WO2015161673A1 - 一种利用光助芬顿反应净化烟气的方法及装置 - Google Patents

一种利用光助芬顿反应净化烟气的方法及装置 Download PDF

Info

Publication number
WO2015161673A1
WO2015161673A1 PCT/CN2015/000269 CN2015000269W WO2015161673A1 WO 2015161673 A1 WO2015161673 A1 WO 2015161673A1 CN 2015000269 W CN2015000269 W CN 2015000269W WO 2015161673 A1 WO2015161673 A1 WO 2015161673A1
Authority
WO
WIPO (PCT)
Prior art keywords
light energy
flue gas
photo
fenton reaction
purifying
Prior art date
Application number
PCT/CN2015/000269
Other languages
English (en)
French (fr)
Inventor
傅国琳
Original Assignee
林小晓
车道岚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林小晓, 车道岚 filed Critical 林小晓
Publication of WO2015161673A1 publication Critical patent/WO2015161673A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes

Definitions

  • the invention relates to a light energy purification method and device, in particular to a method and a device for purifying flue gas by using a photo-assisted Fenton reaction.
  • China today is one of the most polluted countries in the world (after India). Not long ago, at the regular meeting of the State Council of China, the theme of 'eliminating the heart and lungs of the people' was put forward.
  • the pollution pollution was combined with the people and the people's death, and it was determined to eliminate the hat of the polluting country.
  • the Chinese government has decided not only to take off economically but also to make positive contributions to the country, the people, the future generations, and even the world in the environment.
  • new clean energy sources are limited by reserves and international politics and cannot become the main alternative kinetic energy for domestic industrial demand. Therefore, coal will remain China's main kinetic energy source for a long time. As the industrial demand continues to increase, it means that air pollution will become more serious. Effectively reducing and preventing pollution will always be a arduous task.
  • the cyclone tower device is currently the main application object.
  • the cyclone tower device was technically modified in the 1990s for flue gas desulfurization and dedusting of coal-fired industrial boilers.
  • the advantage of this device is that the contact area of the flue gas and the liquid is large, the structure is simple, the resistance is small, and the operation is stable.
  • the disadvantage is that the existing technology has an average desulfurization efficiency of only 60 to 80%, and the cost is extremely high.
  • the current operating cost of desulfurization is 0.3 yuan per watt, and the annual operating cost of a medium-sized 12 megawatt coal-fired power plant is 44.3 million yuan; and the cost of its desulfurization unit is 360 million yuan!
  • the huge installation and operating costs have indeed made SMEs face a crisis in the factory.
  • PM2.5 particulate matter 2.5
  • Particulate compositions can cause significant visual effects, such as soot, which consists of sulfur dioxide, nitrogen oxides, carbon monoxide, mineral dust, organic matter, and elemental carbon, also known as black carbon or soot.
  • soot consists of sulfur dioxide, nitrogen oxides, carbon monoxide, mineral dust, organic matter, and elemental carbon, also known as black carbon or soot.
  • SO 2 is converted to sulfuric acid at low temperature and high humidity. This will result in reduced visibility, yellow air, ozone, and a feeling of inhalation.
  • the effects of inhaled particulate matter by humans and animals have been extensively studied; health problems caused by PM2.5 include asthma, lung cancer, cardiovascular problems, respiratory diseases, birth defects, and premature death.
  • the comparison resistance is less than 104-105 ohms per centimeter or more than 1010 ⁇ 1011 ohms per centimeter of dust. If no measures are taken, the dust removal efficiency will be affected. (3) Not available Offline maintenance function, once the equipment fails, or running with disease, or can only be shut down for maintenance. All in all, the cost of building and maintaining any equipment other than PM is very high.
  • the object of the present invention is to provide a method and a device for purifying flue gas by using a photo-assisted Fenton reaction, which utilizes hydroxyl radicals generated by photo-assisted Fenton reaction to eliminate pollutants in the flue gas of a coal-fired boiler, including Sulfur dioxide and microparticles.
  • Hydroxyl radicals can be easily oxidized to destroy organic contaminants, known as Advanced Oxidation Processes (AOPs).
  • AOPs Advanced Oxidation Processes
  • the design of AOPs is a chemical method, a more efficient technique.
  • the photo-assisted Fenton reaction is used to convert the particulate dust into carbon dioxide, and the sulfur dioxide becomes sulfuric acid.
  • this technology is very flexible and can be incorporated into existing systems of coal-fired boilers to increase their effectiveness or completely replace the original old system.
  • This filtration system can also be used in any coal-fired boiler industry market, including cement plants, steel plants, municipal waste combustion plants, medical waste combustion plants, chlorine gas plants, pulp and paper production plants.
  • the technical solution of the present invention is a method for purifying flue gas by using a photo-assisted Fenton reaction, which comprises the following steps:
  • the solution is configured with a mass percentage of hydrogen peroxide and water of 3% to 5%;
  • the molar ratio of hydrogen peroxide to metal system is greater than or equal to 10;
  • the metal system in the above step (1) is a Fe(II)/F(III) system or a Cu(I)/Cu(II) system; when the metal system is a Fe(II)/F(III) system, The illumination is ultraviolet light having a wavelength of 200 nm to 400 nm; when the metal system is a Cu(I)/Cu(II) system, the illumination is visible light having a wavelength of 600 nm to 800 nm.
  • the Fe(II)/F(III) system described above consists of FeSO 4 and Fe 3 O 4 particles having a diameter of less than 20 nm.
  • the Cu(I)/Cu(II) system described above consists of Cu 2 O and CuSO 4 particles having a diameter of less than 20 nm.
  • the hydrogen peroxide in the above step (1) is produced by reacting magnesium peroxide, sodium peroxide or calcium peroxide having a diameter of less than 50 nm in the solution.
  • the above ⁇ -hydroxy acid is glycolic acid, pyruvic acid or lactic acid.
  • the contaminant in the flue gas in the above step (3) is at least one of sulfur dioxide, carbon particles, carbon monoxide or hydrocarbon, sulfur dioxide is oxidized to sulfur trioxide and dissolved in a solution to form sulfuric acid, and the carbon particles are oxidized to Carbon dioxide, carbon monoxide is oxidized to carbon dioxide, and hydrocarbons are decomposed into carbon dioxide and water.
  • the manner of sufficient contact in the above step (3) is at least one of directly introducing a gas into the liquid or adding a shower device to the reaction vessel.
  • step (3) is followed by the step (3') to adsorb and recover the metal system substance by using a commercially available DOW chemical company Amberlite IRC 748 ion exchange resin coating. Purification of the solution containing sulfuric acid.
  • the flue gas is subjected to pretreatment before being introduced into the reaction vessel, and the pretreatment process removes solid particles having a diameter larger than 10 ⁇ m in the flue gas.
  • step (6) the consumption of hydrogen peroxide in the Fenton's reagent is closely monitored by periodically collecting the sample, and the consumption of the peroxide is observed using an iodine/potassium permanganate (I/KMnO4) titration method. rate.
  • I/KMnO4 iodine/potassium permanganate
  • An apparatus for realizing the above method for purifying flue gas by using a photo-assisted Fenton reaction comprising a light energy bin comprising a light energy bin body, a light energy bin air inlet, a light energy bin air outlet, and a light energy bin Inlet port, gas-liquid mixing channel, light energy bin pump, light energy bin outlet, light energy bin shower device and illumination device, the light energy bin air inlet and the light energy bin air outlet are arranged in the light energy bin In the upper part of the body, the light energy storage port is disposed in the middle of the light energy storage body, the light energy storage opening is disposed at the bottom of the light energy storage body, and the gas-liquid mixing channel and the light energy storage tank are sprayed.
  • the device and the illumination device are located in the light energy bin body, and the input end of the gas-liquid mixing channel is connected to the light energy bin air inlet, and the output end of the gas-liquid mixing channel 2-4 is located at a position near the bottom of the light energy bin body, the light
  • the energy storage pump is connected through a pipe to the output end of the bottom of the light energy storage body and the input end of the light energy storage device.
  • the light energy storage tank liquid level device is arranged on the side wall of the light energy storage body, and the light energy storage room inspection cover is arranged on the top of the light energy storage body.
  • the illumination device described above is a quartz tube ultraviolet lamp or a visible light lamp.
  • the device for purifying flue gas by using the photo-assisted Fenton reaction further includes a purification chamber, and the purification chamber includes a purification chamber body, a purification plate, a liquid flow control plug, and a purification chamber liquid outlet, wherein the purification chamber body is placed with light.
  • the chamber can be inserted into the purification chamber, the liquid flow control plug is mounted on the liquid outlet of the light energy chamber, and the liquid outlet of the light energy chamber is located above the purification plate, and the purification The plate is fixed in the purification chamber, and the liquid outlet of the purification chamber is disposed at the bottom of the purification chamber.
  • the above-mentioned purification plate is a stainless steel plate or a ceramic plate, and the purification plate is coated with a coating of Amberlite IRC 748 ion exchange resin of the commercially available DOW Chemical Company.
  • Fenton reaction In a light energy chamber, sulfur dioxide is converted to sulfuric acid by converting the dust into carbon dioxide using a photo-assisted Fenton reaction and a catalytic/oxidation reaction.
  • the Fenton reaction is a simple photoinduced oxidation/reduction catalytic reaction.
  • the main feature of the Fenton reaction is its production of reactive oxygen species (ROS), especially hydroxyl radicals. Hydroxyl radicals are the most effective reactive oxygen species, which oxidize any organic (including biomolecules) and inorganic matrices around them.
  • ROS reactive oxygen species
  • the original chemical reaction is the reaction of Fe(II) with H 2 O 2 to form Fe(III) and OH ⁇ (see Figure 3).
  • the reduction of Fe(III) to Fe(II) requires heat or light energy.
  • Fenton reaction efficiency of light depends on the concentration of H 2 O 2, Fe (II) / H 2 O 2 ratio, pH, reaction time and intensity of UV light.
  • concentration of H 2 O 2 Fe (II) / H 2 O 2 ratio
  • pH a pH of water
  • reaction time a pH of water
  • intensity of UV light The chemical, physical, initial, and temperature concentrations of the contaminants also have an important impact on the final efficiency.
  • the dust in the smoke (the main component of the smog) is actually the coal that is not completely burned.
  • the organic matter contained in the coal is decomposed by heat to produce a flammable gas, also known as "volatile matter” (VOC).
  • VOC volatile matter
  • a mixed gas of various compounds such as hydrocarbons, hydrogen, and carbon monoxide.
  • black smoke When the coal combustion conditions are not up to standard or the high volatile coal (low quality coal) is burned, it will easily produce unburned carbon particles, commonly known as “black smoke”; and produce more VOCs such as carbon monoxide, polycyclic aromatic hydrocarbons, Hydrocarbon contaminants such as aldehydes.
  • the chemical reaction principle of the AOPs system is based on the extremely high chemical reactivity of hydroxyl radicals and its very high oxidation potential.
  • the formation of hydroxyl radicals can utilize conventional oxidation methods such as hydrogen peroxide or a combination of ozone and ultraviolet radiation/or catalyst.
  • High intensity UV lamps and Fenton reactions can react with any organic and inorganic molecules and decompose. Any organic carbon-containing molecules present in the flue gas will be oxidized to CO 2 as they pass through the chamber, and other heavy metals and inorganic minerals will deposit in the fiber mercury removal filter in our exhaust duct.
  • the main reaction of hydroxyl radicals and organic substances is the ability to gradually decompose organic matter.
  • the first reaction of hydroxyl radicals with hydrocarbons in flue gas in a light energy chamber is to remove one hydrogen atom from its molecular structure (R) and then form water and alkyl radicals (R ⁇ ) (see Figure 7).
  • the second reaction is that the alkyl radical (R ⁇ ) reacts rapidly with the molecular oxygen to form a peroxy radical (see Figure 8), after which a number of steps are taken to ultimately produce carbon dioxide and water.
  • Hydroxyl radicals can be rapidly oxidized SO 2, so that the Fenton reaction process using industrial waste gas containing sulfur dioxide becomes possible, SO 2 and the hydroxyl free radical formed SO 3, sulfuric acid is formed finally (see FIG. 10) in the solution.
  • hydroxyl radicals can also be achieved by other optical reactions such as ozone/ultraviolet or peroxidic titanium dioxide/hydrogen/solar radiation.
  • the Fenton reaction is characterized by extremely high reaction rate constants (from 63 to 10). 5 ), while other light energy reactions such as ozone / UV reaction, the rate constant is only about 10 -6 .
  • the flue gas advances at a speed of 6 meters per second in the trachea. If there is no high reaction efficiency, no chemical reaction can be carried out.
  • the technical solution also adds an ⁇ -hydroxy acid to increase the production of OH ⁇ .
  • Glycolic acid, pyruvic acid and lactic acid can all be added to the light energy bin, which helps to speed up the Fenton reaction and the formation of hydroxyl radicals.
  • the ⁇ -hydroxy acid does not itself participate in the Fenton reaction, but it stabilizes the formation of OH ⁇ to increase the yield of OH ⁇ . It also keeps the pH in the chamber below 3 to ensure that the light bin has an optimal optical reaction environment.
  • the cartridge Since the corrosiveness of sulfuric acid varies depending on the strength (20% to 70% of sulfuric acid is more corrosive than 98% or more of sulfuric acid), the cartridge is coated with 2 to 3 mm of Teflon ( ) to prevent corrosion.
  • the advantages of the invention are: 1.
  • the advantage of the nano material is that the surface area is large, and the mutual transfer of the electron layers between the molecules is very rapid, and the chemical reaction rate can be exponentially accelerated; especially in the field of optics, the diameter of the nanometer is smaller. The greater the activity and momentum of energy. Therefore, in order to make any chemical reaction of the flue gas with such a fast flow rate, the advantages of nanotechnology are undeniable.
  • the self-oxidation-reduction reaction is spontaneous and has the characteristics of a catalyst, so it is not necessary to add it frequently, and the amount is small, which is very economical. 2.
  • the desulfurization benefit of the invention can reach 99.99%, and the manufacturing and operation are about 50% of the current desulfurization technology, and the removal problem of PM2.5 is solved without any additional cost.
  • the equipment occupies a small area and is easy to retrofit.
  • the invention is based on the principle of photo-assisted Fenton reaction and has achieved great success in eliminating SO 2 and soot.
  • the apparatus of the present invention is a successful industrial plant based on the principle of AOPs-Fenton reaction.
  • the method of the present invention is a more economical and efficient way to control air pollution without any additional manufacturing and operating costs. It can be incorporated into existing dust removal systems for coal-fired boilers to increase their effectiveness and completely replace the old ones.
  • the invention is also applicable to other industrial markets, including cement plants, steel plants, municipal waste combustion plants, medical waste combustion plants, chlorine gas plants, pulp and paper production plants, and the like. Under the premise of strictly following the operating procedures, this technology can be used for 15 to 20 years without engineering modification, and can be repaired and maintained in parallel with the operating coal-fired boiler.
  • Test report for purifying automobile exhaust gas according to the present invention:
  • Test report for purifying boiler exhaust gas according to the present invention (test site is a boiler room):
  • Test report of the invention for purifying industrial waste gas (test site is a power plant and a steel plant)
  • FIG. 1 is a schematic view showing the structure of a light energy bin in a device for purifying flue gas by using a photo-assisted Fenton reaction according to the present invention.
  • FIG. 2 is a schematic view showing the combined structure of a light energy chamber and a purification chamber in a device for purifying flue gas by using a photo-assisted Fenton reaction according to the present invention.
  • FIG. 5 is a reaction equation for reducing a second Fe(III) to Fe(II) in a photo-assisted Fenton reaction in a method for purifying flue gas by using a photo-assisted Fenton reaction.
  • FIG. 6 is a reaction equation for reducing a third Fe(III) to Fe(II) in a photo-assisted Fenton reaction in a method for purifying flue gas by using a photo-assisted Fenton reaction.
  • Figure 7 is a chemical reaction formula for reacting hydroxyl radicals with hydrocarbons to form water and alkyl radicals in a photo-assisted Fenton reaction in a method for purifying flue gas by photo-assisted Fenton reaction according to the present invention
  • FIG. 8 is a chemical reaction formula for reacting alkyl radicals with molecular oxygen to form peroxy radicals in a photo-assisted Fenton reaction in a method for purifying flue gas by using a photo-assisted Fenton reaction.
  • Figure 9 is a chemical reaction formula for decomposing C 2 H 6 into carbon dioxide and water in a method for purifying flue gas by photo-assisted Fenton reaction according to the present invention.
  • Figure 10 is a diagram showing the oxidation chemical reaction formula of sulfur dioxide in a method for purifying flue gas by photo-assisted Fenton reaction according to the present invention.
  • 1-1 is the purification chamber
  • 1-2 is the purification board
  • 1-3 is the liquid flow control plug
  • 1-4 is the purification chamber outlet
  • 2-2 is light Can the warehouse air inlet
  • 2-3 is the light energy bin inlet
  • 2-4 is the gas-liquid mixing channel
  • 2-5 is the light energy bin pump
  • 2-6 is the light energy bin outlet
  • 2-7 For the light energy tank liquid level device
  • 2-8 is the light energy chamber shower device
  • 2-9 is the light energy warehouse inspection cover
  • 2-10 is the light equipment
  • 2-11 is the light energy warehouse body.
  • Embodiment 1 A method for purifying flue gas by using a photo-assisted Fenton reaction, comprising the steps of:
  • the solution is configured to have a mass percentage of hydrogen peroxide to water of 5%;
  • the molar ratio of hydrogen peroxide to metal system is about 30:1;
  • the metal system in the above step (1) is a Fe(II)/F(III) system, and the illumination is ultraviolet light having a wavelength of 200 nm to 400 nm.
  • the Fe(II)/F(III) system described above consists of FeSO 4 and Fe 3 O 4 particles having a diameter of less than 20 nm.
  • the above ⁇ -hydroxy acid is lactic acid.
  • the pollutants in the flue gas in the above step (3) are sulfur dioxide, carbon particles, carbon monoxide and hydrocarbons, sulfur dioxide is oxidized to sulfur trioxide and dissolved in a solution to form sulfuric acid, carbon particles are oxidized to carbon dioxide, and carbon monoxide is oxidized.
  • sulfur dioxide is oxidized to sulfur trioxide and dissolved in a solution to form sulfuric acid
  • carbon particles are oxidized to carbon dioxide
  • carbon monoxide is oxidized.
  • hydrocarbons are broken down into carbon dioxide and water.
  • step (3) The manner of sufficient contact in the above step (3) is that the gas is directly introduced into the liquid and a shower device is added to the reaction vessel.
  • step (3) is followed by the step (3') to adsorb and recover the metal system substance by using a commercially available DOW chemical company Amberlite IRC 748 ion exchange resin coating. Purification of the solution containing sulfuric acid.
  • the flue gas is subjected to pretreatment before being introduced into the reaction vessel, and the pretreatment process removes solid particles having a diameter larger than 10 ⁇ m in the flue gas.
  • step (6) the consumption of hydrogen peroxide in the Fenton reagent was closely monitored by collecting the sample every 10 hours, and the peroxide was observed by titration with iodine/potassium permanganate (I/KMnO4). Consumption rate.
  • An apparatus for realizing the above method for purifying flue gas by using a photo-assisted Fenton reaction comprising a light energy bin comprising a light energy bin body 2-11, a light energy bin air inlet 2-2, a light energy bin Air outlet 2-1, light energy bin inlet 2-3, gas-liquid mixing channel 2-4, light energy bin pump 2-5, light energy bin outlet 2-6, light energy bin shower device 2 -8 and the illumination device 2-10, the light energy bin air inlet 2-2 and the light energy bin air outlet 2-1 are disposed at an upper portion of the light energy storage body 2-11, and the light energy storage port 2 - 3 is disposed in the middle of the light energy storage body 2-11, and the light energy storage port 2-6 is disposed at the bottom of the light energy storage body 2-11, and the gas-liquid mixing channel 2-4, the light energy warehouse spray
  • the shower device 2-8 and the illumination device 2-10 are located in the light energy bin body 2-11, and the input end of the gas-liquid mixing channel 2-4 is connected to the light energy bin air inlet
  • the light energy chamber liquid level device 2-7 is disposed on the side wall of the light energy storage body 2-11, and the light energy storage box inspection cover 2-9 is disposed at the top of the light energy storage body 2-11.
  • the illumination device 2-10 described above is a quartz tube ultraviolet lamp.
  • the apparatus for purifying flue gas by using the photo-assisted Fenton reaction further includes a purification chamber including a purification chamber body 1-1, a purification plate 1-2, a liquid flow control plug 1-3, and a purification chamber outlet port.
  • a purification chamber including a purification chamber body 1-1, a purification plate 1-2, a liquid flow control plug 1-3, and a purification chamber outlet port.
  • a light energy cartridge body 2-11 is placed on the purification cartridge body 1-1
  • the light energy cartridge outlet port 2-6 is inserted into the purification cartridge body 1-1
  • the liquid flow control plug 1 -3 is installed on the light energy storage port 2-6
  • the light energy storage port 2-6 is located on the purification plate 1-2
  • the purification plate 1-2 is fixed in the purification cartridge body 1-1
  • the purification cartridge liquid outlet 1-4 is disposed at the bottom of the purification cartridge body 1-1.
  • the above-mentioned purification plate 1-2 is a stainless steel plate, and the purification plate 1-2 is coated with a commercially available Amberlite IRC 748 ion exchange resin coating of DOW Chemical Co., Ltd.
  • the diameter and height of the light energy bins 2-11 are 2.7 meters and 2.25 meters, respectively;
  • the purified gas is discharged from the light energy storage port 2-1 to the light energy storage body 2-11.
  • the method of the present invention has achieved a PM2.5 removal rate of 95.4% (from 105 ⁇ g/m 3 to 5 ⁇ g/m 3 ), and The desulfurization efficiency can reach 99.99%, and even when the SO 2 content in the flue gas is as high as 2000 mg/m 3 , the SO 2 in the flue gas can be substantially completely removed by the method.
  • the thermal Fenton reaction can also be used in the present invention to achieve the desired specifications.
  • the mixed liquid containing sulfuric acid in the light energy storage body 2-11 flows into the purification chamber body 1-1 from the light energy storage port 2-6, and the flow rate is controlled by the liquid flow control ⁇ 1-3;
  • the purified sulfuric acid mixed solution obtained in the step (3) can be purified on the spot to obtain 98% pure sulfuric acid, and the metal system captured by the purification plate (Fe(II)/F(III) system in the present embodiment) can also be recycled. .
  • a method for purifying flue gas by using a photo-assisted Fenton reaction comprising the steps of:
  • the solution is configured to have a mass percentage of hydrogen peroxide to water of 4%;
  • the molar ratio of hydrogen peroxide to metal system is 10:1;
  • the metal system in the above step (1) is a Cu(I)/Cu(II) system, and the light is visible light having a wavelength of 600 nm to 800 nm.
  • the Cu(I)/Cu(II) system described above consists of Cu 2 O and CuSO 4 particles having a diameter of less than 20 nm.
  • the hydrogen peroxide in the above step (1) is produced by reacting magnesium peroxide having a diameter of less than 50 nm in the solution.
  • the above ⁇ -hydroxy acid is glycolic acid.
  • the pollutants in the flue gas in the above step (3) are sulfur dioxide, carbon particles, carbon monoxide and hydrocarbons, sulfur dioxide is oxidized to sulfur trioxide and dissolved in a solution to form sulfuric acid, carbon particles are oxidized to carbon dioxide, and carbon monoxide is oxidized.
  • sulfur dioxide is oxidized to sulfur trioxide and dissolved in a solution to form sulfuric acid
  • carbon particles are oxidized to carbon dioxide
  • carbon monoxide is oxidized.
  • hydrocarbons are broken down into carbon dioxide and water.
  • step (3) The manner of sufficient contact in the above step (3) is that the gas is directly introduced into the liquid and a shower device is added to the reaction vessel.
  • step (3) is followed by the step (3') to adsorb and recover the metal system substance by using a commercially available DOW chemical company Amberlite IRC 748 ion exchange resin coating. Purification of the solution containing sulfuric acid.
  • the flue gas in the above step (3) is pretreated before being introduced into the reaction vessel, and the pretreatment process is removed. Solid particles having a diameter greater than 10 microns in the flue gas.
  • step (6) the consumption of hydrogen peroxide in the Fenton's reagent was closely monitored by collecting the sample every 12 hours, and the peroxide was observed by titration with iodine/potassium permanganate (I/KMnO4). Consumption rate.
  • An apparatus for realizing the above method for purifying flue gas by using a photo-assisted Fenton reaction comprising a light energy bin comprising a light energy bin body 2-11, a light energy bin air inlet 2-2, a light energy bin Air outlet 2-1, light energy bin inlet 2-3, gas-liquid mixing channel 2-4, light energy bin pump 2-5, light energy bin outlet 2-6, light energy bin shower device 2 -8 and the illumination device 2-10, the light energy bin air inlet 2-2 and the light energy bin air outlet 2-1 are disposed at an upper portion of the light energy storage body 2-11, and the light energy storage port 2 - 3 is disposed in the middle of the light energy storage body 2-11, and the light energy storage port 2-6 is disposed at the bottom of the light energy storage body 2-11, and the gas-liquid mixing channel 2-4, the light energy warehouse spray
  • the shower device 2-8 and the illumination device 2-10 are located in the light energy bin body 2-11, and the input end of the gas-liquid mixing channel 2-4 is connected to the light energy bin air inlet
  • the light energy chamber liquid level device 2-7 is disposed on the side wall of the light energy storage body 2-11, and the light energy storage box inspection cover 2-9 is disposed at the top of the light energy storage body 2-11.
  • the illumination device 2-10 described above is a visible light lamp.
  • the apparatus for purifying flue gas by using the photo-assisted Fenton reaction further includes a purification chamber including a purification chamber body 1-1, a purification plate 1-2, a liquid flow control plug 1-3, and a purification chamber outlet port.
  • a purification chamber including a purification chamber body 1-1, a purification plate 1-2, a liquid flow control plug 1-3, and a purification chamber outlet port.
  • a light energy cartridge body 2-11 is placed on the purification cartridge body 1-1
  • the light energy cartridge outlet port 2-6 is inserted into the purification cartridge body 1-1
  • the liquid flow control plug 1 -3 is installed on the light energy storage port 2-6
  • the light energy storage port 2-6 is located above the purification plate 1-2
  • the purification plate 1-2 is fixed in the purification chamber 1-1
  • the purification chamber liquid outlet 1-4 is disposed at the bottom of the purification chamber body 1-1.
  • the above-mentioned purification plate 1-2 is a ceramic plate, and the purification plate 1-2 is coated with a commercially available Amberlite IRC 748 ion exchange resin coating of DOW Chemical Co., Ltd.
  • one of the advantages of using the Cu(I)/Cu(II) system is that the light absorption peak of Cu 2 O is 600 nm, and the light absorption peak of CuSO 4 is 700 nm, which is a very small visible light. Zone (600-800nm, near infrared).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种利用光助芬顿反应净化烟气的方法及装置,该方法利用光助芬顿反应将颗粒粉尘转换成为二氧化碳,二氧化硫变成了硫酸,该装置包括光能仓(2-11)和净化仓(1-1),该装置回收的硫酸使得使用者获得更多的利润。

Description

一种利用光助芬顿反应净化烟气的方法及装置 (一)技术领域:
本发明涉及一种光能净化方法及装置,特别是一种利用光助芬顿反应净化烟气的方法及装置。
(二)背景技术:
在中国经济持续快速发展的形式下,能源消耗需求急剧上升;仅以煤炭为例,改革开发以来每年煤炭的需求递增量大约在8~12%,以此而产生的最大垢病就是严重的空气污染。
今日的中国是世界上大气污染最严重的国家之一(仅次于印度)。前不久在中国国务院的例行会议上专顶提出‘消除民众心肺之患’的主题;把治理污染与民态、民生结合起来,下决心摒除污染大国的帽子。中国政府决定不但要在经济上腾飞还要在环境上为国家、人民、后代、乃至世界做出积极的贡献。在中国建设的道路上,新型清洁能源受到储量及国际政治的限制而无法成为国内工业需求主要的替代动能。因此、煤炭在长时间内仍会是中国主要的动能能源。随着工业需求不断增展意味着大气污染将会更加严重,有效减轻与防治污染将永远是个繁重的课题。
众所周知,严重的大气污染会带给地球上所有的生物不可逆转的灾难,而污染的空气主要来源于含有大量有毒有害物质的工业烟尘。这些有害烟尘绝大多数是由煤炭燃烧过程中所产生的。然而、世界上没有绝对的清洁煤炭,只有因地质条件的不同而产生的有毒物质含量比重不同的煤炭资源。譬如,中国北部产的煤是高品质的低硫煤,含硫量只有1%~2%;而云南、贵州与内蒙所产的煤其硫含量可以达到5%以上。据测算:中国工业烟尘中的二氧化硫年排放量高达两千万吨以上。在113个大气污染重点治理的城市中,有40个城市二氧化硫排放量超过国家制定的二级标准线,39个城市甚至劣于国家三级标准线!由空气污染引发的酸雨污染已经肆虐中国三分之一的国土。工业进程增速越快与之同行的污染指数将会越高,有关部门对环境的控制会越加艰难。
近20年来中国对烟尘脱硫开展了不间断的技术研究。以烟气脱硫技术来控制二氧化硫的污染是国内环保应用领域里的一个重要环节。就以低硫煤(含硫量1%)来计算:燃一吨煤会产生16公斤(1600x 1%,公斤)的二氧化硫。一个中型的燃煤锅炉每天大约燃烧150~200吨的煤;也就是说每天会产生2.4~3.2吨的二氧化硫。目前的脱硫技术包括煤炭混配石灰或添加剂;炉内直接喷钙和沸腾床石灰石干 法脱硫;以及钙碱法、氨碱法、钠碱法、镁碱法等湿法脱硫。经过多年实践验证和市场经济技术的淘汰,只有少数的技术设备真正进入燃煤产业锅炉应用。其中以旋流板塔式装置为目前主要应用对象。旋流板塔式装置在90年代经过技术改造后用于燃煤产业锅炉的烟气脱硫和除尘。这种装置的优点是烟气和液体的接触面积大、结构简单、阻力较小、运行稳定为主要特点。其缺点则是现有的技术脱硫效率平均只达到60~80%,而且成本极大。现今脱硫的运行费用为每瓦0.3元,一个中型一万二千兆瓦的燃煤电厂每年的运行费用为四千四百三十万元;而且其脱硫装置的成本为3.6亿元!庞大的裝置与运行費用的确使中小企业面临著并厂的危机。
除了二氧化硫,PM2.5对健康的影响已经在时下引起了广泛的关注。什么是颗粒物2.5(PM2.5)?他们是指结合在地球大气中直径小于2.5微米的小片固体或液体物质。颗粒物组合物可引起明显的视觉效果,如烟尘,它由二氧化硫、氮氧化物、一氧化碳、矿物粉尘、有机物质、和元素碳组成,也被称为黑色碳或煤烟。由于硫的存在,颗粒是吸湿的,并且SO2会在高湿度及低温下转化为硫酸。这将导致能见度降低、黄色空气、臭氧、与刺痛的吸入感。人类与动物吸入微粒物质的影响已经被广泛地研究;PM2.5导致的的健康问题包括哮喘、肺癌、心血管问题、呼吸系统疾病、先天缺陷、和过早死亡。
颗粒物排放在大多数工业化国家都受到严格监管。由于环境问题,大多数行业都需要进行某种粉尘收集系统的操作,以控制颗粒物排放。这些系统包括离心除尘器(旋流除尘器)、纤维过滤除尘器(袋式除尘器)、湿式除尘器、和静电除尘器。然而、便宜的除尘设备效率很低,通常達不到80%;好的设备譬如静电除尘,雖然效率可高达99%,但也有其致命缺点:(1)设备庞大,耗钢多,需高压变电和整流设备,故投资高。(2)除尘效率受粉尘比电阻的制约,一般对比电阻小于104~105欧姆每公分或大于1010~1011欧姆每公分的粉尘,若不采取一定措施,除尘效率将受到影响.(3)不具备离线检修功能,一旦设备出现故障,或者带病运行,或者只能停炉检修。总而言之,任何有效率除PM的设备建造与维护费用都是非常高的。
中国也已提出了对空气中颗粒物排放的限制(见下表),各个工厂企业也都按規定裝了除尘设备。然而庞大的维护费的确使中小企业入不敷出。因此发展一个价廉而有效的除尘装置也应算是当务之急。
  PM10 PM2.5
年均 70微克/立方米 35微克/立方米
日均(24小时) 150微克/立方米 75微克/立方米
(三)发明内容:
本发明的目的在于提供一种利用光助芬顿反应净化烟气的方法及装置,利用光助芬顿反应(Fenton Reaction)而产生的羟基自由基来排除燃煤锅炉烟气中的污染物包括二氧化硫和微颗粒。羟基自由基可以輕易的氧化破坏有机污染物,被称为高级氧化技术处理进程(Advanced Oxidation Processes,AOPs)。AOPs的设计是一种化学的方法,一种更有效的技术。利用光助芬顿反应将颗粒粉尘转换成为二氧化碳,二氧化硫变成了硫酸,因此,本装置过滤系统硫酸回收的利益超过设备本身的运行成本,使用者可获得更多的利润。此外,此技术非常的灵活,它可以被纳入到燃煤锅炉现有的系统用来提高其有效性,或完全取代原来的旧系统。此过滤系统也可适用在任何燃煤锅炉工业市场,包括水泥厂、钢铁厂、市政府废物燃烧厂、医疗废物燃烧厂、氯气制造厂、纸浆和纸张生产厂等。
本发明的技术方案:一种利用光助芬顿反应净化烟气的方法,其特征在于包括以下步骤:
(1)在反应容器中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;
所述溶液配置过氧化氢与水的质量百分比为3%~5%;
过氧化氢与金属系统摩尔比大于等于10;
(2)根据金属系统的光吸收峰,设置光照系统;
(3)将烟气通入反应容器,使烟气中的污染物与芬顿试剂充分接触并发生反应;
(4)将反应后溶液导出,并定时监测导出溶液中芬顿试剂的浓度,根据监测的情况,添加新的含有芬顿试剂的溶液使反应容器中溶液成分保持稳定;
(5)净化后的气体排出反应容器。
上述所述步骤(1)中的金属系统为Fe(II)/F(III)系统或Cu(I)/Cu(II)系统;当金属系统为Fe(II)/F(III)系统时,则光照为波长为200nm~400nm的紫外光;当金属系统为Cu(I)/Cu(II)系统时,光照为波长为600nm~800nm的可见光。
上述所述Fe(II)/F(III)系统由直径小于20纳米的FeSO4和Fe3O4颗粒构成。
上述所述Cu(I)/Cu(II)系统由直径小于20纳米的Cu2O和CuSO4颗粒构成。
上述所述步骤(1)中的过氧化氢为直径小于50纳米的过氧化镁、过氧化钠或过氧化钙在所述溶液中反应后产生的。
上述所述α-羟基酸为乙醇酸、丙酮酸或乳酸。
上述所述步骤(3)中烟气中的污染物为二氧化硫、碳颗粒、一氧化碳或碳氢化合物中的至少一种,二氧化硫被氧化为三氧化硫并溶于溶液形成硫酸,碳颗粒被氧化为二氧化碳,一氧化碳被氧化为二氧化碳,碳氢化合物被分解为二氧化碳和水。
上述所述步骤(3)中的充分接触的方式为气体直接通入液体或在反应容器中加入喷淋装置中的至少一种。
上述所述步骤(3)中的污染物包括二氧化硫时,步骤(3)之后加入步骤(3’)利用市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层吸附回收所述金属系统物质,将含有硫酸的溶液净化。
上述所述步骤(3)中烟气在通入反应容器之前经过了预处理,预处理过程除去了烟气中直径大于10微米的固体颗粒。
上述所述步骤(6)中,芬顿试剂中的过氧化氢的消耗量通过定期收集样品被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率。
一种实现上述利用光助芬顿反应净化烟气的方法的装置,包括光能仓,所述光能仓包括光能仓体、光能仓进气口、光能仓出气口、光能仓进液口、气液混合通道、光能仓抽水泵、光能仓出液口、光能仓喷淋装置和光照设备,所述光能仓进气口和光能仓出气口设置在光能仓体的上部,所述光能仓进液口设置在光能仓体的中部,所述光能仓出液口设置在光能仓体的底部,所述气液混合通道、光能仓喷淋装置和光照设备位于光能仓体内,气液混合通道的输入端连接光能仓进气口,气液混合通道2-4的输出端位于光能仓体下部接近仓底的位置,所述光能仓抽水泵通过管道连接光能仓体底部的输出端和光能仓喷淋装置的输入端。
上述所述光能仓体的侧壁上设置光能仓液位器,光能仓体顶部设置光能仓检修盖。
上述所述光照设备为石英管紫外灯或可见光灯。
上述所述利用光助芬顿反应净化烟气的装置还包括净化仓,所述净化仓包括净化仓体、净化板、液体流量控制栓和净化仓出液口,所述净化仓体上放置光能仓体,所述光能仓出液口伸入净化仓体中,所述液体流量控制栓安装在光能仓出液口上,所述光能仓出液口位于净化板上方,所述净化板固定在净化仓体内,所述净化仓出液口设置在净化仓体底部。
上述所述净化板为不锈钢板或陶瓷板,净化板上涂有市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层。
本发明的工作原理:
在光能仓中,通过使用光助芬顿反应以及催化/氧化反应将粉尘转化成二氧化碳,将二氧化硫转化成硫酸。芬顿反应是一个简单的光诱导氧化/还原催化反应,芬顿反应的主要特点是其产生活性氧(ROS),特别是羟基自由基。羟基自由基是最有效的活性氧,它可以氧化在其周边的任何有机(包括生物分子)及无机基质。其原始的化学反应为Fe(II)与H2O2反应生成Fe(III)和OH·(见图3),还原Fe(III)至Fe(II)需要热或光的能量。在没有基质与底物以及有光能的情况下,有三个主要机理(见图4-6)。光助芬顿反应的效率主要取决于H2O2的浓度、Fe(II)/H2O2的比例、pH值、反应时间与UV光的强度。污染物的化学特性、物理特性、初始浓度以及温度,也对最终的效率具有重要的影响。
烟气中的粉尘(雾霾的主要成分)其实就是燃烧未完全的煤,煤中含的有机物质在受热分解后产生可燃性气体,亦被称为“挥发分”(VOC),它是由各种碳氢化合物、氢气、一氧化碳等化合物组成的混合气体。当煤燃烧条件不达标时或挥发分高的煤(劣质煤)燃烧时易产生未燃尽极小的碳粒,俗称“黑烟”;并产生更多的VOC如一氧化碳、多环芳烃类、醛类等碳氢化合污染物。
AOPs系统的化学反应原理是在于羟基自由基的有極高的化学反应活性和其非常高的氧化电位。羟基自由基的生成可以利用传统的氧化方法,如过氧化氢或臭氧和紫外辐射/或催化剂的结合。高强度UV灯和芬顿反应可以与任何有机和无机分子发生反应并分解。任何存在于烟气中的有机含碳分子会在其穿过仓室时被氧化成CO2,其他重金属和无机矿物则会沉积在我们的排气管道中的纤维除汞过滤器中。羟基自由基和有机物质的主要反应就是能将有机物质逐步的分解。在光能仓中羟基自由基与烟气中的碳氢化合物第一个反应是除去其分子结构(R)中的一个氢原子,然后形成水和烷基自由基(R·)(见图7),第二个反应是烷基自由基(R·)再与分子氧迅速反应形成过氧自由基(见图8),在这之后再经过许多步骤,最终生成二氧化碳和水。羟基自由基可以快速氧化SO2,使得工业上利用芬顿反应处理含有二氧化硫的废气成为可能,SO2与羟基自由基作用,形成SO3,最终在溶液中形成硫酸(见图10)。
此外,羟基自由基的产生还可通过其他的光学反应,如臭氧/紫外线或过氧化二氧化钛/氢/太阳辐射也能够实现,芬顿反应的特点就是它的反应速率常数极高(从63到105),而其它光能反应如臭氧/紫外的反应,速率常数只有在10-6左右。烟气在气管里以每秒6米的速度前進,如果没有極高的反应效率,任何化学反应都無 法进行。
本技术方案还加入了α-羟基酸来提高OH·的生产量。乙醇酸、丙酮酸和乳酸都可以加入光能仓中,有助于加快芬顿反应的速度以及羟基自由基的形成。α-羟基酸不本身並不参与芬顿反应,但它可以稳定OH·的形成以增加OH·的产量。它还可以保持仓中的pH值小于3以确保光能仓拥有最优的光学反应环境。
由于硫酸的腐蚀性根据强度而有所不同(20%~70%浓度的硫酸其腐蚀性比98%以上浓度的硫酸还要高),所以仓中涂了2~3毫米的铁氟龙(
Figure PCTCN2015000269-appb-000001
)以防腐蚀。
本发明的优越性:1、纳米材料的优点为其表面积大,分子之间电子层的互相传送非常迅速,可使化学反应速度指数般地加快;尤其在光学领域中,纳米的直径越小光能的活性与动量越大。所以想使流速如此快的烟气产生任何化学反应,纳米技术的优点是不可否定的。自身的氧化还原反应为自发性,具有催化剂的特性,所以无需经常加添,用量少,非常的经济。2、此发明脱硫效益可达到99.99%,而且制造成与运行均在目前脱硫技术的50%左右,并且在没有任何额外费用的情况下解决了PM2.5的去除问题。设备占地小、改造简易。本发明建立在光助芬顿反应的原理上,并在消除SO2与烟尘上取得了巨大成功。本发明所述设备是基于AOPs-芬顿反应的原理而成功的工业化装置。本发明所述方法是一个更经济、更高效的控制空气污染的方式,无需任何额外的制造与运行成本。它可以被纳入到燃煤锅炉现有的除尘系统用来提高其有效性,也可以完全取代原来的旧系统。本发明也可适用在其它的工业市场,包括水泥厂、钢铁厂、市政府废物燃烧厂、医疗废物燃烧厂、氯气制造厂、纸浆和纸张生产厂等。严格遵循操作规程的前提下,此项技术可保延续使用到15~20年无需进行工程改造,可与运行的燃煤锅炉同步进行维修养护即可。
本装置净化效果检测试验报告如下:
1、本发明用于净化汽车尾气的试验报告:
检测标准(方法)及使用仪器
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-1
检测结果
                                       单位:毫克/立方米
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-2
2、本发明用于净化锅炉废气的试验报告(试验地点为某锅炉房):
检测标准(方法)及使用仪器
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-3
检测结果           单位:毫克/立方米
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-4
备注:标准值依据《火电场大气污染物排放标准》(GB13223-2011)
3、本发明用于净化工业废气的试验报告(试验地点为某电厂和某钢厂)
检测标准(方法)及使用仪器
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-5
检测结果
                                     单位:毫克/立方米
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-6
4、本发明用于净化烟气中二氧化硫的试验报告
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-7
(四)附图说明:
图1为本发明所涉一种利用光助芬顿反应净化烟气的装置中的光能仓的结构示意图。
图2为本发明所涉一种利用光助芬顿反应净化烟气的装置中的光能仓和净化仓的组合结构示意图。
图3为本发明所涉一种利用光助芬顿反应净化烟气的方法中光助芬顿反应中Fe(II)氧化为Fe(III)的反应方程式。
图4为本发明所涉一种利用光助芬顿反应净化烟气的方法中光助芬顿反应中第一种Fe(III)还原为Fe(II)的反应方程式。
图5为本发明所涉一种利用光助芬顿反应净化烟气的方法中光助芬顿反应中第二种Fe(III)还原为Fe(II)的反应方程式。
图6为本发明所涉一种利用光助芬顿反应净化烟气的方法中光助芬顿反应中第三种Fe(III)还原为Fe(II)的反应方程式。
图7为本发明所涉一种利用光助芬顿反应净化烟气的方法中光助芬顿反应中羟基自由基与碳氢化合物反应形成水和烷基自由基的化学反应式
图8为本发明所涉一种利用光助芬顿反应净化烟气的方法中光助芬顿反应中烷基自由基与分子氧反应形成过氧自由基的化学反应式。
图9为本发明所涉一种利用光助芬顿反应净化烟气的方法中C2H6被分解成二氧化碳和水的化学反应式。
图10为本发明所涉一种利用光助芬顿反应净化烟气的方法中二氧化硫的氧化化学反应式。
其中,1-1为净化仓体,1-2为净化板,1-3为液体流量控制栓,1-4为净化仓出液口,2-1光能仓出气口,2-2为光能仓进气口,2-3为光能仓进液口,2-4为气液混合通道,2-5为光能仓抽水泵,2-6为光能仓出液口,2-7为光能仓液位器,2-8为光能仓喷淋装置,2-9为光能仓检修盖,2-10为光照设备,2-11为光能仓体。
(五)具体实施方式:
实施例1:一种利用光助芬顿反应净化烟气的方法,其特征在于包括以下步骤:
(1)在反应容器中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;
所述溶液配置过氧化氢与水的质量百分比为5%;
过氧化氢与金属系统摩尔比约为30∶1;
(2)根据金属系统的光吸收峰,设置光照系统;
(3)将烟气通入反应容器,使烟气中的污染物与芬顿试剂充分接触并发生反应;
(4)将反应后溶液导出,并定时监测导出溶液中芬顿试剂的浓度,根据监测的情况,添加新的含有芬顿试剂的溶液使反应容器中溶液成分保持稳定;
(5)净化后的气体排出反应容器。
上述所述步骤(1)中的金属系统为Fe(II)/F(III)系统,则光照为波长为200nm~400nm的紫外光。
上述所述Fe(II)/F(III)系统由直径小于20纳米的FeSO4和Fe3O4颗粒构成。
上述所述α-羟基酸为乳酸。
上述所述步骤(3)中烟气中的污染物为二氧化硫、碳颗粒、一氧化碳和碳氢化合物,二氧化硫被氧化为三氧化硫并溶于溶液形成硫酸,碳颗粒被氧化为二氧化碳,一氧化碳被氧化为二氧化碳,碳氢化合物被分解为二氧化碳和水。
上述所述步骤(3)中的充分接触的方式为气体直接通入液体并在反应容器中加入喷淋装置。
上述所述步骤(3)中的污染物包括二氧化硫时,步骤(3)之后加入步骤(3’)利用市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层吸附回收所述金属系统物质,将含有硫酸的溶液净化。
上述所述步骤(3)中烟气在通入反应容器之前经过了预处理,预处理过程除去了烟气中直径大于10微米的固体颗粒。
上述所述步骤(6)中,芬顿试剂中的过氧化氢的消耗量通过每10小时收集样品被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率。
一种实现上述利用光助芬顿反应净化烟气的方法的装置,包括光能仓,所述光能仓包括光能仓体2-11、光能仓进气口2-2、光能仓出气口2-1、光能仓进液口2-3、气液混合通道2-4、光能仓抽水泵2-5、光能仓出液口2-6、光能仓喷淋装置2-8和光照设备2-10,所述光能仓进气口2-2和光能仓出气口2-1设置在光能仓体2-11的上部,所述光能仓进液口2-3设置在光能仓体2-11的中部,所述光能仓出液口2-6设置在光能仓体2-11的底部,所述气液混合通道2-4、光能仓喷淋装置2-8和光照设备2-10位于光能仓体2-11内,气液混合通道2-4的输入端连接光能仓进气口2-2,气液混合通道2-4的输出端位于光能仓体2-11下部接近仓底的位置,所述光能仓抽水泵2-5通过管道连接光能仓体2-11底部的输出端和光能仓喷淋装置2-8的输入端;
上述所述光能仓体2-11的侧壁上设置光能仓液位器2-7,光能仓体2-11顶部设置光能仓检修盖2-9。
上述所述光照设备2-10为石英管紫外灯。
上述所述利用光助芬顿反应净化烟气的装置还包括净化仓,所述净化仓包括净化仓体1-1、净化板1-2、液体流量控制栓1-3和净化仓出液口1-4,所述净化仓体1-1上放置光能仓体2-11,所述光能仓出液口2-6伸入净化仓体1-1中,所述液体流量控制栓1-3安装在光能仓出液口2-6上,所述光能仓出液口2-6位于净化板1-2 上方,所述净化板1-2固定在净化仓体1-1内,所述净化仓出液口1-4设置在净化仓体1-1底部。
上述所述净化板1-2为不锈钢板,净化板1-2上涂有市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层。
本实施例中净化烟气的装置工作方法:
以用于每日燃烧约30吨煤的15吨燃煤锅炉为例:
光能仓的工作方法:
(1)光能仓体2-11的直径和高度分别为2.7米与2.25米;
(2)向光能仓体2-11注入5725升的水,加入817升的35%H2O2和64公斤的FeSO4(FeSO4∶H2O2=1∶5w/w);
(3)在光能仓体2-11内设置4个1000W宽频、波长为200nm至400nm、光吸收峰值等于365nm的UV光(FeSO4在365nm具有最高的吸收系数);
(4)开启光能仓喷淋装置2-8;
(5)将除去了PM10的烟气从光能仓进气口2-2通入光能仓体2-11,在气液混合通道2-4处与液体接触反应,气体浮出液面后,又与光能仓喷淋装置2-8喷出的液滴接触反应,使烟气中的碳氢化合物分解为二氧化碳和水,碳颗粒和一氧化碳氧化为二氧化碳,其中,烟气中常见的碳氢化合物包括C2H6能够在光能仓中被分解(见图9);
(6)将反应后溶液从光能仓出液口2-6导出,过氧化氢(H2O2)的消耗量通过每10小时的样品收集被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率,根据烟气中的SO2和CO2含量,计量泵将从贮液罐中补充过氧化氢至光能仓体2-11;
(7)将净化后的气体从光能仓出气口2-1排出光能仓体2-11。
根据本实施例所述15吨燃煤锅炉的工业测试数据来看,本发明所述方法已经达到了95.4%的PM2.5去除率(从105微克/立方米至5微克/立方米),并且脱硫效率可达到99.99%,即使当烟气中的SO2含量多达2000毫克/立方米时,通过本方法也可以将烟气中的SO2基本完全地去除。本发明也可以使用热学芬顿反应来达成所需的技术指标。
净化仓的工作方法:
(1)光能仓体2-11中的含有硫酸的混合液体从光能仓出液口2-6流入净化仓体1-1内,流速受液体流量控制拴1-3的控制;
(2)混合液体流过净化板1-2,净化板1-2上的Amberlite IRC 748离子交换树脂涂层捕捉混合液体中的杂质和Fe(II)/F(III)系统;
(3)净化后的硫酸混合溶液从净化仓出液口1-4流出。
步骤(3)得到的净化后的硫酸混合溶液可当场净化得到98%的纯硫酸,净化板捕捉到的金属系统(本实施例中的Fe(II)/F(III)系统)也可以回收利用。
实施例2:
一种利用光助芬顿反应净化烟气的方法,其特征在于包括以下步骤:
(1)在反应容器中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;
所述溶液配置过氧化氢与水的质量百分比为4%;
过氧化氢与金属系统摩尔比为10∶1;
(2)根据金属系统的光吸收峰,设置光照系统;
(3)将烟气通入反应容器,使烟气中的污染物与芬顿试剂充分接触并发生反应;
(4)将反应后溶液导出,并定时监测导出溶液中芬顿试剂的浓度,根据监测的情况,添加新的含有芬顿试剂的溶液使反应容器中溶液成分保持稳定;
(5)净化后的气体排出反应容器。
上述所述步骤(1)中的金属系统为Cu(I)/Cu(II)系统,光照为波长为600nm~800nm的可见光。
上述所述Cu(I)/Cu(II)系统由直径小于20纳米的Cu2O和CuSO4颗粒构成。
上述所述步骤(1)中的过氧化氢为直径小于50纳米的过氧化镁在所述溶液中反应后产生的。
上述所述α-羟基酸为乙醇酸。
上述所述步骤(3)中烟气中的污染物为二氧化硫、碳颗粒、一氧化碳和碳氢化合物,二氧化硫被氧化为三氧化硫并溶于溶液形成硫酸,碳颗粒被氧化为二氧化碳,一氧化碳被氧化为二氧化碳,碳氢化合物被分解为二氧化碳和水。
上述所述步骤(3)中的充分接触的方式为气体直接通入液体并且在反应容器中加入喷淋装置。
上述所述步骤(3)中的污染物包括二氧化硫时,步骤(3)之后加入步骤(3’)利用市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层吸附回收所述金属系统物质,将含有硫酸的溶液净化。
上述所述步骤(3)中烟气在通入反应容器之前经过了预处理,预处理过程除去 了烟气中直径大于10微米的固体颗粒。
上述所述步骤(6)中,芬顿试剂中的过氧化氢的消耗量通过每12小时收集样品被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率。
一种实现上述利用光助芬顿反应净化烟气的方法的装置,包括光能仓,所述光能仓包括光能仓体2-11、光能仓进气口2-2、光能仓出气口2-1、光能仓进液口2-3、气液混合通道2-4、光能仓抽水泵2-5、光能仓出液口2-6、光能仓喷淋装置2-8和光照设备2-10,所述光能仓进气口2-2和光能仓出气口2-1设置在光能仓体2-11的上部,所述光能仓进液口2-3设置在光能仓体2-11的中部,所述光能仓出液口2-6设置在光能仓体2-11的底部,所述气液混合通道2-4、光能仓喷淋装置2-8和光照设备2-10位于光能仓体2-11内,气液混合通道2-4的输入端连接光能仓进气口2-2,气液混合通道2-4的输出端位于光能仓体2-11下部接近仓底的位置,所述光能仓抽水泵2-5通过管道连接光能仓体2-11底部的输出端和光能仓喷淋装置2-8的输入端;
上述所述光能仓体2-11的侧壁上设置光能仓液位器2-7,光能仓体2-11顶部设置光能仓检修盖2-9。
上述所述光照设备2-10为可见光灯。
上述所述利用光助芬顿反应净化烟气的装置还包括净化仓,所述净化仓包括净化仓体1-1、净化板1-2、液体流量控制栓1-3和净化仓出液口1-4,所述净化仓体1-1上放置光能仓体2-11,所述光能仓出液口2-6伸入净化仓体1-1中,所述液体流量控制栓1-3安装在光能仓出液口2-6上,所述光能仓出液口2-6位于净化板1-2上方,所述净化板1-2固定在净化仓体1-1内,所述净化仓出液口1-4设置在净化仓体1-1底部。
上述所述净化板1-2为陶瓷板,净化板1-2上涂有市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层。
在本实施例中,使用Cu(I)/Cu(II)系统的优点之一是,Cu2O的光吸收峰值在600nm,CuSO4的光吸收峰值在700nm,都是在危害非常小的可见光区(600-800nm,近红外)。

Claims (16)

  1. 一种利用光助芬顿反应净化烟气的方法,其特征在于包括以下步骤:
    (1)在反应容器中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;
    所述溶液配置过氧化氢与水的质量百分比为3%~5%;
    过氧化氢与金属系统摩尔比大于等于10;
    (2)根据金属系统的光吸收峰,设置光照系统;
    (3)将烟气通入反应容器,使烟气中的污染物与芬顿试剂充分接触并发生反应;
    (4)将反应后溶液导出,并定时监测导出溶液中芬顿试剂的浓度,根据监测的情况,添加新的含有芬顿试剂的溶液使反应容器中溶液成分保持稳定;
    (5)净化后的气体排出反应容器。
  2. 根据权利要求1所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述步骤(1)中的金属系统为Fe(II)/F(III)系统或Cu(I)/Cu(II)系统;当金属系统为Fe(II)/F(III)系统时,则光照为波长为200nm~400nm的紫外光;当金属系统为Cu(I)/Cu(II)系统时,光照为波长为600nm~800nm的可见光。
  3. 根据权利要求2所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述Fe(II)/F(III)系统由直径小于20纳米的FeSO4和Fe3O4颗粒构成。
  4. 根据权利要求2所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述Cu(I)/Cu(II)系统由直径小于20纳米的Cu2O和CuSO4颗粒构成。
  5. 根据权利要求1所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述步骤(1)中的过氧化氢为直径小于50纳米的过氧化镁、过氧化钠或过氧化钙在所述溶液中反应后产生的。
  6. 根据权利要求1所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述α-羟基酸为乙醇酸、丙酮酸或乳酸。
  7. 根据权利要求1所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述步骤(3)中烟气中的污染物为二氧化硫、碳颗粒、一氧化碳或碳氢化合物中的至少一种,二氧化硫被氧化为三氧化硫并溶于溶液形成硫酸,碳颗粒被氧化为二氧化碳,一氧化碳被氧化为二氧化碳,碳氢化合物被分解为二氧化碳和水。
  8. 根据权利要求1所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述步骤(3)中的充分接触的方式为气体直接通入液体或在反应容器中加入喷淋装置中的至少一种。
  9. 根据权利要求1所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述步骤(3)中的污染物包括二氧化硫时,步骤(3)之后加入步骤(3’)利用市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层吸附回收所述金属系统物质,将含有硫酸的溶液净化。
  10. 根据权利要求1所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述步骤(3)中烟气在通入反应容器之前经过了预处理,预处理过程除去了烟气中直径大于10微米的固体颗粒。
  11. 根据权利要求1所述一种利用光助芬顿反应净化烟气的方法,其特征在于所述步骤(6)中,芬顿试剂中的过氧化氢的消耗量通过定期收集样品被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率。
  12. 一种实现权利要求1所述方法的装置,包括光能仓,所述光能仓包括光能仓体、光能仓进气口、光能仓出气口、光能仓进液口、气液混合通道、光能仓抽水泵、光能仓出液口、光能仓喷淋装置和光照设备,所述光能仓进气口和光能仓出气口设置在光能仓体的上部,所述光能仓进液口设置在光能仓体的中部,所述光能仓出液口设置在光能仓体的底部,所述气液混合通道、光能仓喷淋装置和光照设备位于光能仓体内,气液混合通道的输入端连接光能仓进气口,气液混合通道2-4的输出端位于光能仓体下部接近仓底的位置,所述光能仓抽水泵通过管道连接光能仓体底部的输出端和光能仓喷淋装置的输入端。
  13. 根据权利要求12所述的一种利用光助芬顿反应净化烟气的装置,其特征在于所述光能仓体的侧壁上设置光能仓液位器,光能仓体顶部设置光能仓检修盖。
  14. 根据权利要求12所述的一种利用光助芬顿反应净化烟气的装置,其特征在于所述光照设备为石英管紫外灯或可见光灯。
  15. 根据权利要求12所述的一种利用光助芬顿反应净化烟气的装置,其特征在于所述利用光助芬顿反应净化烟气的装置还包括净化仓,所述净化仓包括净化仓体、净化板、液体流量控制栓和净化仓出液口,所述净化仓体上放置光能仓体,所述光能仓出液口伸入净化仓体中,所述液体流量控制栓安装在光能仓出液口上,所述光能仓出液口位于净化板上方,所述净化板固定在净化仓体内,所述净化仓出液口设置在净化仓体底部。
  16. 根据权利要求15所述的一种利用光助芬顿反应净化烟气的装置,其特征在于所述净化板为不锈钢板或陶瓷板,净化板上涂有市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层。
PCT/CN2015/000269 2014-04-23 2015-04-17 一种利用光助芬顿反应净化烟气的方法及装置 WO2015161673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410166086.5 2014-04-23
CN201410166086.5A CN103949153B (zh) 2014-04-23 2014-04-23 一种利用光助芬顿反应净化烟气的方法及装置

Publications (1)

Publication Number Publication Date
WO2015161673A1 true WO2015161673A1 (zh) 2015-10-29

Family

ID=51326580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000269 WO2015161673A1 (zh) 2014-04-23 2015-04-17 一种利用光助芬顿反应净化烟气的方法及装置

Country Status (2)

Country Link
CN (1) CN103949153B (zh)
WO (1) WO2015161673A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114191907A (zh) * 2022-01-13 2022-03-18 卓宇轩 一种异味处理系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949153B (zh) * 2014-04-23 2017-01-04 林小晓 一种利用光助芬顿反应净化烟气的方法及装置
CN103949128B (zh) * 2014-04-23 2016-08-17 林小晓 一种净化含有粉尘的烟气的方法及装置
CN105688641B (zh) * 2016-01-22 2018-05-04 浙江工业大学 鼓泡式紫外/Fenton氧化有机废气的处理系统及处理方法
CN105536481B (zh) * 2016-01-22 2018-06-26 浙江工业大学 循环喷淋式紫外Fenton氧化有机废气处理系统及处理方法
CN107185398A (zh) * 2017-03-22 2017-09-22 傅国琳 一种治理锅炉烟气的系统及其工作方法
CN107486000A (zh) * 2017-10-19 2017-12-19 广东佳德环保科技有限公司 一种烟气中二噁英去除装置及工艺
CN113046148B (zh) * 2021-03-11 2022-04-19 北方民族大学 光-芬顿氧化脱除煤中硫分的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258428A1 (en) * 2009-04-14 2010-10-14 Gignac Pierre-Andre Process for reducing the content of water soluble volatile organic compounds in a gas
CN102008882A (zh) * 2010-11-22 2011-04-13 上海电力学院 对电厂烟气进行脱硝的Fenton试剂及利用其进行脱硝的方法
CN102166471A (zh) * 2011-02-25 2011-08-31 东南大学 一种基于非均相Photo-Fenton的一体化烟气净化系统
CN103706238A (zh) * 2013-12-20 2014-04-09 华中科技大学 基于非均相类Fenton联合脱除烟气中SO2、NO和Hg的系统及方法
CN103949153A (zh) * 2014-04-23 2014-07-30 林小晓 一种利用光助芬顿反应净化烟气的方法及装置
CN103949128A (zh) * 2014-04-23 2014-07-30 林小晓 一种净化含有粉尘的烟气的方法及装置
CN103949144A (zh) * 2014-04-23 2014-07-30 林小晓 一种净化含有二氧化硫的烟气的方法及装置
CN104084015A (zh) * 2014-04-23 2014-10-08 林小晓 一种净化污染空气的系统及其工作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258428A1 (en) * 2009-04-14 2010-10-14 Gignac Pierre-Andre Process for reducing the content of water soluble volatile organic compounds in a gas
CN102008882A (zh) * 2010-11-22 2011-04-13 上海电力学院 对电厂烟气进行脱硝的Fenton试剂及利用其进行脱硝的方法
CN102166471A (zh) * 2011-02-25 2011-08-31 东南大学 一种基于非均相Photo-Fenton的一体化烟气净化系统
CN103706238A (zh) * 2013-12-20 2014-04-09 华中科技大学 基于非均相类Fenton联合脱除烟气中SO2、NO和Hg的系统及方法
CN103949153A (zh) * 2014-04-23 2014-07-30 林小晓 一种利用光助芬顿反应净化烟气的方法及装置
CN103949128A (zh) * 2014-04-23 2014-07-30 林小晓 一种净化含有粉尘的烟气的方法及装置
CN103949144A (zh) * 2014-04-23 2014-07-30 林小晓 一种净化含有二氧化硫的烟气的方法及装置
CN104084015A (zh) * 2014-04-23 2014-10-08 林小晓 一种净化污染空气的系统及其工作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114191907A (zh) * 2022-01-13 2022-03-18 卓宇轩 一种异味处理系统

Also Published As

Publication number Publication date
CN103949153B (zh) 2017-01-04
CN103949153A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2015161673A1 (zh) 一种利用光助芬顿反应净化烟气的方法及装置
WO2015161671A1 (zh) 一种净化污染空气的系统及其工作方法
WO2015161675A1 (zh) 一种净化含有二氧化硫的烟气的方法及装置
Zhao et al. Simultaneous removal of SO2 and NO by a vaporized enhanced-Fenton reagent
WO2015161672A1 (zh) 一种净化含有粉尘的烟气的方法及装置
CN110131742B (zh) 基于余热驱动的锅炉排烟全成分治理及资源化回收方式
CN109876585B (zh) 一种中药膏药生产废气处理系统
CN102824830B (zh) 紫外光降解废气的管式反应器及其方法
CN204247050U (zh) 一种污泥干化产生恶臭气体uv光解净化设备
CN204447666U (zh) 一种具有除尘脱硫脱硝功能的烟气冷凝装置
Liu et al. Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas and natural gas
Larki et al. Mitigation approaches and techniques for combustion power plants flue gas emissions: A comprehensive review
CN1899670A (zh) 一种利用赤泥处理燃煤烟气中so2的方法
CN205517266U (zh) 燃烧废气处理系统
CN110559827B (zh) 一种造纸废气的处理工艺
CN210320129U (zh) 一种基于余热驱动的锅炉排烟全成分资源化回收工艺系统
CN107930390A (zh) 一种光催化氧化烟气中单质汞的方法
CN206444425U (zh) Uv光解净化器
CN211753899U (zh) 洗浆机废气净化装置
CN209865669U (zh) 中药膏药生产废气处理系统
CN112107980B (zh) 利用磁性介质强化脱硫塔中重金属捕集的方法及其应用
Zhu et al. Comparative study of the effects of various activation methods on the desulfurization performance of petroleum coke
CN107185398A (zh) 一种治理锅炉烟气的系统及其工作方法
CN203002191U (zh) 紫外光降解废气的管式反应器
CN208287786U (zh) 高效低成本干法脱硫系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED14-02-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15782621

Country of ref document: EP

Kind code of ref document: A1