에 의한 pim 고속 리라우팅에 대한 향상
KR102112102B1 (ko) 다운스트림 통지 패킷들에 의한 pim 고속 리라우팅 방법론의 향상
US8879429B2 (en) Acknowledgement-based rerouting of multicast traffic
US9160616B2 (en) Multicast packet transmission method, related device and system
US9197547B2 (en) Increasing failure coverage of MoFRR with dataplane notifications
US20120099422A1 (en) Fast convergence method, router, and communication system for multicast
US9838303B2 (en) PIM source discovery by last hop router
WO2012003743A1 (zh) 组播流量的转发方法及装置
KR101870475B1 (ko) 링 네트워크 토폴로지를 위한 멀티캐스트 듀얼 조인
WO2012106915A1 (zh) 故障通告方法、检测装置、转发装置、系统及数据结构
WO2017128901A1 (zh) 一种转发控制方法及设备
WO2008071111A1 (fr) Procédé, système et routeur pour le réacheminement de données multidiffusion
US20230155921A1 (en) Multicast packet sending method, apparatus, and system
WO2017128752A1 (zh) 链路故障检测方法及装置
CN110999230B (zh) 传输组播报文的方法、网络设备和系统
WO2016131359A1 (zh) 环型组网组播线路切换的方法及装置
US20210119814A1 (en) Data multicast implementation method, apparatus, and system
CN110115011B (zh) 组播业务处理方法及接入设备
WO2015161735A1 (zh) 路径检测方法、宿节点设备及通信系统
WO2016095750A1 (zh) 虚拟交换集群中通信的方法及装置
WO2019071585A1 (zh) 路径切换过程中快速恢复业务的方法、装置和系统
JP6026491B2 (ja) 伝送システム、送信部、および、受信部
WO2023165544A1 (zh) 一种用于发现根节点的方法及装置
WO2012167482A1 (zh) 稀疏模式协议无关组播中的组播转发方法和组播转发设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015782518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015782518

Country of ref document: EP