WO2015161727A1 - 利用辐射谱的全部信息测火焰实际温度的方法及测量系统 - Google Patents

利用辐射谱的全部信息测火焰实际温度的方法及测量系统 Download PDF

Info

Publication number
WO2015161727A1
WO2015161727A1 PCT/CN2015/074899 CN2015074899W WO2015161727A1 WO 2015161727 A1 WO2015161727 A1 WO 2015161727A1 CN 2015074899 W CN2015074899 W CN 2015074899W WO 2015161727 A1 WO2015161727 A1 WO 2015161727A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
tested
radiation
physical model
wavelength
Prior art date
Application number
PCT/CN2015/074899
Other languages
English (en)
French (fr)
Inventor
曹柏林
谭成章
曹锐
刘成刚
曹利
陈长芳
李耀
戴长健
Original Assignee
天津送变电易通电力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津送变电易通电力科技有限公司 filed Critical 天津送变电易通电力科技有限公司
Priority to EP15782663.7A priority Critical patent/EP3136065B1/en
Priority to US15/306,493 priority patent/US11359967B2/en
Publication of WO2015161727A1 publication Critical patent/WO2015161727A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0096Radiation pyrometry, e.g. infrared or optical thermometry for measuring wires, electrical contacts or electronic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/601Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using spectral scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration

Definitions

  • the invention relates to the field of radiation spectrum temperature measuring methods and equipment in the field of instrument and meter, and particularly relates to a method and a measuring system for measuring the actual temperature of a flame by using all the information of the radiation spectrum.
  • Flame temperature measurement technology is currently a hot topic at home and abroad. It has important significance and application value in the fields of energy saving, aerospace, strategic and tactical weapons development.
  • There are many methods for measuring flame temperature such as contact method, imaging method, laser spectroscopy, sonic method and radiation method.
  • the radiation temperature measurement method is the preferred method in the temperature range above the silver freezing point (1234.0 open).
  • the radiation method is divided into "emission-absorption spectroscopy” and "pyrometer method”.
  • the shortcomings of "emission-absorption spectroscopy” are: large structure, expensive cost, complicated technology, easy to damage the composition of the flame to be tested, and thermal equilibrium state.
  • the disadvantage of the "pyrometer method” is that the "radiation correction” is required to know the true temperature of the flame.
  • the most effective method for obtaining the true temperature and "radiance" data of the object is the "multi-spectral temperature measurement method", which uses the flame radiation brightness information under multiple spectra, and the "radiation correction” is obtained through data processing to obtain the true temperature of the flame. .
  • the black body radiation theory three optical temperatures are defined. That is, “radiation temperature” measured according to the “radiation total energy” of the black body; 2. “color temperature” measured according to the black body “distribution of energy in the spectrum”; 3. radiation according to the black body in “a certain band” “Light” to measure the “bright temperature”.
  • the above optical temperature is the same as the actual temperature; but for an actual object, the above optical temperature is not the same as the actual temperature.
  • multi-spectral temperature measurement which uses information of flame radiance under multiple (actually only a few) spectra and is processed by data processing.
  • the “radiation correction” gives the true temperature of the flame. Because the “radiation correction” requires a large amount of computational effort and can only utilize a limited amount of spectral information, the accuracy of temperature measurement by this method is difficult to further improve.
  • the “multi-spectral temperature measurement method” belongs to the “color temperature” method measured according to the "distribution of energy in the spectrum” of the black body.
  • the invention provides a method and a measuring system for measuring the actual temperature of a flame by using all the information of the radiation spectrum.
  • the invention improves the accuracy of the temperature measurement and reduces the complexity of the calculation, as described below:
  • a method of measuring the actual temperature of a flame using all of the information of the radiation spectrum comprising the steps of:
  • the first digitized distribution spectrum of the emission power of the object to be tested at any known temperature with the wavelength ⁇ is measured by a digitized spectrometer in an actual temperature measurement system in a calibrated state, and the peak wavelength ⁇ m is obtained;
  • measuring the actual temperature by a temperature measuring system is in a state of spectrometer, the object to be measured at a temperature of skill emission with wavelength [lambda] of the measured change in second digitized spectrum distribution, the peak wavelength ⁇ m to obtain specific values;
  • the first physical model is specifically:
  • the second physical model is specifically:
  • the actual temperature measuring system has two states of calibration and temperature measurement, and the calibration is to obtain specific values of the parameters X(1) and X(2) of the energy level structure of the object to be tested; the temperature measurement is to obtain the object to be tested. Temperature value.
  • a measurement system for measuring the actual temperature of a flame using all of the information of the radiation spectrum comprising:
  • the digital spectrometer has two functional states of calibration and temperature measurement. When in the calibration state, it is used to measure the first digitized distribution spectrum of the emission power of the object to be tested at any known temperature with the wavelength ⁇ , and obtain the peak value.
  • the wavelength ⁇ m is used to measure a second digitized distribution spectrum of the emission power of the object to be tested at the temperature T to be measured as a function of the wavelength ⁇ when in the temperature measurement state;
  • a first input device configured to input the first digitized distribution spectrum to the first data processing in which the first physical model is installed Device
  • the first data processing device adopts a least squares method to curve fit the first digitized distribution spectrum, obtains parameters X(1), X(2) reflecting the energy level structure, and obtains a Wien displacement law correction formula of the object to be tested,
  • the Wien displacement law correction formula is used as the second physical model;
  • a second input device configured to input the second physical model to the second data processing device
  • a calibration device for inputting the verified X(2) of the reflected energy level structure parameter into the second physical model to implement calibration of the digitized spectrometer
  • a third input device configured to input the second digitized distribution spectrum to the second data processing device
  • a second data processing device configured to obtain a specific value of the peak wavelength ⁇ m from the second digitized distribution spectrum; perform an arithmetic processing according to the peak wavelength ⁇ m and the second physical model to obtain a temperature value of the object to be tested;
  • a display device for displaying a temperature value of the object to be tested.
  • the digital spectrometer has two states of calibration and temperature measurement, and the calibration is to obtain specific values of the parameters X(1) and X(2) of the energy level structure of the object to be tested; the temperature measurement is to obtain the temperature value of the object to be tested. .
  • the beneficial effects of the technical solution provided by the present invention are: the currently existing "colorimetric method", because the "radiation rate correction” calculation workload is large, generally only a limited number of single wavelength “monochrome radiation skills” can be selected for data. Processing, some studies also use artificial neural network technology.
  • the invention can only be applied to the Wean's displacement law of the ideal black body, and is transformed into a "generalized Wien displacement law” which can be applied to a specific non-black body object to be tested by "energy level structure correction”.
  • the degree of theorization is high, the calculation workload is small (only simple division is required for temperature measurement), and up to several thousand single-wavelength "monochromatic radiation power" received by the spectrometer can be used for data processing with high precision. improve.
  • the invention not only has the advantages of the general "color temperature method", but also has the advantages of strong theory, simple calculation, high temperature measurement accuracy, and the calibration procedure only needs to be performed at one temperature point. All of the above advantages are achieved by using the laws of nature itself. Therefore, the technical solutions and instruments provided by the present invention can be extended to the entire field of radiation temperature measurement.
  • Figure 1 is a flow chart of a method for measuring the actual temperature of a flame using all of the information of the radiation spectrum
  • FIG. 2 is a schematic structural view of a measuring system for measuring the actual temperature of a flame using all the information of the radiation spectrum;
  • Figure 3 is the distribution curve of the emission power E( ⁇ , T) according to the wavelength ⁇ when the ideal diode filament temperature is 1800K.
  • Figure 4 is the distribution curve of the emission power E( ⁇ , T) according to the wavelength ⁇ when the ideal diode filament temperature is 1880K.
  • Figure 5 is the distribution curve of the emission power E( ⁇ , T) according to the wavelength ⁇ when the ideal diode filament temperature is 1960K.
  • Figure 6 is the distribution curve of the emission power E( ⁇ , T) according to the wavelength ⁇ when the ideal diode filament temperature is 2040K.
  • Figure 7 is the distribution curve of the emission power E( ⁇ , T) according to the wavelength ⁇ when the ideal diode filament temperature is 2120K.
  • Figure 8 is the distribution curve of the emission power E( ⁇ , T) according to the wavelength ⁇ when the ideal diode filament temperature is 2200K.
  • Fig. 9 shows the peak wavelength ⁇ m of the ideal diode filament emission power E( ⁇ , T) according to the wavelength ⁇ distribution curve, which shifts toward the short-wave direction as the temperature T increases.
  • the invention can only be applied to the Wean's displacement law of the ideal black body, and is transformed into a "generalized Wien displacement law" which can be applied to a specific non-black body object to be tested by "energy level structure correction".
  • the "color temperature” is the same as the actual temperature, as follows:
  • the emission power E( ⁇ , T) has a maximum value called peak value, that is, the maximum monochromatic emission power.
  • the wavelength corresponding to this maximum value, expressed as ⁇ m is called the peak wavelength.
  • E ( ⁇ , T) For each temperature, there is a transmission power E ( ⁇ , T) according to the wavelength ⁇ distribution curve. As the temperature T increases, ⁇ m moves in the short-wave direction, and the relationship between the two is determined by the following formula:
  • the temperature T can be calculated by the formula (1).
  • the temperature thus calculated is only the "color temperature" of the object to be measured (that is, the temperature at which the object to be tested is a black body), and is not the actual temperature of the object to be tested.
  • the measurable wavelength range of the digital spectrometer should include the peak wavelength ⁇ m ; use equation (1) to estimate whether the above requirements are met.
  • any known temperature can be measured by "standard instrument", for example: standard photoelectric pyrometer, standard optical pyrometer, standard platinum rhodium 30-platinum crucible 6.
  • the first physical model refers to the formula formed by adding two "energy level structure correction parameters" of X(1) and X(2) in the Planck formula which can only be applied to the ideal black body:
  • X(1) and X(2) are “energy level structure correction parameters”, which are two undetermined parameters added in the Planck formula.
  • the above steps 101-102 can also be performed at a plurality of known temperature points, and then the obtained plurality of X(2) values are averaged.
  • Equation 3 The Wien's displacement law (Equation 3), which can only be applied to the black body, is rewritten as a modified formula of Wien's displacement law that can be applied to the non-black body to be tested, ie, formula (4):
  • the verification of the X(2) reflecting the energy level structure parameter is specifically: substituting the ⁇ m obtained in the step 101 and the known temperature, and the X(2) obtained in the step 102 into the formula (4), and verifying the correctness.
  • the error is small, input the verified X(2) of the energy level structure parameter into the second physical model to achieve calibration of the actual temperature measurement system; otherwise, if the error is large, return to step 101. Re-calibrate the process.
  • the object to be measured is a transparent flame (radiation or band spectrum)
  • the peak wavelength ⁇ m should be included in the measurable wavelength range of the spectrometer so that its value can be directly measured; using equation (1), it can be estimated whether the above requirements are met.
  • step 106 The peak wavelength ⁇ m obtained in step 105 is input to a PC or a single-chip microcomputer in an actual temperature measurement system in a temperature measurement state, and performs arithmetic processing according to the second physical model to obtain a temperature value of the measured object;
  • the actual temperature measurement system has two functions of determining the energy level structure parameter of the object to be measured and determining the temperature of the object to be measured.
  • a measurement system for measuring the actual temperature of a flame using all of the information of the radiation spectrum includes:
  • the digital spectrometer has two functional states of calibration and temperature measurement. When in the calibration state, it is used to measure the first digitized distribution spectrum of the emission power of the object to be tested at any known temperature with the wavelength ⁇ , and obtain the peak value. Wavelength ⁇ m ; when in the temperature measurement state, a second digitized distribution spectrum for measuring the emission power of the object to be tested at the temperature T to be measured as a function of the wavelength ⁇ ;
  • a first input device configured to input the first digitized distribution spectrum to the first data processing device mounted with the first physical model
  • the first data processing device adopts a least squares method to curve fit the first digitized distribution spectrum, obtains parameters X(1), X(2) reflecting the energy level structure, and obtains a Wien displacement law correction formula of the object to be tested,
  • the Wien displacement law correction formula is used as the second physical model;
  • a second input device configured to input the second physical model to the second data processing device
  • a calibration device for inputting the verified X(2) of the reflected energy level structure parameter into the second physical model to implement calibration of the digitized spectrometer
  • a third input device configured to input the second digitized distribution spectrum to the second data processing device
  • a second data processing device configured to obtain a specific value of the peak wavelength ⁇ m from the second digitized distribution spectrum; perform an arithmetic processing according to the peak wavelength ⁇ m and the second physical model to obtain a temperature value of the object to be tested;
  • a display device for displaying a temperature value of the object to be tested.
  • the first data processing device and the second data processing device may be a single chip microcomputer or a PC; the first input device and the second input.
  • the device and the third input device may be a wireless transmission mode such as a USB interface or a WIFI; the display device may be a display or the like.
  • the non-black body heat radiation source used in the preferred embodiment is an "ideal diode” filament. It is a 0.075 mm elongated tungsten wire that can be approximated as an "infinitely long straight wire.” The "emissivity" of the tungsten wire is 0.44, which is clearly non-black body.
  • the filament temperature of an ideal diode can be controlled by current. The manufacturer has previously designed and measured the relationship between the ideal diode filament current and temperature, as shown in Table 1. The temperatures listed in Table 1 are the actual temperatures of the filaments.
  • the value of ⁇ m is extrapolated from the measured data, and the error is large.
  • the accuracy of the temperature measurement may also be within the allowable error range of the currently specified "work measuring instrument".
  • the comparable instrument is a "colorimetric thermometer" that allows for an error range of 0.01 to 0.025.
  • the first temperature range is from 1800 to 2000.
  • the maximum absolute error is 31 open; the relative error is 0.016, which is within the allowable error range of the currently specified “working measuring instrument”.
  • the second temperature range is from 2000 to 2200.
  • the maximum absolute error is 3 open; the relative error is 0.0015, which is within the current allowable error of the “standard instrument” (2-15 open).
  • the first gear has a large error; the second gear has a small error.
  • the spectrometer used in this experiment can only measure light below 1 micron.
  • the first temperature is lower and the peak wavelength is longer, ranging from 1.2583 to 1.32755 microns. Therefore, the experimental data has fewer actual measurements and more extrapolation, and the error is larger.
  • the second gear has a higher temperature and a shorter peak wavelength of 1.1427-1.2348 microns. Therefore, the experimental data has more measured values and fewer extrapolation, and the error is smaller.
  • Figures 3-9 show the experimental data fitting curves: the thick line is the measured line and the thin line is the fitted curve. The unit of the horizontal axis is m. It can be seen from the above graph that the present invention achieves a good experimental effect and verifies the feasibility of the present invention.
  • the results are measured by an infrared scanning spectrometer (after the sensitivity of the photosensitive element is corrected), and the curve is as follows. Although the precision is not high, the trend is completely correct.
  • the model of each device is not limited unless otherwise specified, as long as the device capable of performing the above functions can be used.

Abstract

一种利用辐射谱的全部信息测火焰实际温度的方法及测量系统,应用"能级结构修正"进行更加理论化的数据处理,可以利用辐射谱的全部信息。采用键盘的输入方式或数据传输的输入方式,获取到"能级结构修正参数",并最终获取到被测火焰更加准确的实际温度值。上述方法有效地克服了人们在采用"多光谱测温法"时,必须经过计算工作量大的数据处理进行"辐射率修正",才能得到火焰实际温度的缺陷。目前已有的"多光谱测温法"只能利用辐射谱中的几个"单色辐射本领"信息;上述方法能够利用辐射谱中的全部,一般有几千个"单色辐射本领"的信息。

Description

利用辐射谱的全部信息测火焰实际温度的方法及测量系统 技术领域
本发明涉及仪器仪表领域的辐射谱测温方法及设备领域,尤其涉及一种利用辐射谱的全部信息测火焰实际温度的方法及测量系统。
背景技术
火焰温度测量技术目前是国内外研究的热门课题。它在节能减排、航空航天、战略和战术武器的开发等领域都具有重要的意义和应用价值。火焰温度的测量方法很多,主要有接触法、成像法、激光光谱法、声波法和辐射法等。从国际实用温标的角度来看,无论是用于温度标准的复现还是实际的测量,在银凝固点(1234.0开)以上的温区,辐射测温方法都是首选方法。辐射法分为“发射-吸收光谱法”和“高温计法”。“发射-吸收光谱法”的缺点是:结构庞大、造价昂贵、技术复杂、容易破坏被测火焰的组分和热平衡状态等。“高温计法”的缺点是:需要进行“辐射率修正”后才能知道火焰的真实温度。目前获得物体真温和“辐射率”数据最有效的方法是“多光谱测温法”,它是利用多个光谱下的火焰辐射亮度信息,经过数据处理进行“辐射率修正”得到火焰的真实温度。
根据黑体辐射理论,人们定义了三种光学温度。即1、根据黑体的“辐射总能量”来测量的“辐射温度”;2、根据黑体“光谱中能量的分布”来测量的“色温度”;3、根据黑体在“某一波段内的辐射能量”来测量的“亮温度”。对于理想黑体,上述光学温度与实际温度是相同的;但对于实际物体,上述光学温度与实际温度并不相同。
目前公知的,获得火焰真温和“辐射率”数据最有效的方法是“多光谱测温法”,它是利用多个(实际上只有几个)光谱下的火焰辐射亮度信息,经过数据处理进行“辐射率修正”得到火焰的真实温度。因为“辐射率修正”需要的计算工作量大,只能利用有限几个光谱信息,所以这种方法的测温准确度难以进一步提高。“多光谱测温法”属于根据黑体的“光谱中能量的分布”来测量的“色温度”法。
发明内容
本发明提供了一种利用辐射谱的全部信息测火焰实际温度的方法及测量系统,本发明提高了测温的准确度,降低了计算的复杂度,详见下文描述:
一种利用辐射谱的全部信息测火焰实际温度的方法,所述方法包括以下步骤:
(1)通过处于校准状态的实际温度测量系统中的数字化光谱仪,测出待测对象在任意一已知温度下的发射本领随波长λ变化的第一数字化分布谱,求出峰值波长λm
(2)将第一数字化分布谱输入到安装有第一物理模型的单片机或PC机上进行数据处理,用最小二乘法对第一数字化分布谱作曲线拟合,获取反映能级结构的参数X(1)、X(2);
(3)获取待测对象的维恩位移定律修正公式,并作为第二物理模型输入到实际温度测量系统中的单片机或PC机上;
(4)将验证后的反映能级结构参数的X(2))输入到所述第二物理模型中,实现对实际温度测量系统的校准;
(5)通过处于测温状态的实际温度测量系统中的光谱仪,测出待测对象在待测温度下的发射本领随波长λ变化的第二数字化分布谱,获得峰值波长λm的具体数值;
(6)将步骤(5)获得的峰值波长λm,输入处于测温状态的实际温度测量系统内的PC机或单片机,根据所述第二物理模型进行运算处理,获取待测对象的温度值;
(7)将待测对象的温度值通过显示器予以显示。
所述第一物理模型具体为:
在适用于理想黑体的普朗克公式中,添加X(1)、X(2)两个能级结构修正参数后形成的公式:
Figure PCTCN2015074899-appb-000001
其中,E(λ,T)为非黑体发射的光谱辐射通量密度,单位为Wcm-2·μm-1;C1=3.741844×10-12W·cm-2,称为第一辐射常数;C2=1.438832544cm·K,称为第二辐射常数;λ为辐射波长,单位为μm;T为待测对象的任一已知固定温度,单位为K;X(1)、X(2)为能级结构参数,是在普朗克公式中添加的两个待定参数。
所述第二物理模型具体为:
λmT=X(2)×2.898×10-3(米*开)。
所述实际温度测量系统具有校准和测温两种状态,校准是为了获取待测对象反映能级结构的参数X(1)、X(2)的具体数值;测温是为了获取待测对象的温度值。
一种利用辐射谱的全部信息测火焰实际温度的测量系统,所述测量系统包括:
数字化光谱仪,具有校准和测温两种功能状态,当处于校准状态时,用于测出待测对象在任意一已知温度下的发射本领随波长λ变化的第一数字化分布谱,求出峰值波长λm;当处于测温状态时,用于测出待测对象在待测温度T下的发射本领随波长λ变化的第二数字化分布谱;
第一输入装置,用于将第一数字化分布谱输入到安装有第一物理模型的第一数据处理 装置;
第一数据处理装置,采用最小二乘法对第一数字化分布谱作曲线拟合,获取反映能级结构的参数X(1)、X(2);获取待测对象的维恩位移定律修正公式,维恩位移定律修正公式作为第二物理模型;
第二输入装置,用于将第二物理模型输入到第二数据处理装置;
校准装置,用于将验证后的反映能级结构参数的X(2))输入到第二物理模型中,实现对数字化光谱仪的校准;
第三输入装置,用于将第二数字化分布谱输入到第二数据处理装置;
第二数据处理装置,用于由第二数字化分布谱获得峰值波长λm的具体数值;根据峰值波长λm、第二物理模型进行运算处理,获取待测对象的温度值;
显示装置,用于显示待测对象的温度值。
所述数字化光谱仪具有校准和测温两种状态,校准是为了获取待测对象反映能级结构的参数X(1)、X(2)的具体数值;测温是为了获取待测对象的温度值。
本发明提供的技术方案的有益效果是:目前已有的“比色法”,因为“辐射率修正”计算工作量大,一般只能选择有限几个单波长的“单色辐射本领”进行数据处理,有的研究还用到人工神经网络技术。本发明将只能适用于理想黑体的维恩位移定律,通过“能级结构修正”,改造成为能够适用于特定非黑体待测对象的“广义维恩位移定律”。理论化程度高、计算工作量小(测温时只需做简单的除法),可以将光谱仪接收到的多达几千个单波长“单色辐射本领”,全部用于数据处理,精度大为提高。此外,本发明除了具有一般“色温度法”抗环境干扰能力强的优点外,还有理论清晰、计算简单、测温准确度高、校准程序只需要在一个温度点进行等优势。上述各项优势都是利用自然规律本身实现的。因此,本发明提供的技术方案及仪器,可以推广到整个辐射测温领域。
附图说明
图1为一种利用辐射谱的全部信息测火焰实际温度的方法的流程图;
图2为一种利用辐射谱的全部信息测火焰实际温度的测量系统的结构示意图;
图3为理想二极管灯丝温度为1800K时,发射本领E(λ,T)按波长λ分布曲线,
If(A)=0.55 X(1)=688.151507034063的示意图;
图4为理想二极管灯丝温度为1880K时,发射本领E(λ,T)按波长λ分布曲线,
If(A)=0.60 X(1)=565.451265451300的示意图;
图5为理想二极管灯丝温度为1960K时,发射本领E(λ,T)按波长λ分布曲线,
If(A)=0.65 X(1)=319.697031070087的示意图;
图6为理想二极管灯丝温度为2040K时,发射本领E(λ,T)按波长λ分布曲线,
If(A)=0.70 X(1)=405.677545908357的示意图;
图7为理想二极管灯丝温度为2120K时,发射本领E(λ,T)按波长λ分布曲线,
If(A)=0.75 X(1)=322.483340509147的示意图;
图8为理想二极管灯丝温度为2200K时,发射本领E(λ,T)按波长λ分布曲线,
If(A)=0.80 X(1)=256.636032423250的示意图;
图9为理想二极管灯丝发射本领E(λ,T)按波长λ分布曲线的峰值波长λm,随温度T增高向短波方向移动。两者间的关系由“广义维恩位移定律”λmT=X(2)×2.898×10-3确定。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
本发明将只能适用于理想黑体的维恩位移定律,通过“能级结构修正”,改造成为能够适用于特定非黑体待测对象的“广义维恩位移定律”。对于该非黑体待测对象,其“色温度”与实际温度相同,具体说明如下:
维恩位移定律的内容是:在理想黑体的,发射本领E(λ,T)按波长λ分布曲线上,E(λ,T)有一最大值称为峰值,即最大的单色发射本领。相应于这最大值的波长,用λm表示,叫做峰值波长。对于每一温度,有一条发射本领E(λ,T)按波长λ分布曲线。随着温度T的增高,λm向短波方向移动,两者间的关系由以下公式确定:
λmT=2.898×10-3(米*开)    (1)
称为维恩位移定律。
说明:引用“物理学基本常数”计算更准确的常数值,公式(1)应改写为:λmT=2.8979507428634305162188796020618×10-3(米*开)。
由光谱仪测得峰值波长λm后,即可由公式(1)计算出温度T来。但这样算出的温度,只是待测对象的“色温度”(即假设待测对象是黑体时的温度),不是待测对象的实际温度。
下面具体阐明本发明怎样将只能适用于理想黑体的维恩位移定律,通过“能级结构修正”改造成为能够适用于特定非黑体待测对象的“广义维恩位移定律”。达到对于该非黑体待测对象其“色温度”与实际温度相同的目的,详见下文描述:
101:通过处于校准状态的实际温度测量系统中的数字化光谱仪测出待测对象在任意一已知温度下的发射本领随波长λ变化的第一数字化分布谱,并求出其中的峰值波长λm
实际应用时,数字化光谱仪的可测波长范围应将峰值波长λm包含在内;利用公式(1)可以估算是否满足上述要求。其中,任意一已知温度可由“标准仪器”测得,例如:标准光电高温计、标准光学高温计、标准铂铑30-铂铑6。
102:将第一数字化分布谱输入到安装有第一物理模型的单片机或PC机上进行数据处理,用最小二乘法对第一数字化分布谱作曲线拟合,获取反映能级结构的参数X(1)、X(2);
第一物理模型是指:在只能适用于理想黑体的普朗克公式中,添加X(1)、X(2)两个“能级结构修正参数”后形成的公式:
Figure PCTCN2015074899-appb-000002
其中,E(λ,T)为非黑体发射的光谱辐射通量密度,单位为Wcm-2·μm-1;C1=3.741844×10-12W·cm2,称为第一辐射常数;C2=1.438832544cm·K,称为第二辐射常数;λ为辐射波长,单位为μm;T为待测对象的任一已知固定温度,单位为K。X(1)、X(2)为“能级结构修正参数”,是在普朗克公式中添加的两个待定参数。
说明:C1、C2更准确的常数值,引用“物理学基本常数”计算应为:
C1=3.7418439644240131737525825×10-12W·cm2
C2=1.4388325438316932513026737224237cm·K
为了提高测量的准确度,以上步骤101-102也可以在多个已知温度点进行,然后将得到的多个X(2)值平均。
103:获取待测非黑体的维恩位移定律修正公式,并作为第二物理模型输入到实际温度测量系统中的单片机或PC机上;
将只能适用于黑体的维恩位移定律(公式3)改写为能适用于待测非黑体的维恩位移定律修正公式,即公式(4):
λmT=2.898×10-3(米*开)    (3)
λmT=X(2)×2.898×10-3(米*开)    (4)
其中,维恩位移定律修正公式(4)的推证过程如下:
在公式(2)中引入
Figure PCTCN2015074899-appb-000003
Figure PCTCN2015074899-appb-000004
公式(2)变为
Figure PCTCN2015074899-appb-000005
为了求出上式中极大值的位置,需要对它求微分并令其等于零。
Figure PCTCN2015074899-appb-000006
由此得出满足上式的条件为:
5eX-XeX-5=0解此方程得Xm=4.965即
Figure PCTCN2015074899-appb-000007
或λmT=X(2)×1.44cm·K/4.965=X(2)×2.898×10-3(米*开),此即公式(4)。
104:将验证后的反映能级结构参数的X(2)输入到第二物理模型中,实现对实际温度测量系统的校准;
其中,对反映能级结构参数的X(2)的验证具体为:将步骤101中获得的λm和已知温度,以及步骤102获得的X(2)代入公式(4),验证正确性。当误差较小时,将验证后的反映能级结构参数的X(2))输入到第二物理模型中,实现对实际温度测量系统的校准;否则,即误差较大时,回到步骤101,重新进行校正过程。
另外,如果被测对象是透明火焰(辐射线状或带状光谱),在采集光谱样本时需要在火焰内人工加入烟粒,使其变为发光火焰(辐射连续光谱)。
105:通过处于测温状态的实际温度测量系统中的光谱仪,测出待测对象在待测温度T下的单色发射本领E(λ,T)随波长λ变化的第二数字化分布谱,从而获得峰值波长λm的具体数值;
其中,峰值波长λm应包含在光谱仪的可测波长范围之内,以便能直接测出它的数值;利用公式(1)可以估算是否满足上述要求。
106:将步骤105获得的峰值波长λm,输入处于测温状态的实际温度测量系统内的PC机或单片机,根据第二物理模型进行运算处理,获取被测对象的温度值;
107:将被测对象的温度值通过显示器予以显示。
其中,实际温度测量系统有确定被测对象反映能级结构参数、以及确定被测对象温度的两种功能。
一种利用辐射谱的全部信息测火焰实际温度的测量系统,参见图2,该系统包括:
数字化光谱仪,具有校准和测温两种功能状态,当处于校准状态时,用于测出待测对象在任意一已知温度下的发射本领随波长λ变化的第一数字化分布谱,求出峰值波长λm; 当处于测温状态时,用于测出待测对象在待测温度T下的发射本领随波长λ变化的第二数字化分布谱;
第一输入装置,用于将第一数字化分布谱输入到安装有第一物理模型的第一数据处理装置;
第一数据处理装置,采用最小二乘法对第一数字化分布谱作曲线拟合,获取反映能级结构的参数X(1)、X(2);获取待测对象的维恩位移定律修正公式,维恩位移定律修正公式作为第二物理模型;
第二输入装置,用于将第二物理模型输入到第二数据处理装置;
校准装置,用于将验证后的反映能级结构参数的X(2)输入到第二物理模型中,实现对数字化光谱仪的校准;
第三输入装置,用于将第二数字化分布谱输入到第二数据处理装置;
第二数据处理装置,用于由第二数字化分布谱获得峰值波长λm的具体数值;根据峰值波长λm、第二物理模型进行运算处理,获取待测对象的温度值;
显示装置,用于显示待测对象的温度值。
本发明实施例对上述各部件不做限制,只要能完成上述功能的器件均可,例如:第一数据处理装置和第二数据处理装置可以为单片机或PC机;第一输入装置、第二输入装置和第三输入装置可以为USB接口或WIFI等无线传输方式;显示装置可以为显示器等。
由优选实例可以看出,X(2)和λmT基本上不随温度T变化,其微小变化为实验误差所致。这一结果直接证明了我们的理论预期:由黑体模型导出的普朗克公式,其函数形式可以适用于任何热辐射物体,各种热辐射体的区别可以由该函数形式中“反映能级结构的参数”不同来描述。因此,黑体辐射理论中,包括维恩位移定律在内的所有结论都可以推广到其它热辐射体。这是本发明的理论和实验基础。
本实验充分地揭示了自然规律的本来面目,暴露了“辐射率修正”方法的缺陷。现代量子论认为,热(光)辐射的本质是微观粒子量子跃迁。历史的经验表明,这种涉及物质内部微观过程的问题,经典理论(“辐射率修正”方法的理论基础)已经显得无能为力,只有用现代量子理论(本发明的理论基础)才能解决。
本优选实例采用的非黑体热辐射源为“理想二级管”灯丝。它是0.075毫米的细长钨丝,可以近似地视为“无限长直导线”。钨丝的“辐射率”为0.44,显然属于非黑体。理想二极管的灯丝温度可以由电流控制。厂家已事先设计并测出了理想二极管灯丝电流与温度之间的关系,如表1所示。表1中所列温度,是灯丝的实际温度。
表1 理想二极管灯丝电流与温度关系
If(A) 0.50 0.55 0.60 0.65 0.70 0.75 0.80
T(×103k) 1.72 1.80 1.88 1.96 2.04 2.12 2.20
表2 测温范围为1800开到2000开的实验数据
项目 0.55A 0.60A 0.65A
x(1) 688.151507034063 565.451265451300 319.697031070087
x(2) 0.824059629052930 0.836550647356216 0.850519389918353
λm(米) 1.32755000000000*10-6 1.29030000000000*10-6 1.25830000000000*10-6
λmT 2389.59*10-6 2425.764*10-6 2466.268*10-6
表3 测温范围为2000开到2200开的实验数据
项目 0.70A 0.75A 0.80A
x(1) 405.677545908357 322.483340509147 256.636032423250
x(2) 0.868675778740922 0.866236869954822 0.866951937485245
λm(米) 1.23480000000000*10-6 1.18485000000000*10-6 1.14270000000000*10-6
λmT 2518.992*10-6 2511.882*10-6 2513.94*10-6
由于条件限制,目前提供的实验数据中,λm值是由实测数据外推得到的,误差较大。但是,如果根据以上数据分两档来测温度,其测温准确度亦可在目前规定的“工作计量器具”允许误差范围之内。可比较仪器是“比色测温仪”,其允许的误差范围是0.01到0.025。
提供的实验数据计算处理如下:
第一档测温范围为1800开到2000开。
λmT的平均值为2427.191*10-6(米*开),因而采用的公式为:λmT=2427.191*10-6(米*开);由此计算得:
T(0.55A)=2427.191*10-6/1.32755*10-6=1828(开);绝对误差为:1828-1800=28(开)。相对误差为:28/1800=0.016。
T(0.60A)=2427.191*10-6/1.2903*10-6=1881(开);绝对误差为:1881-1880=1(开)。相对误差为:1/1880=5.3*10-4=0.00053。
T(0.65A)=2427.191*10-6/1.2583*10-6=1929(开);绝对误差为:1929-1960=-31(开)。相对误差为:-31/1960=-0.0158。
最大绝对误差为31开;相对误差为0.016,已在目前规定的“工作计量器具”允许误差范围之内。
第二档测温范围为2000开到2200开。
λmT的平均值为2514.938*10-6(米*开),因而采用的公式为:λmT=2514.938*10-6(米*开);由此计算得:
T(0.70A)=2514.938*10-6/1.2348*10-6=2037(开);绝对误差为:2037-2040=-3(开)。相对误差为:3/1960=0.0015。
T(0.75A)=2514.938*10-6/1.18485*10-6=2123(开);绝对误差为:2123-2120=3(开)。相对误差为:3/2120=0.0014。
T(0.80A)=2514.938*10-6/1.1427*10-6=2201(开);绝对误差为:2201-2200=1(开)。相对误差为:1/2200=0.0005。
最大绝对误差为3开;相对误差为0.0015,已经在目前规定的“计量标准器具”允许误差(2—15开)范围之内。
上述实验结果中,第一档误差较大;第二档误差较小。原因是:本实验所用光谱仪只能测1微米以下波长的光。第一档温度较低,峰值波长较长,为1.2583-1.32755微米。因此,实验数据中实测数较少、外推数较多,结果误差较大。第二档温度较高,峰值波长较短,为1.1427-1.2348微米。因此,实验数据中实测数较多、外推数较少,结果误差较小。
可以预测,如果规定“对于数字化光谱仪的要求是:其可测波长范围应将峰值波长λm包含在内”,那么“利用辐射谱的全部信息测火焰实际温度的测量系统”的测温准确度更会有所提高,完全可以在目前规定的辐射测温仪“计量标准器具”允许的误差(2—15开)范围之内。
说明:如果不分档,采用的公式应为:
λmT=X(2)*b=0.8550*2.897*10-3=2.455*10-3(米*开)
图3-图9为实验数据拟合曲线:粗线为测得的谱线,细线为拟合得到的曲线。横轴的单位是m。通过上述图形可以看出本发明取得了较好的实验效果,验证了本发明的可行性。
另据我们对不同电流下的热钨丝发射光谱,用红外扫描光谱仪测量结果(经对感光元件的灵敏度校正后),曲线如下。虽然精密度不高,但趋势完全正确。
拟合曲线:
Figure PCTCN2015074899-appb-000008
本发明实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在辐射光谱分布测温范畴之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种利用辐射谱的全部信息测火焰实际温度的方法,其特征在于,所述方法包括以下步骤:
    (1)通过处于校准状态的实际温度测量系统中的数字化光谱仪,测出待测对象在任意一已知温度下的发射本领随波长λ变化的第一数字化分布谱,求出峰值波长λm
    (2)将第一数字化分布谱输入到安装有第一物理模型的单片机或PC机上进行数据处理,用最小二乘法对第一数字化分布谱作曲线拟合,获取反映能级结构的参数X(1)、X(2);
    (3)获取待测对象的维恩位移定律修正公式,并作为第二物理模型输入到实际温度测量系统中的单片机或PC机上;
    (4)将验证后的反映能级结构参数的X(2)输入到所述第二物理模型中,实现对实际温度测量系统的校准;
    (5)通过处于测温状态的实际温度测量系统中的光谱仪,测出待测对象在待测温度下的发射本领随波长λ变化的第二数字化分布谱,获得峰值波长λm的具体数值;
    (6)将步骤(5)获得的峰值波长λm,输入处于测温状态的实际温度测量系统内的PC机或单片机,根据所述第二物理模型进行运算处理,获取待测对象的温度值;
    (7)将待测对象的温度值通过显示器予以显示。
  2. 根据权利要求1所述的一种利用辐射谱的全部信息测火焰实际温度的方法,其特征在于,所述第一物理模型具体为:
    在适用于理想黑体的普朗克公式中,添加X(1)、X(2)两个能级结构修正参数后形成的公式:
    Figure PCTCN2015074899-appb-100001
    其中,E(λ,T)为非黑体发射的光谱辐射通量密度,单位为Wcm-2·μm-1;C1=3.741844×10-12W·cm-2,称为第一辐射常数;C2=1.438832544cm·K,称为第二辐射常数;λ为辐射波长,单位为μm;T为待测对象的任一已知固定温度,单位为K;X(1)、X(2)为能级结构参数,是在普朗克公式中添加的两个待定参数。
  3. 根据权利要求1所述的一种利用辐射谱的全部信息测火焰实际温度的方法,其特征在于,所述第二物理模型具体为:
    λmT=X(2)×2.898×10-3 (米*开)。
  4. 根据权利要求1所述的一种利用辐射谱的全部信息测火焰实际温度的方法,其特征在于,所述实际温度测量系统具有校准和测温两种状态,校准是为了获取待测对象反映能级结 构的参数X(1)、X(2)的具体数值;测温是为了获取待测对象的温度值。
  5. 一种利用辐射谱的全部信息测火焰实际温度的测量系统,其特征在于,所述测量系统包括:
    数字化光谱仪,具有校准和测温两种功能状态,当处于校准状态时,用于测出待测对象在任意一已知温度下的发射本领随波长λ变化的第一数字化分布谱,求出峰值波长λm;当处于测温状态时,用于测出待测对象在待测温度T下的发射本领随波长λ变化的第二数字化分布谱;
    第一输入装置,用于将第一数字化分布谱输入到安装有第一物理模型的第一数据处理装置;
    第一数据处理装置,采用最小二乘法对第一数字化分布谱作曲线拟合,获取反映能级结构的参数X(1)、X(2);获取待测对象的维恩位移定律修正公式,维恩位移定律修正公式作为第二物理模型;
    第二输入装置,用于将第二物理模型输入到第二数据处理装置;
    校准装置,用于将验证后的反映能级结构参数的X(2))输入到第二物理模型中,实现对数字化光谱仪的校准;
    第三输入装置,用于将第二数字化分布谱输入到第二数据处理装置;
    第二数据处理装置,用于由第二数字化分布谱获得峰值波长λm的具体数值;根据峰值波长λm、第二物理模型进行运算处理,获取待测对象的温度值;
    显示装置,用于显示待测对象的温度值。
  6. 根据权利要求5所述的一种利用辐射谱的全部信息测火焰实际温度的测量系统,其特征在于,所述数字化光谱仪具有校准和测温两种状态,校准是为了获取待测对象反映能级结构的参数X(1)、X(2)的具体数值;测温是为了获取待测对象的温度值。
PCT/CN2015/074899 2014-04-25 2015-03-23 利用辐射谱的全部信息测火焰实际温度的方法及测量系统 WO2015161727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15782663.7A EP3136065B1 (en) 2014-04-25 2015-03-23 Method for measuring actual temperature of flame using all information about radiation spectrum and measurement system
US15/306,493 US11359967B2 (en) 2014-04-25 2015-03-23 Method for measuring actual temperature of flame by using all information of radiation spectrum and measurement system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410169861.2A CN103900723B (zh) 2014-04-25 2014-04-25 利用辐射谱的全部信息测火焰实际温度的方法及测量系统
CN201410169861.2 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015161727A1 true WO2015161727A1 (zh) 2015-10-29

Family

ID=50992189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074899 WO2015161727A1 (zh) 2014-04-25 2015-03-23 利用辐射谱的全部信息测火焰实际温度的方法及测量系统

Country Status (4)

Country Link
US (1) US11359967B2 (zh)
EP (1) EP3136065B1 (zh)
CN (1) CN103900723B (zh)
WO (1) WO2015161727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401360A (zh) * 2021-06-16 2021-09-17 电子科技大学 一种基于多波段光学辐射测温的航空发动机涡轮盘温度测量装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900723B (zh) * 2014-04-25 2016-08-24 天津送变电易通电力科技有限公司 利用辐射谱的全部信息测火焰实际温度的方法及测量系统
CN104864977B (zh) * 2014-12-17 2018-02-06 西北工业大学 一种考虑多波长光谱辐射的火箭发动机燃气温度测试方法
CN108398191A (zh) * 2018-01-29 2018-08-14 南京理工大学 基于光纤光谱仪的高精度色温测量方法及系统
CN108470418A (zh) * 2018-04-02 2018-08-31 深圳汇创联合自动化控制有限公司 一种预警准确的建筑物火灾预警系统
CN111044565A (zh) * 2019-12-30 2020-04-21 西安近代化学研究所 一种燃烧转爆轰过程真温多光谱测量方法
CN112629694B (zh) * 2020-11-26 2023-01-13 中国大唐集团科学技术研究院有限公司火力发电技术研究院 一种燃煤电站炉膛的温度检测方法
CN112834051B (zh) * 2020-12-31 2023-01-24 华北电力大学 一种基于多光谱相机的辐射测温法
CN114046883B (zh) * 2021-10-27 2023-12-22 东南大学 火焰温度及碳烟浓度分布同时重建方法、装置及存储介质
CN117405262B (zh) * 2023-12-15 2024-02-23 常州泰斯科电子有限公司 一种温度测试仪的多点温度采集方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132922A (en) * 1989-01-12 1992-07-21 Massachusetts Institute Of Technology Emissivity independent multiwavelength pyrometer
CN1410709A (zh) * 2001-09-29 2003-04-16 上海理工大学 一种火焰监测诊断测量方法及装置
CN101000264A (zh) * 2007-01-15 2007-07-18 哈尔滨工业大学 光谱极值测温方法
US20100246631A1 (en) * 2009-03-24 2010-09-30 K-Space Associates, Inc. Blackbody fitting for temperature determination
CN101907492A (zh) * 2010-07-16 2010-12-08 浙江工业大学 一种基于物体发射光谱的温度测量方法
CN102374902A (zh) * 2010-08-11 2012-03-14 曹柏林 一种提高辐射温度计测温准确度的量子论修正方法
CN103644972A (zh) * 2013-11-29 2014-03-19 西北核技术研究所 一种多光谱辐射测温装置及方法
CN103900723A (zh) * 2014-04-25 2014-07-02 刘友祥 利用辐射谱的全部信息测火焰实际温度的方法及测量系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881823A (en) * 1988-03-29 1989-11-21 Purdue Research Foundation Radiation thermometry
US5265036A (en) * 1991-02-25 1993-11-23 United Technologies Corporation Turbine pyrometer system for correction of combustor fireball interference
EP1006345A1 (en) * 1998-12-04 2000-06-07 Jurij K Lingart Method of determining the actual temperature of real bodies
TWI442032B (zh) * 2011-11-17 2014-06-21 Ind Tech Res Inst 非接觸式溫度量測方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132922A (en) * 1989-01-12 1992-07-21 Massachusetts Institute Of Technology Emissivity independent multiwavelength pyrometer
CN1410709A (zh) * 2001-09-29 2003-04-16 上海理工大学 一种火焰监测诊断测量方法及装置
CN101000264A (zh) * 2007-01-15 2007-07-18 哈尔滨工业大学 光谱极值测温方法
US20100246631A1 (en) * 2009-03-24 2010-09-30 K-Space Associates, Inc. Blackbody fitting for temperature determination
CN101907492A (zh) * 2010-07-16 2010-12-08 浙江工业大学 一种基于物体发射光谱的温度测量方法
CN102374902A (zh) * 2010-08-11 2012-03-14 曹柏林 一种提高辐射温度计测温准确度的量子论修正方法
CN103644972A (zh) * 2013-11-29 2014-03-19 西北核技术研究所 一种多光谱辐射测温装置及方法
CN103900723A (zh) * 2014-04-25 2014-07-02 刘友祥 利用辐射谱的全部信息测火焰实际温度的方法及测量系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401360A (zh) * 2021-06-16 2021-09-17 电子科技大学 一种基于多波段光学辐射测温的航空发动机涡轮盘温度测量装置

Also Published As

Publication number Publication date
EP3136065B1 (en) 2020-03-04
CN103900723B (zh) 2016-08-24
US11359967B2 (en) 2022-06-14
CN103900723A (zh) 2014-07-02
EP3136065A4 (en) 2018-10-03
EP3136065A1 (en) 2017-03-01
US20170045398A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2015161727A1 (zh) 利用辐射谱的全部信息测火焰实际温度的方法及测量系统
Zhang et al. A method for reducing the influence of measuring distance on infrared thermal imager temperature measurement accuracy
WO2012019459A1 (zh) 提高辐射温度计测温准确度的量子论修正方法及系统
CN103913237B (zh) 三波段红外辐射精确测温方法
Tang et al. Synchronous full-field measurement of temperature and deformation based on separated radiation and reflected light
Coppa et al. Normal emissivity of samples surrounded by surfaces at diverse temperatures
CN107941352A (zh) 一种常温黑体辐亮度参数校准装置及测量方法
Hanssen et al. Report on the CCT supplementary comparison S1 of infrared spectral normal emittance/emissivity
Yang et al. Mean soot volume fractions in turbulent hydrocarbon flames: A comparison of sampling and laser measurements
CN104280136B (zh) 一种热电探测器的温度漂移和光谱响应补偿方法
Gan et al. Absolute cryogenic radiometer for high accuracy optical radiant power measurement in a wide spectral range
CN108398191A (zh) 基于光纤光谱仪的高精度色温测量方法及系统
CN201892573U (zh) 一种近红外辐射温度计
Gao et al. Multi-spectral pyrometer for narrow space with high ambient temperature
Machin et al. The european metrology programme for innovation and research project: implementing the new kelvin 2 (InK2)
Shi et al. A new experimental apparatus for measurement of spectral emissivity of opaque materials using a reflector as the dummy light source
CN116183036A (zh) 一种偏振遥感器短波红外波段背景辐射响应校正方法
WO2016004577A1 (zh) 一种基于火焰光谱强度在线辨识锅炉煤种的方法及系统
CN113639867A (zh) 高温目标短波红外方向光谱发射率及温度实验观测方法
Saunders Uncertainty Arising from the Use of the Mean Effective Wavelength in Realizing ITS‐90
CN108981923A (zh) 在线测量连续激光作用下光学元件表面温升的装置及方法
CN114509165A (zh) 一种光谱发射率测量装置及表面温度测量方法
CN206339310U (zh) 光滑表面温度分布的测量装置
Mosharov et al. Pyrometry using CCD cameras
Wang et al. Image based temperature field reconstruction for combustion flame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15306493

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015782663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015782663

Country of ref document: EP