WO2015160003A1 - 건설기계용 주행 제어장치 및 그 제어방법 - Google Patents

건설기계용 주행 제어장치 및 그 제어방법 Download PDF

Info

Publication number
WO2015160003A1
WO2015160003A1 PCT/KR2014/003263 KR2014003263W WO2015160003A1 WO 2015160003 A1 WO2015160003 A1 WO 2015160003A1 KR 2014003263 W KR2014003263 W KR 2014003263W WO 2015160003 A1 WO2015160003 A1 WO 2015160003A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
traveling
pressure
pilot
work device
Prior art date
Application number
PCT/KR2014/003263
Other languages
English (en)
French (fr)
Inventor
정해균
이재훈
이상희
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
정해균
이재훈
이상희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비, 정해균, 이재훈, 이상희 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to EP14889539.4A priority Critical patent/EP3133211B1/en
Priority to US15/303,942 priority patent/US20170037600A1/en
Priority to CN201480078042.5A priority patent/CN106232905B/zh
Priority to PCT/KR2014/003263 priority patent/WO2015160003A1/ko
Publication of WO2015160003A1 publication Critical patent/WO2015160003A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/166Controlling a pilot pressure in response to the load, i.e. supply to at least one user is regulated by adjusting either the system pilot pressure or one or more of the individual pilot command pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/008Reduction of noise or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8606Control during or prevention of abnormal conditions the abnormal condition being a shock

Definitions

  • the present invention relates to a traveling control device for a construction machine and a control method thereof, and more specifically, to reduce the occurrence of shock when the composite work by operating the work device while driving for construction machinery that can operate the work device smoothly
  • a traveling control device and a control method thereof A traveling control device and a control method thereof.
  • first and second hydraulic pumps (hereinafter, referred to as first and second hydraulic pumps) P1 and P2 and a pilot pump 11;
  • a second working device and a second driving motor which are not shown, operated by the operating oil of the second hydraulic pump P2;
  • a first driving control valve installed in the supply passage 16 of the first hydraulic pump P1 and controlling the amount and the flow direction of the hydraulic oil supplied to the first traveling motor and the first working device at the time of switching; 6a) and a control valve 9 for the first work device;
  • a second driving control valve installed in the supply flow path 17 of the second hydraulic pump P2 and controlling the amount and flow direction of the hydraulic oil supplied to the second traveling motor and the second working device at the time of switching; 6b) and a control valve 8 for the second working device;
  • a traveling straight control valve (7) installed at an upstream side of the supply flow path (17) of the second hydraulic pump (P2), for switching during combined work by manipulating a traveling device and a work device;
  • a parallel flow passage 21 having an inlet connected to an upstream side of the supply flow passage 17 of the second hydraulic pump P2 and an outlet connected to an inlet port of the control valve 8 for the second work device;
  • An inlet is branched to a predetermined position of the parallel flow passage 21, and a branch flow passage having an outlet connected to a flow path 20 between the traveling straight control valve 7 and the second travel control valve 6b ( 24);
  • the check valve and the fixed orifice 13 and the fixed orifice 13 and the fixed orifice 13 installed in the branch flow passage 24 operate the load of the work device when the driving straight control valve 7 is switched in order to operate the work and the work device in combination.
  • the pressure is higher than the running load pressure to prevent the hydraulic oil from flowing from the second hydraulic pump (P2) to the running side;
  • the solenoid valve 5 and the solenoid valve 5 installed in the flow path 18 between the pilot pump 11 and the traveling straight control valve 7 are switched by application of an electrical signal to the pilot pump 11. Applying hydraulic fluid to the traveling straight control valve (7);
  • a first pressure sensor 12d for detecting an operation amount of the first driving control device 3a for switching the first driving control valve 6a;
  • a third pressure sensor 12b for detecting an operation amount of the first work device operating lever 4b for switching the control valve 9 for the first work device
  • a fourth pressure sensor 12a for detecting an operation amount of the second work device operating lever 4a for switching the control valve 8 for the second work device;
  • reference numeral 2 denotes a main control valve (MCV).
  • the first driving control valve 6a is switched to the left in the drawing by the application of pilot pressure by the operation of the first and second traveling manipulation devices 3a and 3b.
  • the second running control valve 6b is switched to the right in the drawing.
  • the manipulated amounts of the first and second traveling manipulators 3a and 3b are detected by the first and second pressure sensors 12d and 12c, and an operation signal is input to the controller 10.
  • a part of the hydraulic oil of the first hydraulic pump P1 is supplied to the supply passage 16 and the first driving control valve 6a.
  • a part of the hydraulic oil of the first hydraulic pump P1 is supplied to the control valve 9 for the first working device through the flow passage 22 and the traveling straight control valve 7.
  • a part of the hydraulic oil of the second hydraulic pump P2 is supplied to the supply passage 17, the traveling straight control valve 7, the flow path 20, the second driving control valve 6b.
  • a part of the hydraulic oil of the second hydraulic pump P2 is supplied to the control valve 8 for the second working device by the parallel flow passage 21, and the check valve and the fixed orifice 13 installed in the branch flow passage 24 are provided. It passes and is supplied to the 2nd driving control valve 6b.
  • the third, fourth pressure sensor (12b, 12a) Detects the manipulated variable and inputs an operation signal to the controller 10.
  • the solenoid valve 5 is switched to the on state by applying an electric signal from the controller 10. That is, due to the switching of the solenoid valve 5, the traveling straight control valve 7 is switched to the left in the drawing by the pilot pressure from the pilot pump 11.
  • a part of the hydraulic oil of the first hydraulic pump P1 supplies the supply passage 16 to the first driving control valve 6a.
  • a part of the hydraulic oil of the first hydraulic pump P1 is supplied to the supply passage 16, the flow passage 22, the traveling straight control valve 7, and the flow passage 20 to the second driving control valve 6b.
  • a part of the hydraulic oil of the second hydraulic pump P2 is supplied to the control valve 9 for the first working device by the supply flow path 17, the traveling straight control valve 7, the flow path (19).
  • a part of the hydraulic oil of the second hydraulic pump P2 is supplied to the control valve 8 for the second working device through the supply passage 17 and the parallel passage 21, and the hydraulic oil of the second hydraulic pump P2.
  • a part passes through the fixed orifice 13 provided in the parallel flow path 21 and the branch flow path 24, and is supplied to the 2nd driving control valve 6b.
  • the hydraulic fluid of the first hydraulic pump P1 is supplied to the left and right traveling sides by switching of the traveling straight control valve 7 during the complex operation, and a part of the hydraulic oil of the second hydraulic pump P2 is a working device. Part of the hydraulic oil of the second hydraulic pump P2 is supplied to the traveling side through the fixed orifice 13.
  • the first and second traveling motors are driven by the hydraulic oil supplied from the first and second hydraulic pumps P1 and P2, respectively.
  • the traveling straight control valve 7 When switching of the traveling straight control valve 7 by switching of the valve 5 is driven by most of the hydraulic oil supplied from the first hydraulic pump (P1), a shock occurs due to the lack of supply of the hydraulic oil. .
  • the lifting work of the weight body is not smooth, and in view of this, when the opening area of the fixed orifice 13 is further reduced, the lifting work is possible, while the shock phenomenon becomes more severe. .
  • the present invention is to solve the above-mentioned problems, to reduce the occurrence of shock when operating the work device while driving, it is possible to smoothly operate the work device driving control device for construction machinery that can improve the operability and reliability and It is an object to provide a control method.
  • the first and second hydraulic pump and pilot pump are configured to achieve the above and other objects of the present invention.
  • the first traveling control valve and the first working device control installed in the supply flow path of the first hydraulic pump and controls the amount and flow direction of the operating oil supplied to the first traveling motor and the first working device at the time of switching valve;
  • the second traveling control valve and the second working device control installed in the supply flow path of the second hydraulic pump, and controls the amount and flow direction of the working oil supplied to the second running motor and the second working device at the time of switching valve;
  • a traveling straight control valve installed at an upstream side of a supply flow path of the second hydraulic pump and switched during a complex work by operating a traveling device and a work device;
  • a parallel flow passage having an inlet connected to an upstream side of a supply flow path of the second hydraulic pump and an outlet connected to an inlet port of the control valve for the second work device;
  • the fixed orifice installed in the branch flow path and the fixed orifice are driven from the second hydraulic pump when the working device load pressure is higher than the running load pressure when the driving straight control valve is switched in order to operate the driving and work device in combination. To prevent the fluid from tipping to the side;
  • the first proportional control valve and the first proportional control valve installed in the flow path between the pilot pump and the traveling straight control valve, the first proportional control valve to operate the hydraulic fluid of the pilot pump during the combined operation by operating the traveling and work equipment And converting the pilot pressure proportional to the operation amount of the operating lever for the device and applying the converted pilot pressure to the traveling straight control valve.
  • the first and second hydraulic pump and pilot pump are configured to achieve the above and other objects of the present invention.
  • the first traveling control valve and the first working device control installed in the supply flow path of the first hydraulic pump and controls the amount and flow direction of the operating oil supplied to the first traveling motor and the first working device at the time of switching valve;
  • the second traveling control valve and the second working device control installed in the supply flow path of the second hydraulic pump, and controls the amount and flow direction of the working oil supplied to the second running motor and the second working device at the time of switching valve;
  • a traveling straight control valve installed at an upstream side of a supply flow path of the second hydraulic pump and switched during a complex work by operating a traveling device and a work device;
  • a parallel flow passage having an inlet connected to an upstream side of a supply flow path of the second hydraulic pump and an outlet connected to an inlet port of the control valve for the second work device;
  • variable orifice installed in the branch flow path and the variable orifice travel from the second hydraulic pump when the work device load pressure is higher than the travel load pressure when the driving linear control valve is switched to operate the combined operation and the work device. To prevent the fluid from tipping to the side;
  • the first proportional control valve and the first proportional control valve installed in the flow path between the pilot pump and the traveling straight control valve, the first proportional control valve to operate the hydraulic fluid of the pilot pump during the combined operation by operating the traveling and work equipment Converting the pilot pressure proportional to the operation amount of the operating lever for the device and applying the converted pilot pressure to the traveling straight control valve;
  • the second proportional control valve installed in the flow path between the pilot pump and the variable orifice, the second proportional control valve for operating the traveling and work equipment, the operation oil of the pilot pump for the first and second work equipment Converting the pilot pressure proportional to the operation amount of the operation lever, and applying the converted pilot pressure to the variable orifice so that the opening area of the variable orifice is adjusted in inverse proportion to the converted pilot pressure; driving control for a construction machine Provide the device.
  • the hydraulic fluid of the pilot pump is converted into a pilot pressure so as to be proportional to the operation amount of the operating lever for the first and second work devices by the first proportional control valve. And applying the applied pilot pressure to the traveling straight control valve.
  • the hydraulic fluid of the pilot pump is converted into a pilot pressure so as to be proportional to the operation amount of the operating lever for the first and second work devices by the first proportional control valve. Applying a predetermined pilot pressure to the traveling straight control valve;
  • the hydraulic fluid of the pilot pump is converted into pilot pressure by a second proportional control valve to be proportional to the operation amount of the operating lever for the first and second work devices. And applying the converted pilot pressure to the variable orifice so that the opening area of the variable orifice is adjusted in inverse proportion to the converted pilot pressure.
  • a first pressure sensor for detecting an operation amount of the first driving control device for switching the first driving control valve
  • a second pressure sensor for detecting an operation amount of a second driving control device for switching the second driving control valve
  • a third pressure sensor for detecting an operation amount of the first work device operating lever for switching the control valve for the first work device
  • a fourth pressure sensor detecting an operation amount of the second work device operating lever for switching the control valve for the second work device
  • a controller for calculating an operation signal input from the first, second, third and fourth pressure sensors and applying an electrical signal for switching the first proportional control valve to the first proportional control valve.
  • a first pressure sensor for detecting an operation amount of the first driving control device for switching the first driving control valve
  • a second pressure sensor for detecting an operation amount of a second driving control device for switching the second driving control valve
  • a third pressure sensor for detecting an operation amount of the first work device operating lever for switching the control valve for the first work device
  • a fourth pressure sensor detecting an operation amount of the second work device operating lever for switching the control valve for the second work device
  • a controller for calculating an operation signal input from the first, second, third and fourth pressure sensors and applying an electrical signal for switching to the first proportional control valve and the second proportional control valve.
  • a fifth pressure sensor which detects an operating pressure of the first hydraulic pump and inputs the detected pressure value to the controller
  • a sixth pressure sensor which detects an operating pressure of the second hydraulic pump and inputs the detected pressure value to the controller.
  • the opening area of the variable orifice is characterized by having an external signal port to be adjusted by a pilot pressure input from the outside.
  • variable orifice is characterized in that the opening area is adjusted in proportion to the difference between the load pressure generated on the work device side and the load pressure generated on the travel side.
  • the detected operating pressure is higher than the set pressure, it is characterized in that to increase the pilot pressure applied to the traveling straight control valve from the first proportional control valve.
  • the pilot pressure applied to the variable orifice is increased by the second proportional control valve so as to further reduce and adjust the opening area of the variable orifice below the predetermined area.
  • FIG. 1 is a hydraulic circuit diagram of a traveling control device for a construction machine according to the prior art
  • FIG. 2 is a hydraulic circuit diagram of a traveling control device for a construction machine according to an embodiment of the present invention
  • FIG. 3 is a hydraulic circuit diagram of a traveling control device for a construction machine according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a traveling control method for a construction machine according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a traveling control method for a construction machine according to another embodiment of the present invention.
  • FIG. 6 is a graph showing a modified control of the first proportional control valve in the traveling control apparatus for construction machinery according to an embodiment of the present invention
  • FIG. 7 is a graph showing a modified control of the second proportional control valve in the traveling control apparatus for construction machinery according to an embodiment of the present invention.
  • FIG. 2 is a hydraulic circuit diagram of a traveling control device for a construction machine according to an embodiment of the present invention
  • Figure 3 is a hydraulic circuit diagram of a traveling control device for a construction machine according to another embodiment of the present invention
  • Figure 4 is 5 is a flowchart illustrating a traveling control method for a construction machine according to an embodiment
  • FIG. 5 is a flowchart illustrating a traveling control method for a construction machine according to another embodiment of the present invention
  • FIG. 6 is a traveling diagram for a construction machine according to an embodiment of the present invention.
  • the control apparatus it is a graph showing the modified control of the first proportional control valve
  • Figure 7 is a graph showing the modified control of the second proportional control valve in the traveling control apparatus for construction machinery according to an embodiment of the present invention.
  • first and second hydraulic pumps P1 and P2 (hereinafter referred to as first and second hydraulic pumps) and pilot pumps 11;
  • a second working device and a second driving motor which are not shown, operated by the operating oil of the second hydraulic pump P2;
  • a first driving control valve installed in the supply passage 16 of the first hydraulic pump P1 and controlling the amount and the flow direction of the hydraulic oil supplied to the first traveling motor and the first working device at the time of switching; 6a) and a control valve 9 for the first work device;
  • a second driving control valve installed in the supply flow path 17 of the second hydraulic pump P2 and controlling the amount and flow direction of the hydraulic oil supplied to the second traveling motor and the second working device at the time of switching; 6b) and a control valve 8 for the second working device;
  • a traveling straight control valve (7) installed at an upstream side of the supply flow path (17) of the second hydraulic pump (P2), for switching during combined work by manipulating a traveling device and a work device;
  • a parallel flow passage 21 having an inlet connected to an upstream side of the supply flow passage 17 of the second hydraulic pump P2 and an outlet connected to an inlet port of the control valve 8 for the second work device;
  • Branch flow passage 24 in which an inlet is branched to a predetermined position of the parallel flow passage 21 and an outlet is branched to a flow path 20 between the traveling straight control valve 7 and the second driving control valve 8. );
  • the check valve and the fixed orifice 13 and the fixed orifice 13 and the fixed orifice 13 installed in the branch flow passage 24 operate the load of the work device when the driving straight control valve 7 is switched in order to operate the work and the work device in combination.
  • the pressure is higher than the running load pressure to prevent the hydraulic oil from flowing from the second hydraulic pump (P2) to the running side;
  • the first proportional control valve 14a and the first proportional control valve 14a installed in the flow path 18 between the pilot pump 11 and the traveling straight control valve 7 operate a traveling and work device.
  • the pilot oil 11 is converted into a pilot pressure proportional to the operation amount of the operation levers 4b and 4a for the first and second work devices, and the pilot oil is converted into the straight traveling control valve 7. Applying pressure;
  • Variable displacement first and second hydraulic pumps P1 and P2 and pilot pumps 11 A first working device and a first traveling motor, not shown, operated by the hydraulic oil of the first hydraulic pump P1; A second working device and a second driving motor, which are not shown, operated by the operating oil of the second hydraulic pump P2; A first driving control valve 6a and a first working control valve 9 installed in the supply passage 16 of the first hydraulic pump P1; A second traveling control valve 6b and a second working device control valve 8 installed in the supply flow path 17 of the second hydraulic pump P2; A traveling straight control valve 7 installed upstream of the supply flow path 17 of the second hydraulic pump P2; First to fourth pressure sensors 12d and 12c (12b and 12a) for traveling and working apparatuses for detecting an operation amount of the operating apparatus for operating the traveling and working apparatuses;
  • a first proportional control valve (14a) provided in the flow path 18 between the pilot pump 11 and the traveling straight control valve (7):
  • the operating oil of the pilot pump 11 is operated by the first proportional control valve 14a to the first and second work device operating levers 4b and 4a. And converting the pilot pressure so as to be proportional to an operation amount of the step S, and applying the converted pilot pressure to the traveling straight control valve 7 (S600).
  • the manipulated amounts of the first and second traveling manipulators 3a and 3b are detected by the first and second pressure sensors 12d and 12c and the detected The operation signals of the first and second traveling operation devices 3a and 3b are input to the controller 10.
  • the operation amount of the first and second working device operating levers 4b and 4a is detected by the third and fourth pressure sensors 12b and 12a, and the detected first and second working device operating levers.
  • the operation signals of 4b and 4a are input to the controller 10.
  • the first proportional control valve 14a converts the hydraulic oil of the pilot pump 11 into the secondary pilot pressure so as to be proportional to the operation amount of the operation levers 4b and 4a for the first and second working devices. (Shown in the graph diagram " a " in FIG. 4). That is, the secondary pilot pressure converted by the first proportional control valve 14a is applied to the traveling straight control valve 7 to switch. Accordingly, the switching speed of the traveling straight control valve 7 is adjusted by the operation amount of the operation levers 4b and 4a for the first and second work devices, thereby reducing the occurrence of shock.
  • the operating pressure of the second hydraulic pump P2 is detected by the fifth pressure sensor 12e and the detected operating pressure is set.
  • the pilot pressure applied to the traveling straight control valve 7 from the first proportional control valve 14a is lowered.
  • the pilot pressure applied to the driving straight control valve 7 may be increased from the first proportional control valve 14a.
  • first and second hydraulic pumps P1 and P2 (hereinafter referred to as first and second hydraulic pumps) and pilot pumps 11;
  • a second working device and a second driving motor which are not shown, operated by the operating oil of the second hydraulic pump P2;
  • a first driving control valve installed in the supply passage 16 of the first hydraulic pump P1 and controlling the amount and the flow direction of the hydraulic oil supplied to the first traveling motor and the first working device at the time of switching; 6a) and a control valve 9 for the first work device;
  • a second driving control valve 6b installed in the supply flow path 17 of the second hydraulic pump and controlling the amount and the flow direction of the working oil supplied to the second traveling motor and the second working device, respectively, during switching;
  • a traveling straight control valve (7) installed at an upstream side of the supply flow path (17) of the second hydraulic pump (P2), for switching during combined work by manipulating a traveling device and a work device;
  • a parallel flow passage 21 having an inlet connected to an upstream side of the supply flow passage 17 of the second hydraulic pump P2 and an outlet connected to an inlet port of the control valve 8 for the second work device;
  • An inlet is branched to a predetermined position of the parallel flow passage 21, and a branch flow passage having an outlet connected to a flow path 20 between the traveling straight control valve 7 and the second travel control valve 6b ( 24);
  • the check valve and the variable orifice 15 and the variable orifice 15 installed in the branch flow passage 24 have a work device load when the driving straight control valve 7 is switched in order to operate the work and the work device in combination.
  • the pressure is higher than the running load pressure to prevent the hydraulic oil from flowing from the second hydraulic pump (P2) to the running side;
  • the first proportional control valve 14a and the first proportional control valve 14a installed in the flow path 18 between the pilot pump 11 and the traveling straight control valve 7 operate a traveling and work device.
  • the hydraulic fluid of the pilot pump 11 is converted into a pilot pressure proportional to the operation amount of the operation levers 4b and 4a for the first and second work devices, and converted into the straight traveling control valve 7. Applying pilot pressure;
  • the second proportional control valve 14b and the second proportional control valve 14b installed in the flow path 23 between the pilot pump 11 and the variable orifice 15 operate a traveling and working device to perform a combined operation.
  • the hydraulic fluid of the pilot pump 11 is converted into a pilot pressure proportional to the operation amount of the operation levers 4b and 4a for the first and second working devices, the pilot of which the opening area of the variable orifice 15 is converted And applying the converted pilot pressure to the variable orifice 15 to be adjusted in inverse proportion to the pressure.
  • first and second hydraulic pumps P1 and P2 Variable displacement first and second hydraulic pumps P1 and P2 (hereinafter referred to as first and second hydraulic pumps) and pilot pumps 11; A first working device and a first traveling motor, not shown, operated by the hydraulic oil of the first hydraulic pump P1; A second working device and a second driving motor, which are not shown, operated by the operating oil of the second hydraulic pump P2; A first driving control valve 6a and a first working control valve 9 installed in the supply passage 16 of the first hydraulic pump P1; A second traveling control valve 6b and a second working device control valve 8 installed in the supply flow path 17 of the second hydraulic pump P2; A traveling straight control valve 7 installed upstream of the supply flow path 17 of the second hydraulic pump P2; A parallel flow passage 21 having an inlet connected to an upstream side of the supply flow passage 17 of the second hydraulic pump P2 and an outlet connected to an inlet port of the control valve 8 for the second work device; Branch flow passage 24 in which an inlet is branched to a predetermined position of the parallel flow passage 21
  • the operating oil of the pilot pump 11 is controlled by the second proportional control valve 14b to the first and second work device operating levers 4b and 4a. Converting the pilot pressure so as to be proportional to an operation amount of the control unit, and applying the converted pilot pressure to the variable orifice (15) so that the opening area of the variable orifice (15) is adjusted in inverse proportion to the converted pilot pressure (S7000); It includes.
  • the operation amounts of the first and second traveling operating devices 3a and 3b are detected by the first and second pressure sensors 12d and 12c, and the detected The operation signals of the first and second traveling operation devices 3a and 3b are input to the controller 10.
  • the operation amounts of the first and second working device operating levers 4b and 4a are detected by the third and fourth pressure sensors 12b and 12a, and the detected first and second working device operations.
  • the operation signals of the levers 4b and 4a are input to the controller 10.
  • the first proportional control valve 14a converts the hydraulic oil of the pilot pump 11 into the secondary pilot pressure so as to be proportional to the operation amount of the operation levers 4b and 4a for the first and second working devices. (Shown in graph diagram "a" in FIG. 5). That is, the secondary pilot pressure converted by the first proportional control valve 14a is applied to the traveling straight control valve 7 to switch.
  • the switching speed of the traveling straight control valve 7 is controlled by the operation amount of the operation levers 4b and 4a for the first and second working devices, so that the occurrence of shock can be reduced.
  • the second proportional control valve 14b converts the hydraulic oil of the pilot pump 11 into the secondary pilot pressure so as to be proportional to the operation amount of the first and second working device operating levers 4b and 4a (shown in the graph diagram " b " ).
  • the converted pilot pressure is applied to the variable orifice 15 to adjust the opening area of the variable orifice 15 in inverse proportion to the secondary pilot pressure converted by the second proportional control valve 14b (FIG. 5). Graph leading to "c" in the city).
  • the second hydraulic pump P2 may be reduced by adjusting the opening area of the variable orifice 15 when the load pressure generated in the work device is relatively higher than the travel side load pressure.
  • the hydraulic oil supplied to the control valve 8 for the second working device through the parallel flow passage 21 can be prevented from being pulled toward the traveling side through the branch flow passage 24. This reduces the occurrence of shock and smoothly operates the work tool.
  • the operating pressure of the second hydraulic pump P2 is detected by the fifth pressure sensor 12e and the detected operating pressure is lower than the set pressure.
  • the pilot pressure applied to the variable orifice 15 is reduced by the second proportional control valve 14b to reduce and adjust the opening area of the variable orifice 15 to a predetermined area.
  • the second proportional control valve 14b is configured to reduce and adjust the opening area of the variable orifice 15 below the predetermined area. It is characterized in that to increase the pilot pressure applied to the variable orifice (15).
  • the occurrence of shock at the start and end of the operation of the work device can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

주행중 작업장치를 동작시킬 경우 쇼크 발생되는 것을 줄이고 작업장치가 원활하게 동작할 수 있는 건설기계용 주행 제어장치 및 그 제어방법을 개시한다. 본 발명에 따른 주행 제어장치에 있어서, 제1유압펌프의 작동유에 의해 동작하는 제1작업장치 및 제1주행모터; 제2유압펌프의 작동유에 의해 동작하는 제2작업장치 및 제2주행모터; 제1유압펌프의 공급유로에 설치되는 제1주행용 제어밸브 및 제1작업장치용 제어밸브; 제2유압펌프의 공급유로에 설치되는 제2주행용 제어밸브 및 제2작업장치용 제어밸브; 제2유압펌프의 공급유로 상류측에 설치되는 주행직진 제어밸브; 제2유압펌프의 공급유로 상류측에 입구가 분기접속되고 제2작업장치용 제어밸브의 입구포트에 출구가 접속되는 병렬유로; 병렬유로의 소정위치에 입구가 분기접속되고 주행직진 제어밸브와 제2주행용 제어밸브사이의 유로에 출구가 분기접속되는 분기유로; 분기유로에 설치되는 고정 오리피스; 파일럿펌프와 주행직진 제어밸브사이의 유로에 설치되는 제1비례제어밸브;를 구비하는 것을 특징으로 하는 건설기계용 주행 제어장치를 제공한다.

Description

건설기계용 주행 제어장치 및 그 제어방법
본 발명은 건설기계용 주행 제어장치 및 그 제어방법에 관한 것으로, 보다 구체적으로 설명하면, 주행중 작업장치를 동작시켜 복합작업할 경우 쇼크 발생되는 것을 줄이고 작업장치가 원활하게 동작할 수 있는 건설기계용 주행 제어장치 및 그 제어방법에 관한 것이다.
도 1에 도시된 종래 기술에 의한 건설기계용 주행 제어장치는,
가변용량형 제1,2유압펌프(이하, 제1,2유압펌프 라고 함)(P1,P2) 및 파일럿펌프(11);
상기 제1유압펌프(P1)의 작동유에 의해 동작하는 미도시된 제1작업장치 및 제1주행모터;
상기 제2유압펌프(P2)의 작동유에 의해 동작하는 미도시된 제2작업장치 및 제2주행모터;
상기 제1유압펌프(P1)의 공급유로(16)에 설치되고, 절환시 상기 제1주행모터 및 제1작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제1주행용 제어밸브(6a) 및 제1작업장치용 제어밸브(9);
상기 제2유압펌프(P2)의 공급유로(17)에 설치되고, 절환시 상기 제2주행모터 및 제2작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제2주행용 제어밸브(6b) 및 제2작업장치용 제어밸브(8);
상기 제2유압펌프(P2)의 공급유로(17) 상류측에 설치되고, 주행과 작업장치를 조작하여 복합작업시 절환되어 주행 직진성을 확보하는 주행직진 제어밸브(7);
상기 제2유압펌프(P2)의 공급유로(17) 상류측에 입구가 분기접속되고 상기 제2작업장치용 제어밸브(8)의 입구포트에 출구가 접속되는 병렬유로(21);
상기 병렬유로(21)의 소정위치에 입구가 분기접속되고, 상기 주행직진 제어밸브(7)와 상기 제2주행용 제어밸브(6b)사이의 유로(20)에 출구가 분기접속되는 분기유로(24);
상기 분기유로(24)에 설치되는 체크밸브 및 고정 오리피스(13), 상기 고정 오리피스(13)는 주행과 작업장치를 조작하여 복합작업하기 위해 상기 주행직진 제어밸브(7)를 절환시 작업장치 부하압력이 주행 부하압력보다 높을 경우 상기 제2유압펌프(P2)로부터 주행측으로 작동유 쏠림을 방지하게 됨;
상기 파일럿펌프(11)와 상기 주행직진 제어밸브(7)사이의 유로(18)에 설치되는 솔레노이드밸브(5), 상기 솔레노이드밸브(5)는 전기신호 인가에 의해 절환되어 상기 파일럿펌프(11)의 작동유를 상기 주행직진 제어밸브(7)에 인가시킴;
상기 제1주행용 제어밸브(6a)를 절환하기 위한 제1주행 조작장치(3a)의 조작량을 검출하는 제1압력센서(12d);
상기 제2주행용 제어밸브(6b)를 절환하기 위한 제2주행 조작장치(3b)의 조작량을 검출하는 제2압력센서(12c);
상기 제1작업장치용 제어밸브(9)를 절환하기 위한 제1작업장치 조작레버(4b)의 조작량을 검출하는 제3압력센서(12b);
상기 제2작업장치용 제어밸브(8)를 절환하기 위한 제2작업장치 조작레버(4a)의 조작량을 검출하는 제4압력센서(12a);
상기 제1,2,3,4압력센서(12d,12c,12b,12a)로부터 입력되는 조작신호를 연산하여 상기 솔레노이드밸브(5)에 이를 절환하기 위한 전기신호를 인가하는 콘트롤러(10);를 구비한다.
도면중 미 설명부호 2는 메인 컨트롤밸브(MCV)이다.
종래 기술의 주행 제어장치는, 상기 제1,2주행 조작장치(3a,3b)의 조작에 의한 파일럿압력의 인가에 의해 상기 제1주행용 제어밸브(6a)가 도면상, 좌측방향으로 절환되고, 제2주행용 제어밸브(6b)가 도면상, 우측방향으로 절환된다. 이때 제1,2주행 조작장치(3a,3b)의 조작량은 상기 제1,2압력센서(12d,12c)에 의해 검출되어 조작신호는 상기 콘트롤러(10)에 입력된다.
따라서, 상기 제1유압펌프(P1)의 작동유 일부는 공급유로(16), 제1주행용 제어밸브(6a)에 공급된다. 또한 상기 제1유압펌프(P1)의 작동유 일부는 유로(22) 및 주행직진 제어밸브(7)를 통과하여 제1작업장치용 제어밸브(9)에 공급된다.
한편, 상기 제2유압펌프(P2)의 작동유 일부는 공급유로(17), 주행직진 제어밸브(7), 유로(20), 제2주행용 제어밸브(6b)에 공급된다. 또한 상기 제2유압펌프(P2)의 작동유 일부는 병렬유로(21)에 의해 제2작업장치용 제어밸브(8)에 공급되고, 분기유로(24)에 설치된 체크밸브, 고정 오리피스(13)를 통과하여 제2주행용 제어밸브(6b)에 공급된다.
이때, 상기 제1,2작업장치 조작레버(4b,4a)를 조작하여 작업장치를 동작시킬 경우(주행과 작업장치를 동작시켜 복합작업하는 경우), 상기 제3,4압력센서(12b,12a)에 의해 조작량을 검출하여 조작신호를 콘트롤러(10)에 입력한다. 콘트롤러(10)로부터 전기신호 인가에 의해 상기 솔레노이드밸브(5)를 온 상태로 절환시킨다. 즉 솔레노이드밸브(5)의 절환으로 인해 파일럿펌프(11)로부터의 파일럿압력에 의해 주행직진 제어밸브(7)를 도면상, 좌측방향으로 절환시킨다.
이로 인해, 상기 제1유압펌프(P1)의 작동유 일부는 공급유로(16)를 제1주행용 제어밸브(6a)에 공급된다. 또한 상기 제1유압펌프(P1)의 작동유 일부는 공급유로(16), 유로(22), 주행직진 제어밸브(7), 유로(20)를 제2주행용 제어밸브(6b)에 공급된다.
한편, 상기 제2유압펌프(P2)의 작동유 일부는 공급유로(17), 주행직진 제어밸브(7), 유로(19)에 의해 제1작업장치용 제어밸브(9)에 공급된다. 또한 상기 제2유압펌프(P2)의 작동유 일부는 상기 공급유로(17), 병렬유로(21)를 통해 제2작업장치용 제어밸브(8)로 공급되고, 제2유압펌프(P2)의 작동유 일부는 병렬유로(21), 분기유로(24)에 설치된 고정 오리피스(13)를 통과하여 제2주행용 제어밸브(6b)에 공급된다.
전술한 바와 같이 복합작업시 상기 주행직진 제어밸브(7)의 절환에 의해 상기 제1유압펌프(P1)의 작동유는 좌우측 주행쪽으로 공급되고, 상기 제2유압펌프(P2)의 작동유 일부는 작업장치쪽으로 공급되고, 또한 제2유압펌프(P2)의 작동유 일부는 상기 고정 오리피스(13)를 통해 주행쪽에 공급된다.
이 경우, 주행 모드시 상기 제1,2주행모터는 상기 제1,2유압펌프(P1,P2)에서 각각 공급되는 작동유에 의해 구동하게 되는데, 복합작업시 상기 제1,2주행모터는 상기 솔레노이드밸브(5)의 절환에 의한 상기 주행직진 제어밸브(7)의 절환시 상기 제1유압펌프(P1)에서 공급되는 대부분의 작동유에 의해 구동하게 되므로, 작동유의 공급 부족으로 인해 쇼크가 발생하게 된다.
또한, 주행중 중량체를 들어올리는 인양작업할 경우 주행쪽에 발생되는 부하압력보다 작업장치에 발생되는 부하압력이 상대적으로 높게 된다. 이로 인해 상기 제2유압펌프(P2)로부터 병렬유로(21)를 통해 제2작업장치용 제어밸브(8)에 공급되는 작동유가 고정 오리피스(13)를 통해 주행쪽으로 쏠림현상이 발생된다.
이로 인해 중량체를 인양하는 작업이 원활하지 못하게 되므로, 이를 감안하여 상기 고정 오리피스(13)의 개구면적을 상대적으로 더 축소시킬 경우 인양작업은 가능한 반면에, 쇼크 현상은 더 심해지게 되는 문제점을 갖는다.
따라서 본 발명은 전술한 문제점을 해결하고자 하는 것으로, 주행중 작업장치를 동작시킬 경우 쇼크 발생되는 것을 줄이고, 작업장치를 원활하게 동작시킬 수 있어 조작성 및 신뢰성을 향상시킬 수 있는 건설기계용 주행 제어장치 및 그 제어방법을 제공하는 것을 목적으로 한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 일실시예에 따르면, 제1,2유압펌프 및 파일럿펌프;
상기 제1유압펌프의 작동유에 의해 동작하는 제1작업장치 및 제1주행모터;
상기 제2유압펌프의 작동유에 의해 동작하는 제2작업장치 및 제2주행모터;
상기 제1유압펌프의 공급유로에 설치되고, 절환시 상기 제1주행모터 및 제1작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제1주행용 제어밸브 및 제1작업장치용 제어밸브;
상기 제2유압펌프의 공급유로에 설치되고, 절환시 상기 제2주행모터 및 제2작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제2주행용 제어밸브 및 제2작업장치용 제어밸브;
상기 제2유압펌프의 공급유로 상류측에 설치되고, 주행과 작업장치를 조작하여 복합작업시 절환되어 주행 직진성을 확보하는 주행직진 제어밸브;
상기 제2유압펌프의 공급유로 상류측에 입구가 분기접속되고 상기 제2작업장치용 제어밸브의 입구포트에 출구가 접속되는 병렬유로;
상기 병렬유로의 소정위치에 입구가 분기접속되고 상기 주행직진 제어밸브와 상기 제2주행용 제어밸브사이의 유로에 출구가 분기접속되는 분기유로;
상기 분기유로에 설치되는 고정 오리피스, 상기 고정 오리피스는 주행과 작업장치를 조작하여 복합작업하기 위해 상기 주행직진 제어밸브를 절환시 작업장치 부하압력이 주행 부하압력보다 높을 경우 상기 제2유압펌프로부터 주행측으로 작동유 쏠림을 방지하게 됨;
상기 파일럿펌프와 상기 주행직진 제어밸브사이의 유로에 설치되는 제1비례제어밸브, 상기 제1비례제어밸브는 주행과 작업장치를 조작하여 복합작업시, 상기 파일럿펌프의 작동유를 제1,2작업장치용 조작레버의 조작량에 비례하는 파일럿압력으로 변환하여, 변환된 파일럿압력을 상기 주행직진 제어밸브에 인가시킴;을 특징으로 하는 건설기계용 주행 제어장치를 제공한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 다른 실시예에 따르면, 제1,2유압펌프 및 파일럿펌프;
상기 제1유압펌프의 작동유에 의해 동작하는 제1작업장치 및 제1주행모터;
상기 제2유압펌프의 작동유에 의해 동작하는 제2작업장치 및 제2주행모터;
상기 제1유압펌프의 공급유로에 설치되고, 절환시 상기 제1주행모터 및 제1작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제1주행용 제어밸브 및 제1작업장치용 제어밸브;
상기 제2유압펌프의 공급유로에 설치되고, 절환시 상기 제2주행모터 및 제2작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제2주행용 제어밸브 및 제2작업장치용 제어밸브;
상기 제2유압펌프의 공급유로 상류측에 설치되고, 주행과 작업장치를 조작하여 복합작업시 절환되어 주행 직진성을 확보하는 주행직진 제어밸브;
상기 제2유압펌프의 공급유로 상류측에 입구가 분기접속되고 상기 제2작업장치용 제어밸브의 입구포트에 출구가 접속되는 병렬유로;
상기 병렬유로의 소정위치에 입구가 분기접속되고 상기 주행직진 제어밸브와 상기 제2주행용 제어밸브사이의 유로에 출구가 분기접속되는 분기유로;
상기 분기유로에 설치되는 가변 오리피스, 상기 가변 오리피스는 주행과 작업장치를 조작하여 복합작업하기 위해 상기 주행직진 제어밸브를 절환시 작업장치 부하압력이 주행 부하압력보다 높을 경우 상기 제2유압펌프로부터 주행측으로 작동유 쏠림을 방지하게 됨;
상기 파일럿펌프와 상기 주행직진 제어밸브사이의 유로에 설치되는 제1비례제어밸브, 상기 제1비례제어밸브는 주행과 작업장치를 조작하여 복합작업시, 상기 파일럿펌프의 작동유를 제1,2작업장치용 조작레버의 조작량에 비례하는 파일럿압력으로 변환하여, 변환된 파일럿압력을 상기 주행직진 제어밸브에 인가시킴;
상기 파일럿펌프와 상기 가변 오리피스사이의 유로에 설치되는 제2비례제어밸브, 상기 제2비례제어밸브는 주행과 작업장치를 조작하여 복합작업시, 상기 파일럿펌프의 작동유를 제1,2작업장치용 조작레버의 조작량에 비례하는 파일럿압력으로 변환하되, 상기 가변 오리피스의 개구면적이 변환된 파일럿압력에 반비례하여 조정되도록 상기 가변 오리피스에 변환된 파일럿압력을 인가시킴;을 특징으로 하는 건설기계용 주행 제어장치를 제공한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 일 실시예에 따르면, 건설기계용 주행 제어방법에 있어서:
주행용 조작장치의 조작량을 검출하는 주행용 압력센서의 조작신호에 의해 제1,2주행모터의 동작 여부를 판단하는 단계;
작업장치용 조작장치의 조작량을 검출하는 작업장치용 압력센서의 조작신호에 의해 작업장치의 동작 여부를 판단하는 단계;
상기 제1,2주행모터가 동작중이고 상기 작업장치가 동작하지않는 경우, 파일럿펌프로부터 주행직진 제어밸브에 인가되는 파일럿압력을 차단하는 단계;
상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 상기 파일럿펌프의 작동유를 제1비례제어밸브에 의해 제1,2작업장치용 조작레버의 조작량에 비례하도록 파일럿압력으로 변환하여, 변환된 파일럿압력을 상기 주행직진 제어밸브에 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계용 주행 제어방법을 제공한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 다른 실시예에 따르면, 건설기계용 주행 제어방법에 있어서:
주행용 조작장치의 조작량을 검출하는 주행용 압력센서의 조작신호에 의해 제1,2주행모터의 동작 여부를 판단하는 단계;
작업장치용 조작장치의 조작량을 검출하는 작업장치용 압력센서의 조작신호에 의해 작업장치의 동작 여부를 판단하는 단계;
상기 제1,2주행모터가 동작중이고 상기 작업장치가 동작하지않는 경우, 파일럿펌프로부터 주행직진 제어밸브에 인가되는 파일럿압력을 차단하는 단계;
상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 상기 파일럿펌프의 작동유를 제1비례제어밸브에 의해 제1,2작업장치용 조작레버의 조작량에 비례하도록 파일럿압력으로 변환하여, 변환된 파일럿압력을 상기 주행직진 제어밸브에 인가하는 단계;
상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 상기 파일럿펌프의 작동유를 제2비례제어밸브에 의해 상기 제1,2작업장치용 조작레버의 조작량에 비례하도록 파일럿압력으로 변환하되, 가변 오리피스의 개구면적이 변환된 파일럿압력에 반비례하여 조정되도록 상기 가변 오리피스에 변환된 파일럿압력을 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계용 주행 제어방법을 제공한다.
상기 제1주행용 제어밸브를 절환하기 위한 제1주행 조작장치의 조작량을 검출하는 제1압력센서;
상기 제2주행용 제어밸브를 절환하기 위한 제2주행 조작장치의 조작량을 검출하는 제2압력센서;
상기 제1작업장치용 제어밸브를 절환하기 위한 제1작업장치 조작레버의 조작량을 검출하는 제3압력센서;
상기 제2작업장치용 제어밸브를 절환하기 위한 제2작업장치 조작레버의 조작량을 검출하는 제4압력센서;
상기 제1,2,3,4압력센서로부터 입력되는 조작신호를 연산하여 상기 제1비례제어밸브에 이를 절환하기 위한 전기신호를 인가하는 콘트롤러;를 포함하는 것을 특징으로 한다.
상기 제1주행용 제어밸브를 절환하기 위한 제1주행 조작장치의 조작량을 검출하는 제1압력센서;
상기 제2주행용 제어밸브를 절환하기 위한 제2주행 조작장치의 조작량을 검출하는 제2압력센서;
상기 제1작업장치용 제어밸브를 절환하기 위한 제1작업장치 조작레버의 조작량을 검출하는 제3압력센서;
상기 제2작업장치용 제어밸브를 절환하기 위한 제2작업장치 조작레버의 조작량을 검출하는 제4압력센서;
상기 제1,2,3,4압력센서로부터 입력되는 조작신호를 연산하여 상기 제1비례제어밸브 및 제2비례제어밸브에 절환하기 위한 전기신호를 인가하는 콘트롤러;를 포함하는 것을 특징으로 한다.
상기 제1유압펌프의 작동압력을 검출하여 검출된 압력값을 상기 콘트롤러에 입력하는 제5압력센서;
상기 제2유압펌프의 작동압력을 검출하여 검출된 압력값을 상기 콘트롤러에 입력하는 제6압력센서를 포함하는 것을 특징으로 한다.
상기 가변 오리피스의 개구면적은 외부로부터 입력되는 파일럿압력에 의해 조정되도록 외부신호포트를 구비하는 것을 특징으로 한다.
상기 가변 오리피스는 상기 작업장치측에 발생되는 부하압력과 상기 주행측에 발생되는 부하압력의 차에 반 비례하여 개구면적이 조정되는 것을 특징으로 한다.
상기 주행과 작업장치를 조작하여 복합작업시, 상기 제2유압펌프의 작동압력을 검출하여 검출된 작동압력이 설정압력보다 낮은 경우 상기 제1비례제어밸브에서 상기 주행직진 제어밸브에 인가되는 파일럿압력을 낮추고,
검출된 작동압력이 설정압력보다 높을 경우 상기 제1비례제어밸브에서 상기 주행직진 제어밸브에 인가되는 파일럿압력을 높이는 것을 특징으로 한다.
상기 주행과 작업장치를 조작하여 복합작업시, 상기 제2유압펌프의 작동압력을 검출하여 검출된 작동압력이 설정압력보다 낮은 경우, 상기 가변 오리피스의 개구면적을 소정면적으로 축소조정하도록 상기 제2비례제어밸브에서 상기 가변 오리피스에 인가되는 파일럿압력을 낮추고,
검출된 작동압력이 설정압력보다 높을 경우, 상기 가변 오리피스의 개구면적을 상기 소정면적 이하로 더 축소조정하도록 상기 제2비례제어밸브에서 상기 가변 오리피스에 인가되는 파일럿압력을 높이는 것을 특징으로 한다.
전술한 구성을 갖는 본 발명에 따르면, 주행중 작업장치를 동작시킬 경우 쇼크 발생되는 것을 줄이고 작업장치를 원활하게 동작시킬 수 있어 조작성 및 신뢰성을 향상시킬 수 있는 효과가 있다.
도 1은 종래 기술에 의한 건설기계용 주행 제어장치의 유압회로도,
도 2는 본 발명의 일 실시예에 의한 건설기계용 주행 제어장치의 유압회로도,
도 3은 본 발명의 다른 실시예에 의한 건설기계용 주행 제어장치의 유압회로도,
도 4는 본 발명의 일실시예에 의한 건설기계용 주행 제어방법의 흐름도,
도 5는 본 발명의 다른 실시예에 의한 건설기계용 주행 제어방법의 흐름도,
도 6은 본 발명의 실시예에 의한 건설기계용 주행 제어장치에서, 제1비례제어밸브의 변형된 제어를 나타내는 그래프,
도 7은 본 발명의 실시예에 의한 건설기계용 주행 제어장치에서, 제2비례제어밸브의 변형된 제어를 나타내는 그래프이다.
〈도면의 주요 부분에 대한 참조 부호의 설명〉
3a; 제1주행 조작장치
3b; 제2주행 조작장치
4a; 제2작업장치 조작레버
4b; 제1작업장치 조작레버
6a; 제1주행용 제어밸브
6b; 제2주행용 제어밸브
7; 주행직진 제어밸브
8; 제2작업장치용 제어밸브
9; 제1작업장치용 제어밸브
10; 콘트롤러
11; 파일럿펌프
P1; 제1유압펌프
P2; 제2유압펌프
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 따른 건설기계용 주행 제어장치 및 그 제어방법을 상세히 설명하기로 한다.
도 2는 본 발명의 일 실시예에 의한 건설기계용 주행 제어장치의 유압회로도이고, 도 3은 본 발명의 다른 실시예에 의한 건설기계용 주행 제어장치의 유압회로도이며, 도 4는 본 발명의 일실시예에 의한 건설기계용 주행 제어방법의 흐름도이며, 도 5는 본 발명의 다른 실시예에 의한 건설기계용 주행 제어방법의 흐름도이며, 도 6은 본 발명의 실시예에 의한 건설기계용 주행 제어장치에서, 제1비례제어밸브의 변형된 제어를 나타내는 그래프이며, 도 7은 본 발명의 실시예에 의한 건설기계용 주행 제어장치에서, 제2비례제어밸브의 변형된 제어를 나타내는 그래프이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 건설기계용 주행 제어장치는,
가변용량형 제1,2유압펌프(P1,P2)(이하 제1,2유압펌프 라고 함) 및 파일럿펌프(11);
상기 제1유압펌프(P1)의 작동유에 의해 동작하는 미도시된 제1작업장치 및 제1주행모터;
상기 제2유압펌프(P2)의 작동유에 의해 동작하는 미도시된 제2작업장치 및 제2주행모터;
상기 제1유압펌프(P1)의 공급유로(16)에 설치되고, 절환시 상기 제1주행모터 및 제1작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제1주행용 제어밸브(6a) 및 제1작업장치용 제어밸브(9);
상기 제2유압펌프(P2)의 공급유로(17)에 설치되고, 절환시 상기 제2주행모터 및 제2작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제2주행용 제어밸브(6b) 및 제2작업장치용 제어밸브(8);
상기 제2유압펌프(P2)의 공급유로(17) 상류측에 설치되고, 주행과 작업장치를 조작하여 복합작업시 절환되어 주행 직진성을 확보하는 주행직진 제어밸브(7);
상기 제2유압펌프(P2)의 공급유로(17) 상류측에 입구가 분기접속되고 상기 제2작업장치용 제어밸브(8)의 입구포트에 출구가 접속되는 병렬유로(21);
상기 병렬유로(21)의 소정위치에 입구가 분기접속되고 상기 주행직진 제어밸브(7)와 상기 제2주행용 제어밸브(8)사이의 유로(20)에 출구가 분기접속되는 분기유로(24);
상기 분기유로(24)에 설치되는 체크밸브 및 고정 오리피스(13), 상기 고정 오리피스(13)는 주행과 작업장치를 조작하여 복합작업하기 위해 상기 주행직진 제어밸브(7)를 절환시 작업장치 부하압력이 주행 부하압력보다 높을 경우 상기 제2유압펌프(P2)로부터 주행측으로 작동유 쏠림을 방지하게 됨;
상기 파일럿펌프(11)와 상기 주행직진 제어밸브(7)사이의 유로(18)에 설치되는 제1비례제어밸브(14a), 상기 제1비례제어밸브(14a)는 주행과 작업장치를 조작하여 복합작업시, 상기 파일럿펌프(11)의 작동유를 제1,2작업장치용 조작레버(4b,4a)의 조작량에 비례하는 파일럿압력으로 변환하여, 상기 주행직진 제어밸브(7)에 변환된 파일럿압력을 인가시킴;을 특징으로 한다.
도 4를 참조하면, 본 발명의 일 실시예에 의한 건설기계용 주행 제어방법은,
가변용량형 제1,2유압펌프(P1,P2) 및 파일럿펌프(11); 상기 제1유압펌프(P1)의 작동유에 의해 동작하는 미도시된 제1작업장치 및 제1주행모터; 상기 제2유압펌프(P2)의 작동유에 의해 동작하는 미도시된 제2작업장치 및 제2주행모터; 상기 제1유압펌프(P1)의 공급유로(16)에 설치되는 제1주행용 제어밸브(6a) 및 제1작업장치용 제어밸브(9); 상기 제2유압펌프(P2)의 공급유로(17)에 설치되는 제2주행용 제어밸브(6b) 및 제2작업장치용 제어밸브(8); 상기 제2유압펌프(P2)의 공급유로(17) 상류측에 설치되는 주행직진 제어밸브(7); 주행 및 작업장치를 조작하기 위한 조작장치의 조작량을 검출하는 주행 및 작업장치용 제1-제4압력센서(12d,12c)(12b,12a); 상기 파일럿펌프(11)와 상기 주행직진 제어밸브(7)사이의 유로(18)에 설치되는 제1비례제어밸브(14a);를 구비하는 것을 특징으로 하는 건설기계용 주행 제어방법에 있어서:
상기 제1,2주행용 조작장치(3a,3b)의 조작량을 검출하는 제1,2압력센서(12d,12c)의 조작신호에 의해 상기 제1,2주행모터의 동작 여부를 판단하는 단계(S100, S200);
상기 제1,2작업장치용 조작레버(4b,4a)의 조작량을 검출하는 제3,4압력센서(12b,12a)의 조작신호에 의해 상기 작업장치의 동작 여부를 판단하는 단계(S300,S400);
상기 제1,2주행모터가 동작중이고 상기 작업장치가 동작하지않는 경우, 상기 파일럿펌프(11)로부터 상기 주행직진 제어밸브(7)에 인가되는 파일럿압력을 차단하는 단계(S500);
상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 상기 파일럿펌프(11)의 작동유를 상기 제1비례제어밸브(14a)에 의해 상기 제1,2작업장치용 조작레버(4b,4a)의 조작량에 비례하도록 파일럿압력으로 변환하여, 상기 주행직진 제어밸브(7)에 변환된 파일럿압력을 인가하는 단계(S600);를 포함한다.
전술한 구성에 따르면, 도 4의 S100에서와 같이, 상기 제1,2주행용 조작장치(3a,3b)의 조작량을 제1,2압력센서(12d,12c)에 의해 검출하고, 검출된 상기 제1,2주행용 조작장치(3a,3b)의 조작신호는 상기 콘트롤러(10)에 입력된다.
S200에서와 같이, 상기 제1,2압력센서(12d,12c)로부터 입력되는 조작신호에 의해 상기 제1,2주행모터의 동작 여부를 판단한다. 상기 제1,2주행모터가 동작중일 경우 S300으로 진행하고, 상기 제1,2주행모터가 동작하지않을 경우에는 종료한다.
S300에서와 같이, 상기 제1,2작업장치용 조작레버(4b,4a)의 조작량을 제3,4압력센서(12b,12a)에 의해 검출하고, 검출된 제1,2작업장치용 조작레버(4b,4a)의 조작 신호는 상기 콘트롤러(10)에 입력된다.
S400에서와 같이, 상기 제3,4압력센서(12b,12a)로부터 입력되는 조작신호에 의해 상기 작업장치의 동작 여부를 판단한다. 상기 작업장치가 동작하지 않을 경우 S500으로 진행하고, 상기 작업장치가 동작중일 경우에는 S600으로 진행한다.
S500에서와 같이, 상기 제1,2주행모터가 동작중이고 상기 작업장치가 동작하지않을 경우에, 상기 콘트롤러(10)로부터 상기 제1비례제어밸브(14a)에 전기신호가 인가되지않아 상기 제1비례제어밸브(14a)는 오프 상태를 유지한다. 이로 인해 상기 파일럿펌프(11)로부터 상기 주행직진 제어밸브(7)에 인가되는 파일럿압력이 차단된상태이다.
S600에서와 같이, 상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우(주행과 작업장치를 동작시켜 복합작업하는 경우), 상기 콘트롤러(10)로부터 상기 제1비례제어밸브(14a)에 전기신호가 인가됨에 따라, 상기 제1비례제어밸브(14a)는 파일럿펌프(11)의 작동유를 제1,2작업장치용 조작레버(4b,4a)의 조작량에 비례하도록 2차 파일럿압력으로 변환시킨다(도 4의 그래프 선도 "a"에 도시). 즉 상기 제1비례제어밸브(14a)에 의해 변환된 2차 파일럿압력이 상기 주행직진 제어밸브(7)에 인가되어 절환시킨다. 이로 인해 상기 제1,2작업장치용 조작레버(4b,4a)의 조작량에 의해 상기 주행직진 제어밸브(7)의 절환속도를 조절하게 되므로 쇼크 발생을 줄일 수 있다.
도 2 및 도 6에서와 같이, 상기 주행과 작업장치를 조작하여 복합작업시, 상기 제2유압펌프(P2)의 작동압력을 제5압력센서(12e)에 의해 검출하여 검출된 작동압력이 설정압력보다 낮을 경우 상기 제1비례제어밸브(14a)에서 상기 주행직진 제어밸브(7)에 인가되는 파일럿압력을 낮추고,
검출된 제2유압펌프(P2)의 작동압력이 설정압력보다 높을 경우 상기 제1비례제어밸브(14a)에서 상기 주행직진 제어밸브(7)에 인가되는 파일럿압력을 높이는 것을 특징으로 한다.
도 3을 참조하면, 본 발명의 다른 실시예에 의한 건설기계용 주행 제어장치는,
가변용량형 제1,2유압펌프(P1,P2)(이하 제1,2유압펌프 라고 함) 및 파일럿펌프(11);
상기 제1유압펌프(P1)의 작동유에 의해 동작하는 미도시된 제1작업장치 및 제1주행모터;
상기 제2유압펌프(P2)의 작동유에 의해 동작하는 미도시된 제2작업장치 및 제2주행모터;
상기 제1유압펌프(P1)의 공급유로(16)에 설치되고, 절환시 상기 제1주행모터 및 제1작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제1주행용 제어밸브(6a) 및 제1작업장치용 제어밸브(9);
상기 제2유압펌프의 공급유로(17)에 설치되고, 절환시 상기 제2주행모터 및 제2작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제2주행용 제어밸브(6b) 및 제2작업장치용 제어밸브(8);
상기 제2유압펌프(P2)의 공급유로(17) 상류측에 설치되고, 주행과 작업장치를 조작하여 복합작업시 절환되어 주행 직진성을 확보하는 주행직진 제어밸브(7);
상기 제2유압펌프(P2)의 공급유로(17) 상류측에 입구가 분기접속되고 상기 제2작업장치용 제어밸브(8)의 입구포트에 출구가 접속되는 병렬유로(21);
상기 병렬유로(21)의 소정위치에 입구가 분기접속되고, 상기 주행직진 제어밸브(7)와 상기 제2주행용 제어밸브(6b)사이의 유로(20)에 출구가 분기접속되는 분기유로(24);
상기 분기유로(24)에 설치되는 체크밸브 및 가변 오리피스(15), 상기 가변 오리피스(15)는 주행과 작업장치를 조작하여 복합작업하기 위해 상기 주행직진 제어밸브(7)를 절환시 작업장치 부하압력이 주행 부하압력보다 높을 경우 상기 제2유압펌프(P2)로부터 주행측으로 작동유 쏠림을 방지하게 됨;
상기 파일럿펌프(11)와 상기 주행직진 제어밸브(7)사이의 유로(18)에 설치되는 제1비례제어밸브(14a), 상기 제1비례제어밸브(14a)는 주행과 작업장치를 조작하여 복합작업시, 상기 파일럿펌프(11)의 작동유를 상기 제1,2작업장치용 조작레버(4b,4a)의 조작량에 비례하는 파일럿압력으로 변환하여, 상기 주행직진 제어밸브(7)에 변환된 파일럿압력을 인가시킴;
상기 파일럿펌프(11)와 상기 가변 오리피스(15)사이의 유로(23)에 설치되는 제2비례제어밸브(14b), 상기 제2비례제어밸브(14b)는 주행과 작업장치를 조작하여 복합작업시, 상기 파일럿펌프(11)의 작동유를 상기 제1,2작업장치용 조작레버(4b,4a)의 조작량에 비례하는 파일럿압력으로 변환하되, 상기 가변 오리피스(15)의 개구면적이 변환된 파일럿압력에 반비례하여 조정되도록 상기 가변 오리피스(15)에 변환된 파일럿압력을 인가시킴;을 특징으로 한다.
도 5를 참조하면, 본 발명의 다른 실시예에 의한 건설기계용 주행 제어방법은,
가변용량형 제1,2유압펌프(P1,P2)(이하 제1,2유압펌프 라고 함) 및 파일럿펌프(11); 상기 제1유압펌프(P1)의 작동유에 의해 동작하는 미도시된 제1작업장치 및 제1주행모터; 상기 제2유압펌프(P2)의 작동유에 의해 동작하는 미도시된 제2작업장치 및 제2주행모터; 상기 제1유압펌프(P1)의 공급유로(16)에 설치되는 제1주행용 제어밸브(6a) 및 제1작업장치용 제어밸브(9); 상기 제2유압펌프(P2)의 공급유로(17)에 설치되는 제2주행용 제어밸브(6b) 및 제2작업장치용 제어밸브(8); 상기 제2유압펌프(P2)의 공급유로(17) 상류측에 설치되는 주행직진 제어밸브(7); 상기 제2유압펌프(P2)의 공급유로(17) 상류측에 입구가 분기접속되고 상기 제2작업장치용 제어밸브(8)의 입구포트에 출구가 접속되는 병렬유로(21); 상기 병렬유로(21)의 소정위치에 입구가 분기접속되고 상기 주행직진 제어밸브(7)와 상기 제2주행용 제어밸브(6b)사이의 유로(20)에 출구가 분기접속되는 분기유로(24); 상기 분기유로(24)에 설치되는 가변 오리피스(15); 주행 및 작업장치를 조작하기 위한 조작장치의 조작량을 검출하는 제1-제4압력센서(12d,12c)(12b,12a); 상기 파일럿펌프(11)와 상기 주행직진 제어밸브(7)사이의 유로(18)에 설치되는 제1비례제어밸브(14a); 상기 파일럿펌프(11)와 상기 가변 오리피스(15)사이의 유로(23)에 설치되는 제2비례제어밸브(14b);를 구비하는 것을 특징으로 하는 건설기계용 주행 제어방법에 있어서:
상기 제1,2주행용 조작장치(3a,3b)의 조작량을 검출하는 제1,2압력센서(12d,12c)의 조작신호에 의해 상기 제1,2주행모터의 동작 여부를 판단하는 단계(S1000,S2000);
상기 제1,2작업장치용 조작레버(4b,4a)의 조작량을 검출하는 제3,4압력센서(12b,12a)의 조작신호에 의해 상기 작업장치의 동작 여부를 판단하는 단계(S3000,S4000);
상기 제1,2주행모터가 동작중이고 상기 작업장치가 동작하지않는 경우, 상기 파일럿펌프(11)로부터 상기 주행직진 제어밸브(7)에 인가되는 파일럿압력을 차단하는 단계(S5000);
상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 상기 파일럿펌프(11)의 작동유를 상기 제1비례제어밸브(14a)에 의해 상기 제1,2작업장치용 조작레버(4b,4a)의 조작량에 비례하도록 파일럿압력으로 변환하여, 상기 주행직진 제어밸브(7)에 변환된 파일럿압력을 인가하는 단계(S6000);
상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 상기 파일럿펌프(11)의 작동유를 상기 제2비례제어밸브(14b)에 의해 상기 제1,2작업장치용 조작레버(4b,4a)의 조작량에 비례하도록 파일럿압력으로 변환하되, 상기 가변 오리피스(15)의 개구면적이 변환된 파일럿압력에 반비례하여 조정되도록 상기 가변 오리피스(15)에 변환된 파일럿압력을 인가하는 단계(S7000);를 포함한다.
전술한 구성에 따르면, 도 5의 S1000에서와 같이, 상기 제1,2주행용 조작장치(3a,3b)의 조작량을 제1,2압력센서(12d,12c)에 의해 검출하고, 검출된 상기 제1,2주행용 조작장치(3a,3b)의 조작신호는 상기 콘트롤러(10)에 입력된다.
S2000에서와 같이, 상기 제1,2압력센서(12d,12c)로부터 입력되는 조작신호에 의해 상기 제1,2주행모터의 동작 여부를 판단한다. 상기 제1,2주행모터가 동작중일 경우 S3000으로 진행하고, 상기 제1,2주행모터가 동작하지않을 경우에는 종료한다.
S3000에서와 같이, 상기 제1,2작업장치용 조작레버(4b,4a)의 조작량을 상기 제3,4압력센서(12b,12a)에 의해 검출하고, 검출된 제1,2작업장치용 조작레버(4b,4a)의 조작신호는 상기 콘트롤러(10)에 입력된다.
S4000에서와 같이, 상기 제3,4압력센서(12b,12a)로부터 입력되는 조작신호에 의해 상기 작업장치의 동작 여부를 판단한다. 상기 작업장치가 동작하지않을 경우 S5000으로 진행하고, 상기 작업장치가 동작중일 경우에는 S6000으로 진행한다.
S5000에서와 같이, 상기 제1,2주행모터가 동작중이고 상기 작업장치가 동작하지않을 경우에, 상기 콘트롤러(10)로부터 상기 제1비례제어밸브(14a)에 전기신호가 인가되지않아 상기 제1비례제어밸브(14a)는 오프 상태를 유지한다. 이로 인해 상기 파일럿펌프(11)로부터 상기 주행직진 제어밸브(7)에 인가되는 파일럿압력이 차단된 상태이다.
S6000에서와 같이, 상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우(주행과 작업장치를 동작시켜 복합작업하는 경우), 상기 콘트롤러(10)로부터 상기 제1비례제어밸브(14a)에 전기신호가 인가됨에 따라, 상기 제1비례제어밸브(14a)는 파일럿펌프(11)의 작동유를 제1,2작업장치용 조작레버(4b,4a)의 조작량에 비례하도록 2차 파일럿압력으로 변환시킨다(도 5의 그래프 선도 "a"에 도시). 즉 상기 제1비례제어밸브(14a)에 의해 변환된 2차 파일럿압력이 상기 주행직진 제어밸브(7)에 인가되어 절환시킨다. 이로 이해 상기 제1,2작업장치용 조작레버(4b,4a)의 조작량에 의해 상기 주행직진 제어밸브(7)의 절환속도를 조절하게 되므로 쇼크 발생을 줄일 수 있다.
S7000에서와 같이, 상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 상기 콘트롤러(10)로부터 상기 제2비례제어밸브(14b)에 전기신호가 인가됨에 따라, 상기 제2비례제어밸브(14b)는 상기 파일럿펌프(11)의 작동유를 제1,2작업장치용 조작레버(4b,4a)의 조작량에 비례하도록 2차 파일럿압력으로 변환시킨다(도 5의 그래프 선도 "b"에 도시).
한편 상기 가변 오리피스(15)의 개구면적을 상기 제2비례제어밸브(14b)에 의해 변환된 2차 파일럿압력에 반비례하여 조정하도록 상기 가변 오리피스(15)에 변환된 파일럿압력을 인가한다(도 5의 그래프 선도 "c"에 도시).
따라서 주행중 작업장치를 조작하여 복합작업시, 작업장치에 발생되는 부하압력이 주행측 부하압력보다 상대적으로 높을 경우 상기 가변 오리피스(15)의 개구면적을 축소조정함에 따라, 상기 제2유압펌프(P2)로부터 상기 병렬유로(21)를 통해 제2작업장치용 제어밸브(8)에 공급되는 작동유가 상기 분기유로(24)를 통해 주행쪽으로 쏠림현상을 방지할 수 있다. 이로 인해 쇼크 발생을 줄이고 작업장치를 원활하게 동작시킬 수 있게 된다.
도 7에서와 같이, 상기 주행과 작업장치를 조작하여 복합작업시, 상기 제2유압펌프(P2)의 작동압력을 제5압력센서(12e)에 의해 검출하여 검출된 작동압력이 설정압력보다 낮은 경우, 상기 가변 오리피스(15)의 개구면적을 소정면적으로 축소조정하도록 상기 제2비례제어밸브(14b)에서 상기 가변 오리피스(15)에 인가되는 파일럿압력을 낮추고,
검출된 제2유압펌프(P2)의 작동압력이 설정압력보다 상대적으로 높을 경우, 상기 가변 오리피스(15)의 개구면적을 상기 소정면적 이하로 축소조정하도록 상기 제2비례제어밸브(14b)에서 상기 가변 오리피스(15)에 인가되는 파일럿압력을 높이는 것을 특징으로 한다.
여기에서, 상술한 본 발명에서는 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야에서 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경할 수 있음을 이해할 수 있을 것이다.
전술한 구성을 갖는 본 발명에 따르면, 주행중 작업장치를 동작시킬 경우 작동압력이 상대적으로 낮은 주행쪽으로 작동유 쏠림현상을 방지하므로 작업장치를 원활하게 동작시킬 수 있다.
작업장치의 동작 시작 및 종료시에 쇼크 발생되는 것을 저감시킬 수 있다.
주행 중 작업장치의 동작 시작시 주행속도가 급격하게 느려지고, 동작 종료시에 주행속도가 빨라지는 것을 방지함에 따라, 조작성을 향상시키고 안전사고 발생을 방지할 수 있는 효과가 있다.

Claims (14)

  1. 제1,2유압펌프 및 파일럿펌프;
    상기 제1유압펌프의 작동유에 의해 동작하는 제1작업장치 및 제1주행모터;
    상기 제2유압펌프의 작동유에 의해 동작하는 제2작업장치 및 제2주행모터;
    상기 제1유압펌프의 공급유로에 설치되고, 절환시 상기 제1주행모터 및 제1작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제1주행용 제어밸브 및 제1작업장치용 제어밸브;
    상기 제2유압펌프의 공급유로에 설치되고, 절환시 상기 제2주행모터 및 제2작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제2주행용 제어밸브 및 제2작업장치용 제어밸브;
    상기 제2유압펌프의 공급유로 상류측에 설치되고, 주행과 작업장치를 조작하여 복합작업시 절환되어 주행 직진성을 확보하는 주행직진 제어밸브;
    상기 제2유압펌프의 공급유로 상류측에 입구가 분기접속되고 상기 제2작업장치용 제어밸브의 입구포트에 출구가 접속되는 병렬유로;
    상기 병렬유로의 소정위치에 입구가 분기접속되고 상기 주행직진 제어밸브와 상기 제2주행용 제어밸브사이의 유로에 출구가 분기접속되는 분기유로;
    상기 분기유로에 설치되는 고정 오리피스, 상기 고정 오리피스는 주행과 작업장치를 조작하여 복합작업하기 위해 상기 주행직진 제어밸브를 절환시 작업장치 부하압력이 주행 부하압력보다 높을 경우 상기 제2유압펌프로부터 주행측으로 작동유 쏠림을 방지하게 됨;
    상기 파일럿펌프와 상기 주행직진 제어밸브사이의 유로에 설치되는 제1비례제어밸브, 상기 제1비례제어밸브는 주행과 작업장치를 조작하여 복합작업시, 상기 파일럿펌프의 작동유를 제1,2작업장치용 조작레버의 조작량에 비례하는 파일럿압력으로 변환하여, 변환된 파일럿압력을 상기 주행직진 제어밸브에 인가시킴;을 특징으로 하는 건설기계용 주행 제어장치.
  2. 제1,2유압펌프 및 파일럿펌프;
    상기 제1유압펌프의 작동유에 의해 동작하는 제1작업장치 및 제1주행모터;
    상기 제2유압펌프의 작동유에 의해 동작하는 제2작업장치 및 제2주행모터;
    상기 제1유압펌프의 공급유로에 설치되고, 절환시 상기 제1주행모터 및 제1작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제1주행용 제어밸브 및 제1작업장치용 제어밸브;
    상기 제2유압펌프의 공급유로에 설치되고, 절환시 상기 제2주행모터 및 제2작업장치에 공급되는 작동유의 량 및 흐름방향을 각각 제어하는 제2주행용 제어밸브 및 제2작업장치용 제어밸브;
    상기 제2유압펌프의 공급유로 상류측에 설치되고, 주행과 작업장치를 조작하여 복합작업시 절환되어 주행 직진성을 확보하는 주행직진 제어밸브;
    상기 제2유압펌프의 공급유로 상류측에 입구가 분기접속되고 상기 제2작업장치용 제어밸브의 입구포트에 출구가 접속되는 병렬유로;
    상기 병렬유로의 소정위치에 입구가 분기접속되고 상기 주행직진 제어밸브와 상기 제2주행용 제어밸브사이의 유로에 출구가 분기접속되는 분기유로;
    상기 분기유로에 설치되는 가변 오리피스, 상기 가변 오리피스는 주행과 작업장치를 조작하여 복합작업하기 위해 상기 주행직진 제어밸브를 절환시 작업장치 부하압력이 주행 부하압력보다 높을 경우 상기 제2유압펌프로부터 주행측으로 작동유 쏠림을 방지하게 됨;
    상기 파일럿펌프와 상기 주행직진 제어밸브사이의 유로에 설치되는 제1비례제어밸브, 상기 제1비례제어밸브는 주행과 작업장치를 조작하여 복합작업시, 상기 파일럿펌프의 작동유를 상기 작업장치용 조작레버의 조작량에 비례하는 파일럿압력으로 변환하여, 변환된 파일럿압력을 상기 주행직진 제어밸브에 인가시킴;
    상기 파일럿펌프와 상기 가변 오리피스사이의 유로에 설치되는 제2비례제어밸브, 상기 제2비례제어밸브는 주행과 작업장치를 조작하여 복합작업시, 상기 파일럿펌프의 작동유를 제1,2작업장치용 조작레버의 조작량에 비례하는 파일럿압력으로 변환하되, 상기 가변 오리피스의 개구면적이 변환된 파일럿압력에 반비례하여 조정되도록 상기 가변 오리피스에 변환된 파일럿압력을 인가시킴;을 특징으로 하는 건설기계용 주행 제어장치.
  3. 제1항에 있어서, 상기 제1주행용 제어밸브를 절환하기 위한 제1주행 조작장치의 조작량을 검출하는 제1압력센서;
    상기 제2주행용 제어밸브를 절환하기 위한 제2주행 조작장치의 조작량을 검출하는 제2압력센서;
    상기 제1작업장치용 제어밸브를 절환하기 위한 제1작업장치 조작레버의 조작량을 검출하는 제3압력센서;
    상기 제2작업장치용 제어밸브를 절환하기 위한 제2작업장치 조작레버의 조작량을 검출하는 제4압력센서;
    상기 제1,2,3,4압력센서로부터 입력되는 조작신호를 연산하여 상기 제1비례제어밸브에 이를 절환하기 위한 전기신호를 인가하는 콘트롤러;를 포함하는 것을 특징으로 하는 건설기계용 주행 제어장치.
  4. 제2항에 있어서, 상기 제1주행용 제어밸브를 절환하기 위한 제1주행 조작장치의 조작량을 검출하는 제1압력센서;
    상기 제2주행용 제어밸브를 절환하기 위한 제2주행 조작장치의 조작량을 검출하는 제2압력센서;
    상기 제1작업장치용 제어밸브를 절환하기 위한 제1작업장치 조작레버의 조작량을 검출하는 제3압력센서;
    상기 제2작업장치용 제어밸브를 절환하기 위한 제2작업장치 조작레버의 조작량을 검출하는 제4압력센서;
    상기 제1,2,3,4압력센서로부터 입력되는 조작신호를 연산하여 상기 제1비례제어밸브 및 상기 제2비례제어밸브에 절환하기 위한 전기신호를 인가하는 콘트롤러;를 포함하는 것을 특징으로 하는 건설기계용 주행 제어장치.
  5. 제2항에 있어서, 상기 가변 오리피스의 개구면적은 외부로부터 입력되는 파일럿압력에 의해 조정되도록 외부신호포트를 구비하는 것을 특징으로 하는 건설기계용 주행 제어장치.
  6. 제2항에 있어서, 상기 가변 오리피스는 상기 작업장치측에 발생되는 부하압력과 상기 주행측에 발생되는 부하압력의 차에 반 비례하여 개구면적이 조정되는 것을 특징으로 하는 건설기계용 주행 제어장치.
  7. 제3항에 있어서, 상기 제1유압펌프의 작동압력을 검출하여 검출된 압력값을 상기 콘트롤러에 입력하는 제5압력센서;
    상기 제2유압펌프의 작동압력을 검출하여 검출된 압력값을 상기 콘트롤러에 입력하는 제6압력센서를 포함하는 것을 특징으로 건설기계용 주행 제어장치.
  8. 제4항에 있어서, 상기 제1유압펌프의 작동압력을 검출하여 검출된 압력값을 상기 콘트롤러에 입력하는 제5압력센서;
    상기 제2유압펌프의 작동압력을 검출하여 검출된 압력값을 상기 콘트롤러에 입력하는 제6압력센서를 포함하는 것을 특징으로 건설기계용 주행 제어장치.
  9. 제1,2주행모터의 동작 여부를 판단하는 단계;
    작업장치의 동작 여부를 판단하는 단계;
    상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 파일럿펌프의 작동유를 제1비례제어밸브에 의해 제1 또는 2작업장치용 조작레버의 조작량에 비례하도록 파일럿압력으로 변환하여, 변환된 파일럿압력을 주행직진 제어밸브에 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계용 주행 제어방법.
  10. 제9항에 있어서, 상기 제1,2주행모터가 동작중이고 상기 작업장치가 동작하지않는 경우, 상기 파일럿펌프로부터 상기 주행직진 제어밸브에 인가되는 파일럿압력을 차단하는 단계를 더 포함하는 것을 특징으로 하는 건설기계용 주행 제어방법.
  11. 제1,2주행모터의 동작 여부를 판단하는 단계;
    작업장치의 동작 여부를 판단하는 단계;
    상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 파일럿펌프의 작동유를 제1비례제어밸브에 의해 상기 작업장치용 조작레버의 조작량에 비례하도록 파일럿압력으로 변환하여, 변환된 파일럿압력을 상기 주행직진 제어밸브에 인가하는 단계;
    상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 상기 파일럿펌프의 작동유를 제2비례제어밸브에 의해 상기 작업장치용 조작레버의 조작량에 비례하도록 파일럿압력으로 변환하고, 가변 오리피스의 개구면적이 변환된 파일럿압력에 반비례하여 조정되도록 상기 가변 오리피스에 변환된 파일럿압력을 인가하는 단계;를 포함하는 것을 특징으로 하는 건설기계용 주행 제어방법.
  12. 제11항에 있어서, 상기 제1,2주행모터가 동작중이고 상기 작업장치가 동작하지않는 경우, 상기 파일럿펌프로부터 주행직진 제어밸브에 인가되는 파일럿압력을 차단하는 단계를 더 포함하는 것을 특징으로 하는 건설기계용 주행 제어방법.
  13. 제11항에 있어서, 상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 제2유압펌프의 작동압력을 검출하여 검출된 작동압력이 설정압력보다 낮은 경우 상기 제1비례제어밸브에서 상기 주행직진 제어밸브에 인가되는 파일럿압력을 낮추고,
    검출된 상기 제2유압펌프의 작동압력이 설정압력보다 높을 경우 상기 제1비례제어밸브에서 상기 주행직진 제어밸브에 인가되는 파일럿압력을 높이는 단계를 포함하는 것을 특징으로 하는 건설기계용 주행 제어방법.
  14. 제11항에 있어서, 상기 제1,2주행모터 및 상기 작업장치가 동작하는 경우, 제2유압펌프의 작동압력을 검출하여 검출된 작동압력이 설정압력보다 낮은 경우, 상기 가변 오리피스의 개구면적을 소정면적으로 축소조정하도록 상기 제2비례제어밸브에서 상기 가변 오리피스에 인가되는 파일럿압력을 낮추고,
    검출된 상기 제2유압펌프의 작동압력이 설정압력보다 높을 경우, 상기 가변 오리피스의 개구면적을 상기 소정면적 이하로 축소조정하도록 상기 제2비례제어밸브에서 상기 가변 오리피스에 인가되는 파일럿압력을 높이는 것을 특징으로 하는 건설기계용 주행 제어방법.
PCT/KR2014/003263 2014-04-15 2014-04-15 건설기계용 주행 제어장치 및 그 제어방법 WO2015160003A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14889539.4A EP3133211B1 (en) 2014-04-15 2014-04-15 Drive control device for a construction machine
US15/303,942 US20170037600A1 (en) 2014-04-15 2014-04-15 Drive control device for construction equipment and control method therefor
CN201480078042.5A CN106232905B (zh) 2014-04-15 2014-04-15 用于工程设备的行驶控制装置及其控制方法
PCT/KR2014/003263 WO2015160003A1 (ko) 2014-04-15 2014-04-15 건설기계용 주행 제어장치 및 그 제어방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/003263 WO2015160003A1 (ko) 2014-04-15 2014-04-15 건설기계용 주행 제어장치 및 그 제어방법

Publications (1)

Publication Number Publication Date
WO2015160003A1 true WO2015160003A1 (ko) 2015-10-22

Family

ID=54324203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003263 WO2015160003A1 (ko) 2014-04-15 2014-04-15 건설기계용 주행 제어장치 및 그 제어방법

Country Status (4)

Country Link
US (1) US20170037600A1 (ko)
EP (1) EP3133211B1 (ko)
CN (1) CN106232905B (ko)
WO (1) WO2015160003A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226010B (zh) * 2016-11-02 2022-04-12 沃尔沃建筑设备公司 用于建筑机械的液压控制系统
EP3724409A4 (en) * 2017-12-14 2022-01-12 Volvo Construction Equipment AB HYDRAULIC MACHINE
CN108975188B (zh) * 2018-08-31 2020-07-17 武汉船用机械有限责任公司 一种液压系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214745A (ja) * 1992-02-03 1993-08-24 Kayaba Ind Co Ltd 車両の走行直進制御回路
KR950006161A (ko) * 1993-08-27 1995-03-20 김연수 직진 주행이 가능한 중장비용 유압 장치
KR100753986B1 (ko) * 2006-04-18 2007-08-31 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 주행직진용 유압회로
KR20080102660A (ko) * 2007-05-21 2008-11-26 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 무한궤도형 중장비의 주행장치
KR20120070249A (ko) * 2010-12-21 2012-06-29 두산인프라코어 주식회사 크롤러 타입 굴삭기의 직진주행제어장치 및 그 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960021784A (ko) * 1994-12-28 1996-07-18 김무 중장비의 직진주행장치
KR101155718B1 (ko) * 2004-12-31 2012-06-12 두산인프라코어 주식회사 굴삭기의 주행제어장치
JP2006329341A (ja) * 2005-05-26 2006-12-07 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
JP2007120004A (ja) * 2005-10-24 2007-05-17 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
US7614225B2 (en) * 2006-04-18 2009-11-10 Volvo Construction Equipment Holding Sweden Ab Straight traveling hydraulic circuit
KR100753990B1 (ko) * 2006-08-29 2007-08-31 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 주행직진용 유압회로
JP4732284B2 (ja) * 2006-09-09 2011-07-27 東芝機械株式会社 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械
KR100974283B1 (ko) * 2008-08-08 2010-08-06 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 굴삭 및 파이프 레잉 작업을 위한 유량 분배 시스템
KR20100044585A (ko) * 2008-10-22 2010-04-30 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 선회장치를 구비하는 건설장비용 유압회로
JP5461234B2 (ja) * 2010-02-26 2014-04-02 カヤバ工業株式会社 建設機械の制御装置
CN101936018A (zh) * 2010-07-26 2011-01-05 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 装载机电液比例控制系统
CN103415709B (zh) * 2011-03-07 2016-01-20 沃尔沃建造设备有限公司 用于管道铺设机的液压回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214745A (ja) * 1992-02-03 1993-08-24 Kayaba Ind Co Ltd 車両の走行直進制御回路
KR950006161A (ko) * 1993-08-27 1995-03-20 김연수 직진 주행이 가능한 중장비용 유압 장치
KR100753986B1 (ko) * 2006-04-18 2007-08-31 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 주행직진용 유압회로
KR20080102660A (ko) * 2007-05-21 2008-11-26 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 무한궤도형 중장비의 주행장치
KR20120070249A (ko) * 2010-12-21 2012-06-29 두산인프라코어 주식회사 크롤러 타입 굴삭기의 직진주행제어장치 및 그 방법

Also Published As

Publication number Publication date
US20170037600A1 (en) 2017-02-09
EP3133211B1 (en) 2020-08-19
EP3133211A1 (en) 2017-02-22
CN106232905A (zh) 2016-12-14
EP3133211A4 (en) 2017-12-13
CN106232905B (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2014208787A1 (ko) 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법
WO2012169676A1 (ko) 건설기계용 유압시스템
WO2013051741A1 (ko) 건설기계용 우선 제어시스템
WO2016072535A1 (ko) 건설기계용 주행직진장치 및 그 제어방법
WO2014208828A1 (ko) 플로팅기능을 갖는 건설기계용 유압회로 및 플로팅기능 제어방법
WO2015111775A1 (ko) 건설기계용 재생유량 제어장치 및 그 제어방법
WO2014123253A1 (en) Swing control system for construction machines
WO2012070703A1 (ko) 건설기계용 유량 제어밸브
WO2016104832A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2015160003A1 (ko) 건설기계용 주행 제어장치 및 그 제어방법
WO2016043365A1 (ko) 건설기계용 유압회로
WO2013022132A1 (ko) 건설기계의 압력 제어시스템
WO2014098284A1 (ko) 플로팅 기능이 구비된 건설기계
WO2014112668A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2016175352A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2015102120A1 (ko) 유압제어장치 및 이를 구비한 건설기계
WO2013022131A1 (ko) 건설기계의 유압 제어시스템
WO2015152434A1 (ko) 건설기계용 작업장치 합류 유량 제어장치 및 그 제어방법
WO2018048291A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2014069702A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2014081053A1 (ko) 건설기계의 우선 기능 제어장치 및 그 제어방법
WO2013094793A1 (ko) 건설기계의 주행 합류 제어시스템
WO2016093378A1 (ko) 건설기계용 유량 제어장치
WO2016204309A1 (ko) 건설기계용 아암 재생장치 및 제어방법
WO2019117375A1 (en) Hydraulic machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889539

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014889539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014889539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15303942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE