WO2015159962A1 - Contactless power-transfer apparatus and power-transmitting device - Google Patents

Contactless power-transfer apparatus and power-transmitting device Download PDF

Info

Publication number
WO2015159962A1
WO2015159962A1 PCT/JP2015/061764 JP2015061764W WO2015159962A1 WO 2015159962 A1 WO2015159962 A1 WO 2015159962A1 JP 2015061764 W JP2015061764 W JP 2015061764W WO 2015159962 A1 WO2015159962 A1 WO 2015159962A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
primary
power transmission
converter
Prior art date
Application number
PCT/JP2015/061764
Other languages
French (fr)
Japanese (ja)
Inventor
琢磨 小野
竜也 安久
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2015159962A1 publication Critical patent/WO2015159962A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • the present invention relates to a non-contact power transmission device and a power transmission device.
  • a non-contact power transmission device that does not use a power cord or power transmission cable is known.
  • the non-contact power transmission device is, for example, non-contact from an AC power source that outputs AC power of a predetermined frequency, and a power transmission device having a primary coil to which the AC power is input, from the primary coil.
  • a power receiving device having a secondary coil configured to receive AC power.
  • Patent Document 1 In such a non-contact power transmission device, AC power is transmitted from a power transmitting device to a power receiving device in a non-contact manner, for example, by magnetic resonance between the primary side coil and the secondary side coil.
  • Patent Document 1 describes that a power receiving device is mounted on a vehicle as an object.
  • An object of the present invention is to provide a non-contact power transmission device and a power transmission device that can appropriately grasp whether or not power transmission is performed between a primary side coil and a secondary side coil.
  • the non-contact power transmission device that achieves the above object includes a first AC power source that outputs AC power, a power transmission device that has a primary coil to which AC power is input from the first AC power source, and the first AC power source.
  • a secondary coil configured to contactlessly receive AC power input from the power source to the primary coil; and a second AC power source that outputs AC power to the secondary coil.
  • a power receiving device, a power receiving detection unit that is provided in the power transmitting device and that detects AC power received by the primary coil in a non-contact manner from the secondary coil, and an object on which the power receiving device is mounted is the first device.
  • a presence determination unit that determines whether or not the secondary coil exists around the secondary coil, and the second AC power source triggered by the presence determination unit determining that the object is present around the primary coil
  • a transmission determination unit that determines whether or not power transmission from the secondary side coil to the primary side coil is performed based on a detection result of the power reception detection unit And.
  • a power transmission device that achieves the above object includes: a first AC power source that outputs AC power; and a primary coil that receives AC power from the first AC power source.
  • a secondary coil and the secondary side It is comprised so that alternating current power may be transmitted non-contactedly with respect to the said secondary side coil of the receiving device which has a 2nd alternating current power supply which outputs alternating current power to a coil.
  • a power reception detection unit that detects AC power received by the primary coil from the secondary coil in a contactless manner, and an object on which the power reception device is mounted are present around the primary coil.
  • a presence determination unit that determines whether or not to do so.
  • the AC detection is performed when AC power is input from the second AC power source to the secondary coil. Based on the detection result of the part, it is determined whether or not power transmission from the secondary coil to the primary coil is performed.
  • the block diagram which shows the electrical structure of a non-contact electric power transmission apparatus and power transmission equipment.
  • the flowchart which shows a charge preparation process.
  • (A), (b) is a schematic diagram which shows a mode that a vehicle is parked.
  • (A) is a graph which shows the fluctuation
  • (b) is a graph which shows the fluctuation
  • the block diagram which shows the electric constitution of the power transmission apparatus of another example.
  • the non-contact power transmission device 10 includes a power transmission device 11 (ground side device, primary side device) and a power receiving device 21 (vehicle side device, secondary side device) capable of non-contact power transmission. It has.
  • the power transmission device 11 is provided on the ground, and the power reception device 21 is mounted on the vehicle 100.
  • the power transmission device 11 includes an AC power source 12 as a first AC power source capable of outputting AC power having a predetermined frequency.
  • the AC power supply 12 is a voltage source, for example.
  • the AC power supply 12 is configured to be able to convert the grid power to AC power and output the converted AC power when grid power is input as external power from the grid power supply E as an infrastructure.
  • the AC power supply 12 includes an AC / DC converter 12a as a first conversion unit and a DC / AC converter 12b as a second conversion unit.
  • the AC / DC converter 12a converts system power input from the system power supply E into DC power.
  • the DC / AC converter 12b receives DC power from the AC / DC converter 12a, converts the DC power into AC power, and outputs the converted AC power.
  • the AC / DC converter 12a of the present embodiment is configured such that the power value of the DC power output from the AC / DC converter 12a is variable. Thereby, the AC power supply 12 can output a plurality of types of AC power having different power values. Further, the DC / AC converter 12b of the present embodiment is a unidirectional converter that can convert DC power to AC power but cannot convert AC power to DC power.
  • the non-contact power transmission apparatus 10 includes a primary side resonator 13 and a secondary side resonator 23 that perform power transmission between the power transmission device 11 and the power reception device 21.
  • the primary-side resonator 13 is provided in the power transmission device 11 and receives AC power output from the AC power supply 12.
  • the secondary resonator 23 is provided in the power receiving device 21.
  • the primary side resonator 13 and the secondary side resonator 23 have the same configuration, and both are configured to be capable of magnetic field resonance.
  • the primary side resonator 13 has a resonance circuit including a primary side coil 13a and a primary side capacitor 13b connected in parallel to each other.
  • the secondary side resonator 23 has a resonance circuit including a secondary side coil 23a and a secondary side capacitor 23b connected in parallel to each other.
  • the resonant frequencies of both resonant circuits are set to be the same.
  • the frequency of the AC power output from the AC power source 12 is such that the primary side resonator 13 and the secondary side resonance can be transmitted between the primary side resonator 13 and the secondary side resonator 23. It is set corresponding to the resonance frequency of the vessel 23.
  • the frequency of the AC power is set to be the same as the resonance frequency of the primary side resonator 13 and the secondary side resonator 23.
  • the present invention is not limited to this, and the frequency of the AC power and the resonance frequency of the primary-side resonator 13 and the secondary-side resonator 23 may be deviated as long as power transmission is possible.
  • the power receiving device 21 includes a power conversion unit 24 capable of bidirectional conversion between AC power and DC power.
  • the power converter 24 is provided between the secondary resonator 23 and the vehicle battery 22. When the AC power received by the secondary resonator 23 is input, the power converter 24 converts the AC power into DC power and outputs the converted DC power to the vehicle battery 22. To do. In this case, the vehicle battery 22 is charged.
  • the power conversion unit 24 converts the DC power into AC power, and the converted AC power is converted into the AC power. Output to the secondary-side resonator 23.
  • the primary side resonator 13 and the secondary side resonator 23 are arranged at a position where magnetic field resonance is possible, power transmission from the secondary side resonator 23 to the primary side resonator 13 is performed. Is done.
  • the vehicle battery 22 and the power converter 24 correspond to a second AC power source that outputs AC power.
  • the power receiving device 21 includes a secondary side detection unit 25 that detects AC power received by the secondary side resonator 23.
  • the secondary side detection unit 25 detects the voltage value and current value of the AC power received by the secondary side resonator 23, and transmits the detection result to the vehicle side controller 26 provided in the power receiving device 21.
  • the vehicle controller 26 is also referred to as a secondary controller.
  • the vehicle-side controller 26 performs control of power conversion by the power conversion unit 24 and switching control of charging or discharging of the vehicle battery 22.
  • the power receiving device 21 includes a SOC sensor (not shown) that detects the state of charge (SOC: State of Charge) of the vehicle battery 22 and transmits the detection result to the vehicle-side controller 26.
  • SOC State of Charge
  • the power transmission device 11 includes a power supply side controller 14 that controls the AC / DC converter 12a and the DC / AC converter 12b.
  • the power supply controller 14 is also referred to as a primary controller.
  • the power supply side controller 14 and the vehicle side controller 26 are configured to be capable of wireless communication with each other.
  • the non-contact power transmission apparatus 10 performs control such as start or end of power transmission while the controllers 14 and 26 exchange information with each other. Note that a specific method of wireless communication between the controllers 14 and 26 is arbitrary. For example, Zigbee (registered trademark) and Bluetooth (registered trademark) are conceivable.
  • the power transmission device 11 includes an impedance converter 30 that is provided between the AC power supply 12 (specifically, the DC / AC converter 12b) and the primary-side resonator 13 and performs impedance conversion.
  • the impedance converter 30 is composed of, for example, a transformer or an LC circuit.
  • Components from the input end of the impedance converter 30 (output end of the DC / AC converter 12b) to the vehicle battery 22 are regarded as one power load.
  • the power factor for the power source load in the case where charging power, which is AC power having a predetermined specific power value, is output from the AC power source 12 and the relative position of each of the resonators 13 and 23 is a predetermined reference position.
  • the impedance converter 30 converts the input impedance of the primary side resonator 13 (primary side coil 13a) so that ⁇ preferably matches with “1”. That is, the impedance converter 30 of this embodiment is a power factor correction circuit.
  • the primary side resonator 13 is used to transmit AC power output from the AC power source 12 to the secondary side resonator 23 in a non-contact manner, and also from the secondary side resonator 23. Used to receive power without contact.
  • the power transmission device 11 is configured so that the electrical characteristics relating to AC power (hereinafter simply referred to as “transmission power”) output from the AC power source 12 and the primary resonator 13 are contactless from the secondary resonator 23. It is configured to be able to detect electrical characteristics relating to received AC power (hereinafter simply referred to as “received power”).
  • the power transmission device 11 is used to detect the output power value and the power factor ⁇ of the AC / DC converter 12 a as a device that detects electrical characteristics related to transmitted power.
  • a power transmission detection unit 31 is provided. The power transmission detection unit 31 detects the output voltage value and the output current value of the AC / DC converter 12a, detects the output current value of the DC / AC converter 12b, and transmits the detection result to the power supply side controller 14. .
  • the power supply side controller 14 calculates the output power value of the AC / DC converter 12a based on the output voltage value and the output current value of the AC / DC converter 12a, and the output current value of the AC / DC converter 12a and the DC
  • the power factor ⁇ is calculated based on the output current value of the / AC converter 12b.
  • the output current value of the DC / AC converter 12b is, for example, an effective value. It can also be said that the power transmission detection unit 31 detects a change in at least one of a voltage value and a current value in the power transmission device 11.
  • detecting a change in at least one of a voltage value and a current value in the power transmission device 11 means a voltage value at a predetermined position on the power transmission path from the AC / DC converter 12a to the primary coil 13a.
  • at least one of the voltage value and the current value by detecting fluctuations of various parameters that vary due to the fluctuation, such as power factor and power value. Including indirectly detecting fluctuations.
  • the power transmission device 11 is configured to connect a power receiving detection unit 32 that detects received power that is AC power received by the primary side resonator 13 and a connection destination of the primary side resonator 13 (primary side coil 13a) to an AC power source. 12 (specifically, a DC / AC converter 12b) or a switching relay 33 (switching unit) for switching to the power reception detection unit 32.
  • the switching relay 33 is disposed between the DC / AC converter 12 b and the primary side resonator 13, specifically between the impedance converter 30 and the primary side resonator 13.
  • the power reception detection unit 32 detects the received power in a state where the power reception detection unit 32 is connected to the primary resonator 13 by the switching relay 33 and transmits the detection result to the power supply side controller 14.
  • connection between the primary side resonator 13 and the AC power source 12 by the switching relay 33 is another component (for example, the impedance converter 30) between the primary side resonator 13 and the AC power source 12. ) Is included.
  • the power supply side controller 14 and the vehicle side controller 26 are charged for confirming that power transmission from the power transmitting device 11 to the power receiving device 21 is normally performed before starting full-scale charging of the vehicle battery 22. Perform preparatory processing. In the charging preparation process, the power supply side controller 14 determines whether or not the vehicle 100 as an object on which the power receiving device 21 is mounted exists around the primary side resonator 13, and the determination result is affirmative determination In this case, a transmission determination is made as to whether or not power transmission is performed between the primary side resonator 13 and the secondary side resonator 23.
  • the charge preparation process of the present embodiment can be exchanged between the controllers 14 and 26, for example, and is executed before the vehicle 100 stops, that is, during the movement of the vehicle 100 (parking operation). Is done.
  • the specific execution trigger of the charging preparation process is when the vehicle 100 enters the wireless communication range of the power controller 14.
  • FIG. 2 shows a charge preparation process executed by the power supply controller 14 and a charge preparation process executed by the vehicle controller 26. Further, signals exchanged between the controllers 14 and 26 are indicated by broken lines.
  • the power supply side controller 14 controls the switching relay 33 so that the primary side resonator 13 and the alternating current power supply 12 (DC / AC converter 12b) are mutually connected in step S101.
  • step S102 the power supply controller 14 starts temporary power transmission.
  • the power supply side controller 14 controls the AC / DC converter 12 a and the DC / AC converter 12 b so that the temporary power transmission power is output from the AC power supply 12.
  • the power value of the temporary power transmission is smaller than the power value of the charging power.
  • step S ⁇ b> 103 the power supply side controller 14 calculates the power factor ⁇ based on the detection result of the power transmission detection unit 31.
  • step S104 the power supply controller 14 determines whether or not the calculated power factor ⁇ is equal to or greater than a predetermined threshold power factor ⁇ th. If the calculated power factor ⁇ is greater than or equal to the threshold power factor ⁇ th, the power supply controller 14 proceeds to step S105. On the other hand, when the calculated power factor ⁇ is less than the threshold power factor ⁇ th, the power supply controller 14 returns to step S103. That is, the power supply controller 14 periodically calculates the power factor ⁇ and compares the calculated power factor ⁇ with the threshold power factor ⁇ th until the power factor ⁇ becomes equal to or greater than the threshold power factor ⁇ th.
  • the constant of the impedance converter 30 is such that the power factor ⁇ approaches “1” when the relative position of the resonators 13 and 23 is the reference position. Is set in correspondence with the input impedance of the primary-side resonator 13 when the relative position is the reference position.
  • the input impedance of the primary side resonator 13 varies depending on whether or not the vehicle 100 (secondary side resonator 23) exists around the primary side resonator 13. Therefore, the power factor ⁇ increases when the vehicle 100 exists around the primary side resonator 13, and decreases when the vehicle 100 does not exist around the primary side resonator 13.
  • the power factor ⁇ being equal to or greater than the threshold power factor ⁇ th means that there is a high probability that the vehicle 100 exists around the primary side resonator 13.
  • the process of step S ⁇ b> 104 can be said to be a determination process of whether or not the vehicle 100 exists around the primary side resonator 13.
  • the power supply side controller 14 programmed to execute the process of step S104 functions as a “presence determining unit”.
  • the power factor ⁇ when the relative position of the resonators 13 and 23 is the reference position in a situation where temporary power transmission power is output from the AC power supply 12 is defined as a second power factor.
  • the threshold power factor ⁇ th is arbitrary as long as it is a value between the first power factor and the second power factor. For example, a value between the average value of the first power factor and the second power factor and the first power factor may be employed as the threshold power factor ⁇ th.
  • the circumference of the primary side resonator 13 may be arbitrarily set as long as it is within the wireless communication range of the power supply side controller 14, but for example, within the range of a predetermined distance from the primary side resonator 13. It may be set.
  • the specific distance may be a distance at which the transmission efficiency between the resonators 13 and 23 is greater than or equal to a predetermined threshold efficiency.
  • the threshold power factor ⁇ th may be set to the power factor ⁇ when the distance between the resonators 13 and 23 is a specific distance in a situation where temporary power transmission power is output from the AC power supply 12. .
  • the power factor ⁇ is equal to or higher than the threshold power factor ⁇ th, it means that the resonators 13 and 23 may be arranged at positions where the transmission efficiency is equal to or higher than the threshold efficiency.
  • the surroundings of the primary resonator 13 are not limited to the above-described configuration, and may be, for example, a misalignment allowable range of the resonators 13 and 23 that can output charging power from the AC power supply 12.
  • the allowable misalignment range is a range in which the AC power supply 12 can output charging power, regardless of how the resonators 13 and 23 are arranged within the allowable misalignment range. It is defined by the rating of the AC power supply 12.
  • the threshold power factor ⁇ th is the minimum power factor when the power for temporary power transmission is output from the AC power supply 12 under the condition in which the resonators 13 and 23 are arbitrarily arranged within the allowable range of displacement. It is good to be set to.
  • the secondary-side resonator 23 (vehicle 100) is disposed in a range in which the AC power supply 12 can output charging power.
  • the secondary-side resonator 23 (power receiving device 21) present within a range in which the primary-side resonator 13 (power transmission device 11) can transmit AC power having a desired power value? It can also be said to be a process for determining whether or not.
  • step S105 executed when it is determined that the vehicle 100 exists around the primary side resonator 13, the power supply side controller 14 stops the temporary power transmission and requests a movement stop request signal for requesting the vehicle 100 to stop moving. Send.
  • the power supply side controller 14 shifts from the undetected state where the vehicle 100 is not detected to the temporarily detected state where the vehicle 100 is temporarily detected.
  • the power supply side controller 14 regulates communication so as not to perform communication with vehicles other than the vehicle 100 that is temporarily detected.
  • the power supply controller 14 is in an undetected state in the initial state, and does not regulate communication in the undetected state.
  • step S107 the power supply side controller 14 controls the switching relay 33 so that the primary side resonator 13 and the power reception detecting unit 32 are connected to each other.
  • step S ⁇ b> 108 power supply-side controller 14 transmits a discharge request signal for requesting discharge to vehicle-side controller 26 of vehicle 100 that is temporarily detected. That is, the vehicle battery 22 is discharged when the vehicle 100 is present around the primary-side resonator 13.
  • step S109 the power supply side controller 14 determines whether or not the received power is detected by the received power detection unit 32 within a predetermined period after transmitting the discharge request signal.
  • the power supply side controller 14 programmed to execute the process of step S109 functions as a “transmission determination unit”.
  • the received power is detected by the power receiving detection unit 32 means that the voltage value, current value, or power value of the received power detected by the power receiving detection unit 32 is greater than “0”, for example, A case where the power value of power is larger than a predetermined threshold power value is conceivable.
  • the threshold power value for example, a value obtained by multiplying the power value of the discharge power of the vehicle battery 22 by a predetermined threshold transmission efficiency can be considered.
  • step S109 the power supply controller 14 transmits a chargeable signal indicating that charging is possible to the vehicle controller 26.
  • step S111 the power supply controller 14 shifts from the temporary detection state to the main detection state, and ends the main charging preparation process.
  • the power supply side controller 14 controls the AC power supply 12 so that the charging power is output from the AC power supply 12 until a predetermined charging end condition is satisfied based on the fact that the detection state is reached. Thereby, the charging power is transmitted from the primary side resonator 13 to the secondary side resonator 23.
  • the charge termination condition is, for example, when the state of charge of the vehicle battery 22 detected by the SOC sensor is in a predetermined state (full charge state) or when the power transmission device 11 is provided with a charge stop switch. This is a case where the charge stop switch is operated.
  • the power supply side controller 14 periodically grasps the power factor ⁇ and the output power value of the AC / DC converter 12a during the output of the charging power, and determines whether at least one of these values is not an abnormal value. judge. When the power factor ⁇ and the output power value of the AC / DC converter 12a are normal values, the power supply side controller 14 continues to output the charging power, and the power factor ⁇ and the output of the AC / DC converter 12a. When the power value is an abnormal value, the output of the charging power is stopped.
  • step S109 the power supply side controller 14 transmits a charge impossible signal indicating that charging cannot be performed to the vehicle side controller 26.
  • step S113 the power supply side controller 14 executes an abnormality handling process for notifying that charging cannot be performed, for example, and ends this charging preparation process.
  • the case where the received power is not detected within a predetermined period is, for example, that the power factor ⁇ is equal to or greater than the threshold power factor ⁇ th for some reason even though the vehicle 100 does not exist around the primary side resonator 13. It is conceivable that the vehicle 100 in which the secondary resonator 23 is not mounted is present around the primary resonator 13 when it is erroneously determined. Further, for example, a case where foreign matter exists between the primary side resonator 13 and the secondary side resonator 23 can be considered.
  • step S201 the vehicle-side controller 26 waits until it receives a movement stop request signal, and when it receives a movement stop signal, it proceeds to step S202 and receives the movement stop signal.
  • the movement stop process is executed so that the vehicle 100 stops at the position where it is placed.
  • the movement stop process for example, it is conceivable to notify the car navigation display screen to stop on the spot.
  • the automatic stop function may be used to automatically stop the vehicle 100.
  • the vehicle-side controller 26 waits until receiving the discharge request signal in step S203. If the discharge request signal is received, the vehicle-side controller 26 proceeds to step S204, and the power converter 24 changes the secondary-side resonator 23.
  • the power conversion unit 24 and the vehicle battery 22 are controlled so that alternating current power is output.
  • the power value of the AC power output from the power conversion unit 24 toward the secondary-side resonator 23 is arbitrary, and may be the same as or different from the power value of the temporary power transmission. .
  • the vehicle-side controller 26 waits until it receives a chargeable signal or an unchargeable signal in step S205, and if it receives a chargeable signal or an unchargeable signal, it proceeds to step S206. Then, the discharge of the vehicle battery 22 is stopped. And the vehicle side controller 26 performs a signal corresponding
  • the signal handling process for example, when a chargeable signal is received, various processes for starting charging are executed, and when a charge impossible signal is received, a process such as notification that charging cannot be performed Is executed.
  • the primary side resonator 13 is installed on the ground, and the secondary side resonator 23 is provided at the bottom of the vehicle 100.
  • the reference position is, for example, a position where the resonators 13 and 23 face each other in the vertical direction.
  • the vehicle 100 on which the secondary side resonator 23 (power receiving device 21) is mounted enters the periphery of the primary side resonator 13, and each resonator 13. , 23 is placed at the reference position, as shown in FIG. 4A, the power factor ⁇ increases and becomes equal to or greater than the threshold power factor ⁇ th. Thereby, the connection destination of the primary side resonator 13 becomes the power reception detection unit 32. Then, discharging of the vehicle battery 22 is started, and AC power is input to the secondary resonator 23. In this case, the received power is detected by the received power detection unit 32 as shown in FIG. On condition that the received power is detected, the vehicle battery 22 is charged using the charging power.
  • the primary side resonator 13 receives power from the secondary side resonator 23 (secondary side coil 23a).
  • a power reception detection unit 32 that detects AC power is provided.
  • the power transmission device 11 includes a power source controller 14 that determines whether or not the vehicle 100 on which the power receiving device 21 is mounted is present around the primary resonator 13. When the AC power is input to the secondary side resonator 23 when the vehicle 100 is determined to be present around the primary side resonator 13, the power source side controller 14 receives the power reception detection unit 32.
  • a transmission determination is made as to whether or not power transmission from the secondary resonator 23 to the primary resonator 13 is being performed. Thereby, it can be grasped suitably whether electric power transmission is performed between the resonators 13 and 23. In other words, the vehicle 100 in which the power transmission device 11 can perform non-contact power transmission can be properly grasped.
  • the power factor ⁇ may be erroneously determined to be equal to or greater than the threshold power factor ⁇ th regardless of whether the vehicle 100 is not present around the primary resonator 13 due to some factor such as noise. Further, the power factor ⁇ may be greater than or equal to the threshold power factor ⁇ th due to the presence of foreign objects other than the vehicle 100, the vehicle 100 on which the power receiving device 21 is not mounted, etc. around the primary side resonator 13. In this case, when the transmission of the charging power is started as it is, not only is a wasteful power loss, but an excessive load is applied to the AC power supply 12.
  • the present embodiment since the presence determination is first performed and the transmission determination is performed when the presence determination is an affirmative determination, the above inconvenience can be suppressed.
  • the power supply side controller 14 determines whether or not the vehicle 100 exists around the primary side resonator 13 based on the fluctuation of the power factor ⁇ . Thereby, presence determination can be performed without providing a dedicated sensor such as a vehicle detection sensor.
  • the power factor ⁇ is a parameter grasped by the power transmission device 11.
  • the power source side controller 14 can perform the presence determination without performing communication with the vehicle side controller 26.
  • the power supply side controller 14 periodically grasps the power factor ⁇ and the output power value of the AC / DC converter 12a during the output of the charging power, and when at least one of these values is an abnormal value, Stop charging power output. That is, the parameter used for presence determination and the parameter used for power transmission abnormality determination are shared. Thereby, simplification of a structure can be achieved.
  • the AC power supply 12 includes an AC / DC converter 12a (first conversion unit) that converts external power into DC power, and a DC / AC converter 12b (second conversion unit) that converts the DC power into AC power. ).
  • the power transmission apparatus 11 detects the output current value of the switching relay 33 which switches the connection destination of the primary side resonator 13 to the AC / DC converter 12a or the power receiving detection part 32, and at least AC / DC converter 12a.
  • the power supply side controller 14 as the switching control unit is configured such that when the transmission determination is performed such that the connection destination of the primary resonator 13 is the DC / AC converter 12b,
  • the switching relay 33 is controlled so that the connection destination of the primary side resonator 13 is the power reception detection unit 32.
  • the connection destination of the primary-side resonator 13 is the DC / AC converter 12b.
  • the connection destination of the primary side resonator 13 is the DC / AC converter 12b through a mode in which the primary side resonator 13 and the DC / AC converter 12b are directly connected, and an optional component. Including a mode of being indirectly connected.
  • the power transmission detection unit 31 detects the output current value of the AC / DC converter 12a.
  • the output current value of the AC / DC converter 12a is a direct current value, it can be detected relatively easily and accurately as compared with the alternating current value. Therefore, the presence determination can be suitably performed by using the output current value of the AC / DC converter 12a.
  • the power transmission detection unit 31 tries to detect the received power.
  • the DC / AC converter 12b needs to be configured to be capable of bidirectional conversion between DC power and AC power. Adopting such a power converter capable of bidirectional conversion is not preferable from the viewpoint of complication of the configuration and enlargement of the power transmission device 11.
  • a power reception detection unit 32 is provided separately from the power transmission detection unit 31, and switching to switch the connection destination of the primary-side resonator 13 to the DC / AC converter 12b or the power reception detection unit 32 is performed.
  • a relay 33 is provided. And the connection destination of the primary side resonator 13 is switched between presence determination and transmission determination. As a result, it is possible to suitably perform the presence determination and the transmission determination while avoiding the above inconvenience.
  • the power supply side controller 14 controls the AC power supply 12 so that the temporary power transmission power having a power value smaller than the charging power is output from the AC power supply 12. Thereby, reduction of electric power loss and the burden reduction of AC power supply 12 can be aimed at.
  • the power transmission device 11 includes an impedance converter 30 that is provided between the AC power supply 12 and the primary-side resonator 13 and performs impedance conversion.
  • the constant (impedance) of the impedance converter 30 is such that the power factor ⁇ is “1” in a situation where charging power is output from the AC power supply 12 and the relative positions of the resonators 13 and 23 are the reference positions. Is set to approach. Thereby, electric power transmission by the electric power for charge can be performed suitably.
  • the variation amount of the power factor ⁇ that varies depending on whether or not the vehicle 100 (secondary resonator 23) is present around the primary resonator 13 tends to be small. For this reason, an erroneous determination is likely to occur in the presence determination using the power factor ⁇ .
  • the effect of (4) cannot be obtained.
  • the power transmission by the charging power can be performed while the power transmission by the charging power can be suitably performed by further performing the transmission determination.
  • the above-mentioned inconveniences that can be caused by suitably performing can be preferably avoided.
  • the power factor ⁇ is employed as a parameter for determining whether or not the vehicle 100 on which the power receiving device 21 is mounted is present around the primary-side resonator 13, but is not limited thereto.
  • the parameter may be, for example, the output power value of the AC / DC converter 12a or the output current value instead of the power factor ⁇ .
  • the parameter may be an output power value of the DC / AC converter 12b or an output current value.
  • the parameter may be active power or apparent power.
  • the parameter may be a difference between the output current value of the AC / DC converter 12a and the output current value of the DC / AC converter 12b.
  • the parameter when the AC power supply 12 is not a voltage source but a current source, the parameter may be an input voltage value or an output voltage value of the DC / AC converter 12b. However, from the viewpoint of common use with the power transmission abnormality determination, the parameter is preferably the power factor ⁇ or the output power value of the DC / AC converter 12b.
  • the power supply side controller 14 may perform the presence determination based on the fluctuation of at least one of the voltage value and the current value in the power transmission device 11.
  • At least one of the voltage value and the current value in the power transmission device 11 can be said to be at least one of a voltage value and a current value at a predetermined position on the power transmission path from the AC / DC converter 12a to the primary side resonator 13, for example. .
  • the power supply side controller 14 may determine that the vehicle 100 exists around the primary side resonator 13 by performing wireless communication with the vehicle side controller 26. Further, the vehicle-side controller 26 may be configured to transmit a power reception confirmation signal indicating that power is received when AC power is received by the secondary-side resonator 23. In this case, the power supply side controller 14 may determine that the vehicle 100 exists around the primary side resonator 13 based on the reception of the power reception confirmation signal.
  • the power transmission device 11 may include a vehicle detection sensor that detects the vehicle 100 existing around the primary side resonator 13.
  • the vehicle detection sensor can detect the vehicle 100 relatively easily, but it is difficult to determine whether or not the power receiving device 21 is mounted on the vehicle 100. For this reason, even if it is a case where the vehicle 100 in which the power receiving apparatus 21 is not mounted is detected, there exists a possibility that the output of the electric power for charging may be performed.
  • the specific configuration of the vehicle detection sensor is arbitrary, for example, a range sensor that performs laser scanning on a region around the primary-side resonator 13 is conceivable.
  • the power transmission detection unit 31 and the power reception detection unit 32 are provided separately, but are not limited thereto, and may be integrated.
  • a power transmission / reception detection unit 41 may be provided instead of the power transmission detection unit 31, and the power reception detection unit 32 and the switching relay 33 may be omitted.
  • a bidirectional converter 42 capable of bidirectional conversion between DC power and AC power may be provided. Thereby, the received power can be detected by the power transmission / reception detection unit 41.
  • the specific configuration of the power transmission / reception detection unit 41 is the same as that of the power transmission detection unit 31.
  • the power transmission detection unit 31 detects the output voltage value and output current value of the AC / DC converter 12a and the output current value of the DC / AC converter 12b. Instead, only one of them may be detected. In this case, the configuration can be simplified.
  • Positioning of the vehicle 100 may be performed using the received power that is the AC power received by the primary-side resonator 13.
  • the power supply controller 14 may guide the vehicle 100 so that the power value of the received power detected by the power reception detection unit 32 is increased.
  • a plurality of impedance converters 30 may be provided. Further, the power receiving device 21 may be provided with an impedance converter. Further, the impedance converter 30 may be omitted.
  • the temporary power transmission power is used, but the present invention is not limited to this, and charging power may be used.
  • the external power is system power, but is not limited thereto, and may be DC power.
  • the AC / DC converter 12a may be omitted, or a DC / DC converter may be provided in place of the AC / DC converter 12a.
  • the DC / DC converter corresponds to the first conversion unit.
  • the execution subject of transmission determination is arbitrary, and may be, for example, the vehicle-side controller 26, or a dedicated controller different from the controllers 14 and 26.
  • the power supply side controller 14 may appropriately transmit information necessary for transmission determination, for example, information related to the detection result of the power reception detection unit 32 to the execution subject of transmission determination.
  • the communication established state is a state in which communication with an authenticated controller is performed, but communication with a controller other than the authenticated controller is restricted.
  • the power supply controller 14 may make a movement request so that the power factor ⁇ is equal to or greater than the threshold power factor ⁇ th.
  • the movement request may be, for example, a notification that prompts movement, or a signal that moves the vehicle 100 to the vehicle-side controller 26.
  • the secondary side detection unit 25 may detect DC power between the power conversion unit 24 and the vehicle battery 22.
  • the switching relay 33 may be provided between the AC power supply 12 and the impedance converter 30.
  • the power reception detecting unit 32 may have any specific configuration as long as it can detect a physical quantity related to the received power, for example, at least one of a voltage value and a current value of the received power.
  • the power supply side controller 14 grasps in advance the power factor ⁇ when the vehicle 100 is not present as a reference value, and in step S104, the difference between the power factor ⁇ calculated in step S103 and the reference value is determined in advance. It may be determined whether or not it is equal to or greater than the threshold value. In this case, the power supply controller 14 determines that the vehicle 100 exists when the difference between the power factor ⁇ calculated in step S103 and the reference value is equal to or greater than a predetermined threshold.
  • the threshold power factor ⁇ th may be set in consideration of a time lag from when the positive determination is made in step S104 until the vehicle 100 stops. Specifically, for example, a distance that the vehicle 100 can move during the time lag is defined as a time lag distance. In this case, a range of a distance longer than the distance (specific distance) at which the transmission efficiency between the resonators 13 and 23 is equal to or greater than a predetermined threshold efficiency is set as the periphery of the primary-side resonator 13. The threshold power factor ⁇ th may be set in correspondence with the range. Similarly, a range wide by the time lag distance with respect to the positional deviation allowable range may be set around the primary-side resonator 13 and the threshold power factor ⁇ th may be set in correspondence with the range.
  • the AC power supply 12 is not limited to a voltage source, and may be a power source or a current source.
  • the AC power supply 12 is configured to be capable of outputting a plurality of types of AC power having different power values, but is not limited thereto, and may output only one type of AC power (for example, charging power). Good.
  • the resonance frequency of the primary side resonator 13 and the resonance frequency of the secondary side resonator 23 are set to be the same. However, the present invention is not limited to this, and both may be made different within a power transmission range. . O Although the primary side resonator 13 and the secondary side resonator 23 were the same structures, it is not restricted to this, A different structure may be sufficient.
  • Each capacitor 13b, 23b may be omitted. In this case, magnetic field resonance is performed using the parasitic capacitances of the coils 13a and 23a.
  • the power receiving device 21 may be mounted on any object, and may be mounted on, for example, a robot or an electric wheelchair.
  • the primary coil 13a and the primary capacitor 13b are connected in parallel.
  • the present invention is not limited to this, and both may be connected in series.
  • the secondary coil 23a and the secondary capacitor 23b may be connected in series.
  • magnetic field resonance is used in order to realize non-contact power transmission.
  • the present invention is not limited to this, and electromagnetic induction may be used.
  • the AC power received by the secondary resonator 23 is used for charging the vehicle battery 22, but is not limited thereto, and may be used for other purposes.
  • the primary side resonator 13 may have a resonance circuit composed of the primary side coil 13a and the primary side capacitor 13b, and a primary side coupling coil that is coupled to the resonance circuit by electromagnetic induction.
  • the secondary side resonator 23 may include a resonance circuit including a secondary side coil 23a and a secondary side capacitor 23b, and a secondary side coupling coil coupled to the resonance circuit by electromagnetic induction.
  • each of the power supply side controller 14 and the vehicle side controller 26 that function as the presence determination unit and the transmission determination unit is configured by an arbitrary programmed electric circuit (circuitry) such as a microcomputer, a processor, and an electronic control unit. May be.
  • each of the secondary side detection unit 25, the power transmission detection unit 31, and the power reception detection unit 32 may be configured by a detector or a sensor that includes only hardware, or from a combination of hardware and software. It may be constituted by a detector or a sensor.
  • a first AC power source that outputs AC power
  • a power transmission device having a primary coil to which AC power is input from the first AC power source, A secondary coil configured to contactlessly receive AC power input from the first AC power source to the primary coil; and a second coil that outputs AC power to the secondary coil.
  • a power receiving device having an AC power source;
  • a power reception detection unit that is provided in the power transmission device and that detects AC power received by the primary coil in a non-contact manner from the secondary coil;
  • a controller provided in the power transmission device, The controller is It is programmed to determine whether or not an object on which the power receiving device is mounted exists around the primary coil, and it is determined that the object exists around the primary coil.
  • AC power is input from the second AC power source to the secondary coil using the trigger as a trigger, power transmission from the secondary coil to the primary coil based on the detection result of the power reception detection unit
  • a non-contact power transmission device programmed to determine whether or not is being performed.
  • the power transmission device includes a power reception detection unit that detects AC power received by the primary coil in a non-contact manner from the secondary coil, The controller is It is programmed to determine whether or not an object on which the power receiving device is mounted exists around the primary coil, and it is determined that the object exists around the primary coil.
  • AC power is input from the second AC power source to the secondary coil using the trigger as a trigger, power transmission from the secondary coil to the primary coil based on the detection result of the power reception detection unit
  • a power transmission device that is programmed to determine whether or not is being performed.

Abstract

This contactless power-transfer apparatus contains the following: a power-transmitting device that has a primary-side coil; a power-receiving device that has a secondary-side coil and a second AC power supply; a power-reception detection unit; a presence determination unit; and a transfer determination unit. When AC power is inputted from the second AC power supply to the secondary-side coil upon the presence determination unit determining that a target object is present near the primary-side coil, the transfer determination unit determines, on the basis of the result of detection performed by the power-reception detection unit, whether or not power is being transferred from the secondary-side coil to the primary-side coil.

Description

非接触電力伝送装置及び送電機器Non-contact power transmission device and power transmission equipment
 本発明は、非接触電力伝送装置及び送電機器に関する。 The present invention relates to a non-contact power transmission device and a power transmission device.
 電源コード及び送電ケーブルを用いない非接触電力伝送装置が知られている。非接触電力伝送装置は、例えば、予め定められた周波数の交流電力を出力する交流電源、及び、当該交流電力が入力される1次側コイルを有する送電機器と、1次側コイルから非接触で交流電力を受電するように構成された2次側コイルを有する受電機器とを備えている。例えば特許文献1参照。かかる非接触電力伝送装置においては、例えば1次側コイルと2次側コイルとが磁場共鳴することにより、送電機器から受電機器に非接触で交流電力が伝送される。また、特許文献1には、受電機器が対象物としての車両に搭載されていることが記載されている。 A non-contact power transmission device that does not use a power cord or power transmission cable is known. The non-contact power transmission device is, for example, non-contact from an AC power source that outputs AC power of a predetermined frequency, and a power transmission device having a primary coil to which the AC power is input, from the primary coil. A power receiving device having a secondary coil configured to receive AC power. For example, see Patent Document 1. In such a non-contact power transmission device, AC power is transmitted from a power transmitting device to a power receiving device in a non-contact manner, for example, by magnetic resonance between the primary side coil and the secondary side coil. Patent Document 1 describes that a power receiving device is mounted on a vehicle as an object.
特開2009-106136号公報JP 2009-106136 A
 1次側コイルと2次側コイルとの相対位置等の条件によっては、1次側コイルから2次側コイルへの電力伝送が十分に行われない場合がある。このため、1次側コイルと2次側コイルとの間で電力伝送が行われるか否かを把握することが求められる場合がある。 Depending on the conditions such as the relative position of the primary side coil and the secondary side coil, power transmission from the primary side coil to the secondary side coil may not be performed sufficiently. For this reason, it may be required to grasp whether or not power transmission is performed between the primary side coil and the secondary side coil.
 本発明の目的は、1次側コイルと2次側コイルとの間で電力伝送が行われるか否かを好適に把握できる非接触電力伝送装置及び送電機器を提供することである。 An object of the present invention is to provide a non-contact power transmission device and a power transmission device that can appropriately grasp whether or not power transmission is performed between a primary side coil and a secondary side coil.
 上記目的を達成する非接触電力伝送装置は、交流電力を出力する第1交流電源、及び、前記第1交流電源から交流電力が入力される1次側コイルを有する送電機器と、前記第1交流電源から前記1次側コイルに入力される交流電力を非接触で受電するように構成された2次側コイル、及び、前記2次側コイルに対して交流電力を出力する第2交流電源を有する受電機器と、前記送電機器に設けられ、前記1次側コイルが前記2次側コイルから非接触で受電した交流電力を検出する受電検出部と、前記受電機器が搭載された対象物が前記1次側コイルの周囲に存在するか否かを判定する存在判定部と、前記存在判定部によって前記対象物が前記1次側コイルの周囲に存在すると判定されたことを契機として前記第2交流電源から前記2次側コイルに交流電力が入力された場合に、前記受電検出部の検出結果に基づいて、前記2次側コイルから前記1次側コイルへの電力伝送が行われているか否かを判定する伝送判定部と、を備えている。 The non-contact power transmission device that achieves the above object includes a first AC power source that outputs AC power, a power transmission device that has a primary coil to which AC power is input from the first AC power source, and the first AC power source. A secondary coil configured to contactlessly receive AC power input from the power source to the primary coil; and a second AC power source that outputs AC power to the secondary coil. A power receiving device, a power receiving detection unit that is provided in the power transmitting device and that detects AC power received by the primary coil in a non-contact manner from the secondary coil, and an object on which the power receiving device is mounted is the first device. A presence determination unit that determines whether or not the secondary coil exists around the secondary coil, and the second AC power source triggered by the presence determination unit determining that the object is present around the primary coil To the secondary side A transmission determination unit that determines whether or not power transmission from the secondary side coil to the primary side coil is performed based on a detection result of the power reception detection unit And.
 上記目的を達成する送電機器は、交流電力を出力する第1交流電源と、前記第1交流電源から交流電力が入力される1次側コイルと、を備え、2次側コイル及び当該2次側コイルに交流電力を出力する第2交流電源を有する受電機器の前記2次側コイルに対して非接触で交流電力を送電するように構成されている。送電機器は、前記1次側コイルが前記2次側コイルから非接触で受電した交流電力を検出する受電検出部と、前記受電機器が搭載された対象物が前記1次側コイルの周囲に存在するか否かを判定する存在判定部と、を備える。前記存在判定部によって前記対象物が前記1次側コイルの周囲に存在すると判定されたことを契機として前記第2交流電源から前記2次側コイルに交流電力が入力された場合に、前記受電検出部の検出結果に基づいて、前記2次側コイルから前記1次側コイルへの電力伝送が行われているか否かの判定が行われる。 A power transmission device that achieves the above object includes: a first AC power source that outputs AC power; and a primary coil that receives AC power from the first AC power source. A secondary coil and the secondary side It is comprised so that alternating current power may be transmitted non-contactedly with respect to the said secondary side coil of the receiving device which has a 2nd alternating current power supply which outputs alternating current power to a coil. In the power transmission device, a power reception detection unit that detects AC power received by the primary coil from the secondary coil in a contactless manner, and an object on which the power reception device is mounted are present around the primary coil. A presence determination unit that determines whether or not to do so. When the presence determination unit determines that the object is present around the primary coil, the AC detection is performed when AC power is input from the second AC power source to the secondary coil. Based on the detection result of the part, it is determined whether or not power transmission from the secondary coil to the primary coil is performed.
非接触電力伝送装置及び送電機器の電気的構成を示すブロック図。The block diagram which shows the electrical structure of a non-contact electric power transmission apparatus and power transmission equipment. 充電準備処理を示すフローチャート。The flowchart which shows a charge preparation process. (a),(b)は車両が駐車される様子を示す模式図。(A), (b) is a schematic diagram which shows a mode that a vehicle is parked. (a)は力率の変動を示すグラフであり、(b)は受電電力の変動を示すグラフ。(A) is a graph which shows the fluctuation | variation of a power factor, (b) is a graph which shows the fluctuation | variation of received electric power. 別例の送電機器の電気的構成を示すブロック図。The block diagram which shows the electric constitution of the power transmission apparatus of another example.
 以下、非接触電力伝送装置(非接触電力伝送システム)及び送電機器(送電装置)の一実施形態について説明する。
 図1に示すように、非接触電力伝送装置10は、非接触で電力伝送が可能な送電機器11(地上側機器、1次側機器)と受電機器21(車両側機器、2次側機器)を備えている。送電機器11は地上に設けられており、受電機器21は車両100に搭載されている。
Hereinafter, an embodiment of a non-contact power transmission device (non-contact power transmission system) and a power transmission device (power transmission device) will be described.
As shown in FIG. 1, the non-contact power transmission device 10 includes a power transmission device 11 (ground side device, primary side device) and a power receiving device 21 (vehicle side device, secondary side device) capable of non-contact power transmission. It has. The power transmission device 11 is provided on the ground, and the power reception device 21 is mounted on the vehicle 100.
 送電機器11は、予め定められた周波数の交流電力を出力可能な第1交流電源としての交流電源12を備えている。交流電源12は、例えば電圧源である。交流電源12は、インフラストラクチャとしての系統電源Eから外部電力として系統電力が入力された場合に、当該系統電力を交流電力に変換しその変換された交流電力を出力可能に構成されている。 The power transmission device 11 includes an AC power source 12 as a first AC power source capable of outputting AC power having a predetermined frequency. The AC power supply 12 is a voltage source, for example. The AC power supply 12 is configured to be able to convert the grid power to AC power and output the converted AC power when grid power is input as external power from the grid power supply E as an infrastructure.
 詳細には、交流電源12は、第1変換部としてのAC/DC変換器12aと、第2変換部としてのDC/AC変換器12bとを備えている。AC/DC変換器12aは、系統電源Eから入力される系統電力を直流電力に変換する。DC/AC変換器12bは、AC/DC変換器12aから直流電力が入力されるものであって当該直流電力を交流電力に変換し、その変換された交流電力を出力する。 Specifically, the AC power supply 12 includes an AC / DC converter 12a as a first conversion unit and a DC / AC converter 12b as a second conversion unit. The AC / DC converter 12a converts system power input from the system power supply E into DC power. The DC / AC converter 12b receives DC power from the AC / DC converter 12a, converts the DC power into AC power, and outputs the converted AC power.
 本実施形態のAC/DC変換器12aは、当該AC/DC変換器12aから出力される直流電力の電力値を可変に構成されている。これにより、交流電源12は、電力値が異なる複数種類の交流電力を出力可能となっている。また、本実施形態のDC/AC変換器12bは、直流電力を交流電力に変換可能であるが、交流電力を直流電力に変換することはできない一方向性の変換器である。 The AC / DC converter 12a of the present embodiment is configured such that the power value of the DC power output from the AC / DC converter 12a is variable. Thereby, the AC power supply 12 can output a plurality of types of AC power having different power values. Further, the DC / AC converter 12b of the present embodiment is a unidirectional converter that can convert DC power to AC power but cannot convert AC power to DC power.
 交流電源12から出力された交流電力は、非接触で受電機器21に伝送され、受電機器21に設けられた車両用バッテリ22(蓄電装置)の充電に用いられる。具体的には、非接触電力伝送装置10は、送電機器11及び受電機器21間の電力伝送を行う1次側共振器13と2次側共振器23とを備えている。1次側共振器13は、送電機器11に設けられ且つ交流電源12から出力された交流電力が入力される。2次側共振器23は、受電機器21に設けられている。 AC power output from the AC power supply 12 is transmitted to the power receiving device 21 in a non-contact manner, and used for charging a vehicle battery 22 (power storage device) provided in the power receiving device 21. Specifically, the non-contact power transmission apparatus 10 includes a primary side resonator 13 and a secondary side resonator 23 that perform power transmission between the power transmission device 11 and the power reception device 21. The primary-side resonator 13 is provided in the power transmission device 11 and receives AC power output from the AC power supply 12. The secondary resonator 23 is provided in the power receiving device 21.
 1次側共振器13及び2次側共振器23は同一の構成を有し、両者は磁場共鳴可能に構成されている。詳細には、1次側共振器13は、互いに並列に接続された1次側コイル13a及び1次側コンデンサ13bからなる共振回路を有している。2次側共振器23は、互いに並列に接続された2次側コイル23a及び2次側コンデンサ23bからなる共振回路を有している。両共振回路の共振周波数は同一に設定されている。 The primary side resonator 13 and the secondary side resonator 23 have the same configuration, and both are configured to be capable of magnetic field resonance. Specifically, the primary side resonator 13 has a resonance circuit including a primary side coil 13a and a primary side capacitor 13b connected in parallel to each other. The secondary side resonator 23 has a resonance circuit including a secondary side coil 23a and a secondary side capacitor 23b connected in parallel to each other. The resonant frequencies of both resonant circuits are set to be the same.
 かかる構成によれば、1次側共振器13及び2次側共振器23の相対位置が磁場共鳴可能な位置にある状況において、交流電力が1次側共振器13(1次側コイル13a)に入力された場合、1次側共振器13と2次側共振器23(2次側コイル23a)とが磁場共鳴する。これにより、2次側共振器23は1次側共振器13からのエネルギの一部を受け取る。すなわち、2次側共振器23は、1次側共振器13から交流電力を受電する。 According to this configuration, in a situation where the relative position of the primary side resonator 13 and the secondary side resonator 23 is at a position where magnetic field resonance is possible, AC power is supplied to the primary side resonator 13 (primary side coil 13a). When input, the primary side resonator 13 and the secondary side resonator 23 (secondary side coil 23a) perform magnetic field resonance. As a result, the secondary resonator 23 receives a part of the energy from the primary resonator 13. That is, the secondary resonator 23 receives AC power from the primary resonator 13.
 ちなみに、交流電源12から出力される交流電力の周波数は、1次側共振器13及び2次側共振器23間にて電力伝送が可能となるよう、1次側共振器13及び2次側共振器23の共振周波数に対応させて設定されている。例えば、交流電力の周波数は、1次側共振器13及び2次側共振器23の共振周波数と同一に設定されている。なお、これに限られず、電力伝送が可能な範囲内で、交流電力の周波数と、1次側共振器13及び2次側共振器23の共振周波数とが、ずれていてもよい。 By the way, the frequency of the AC power output from the AC power source 12 is such that the primary side resonator 13 and the secondary side resonance can be transmitted between the primary side resonator 13 and the secondary side resonator 23. It is set corresponding to the resonance frequency of the vessel 23. For example, the frequency of the AC power is set to be the same as the resonance frequency of the primary side resonator 13 and the secondary side resonator 23. However, the present invention is not limited to this, and the frequency of the AC power and the resonance frequency of the primary-side resonator 13 and the secondary-side resonator 23 may be deviated as long as power transmission is possible.
 受電機器21は、交流電力及び直流電力間の双方向変換が可能な電力変換部24を備えている。電力変換部24は、2次側共振器23と車両用バッテリ22との間に設けられている。電力変換部24は、2次側共振器23によって受電された交流電力が入力されている場合には、当該交流電力を直流電力に変換し、その変換された直流電力を車両用バッテリ22に出力する。この場合、車両用バッテリ22が充電される。 The power receiving device 21 includes a power conversion unit 24 capable of bidirectional conversion between AC power and DC power. The power converter 24 is provided between the secondary resonator 23 and the vehicle battery 22. When the AC power received by the secondary resonator 23 is input, the power converter 24 converts the AC power into DC power and outputs the converted DC power to the vehicle battery 22. To do. In this case, the vehicle battery 22 is charged.
 電力変換部24は、車両用バッテリ22の放電が行われることによって車両用バッテリ22から直流電力が入力されている場合には、当該直流電力を交流電力に変換し、その変換された交流電力を2次側共振器23に出力する。この場合、仮に1次側共振器13と2次側共振器23とが磁場共鳴可能な位置に配置されている場合には、2次側共振器23から1次側共振器13への電力伝送が行われる。なお、車両用バッテリ22及び電力変換部24は、交流電力を出力する第2交流電源に対応する。 When DC power is input from the vehicle battery 22 by discharging the vehicle battery 22, the power conversion unit 24 converts the DC power into AC power, and the converted AC power is converted into the AC power. Output to the secondary-side resonator 23. In this case, if the primary side resonator 13 and the secondary side resonator 23 are arranged at a position where magnetic field resonance is possible, power transmission from the secondary side resonator 23 to the primary side resonator 13 is performed. Is done. The vehicle battery 22 and the power converter 24 correspond to a second AC power source that outputs AC power.
 受電機器21は、2次側共振器23によって受電された交流電力を検出する2次側検出部25を備えている。2次側検出部25は、2次側共振器23によって受電された交流電力の電圧値及び電流値を検出し、その検出結果を、受電機器21に設けられた車両側コントローラ26に送信する。車両側コントローラ26は2次側コントローラともいう。車両側コントローラ26は、電力変換部24による電力変換の制御、及び、車両用バッテリ22の充電又は放電の切替制御を行う。 The power receiving device 21 includes a secondary side detection unit 25 that detects AC power received by the secondary side resonator 23. The secondary side detection unit 25 detects the voltage value and current value of the AC power received by the secondary side resonator 23, and transmits the detection result to the vehicle side controller 26 provided in the power receiving device 21. The vehicle controller 26 is also referred to as a secondary controller. The vehicle-side controller 26 performs control of power conversion by the power conversion unit 24 and switching control of charging or discharging of the vehicle battery 22.
 受電機器21は、車両用バッテリ22の充電状態(SOC:State of Charge)を検知し、その検知結果を車両側コントローラ26に送信するSOCセンサ(図示略)を備えている。 The power receiving device 21 includes a SOC sensor (not shown) that detects the state of charge (SOC: State of Charge) of the vehicle battery 22 and transmits the detection result to the vehicle-side controller 26.
 送電機器11は、AC/DC変換器12a及びDC/AC変換器12bを制御する電源側コントローラ14を備えている。電源側コントローラ14は、1次側コントローラともいう。電源側コントローラ14と車両側コントローラ26とは、互いに無線通信可能に構成されている。非接触電力伝送装置10は、コントローラ14,26が互いに情報のやり取りを行いながら、電力伝送の開始又は終了など制御を行う。なお、コントローラ14,26間の無線通信の具体的な方式は任意であるが、例えばZigbee(登録商標)、Bluetooth(登録商標)が考えられる。 The power transmission device 11 includes a power supply side controller 14 that controls the AC / DC converter 12a and the DC / AC converter 12b. The power supply controller 14 is also referred to as a primary controller. The power supply side controller 14 and the vehicle side controller 26 are configured to be capable of wireless communication with each other. The non-contact power transmission apparatus 10 performs control such as start or end of power transmission while the controllers 14 and 26 exchange information with each other. Note that a specific method of wireless communication between the controllers 14 and 26 is arbitrary. For example, Zigbee (registered trademark) and Bluetooth (registered trademark) are conceivable.
 送電機器11は、交流電源12(詳細にはDC/AC変換器12b)と1次側共振器13との間に設けられ、インピーダンス変換を行うインピーダンス変換器30を備えている。インピーダンス変換器30は、例えばトランスやLC回路で構成されている。 The power transmission device 11 includes an impedance converter 30 that is provided between the AC power supply 12 (specifically, the DC / AC converter 12b) and the primary-side resonator 13 and performs impedance conversion. The impedance converter 30 is composed of, for example, a transformer or an LC circuit.
 インピーダンス変換器30の入力端(DC/AC変換器12bの出力端)から車両用バッテリ22までの部品が1つの電源負荷と見なされる。交流電源12から予め定められた特定電力値の交流電力である充電用電力が出力され、且つ、各共振器13,23の相対位置が予め定められた基準位置である場合における電源負荷に対する力率λが「1」に近づくように好ましくは一致するように、インピーダンス変換器30は、1次側共振器13(1次側コイル13a)の入力インピーダンスを変換する。すなわち、本実施形態のインピーダンス変換器30は、力率改善回路である。 Components from the input end of the impedance converter 30 (output end of the DC / AC converter 12b) to the vehicle battery 22 are regarded as one power load. The power factor for the power source load in the case where charging power, which is AC power having a predetermined specific power value, is output from the AC power source 12 and the relative position of each of the resonators 13 and 23 is a predetermined reference position. The impedance converter 30 converts the input impedance of the primary side resonator 13 (primary side coil 13a) so that λ preferably matches with “1”. That is, the impedance converter 30 of this embodiment is a power factor correction circuit.
 既に説明した通り、1次側共振器13は、交流電源12から出力された交流電力を2次側共振器23に非接触で送電するのに用いられるとともに、2次側共振器23からの交流電力を非接触で受電するのに用いられる。これに対応させて、送電機器11は、交流電源12から出力される交流電力(以降単に送電電力という)に関する電気的特性と、1次側共振器13が2次側共振器23から非接触で受電した交流電力(以降単に受電電力という)に関する電気的特性とを検出可能に構成されている。 As described above, the primary side resonator 13 is used to transmit AC power output from the AC power source 12 to the secondary side resonator 23 in a non-contact manner, and also from the secondary side resonator 23. Used to receive power without contact. Correspondingly, the power transmission device 11 is configured so that the electrical characteristics relating to AC power (hereinafter simply referred to as “transmission power”) output from the AC power source 12 and the primary resonator 13 are contactless from the secondary resonator 23. It is configured to be able to detect electrical characteristics relating to received AC power (hereinafter simply referred to as “received power”).
 詳細には、図1に示すように、送電機器11は、送電電力に関する電気的特性を検出するものとして、AC/DC変換器12aの出力電力値と力率λとを検出するのに用いられる送電検出部31を備えている。送電検出部31は、AC/DC変換器12aの出力電圧値及び出力電流値を検出するとともに、DC/AC変換器12bの出力電流値を検出し、その検出結果を電源側コントローラ14に送信する。電源側コントローラ14は、AC/DC変換器12aの出力電圧値と出力電流値とに基づいてAC/DC変換器12aの出力電力値を算出し、AC/DC変換器12aの出力電流値とDC/AC変換器12bの出力電流値とに基づいて力率λを算出する。DC/AC変換器12bの出力電流値は、例えば実効値である。また、送電検出部31は、送電機器11内における電圧値及び電流値の少なくとも一方の変動を検出するものとも言える。 Specifically, as shown in FIG. 1, the power transmission device 11 is used to detect the output power value and the power factor λ of the AC / DC converter 12 a as a device that detects electrical characteristics related to transmitted power. A power transmission detection unit 31 is provided. The power transmission detection unit 31 detects the output voltage value and the output current value of the AC / DC converter 12a, detects the output current value of the DC / AC converter 12b, and transmits the detection result to the power supply side controller 14. . The power supply side controller 14 calculates the output power value of the AC / DC converter 12a based on the output voltage value and the output current value of the AC / DC converter 12a, and the output current value of the AC / DC converter 12a and the DC The power factor λ is calculated based on the output current value of the / AC converter 12b. The output current value of the DC / AC converter 12b is, for example, an effective value. It can also be said that the power transmission detection unit 31 detects a change in at least one of a voltage value and a current value in the power transmission device 11.
 なお、「送電機器11内における電圧値及び電流値の少なくとも一方の変動を検出する」とは、AC/DC変換器12aから1次側コイル13aまでの電力伝送経路上の所定位置における電圧値及び電流値の少なくとも一方の変動を直接的に検出することに加えて、当該変動に起因して変動する各種パラメータ、例えば力率、電力値の変動を検出することにより電圧値及び電流値の少なくとも一方の変動を間接的に検出することを含む。 Note that “detecting a change in at least one of a voltage value and a current value in the power transmission device 11” means a voltage value at a predetermined position on the power transmission path from the AC / DC converter 12a to the primary coil 13a. In addition to directly detecting at least one fluctuation of the current value, at least one of the voltage value and the current value by detecting fluctuations of various parameters that vary due to the fluctuation, such as power factor and power value. Including indirectly detecting fluctuations.
 送電機器11は、1次側共振器13によって受電された交流電力である受電電力を検出する受電検出部32と、1次側共振器13(1次側コイル13a)の接続先を、交流電源12(詳細にはDC/AC変換器12b)又は受電検出部32に切り替える切替リレー33(切替部)とを備えている。切替リレー33は、DC/AC変換器12bと1次側共振器13との間、詳細にはインピーダンス変換器30と1次側共振器13との間に配置されている。受電検出部32は、切替リレー33によって1次側共振器13に接続されている状況において受電電力を検出し、その検出結果を電源側コントローラ14に送信する。 The power transmission device 11 is configured to connect a power receiving detection unit 32 that detects received power that is AC power received by the primary side resonator 13 and a connection destination of the primary side resonator 13 (primary side coil 13a) to an AC power source. 12 (specifically, a DC / AC converter 12b) or a switching relay 33 (switching unit) for switching to the power reception detection unit 32. The switching relay 33 is disposed between the DC / AC converter 12 b and the primary side resonator 13, specifically between the impedance converter 30 and the primary side resonator 13. The power reception detection unit 32 detects the received power in a state where the power reception detection unit 32 is connected to the primary resonator 13 by the switching relay 33 and transmits the detection result to the power supply side controller 14.
 図1に示すように、切替リレー33による1次側共振器13と交流電源12との接続とは、1次側共振器13と交流電源12との間に別の部品(例えばインピーダンス変換器30)が介在している態様を含む。 As shown in FIG. 1, the connection between the primary side resonator 13 and the AC power source 12 by the switching relay 33 is another component (for example, the impedance converter 30) between the primary side resonator 13 and the AC power source 12. ) Is included.
 電源側コントローラ14及び車両側コントローラ26は、本格的な車両用バッテリ22の充電を開始する前段階において、送電機器11から受電機器21への電力伝送が正常に行われることを確認するための充電準備処理を実行する。充電準備処理では、電源側コントローラ14は、1次側共振器13の周囲に、受電機器21が搭載された対象物としての車両100が存在するか否かを判定し、その判定結果が肯定判定である場合に、1次側共振器13と2次側共振器23との間で電力伝送が行われるか否かの伝送判定を行う。 The power supply side controller 14 and the vehicle side controller 26 are charged for confirming that power transmission from the power transmitting device 11 to the power receiving device 21 is normally performed before starting full-scale charging of the vehicle battery 22. Perform preparatory processing. In the charging preparation process, the power supply side controller 14 determines whether or not the vehicle 100 as an object on which the power receiving device 21 is mounted exists around the primary side resonator 13, and the determination result is affirmative determination In this case, a transmission determination is made as to whether or not power transmission is performed between the primary side resonator 13 and the secondary side resonator 23.
 ちなみに、本実施形態の充電準備処理は、例えばコントローラ14,26間で情報のやり取りが可能であって、且つ、車両100が停止する前段階、つまり車両100の移動中(駐車運転中)に実行される。例えば、充電準備処理の具体的な実行契機は、電源側コントローラ14の無線通信可能な範囲内に車両100が進入してきた場合である。 Incidentally, the charge preparation process of the present embodiment can be exchanged between the controllers 14 and 26, for example, and is executed before the vehicle 100 stops, that is, during the movement of the vehicle 100 (parking operation). Is done. For example, the specific execution trigger of the charging preparation process is when the vehicle 100 enters the wireless communication range of the power controller 14.
 充電準備処理について図2のフローチャートを用いて説明する。図示の都合上、図2においては、電源側コントローラ14にて実行される充電準備処理と、車両側コントローラ26にて実行される充電準備処理とを示す。また、コントローラ14,26間でやり取りされる信号を破線にて示す。 The charging preparation process will be described with reference to the flowchart of FIG. For the convenience of illustration, FIG. 2 shows a charge preparation process executed by the power supply controller 14 and a charge preparation process executed by the vehicle controller 26. Further, signals exchanged between the controllers 14 and 26 are indicated by broken lines.
 まず、電源側コントローラ14にて実行される充電準備処理について説明する。図2に示すように、電源側コントローラ14は、ステップS101にて1次側共振器13と交流電源12(DC/AC変換器12b)とが互いに接続されるように切替リレー33を制御する。 First, the charge preparation process executed by the power supply controller 14 will be described. As shown in FIG. 2, the power supply side controller 14 controls the switching relay 33 so that the primary side resonator 13 and the alternating current power supply 12 (DC / AC converter 12b) are mutually connected in step S101.
 その後、ステップS102にて、電源側コントローラ14は仮送電を開始する。詳細には、電源側コントローラ14は、交流電源12から仮送電用電力が出力されるようにAC/DC変換器12a及びDC/AC変換器12bを制御する。当該仮送電用電力の電力値は、充電用電力の電力値よりも小さい。 Thereafter, in step S102, the power supply controller 14 starts temporary power transmission. Specifically, the power supply side controller 14 controls the AC / DC converter 12 a and the DC / AC converter 12 b so that the temporary power transmission power is output from the AC power supply 12. The power value of the temporary power transmission is smaller than the power value of the charging power.
 続くステップS103では、電源側コントローラ14は、送電検出部31の検出結果に基づいて、力率λを算出する。そして、ステップS104にて、電源側コントローラ14は、算出された力率λが予め定められた閾値力率λth以上であるか否かを判定する。電源側コントローラ14は、算出された力率λが閾値力率λth以上である場合には、ステップS105に進む。これに対して、算出された力率λが閾値力率λth未満である場合には、電源側コントローラ14は、ステップS103に戻る。つまり、電源側コントローラ14は、力率λが閾値力率λth以上となるまで定期的に、力率λの算出、及び、算出された力率λと閾値力率λthとの比較を行う。 In subsequent step S <b> 103, the power supply side controller 14 calculates the power factor λ based on the detection result of the power transmission detection unit 31. In step S104, the power supply controller 14 determines whether or not the calculated power factor λ is equal to or greater than a predetermined threshold power factor λth. If the calculated power factor λ is greater than or equal to the threshold power factor λth, the power supply controller 14 proceeds to step S105. On the other hand, when the calculated power factor λ is less than the threshold power factor λth, the power supply controller 14 returns to step S103. That is, the power supply controller 14 periodically calculates the power factor λ and compares the calculated power factor λ with the threshold power factor λth until the power factor λ becomes equal to or greater than the threshold power factor λth.
 ここで、既に説明した通り、インピーダンス変換器30の定数は、共振器13,23の相対位置が基準位置となっている場合において力率λが「1」に近づくように、共振器13,23の相対位置が基準位置となっている場合の1次側共振器13の入力インピーダンスに対応させて設定されている。そして、1次側共振器13の入力インピーダンスは、1次側共振器13の周囲に車両100(2次側共振器23)が存在するか否かによって変動する。このため、力率λは、1次側共振器13の周囲に車両100が存在する場合には上昇する一方、1次側共振器13の周囲に車両100が存在しない場合には低下する。よって、力率λが閾値力率λth以上となることは、1次側共振器13の周囲に車両100が存在する蓋然性が高いことを意味する。このため、ステップS104の処理は、1次側共振器13の周囲に車両100が存在するか否かの判定処理と言える。ステップS104の処理を実行するようにプログラムされた電源側コントローラ14が「存在判定部」として機能する。 Here, as already described, the constant of the impedance converter 30 is such that the power factor λ approaches “1” when the relative position of the resonators 13 and 23 is the reference position. Is set in correspondence with the input impedance of the primary-side resonator 13 when the relative position is the reference position. The input impedance of the primary side resonator 13 varies depending on whether or not the vehicle 100 (secondary side resonator 23) exists around the primary side resonator 13. Therefore, the power factor λ increases when the vehicle 100 exists around the primary side resonator 13, and decreases when the vehicle 100 does not exist around the primary side resonator 13. Therefore, the power factor λ being equal to or greater than the threshold power factor λth means that there is a high probability that the vehicle 100 exists around the primary side resonator 13. For this reason, the process of step S <b> 104 can be said to be a determination process of whether or not the vehicle 100 exists around the primary side resonator 13. The power supply side controller 14 programmed to execute the process of step S104 functions as a “presence determining unit”.
 ちなみに、交流電源12から仮送電用電力が出力されている状況下において1次側共振器13の周囲(例えば電源側コントローラ14の無線通信範囲内)に車両100が存在しない場合の力率λを第1力率と定義する。また、交流電源12から仮送電用電力が出力されている状況下において共振器13,23の相対位置が基準位置となっている場合の力率λを第2力率と定義する。この場合、閾値力率λthは、第1力率と第2力率との間の値であれば任意である。例えば、閾値力率λthとして、第1力率と第2力率との平均値と、第1力率との間の値を採用してもよい。 Incidentally, the power factor λ when the vehicle 100 does not exist around the primary side resonator 13 (for example, within the wireless communication range of the power source side controller 14) under the situation where the power for temporary power transmission is output from the AC power source 12. It is defined as the first power factor. Further, the power factor λ when the relative position of the resonators 13 and 23 is the reference position in a situation where temporary power transmission power is output from the AC power supply 12 is defined as a second power factor. In this case, the threshold power factor λth is arbitrary as long as it is a value between the first power factor and the second power factor. For example, a value between the average value of the first power factor and the second power factor and the first power factor may be employed as the threshold power factor λth.
 1次側共振器13の周囲とは、電源側コントローラ14の無線通信範囲内であれば任意に設定されてもよいが、例えば1次側共振器13から予め定められた特定距離の範囲内として設定されてもよい。特定距離は、例えば、共振器13,23間の伝送効率が予め定められた閾値効率以上となる距離が考えられる。この場合、閾値力率λthは、交流電源12から仮送電用電力が出力されている状況下において共振器13,23間の距離が特定距離である場合の力率λに設定されているとよい。この場合、力率λが閾値力率λth以上である場合には、各共振器13,23が閾値効率以上の伝送効率となる位置に配置されている可能性があることを意味する。 The circumference of the primary side resonator 13 may be arbitrarily set as long as it is within the wireless communication range of the power supply side controller 14, but for example, within the range of a predetermined distance from the primary side resonator 13. It may be set. For example, the specific distance may be a distance at which the transmission efficiency between the resonators 13 and 23 is greater than or equal to a predetermined threshold efficiency. In this case, the threshold power factor λth may be set to the power factor λ when the distance between the resonators 13 and 23 is a specific distance in a situation where temporary power transmission power is output from the AC power supply 12. . In this case, when the power factor λ is equal to or higher than the threshold power factor λth, it means that the resonators 13 and 23 may be arranged at positions where the transmission efficiency is equal to or higher than the threshold efficiency.
 上記構成に限られず、1次側共振器13の周囲は、例えば交流電源12から充電用電力が出力可能な各共振器13,23の位置ずれ許容範囲としてもよい。位置ずれ許容範囲とは、仮に当該位置ずれ許容範囲内にて各共振器13,23がどのように配置されている場合であっても、交流電源12が充電用電力を出力可能な範囲であり、交流電源12の定格によって規定されるものである。この場合、閾値力率λthは、上記位置ずれ許容範囲内にて各共振器13,23が任意に配置される条件下において交流電源12から仮送電用電力が出力されている場合の最小力率に設定されているとよい。かかる構成において、力率λが閾値力率λth以上となることは、交流電源12が充電用電力を出力可能な範囲に2次側共振器23(車両100)が配置されている可能性があることを意味する。つまり、ステップS104の処理は、1次側共振器13(送電機器11)が所望の電力値の交流電力を送電可能な範囲内に2次側共振器23(受電機器21)が存在しているか否かを判定する処理とも言える。 The surroundings of the primary resonator 13 are not limited to the above-described configuration, and may be, for example, a misalignment allowable range of the resonators 13 and 23 that can output charging power from the AC power supply 12. The allowable misalignment range is a range in which the AC power supply 12 can output charging power, regardless of how the resonators 13 and 23 are arranged within the allowable misalignment range. It is defined by the rating of the AC power supply 12. In this case, the threshold power factor λth is the minimum power factor when the power for temporary power transmission is output from the AC power supply 12 under the condition in which the resonators 13 and 23 are arbitrarily arranged within the allowable range of displacement. It is good to be set to. In such a configuration, if the power factor λ is equal to or greater than the threshold power factor λth, there is a possibility that the secondary-side resonator 23 (vehicle 100) is disposed in a range in which the AC power supply 12 can output charging power. Means that. That is, in the process of step S104, is the secondary-side resonator 23 (power receiving device 21) present within a range in which the primary-side resonator 13 (power transmission device 11) can transmit AC power having a desired power value? It can also be said to be a process for determining whether or not.
 1次側共振器13の周囲に車両100が存在すると判定された場合に実行されるステップS105では、電源側コントローラ14は、仮送電を停止し、車両100の移動停止を要求する移動停止要求信号を送信する。 In step S105 executed when it is determined that the vehicle 100 exists around the primary side resonator 13, the power supply side controller 14 stops the temporary power transmission and requests a movement stop request signal for requesting the vehicle 100 to stop moving. Send.
 続くステップS106では、電源側コントローラ14は、車両100が検出されていない未検出状態から、車両100を仮検出した仮検出状態に移行する。電源側コントローラ14は、仮検出状態では、仮検出対象の車両100以外の車両とは通信を行わないように通信を規制する。なお、電源側コントローラ14は、初期状態では未検出状態であり、当該未検出状態では、通信規制を行わない。 In subsequent step S106, the power supply side controller 14 shifts from the undetected state where the vehicle 100 is not detected to the temporarily detected state where the vehicle 100 is temporarily detected. In the temporary detection state, the power supply side controller 14 regulates communication so as not to perform communication with vehicles other than the vehicle 100 that is temporarily detected. The power supply controller 14 is in an undetected state in the initial state, and does not regulate communication in the undetected state.
 その後、ステップS107では、電源側コントローラ14は、1次側共振器13と受電検出部32とが互いに接続されるように切替リレー33を制御する。そして、ステップS108にて、電源側コントローラ14は、仮検出されている車両100の車両側コントローラ26に対して、放電を要求する放電要求信号を送信する。すなわち、車両用バッテリ22の放電は、1次側共振器13の周囲に車両100が存在することを契機として行われる。 Thereafter, in step S107, the power supply side controller 14 controls the switching relay 33 so that the primary side resonator 13 and the power reception detecting unit 32 are connected to each other. In step S <b> 108, power supply-side controller 14 transmits a discharge request signal for requesting discharge to vehicle-side controller 26 of vehicle 100 that is temporarily detected. That is, the vehicle battery 22 is discharged when the vehicle 100 is present around the primary-side resonator 13.
 ステップS109では、電源側コントローラ14は、放電要求信号を送信してから所定期間内に受電検出部32にて受電電力が検出されたか否かを判定する。ステップS109の処理を実行するようにプログラムされた電源側コントローラ14が「伝送判定部」として機能する。 In step S109, the power supply side controller 14 determines whether or not the received power is detected by the received power detection unit 32 within a predetermined period after transmitting the discharge request signal. The power supply side controller 14 programmed to execute the process of step S109 functions as a “transmission determination unit”.
 ちなみに、「受電検出部32にて受電電力が検出された」とは、例えば受電検出部32によって検出された受電電力の電圧値、電流値又は電力値が「0」よりも大きい場合や、受電電力の電力値が予め定められた閾値電力値よりも大きい場合が考えられる。閾値電力値は、例えば車両用バッテリ22の放電電力の電力値に対して予め定められた閾値伝送効率を乗算した値が考えられる。 Incidentally, “the received power is detected by the power receiving detection unit 32” means that the voltage value, current value, or power value of the received power detected by the power receiving detection unit 32 is greater than “0”, for example, A case where the power value of power is larger than a predetermined threshold power value is conceivable. As the threshold power value, for example, a value obtained by multiplying the power value of the discharge power of the vehicle battery 22 by a predetermined threshold transmission efficiency can be considered.
 所定期間内に受電電力が検出された場合、2次側共振器23から1次側共振器13への電力伝送が行われていること、換言すれば1次側共振器13と2次側共振器23との間で電力伝送が行われることを意味する。この場合、電源側コントローラ14は、ステップS109を肯定判定し、ステップS110に進む。ステップS110では、電源側コントローラ14は、充電が可能であることを示す充電可能信号を車両側コントローラ26に送信する。そして、電源側コントローラ14は、ステップS111にて、仮検出状態から本検出状態に移行して、本充電準備処理を終了する。電源側コントローラ14は、本検出状態となったことに基づいて、予め定められた充電終了条件が成立するまで、交流電源12から充電用電力が出力されるように交流電源12を制御する。これにより、1次側共振器13から2次側共振器23へ充電用電力が伝送される。 When the received power is detected within a predetermined period, power transmission from the secondary resonator 23 to the primary resonator 13 is performed, in other words, the primary resonator 13 and the secondary resonance. This means that power transmission is performed with the device 23. In this case, the power supply controller 14 makes a positive determination in step S109, and proceeds to step S110. In step S <b> 110, the power supply controller 14 transmits a chargeable signal indicating that charging is possible to the vehicle controller 26. In step S111, the power supply controller 14 shifts from the temporary detection state to the main detection state, and ends the main charging preparation process. The power supply side controller 14 controls the AC power supply 12 so that the charging power is output from the AC power supply 12 until a predetermined charging end condition is satisfied based on the fact that the detection state is reached. Thereby, the charging power is transmitted from the primary side resonator 13 to the secondary side resonator 23.
 充電終了条件は、例えばSOCセンサによって検出される車両用バッテリ22の充電状態が予め定められた状態(満充電状態)となることや、送電機器11に充電停止スイッチが設けられている場合には当該充電停止スイッチが操作された場合である。 The charge termination condition is, for example, when the state of charge of the vehicle battery 22 detected by the SOC sensor is in a predetermined state (full charge state) or when the power transmission device 11 is provided with a charge stop switch. This is a case where the charge stop switch is operated.
 なお、電源側コントローラ14は、充電用電力の出力中定期的に、力率λ及びAC/DC変換器12aの出力電力値を把握し、これらの値の少なくとも一方が異常値でないか否かを判定する。電源側コントローラ14は、力率λ及びAC/DC変換器12aの出力電力値が正常値である場合には、充電用電力の出力を継続し、力率λ及びAC/DC変換器12aの出力電力値が異常値である場合には、充電用電力の出力を停止する。 The power supply side controller 14 periodically grasps the power factor λ and the output power value of the AC / DC converter 12a during the output of the charging power, and determines whether at least one of these values is not an abnormal value. judge. When the power factor λ and the output power value of the AC / DC converter 12a are normal values, the power supply side controller 14 continues to output the charging power, and the power factor λ and the output of the AC / DC converter 12a. When the power value is an abnormal value, the output of the charging power is stopped.
 所定期間内に受電電力が検出されなかった場合、2次側共振器23から1次側共振器13への電力伝送が行われていないこと、換言すれば非接触の電力伝送ができないことを意味する。この場合、電源側コントローラ14は、ステップS109を否定判定し、ステップS112に進む。ステップS112では、電源側コントローラ14は、充電ができないことを示す充電不能信号を車両側コントローラ26に送信する。そして、電源側コントローラ14は、ステップS113にて、例えば充電ができない旨の報知を行う異常対応処理を実行し、本充電準備処理を終了する。 If the received power is not detected within a predetermined period, it means that power transmission from the secondary resonator 23 to the primary resonator 13 is not performed, in other words, non-contact power transmission cannot be performed. To do. In this case, the power supply controller 14 makes a negative determination in step S109 and proceeds to step S112. In step S <b> 112, the power supply side controller 14 transmits a charge impossible signal indicating that charging cannot be performed to the vehicle side controller 26. Then, in step S113, the power supply side controller 14 executes an abnormality handling process for notifying that charging cannot be performed, for example, and ends this charging preparation process.
 ちなみに、所定期間内に受電電力が検出されなかった場合とは、例えば1次側共振器13の周囲に車両100が存在しないにも関わらず、何らかの要因で力率λが閾値力率λth以上と誤判定された場合や、1次側共振器13の周囲に2次側共振器23が搭載されていない車両100が存在している場合が考えられる。また、例えば1次側共振器13と2次側共振器23との間に異物が存在する場合も考えられる。 Incidentally, the case where the received power is not detected within a predetermined period is, for example, that the power factor λ is equal to or greater than the threshold power factor λth for some reason even though the vehicle 100 does not exist around the primary side resonator 13. It is conceivable that the vehicle 100 in which the secondary resonator 23 is not mounted is present around the primary resonator 13 when it is erroneously determined. Further, for example, a case where foreign matter exists between the primary side resonator 13 and the secondary side resonator 23 can be considered.
 次に、車両側コントローラ26にて実行される充電準備処理について説明する。なお、既に説明した通り、充電準備処理の実行開始時、車両100は移動中である。
 図2に示すように、まずステップS201では、車両側コントローラ26は、移動停止要求信号を受信するまで待機し、移動停止信号を受信した場合には、ステップS202に進み、当該移動停止信号を受信した時に配置されている位置にて車両100が停止するように移動停止処理を実行する。なお、移動停止処理の具体的な構成としては、例えばカーナビゲーションの表示画面にその場で停止するよう報知を行うことが考えられる。また、これに限られず、例えば、車両100に自動停止機能が搭載されている場合には、該自動停止機能を用いて自動で停止させる構成でもよい。
Next, the charge preparation process performed by the vehicle side controller 26 is demonstrated. As already described, vehicle 100 is moving at the start of execution of the charging preparation process.
As shown in FIG. 2, first, in step S201, the vehicle-side controller 26 waits until it receives a movement stop request signal, and when it receives a movement stop signal, it proceeds to step S202 and receives the movement stop signal. The movement stop process is executed so that the vehicle 100 stops at the position where it is placed. As a specific configuration of the movement stop process, for example, it is conceivable to notify the car navigation display screen to stop on the spot. For example, when the vehicle 100 is equipped with an automatic stop function, the automatic stop function may be used to automatically stop the vehicle 100.
 その後、車両側コントローラ26は、ステップS203にて、放電要求信号を受信するまで待機し、放電要求信号を受信した場合には、ステップS204に進み、電力変換部24から2次側共振器23に向けて交流電力が出力されるように電力変換部24及び車両用バッテリ22を制御する。なお、電力変換部24から2次側共振器23に向けて出力される交流電力の電力値は任意であり、仮送電用電力の電力値と同一であってもよいし、異なっていてもよい。 Thereafter, the vehicle-side controller 26 waits until receiving the discharge request signal in step S203. If the discharge request signal is received, the vehicle-side controller 26 proceeds to step S204, and the power converter 24 changes the secondary-side resonator 23. The power conversion unit 24 and the vehicle battery 22 are controlled so that alternating current power is output. The power value of the AC power output from the power conversion unit 24 toward the secondary-side resonator 23 is arbitrary, and may be the same as or different from the power value of the temporary power transmission. .
 車両側コントローラ26は、放電が開始された後、ステップS205にて、充電可能信号又は充電不能信号を受信するまで待機し、充電可能信号又は充電不能信号を受信した場合には、ステップS206に進み、車両用バッテリ22の放電を停止する。そして、車両側コントローラ26は、ステップS207にて信号対応処理を実行し、本充電準備処理を終了する。信号対応処理では、例えば充電可能信号を受信した場合には、充電を開始するための各種処理が実行され、充電不能信号を受信した場合には、充電を行うことができない旨の報知等の処理が実行される。 After the discharge is started, the vehicle-side controller 26 waits until it receives a chargeable signal or an unchargeable signal in step S205, and if it receives a chargeable signal or an unchargeable signal, it proceeds to step S206. Then, the discharge of the vehicle battery 22 is stopped. And the vehicle side controller 26 performs a signal corresponding | compatible process in step S207, and complete | finishes this charge preparation process. In the signal handling process, for example, when a chargeable signal is received, various processes for starting charging are executed, and when a charge impossible signal is received, a process such as notification that charging cannot be performed Is executed.
 次に本実施形態の作用を図3及び図4を用いて説明する。なお、説明の便宜上、1次側共振器13は、地面に設置されており、2次側共振器23は、車両100の底部に設けられているものとする。この場合、基準位置とは、例えば各共振器13,23が鉛直方向に対向している位置である。 Next, the operation of this embodiment will be described with reference to FIGS. For convenience of explanation, it is assumed that the primary side resonator 13 is installed on the ground, and the secondary side resonator 23 is provided at the bottom of the vehicle 100. In this case, the reference position is, for example, a position where the resonators 13 and 23 face each other in the vertical direction.
 図3(a)及び図3(b)に示すように、2次側共振器23(受電機器21)が搭載された車両100が1次側共振器13の周囲に進入し、各共振器13,23が基準位置となる位置に車両100が配置された場合、図4(a)に示すように、力率λが上昇して、閾値力率λth以上となる。これにより、1次側共振器13の接続先が受電検出部32となる。そして、車両用バッテリ22の放電が開始され、2次側共振器23に交流電力が入力される。この場合、図4(b)に示すように、受電検出部32にて受電電力が検出される。当該受電電力が検出されたことを条件として、充電用電力を用いた車両用バッテリ22の充電が行われる。 As shown in FIGS. 3A and 3B, the vehicle 100 on which the secondary side resonator 23 (power receiving device 21) is mounted enters the periphery of the primary side resonator 13, and each resonator 13. , 23 is placed at the reference position, as shown in FIG. 4A, the power factor λ increases and becomes equal to or greater than the threshold power factor λth. Thereby, the connection destination of the primary side resonator 13 becomes the power reception detection unit 32. Then, discharging of the vehicle battery 22 is started, and AC power is input to the secondary resonator 23. In this case, the received power is detected by the received power detection unit 32 as shown in FIG. On condition that the received power is detected, the vehicle battery 22 is charged using the charging power.
 以上詳述した本実施形態によれば以下の効果を奏する。
 (1)交流電源12及び1次側共振器13(1次側コイル13a)を有する送電機器11は、1次側共振器13が2次側共振器23(2次側コイル23a)から受電した交流電力を検出する受電検出部32を備えている。そして、送電機器11は、受電機器21が搭載された車両100が1次側共振器13の周囲に存在するか否かの存在判定を行う電源側コントローラ14を備えている。電源側コントローラ14は、車両100が1次側共振器13の周囲に存在すると判定されたことを契機として2次側共振器23への交流電力の入力が行われた場合に、受電検出部32の検出結果に基づいて、2次側共振器23から1次側共振器13への電力伝送が行われているか否かの伝送判定を行う。これにより、共振器13,23間で電力伝送が行われるか否かを好適に把握できる。換言すれば、送電機器11が非接触の送電を行うことができる車両100を好適に把握できる。
According to the embodiment described above in detail, the following effects are obtained.
(1) In the power transmission device 11 having the AC power supply 12 and the primary side resonator 13 (primary side coil 13a), the primary side resonator 13 receives power from the secondary side resonator 23 (secondary side coil 23a). A power reception detection unit 32 that detects AC power is provided. The power transmission device 11 includes a power source controller 14 that determines whether or not the vehicle 100 on which the power receiving device 21 is mounted is present around the primary resonator 13. When the AC power is input to the secondary side resonator 23 when the vehicle 100 is determined to be present around the primary side resonator 13, the power source side controller 14 receives the power reception detection unit 32. Based on the detection result, a transmission determination is made as to whether or not power transmission from the secondary resonator 23 to the primary resonator 13 is being performed. Thereby, it can be grasped suitably whether electric power transmission is performed between the resonators 13 and 23. In other words, the vehicle 100 in which the power transmission device 11 can perform non-contact power transmission can be properly grasped.
 詳述すると、ノイズ等の何らかの要因によって、車両100が1次側共振器13の周囲に存在しないに関わらず力率λが閾値力率λth以上と誤って判定される場合がある。また、1次側共振器13の周囲に車両100以外の異物や、受電機器21が搭載されていない車両100等が存在することによって力率λが閾値力率λth以上となる場合がある。この場合、そのまま充電用電力の送電が開始されると、無駄な電力損失となるばかりか、交流電源12に過度な負担が付与されることとなる。かといって、存在判定を省略して、伝送判定のみを行う構成とすると、車両100が停止する前段階から車両用バッテリ22の放電を行う必要があるため、放電期間が長くなり易い。このため、伝送判定に要する車両用バッテリ22の電力消費量が大きくなり易い。これに対して、本実施形態によれば、まず存在判定が行われ、当該存在判定が肯定判定である場合に伝送判定が行われる構成となっているため、上記不都合を抑制できる。 More specifically, the power factor λ may be erroneously determined to be equal to or greater than the threshold power factor λth regardless of whether the vehicle 100 is not present around the primary resonator 13 due to some factor such as noise. Further, the power factor λ may be greater than or equal to the threshold power factor λth due to the presence of foreign objects other than the vehicle 100, the vehicle 100 on which the power receiving device 21 is not mounted, etc. around the primary side resonator 13. In this case, when the transmission of the charging power is started as it is, not only is a wasteful power loss, but an excessive load is applied to the AC power supply 12. However, if it is configured to omit the presence determination and perform only the transmission determination, it is necessary to discharge the vehicle battery 22 from the stage before the vehicle 100 stops, and thus the discharge period tends to be long. For this reason, the power consumption of the vehicle battery 22 required for transmission determination tends to increase. On the other hand, according to the present embodiment, since the presence determination is first performed and the transmission determination is performed when the presence determination is an affirmative determination, the above inconvenience can be suppressed.
 (2)電源側コントローラ14は、力率λの変動に基づいて、1次側共振器13の周囲に車両100が存在するか否かの存在判定を行う。これにより、車両検出センサ等といった専用のセンサを設けることなく、存在判定を行うことができる。 (2) The power supply side controller 14 determines whether or not the vehicle 100 exists around the primary side resonator 13 based on the fluctuation of the power factor λ. Thereby, presence determination can be performed without providing a dedicated sensor such as a vehicle detection sensor.
 特に、力率λは、送電機器11にて把握されるパラメータである。このため、電源側コントローラ14としては、車両側コントローラ26と通信を行うことなく、存在判定を行うことができる。 In particular, the power factor λ is a parameter grasped by the power transmission device 11. For this reason, the power source side controller 14 can perform the presence determination without performing communication with the vehicle side controller 26.
 また、電源側コントローラ14は、充電用電力の出力中定期的に力率λ及びAC/DC変換器12aの出力電力値を把握し、これらの値の少なくとも一方が異常値である場合には、充電用電力の出力を停止させる。つまり、存在判定で用いられるパラメータと、電力伝送の異常判定に用いられるパラメータとが共通化されている。これにより、構成の簡素化を図ることができる。 Further, the power supply side controller 14 periodically grasps the power factor λ and the output power value of the AC / DC converter 12a during the output of the charging power, and when at least one of these values is an abnormal value, Stop charging power output. That is, the parameter used for presence determination and the parameter used for power transmission abnormality determination are shared. Thereby, simplification of a structure can be achieved.
 (3)交流電源12は、外部電力を直流電力に変換するAC/DC変換器12a(第1変換部)と、当該直流電力を交流電力に変換するDC/AC変換器12b(第2変換部)とを備えている。そして、送電機器11は、1次側共振器13の接続先を、AC/DC変換器12a又は受電検出部32に切り替える切替リレー33と、少なくともAC/DC変換器12aの出力電流値を検出する送電検出部31とを備えている。切替制御部としての電源側コントローラ14は、存在判定が行われる場合には、1次側共振器13の接続先がDC/AC変換器12bとなるように、伝送判定が行われる場合には、1次側共振器13の接続先が受電検出部32となるように切替リレー33を制御する。 (3) The AC power supply 12 includes an AC / DC converter 12a (first conversion unit) that converts external power into DC power, and a DC / AC converter 12b (second conversion unit) that converts the DC power into AC power. ). And the power transmission apparatus 11 detects the output current value of the switching relay 33 which switches the connection destination of the primary side resonator 13 to the AC / DC converter 12a or the power receiving detection part 32, and at least AC / DC converter 12a. A power transmission detection unit 31. When the presence determination is performed, the power supply side controller 14 as the switching control unit is configured such that when the transmission determination is performed such that the connection destination of the primary resonator 13 is the DC / AC converter 12b, The switching relay 33 is controlled so that the connection destination of the primary side resonator 13 is the power reception detection unit 32.
 かかる構成によれば、存在判定が行われる場合には、1次側共振器13の接続先がDC/AC変換器12bとなっている。なお、1次側共振器13の接続先がDC/AC変換器12bとなるとは、1次側共振器13とDC/AC変換器12bとが直接接続される態様、及び任意の部品を介して間接的に接続される態様を含む。この場合、送電検出部31の検出結果に基づいて、1次側共振器13の周囲に車両100が存在するか否かを判定できる。特に、送電検出部31は、AC/DC変換器12aの出力電流値を検出する。当該AC/DC変換器12aの出力電流値は直流電流値であるため、交流電流値と比較して比較的容易に且つ精度よく検出できる。よって、AC/DC変換器12aの出力電流値を用いることにより、存在判定を好適に行うことができる。 According to this configuration, when presence determination is performed, the connection destination of the primary-side resonator 13 is the DC / AC converter 12b. Note that the connection destination of the primary side resonator 13 is the DC / AC converter 12b through a mode in which the primary side resonator 13 and the DC / AC converter 12b are directly connected, and an optional component. Including a mode of being indirectly connected. In this case, based on the detection result of the power transmission detection unit 31, it can be determined whether or not the vehicle 100 exists around the primary side resonator 13. In particular, the power transmission detection unit 31 detects the output current value of the AC / DC converter 12a. Since the output current value of the AC / DC converter 12a is a direct current value, it can be detected relatively easily and accurately as compared with the alternating current value. Therefore, the presence determination can be suitably performed by using the output current value of the AC / DC converter 12a.
 送電検出部31にて受電電力も検出しようとすることも考えられる。しかしながら、送電検出部31で受電電力を検出するためには、DC/AC変換器12bによって受電電力を直流電力に変換する必要がある。つまり、DC/AC変換器12bが、直流電力及び交流電力間の双方向変換が可能に構成されている必要がある。このような双方向変換が可能な電力変換器を採用することは、構成の複雑化及び送電機器11の大型化等の観点から好ましくない。 It is also conceivable that the power transmission detection unit 31 tries to detect the received power. However, in order for the power transmission detection unit 31 to detect the received power, it is necessary to convert the received power into DC power by the DC / AC converter 12b. That is, the DC / AC converter 12b needs to be configured to be capable of bidirectional conversion between DC power and AC power. Adopting such a power converter capable of bidirectional conversion is not preferable from the viewpoint of complication of the configuration and enlargement of the power transmission device 11.
 これに対して、本実施形態では、送電検出部31とは別に受電検出部32が設けられ、1次側共振器13の接続先を、DC/AC変換器12b又は受電検出部32に切り替える切替リレー33が設けられている。そして、1次側共振器13の接続先が、存在判定と伝送判定とで切り替わっている。これにより、上記不都合を回避しつつ、存在判定と伝送判定とを好適に行うことができる。 On the other hand, in the present embodiment, a power reception detection unit 32 is provided separately from the power transmission detection unit 31, and switching to switch the connection destination of the primary-side resonator 13 to the DC / AC converter 12b or the power reception detection unit 32 is performed. A relay 33 is provided. And the connection destination of the primary side resonator 13 is switched between presence determination and transmission determination. As a result, it is possible to suitably perform the presence determination and the transmission determination while avoiding the above inconvenience.
 (4)電源側コントローラ14は、存在判定が行われる場合には、交流電源12から充電用電力よりも電力値が小さい仮送電用電力が出力されるように交流電源12を制御する。これにより、電力損失の削減や交流電源12の負担軽減を図ることができる。 (4) When the presence determination is performed, the power supply side controller 14 controls the AC power supply 12 so that the temporary power transmission power having a power value smaller than the charging power is output from the AC power supply 12. Thereby, reduction of electric power loss and the burden reduction of AC power supply 12 can be aimed at.
 (5)送電機器11は、交流電源12と1次側共振器13との間に設けられ、インピーダンス変換を行うインピーダンス変換器30を備えている。インピーダンス変換器30の定数(インピーダンス)は、交流電源12から充電用電力が出力され、且つ、各共振器13,23の相対位置が基準位置となっている状況下において力率λが「1」に近づくように設定されている。これにより、充電用電力による電力伝送を好適に行うことができる。 (5) The power transmission device 11 includes an impedance converter 30 that is provided between the AC power supply 12 and the primary-side resonator 13 and performs impedance conversion. The constant (impedance) of the impedance converter 30 is such that the power factor λ is “1” in a situation where charging power is output from the AC power supply 12 and the relative positions of the resonators 13 and 23 are the reference positions. Is set to approach. Thereby, electric power transmission by the electric power for charge can be performed suitably.
 ここで、上記のように充電用電力に対応させてインピーダンス変換器30の定数が設定されている場合、充電用電力とは電力値が異なる仮送電用電力が出力されている状況下では力率λが低くなる。この場合、1次側共振器13の周囲に車両100(2次側共振器23)が存在するか否かに応じて変動する力率λの変動量は小さくなり易い。このため、力率λを用いた存在判定では誤判定が生じ易い。かといって、充電用電力を用いた存在判定を行うと、(4)の効果を得ることができない。これに対して、本実施形態では、存在判定が肯定判定である場合に更に伝送判定を行うことによって、充電用電力による電力伝送を好適に行うことを可能としつつ、充電用電力による電力伝送を好適に行うことによって生じ得る上記不都合を好適に回避することができる。 Here, when the constant of the impedance converter 30 is set so as to correspond to the charging power as described above, the power factor in a situation where temporary transmission power having a power value different from that of the charging power is output. λ becomes lower. In this case, the variation amount of the power factor λ that varies depending on whether or not the vehicle 100 (secondary resonator 23) is present around the primary resonator 13 tends to be small. For this reason, an erroneous determination is likely to occur in the presence determination using the power factor λ. However, if the presence determination using the charging power is performed, the effect of (4) cannot be obtained. In contrast, in the present embodiment, when the presence determination is an affirmative determination, the power transmission by the charging power can be performed while the power transmission by the charging power can be suitably performed by further performing the transmission determination. The above-mentioned inconveniences that can be caused by suitably performing can be preferably avoided.
 なお、上記実施形態は以下のように変更してもよい。
 ○ 実施形態では、受電機器21が搭載された車両100が1次側共振器13の周囲に存在するか否かを判定するパラメータとして、力率λを採用したが、これに限られない。該パラメータは、力率λに代えて、例えば、AC/DC変換器12aの出力電力値であってもよいし出力電流値であってもよい。また、該パラメータは、DC/AC変換器12bの出力電力値であってもよいし出力電流値であってもよい。DC/AC変換器12bの出力電力値においては、該パラメータは、有効電力であってもよいし、皮相電力であってもよい。更に、該パラメータは、AC/DC変換器12aの出力電流値とDC/AC変換器12bの出力電流値との差であってもよい。また、交流電源12が電圧源ではなく電流源である場合には、該パラメータは、DC/AC変換器12bの入力電圧値や出力電圧値であってもよい。但し、電力伝送の異常判定との共通化の観点に着目すれば、該パラメータは、力率λ又はDC/AC変換器12bの出力電力値であることが好ましい。
In addition, you may change the said embodiment as follows.
In the embodiment, the power factor λ is employed as a parameter for determining whether or not the vehicle 100 on which the power receiving device 21 is mounted is present around the primary-side resonator 13, but is not limited thereto. The parameter may be, for example, the output power value of the AC / DC converter 12a or the output current value instead of the power factor λ. The parameter may be an output power value of the DC / AC converter 12b or an output current value. In the output power value of the DC / AC converter 12b, the parameter may be active power or apparent power. Further, the parameter may be a difference between the output current value of the AC / DC converter 12a and the output current value of the DC / AC converter 12b. Further, when the AC power supply 12 is not a voltage source but a current source, the parameter may be an input voltage value or an output voltage value of the DC / AC converter 12b. However, from the viewpoint of common use with the power transmission abnormality determination, the parameter is preferably the power factor λ or the output power value of the DC / AC converter 12b.
 要は、電源側コントローラ14は、送電機器11内の電圧値及び電流値の少なくとも一方の変動に基づいて存在判定を行ってもよい。送電機器11内の電圧値及び電流値の少なくとも一方とは、例えばAC/DC変換器12aから1次側共振器13までの電力伝送経路上の所定位置の電圧値及び電流値の少なくとも一方とも言える。 In short, the power supply side controller 14 may perform the presence determination based on the fluctuation of at least one of the voltage value and the current value in the power transmission device 11. At least one of the voltage value and the current value in the power transmission device 11 can be said to be at least one of a voltage value and a current value at a predetermined position on the power transmission path from the AC / DC converter 12a to the primary side resonator 13, for example. .
 ○ さらに、電源側コントローラ14は、車両側コントローラ26と無線通信が行われたことにより、1次側共振器13の周囲に車両100が存在すると判定してもよい。また、車両側コントローラ26は、2次側共振器23によって交流電力が受電された場合に、受電したことを示す受電確認信号を送信する構成であってもよい。この場合、電源側コントローラ14は、受電確認信号を受信したことに基づいて、1次側共振器13の周囲に車両100が存在すると判定してもよい。 Further, the power supply side controller 14 may determine that the vehicle 100 exists around the primary side resonator 13 by performing wireless communication with the vehicle side controller 26. Further, the vehicle-side controller 26 may be configured to transmit a power reception confirmation signal indicating that power is received when AC power is received by the secondary-side resonator 23. In this case, the power supply side controller 14 may determine that the vehicle 100 exists around the primary side resonator 13 based on the reception of the power reception confirmation signal.
 ○ また、送電機器11が1次側共振器13の周囲に存在する車両100を検出する車両検出センサを備えていてもよい。この場合、車両検出センサによって車両100が検出された場合に、ステップS105以降の処理を実行するとよい。かかる構成によれば、車両検出センサでは、比較的容易に車両100を検出することは可能であるが、当該車両100に受電機器21が搭載されているか否かを判定することは困難である。このため、受電機器21が搭載されていない車両100が検出された場合であっても、充電用電力の出力が行われてしまうおそれがある。これに対して、存在判定が行われた後に伝送判定を行うことにより、仮に車両検出センサによって受電機器21が搭載されていない車両100が検出された場合であっても、充電用電力の出力が行われないようにすることができる。なお、車両検出センサの具体的な構成は任意であるが、例えば1次側共振器13の周囲の領域に対してレーザスキャンを行う測域センサが考えられる。 Further, the power transmission device 11 may include a vehicle detection sensor that detects the vehicle 100 existing around the primary side resonator 13. In this case, when the vehicle 100 is detected by the vehicle detection sensor, the processes after step S105 may be executed. According to such a configuration, the vehicle detection sensor can detect the vehicle 100 relatively easily, but it is difficult to determine whether or not the power receiving device 21 is mounted on the vehicle 100. For this reason, even if it is a case where the vehicle 100 in which the power receiving apparatus 21 is not mounted is detected, there exists a possibility that the output of the electric power for charging may be performed. On the other hand, by performing transmission determination after the presence determination is performed, even if the vehicle detection sensor detects the vehicle 100 on which the power receiving device 21 is not mounted, the output of charging power is output. You can prevent it from happening. Although the specific configuration of the vehicle detection sensor is arbitrary, for example, a range sensor that performs laser scanning on a region around the primary-side resonator 13 is conceivable.
 ○ 送電検出部31と受電検出部32とが別々に設けられていたが、これに限られず、一体となっていてもよい。例えば、図5に示すように、送電検出部31に代えて送受電検出部41を設け、受電検出部32及び切替リレー33を省略してもよい。この場合、DC/AC変換器12bに代えて、直流電力及び交流電力間の双方向変換が可能な双方向変換器42を設けるとよい。これにより、送受電検出部41によって受電電力を検出できる。なお、送受電検出部41の具体的な構成は、送電検出部31と同一である。 ○ The power transmission detection unit 31 and the power reception detection unit 32 are provided separately, but are not limited thereto, and may be integrated. For example, as illustrated in FIG. 5, a power transmission / reception detection unit 41 may be provided instead of the power transmission detection unit 31, and the power reception detection unit 32 and the switching relay 33 may be omitted. In this case, in place of the DC / AC converter 12b, a bidirectional converter 42 capable of bidirectional conversion between DC power and AC power may be provided. Thereby, the received power can be detected by the power transmission / reception detection unit 41. The specific configuration of the power transmission / reception detection unit 41 is the same as that of the power transmission detection unit 31.
 ○ 実施形態では、送電検出部31は、AC/DC変換器12aの出力電圧値及び出力電流値と、DC/AC変換器12bの出力電流値とを検出するものであったが、これに限られず、いずれか1つのみ検出するものであってもよい。この場合、構成の簡素化を図ることができる。 In the embodiment, the power transmission detection unit 31 detects the output voltage value and output current value of the AC / DC converter 12a and the output current value of the DC / AC converter 12b. Instead, only one of them may be detected. In this case, the configuration can be simplified.
 ○ 1次側共振器13によって受電された交流電力である受電電力を用いて、車両100の位置合わせを行ってもよい。詳細には、例えば電源側コントローラ14は、受電検出部32によって検出される受電電力の電力値が大きくなるように車両100を誘導してもよい。 ○ Positioning of the vehicle 100 may be performed using the received power that is the AC power received by the primary-side resonator 13. Specifically, for example, the power supply controller 14 may guide the vehicle 100 so that the power value of the received power detected by the power reception detection unit 32 is increased.
 ○ インピーダンス変換器30は複数設けられていてもよい。また、受電機器21に、インピーダンス変換器が設けられていてもよい。さらに、インピーダンス変換器30を省略してもよい。 ○ A plurality of impedance converters 30 may be provided. Further, the power receiving device 21 may be provided with an impedance converter. Further, the impedance converter 30 may be omitted.
 ○ 存在判定では仮送電用電力を用いたが、これに限られず、充電用電力を用いてもよい。
 ○ 実施形態では、外部電力は系統電力であったが、これに限られず、直流電力であってもよい。この場合、AC/DC変換器12aを省略してもよいし、当該AC/DC変換器12aに代えて、DC/DCコンバータを設けてもよい。本別例においては、DC/DCコンバータが第1変換部に対応する。
In the presence determination, the temporary power transmission power is used, but the present invention is not limited to this, and charging power may be used.
In the embodiment, the external power is system power, but is not limited thereto, and may be DC power. In this case, the AC / DC converter 12a may be omitted, or a DC / DC converter may be provided in place of the AC / DC converter 12a. In this example, the DC / DC converter corresponds to the first conversion unit.
 ○ 伝送判定の実行主体は任意であり、例えば車両側コントローラ26であってもよいし、各コントローラ14,26とは別の専用コントローラであってもよい。この場合、電源側コントローラ14は、伝送判定に必要な情報、例えば受電検出部32の検出結果に関する情報を伝送判定の実行主体に適宜送信するとよい。 ○ The execution subject of transmission determination is arbitrary, and may be, for example, the vehicle-side controller 26, or a dedicated controller different from the controllers 14 and 26. In this case, the power supply side controller 14 may appropriately transmit information necessary for transmission determination, for example, information related to the detection result of the power reception detection unit 32 to the execution subject of transmission determination.
 ○ 充電準備処理の実行契機として、電源側コントローラ14の無線通信可能な範囲内に車両100が進入してきた場合であって、各コントローラ14,26が互いに通信相手であると認証した通信確立状態となった場合を採用してもよい。通信確立状態は、認証したコントローラとは通信が行われる一方、認証したコントローラ以外のコントローラとの通信が規制される状態である。 ○ When the vehicle 100 has entered the wireless communication range of the power supply side controller 14 as a trigger for executing the charging preparation process, the communication establishment state in which the controllers 14 and 26 have authenticated each other as communication partners You may adopt the case. The communication established state is a state in which communication with an authenticated controller is performed, but communication with a controller other than the authenticated controller is restricted.
 ○ 充電準備処理の実行契機として、車両100が停止したことを採用してもよい。この場合、電源側コントローラ14は、力率λが閾値力率λth未満である場合には、力率λが閾値力率λth以上となるように移動要求を行うとよい。移動要求とは、例えば移動を促す報知を行ったり、車両側コントローラ26に対して車両100を移動させる旨の信号を送信したりすることが考えられる。 O It may be adopted that the vehicle 100 is stopped as an execution opportunity of the charge preparation process. In this case, when the power factor λ is less than the threshold power factor λth, the power supply controller 14 may make a movement request so that the power factor λ is equal to or greater than the threshold power factor λth. The movement request may be, for example, a notification that prompts movement, or a signal that moves the vehicle 100 to the vehicle-side controller 26.
 ○ 2次側検出部25は、電力変換部24と車両用バッテリ22との間の直流電力を検出するものであってもよい。
 ○ 切替リレー33は、交流電源12とインピーダンス変換器30との間に設けられていてもよい。
The secondary side detection unit 25 may detect DC power between the power conversion unit 24 and the vehicle battery 22.
The switching relay 33 may be provided between the AC power supply 12 and the impedance converter 30.
 ○ 受電検出部32は、受電電力に関する物理量、例えば受電電力の電圧値及び電流値の少なくとも一方を検出できれば、その具体的な構成は任意である。
 ○ 電源側コントローラ14は、車両100が存在しない場合の力率λを基準値として予め把握しておき、ステップS104では、ステップS103にて算出された力率λと基準値との差が予め定められた閾値以上であるか否かを判定してもよい。この場合、電源側コントローラ14は、ステップS103にて算出された力率λと基準値との差が予め定められた閾値以上である場合に、車両100が存在すると判定する。
The power reception detecting unit 32 may have any specific configuration as long as it can detect a physical quantity related to the received power, for example, at least one of a voltage value and a current value of the received power.
The power supply side controller 14 grasps in advance the power factor λ when the vehicle 100 is not present as a reference value, and in step S104, the difference between the power factor λ calculated in step S103 and the reference value is determined in advance. It may be determined whether or not it is equal to or greater than the threshold value. In this case, the power supply controller 14 determines that the vehicle 100 exists when the difference between the power factor λ calculated in step S103 and the reference value is equal to or greater than a predetermined threshold.
 ○ 閾値力率λthは、ステップS104にて肯定判定が行われてから車両100が停止するまでのタイムラグを考慮して設定されていてもよい。詳細には、例えば上記タイムラグ中に車両100が移動し得る距離をタイムラグ距離とする。この場合、各共振器13,23間の伝送効率が予め定められた閾値効率以上となる距離(特定距離)よりも上記タイムラグ距離分だけ長い距離の範囲を、1次側共振器13の周囲とし、当該範囲に対応させて閾値力率λthを設定してもよい。同様に、位置ずれ許容範囲に対して上記タイムラグ距離分だけ広い範囲を、1次側共振器13の周囲とし、当該範囲に対応させて閾値力率λthを設定してもよい。 ○ The threshold power factor λth may be set in consideration of a time lag from when the positive determination is made in step S104 until the vehicle 100 stops. Specifically, for example, a distance that the vehicle 100 can move during the time lag is defined as a time lag distance. In this case, a range of a distance longer than the distance (specific distance) at which the transmission efficiency between the resonators 13 and 23 is equal to or greater than a predetermined threshold efficiency is set as the periphery of the primary-side resonator 13. The threshold power factor λth may be set in correspondence with the range. Similarly, a range wide by the time lag distance with respect to the positional deviation allowable range may be set around the primary-side resonator 13 and the threshold power factor λth may be set in correspondence with the range.
 ○ 交流電源12は、電圧源に限られず、電力源又は電流源であってもよい。
 ○ 交流電源12は、電力値が異なる複数種類の交流電力を出力可能に構成されていたが、これに限られず、1種類の交流電力(例えば充電用電力)のみを出力するものであってもよい。
The AC power supply 12 is not limited to a voltage source, and may be a power source or a current source.
The AC power supply 12 is configured to be capable of outputting a plurality of types of AC power having different power values, but is not limited thereto, and may output only one type of AC power (for example, charging power). Good.
 ○ 1次側共振器13の共振周波数と2次側共振器23の共振周波数とは同一に設定されていたが、これに限られず、電力伝送が可能な範囲内で両者を異ならせてもよい。
 ○ 1次側共振器13と2次側共振器23とは同一の構成であったが、これに限られず、異なる構成であってもよい。
The resonance frequency of the primary side resonator 13 and the resonance frequency of the secondary side resonator 23 are set to be the same. However, the present invention is not limited to this, and both may be made different within a power transmission range. .
O Although the primary side resonator 13 and the secondary side resonator 23 were the same structures, it is not restricted to this, A different structure may be sufficient.
 ○ 各コンデンサ13b,23bを省略してもよい。この場合、各コイル13a,23aの寄生容量を用いて磁場共鳴させる。
 ○ 受電機器21の搭載対象は任意であり、例えばロボットや電動車いす等に搭載されてもよい。
Each capacitor 13b, 23b may be omitted. In this case, magnetic field resonance is performed using the parasitic capacitances of the coils 13a and 23a.
○ The power receiving device 21 may be mounted on any object, and may be mounted on, for example, a robot or an electric wheelchair.
 ○ 実施形態では、1次側コイル13aと1次側コンデンサ13bとは並列に接続されていたが、これに限られず、両者は直列に接続されていてもよい。同様に、2次側コイル23aと2次側コンデンサ23bとは、直列に接続されていてもよい。 In the embodiment, the primary coil 13a and the primary capacitor 13b are connected in parallel. However, the present invention is not limited to this, and both may be connected in series. Similarly, the secondary coil 23a and the secondary capacitor 23b may be connected in series.
 ○ 実施形態では、非接触の電力伝送を実現させるために磁場共鳴を用いたが、これに限られず、電磁誘導を用いてもよい。
 ○ 実施形態では、2次側共振器23にて受電された交流電力は車両用バッテリ22の充電に用いられたが、これに限られず、別の用途に用いられてもよい。
In the embodiment, magnetic field resonance is used in order to realize non-contact power transmission. However, the present invention is not limited to this, and electromagnetic induction may be used.
In the embodiment, the AC power received by the secondary resonator 23 is used for charging the vehicle battery 22, but is not limited thereto, and may be used for other purposes.
 ○ 1次側共振器13は、1次側コイル13a及び1次側コンデンサ13bからなる共振回路と、その共振回路と電磁誘導で結合する1次側結合コイルとを有してもよい。同様に、2次側共振器23は、2次側コイル23a及び2次側コンデンサ23bからなる共振回路と、その共振回路と電磁誘導で結合する2次側結合コイルとを有してもよい。 The primary side resonator 13 may have a resonance circuit composed of the primary side coil 13a and the primary side capacitor 13b, and a primary side coupling coil that is coupled to the resonance circuit by electromagnetic induction. Similarly, the secondary side resonator 23 may include a resonance circuit including a secondary side coil 23a and a secondary side capacitor 23b, and a secondary side coupling coil coupled to the resonance circuit by electromagnetic induction.
 ○ 実施形態において、存在判定部及び伝送判定部として機能する電源側コントローラ14並びに車両側コントローラ26の各々は、マイクロコンピュータ、プロセッサ、電子制御装置等の任意のプログラムされた電気回路(circuitry)によって構成されてもよい。 In the embodiment, each of the power supply side controller 14 and the vehicle side controller 26 that function as the presence determination unit and the transmission determination unit is configured by an arbitrary programmed electric circuit (circuitry) such as a microcomputer, a processor, and an electronic control unit. May be.
 ○ 実施形態において、2次側検出部25、送電検出部31及び受電検出部32の各々は、ハードウェアのみからなる検出器またはセンサによって構成されてもよいし、ハードウェアとソフトウェアとの組み合わせからなる検出器またはセンサによって構成されてもよい。 In the embodiment, each of the secondary side detection unit 25, the power transmission detection unit 31, and the power reception detection unit 32 may be configured by a detector or a sensor that includes only hardware, or from a combination of hardware and software. It may be constituted by a detector or a sensor.
 次に、上記実施形態及び別例から把握できる好適な技術的思想について以下に記載する。
 (1)交流電力を出力する第1交流電源、及び、前記第1交流電源から交流電力が入力される1次側コイルを有する送電機器と、
 前記第1交流電源から前記1次側コイルに入力される交流電力を非接触で受電するように構成された2次側コイル、及び、前記2次側コイルに対して交流電力を出力する第2交流電源、を有する受電機器と、
 前記送電機器に設けられ、前記1次側コイルが前記2次側コイルから非接触で受電した交流電力を検出する受電検出部と、
 前記送電機器に設けられたコントローラとを備え、
 前記コントローラは、
 前記受電機器が搭載された対象物が前記1次側コイルの周囲に存在するか否かを判定するようにプログラムされ、かつ
 前記対象物が前記1次側コイルの周囲に存在すると判定されたことを契機として前記第2交流電源から前記2次側コイルに交流電力が入力された場合に、前記受電検出部の検出結果に基づいて、前記2次側コイルから前記1次側コイルへの電力伝送が行われているか否かを判定するようにプログラムされている非接触電力伝送装置。
Next, preferred technical ideas that can be grasped from the embodiment and other examples will be described below.
(1) A first AC power source that outputs AC power, and a power transmission device having a primary coil to which AC power is input from the first AC power source,
A secondary coil configured to contactlessly receive AC power input from the first AC power source to the primary coil; and a second coil that outputs AC power to the secondary coil. A power receiving device having an AC power source;
A power reception detection unit that is provided in the power transmission device and that detects AC power received by the primary coil in a non-contact manner from the secondary coil;
A controller provided in the power transmission device,
The controller is
It is programmed to determine whether or not an object on which the power receiving device is mounted exists around the primary coil, and it is determined that the object exists around the primary coil. When AC power is input from the second AC power source to the secondary coil using the trigger as a trigger, power transmission from the secondary coil to the primary coil based on the detection result of the power reception detection unit A non-contact power transmission device programmed to determine whether or not is being performed.
 (2)交流電力を出力する第1交流電源と、
 前記第1交流電源から交流電力が入力される1次側コイルと、
 コントローラと、
を備え、2次側コイル及び当該2次側コイルに交流電力を出力する第2交流電源を有する受電機器の前記2次側コイルに対して非接触で交流電力を送電するように構成された送電機器であって、
 前記送電機器は、前記1次側コイルが前記2次側コイルから非接触で受電した交流電力を検出する受電検出部を備え、
 前記コントローラは、
 前記受電機器が搭載された対象物が前記1次側コイルの周囲に存在するか否かを判定するようにプログラムされ、かつ
 前記対象物が前記1次側コイルの周囲に存在すると判定されたことを契機として前記第2交流電源から前記2次側コイルに交流電力が入力された場合に、前記受電検出部の検出結果に基づいて、前記2次側コイルから前記1次側コイルへの電力伝送が行われているか否かの判定を行うようにプログラムされている送電機器。
(2) a first AC power source that outputs AC power;
A primary coil to which AC power is input from the first AC power source;
A controller,
Power transmission configured to contactlessly transmit AC power to the secondary coil of a power receiving device having a secondary coil and a second AC power source that outputs AC power to the secondary coil. Equipment,
The power transmission device includes a power reception detection unit that detects AC power received by the primary coil in a non-contact manner from the secondary coil,
The controller is
It is programmed to determine whether or not an object on which the power receiving device is mounted exists around the primary coil, and it is determined that the object exists around the primary coil. When AC power is input from the second AC power source to the secondary coil using the trigger as a trigger, power transmission from the secondary coil to the primary coil based on the detection result of the power reception detection unit A power transmission device that is programmed to determine whether or not is being performed.

Claims (5)

  1.  交流電力を出力する第1交流電源、及び、前記第1交流電源から交流電力が入力される1次側コイルを有する送電機器と、
     前記第1交流電源から前記1次側コイルに入力される交流電力を非接触で受電するように構成された2次側コイル、及び、前記2次側コイルに対して交流電力を出力する第2交流電源を有する受電機器と、
     前記送電機器に設けられ、前記1次側コイルが前記2次側コイルから非接触で受電した交流電力を検出する受電検出部と、
     前記受電機器が搭載された対象物が前記1次側コイルの周囲に存在するか否かを判定する存在判定部と、
     前記存在判定部によって前記対象物が前記1次側コイルの周囲に存在すると判定されたことを契機として前記第2交流電源から前記2次側コイルに交流電力が入力された場合に、前記受電検出部の検出結果に基づいて、前記2次側コイルから前記1次側コイルへの電力伝送が行われているか否かを判定する伝送判定部と、
    を備えている非接触電力伝送装置。
    A first AC power source that outputs AC power, and a power transmission device having a primary coil to which AC power is input from the first AC power source;
    A secondary coil configured to contactlessly receive AC power input from the first AC power source to the primary coil; and a second coil that outputs AC power to the secondary coil. A power receiving device having an AC power source;
    A power reception detection unit that is provided in the power transmission device and that detects AC power received by the primary coil in a non-contact manner from the secondary coil;
    A presence determination unit that determines whether an object on which the power receiving device is mounted is present around the primary coil;
    When the presence determination unit determines that the object is present around the primary coil, the AC detection is performed when AC power is input from the second AC power source to the secondary coil. A transmission determination unit that determines whether or not power transmission from the secondary side coil to the primary side coil is performed based on a detection result of the unit;
    A non-contact power transmission device.
  2.  前記存在判定部は、前記送電機器内における電圧値及び電流値の少なくとも一方の変動に基づいて、前記1次側コイルの周囲に前記対象物が存在するか否かを判定する請求項1に記載の非接触電力伝送装置。 The said presence determination part determines whether the said target exists around the said primary side coil based on the fluctuation | variation of at least one of the voltage value in the said power transmission apparatus, and an electric current value. Non-contact power transmission device.
  3.  前記交流電源は、
     外部電力を直流電力に変換する第1変換部と、
     前記第1変換部から直流電力が入力されるものであって当該直流電力を交流電力に変換する第2変換部と、
    を備え、
     前記送電機器は、
     前記1次側コイルの接続先を、前記第2変換部又は前記受電検出部に切り替える切替部と、
     前記第1変換部の出力電圧値及び出力電流値の少なくとも一方を検出する送電検出部と、
    を備え、
     前記存在判定部は、前記送電検出部の検出結果に基づいて、前記対象物が前記1次側コイルの周囲に存在するか否かを判定するものであり、
     前記非接触電力伝送装置は、前記存在判定部による判定が行われる場合には、前記1次側コイルの接続先が前記第2変換部となるように前記切替部を制御し、前記伝送判定部による判定が行われる場合には、前記1次側コイルの接続先が前記受電検出部となるように前記切替部を制御する切替制御部を備えている請求項2に記載の非接触電力伝送装置。
    The AC power supply is
    A first converter that converts external power into DC power;
    DC power is input from the first converter and a second converter that converts the DC power into AC power;
    With
    The power transmission equipment is
    A switching unit that switches the connection destination of the primary coil to the second conversion unit or the power reception detection unit;
    A power transmission detector that detects at least one of an output voltage value and an output current value of the first converter;
    With
    The presence determination unit is configured to determine whether or not the object exists around the primary coil based on a detection result of the power transmission detection unit,
    When the determination by the presence determination unit is performed, the non-contact power transmission device controls the switching unit so that a connection destination of the primary coil is the second conversion unit, and the transmission determination unit 3. The contactless power transmission device according to claim 2, further comprising: a switching control unit that controls the switching unit so that a connection destination of the primary coil is the power reception detection unit when the determination is performed according to 3. .
  4.  前記存在判定部は、力率の変動に基づいて、前記1次側コイルの周囲に前記対象物が存在するか否かを判定するものであり、
     前記送電機器は、前記交流電源と前記1次側コイルとの間に設けられ、インピーダンス変換を行うインピーダンス変換部を備え、
     前記インピーダンス変換部は、前記交流電源から予め定められた特定電力値の交流電力が出力され、且つ、前記1次側コイルと前記2次側コイルとの相対位置が予め定められた基準位置となっている場合に前記力率が1に近づくように前記1次側コイルの入力インピーダンスをインピーダンス変換する請求項1に記載の非接触電力伝送装置。
    The presence determination unit is configured to determine whether or not the object is present around the primary side coil based on a variation in power factor.
    The power transmission device includes an impedance conversion unit that is provided between the AC power source and the primary coil and performs impedance conversion.
    The impedance converter outputs AC power having a predetermined specific power value from the AC power source, and a relative position between the primary side coil and the secondary side coil is a predetermined reference position. The contactless power transmission device according to claim 1, wherein the input impedance of the primary coil is impedance-converted so that the power factor approaches 1 when the power factor is low.
  5.  交流電力を出力する第1交流電源と、
     前記第1交流電源から交流電力が入力される1次側コイルと、
    を備え、2次側コイル及び当該2次側コイルに交流電力を出力する第2交流電源を有する受電機器の前記2次側コイルに対して非接触で交流電力を送電するように構成された送電機器において、
     前記1次側コイルが前記2次側コイルから非接触で受電した交流電力を検出する受電検出部と、
     前記受電機器が搭載された対象物が前記1次側コイルの周囲に存在するか否かを判定する存在判定部と、
    を備え、
     前記存在判定部によって前記対象物が前記1次側コイルの周囲に存在すると判定されたことを契機として前記第2交流電源から前記2次側コイルに交流電力が入力された場合に、前記受電検出部の検出結果に基づいて、前記2次側コイルから前記1次側コイルへの電力伝送が行われているか否かの判定が行われる送電機器。
    A first AC power source that outputs AC power;
    A primary coil to which AC power is input from the first AC power source;
    Power transmission configured to contactlessly transmit AC power to the secondary coil of a power receiving device having a secondary coil and a second AC power source that outputs AC power to the secondary coil. In the equipment
    A power reception detection unit that detects AC power received by the primary coil in a non-contact manner from the secondary coil;
    A presence determination unit that determines whether an object on which the power receiving device is mounted is present around the primary coil;
    With
    When the presence determination unit determines that the object is present around the primary coil, the AC detection is performed when AC power is input from the second AC power source to the secondary coil. A power transmission device that determines whether or not power transmission from the secondary coil to the primary coil is performed based on a detection result of the unit.
PCT/JP2015/061764 2014-04-18 2015-04-16 Contactless power-transfer apparatus and power-transmitting device WO2015159962A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014086885A JP2015208100A (en) 2014-04-18 2014-04-18 Non-contact power transmission device and power transmission equipment
JP2014-086885 2014-04-18

Publications (1)

Publication Number Publication Date
WO2015159962A1 true WO2015159962A1 (en) 2015-10-22

Family

ID=54324163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061764 WO2015159962A1 (en) 2014-04-18 2015-04-16 Contactless power-transfer apparatus and power-transmitting device

Country Status (2)

Country Link
JP (1) JP2015208100A (en)
WO (1) WO2015159962A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462574A1 (en) * 2016-02-02 2019-04-03 WiTricity Corporation Controlling wireless power transfer systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130173A (en) * 2010-12-16 2012-07-05 Aisin Aw Co Ltd Power supply device
JP2012200056A (en) * 2011-03-18 2012-10-18 Fujitsu Ten Ltd Power reception device, power transmission device, and control method
JP2012257395A (en) * 2011-06-09 2012-12-27 Toyota Motor Corp Non-contact power reception device, vehicle having the same, non-contact transmission device, and non-contact power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130173A (en) * 2010-12-16 2012-07-05 Aisin Aw Co Ltd Power supply device
JP2012200056A (en) * 2011-03-18 2012-10-18 Fujitsu Ten Ltd Power reception device, power transmission device, and control method
JP2012257395A (en) * 2011-06-09 2012-12-27 Toyota Motor Corp Non-contact power reception device, vehicle having the same, non-contact transmission device, and non-contact power transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462574A1 (en) * 2016-02-02 2019-04-03 WiTricity Corporation Controlling wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10637292B2 (en) 2016-02-02 2020-04-28 Witricity Corporation Controlling wireless power transfer systems

Also Published As

Publication number Publication date
JP2015208100A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
US10052963B2 (en) Contactless power transfer system and method of controlling the same
JP5810632B2 (en) Non-contact power feeding device
WO2012073349A1 (en) Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
WO2015198895A1 (en) Power transmission apparatus and contactless power transmission device
WO2013084754A1 (en) Contactless power transmission device
EP3121932B1 (en) Power supply device and non-contact power supply system
WO2013077326A1 (en) Non-contact power supply apparatus and non-contact power supply system
US10899234B2 (en) Non-contact electric power transmission system, charging station, and vehicle
WO2015076290A1 (en) Non-contact electric power transmission and reception system
JP2016092986A (en) Non-contact power transmission device and power reception equipment
WO2014054396A1 (en) Power reception device, power transmission device, and noncontact power transfer apparatus
WO2015146605A1 (en) Power transmission device and non-contact power transmission apparatus
JP2016015808A (en) Power reception equipment and non-contact power transmission device
JP2015159693A (en) Non-contact power transmission system and power reception device
WO2015159962A1 (en) Contactless power-transfer apparatus and power-transmitting device
JP2016007107A (en) Non-contact power transmission device
JP2015080296A (en) Power reception apparatus and non-contact power transmission device
JP2013223301A (en) Power reception device and power transmission device of contactless power transfer unit
JP2013132141A (en) Power transmission system
JP2016220316A (en) Non-contact power transmission device and power receiving equipment
JP2014121142A (en) Power transmission apparatus and non-contact power transmission device
WO2016006470A1 (en) Power transmission device and non-contact power transmission apparatus
JP2016182003A (en) Power reception apparatus and non-contact power transmission apparatus
JP2014197939A (en) Power supply device
JP2015080297A (en) Power reception apparatus and non-contact power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779712

Country of ref document: EP

Kind code of ref document: A1