WO2015161537A1 - 微环光开关芯片的设计方法 - Google Patents

微环光开关芯片的设计方法 Download PDF

Info

Publication number
WO2015161537A1
WO2015161537A1 PCT/CN2014/077740 CN2014077740W WO2015161537A1 WO 2015161537 A1 WO2015161537 A1 WO 2015161537A1 CN 2014077740 W CN2014077740 W CN 2014077740W WO 2015161537 A1 WO2015161537 A1 WO 2015161537A1
Authority
WO
WIPO (PCT)
Prior art keywords
microring
optical switch
micro
ring
bandwidth
Prior art date
Application number
PCT/CN2014/077740
Other languages
English (en)
French (fr)
Inventor
武保剑
张中一
邱昆
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Publication of WO2015161537A1 publication Critical patent/WO2015161537A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to the field of optical fiber communication technologies, and more particularly to a method for designing a micro ring optical switch chip.
  • BACKGROUND OF THE INVENTION As early as 1980, it was confirmed that single crystal silicon is transparent in the main wavelength band (1.3 to 1.6 um) of optical fiber communication, and silicon materials have been studied as optical materials.
  • the main physical effects mainly silicon thermo-optic effect, the carrier dispersion effect, the wavelength is 1.5um, the thermal coefficient of silicon is about 1.85 * 10_ 4 / ° C and no additional loss.
  • the carrier dispersion effect refers to the change of the free carrier concentration in the semiconductor caused by the injection or extraction of carriers.
  • the theoretical analysis and experiment indicate the imaginary part and carrier concentration of the dielectric constant. It is a linear function.
  • SOI processing technology is compatible with complementary metal oxide semiconductor (CMOS) technology, and switching unit structure is mainly concentrated on insulating layer.
  • CMOS complementary metal oxide semiconductor
  • SOI-MRR optical switch the switch regulation mode mainly has two kinds of carrier dispersion effect and thermo-optic effect. Since the refractive index of SOI changes with the ambient temperature and there is a certain process error in the SOI process, the resonance peaks are not necessarily perfectly aligned, so some means are needed for adjustment.
  • Controlling the optical switch on and off by the carrier dispersion effect has the advantage of fast switching speed, so the thermo-optic effect is combined with the carrier dispersion effect, and the thermal error is used to compensate for the process error and ensure the micro-ring light.
  • the switch is not affected by external environmental factors, and works stably.
  • the resonant wavelength is changed by the carrier dispersion effect to realize switching on and off.
  • the Michal Lipson team at Cornell University implemented a non-blocking 4*4 switch based on the MRR structure with a thermo-optic effect in 2008, with a switching efficiency of 0.25 nm/mW and a switching spectral bandwidth of >38.5 GHz per channel. And they can reach the extinction ratio of 20 dB or more. Subsequently, they realize the spectral broadband (60 GHz, 0.5 nm flat top type) by connecting the double ring in series, forming the p-1-n electrode in the periphery, and injecting current to change the refractive index. (7 ns) hitless optical switch.
  • the object of the present invention is to overcome the deficiencies of the prior art, and provide a design method of a micro-ring optical switch chip, which realizes a high-precision combination of a bandwidth tolerance design of an input optical signal and a micro-ring driving circuit, thereby completing a micro-ring.
  • the modeling and performance simulation of the optical switch chip has the characteristics of high design efficiency, low cost and universal design.
  • a method for designing a micro-ring optical switch chip according to the present invention is characterized in that it comprises the following steps:
  • N g FSR wavelength
  • N g is the group refractive index
  • micro-ring network topology (1. 3), construct a micro-ring network topology; according to the spectral flatness, roll-off factor and extinction ratio of the micro-ring optical switch, the micro-rings are regularly connected in series and parallel to construct a suitable micro-ring network topology;
  • the spectral bandwidth B R of the micro-ring optical switch is proportional to the coupling coefficient between the micro-rings, thereby determining the coupling coefficient between the micro-rings, and determining the spacing between the micro-rings by the effective refractive index method;
  • the spectrum of the micro-ring optical switch output is simulated, and the ring of the micro-ring optical switch is adjusted according to the design requirements of the micro-ring 3dB bandwidth, free spectral range FSR, spectral flatness, roll-off factor and extinction ratio.
  • the present invention defines the bandwidth tolerance ⁇ as follows: The resonance peak drift caused by the jitter of the control circuit or the temperature control circuit cannot be greater than the bandwidth tolerance ⁇ ; the microrings satisfy the condition when performing series-parallel connection: series micro-ring The number of rings is odd, the pitch of the parallel microrings is an integer multiple of rR, and R is the radius of the microring.
  • the design method of the micro-ring optical switch chip of the invention determines the spectral bandwidth and the free spectral range of the micro-ring optical switch by designing the signal bandwidth and bandwidth tolerance of the input optical signal, thereby taking into account the main performance parameters of the micro-ring optical switch. , with the versatility of the design.
  • the regular micro-ring network topology is introduced, and the appropriate optical path and circuit parameters are designed, which has the characteristics of high design efficiency and low cost.
  • the simulation model of the micro-ring optical switch chip is established according to the designed optical path and circuit parameters, and the simulation and performance verification are carried out, which further improves the reliability of the implementation and meets the needs of the development of the current optical fiber communication technology.
  • the design method of the micro-ring optical switch chip of the invention has the following beneficial effects:
  • FIG. 1 is a flow chart of a design method of a microring optical switch chip of the present invention
  • FIG. 2 is a free spectral range diagram of the microring optical switch shown in FIG. 1;
  • Figure 3 is a graph showing the effect of the coupling coefficient between the microrings on the 3dB bandwidth
  • Figure 4 is a diagram showing the relationship between the jitter of the drive circuit and the drift of the resonance peak
  • Figure 5 is an output spectrum diagram of the optical switch before and after the optimization of the basic parameters of the microring
  • FIG. 6 is an enlarged effect view of the output spectrum of the optical switch of the micro-ring basic parameter optimization shown in FIG. 5;
  • FIG. 7 is an enlarged effect view of the output spectrum of the optical switch after the optimization of the basic parameters of the micro-ring shown in FIG. 5;
  • Figure 2 is a diagram showing the free spectral range of the micro-ring optical switch shown in Figure 1.
  • Figure 3 is a plot of the effect of the coupling coefficient between the microrings on the 3dB bandwidth.
  • Figure 4 is a graph showing the effect of drive circuit jitter on the drift of the resonant peak.
  • a design method of a micro-ring optical switch chip according to the present invention includes the following steps:
  • the bandwidth tolerance ⁇ 0.2 ⁇ the input optical signal is in the transmission signal format of 16QAM, and when the data rate is 200Gb/s, the spectral bandwidth of the micro-ring optical switch can be calculated as 8 ?1 is 0.611111, and the free spectral range is FSR. 18 nm;
  • determining the basic parameters of the microring determining the waveguide structure according to the dispersion requirement of the input optical signal transmitted in the waveguide structure, and determining the microring loop length J, L, ⁇ as the wave in combination with the free spectral range FSR
  • a ridge waveguide structure having a dispersion of 0 at a wavelength of 1.55 um and supporting only a TE base film is taken as an example.
  • the waveguide parameters are: a ridge width of 0.586 um, an outer ridge height of 0.15 um, and an etch depth of O. Lum, thereby determining the group refractive index at this wavelength is 3.8174.
  • the spectral bandwidth 8 ]1 is 0.6 nm.
  • the coupling coefficient between the direct-connected waveguide and the micro-ring is 0.3153, and the distance between the direct-connected waveguide and the micro-ring is calculated according to the effective refractive index method. Is 0.17um;
  • micro-ring network topology constructing a micro-ring network topology; according to the spectral flatness, roll-off coefficient and extinction ratio of the micro-ring optical switch, the micro-rings are regularly connected in series and parallel to construct a suitable micro-ring network topology;
  • the spectral bandwidth B R of the micro-ring optical switch is proportional to the coupling coefficient between the micro-rings, thereby determining the coupling between the micro-rings. Coefficient, and then determine the spacing between the microrings by the effective refractive index method;
  • the coupling coefficient between the direct-connected waveguide and the micro-ring affects the flatness and roll-off performance of the output spectrum, and the coupling coefficient between the micro-rings affects the 3dB bandwidth of the optical switching channel.
  • the introduction of the series structure effectively reduces the intensity of the non-resonant light, thereby suppressing the crosstalk of the device; and the parallel structure forms a box type filter to make the resonance peak more flat.
  • the box-type spectrum is realized when the number of series rings is even, the flatness and steepness of the resonance peak are much worse than the case where the number of series rings is odd. Therefore, the number of series rings is odd when designing the optical switch.
  • the spacing between the parallel microrings also affects the output spectrum, where the spacing between the parallel microrings is an integer multiple of ⁇ ;
  • the coupling coefficient between the direct-connected waveguide and the micro-ring is still 0.3153 as in the single-ring
  • the 3dB bandwidth of the micro-ring optical switch spectrum is proportional to the coupling coefficient between the micro-rings, as shown in FIG.
  • the coupling coefficient between the rings is 0.07, the bandwidth requirement of 0.6 nm is satisfied.
  • the p-1-n diode using the carrier dispersion effect can change the refractive index and can achieve high speed on or off, but the carrier effect also brings additional loss;
  • the thermo-optic effect of the 1-p-type structure compensates for process errors and stabilizes the micro-ring optical switch without being affected by changes in ambient temperature. According to the bandwidth tolerance requirements, the resonance peak drift caused by the jitter of the control circuit and the temperature control circuit cannot be greater than the bandwidth tolerance.
  • the p-1-n electrode structure injected into the carrier and the pip micro heating need to be designed according to the adjustment precision of the circuit.
  • the concentration of the heavily doped region was determined to be 10 2Q cm 3 , and the intermediate intrinsic region was lightly doped at a concentration of 10 15 cm 3 , the edge of the heavily doped region. 0.8 ⁇ m from the center of the ridge waveguide, the structure of the aluminum electrode is loaded;
  • the 3dB bandwidth needs to be greater than or equal to the sum of the signal bandwidth and the bandwidth redundancy to ensure normal transmission.
  • the free spectral range needs to be greater than or equal to the sum of the signal bandwidth and the bandwidth redundancy.
  • the spectral flatness needs to be less than or equal to 0.2dB, and the roll-off factor needs to be Greater than or equal to 0.8, to effectively increase the extinction ratio, and the extinction ratio is required to be greater than or equal to 20dB
  • the driving circuit and the temperature control circuit are respectively simulated, and according to the bandwidth tolerance ⁇ and the control precision and jitter requirement of the driving circuit and the temperature control circuit, the driving results of the driving circuit and the temperature control circuit are respectively combined with the driving electrodes and The position structure, doping concentration, doping position and doping depth of the heating resistor are optimally adjusted, and finally a simulation model of the microring optical switch chip is established;
  • the microring radius is adjusted to meet the design requirements. If the 3dB bandwidth does not reach the standard, the spacing between the microring and the microring is adjusted to achieve the purpose of adjusting the coupling coefficient between the microrings. And further changing the 3dB bandwidth. If the spectral flatness, the extinction ratio, and the roll-off factor do not meet the design requirements, the purpose of adjusting the coupling coefficient between the straight waveguide and the microring is achieved by adjusting the spacing between the straight waveguide and the microring, thereby satisfying Its design requirements;
  • step S1 the relationship between the jitter of the driving circuit and the drift of the resonant peak is determined as shown in FIG. 4, and the jitter of the driving circuit should be controlled within 10 mV, and the corresponding maximum resonance peak drift is 0.1 nm;
  • the effective refractive index algorithm calculates that the spacing between the direct-connected waveguide and the micro-ring waveguide is 0.13um, the coupling coefficient is 0.45, the spacing between the micro-rings is 0.5um, and the coupling coefficient is 0.07.
  • the design meets the theoretical results, according to the above. Determining various parameters, constructing a simulation model of the entire micro-ring optical switch chip;
  • Figure 5 is a spectrum diagram of the optical switch output before and after optimization of the basic parameters of the microring.
  • FIG. 6 is an enlarged effect diagram of the output spectrum of the optical switch before the basic parameter optimization of the microring shown in FIG. 5.
  • FIG. 7 is an enlarged effect view of the output spectrum of the optical switch after the optimization of the basic parameters of the microring shown in FIG. 5.
  • the free spectral range FSR is 18 nm, which is set before and after optimization design.
  • the measured switching spectrum has a 3dB bandwidth of 0.6nm.
  • the side resonance peak power is -8dB higher than the passband resonance peak power, and the unevenness in the resonance peak (the maximum fluctuation between the two completely transmitted wavelengths around the resonance peak is used to measure the
  • the flatness is 0.0478dB
  • the steep drop of the output spectrum is about 0.9422
  • FIG. 8 is a simulation diagram of the opening and closing process of the micro-ring optical switch chip.
  • the optical switch starts to work at about 1.55 um, and the light is all output from the download end.
  • the electrode is loaded with a voltage of 0.9 V
  • the carrier dispersion effect causes a change in the refractive index of the microring due to carrier injection.
  • the spectrum changes from a solid line to a broken line, and the resonance peak drifts, and a certain loss is also introduced. It can be seen from Fig. 8 that under normal conditions, the extinction ratio of the optical switch is greater than 20 dB, and various indicators and parameters also meet the design requirements to achieve the design goal.
  • the micro-ring switching spectrum can be fine-tuned by the p-1-p structure; the carrier is used after the adjustment is completed.
  • the dispersion effect realizes the switching function of the micro ring optical switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种微环光开关芯片的设计方法,通过输入光信号的信号带宽和带宽容限的设计要求,确定微环光开关的光谱带宽和自由光谱范围,这样兼顾了微环光开关的主要性能参数,具有设计的通用性。在具体的设计中,引入了规律性的微环网络拓扑结构,并设计合适的光路和电路参数,具有设计效率高和低成本的特点。最后根据设计的光路和电路参数建立微环光开关芯片的仿真模型,并进行仿真和性能的验证,这进一步提高了实现的可靠性,符合当前光纤通信技术发展的需要。

Description

微环光开关芯片的设计方法 技术领域 本发明属于光纤通信技术领域, 更为具体地讲, 涉及一种微环光开关芯片 的设计方法。 背景技术 早在 1980年就证实了单晶硅在光纤通信的主要波长段(1.3~1.6um)是透明 的, 硅材料开始被作为光学材料进行研究。 硅材料的主要物理效应主要有热光 效应、 载流子色散效应等, 波长为 1.5um时, 硅的热光系数约为 1.85*10_4/°C且 没有附加损耗。 而载流子色散效应指的是载流子的注入或抽取导致半导体中自 由载流子浓度的变化引起折射率的变化, 通过理论分析和实验, 指出介电常数 的虚部与载流子浓度呈线性函数关系。
最近几年, 基于绝缘层上的硅(SOI) 的光开关研究成为光交换技术的研究 热点, SOI加工工艺同互补金属氧化物半导体(CMOS )工艺兼容, 开关单元结 构主要集中在基于绝缘层上的硅的微环谐振器 (SOI-MRR) 的光开关, 开关调 节方式主要有载流子色散效应和热光效应两种。 由于 SOI的折射率会随环境温 度而改变且 SOI加工过程中会有一定的工艺误差, 谐振峰不一定会完全对准, 因此需要一定的手段进行调节。 通过载流子色散效应控制光开关通、 断较热光 效应具有开关速度快的优势, 因此将热光效应与载流子色散效应相结合, 通过 热光效应来弥补工艺误差且保证微环光开关不受外界环境因素影响, 稳定工作, 同时通过载流子色散效应改变谐振波长, 实现开关通断。
在现有技术中, Cornell大学的 Michal Lipson课题组于 2008年通过热光效 应实现基于 MRR结构的无阻塞 4*4开关, 开关效率为 0.25 nm/mW, 每一路的 开关光谱带宽 >38.5 GHz, 并且都可以达到 20 dB的消光比以上, 随后, 他们通 过串联双环, 在周边形成 p-1-n电极、 注入电流改变折射率方式实现了光谱宽带 (60 GHz, 0.5 nm平顶型) 、 高速(7 ns) 的 hitless光开关。 在国内, 中科院半 导体研究所杨林课题组对基于 SOI-MRR的热光效应开关进行了研究,2011年报 道了应用于片上网络的 4端口光路由器, 直通端和下载端的消光比分别为 13 dB 和 30 dB, 链路的串扰小于 -13 dB, 平均功耗为 10.37 mW。 然而, 微环光开关往 往是针对特定的需求而进行的专门设计, 设计方法的通用性差, 并且为了达到 微环开关设计性能, 设计过程中微环基本物理参数和拓扑结构的优化难以分开 进行, 设计效率低; 其次, 微环光开关的光谱稳定性对控制电路要求严格, 电 路实现成本高; 另一方面, 若要降低电路的实现难度, 则需要根据电路特性不 断调整微环光开关芯片的基本参数和拓扑结构, 并反复设计, 这样大大增加了 设计的工作量。 发明内容 本发明的目的在于克服现有技术的不足, 提供一种微环光开关芯片的设计 方法, 实现了输入光信号的带宽容限设计与微环驱动电路的高精度结合, 从而 完成微环光开关芯片的建模与性能仿真验证, 具有设计效率高、 成本低和设计 通用性的特点。
为实现上述发明目的, 本发明一种微环光开关芯片的设计方法, 其特征在 于, 包括以下步骤:
( 1 ) 、 建立微环光开关芯片的仿真模型;
( 1. 1 ) 、 根据光谱带宽 和自由光谱范围 FSR的计算公式 ^≥^ + 和 FSR≥BR + BS , 确定出微环光开关的光谱带宽 和自由光谱范围 FSR, 其中, Bs 为输入光信号的信号带宽, ΔΒ为输入光信号的带宽容限;
( 1. 2 )、 确定微环基本参数; 根据输入光信号在波导结构里传输的色散要 求确定波导结构, 并结合自由光谱范围 FSR确定微环环长 J, L = χ1 , Λ为
Ng · FSR 波长, Ng为群折射率; 再根据微环的 3dB带宽需求和计算公式:
2δλ =™· ^£—,计算出单环波导结构中直连波导与微环间的耦合系数 ,再通 π 一 Κ2 过有效折射率法确定出直连波导与微环间的间距, 其中, 为 3dB带宽;
( 1. 3 )、 构建微环网络拓扑结构; 根据微环光开关的光谱平坦度、 滚降系 数和消光比, 将微环进行规律性串并联, 构建合适的微环网络拓扑结构;
微环在引入串联结构后, 在直连波导与微环的耦合系数 ^不变的前提下, 微环光开关光谱带宽 BR与微环间耦合系数成正比, 从而确定出微环间的耦合系 数, 再通过有效折射率法确定出微环间的间距;
( 1. 4)、 设计驱动电极和加热电阻; 根据带宽容限 ΔΒ的要求, 以及驱动电 路和温控电路的控制精度与抖动要求映射到对电压与折射率的变化关系的要 求, 从而来设计符合要求的注入载流子的驱动电极和实现热光效应的加热电阻 的位置结构、 掺杂浓度、 掺杂区位置, 掺杂深度;
( 2 )、 对建立的微环光开关芯片的仿真模型进行仿真优化, 确定出微环光 开关芯片的最终仿真模型;
在未加载电路时, 对微环光开关输出的光谱进行仿真, 根据微环的 3dB带 宽、 自由光谱范围 FSR、 光谱平坦度、 滚降系数和消光比的设计要求来调整微 环光开关的环长、 直波导与微环间以及微环间的间距; 在加载电路时, 分别对 驱动电路和温控电路进行仿真,根据带宽容限 ΔΒ以及驱动电路和温控电路的控 制精度、 抖动要求, 结合驱动电路和温控电路的仿真结果分别对驱动电极和加 热电阻的位置结构、 掺杂浓度、 掺杂区位置、 掺杂深度进行优化调整, 最终建 立微环光开关芯片的仿真模型;
( 3 )、 对微环光开关芯片进行性能验证; 基于电学仿真软件, 先仿真微环 光开关芯片的电学特性, 将电学特性转化为光学特性, 再结合光学仿真软件, 完成微环光开关芯片的性能验证。
进一步地,本发明限定了带宽容限 ΔΒ的要求为: 控制电路或温控电路抖动 造成的谐振峰漂移不能大于带宽容限 ΔΒ; 所述的微环进行串并联时满足条件 为: 串联微环的环数为奇数, 并联微环的环间距为 rR的整数倍, R为微环半径。
本发明的发明目的是这样实现的:
本发明微环光开关芯片的设计方法, 通过输入光信号的信号带宽和带宽容 限的设计要求, 确定微环光开关的光谱带宽和自由光谱范围, 这样兼顾了微环 光开关的主要性能参数, 具有设计的通用性。 在具体的设计中, 引入了规律性 的微环网络拓扑结构, 并设计合适的光路和电路参数, 具有设计效率高和低成 本的特点。 最后根据设计的光路和电路参数建立微环光开关芯片的仿真模型, 并进行仿真和性能的验证, 这进一步提高了实现的可靠性, 符合当前光纤通信 技术发展的需要。 同时, 本发明微环光开关芯片的设计方法还具有以下有益效果:
( 1 )、 通过输入光信号的信号带宽和带宽容限的设计要求, 确定微环光开 关的光谱带宽和自由光谱范围, 这样兼顾了微环光开关的主要性能参数, 具有 设计的通用性;
(2 )、 引入了规律性的微环串并联网络拓扑结构, 串联结构的引入有效的 降低了非谐振光的强度, 进而抑制了器件的串扰; 而并联结构形成了箱型滤波, 使谐振峰更加平坦;
( 3 )、 本发明中先仿真验证局部光路及电路参数, 在满足设计要求后进行 微环光开关芯片的仿真建模和性能验证, 这样进一步提高了实现的可靠性, 同 时具有低成本的特点。 附图说明 图 1是本发明微环光开关芯片的设计方法流程图;
图 2是图 1所示微环光开关的自由光谱范围图;
图 3是微环间耦合系数对 3dB带宽影响的关系图;
图 4是驱动电路抖动对谐振峰飘移影响的关系图;
图 5是微环基本参数优化前、 后的光开关输出光谱图;
图 6是图 5所示微环基本参数优化前光开关输出光谱图的放大效果图; 图 7是图 5所示微环基本参数优化后光开关输出光谱图的放大效果图; 图 8是微环光开关芯片的开、 关过程仿真图。 具体实施方式 下面结合附图对本发明的具体实施方式进行描述, 以便本领域的技术人员更 好地理解本发明。 需要特别提醒注意的是, 在以下的描述中, 当已知功能和设 计的详细描述也许会淡化本发明的主要内容时, 这些描述在这里将被忽略。 实施例 图 1是本发明微环光开关芯片的设计方法流程图。
图 2是图 1所示微环光开关的自由光谱范围图。
图 3是微环间耦合系数对 3dB带宽影响的关系图。 图 4是驱动电路抖动对谐振峰飘移影响的关系图。
在本实施例中, 如图 1 所示, 本发明一种微环光开关芯片的设计方法, 包 括以下步骤:
Sl)、 建立微环光开关芯片的仿真模型;
51.1)、 根据光谱带宽 8]1和自由光谱范围 FSR的计算公式 ¾≥^ + 和 FSR≥BR + BS , 确定出微环光开关的光谱带宽 和自由光谱范围 FSR, 其中, Bs 为输入光信号的信号带宽, ΔΒ为输入光信号的带宽容限;
本实施例中, 带宽容限 ΔΒ 0.2ηπι, 输入光信号以 16QAM的传输信号格 式, 数据率为 200Gb/s时, 则可计算微环光开关的光谱带宽 8]1为0.611111, 自由 光谱范围 FSR为 18nm;
51.2)、 确定微环基本参数; 根据输入光信号在波导结构里传输的色散要求 确定波导结构, 并结合自由光谱范围 FSR确定微环环长 J, L , λ为波
Ng · FSR 长, Ng为群折射率;再根据微环的 3dB带宽需求和计算公式: 2δλ =™.^^ , π 一 Κ2 计算出单环波导结构中直连波导与微环间的耦合系数 再通过有效折射率法确 定出直连波导与微环间的间距, 其中, 为 3dB带宽;
本实施例中, 以波长为 1.55um处色散为 0且只支持 TE基膜的脊型波导结 构为例, 波导参数为: 脊宽 0.586um, 外脊高为 0.15um, 刻蚀深度为 O.lum, 从 而确定该波长处的群折射率为 3.8174。 根据自由光谱范围 FSR为 18nm, 如图 2 所示,得到微环半径 R为 5.5647um,其中,微环半径 R与环长 L的关系为: L=2;rR , 同时根据微环光开关的光谱带宽 8]1为 0.6nm, 利用微环的 3dB带宽需求及计算 公式, 得到直连波导与微环间耦合系数为 0.3153, 从而根据有效折射率法计算 得到直连波导与微环间的间距为 0.17um;
51.3 )、 构建微环网络拓扑结构; 根据微环光开关的光谱平坦度、 滚降系数 和消光比, 将微环进行规律性串并联, 构建合适的微环网络拓扑结构;
微环在引入串联结构后, 在直连波导与微环的耦合系数 ^不变的前提下, 微环光开关光谱带宽 BR与微环间耦合系数成正比, 从而确定出微环间的耦合系 数, 再通过有效折射率法确定出微环间的间距; 直连波导与微环间的耦合系数会影响输出光谱的平坦度和滚降性等性能, 而微环间的耦合系数会影响光开关信道的 3dB带宽。 因此, 串联结构的引入有 效的降低了非谐振光的强度, 进而抑制了器件的串扰; 而并联结构形成了箱型 滤波, 使谐振峰更加平坦。 需要注意, 串联环数为偶数时虽然实现了箱型光谱, 但其谐振峰的平坦程度和陡降性都较串联环数为奇数的情况劣化很多, 因此在 设计光开关时串联环数为奇数; 另外, 并联微环间的间距也会影响输出光谱, 这里取并联微环间的间距为 πΙ 的整数倍;
本实施例中, 当直连波导与微环间耦合系数仍与单环时相同为 0.3153, 则 微环光开关光谱的 3dB带宽与微环间的耦合系数呈正比关系, 如图 3所示, 微 环间的耦合系数为 0.07时满足 0.6nm的带宽要求, 当这些耦合系数确定后, 根 据微环串并联结构的输出光谱规律和对微环光开关平坦度、 滚降性和消光比等 性能的要求, 选取微环串并联结构 3*2的拓扑结构, 再通过对耦合系数等参数 进行优化, 得到优化后的直连波导与微环间耦合系数最终为 0.45; 通过有效折 射率算法计算得到直连波导和微环波导间的间距为 0.13um, 耦合系数为 0.45 ; 微环间的间距为 0.5um, 其耦合系数为 0.07 ;
S1.4)、 设计驱动电极和加热电阻; 根据带宽容限 ΔΒ 的要求, 以及驱动电 路和温控电路的控制精度与抖动要求映射到对电压与折射率的变化关系的要 求, 从而来设计符合要求的注入载流子的驱动电极和实现热光效应的加热电阻 的位置结构、 掺杂浓度、 掺杂区位置, 掺杂深度;
本实施例中, 利用载流子色散效应的 p-1-n二极管, 可以改变折射率, 并可 以实现高速的开或关, 但是载流子效应也会带来额外的损耗; 而利用 p-1-p型结 构的热光效应, 弥补工艺误差, 使微环光开关稳定工作, 不受环境温度变化的 影响。 根据带宽容限的要求, 控制电路、 温控电路抖动造成的谐振峰漂移不能 大于带宽容限, 同时也需要按照电路的调节精度设计注入载流子的 p-1-n电极结 构和 p-i-p微加热电阻; 经过对 p-i-n结构和 p-i-p结构的理论和仿真研究, 最终 确定了重掺杂区浓度为 102Qcm_3, 中间本征区为轻掺杂, 浓度为 1015cm_3, 重掺 杂区边缘距脊型波导中心处为 0.8um, 加载铝电极的结构;
S2 )、 对建立的微环光开关芯片的仿真模型进行仿真优化, 确定出微环光开 关芯片的最终仿真模型; 在未加载电路时, 对微环光开关输出的光谱进行仿真, 根据微环的 3dB带 宽、 自由光谱范围 FSR、 光谱平坦度、 滚降系数和消光比的设计要求来调整微 环光开关的环长、 直波导与微环间以及微环间的间距;
其中, 3dB带宽需要大于等于信号带宽与带宽冗余之和,以保证其正常传输, 自由光谱范围需要大于等于信号带宽与带宽冗余之和, 光谱平坦度需要小于等 于 0.2dB, 滚降系数需要大于等于 0.8, 以有效的提升消光比, 而消光比则要求 大于等于 20dB
在加载电路时, 分别对驱动电路和温控电路进行仿真,根据带宽容限 ΔΒ以 及驱动电路和温控电路的控制精度、 抖动要求, 结合驱动电路和温控电路的仿 真结果分别对驱动电极和加热电阻的位置结构、 掺杂浓度、 掺杂区位置、 掺杂 深度进行优化调整, 最终建立微环光开关芯片的仿真模型;
若自由光谱范围未达到要求, 则通过调节微环半径来使其符合设计要求, 若 3dB带宽未达到标准, 则通过调节微环与微环间的间距, 从而达到调节微环 间耦合系数的目的, 进而改变 3dB带宽, 若光谱平坦度、 消光比及滚降系数未 达到设计要求, 则通过调节直波导与微环间的间距, 从而达到调节直波导与微 环间耦合系数的目的, 进而满足其设计要求;
根据步骤 S1 ) 中设计的各个参数, 确定出驱动电路的抖动与谐振峰飘移的 关系如图 4所示, 则驱动电路抖动应控制在 10mV内, 其对应的最大谐振峰漂 移为 O.lnm ; 通过有效折射率算法计算得到直连波导和微环波导间的间距为 0.13um, 耦合系数为 0.45 ; 微环间的间距为 0.5um, 其耦合系数为 0.07, 该设计 符合理论结果要求, 根据以上确定的各种参数, 构建整个微环光开关芯片的仿 真模型;
S3 )、 对微环光开关芯片进行性能验证; 基于电学仿真软件, 先仿真微环光 开关芯片的电学特性, 将电学特性转化为光学特性, 再结合光学仿真软件, 完 成微环光开关芯片的性能验证。
图 5是微环基本参数优化前、 后的光开关输出光谱图。
图 6是图 5所示微环基本参数优化前光开关输出光谱图的放大效果图。 图 7是图 5所示微环基本参数优化后光开关输出光谱图的放大效果图。 本实施例中, 如图 5所示, 自由光谱范围 FSR为 18nm, 优化设计前后所设 计的开关光谱 3dB带宽均为 0.6nm。 优化前, 如图 6所示, 旁边谐振峰功率较 通带谐振峰功率为 -8dB, 谐振峰内不平坦度 (用谐振峰左右两个完全透射波长 间的最大起伏来衡量谐振峰内的不平坦性) 为 0.0478dB, 输出光谱的陡降性约 为 0.9422, 通带的陡降性用形状因子 = 表示, 形状因子越大意味着
-lOiffi带宽 更好的陡降性, 同时也代表着更大的消光比; 优化后, 如图 7 所示, 旁边谐振 峰的功率经过优化得到了抑制, 下降了约 lldB, 达到了优化的目的, 谐振峰内 不平坦度经过优化后小于 0.012dB, 然而陡降性略有劣化约为 0.814。 图 8是微环光开关芯片的开、 关过程仿真图。
本实施例中, 光开关开始工作在 1.55um附近, 光会全部从下载端输出, 当 电极加载 0.9V电压时, 由于载流子的注入, 载流子色散效应引起了微环折射率 的变化, 如图 8所示, 频谱由实线变为虚线, 谐振峰发生了漂移, 同时也引入 了一定的损耗。 从图 8中可以看出, 正常情况下, 光开关的消光比大于 20dB, 各种指标和参数也符合设计要求, 达到设计目的。 当然, 若由于工艺误差或环 境温度的改变导致微环谐振波长不在设计波长处, 这时可以通过 p-1-p结构进行 微调, 使微环开关光谱发生移动; 调节完毕后再利用载流子色散效应实现微环 光开关的开关功能。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的 技术人员理解本发明, 但应该清楚, 本发明不限于具体实施方式的范围, 对本 技术领域的普通技术人员来讲, 只要各种变化在所附的权利要求限定和确定的 本发明的精神和范围内, 这些变化是显而易见的, 一切利用本发明构思的发明 创造均在保护之列。

Claims

权 利 要 求 书
1、 一种微环光开关芯片的设计方法, 其特征在于, 包括以下步骤:
(1) 、 建立微环光开关芯片的仿真模型;
(1.1) 、 根据光谱带宽 8]1和自由光谱范围 FSR的计算公式 ≥ S +AB和 FSR≥BR+BS, 确定出微环光开关的光谱带宽 和自由光谱范围 FSR, 其中, Bs 为输入光信号的信号带宽, ΔΒ为输入光信号的带宽容限;
(1.2)、 确定微环基本参数; 根据输入光信号在波导结构里传输的色散要 求确定波导结构, 并结合自由光谱范围 FSR确定微环环长 J, L = Λ为
Figure imgf000011_0001
波长, Ng为群折射率; 再根据微环的 3dB带宽需求和计算公式: 2δλ =™.^^,计算出单环波导结构中直连波导与微环间的耦合系数 再通 π 一 Κ2 过有效折射率法确定出直连波导与微环间的间距, 其中, 为 3dB带宽;
(1.3)、 构建微环网络网络拓扑结构; 根据微环光开关的光谱平坦度、 滚 降系数和消光比, 将微环进行规律性串并联, 构建合适的微环网络拓扑结构; 微环在引入串联结构后, 在直连波导与微环的耦合系数 ^不变的前提下, 微环光开关光谱带宽 BR与微环间耦合系数成正比, 从而确定出微环间的耦合系 数, 再通过有效折射率法确定出微环间的间距;
(1.4)、 设计驱动电极和加热电阻; 根据带宽容限 ΔΒ的要求, 以及驱动电 路和温控电路的控制精度与抖动要求映射到对电压与折射率的变化关系的要 求, 从而来设计符合要求的注入载流子的驱动电极和实现热光效应的加热电阻 的位置结构、 掺杂浓度、 掺杂区位置, 掺杂深度;
(2)、 对建立的微环光开关芯片的仿真模型进行仿真优化, 确定出微环光 开关芯片的最终仿真模型;
在未加载电路时, 对微环光开关输出的光谱进行仿真, 根据微环的 3dB带 宽、 自由光谱范围 FSR、 光谱平坦度、 滚降系数和消光比的设计要求来调整微 环光开关的环长、 直波导与微环间以及微环间的间距; 在加载电路时, 分别对 驱动电路和温控电路进行仿真,根据带宽容限 ΔΒ以及驱动电路和温控电路的控 制精度、 抖动要求, 结合驱动电路和温控电路的仿真结果分别对驱动电极和加 热电阻的位置结构、 掺杂浓度、 掺杂区位置、 掺杂深度进行优化调整, 最终建 立微环光开关芯片的仿真模型;
( 3 )、 对微环光开关芯片进行性能验证; 基于电学仿真软件, 先仿真微环 光开关芯片的电学特性, 将电学特性转化为光学特性, 再结合光学仿真软件, 完成微环光开关芯片的性能验证。
2、 根据权利要求 1所述的微环光开关芯片的设计方法, 其特征在于, 所述 的带宽容限 ΔΒ的要求为:控制电路或温控电路抖动造成的谐振峰漂移不能大于 带宽容限 ΔΒ。
3、 根据权利要求 1所述的微环光开关芯片的设计方法, 其特征在于, 所述 的微环进行串并联时, 串联微环的环数为奇数, 并联微环的环间距为 rR的整数 倍, R为微环半径。
PCT/CN2014/077740 2014-04-24 2014-05-17 微环光开关芯片的设计方法 WO2015161537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410168150.3A CN103955575B (zh) 2014-04-24 2014-04-24 一种微环光开关芯片的设计方法
CN201410168150.3 2014-04-24

Publications (1)

Publication Number Publication Date
WO2015161537A1 true WO2015161537A1 (zh) 2015-10-29

Family

ID=51332850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077740 WO2015161537A1 (zh) 2014-04-24 2014-05-17 微环光开关芯片的设计方法

Country Status (2)

Country Link
CN (1) CN103955575B (zh)
WO (1) WO2015161537A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714427A (zh) * 2014-12-31 2015-06-17 电子科技大学 一种控制高速微环光开关稳定工作的装置
CN106896534B (zh) * 2017-04-17 2019-07-12 电子科技大学 一种电控磁光开关芯片
CN113029218B (zh) * 2021-03-11 2022-07-01 西北大学 基于硅基微环的游标效应光纤干涉传感器解调装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6959126B1 (en) * 2002-02-08 2005-10-25 Calient Networks Multipurpose testing system for optical cross connect devices
CN101726801A (zh) * 2008-10-28 2010-06-09 华为技术有限公司 一种光开关装置的控制方法和光开关装置
CN102662254A (zh) * 2012-05-02 2012-09-12 浙江大学 基于石墨烯电吸收特性的微环光开关
CN103369415A (zh) * 2013-07-12 2013-10-23 西安电子科技大学 基于微环谐振器的全光片上网络
CN103595419A (zh) * 2013-11-19 2014-02-19 兰州大学 一种n位二进制电光奇偶校验器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6959126B1 (en) * 2002-02-08 2005-10-25 Calient Networks Multipurpose testing system for optical cross connect devices
CN101726801A (zh) * 2008-10-28 2010-06-09 华为技术有限公司 一种光开关装置的控制方法和光开关装置
CN102662254A (zh) * 2012-05-02 2012-09-12 浙江大学 基于石墨烯电吸收特性的微环光开关
CN103369415A (zh) * 2013-07-12 2013-10-23 西安电子科技大学 基于微环谐振器的全光片上网络
CN103595419A (zh) * 2013-11-19 2014-02-19 兰州大学 一种n位二进制电光奇偶校验器

Also Published As

Publication number Publication date
CN103955575B (zh) 2017-01-25
CN103955575A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
US8625936B1 (en) Advanced modulation formats using optical modulators
TWI334037B (en) Electro-optical modulator with curving resonantor
JP2012198465A (ja) リング光変調器
CN104297854B (zh) 硅基多波长光源及其实现的方法
CN103955147A (zh) 一种微环光开关的控制装置
US9733498B2 (en) Disk resonator based on a composite structure
Sanchez et al. Analysis and design optimization of a hybrid VO 2/Silicon2 $\times $2 microring switch
WO2016015303A1 (zh) 锗硅电吸收调制器
CN110456528A (zh) 一种双波导耦合式的等离子电光调制器
WO2012103823A2 (zh) 一种移相器和耦合器及其制造方法
WO2020232792A1 (zh) 基于超表面结构的超紧凑硅波导模式转换器件
WO2015161537A1 (zh) 微环光开关芯片的设计方法
CN104111494A (zh) 基于氮化硅波导和微环的模式-波长复用器件的制备方法
CN104280899A (zh) 基于微环谐振腔的硅基热光调制器
CN114280730B (zh) 一种双谐振腔双波导滤波系统及方法
CN115145057A (zh) 多掺杂平板硅光学调制器
US10481466B2 (en) Optical switch
CN116599596B (zh) 片上倍频程速率可调的dpsk解调器及调谐方法
WO2015180149A1 (zh) 电光调制器
CN113900280B (zh) 偏振无关的光开关
Shoman et al. Compact silicon microring modulator with tunable extinction ratio and wide FSR
JP6226496B2 (ja) 偏光子及び偏光変調システム
Poulopoulos et al. Air trenches-assisted highly selective, fully flexible SOI filtering element
WO2017052467A1 (en) A modulator circuit and method of forming thereof
CN204178000U (zh) 一种基于二维碳材料的平面光波导加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890442

Country of ref document: EP

Kind code of ref document: A1