WO2017128752A1 - 链路故障检测方法及装置 - Google Patents

链路故障检测方法及装置 Download PDF

Info

Publication number
WO2017128752A1
WO2017128752A1 PCT/CN2016/100152 CN2016100152W WO2017128752A1 WO 2017128752 A1 WO2017128752 A1 WO 2017128752A1 CN 2016100152 W CN2016100152 W CN 2016100152W WO 2017128752 A1 WO2017128752 A1 WO 2017128752A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse
bfd packet
link
packet
root node
Prior art date
Application number
PCT/CN2016/100152
Other languages
English (en)
French (fr)
Inventor
袁仁状
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017128752A1 publication Critical patent/WO2017128752A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity

Definitions

  • This document relates to, but is not limited to, the field of communications, and relates to a link fault detection method and apparatus.
  • BFD Bidirectional Forwarding Derection
  • the root node In the point-to-multipoint traffic engineering (P2MP-TE) technology, the root node (the root node) periodically broadcasts BFD keep-alive packets (BFD packets) to all the leaf nodes. If the leaf node does not receive the BFD discovery packet of the root node for a period of time, it considers that the link corresponding to the leaf node is faulty, and notifies the root node, and the root node protects the corresponding link accordingly. Switch.
  • BFD packets BFD keep-alive packets
  • the leaf node notifies the link corresponding to the root node to fail through the mechanism of the route forwarding.
  • the convergence of the route forwarding is slow, and the timeliness cannot be guaranteed. Because the carrier-class requirements for link fault repair speed are less than 50ms, when the convergence time exceeds 50ms, the user will feel the Internet jam or the call is unreachable, resulting in loss of security.
  • the embodiment of the invention provides a link fault detection method and device, which solves the problem that the link failure corresponding to the root node is notified by the route forwarding mechanism in the related art, and the link fault feedback is not timely.
  • the embodiment of the invention provides a link fault detection method, which comprises: determining a root node Receiving a reverse bidirectional forwarding detection BFD packet sent by one or more leaf nodes for detecting a link fault, wherein the reverse BFD packet carries a label for identifying the reverse BFD packet;
  • the root node determines, according to the label, that the link that receives the reverse BFD packet is normal
  • the root node determines that the link that does not receive the reverse BFD packet is faulty.
  • the method further includes: before the root node determines whether the reverse BFD packet sent by the multiple leaf nodes for detecting a link fault is received, the root node sends the Creating a routing protocol packet with multiple reverse sub-links between the root node and each leaf node;
  • the root node configures a label for the reverse BFD packet according to the routing protocol packet.
  • the configuring, by the root node, the label for the reverse BFD packet according to the routing protocol packet includes:
  • the root node configures a label for the reverse BFD packet by configuring a reverse inbound label for the reverse sub-link according to the routing protocol packet.
  • the method further includes: before the root node determines whether to receive the reverse BFD packet sent by the multiple leaf nodes for detecting a link fault, the root node to each of the The leaf node sends a forward BFD packet, where the reverse BFD packet is obtained by the leaf node in response to the forward BFD packet.
  • the method further includes: the root node maintaining the BFD session of each leaf node, and notifying the control layer if the BFD session corresponding to any leaf node in each leaf node fails The link corresponding to the BFD session fails.
  • the embodiment of the invention further provides a link fault detection method, including:
  • the leaf node determines a reverse bidirectional forwarding detection BFD packet for detecting a link failure, wherein the reverse BFD packet carries a label for identifying the reverse BFD packet;
  • the leaf node sends the reverse BFD packet to the root node, where the reverse BFD packet is used by the root node to determine, according to the label, the reverse BFD packet.
  • the link that receives the reverse BFD packet is normal; the reverse BFD packet is not received. If the link that does not receive the reverse BFD packet is determined to be faulty.
  • the determining, by the leaf node, the reverse BFD packet for detecting a link fault includes:
  • the leaf node After receiving the forward BFD packet sent by the root node, the leaf node determines whether the destination address of the forward BFD packet is the address of the leaf node.
  • the leaf node determines the reverse BFD packet according to the forward BFD packet.
  • the method further includes:
  • the leaf node discards the forward BFD packet.
  • the embodiment of the invention further provides a link fault detecting device, which is applied to a root node, and includes:
  • the determining module is configured to determine whether the reverse BFD packet is sent by the one or more leaf nodes to detect the link fault, where the reverse BFD packet carries the reverse Label of BFD packets;
  • the first determining module is configured to: when receiving the reverse BFD packet sent by the one or more leaf nodes, determine, according to the label, that the link that receives the reverse BFD packet is normal;
  • the second determining module is configured to determine that the link that does not receive the reverse BFD packet is faulty when the reverse BFD packet sent by any leaf node is not received.
  • the embodiment of the invention further provides a link fault detecting device, which is applied to a leaf node, and includes:
  • a third determining module configured to determine a reverse bidirectional forwarding detection BFD packet for detecting a link failure, where the reverse BFD packet carries a label for identifying the reverse BFD packet;
  • a sending module configured to send the reverse BFD packet to the root node, where the reverse BFD packet is used by the root node to receive the reverse BFD packet according to the label Determining that the link that receives the reverse BFD packet is normal; if the reverse BFD packet is not received, determining that the link that does not receive the reverse BFD packet is faulty.
  • the embodiment of the invention further provides a computer readable storage medium, the computer readable storage medium A computer executable instruction is stored in the medium, and the link failure detection method on the root node side is implemented when the computer executable instruction is executed.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores computer executable instructions, and when the computer executable instructions are executed, implements a link fault detection method on a leaf node side.
  • the method of performing label application in the reverse direction is used to solve the problem that the link corresponding to the root node is notified by the route forwarding mechanism in the related art, and the link is caused.
  • the problem of untimely fault feedback shortens the time of fault link feedback without generating additional overhead for protocol signaling.
  • FIG. 1 is a flowchart of a link failure detecting method according to Embodiment 1 of the present invention.
  • FIG. 3 is a structural block diagram of a link failure detecting apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a structural block diagram of a link failure detecting apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a link failure detecting method according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a link fault detection method according to the first embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • step S102 the root node determines whether the reverse BFD packet is sent by the one or more leaf nodes to detect the link fault, and the reverse BFD packet carries the reverse BFD packet. Label of the text;
  • Step S104 When receiving the reverse bidirectional forwarding detection BFD packet sent by one or more leaf nodes, the root node determines, according to the label, that the link that receives the reverse BFD packet is normal.
  • Step S106 When the reverse bidirectional forwarding detection BFD packet sent by any leaf node is not received, the root node determines that the link that does not receive the reverse BFD packet is faulty.
  • the foregoing technical solution uses the reverse BFD packet carrying the label sent by the leaf node to the root node, and determines whether the link is faulty by determining whether the reverse BFD packet is received, and the root node is notified by the routing and forwarding mechanism in the related art. If the link fails, the link fault feedback is not timely, and the time for fault link feedback is shortened without generating additional overhead for protocol signaling.
  • the root node sends the root node for each A routing protocol packet is created between the leaf nodes, and the root node configures a label for the reverse BFD packet according to the routing protocol packet.
  • the root node may configure a reverse inbound label for each reverse sub-link, and the reverse BFD packet transmitted on the reverse sub-link carries the reverse-input label into its own packet, according to the label.
  • the detected link is determined, so that when the root node does not receive the reverse BFD packet sent by the specific leaf node, the link is found to be faulty.
  • the root node sends a forward BFD packet to each leaf node, and after receiving the forward BFD packet, the leaf node sends a packet for detecting the link to the root node after receiving the forward BFD packet.
  • the reverse BFD packet of the fault is the reverse BFD packet of the fault.
  • the method further includes: the root node maintaining the BFD session of each leaf node, and in response to the failure of the BFD session corresponding to any leaf node in each leaf node, notifying the control plane that the BFD session corresponds to the BFD session The link has failed.
  • FIG. 2 is another flowchart of a link fault detection method according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps:
  • Step S202 the leaf node determines a reverse bidirectional forwarding detection BFD packet for detecting a link failure, where the reverse BFD packet carries a label for identifying the reverse BFD packet.
  • step S204 the leaf node sends the reverse BFD packet to the root node, where the reverse BFD packet is used by the root node to receive the reverse BFD packet according to the label.
  • the link of the reverse BFD packet is normal. If the reverse BFD packet is not received, the link that does not receive the reverse BFD packet is faulty.
  • the root node sends a different forward BFD packet to each leaf node, and each leaf node receives a positive root node and sends it to itself.
  • the leaf node of each of the leaf nodes determines whether the destination address of the forward BFD packet is its own address, and the destination of the forward BFD packet.
  • the reverse BFD packet is determined according to the forward BFD packet, and the forward BFD packet is discarded when the destination address of the forward BFD packet is not the address of the leaf node.
  • TTL time-to-live
  • FIG. 3 is a structural block diagram of a link failure detecting apparatus according to a second embodiment of the present invention.
  • the apparatus is applied to a root node.
  • the apparatus includes a determining module 32, a first determining module 34, and a second determining module 36. A brief description of each module follows.
  • the determining module 32 is configured to determine whether the reverse BFD packet is sent to identify the reverse BFD packet, and the reverse BFD packet is sent by the one or more leaf nodes.
  • the label of the message is configured to determine whether the reverse BFD packet is sent to identify the reverse BFD packet, and the reverse BFD packet is sent by the one or more leaf nodes.
  • the first determining module 34 is configured to: when receiving the reverse bidirectional forwarding detection BFD packet sent by the one or more leaf nodes, determine, according to the label, that the link that receives the reverse BFD packet is normal;
  • the second determining module 36 is configured to determine that the link that does not receive the reverse BFD packet is faulty when the reverse bidirectional forwarding detection BFD packet sent by any leaf node is not received.
  • FIG. 4 is a block diagram showing another structure of a link failure detecting apparatus according to a second embodiment of the present invention.
  • the device is applied to the leaf node.
  • the device includes a third determining module 42 and a sending module 44. Each module is briefly described below.
  • the third determining module 42 is configured to determine a reverse bidirectional forwarding detection BFD packet for detecting a link fault, where the reverse BFD packet carries a label for identifying the reverse BFD packet;
  • the sending module 44 is configured to send the reverse BFD packet to the root node, where the reverse BFD packet is used by the root node to determine, according to the label, receiving the reverse BFD packet.
  • the link of the reverse BFD packet is normal. If the reverse BFD packet is not received, the link that does not receive the reverse BFD packet is faulty.
  • the label switching path (LSP) of the P2MP-TE tunnel is composed of a unidirectional sub-link (SUB-LSP) to each leaf node.
  • the embodiment of the present invention extends the SUB-LSP protocol signaling to support bidirectional BFD signaling transmission. The manner in which the same signaling is used to simultaneously implement the application of the tag in the forward and reverse directions. It is worth mentioning that the reverse entry label application is different from the forward label application.
  • the node After the upstream label (UPSTREAM_LABEL) object is added to the P2MP-TE protocol packet, the node along the way receives the routing request message (Path packet) of the extended object, and then creates a signaling bidirectional sub-link (SUB-LSP) according to the request.
  • the application of the forward-inbound label of the two-way SUB-LSP is the same as the processing of the incoming label of the one-way SUB-LSP.
  • the reverse-inbound interface exists, the two-way SUB-LSP needs to apply for the reverse incoming label at the same time.
  • the Path message is forwarded to the downstream, the assigned reverse entry label is filled into the UPSTREAM_LABEL object, thereby forming a label forwarding table in the reverse direction.
  • the BFD session is configured on the root node and the leaf node of the P2MP-TE, and the BFD packets are sent from the end to the end.
  • P2MP-TE has the capability of traffic replication on the outbound interface
  • the forward packets on the sub-link (SUB-LSP) are copied and sent to all leaf nodes, and the root node is sent to each child node.
  • the BFD packets of the leaf nodes There is a difference in the BFD packets of the leaf nodes.
  • the TTL (Time TO Live) of the packet is set to 1, and the BFD packet that is not the leaf node is discarded.
  • the bidirectional tunnel signaling transmission scheme of the SUB-LSP is applied by applying a reverse label.
  • the reverse signaling is transmitted, that is, the label is forwarded to the reverse inbound segment of each SUB-LSP, that is, the reverse inbound label is such that the reverse forwarding table is a table of unicast transmissions corresponding to each child node.
  • the root node can identify which leaf node the reverse BFD packet comes from based on the reverse incoming label. After the fault, the reverse BFD packet of each SUB-LSP of the root node notifies the corresponding SUB-LSP to perform corresponding protection switching.
  • FIG. 5 is a schematic diagram of a link failure detecting method according to an embodiment of the present invention, as shown in FIG. 5.
  • R1 is the root node of P2MP
  • R3 and R4 are two leaf nodes respectively.
  • the P2MP-TE tunnel establishes two SUB-LSPs from R1 to R3 and R4 respectively.
  • SUB-LSP1 and SUB-LSP2 share the outgoing label on R1. Only apply a forward ingress label on R2, and perform forward traffic replication on the outbound interface of R2.
  • the traffic is split into two flows to the R3 and R4 nodes respectively.
  • the reverse sub-links to R3 and R4 are respectively established at the R1 node, that is, the reverse SUB-LSP1 and the reverse To SUB-LSP2, the SUB-LSP1 and the SUB-LSP2 respectively have their own reverse outgoing labels at the R2 node, that is, the reverse incoming labels are respectively applied at the R1 node.
  • the reverse BFD packet is forwarded through the forwarding planes of the reverse SUB-LSP1 and the reverse SUB-LSP2, and the reverse unicast entry is generated.
  • the complex multicast BFD is not required, that is, the forward direction is a multicast entry.
  • the reverse is a unicast entry.
  • the embodiment of the invention further provides a computer readable storage medium, wherein the computer readable storage medium stores computer executable instructions, and when the computer executable instructions are executed, implements a link fault detection method on the root node side.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores computer executable instructions, and when the computer executable instructions are executed, implements a link fault detection method on a leaf node side.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any particular form of hardware and software. Combine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供了链路故障检测方法及装置,该方法包括:根节点判断是否接收到一个或多个叶子节点发送的用于检测链路故障的反向双向转发检测BFD报文,其中,反向BFD报文携带有用于标识反向BFD报文的标签;在接收到一个或多个叶子节点发送的反向BFD报文时,根节点根据标签确定接收到反向BFD报文的链路正常;在未接收到任一叶子节点发送的反向BFD报文时,根节点确定未接收到反向BFD报文的链路发生故障。通过本发明实施例,解决了相关技术中通过路由转发机制通知根节点对应的链路发生故障,从而导致的链路故障反馈不及时的问题,在不对协议信令产生额外开销的情况下,缩短了故障链路反馈的时间。

Description

链路故障检测方法及装置 技术领域
本文涉及但不限于通信领域,涉及链路故障检测方法及装置。
背景技术
双向转发检测(Bidirectional Forwarding Derection,简称BFD)是一种检测链路或者系统转发传输能力的方法。BFD能够与相邻系统建立对等关系,在对等系统没有接到预先设立数量的数据包的情况下,推断BFD保护的软件或硬件基础设施发生故障。
在点到多点流量工程(Point 2Multiple Point Traffic Engineering,简称P2MP-TE)相关技术中,根节点(root节点)定期向所有叶子节点(leaf节点)广播BFD保活报文(简称BFD报文),当叶子节点在一段时间内没有收到根节点的BFD发现报文的情况下,认为该叶子节点对应的链路发生了故障,通知根节点,该根节点据此对相应的链路进行保护切换。
然而,在相关技术中,叶子节点通过路由转发的机制通知根节点对应的链路发生故障,由于路由转发的收敛速度较慢,无法保证及时性。由于电信级对链路故障修复速度的要求为50ms以内,在收敛时间超过50ms的情况下,用户将感受到上网卡顿或者通话不通,导致丢保现象的发生。
针对相关技术中通过路由转发机制通知根节点对应的链路发生故障导致链路故障反馈不及时的问题还未提出有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了链路故障检测方法及装置,解决了相关技术中通过路由转发机制通知根节点对应的链路发生故障,从而导致的链路故障反馈不及时的问题。
本发明实施例提供了一种链路故障检测方法,该方法包括:根节点判断 是否接收到一个或多个叶子节点发送的用于检测链路故障的反向双向转发检测BFD报文,其中,所述反向BFD报文携带有用于标识所述反向BFD报文的标签;
在接收到多个叶子节点发送的反向BFD报文时,所述根节点根据所述标签确定接收到所述反向BFD报文的链路正常;
在未接收到任一叶子节点发送的用于检测链路故障的反向BFD报文时,所述根节点确定未接收到所述反向BFD报文的链路发生故障。
可选地,所述方法还包括:在所述根节点判断是否接收到所述多个叶子节点发送的用于检测链路故障的反向BFD报文之前,所述根节点发送用于在所述根节点与每个叶子节点之间创建多条反向子链路的建路协议报文;
所述根节点根据所述建路协议报文为所述反向BFD报文配置标签。
可选地,所述根节点根据所述建路协议报文为所述反向BFD报文配置标签包括:
所述根节点根据所述建路协议报文,通过为所述反向子链路配置反向入标签的方式为反向BFD报文配置标签。
可选地,所述方法还包括:在所述根节点判断是否接收到所述多个叶子节点发送的用于检测链路故障的反向BFD报文之前,所述根节点向所述每个叶子节点发送正向BFD报文,其中,所述反向BFD报文为所述叶子节点响应所述正向BFD报文得到的。
可选地,所述方法还包括:所述根节点维护所述每个叶子节点的BFD会话,在所述每个叶子节点中任一叶子节点对应的BFD会话发生故障的情况下,通知控制层面所述BFD会话对应的链路发生故障。
本发明实施例还提供一种链路故障检测方法,包括:
叶子节点确定用于检测链路故障的反向双向转发检测BFD报文,其中,所述反向BFD报文携带有用于标识所述反向BFD报文的标签;
所述叶子节点向根节点发送所述反向BFD报文,其中,所述反向BFD报文用于所述根节点在接收到所述反向BFD报文的情况下,根据所述标签确定接收到所述反向BFD报文的链路正常;在没有接收到所述反向BFD报文 的情况下,确定未接收到所述反向BFD报文的链路发生故障。
可选地,所述叶子节点确定用于检测链路故障的所述反向BFD报文包括:
所述叶子节点在接收到所述根节点发送的正向BFD报文后,判断所述正向BFD报文的目的地址是否为所述叶子节点的地址;
在所述正向BFD报文的目的地址为所述叶子节点的地址时,所述叶子节点根据所述正向BFD报文确定所述反向BFD报文。
可选地,所述方法还包括:
在所述正向BFD报文的目的地址不为所述叶子节点的地址时,所述叶子节点丢弃所述正向BFD报文。
本发明实施例还提供一种链路故障检测装置,应用于根节点,包括:
判断模块,设置为判断是否接收到一个或多个叶子节点发送的用于检测链路故障的反向双向转发检测BFD报文,其中,所述反向BFD报文携带有用于标识所述反向BFD报文的标签;
第一确定模块,设置为在接收到一个或多个叶子节点发送的反向BFD报文时,根据所述标签确定接收到所述反向BFD报文的链路正常;
第二确定模块,设置为在未接收到任一叶子节点发送的反向BFD报文时下,确定未接收到所述反向BFD报文的链路发生故障。
本发明实施例还提供一种链路故障检测装置,应用于叶子节点,包括:
第三确定模块,设置为确定用于检测链路故障的反向双向转发检测BFD报文,其中,所述反向BFD报文携带有用于标识所述反向BFD报文的标签;
发送模块,设置为向根节点发送所述反向BFD报文,其中,所述反向BFD报文用于所述根节点在接收到所述反向BFD报文的情况下,根据所述标签确定接收到所述反向BFD报文的链路正常;在没有接收到所述反向BFD报文的情况下,确定未接收到所述反向BFD报文的链路发生故障。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介 质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现根节点侧的链路故障检测方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现叶子节点侧的链路故障检测方法。
通过本发明实施例,在点到多点流量工程中采用信令在反方向进行标签申请的方式,解决了相关技术中通过路由转发机制通知根节点对应的链路发生故障,从而导致的链路故障反馈不及时的问题,在不对协议信令产生额外开销的情况下缩短了故障链路反馈的时间。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本发明实施例一的链路故障检测方法的流程图;
图2是根据本发明实施例一的链路故障检测方法的流程图;
图3是根据本发明实施例二的链路故障检测装置的结构框图;
图4是根据本发明实施例二的链路故障检测装置的结构框图;
图5是根据本发明实施例的链路故障检测方法的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例一
在本实施例中提供了一种链路故障检测方法,图1是根据本发明实施例一的链路故障检测方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,根节点判断是否接收到一个或多个叶子节点发送的用于检测链路故障的反向双向转发检测BFD报文,其中,该反向BFD报文携带用于标识该反向BFD报文的标签;
步骤S104,在接收到一个或多个叶子节点发送的反向双向转发检测BFD报文时,该根节点根据该标签确定接收到该反向BFD报文的链路正常;
步骤S106,在未接收到任一叶子节点发送的反向双向转发检测BFD报文时,该根节点确定未接收到该反向BFD报文的链路发生故障。
上述技术方案采用叶子节点向根节点发送的携带有标签的反向BFD报文,通过判断是否接收到反向BFD报文确定链路是否发生故障,解决了相关技术中通过路由转发机制通知根节点对应的链路发生故障,从而导致的链路故障反馈不及时的问题,在不对协议信令产生额外开销的情况下,缩短了故障链路反馈的时间。
可选地,在上述根节点判断是否接收到一个或多个叶子节点发送的用于检测链路故障的反向双向转发检测BFD报文之前,上述根节点发送用于在该根节点与每个叶子节点之间创建多条反向子链路的建路协议报文;该根节点根据该建路协议报文为该反向BFD报文配置标签。上述根节点可以为每个反向子链路配置反向入标签,在上述反向子链路上传输的反向BFD报文将该反向入标签带入自身报文中,根据该标签可确定被检测的链路,从而当根节点未接受到特定叶子节点发来的反向BFD报文的情况下,发现链路发生故障。
可选地,上述根节点向每个叶子节点发送正向BFD报文,叶子节点在接收到该正向BFD报文之后,响应该正向BFD报文,向上述根节点发送用于检测链路故障的反向BFD报文。
可选地,所述方法还包括:上述根节点维护该每个叶子节点的BFD会话,在每个叶子节点中任一叶子节点对应的BFD会话发生故障的情况下,通知控制层面该BFD会话对应的链路发生故障。
图2是根据本发明实施例的链路故障检测方法的另一流程图,如图2所示,该方法包括如下步骤:
步骤S202,叶子节点确定用于检测链路故障的反向双向转发检测BFD报文,其中,该反向BFD报文携带有用于标识该反向BFD报文的标签;
步骤S204,该叶子节点向根节点发送该反向BFD报文,其中,该反向BFD报文用于该根节点在接收到该反向BFD报文的情况下,根据该标签确定接收到该反向BFD报文的链路正常;在没有接收到该反向BFD报文的情况下,确定未接收到该反向BFD报文的链路发生故障。
可选地,上述根节点发送向每个叶子节点分别发送不同的正向BFD报文,由于出节点处存在正向出流量复制,上述每个叶子节点会分别接收到根节点发送给自身的正向BFD报文。可选地,在上述每个叶子节点中任一叶子节点接收到正向BFD报文后,判断接收到的正向BFD的目的地址是否为自己的地址,在所述正向BFD报文的目的地址为所述叶子节点的地址时,根据上述正向BFD报文确定反向BFD报文;在所述正向BFD报文的目的地址不为所述叶子节点的地址时,丢弃该正向BFD报文,从而避免报文在本节点的无谓堆积。例如,设置报文的存活时间(Time TO Live,简称TTL)为1,保证不是该leaf节点的报文在会被及时丢弃。
实施例二
图3是根据本发明实施例二的链路故障检测装置的结构框图,该装置应用于根节点,如图3所示,该装置包括判断模块32、第一确定模块34、第二确定模块36,下面对每个模块进行简要说明。
判断模块32,设置为判断是否接收到一个或多个叶子节点发送的用于检测链路故障的反向双向转发检测BFD报文,其中,该反向BFD报文携带用于标识该反向BFD报文的标签;
第一确定模块34,设置为在接收到一个或多个叶子节点发送的反向双向转发检测BFD报文时,根据该标签确定接收到该反向BFD报文的链路正常;
第二确定模块36,设置为在未接收到任一叶子节点发送的反向双向转发检测BFD报文时,确定未接收到该反向BFD报文的链路发生故障。
图4是根据本发明实施例二的链路故障检测装置的另一结构框图,该装 置应用于叶子节点,如图4所示,该装置包括第三确定模块42、发送模块44,下面对每个模块进行简要说明。
第三确定模块42,设置为确定用于检测链路故障的反向双向转发检测BFD报文,其中,该反向BFD报文携带用于标识该反向BFD报文的标签;
发送模块44,设置为向根节点发送该反向BFD报文,其中,该反向BFD报文用于该根节点在接收到该反向BFD报文的情况下,根据该标签确定接收到该反向BFD报文的链路正常;在没有接收到该反向BFD报文的情况下,确定未接收到该反向BFD报文的链路发生故障。
实施例三
下面结合具体示例对本发明实施例进行进一步的说明。
P2MP-TE隧道的标记交换路径(LSP)由到每个leaf节点的单向子链路(SUB-LSP)组成,本发明实施例扩展SUB-LSP协议信令让其支持双向BFD信令传输,采用同一条信令在正反方向同时实现标签的申请的方式。值得一提的是,反向入标签申请区别于正向标签的申请。
在P2MP-TE协议报文中增加上游标签(UPSTREAM_LABEL)对象,沿途节点接收到扩展对象的建路请求报文(Path报文)后,根据请求创建信令双向子链路(SUB-LSP)。其中,双向SUB-LSP的正向入标签的申请与单向SUB-LSP的入标签申请处理相同,双向SUB-LSP在存在反向入接口时,需要同时申请反向入标签。在向下游转发该Path报文时,把分配的反向入标签填到UPSTREAM_LABEL对象中,进而为反方向形成标签转发表。
在需要进行双向转发检测的情况下,对P2MP-TE的root节点和leaf节点分别进行BFD的使能配置,端到端分别进行BFD报文的发送。由于P2MP-TE正反向在出接口存在流量复制的能力,所以子链路(SUB-LSP)上的正向报文会被复制发送到所有的leaf节点,根节点发送到每个子节点(对应于上述叶子节点)的BFD报文存在差别。本发明实施例可以通过设置报文的TTL(Time TO Live)为1,保证不是该leaf节点的BFD报文会被丢弃。
具体而言,SUB-LSP的双向隧道信令传输方案通过申请反向标签的方式 传输反向信令,即为每个SUB-LSP的反向入段都分配标签,也就是反向入标签,以使得反向转发表为单播传输的与每个子节点一一对应的表。通过上述反向标签申请模式,root节点可以根据反向入标签识别反向BFD报文来自哪个leaf节点。Root节点每个SUB-LSP的反向BFD报文在故障后通知对应的SUB-LSP进行相应的保护切换。
图5是根据本发明实施例的链路故障检测方法的示意图,如图5所示。R1为P2MP的root节点,R3和R4分别是两个leaf节点,P2MP-TE隧道从R1分别建两个SUB-LSP到R3和R4,SUB-LSP1和SUB-LSP2在R1上共用出向标签,即只在R2上申请一个正向入标签,在R2的出接口上进行正向出流量的复制,分叉成两份流量分别发往R3和R4节点。在反向BFD报文传输中,即叶子节点为发送端,根节点为接收端的情况下,在R1节点,分别建立通向R3和R4的反向子链路,即反向SUB-LSP1和反向SUB-LSP2,该SUB-LSP1和该SUB-LSP2在R2节点分别有自己的反向出标签,即在R1节点分别申请反向入标签。反向BFD报文通过反向SUB-LSP1和反向SUB-LSP2的转发面传输,呈现反向单播表项,而不需要实现复杂的组播BFD,即正向是组播表项,而反向是单播表项。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现根节点侧的链路故障检测方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现叶子节点侧的链路故障检测方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的 结合。本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围当中。
工业实用性
上述技术方案在不对协议信令产生额外开销的情况下,缩短了故障链路反馈的时间。

Claims (10)

  1. 一种链路故障检测方法,包括:
    根节点判断是否接收到一个或多个叶子节点发送的用于检测链路故障的反向双向转发检测BFD报文,其中,所述反向BFD报文携带有用于标识所述反向BFD报文的标签;
    在接收到一个或多个叶子节点发送的反向BFD报文时,所述根节点根据所述标签确定接收到所述反向BFD报文的链路正常;
    在未接收到任一叶子节点发送的反向BFD报文时,所述根节点确定未接收到所述反向BFD报文的链路发生故障。
  2. 如权利要求1所述的方法,所述方法还包括:在所述根节点判断是否接收到所述多个叶子节点发送的用于检测链路故障的反向BFD报文之前,所述根节点发送用于在所述根节点与每个叶子节点之间创建多条反向子链路的建路协议报文;
    所述根节点根据所述建路协议报文为所述反向BFD报文配置标签。
  3. 如权利要求2所述的方法,其中,所述根节点根据所述建路协议报文为所述反向BFD报文配置标签包括:
    所述根节点根据所述建路协议报文,通过为所述每个反向子链路配置反向入标签的方式为反向BFD报文配置标签。
  4. 如权利要求1所述的方法,所述方法还包括:在所述根节点判断是否接收到所述多个叶子节点发送的用于检测链路故障的反向BFD报文之前,所述根节点向所述每个叶子节点发送正向BFD报文,其中,所述反向BFD报文为所述叶子节点响应所述正向BFD报文得到的。
  5. 如权利要求1所述的方法,所述方法还包括:所述根节点维护所述每个叶子节点的BFD会话,在所述每个叶子节点中任一叶子节点对应的BFD会话发生故障的情况下,通知控制层面所述BFD会话对应的链路发生故障。
  6. 一种链路故障检测方法,包括:
    叶子节点确定用于检测链路故障的反向双向转发检测BFD报文,其中, 所述反向BFD报文携带有用于标识所述反向BFD报文的标签;
    所述叶子节点向根节点发送所述反向BFD报文,其中,所述反向BFD报文用于所述根节点在接收到所述反向BFD报文的情况下,根据所述标签确定接收到所述反向BFD报文的链路正常;在没有接收到所述反向BFD报文的情况下,确定未接收到所述反向BFD报文的链路发生故障。
  7. 如权利要求6所述的方法,其中,所述叶子节点确定用于检测链路故障的所述反向BFD报文包括:
    所述叶子节点在接收到所述根节点发送的正向BFD报文后,判断所述正向BFD报文的目的地址是否为所述叶子节点的地址;
    在所述正向BFD报文的目的地址为所述叶子节点的地址时,所述叶子节点根据所述正向BFD报文确定所述反向BFD报文。
  8. 如权利要求7所述的方法,所述方法还包括:
    在所述正向BFD报文的目的地址不为所述叶子节点的地址时,所述叶子节点丢弃所述正向BFD报文。
  9. 一种链路故障检测装置,应用于根节点,包括:
    判断模块,设置为判断是否接收到一个或多个叶子节点发送的用于检测链路故障的反向双向转发检测BFD报文,其中,所述反向BFD报文携带有用于标识所述反向BFD报文的标签;
    第一确定模块,设置为在接收到一个或多个叶子节点发送的反向BFD报文时,根据所述标签确定接收到所述反向BFD报文的链路正常;
    第二确定模块,设置为在未接收到任一叶子节点发送的反向BFD报文时,确定未接收到所述反向BFD报文的链路发生故障。
  10. 一种链路故障检测装置,应用于叶子节点,包括:
    第三确定模块,设置为确定用于检测链路故障的反向双向转发检测BFD报文,其中,所述反向BFD报文携带有用于标识所述反向BFD报文的标签;
    发送模块,设置为向根节点发送所述反向BFD报文,其中,所述反向BFD报文用于所述根节点在接收到所述反向BFD报文的情况下,根据所述 标签确定接收到所述反向BFD报文的链路正常;在没有接收到所述反向BFD报文的情况下,确定未接收到所述反向BFD报文的链路发生故障。
PCT/CN2016/100152 2016-01-26 2016-09-26 链路故障检测方法及装置 WO2017128752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610053175.8 2016-01-26
CN201610053175.8A CN106998273A (zh) 2016-01-26 2016-01-26 链路故障检测方法及装置

Publications (1)

Publication Number Publication Date
WO2017128752A1 true WO2017128752A1 (zh) 2017-08-03

Family

ID=59397312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100152 WO2017128752A1 (zh) 2016-01-26 2016-09-26 链路故障检测方法及装置

Country Status (2)

Country Link
CN (1) CN106998273A (zh)
WO (1) WO2017128752A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737871A (zh) * 2020-12-11 2021-04-30 北京东土军悦科技有限公司 链路故障检测方法、装置、计算机设备及存储介质
CN113037622A (zh) * 2019-12-24 2021-06-25 华为数字技术(苏州)有限公司 一种防止bfd震荡的系统及方法
CN114338459A (zh) * 2021-12-24 2022-04-12 迈普通信技术股份有限公司 路径检测方法、装置、网络设备及计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109218199B (zh) * 2018-11-21 2021-03-02 新华三技术有限公司 一种报文处理方法和装置
CN110855531B (zh) * 2019-12-02 2021-09-14 锐捷网络股份有限公司 一种转发路径检测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546304A (zh) * 2012-01-19 2012-07-04 华为技术有限公司 一种检测双向转发检测的方法、设备和系统
CN102624609A (zh) * 2012-02-28 2012-08-01 华为技术有限公司 反向bfd报文发送、通知路径的方法及装置
US20150124626A1 (en) * 2013-11-05 2015-05-07 Electronics And Telecommunications Research Institute Method of supporting in-band operations, administration and maintenance (oam) for point-to-multipoint (p2mp) data transfer in multi-protocol label switching-transport profile (mpls-tp) network
WO2015131537A1 (zh) * 2014-09-19 2015-09-11 中兴通讯股份有限公司 双向转发检测方法、设备、系统及计算机存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396023C (zh) * 2005-09-30 2008-06-18 华为技术有限公司 维护多跳伪线的协商控制方法
CN101945049B (zh) * 2010-09-20 2015-12-16 中兴通讯股份有限公司 多协议标签交换系统、节点设备及双向隧道的建立方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546304A (zh) * 2012-01-19 2012-07-04 华为技术有限公司 一种检测双向转发检测的方法、设备和系统
CN102624609A (zh) * 2012-02-28 2012-08-01 华为技术有限公司 反向bfd报文发送、通知路径的方法及装置
US20150124626A1 (en) * 2013-11-05 2015-05-07 Electronics And Telecommunications Research Institute Method of supporting in-band operations, administration and maintenance (oam) for point-to-multipoint (p2mp) data transfer in multi-protocol label switching-transport profile (mpls-tp) network
WO2015131537A1 (zh) * 2014-09-19 2015-09-11 中兴通讯股份有限公司 双向转发检测方法、设备、系统及计算机存储介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037622A (zh) * 2019-12-24 2021-06-25 华为数字技术(苏州)有限公司 一种防止bfd震荡的系统及方法
CN113037622B (zh) * 2019-12-24 2024-01-05 华为数字技术(苏州)有限公司 一种防止bfd震荡的系统及方法
CN112737871A (zh) * 2020-12-11 2021-04-30 北京东土军悦科技有限公司 链路故障检测方法、装置、计算机设备及存储介质
CN114338459A (zh) * 2021-12-24 2022-04-12 迈普通信技术股份有限公司 路径检测方法、装置、网络设备及计算机可读存储介质
CN114338459B (zh) * 2021-12-24 2024-02-13 迈普通信技术股份有限公司 路径检测方法、装置、网络设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN106998273A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
US10129075B2 (en) Multicast only fast re-route over remote loop-free alternate backup path
US8902780B1 (en) Forwarding detection for point-to-multipoint label switched paths
WO2017128752A1 (zh) 链路故障检测方法及装置
US8218429B2 (en) Method and device for multicast traffic redundancy protection
JP5691703B2 (ja) マルチキャストネットワークシステム
EP2761829B1 (en) Point-to-point based multicast label distribution protocol local protection solution
JP5209116B2 (ja) パケット交換網における擬似ワイヤの確立
EP3340550B1 (en) Service message multicast method and device
EP2498454A1 (en) Method, device and system for processing service traffic based on pseudo wires
US11700195B2 (en) Locally protecting service in a label switched path network
EP2996287A1 (en) Method for notifying information of pe device and pe device
KR20140040250A (ko) 포인트 투 멀티포인트 터널을 통한 결함 검출 세션 부트스트래핑
WO2006081767A1 (fr) Méthode d’implémentation d’un chemin de transmission maître et de sauvegarde
WO2012003743A1 (zh) 组播流量的转发方法及装置
US9491091B2 (en) MLDP failover using fast notification packets
KR20140019377A (ko) 네트워크 노드를 동작하기 위한 기술
CN102638389A (zh) 一种trill网络的冗余备份方法及系统
WO2013044741A1 (zh) 环形拓扑网络的故障处理方法、装置和一种路由设备
US9231861B2 (en) Label switched path network failure detection and traffic control
EP2767052B1 (en) Failure detection in the multiprotocol label switching multicast label switched path's end-to-end protection solution
WO2021098806A1 (zh) 报文传输路径的切换方法、设备和系统
CN102769552A (zh) 一种通过bfd检测lsp时传输bfd报文的方法和设备
JP2007243481A (ja) マルチキャストmplsネットワーク構築方法及びマルチキャストmplsネットワークシステム及びルータ及びプログラム
EP3128703B1 (en) Path detection method, destination node device and communication system
TWI580225B (zh) 路由路徑的冗餘系統及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887626

Country of ref document: EP

Kind code of ref document: A1