WO2015076290A1 - Non-contact electric power transmission and reception system - Google Patents

Non-contact electric power transmission and reception system Download PDF

Info

Publication number
WO2015076290A1
WO2015076290A1 PCT/JP2014/080616 JP2014080616W WO2015076290A1 WO 2015076290 A1 WO2015076290 A1 WO 2015076290A1 JP 2014080616 W JP2014080616 W JP 2014080616W WO 2015076290 A1 WO2015076290 A1 WO 2015076290A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
vehicle
unit
voltage
Prior art date
Application number
PCT/JP2014/080616
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 聡
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2015076290A1 publication Critical patent/WO2015076290A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Abstract

A non-contact electric power transmission and reception system according to the present invention is provided with a vehicle (10) equipped with a power reception unit (100) configured so as to be capable of receiving electric power without contact and a power transmission device (20) for transmitting electric power to the power reception unit (100) from outside the vehicle. When position alignment is carried out in which the vehicle is moved so as to align the position of the power reception unit (100) with a power transmission unit (700) of the power transmission device (20), the power transmission device (20) carries out test power transmission for checking the power reception intensity at the power reception unit (100) and carries out voltage control while transmitting power during the test power transmission. The power transmission device (20) carries out power control while transmitting power during normal power transmission after the position alignment has been completed.

Description

非接触送受電システムNon-contact power transmission / reception system
 この発明は、非接触送受電システムに関する。 This invention relates to a non-contact power transmission / reception system.
 特許文献1~7に開示されているように、非接触で電力を送受電する受電装置および送電装置が知られている。 As disclosed in Patent Documents 1 to 7, a power receiving device and a power transmitting device that transmit and receive power in a contactless manner are known.
 たとえば、特開2012-080770号公報に記載された非接触充電システムにおいては、車載の受電装置と駐車場等に設置された送電装置との位置合わせの際に、微弱電力を送電装置から受電装置に供給して、その時の受電電圧に基づいて車両を送電装置に誘導する。 For example, in the non-contact charging system described in Japanese Patent Application Laid-Open No. 2012-080770, a weak power is received from a power transmission device when the on-vehicle power reception device is aligned with a power transmission device installed in a parking lot or the like. And the vehicle is guided to the power transmission device based on the power reception voltage at that time.
特開2012-080770号公報JP 2012-080770 A 特開2013-154815号公報JP2013-154815A 特開2013-146154号公報JP 2013-146154 A 特開2013-146148号公報JP 2013-146148 A 特開2013-110822号公報JP 2013-110822 A 特開2013-126327号公報JP 2013-126327 A 特開2011-254633号公報JP 2011-254633 A
 特開2012-080770号公報に記載された非接触充電システムにおいては位置合わせ時のテスト送電の際には、本送電時よりも強度の弱い微弱電力を送電することは言及されているが、テスト送電時にどのように電力を制御するかについては検討されていない。 In the non-contact charging system described in Japanese Patent Application Laid-Open No. 2012-080770, it is mentioned that weak electric power having a lower strength than that of the main power transmission is transmitted during the test power transmission at the time of alignment. It has not been studied how to control power during power transmission.
 本願発明者は、テスト送電時の電力制御方式によって、位置合わせ感度が変化することを発見した。 The inventor of the present application has found that the alignment sensitivity changes depending on the power control method during test transmission.
 本発明の目的は、送電部と受電部との位置合わせ時の送電電力の制御を適切に行なうことによって非接触送受電時の位置合わせが容易となる非接触送受電システムを提供することである。 An object of the present invention is to provide a non-contact power transmission / reception system that facilitates alignment at the time of non-contact power transmission / reception by appropriately controlling transmission power at the time of alignment between the power transmission unit and the power reception unit. .
 この発明は、要約すると、非接触送受電システムであって、非接触で受電可能に構成された受電部を搭載する車両と、車外から受電部に送電する送電装置とを備える。送電装置は、車両を移動させて受電部の位置を送電装置の送電部に合わせる位置合わせを実行する際に、受電部での受電強度を確認するためのテスト送電を実行し、テスト送電時には電圧制御を行なって送電を実行し、位置合わせ完了後の本送電時には電力制御を行なって送電を実行する。 In summary, the present invention is a non-contact power transmission / reception system including a vehicle equipped with a power receiving unit configured to be able to receive power in a non-contact manner, and a power transmission device that transmits power from outside the vehicle to the power receiving unit. The power transmission device performs test power transmission to confirm the power reception strength at the power receiving unit when moving the vehicle and aligning the position of the power receiving unit with the power transmission unit of the power transmission device. Control is performed to perform power transmission, and power transmission is performed by performing power control during main power transmission after alignment is completed.
 電圧制御は、電力制御よりも、車両を移動させるとピーク付近で感度が急峻になるという特性がある。このように、車両負荷に送電を行なう前のテスト送電においては、位置合わせに有利な電圧制御を実行し、車両負荷に送電を行なう際の本格送電においては、必要とされる電力が送電できる電力制御を実行する。これにより、車両と送電装置との間の位置合わせが容易となる。 The voltage control has a characteristic that the sensitivity becomes sharper near the peak when the vehicle is moved than the power control. Thus, in test power transmission before transmitting power to the vehicle load, voltage control advantageous for alignment is executed, and in full-scale power transmission when power is transmitted to the vehicle load, power that can transmit necessary power Execute control. Thereby, alignment between a vehicle and a power transmission apparatus becomes easy.
 本発明によれば、位置合わせ時のピーク検出感度が増加する。このため、受電装置と送電装置とが位置合わせされたときに、正確に位置合わせされたときの受電電圧と、位置ずれしたときの受電電圧との差が大きくなり、位置ずれしているか否かを検出しやすくなる。 According to the present invention, the peak detection sensitivity at the time of alignment increases. For this reason, when the power receiving device and the power transmitting device are aligned, the difference between the power receiving voltage when the power is correctly aligned and the power receiving voltage when the power is misaligned is large, and whether or not the power is shifted. Is easier to detect.
この発明の実施の形態の一例である非接触送受電システムの全体構成図である。1 is an overall configuration diagram of a non-contact power transmission / reception system as an example of an embodiment of the present invention. 車両が移動して受電部と送電部の位置合わせが実施される様子を説明するための図である。It is a figure for demonstrating a mode that a vehicle moves and position alignment of a power receiving part and a power transmission part is implemented. 非接触給電を実行する際に車両と充電スタンドが実行する処理の概略を説明するためのフローチャートである。It is a flowchart for demonstrating the outline of the process which a vehicle and a charging stand perform when performing non-contact electric power feeding. 定電圧制御で送電した場合と定電力制御で送電した場合の二次側出力電圧の変化を比較した図である。It is the figure which compared the change of the secondary side output voltage at the time of transmitting with constant voltage control, and transmitting with constant power control.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、この発明の実施の形態の一例である非接触送受電システムの全体構成図である。 FIG. 1 is an overall configuration diagram of a non-contact power transmission / reception system as an example of an embodiment of the present invention.
 図1を参照して、本実施の形態の非接触送受電システムは、非接触で受電可能に構成された受電部100を搭載する車両10と、車外から受電部100に送電する送電装置20とを備える。送電装置20は、車両を移動させて受電部100の位置を送電装置20の送電部700に合わせる位置合わせを実行する際に、受電部100での受電強度を確認するためのテスト送電を実行し、テスト送電時には電圧制御を行なって送電を実行し、位置合わせ完了後の本送電時には電力制御を行なって送電を実行する。 Referring to FIG. 1, a contactless power transmission / reception system according to the present embodiment includes a vehicle 10 equipped with a power receiving unit 100 configured to be capable of receiving power without contact, and a power transmission device 20 that transmits power to the power receiving unit 100 from outside the vehicle. Is provided. The power transmission device 20 performs a test power transmission for confirming the power reception strength at the power receiving unit 100 when the vehicle is moved and alignment is performed to align the position of the power receiving unit 100 with the power transmission unit 700 of the power transmission device 20. During test transmission, voltage control is performed to perform power transmission, and during main transmission after alignment is completed, power control is performed to perform power transmission.
 本願発明者は、電圧制御は、電力制御よりも、車両を移動させるとピーク付近で感度が急峻になるという特性があることを発見した。そこで、車両負荷に送電を行なう前のテスト送電においては、位置合わせに有利な電圧制御を実行し、車両負荷に送電を行なう際の本格送電においては、必要とされる電力が送電できる電力制御を実行することにした。これにより、車両と送電装置との間の位置合わせが容易となる。 The inventor of the present application has found that the voltage control has a characteristic that the sensitivity becomes sharper near the peak when the vehicle is moved than the power control. Therefore, in test transmission before transmitting power to the vehicle load, voltage control advantageous for alignment is executed, and in full-scale power transmission when transmitting power to the vehicle load, power control that can transmit the required power is performed. Decided to do. Thereby, alignment between a vehicle and a power transmission apparatus becomes easy.
 以下、車両10と送電装置20の具体的な構成の詳細について、さらに説明する。実施の形態による電力伝送システムは、車両10と、送電装置20とを備える。車両10は、さらに、フィルタ回路150と、整流部200と、蓄電装置300と、動力生成装置400とを含む。 Hereinafter, details of specific configurations of the vehicle 10 and the power transmission device 20 will be further described. The power transmission system according to the embodiment includes a vehicle 10 and a power transmission device 20. Vehicle 10 further includes a filter circuit 150, a rectifying unit 200, a power storage device 300, and a power generation device 400.
 受電部100は、送電装置20の送電部700から出力される電力(交流)を非接触で受電するためのコイルを含む。受電部100は、受電した電力を整流部200へ出力する。たとえば、図2に示されるように、送電装置20の送電部700が地表または地中に設けられ、受電部100は、車体下部に配置される。 The power receiving unit 100 includes a coil for receiving power (alternating current) output from the power transmitting unit 700 of the power transmitting device 20 in a non-contact manner. The power receiving unit 100 outputs the received power to the rectifying unit 200. For example, as illustrated in FIG. 2, the power transmission unit 700 of the power transmission device 20 is provided on the ground surface or in the ground, and the power reception unit 100 is disposed in the lower part of the vehicle body.
 なお、受電部100の配置箇所はこれに限定されるものではない。たとえば、仮に送電装置20が車両上方に設けられる場合には、受電部100を車体上部に設けてもよい。 In addition, the arrangement | positioning location of the power receiving part 100 is not limited to this. For example, if the power transmission device 20 is provided above the vehicle, the power receiving unit 100 may be provided in the upper part of the vehicle body.
 整流部200は、受電部100によって受電された交流電力を整流して蓄電装置300へ出力する。フィルタ回路150は、受電部100と整流部200との間に設けられ、送電装置20からの受電時に発生する高調波ノイズを抑制する。フィルタ回路150は、たとえば、インダクタおよびキャパシタを含むLCフィルタによって構成される。 The rectifying unit 200 rectifies the AC power received by the power receiving unit 100 and outputs the rectified power to the power storage device 300. The filter circuit 150 is provided between the power reception unit 100 and the rectification unit 200, and suppresses harmonic noise generated when receiving power from the power transmission device 20. The filter circuit 150 is configured by an LC filter including an inductor and a capacitor, for example.
 蓄電装置300は、再充電可能な直流電源であり、たとえばリチウムイオン電池やニッケル水素電池などの二次電池によって構成される。蓄電装置300の電圧は、たとえば200V程度である。蓄電装置300は、整流部200から出力される電力を蓄えるほか、動力生成装置400によって発電される電力も蓄える。そして、蓄電装置300は、その蓄えられた電力を動力生成装置400へ供給する。なお、蓄電装置300として大容量のキャパシタも採用可能である。特に図示しないが、整流部200と蓄電装置300との間に、整流部200の出力電圧を調整するDC-DCコンバータを設けてもよい。 The power storage device 300 is a rechargeable DC power source, and is constituted by a secondary battery such as a lithium ion battery or a nickel metal hydride battery. The voltage of power storage device 300 is, for example, about 200V. The power storage device 300 stores power output from the rectifying unit 200 and also stores power generated by the power generation device 400. Then, power storage device 300 supplies the stored power to power generation device 400. Note that a large-capacity capacitor can also be used as the power storage device 300. Although not particularly illustrated, a DC-DC converter that adjusts the output voltage of the rectifying unit 200 may be provided between the rectifying unit 200 and the power storage device 300.
 動力生成装置400は、蓄電装置300に蓄えられる電力を用いて車両10の走行駆動力を発生する。特に図示しないが、動力生成装置400は、たとえば、蓄電装置300から電力を受けるインバータ、インバータによって駆動されるモータ、モータによって駆動される駆動輪等を含む。なお、動力生成装置400は、蓄電装置300を充電するための発電機と、その発電機を駆動可能なエンジンとを含んでもよい。 The power generation device 400 generates the driving force for driving the vehicle 10 using the electric power stored in the power storage device 300. Although not particularly illustrated, power generation device 400 includes, for example, an inverter that receives electric power from power storage device 300, a motor driven by the inverter, a drive wheel driven by the motor, and the like. Power generation device 400 may include a generator for charging power storage device 300 and an engine capable of driving the generator.
 車両ECU500は、CPU(Central Processing Unit)、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各種センサからの信号の入力や各機器への制御信号の出力を行なうとともに、車両10における各機器の制御を行なう。一例として、車両ECU500は、車両10の走行制御や、蓄電装置300の充電制御を実行する。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The vehicle ECU 500 includes a CPU (Central Processing Unit), a storage device, an input / output buffer, and the like (none of which are shown), inputs signals from various sensors and outputs control signals to each device. Control each device in. As an example, vehicle ECU 500 executes traveling control of vehicle 10 and charging control of power storage device 300. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
 なお、整流部200と蓄電装置300との間には、リレー210が設けられる。リレー210は、送電装置20による蓄電装置300の充電時に車両ECU500によってオンされる。また、蓄電装置300と動力生成装置400との間には、システムメインリレー(SMR)310が設けられる。SMR310は、動力生成装置400の起動が要求されると、車両ECU500によってオンされる。 Note that a relay 210 is provided between the rectifying unit 200 and the power storage device 300. Relay 210 is turned on by vehicle ECU 500 when power storage device 300 is charged by power transmission device 20. A system main relay (SMR) 310 is provided between the power storage device 300 and the power generation device 400. SMR 310 is turned on by vehicle ECU 500 when activation of power generation device 400 is requested.
 なお、車両ECU500は、送電装置20による蓄電装置300の充電時には、通信装置510を用いて送電装置20と通信を行ない、充電の開始/停止や車両10の受電状況等の情報を送電装置20とやり取りする。 Vehicle ECU 500 communicates with power transmission device 20 using communication device 510 when power storage device 300 is charged by power transmission device 20, and transmits information such as charging start / stop and power reception status of vehicle 10 with power transmission device 20. Interact.
 図2は、車両が移動して受電部と送電部の位置合わせが実施される様子を説明するための図である。図2を参照して、図示しない車載カメラや送電部700でのテスト送電での受電強度などにより、受電部100が送電部700に対して位置が合っているかを車両または送電装置が判断し、報知装置520によってユーザに報知される。図2に示すように、ユーザは報知装置520から得た情報に基づいて、受電部100と送電部700との位置関係が送受電に良好な位置関係になるように、車両10を移動させる。なお、必ずしもユーザがハンドル操作やアクセル操作をしなくてもよく、車両10が自動的に移動して位置を合わせて、ユーザがそれを報知装置520で見守るようにしてもよい。 FIG. 2 is a diagram for explaining a state in which the vehicle moves and the power receiving unit and the power transmission unit are aligned. With reference to FIG. 2, the vehicle or the power transmission device determines whether the power receiving unit 100 is positioned with respect to the power transmitting unit 700 based on the in-vehicle camera (not shown) or the power receiving strength in the test power transmission in the power transmitting unit 700. The notification device 520 notifies the user. As shown in FIG. 2, the user moves the vehicle 10 based on the information obtained from the notification device 520 so that the positional relationship between the power receiving unit 100 and the power transmitting unit 700 is a favorable positional relationship for power transmission and reception. Note that the user does not necessarily have to perform a steering wheel operation or an accelerator operation, and the vehicle 10 may automatically move and adjust the position, and the user may watch it with the notification device 520.
 再び、図1を参照して、送電装置20は、電源部600と、フィルタ回路610と、送電部700と、電源ECU800とを含む。電源部600は、商用系統電源等の外部電源900から電力を受け、所定の伝送周波数を有する交流電力を発生する。 Referring to FIG. 1 again, power transmission device 20 includes a power supply unit 600, a filter circuit 610, a power transmission unit 700, and a power supply ECU 800. The power supply unit 600 receives power from an external power supply 900 such as a commercial power supply and generates AC power having a predetermined transmission frequency.
 送電部700は、車両10の受電部100へ非接触で送電するためのコイルを含む。送電部700は、伝送周波数を有する交流電力を電源部600から受け、送電部700の周囲に生成される電磁界を介して、車両10の受電部100へ非接触で送電する。 The power transmission unit 700 includes a coil for transmitting power to the power reception unit 100 of the vehicle 10 in a contactless manner. The power transmission unit 700 receives AC power having a transmission frequency from the power supply unit 600 and transmits the AC power to the power reception unit 100 of the vehicle 10 in a non-contact manner via an electromagnetic field generated around the power transmission unit 700.
 フィルタ回路610は、電源部600と送電部700との間に設けられ、電源部600から発生する高調波ノイズを抑制する。フィルタ回路610は、インダクタおよびキャパシタを含むLCフィルタによって構成される。 Filter circuit 610 is provided between power supply unit 600 and power transmission unit 700 and suppresses harmonic noise generated from power supply unit 600. The filter circuit 610 is configured by an LC filter including an inductor and a capacitor.
 電源ECU800は、CPU、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各種センサからの信号の入力や各機器への制御信号の出力を行なうとともに、送電装置20における各機器の制御を行なう。一例として、電源ECU800は、伝送周波数を有する交流電力を電源部600が生成するように、電源部600のスイッチング制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The power supply ECU 800 includes a CPU, a storage device, an input / output buffer, and the like (all not shown), and inputs signals from various sensors and outputs control signals to each device. Take control. As an example, power supply ECU 800 performs switching control of power supply unit 600 such that power supply unit 600 generates AC power having a transmission frequency. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
 なお、電源ECU800は、車両10への送電時には、通信装置810を用いて車両10と通信を行ない、充電の開始/停止や車両10の受電状況等の情報を車両10とやり取りする。 The power supply ECU 800 communicates with the vehicle 10 using the communication device 810 during power transmission to the vehicle 10 and exchanges information such as charging start / stop and the power reception status of the vehicle 10 with the vehicle 10.
 送電装置20において、電源部600からフィルタ回路610を介して送電部700へ、所定の伝送周波数を有する交流電力が供給される。送電部700および車両10の受電部100の各々は、コイルとキャパシタとを含み、伝送周波数において共振するように設計されている。送電部700および受電部100の共振強度を示すQ値は、100以上であることが好ましい。 In the power transmission device 20, AC power having a predetermined transmission frequency is supplied from the power supply unit 600 to the power transmission unit 700 via the filter circuit 610. Each of power transmission unit 700 and power reception unit 100 of vehicle 10 includes a coil and a capacitor, and is designed to resonate at a transmission frequency. The Q value indicating the resonance intensity of the power transmission unit 700 and the power reception unit 100 is preferably 100 or more.
 電源部600からフィルタ回路610を介して送電部700へ交流電力が供給されると、送電部700のコイルと、受電部100のコイルとの間に形成される電磁界を通じて、送電部700から受電部100へエネルギ(電力)が移動する。そして、受電部100へ移動したエネルギ(電力)は、フィルタ回路150および整流部200を介して蓄電装置300へ供給される。 When AC power is supplied from the power supply unit 600 to the power transmission unit 700 via the filter circuit 610, power is received from the power transmission unit 700 through an electromagnetic field formed between the coil of the power transmission unit 700 and the coil of the power reception unit 100. Energy (electric power) moves to the unit 100. Then, the energy (electric power) that has moved to power reception unit 100 is supplied to power storage device 300 via filter circuit 150 and rectification unit 200.
 なお、特に図示しないが、送電装置20において、送電部700と電源部600との間(たとえば送電部700とフィルタ回路610との間)に絶縁トランスを設けてもよい。また、車両10においても、受電部100と整流部200との間(たとえば受電部100とフィルタ回路150との間)に絶縁トランスを設けてもよい。 Although not particularly illustrated, in the power transmission device 20, an insulating transformer may be provided between the power transmission unit 700 and the power supply unit 600 (for example, between the power transmission unit 700 and the filter circuit 610). Also in vehicle 10, an insulating transformer may be provided between power reception unit 100 and rectification unit 200 (for example, between power reception unit 100 and filter circuit 150).
 蓄電装置300に充電を行なう本格送電の前には、図2に示したように、車両を移動させて受電部100と送電部700とを対向させるように位置合わせを行なう必要がある。そのときに、本格送電時と同じ電力を送ると電磁界が車両の送電部以外にも漏洩し、通信装置などの各種電子機器に悪影響を与える恐れがある。 Prior to full-scale power transmission for charging the power storage device 300, as shown in FIG. 2, it is necessary to align the power reception unit 100 and the power transmission unit 700 so as to face each other by moving the vehicle. At that time, if the same electric power as that at the time of full-scale power transmission is sent, the electromagnetic field leaks to other than the power transmission section of the vehicle, which may adversely affect various electronic devices such as communication devices.
 そこで、位置合わせ時には、本格送電時よりも電力が小さい微弱電力でテスト送電を行なう。テスト送電時には、リレー202を導通させ、検出抵抗201の両端に生じる受電電圧VRを車両ECU500が検出する。この電圧は本格送電時よりも小さいので、検出時に蓄電装置300の影響を受けないように、テスト送電時にはリレー210はオフ状態に制御される。 Therefore, at the time of alignment, test transmission is performed with weak power that is lower than that of full-scale transmission. At the time of test power transmission, the relay 202 is turned on, and the vehicle ECU 500 detects the received voltage VR generated at both ends of the detection resistor 201. Since this voltage is smaller than that during full-scale power transmission, relay 210 is controlled to be turned off during test power transmission so that it is not affected by power storage device 300 during detection.
 図3は、非接触給電を実行する際に車両と充電スタンドが実行する処理の概略を説明するためのフローチャートである。 FIG. 3 is a flowchart for explaining an outline of processing executed by the vehicle and the charging station when performing non-contact power feeding.
 図1、図3を参照して、まず車両側では、ステップS1において、通信接続処理が実行される。車両ECU500は通信装置510を使用して送電装置20と通信を開始する。 1 and 3, first, on the vehicle side, a communication connection process is executed in step S1. Vehicle ECU 500 starts communication with power transmission device 20 using communication device 510.
 ここで送電装置側においてはステップS11において処理が開始されると車両側から通信があるまでステップS11において待機状態にあり、車両から通信の開始が要求された場合には通信を開始する。 Here, when the process is started in step S11, the power transmission device side is in a standby state in step S11 until communication is made from the vehicle side, and communication is started when communication start is requested from the vehicle.
 車両側ではステップS1の通信開始の処理に続いてステップS2において距離確認処理が実行される。距離確認処理は、受電部100と送電部700との距離を確認しつつ車両を移動させて位置合わせを行なう処理である。 On the vehicle side, a distance confirmation process is executed in step S2 following the communication start process in step S1. The distance confirmation process is a process of performing alignment by moving the vehicle while confirming the distance between the power reception unit 100 and the power transmission unit 700.
 たとえば、第1段階では、たとえば、図示しない車載カメラを用いたIPA(インテリジェントパーキングアシスト)システムが用いられる。そして車両が送電部700にある程度近づくと車両ECU500が送電装置に位置合わせのためのテスト送電を要求する。 For example, in the first stage, for example, an IPA (Intelligent Parking Assist) system using an in-vehicle camera (not shown) is used. When the vehicle approaches the power transmission unit 700 to some extent, the vehicle ECU 500 requests the power transmission device to perform test power transmission for alignment.
 送電装置側では、ステップS11に続くステップS12においてテスト送電の要求がオン状態になるのを待っている。 The power transmission device side waits for a test power transmission request to be turned on in step S12 following step S11.
 一方、車両側では、微弱電力の送電を要求する際に、車両ECU500がリレー202をオン状態に設定する。そして送電装置側にテスト送電要求を送信する。すると送電装置はテスト送電要求がオン状態に設定されたことを検出してテスト送電を開始する。このテスト送電電力は、充電開始後に送電する場合と同様な電力を送信してもよいが、本格送電時に送る電力よりも弱い電力(微弱電力)に設定することが好ましい。 On the other hand, on the vehicle side, when requesting transmission of weak power, the vehicle ECU 500 sets the relay 202 to the ON state. Then, a test power transmission request is transmitted to the power transmission device side. Then, the power transmission apparatus detects that the test power transmission request is set to the on state and starts test power transmission. The test transmission power may be the same as that transmitted when the charging is started, but is preferably set to a power (weak power) that is weaker than the power transmitted during full-scale power transmission.
 そしてこのテスト信号を用いて抵抗201の両端に生じる電圧がある電圧に到達したことをもって、給電可能な距離に車両が到達したことが検出される。 Then, using this test signal, when the voltage generated at both ends of the resistor 201 reaches a certain voltage, it is detected that the vehicle has reached a distance where power can be supplied.
 一定の一次側電圧(送電装置20からの出力電圧)に対して、二次側電圧(車両10の受電電圧)は、送電装置20の送電部700と車両10の受電部100との間の距離L(図2)に応じて変化する。そこで、一次側電圧および二次側電圧の関係を予め測定するなどしてマップ等を作成しておき、二次側電圧を示す電圧VRの検出値に基づいて送電部700と受電部100との間の距離を検出することができる。なお、電圧VR以外にも、受電側での電流や電力、送電側での送電電流、送電電力で距離を検出するようにしてもよい。 For a certain primary voltage (output voltage from the power transmission device 20), the secondary voltage (power reception voltage of the vehicle 10) is the distance between the power transmission unit 700 of the power transmission device 20 and the power reception unit 100 of the vehicle 10. It changes according to L (FIG. 2). Therefore, a map or the like is created by measuring the relationship between the primary side voltage and the secondary side voltage in advance, and the power transmission unit 700 and the power reception unit 100 are connected based on the detected value of the voltage VR indicating the secondary side voltage. The distance between them can be detected. In addition to the voltage VR, the distance may be detected by current and power on the power receiving side, power transmission current on the power transmission side, and power transmission power.
 本願発明者は、この位置合わせ時のテスト送電時に、送電電圧を目標値になるように制御する電圧制御を実行したほうが、送電電力を目標値になるように制御する電力制御を実行するよりも位置合わせ良好となる付近での受電電圧の差が大きくなることを発見した。 The inventor of the present application executes the voltage control for controlling the transmission voltage to the target value at the time of the test transmission at the time of alignment, rather than executing the power control for controlling the transmission power to the target value. We found that the difference in the received voltage in the vicinity where the alignment was good increased.
 一般に、充電を行なう際には、蓄電装置300(たとえば、ニッケル水素電池やリチウムイオン電池)の受け入れ可能な電力(Win)を超えないように送電電力を制御しなければならないので、非接触送電でも電力制御を行なうことが一般的である。しかし、テスト送電時には、送電電力は微弱なものであるし、蓄電装置300への充電を行なうわけではないので、リレー210をオフ状態にしておけばWinの制限を考慮しなくてもよい。 Generally, when charging, the transmitted power must be controlled so as not to exceed the acceptable power (Win) of the power storage device 300 (for example, a nickel metal hydride battery or a lithium ion battery). It is common to perform power control. However, during the test transmission, the transmitted power is weak and does not charge the power storage device 300. Therefore, if the relay 210 is turned off, it is not necessary to consider the limitation of Win.
 図4は、定電圧制御で送電した場合と定電力制御で送電した場合の二次側出力電圧の変化を比較した図である。図4において、縦軸には、二次側出力電圧(V)が示され、横軸には受電部100と送電部700との結合係数が示されている。 FIG. 4 is a diagram comparing changes in the secondary output voltage when power is transmitted with constant voltage control and when power is transmitted with constant power control. In FIG. 4, the vertical axis represents the secondary output voltage (V), and the horizontal axis represents the coupling coefficient between the power reception unit 100 and the power transmission unit 700.
 二次側出力電圧(V)は、図1の抵抗201に検出される電圧VRに相当する。また、結合係数は、送電部700の一次コイルと受電部100二次コイルとの距離(コイル間距離、または位置ずれ量)に対応して変化する。ラインVVは定電圧制御時の結合係数の変化と二次側出力電圧の変化を示し、ラインVPは定電圧制御時の結合係数の変化と二次側出力電圧の変化を示している。 The secondary output voltage (V) corresponds to the voltage VR detected by the resistor 201 in FIG. The coupling coefficient changes corresponding to the distance between the primary coil of the power transmission unit 700 and the secondary coil of the power reception unit 100 (distance between coils or displacement). Line VV shows a change in coupling coefficient and a change in secondary output voltage during constant voltage control, and line VP shows a change in coupling coefficient and a change in secondary output voltage during constant voltage control.
 破線P1,P2で囲んだ付近の波形を比較すると、二次側出力電圧がピークとなる付近の結合係数に対しての出力電圧の感度がラインVVよりもラインVPのほうが大きくなっている。これは、定電圧制御実行時のほうが定電力制御実行時よりも、位置合わせOKの場所と位置合わせNGの場所との境界付近において、位置合わせOKの場所と位置合わせNGの場所での出力電圧の差が大きいことを意味する。 When comparing the waveforms in the vicinity surrounded by the broken lines P1 and P2, the sensitivity of the output voltage to the coupling coefficient in the vicinity of the peak of the secondary output voltage is larger in the line VP than in the line VV. This is because the output voltage at the position of the alignment OK and the position of the alignment NG is near the boundary between the position of the alignment OK and the position of the alignment NG when the constant voltage control is performed than when the constant power control is performed. It means that the difference is large.
 したがって、図3のステップS2およびステップS12でのテスト送電時には、送電電力の定電圧制御が実行される。 Therefore, at the time of the test power transmission at step S2 and step S12 in FIG. 3, constant voltage control of the transmitted power is executed.
 車両移動距離が位置ずれゼロの位置に近づく間は受電電圧VRは増加する。位置ずれゼロの位置を通り越すと受電電圧VRは下がり始める。あらかじめ距離と電圧の関係を計測しておいて決定されている判定しきい値に基づいて電圧VRを判定し、車両ECU500は、車両停止位置を決定する。 * While the vehicle moving distance approaches the position of zero displacement, the received voltage VR increases. When passing through the position of zero displacement, the received voltage VR starts to decrease. The vehicle ECU 500 determines the voltage VR based on the determination threshold value determined by measuring the relationship between the distance and the voltage in advance, and determines the vehicle stop position.
 ステップS2およびステップS12においては、テスト送電の電力を受電部100で受電し、電圧VRに基づいて距離確認を行ないながら車両の駐車位置が決定される。車両の駐車位置が決定されると、ユーザ操作または車両ECU500によってシフトレンジがPレンジに移行され、車両側では、ステップS2からステップS3に処理が進められる。ステップS3では、車両ECU500は、リレー210をオンさせ、送電装置に充電用の本格送電を要求する。 In step S2 and step S12, the power of the test transmission is received by the power receiving unit 100, and the parking position of the vehicle is determined while checking the distance based on the voltage VR. When the parking position of the vehicle is determined, the shift range is shifted to the P range by a user operation or the vehicle ECU 500, and on the vehicle side, the process proceeds from step S2 to step S3. In step S3, vehicle ECU 500 turns on relay 210 and requests the power transmission device to perform full-scale power transmission for charging.
 本格送電の要求に応じて、送電装置側ではステップS13において電力送電の制御方式が電圧制御から電力制御に切り替えられる。 In response to a request for full-scale power transmission, the power transmission control method is switched from voltage control to power control in step S13 on the power transmission device side.
 続いて、車両側ではステップS4に処理が進められ、送電装置側ではステップS14に処理が進められる。 Subsequently, the process proceeds to step S4 on the vehicle side, and the process proceeds to step S14 on the power transmission apparatus side.
 ステップS4では、車両ECU500は、蓄電装置300の充電状態(SOC)や温度に基づいて、受け入れ可能な電力Winを電源ECU800に送信する。ステップS14では、電力Winを超えないように電源ECU800が電源部600を定電力制御を実行し送電を行なう。 In step S4, vehicle ECU 500 transmits acceptable power Win to power supply ECU 800 based on the state of charge (SOC) and temperature of power storage device 300. In step S14, power supply ECU 800 performs constant power control on power supply unit 600 so as not to exceed power Win and performs power transmission.
 ステップS4において、所定の充電終了条件(たとえば、蓄電装置300が満充電となった、指定された充電終了時刻が到来した、ユーザが充電終了操作を行なったなど)が成立すると、車両ECU500は電源ECUに対して送電中止を要求し、ステップS5およびステップS15において充電処理が終了する。 In step S4, when predetermined charging end conditions (for example, power storage device 300 is fully charged, a specified charging end time has arrived, a user has performed a charging end operation, etc.) are satisfied, vehicle ECU 500 The ECU requests the ECU to stop power transmission, and the charging process ends in steps S5 and S15.
 以上説明したように、本実施の形態では、車両負荷に送電を行なう前のテスト送電(図3のステップS12)においては、位置合わせに有利な電圧制御を実行し、車両負荷に送電を行なう際の本格送電(図3のステップS14)においては、必要とされる電力が送電できる電力制御を実行することにした。これにより、車両と送電装置との間の位置合わせが容易となる。 As described above, in this embodiment, in the test power transmission before transmitting power to the vehicle load (step S12 in FIG. 3), voltage control advantageous for alignment is executed, and power is transmitted to the vehicle load. In the full-scale power transmission (step S14 in FIG. 3), power control capable of transmitting necessary power is executed. Thereby, alignment between a vehicle and a power transmission apparatus becomes easy.
 今回開示された各実施の形態は、適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are also scheduled to be implemented in appropriate combinations. The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10 車両、20 送電装置、100 受電部、150,610 フィルタ回路、200 整流部、201 抵抗、202,210 リレー、300 蓄電装置、400 動力生成装置、500 車両ECU、510,810 通信装置、520 報知装置、600 電源部、700 送電部、800 電源ECU、900 外部電源。 10 vehicle, 20 power transmission device, 100 power receiving unit, 150,610 filter circuit, 200 rectifier, 201 resistance, 202, 210 relay, 300 power storage device, 400 power generation device, 500 vehicle ECU, 510,810 communication device, 520 notification Device, 600 power supply unit, 700 power transmission unit, 800 power supply ECU, 900 external power supply.

Claims (3)

  1.  非接触で受電可能に構成された受電部を搭載する車両と、
     車外から前記受電部に送電する送電装置とを備え、
     前記送電装置は、前記車両を移動させて前記受電部の位置を前記送電装置の送電部に合わせる位置合わせを実行する際に、前記受電部での受電強度を確認するためのテスト送電を実行し、前記テスト送電時には電圧制御を行なって送電を実行し、前記位置合わせ完了後の本送電時には電力制御を行なって送電を実行する、非接触送受電システム。
    A vehicle equipped with a power receiving unit configured to be able to receive power without contact;
    A power transmission device for transmitting power from outside the vehicle to the power receiving unit,
    The power transmission device performs a test power transmission for confirming a power reception intensity at the power receiving unit when the vehicle is moved and alignment is performed to align the position of the power receiving unit with the power transmission unit of the power transmission device. A non-contact power transmission / reception system that performs voltage transmission during the test power transmission and performs power transmission, and performs power transmission during the main power transmission after the alignment is completed.
  2.  前記車両は、
     前記受電部の電圧を整流する整流部と、
     前記整流部の出力電圧で充電される蓄電装置と、
     前記整流部の出力電圧を検出するための検出抵抗と、
     前記検出抵抗で検出された電圧用いて前記位置合わせを実行する制御部とを含み、
     位置合わせが良好な車両位置と位置合わせが良好でない車両位置との境界付近において、位置合わせが良好な車両位置と位置合わせが良好でない車両位置での前記検出抵抗の検出電圧の差は、前記電圧制御の実行時のほうが前記電力制御の実行時よりも、大きい、請求項1に記載の非接触送受電システム。
    The vehicle is
    A rectifying unit for rectifying the voltage of the power receiving unit;
    A power storage device charged with the output voltage of the rectifier;
    A detection resistor for detecting the output voltage of the rectifying unit;
    A control unit that performs the alignment using the voltage detected by the detection resistor,
    In the vicinity of the boundary between the vehicle position with good alignment and the vehicle position with poor alignment, the difference between the detection voltages of the detection resistors at the vehicle position with good alignment and the vehicle position with poor alignment is the voltage. The non-contact power transmission / reception system according to claim 1, wherein the control time is larger than the power control time.
  3.  前記テスト送電中において、前記検出電圧は、車両移動距離が位置ずれゼロの位置に近づく間は増加し、前記位置ずれゼロの位置を通り越すと低下し、
     前記制御部は、あらかじめ定められた判定しきい値に基づいて前記検出電圧を判定し、車両停止位置を決定する、請求項2に記載の非接触送受電システム。
    During the test power transmission, the detection voltage increases while the vehicle moving distance approaches the position of zero displacement, and decreases when the position of zero displacement is passed,
    The non-contact power transmission / reception system according to claim 2, wherein the control unit determines the detection voltage based on a predetermined determination threshold value and determines a vehicle stop position.
PCT/JP2014/080616 2013-11-20 2014-11-19 Non-contact electric power transmission and reception system WO2015076290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-239810 2013-11-20
JP2013239810A JP2015100230A (en) 2013-11-20 2013-11-20 Non-contact power transmission and reception system

Publications (1)

Publication Number Publication Date
WO2015076290A1 true WO2015076290A1 (en) 2015-05-28

Family

ID=53179550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080616 WO2015076290A1 (en) 2013-11-20 2014-11-19 Non-contact electric power transmission and reception system

Country Status (2)

Country Link
JP (1) JP2015100230A (en)
WO (1) WO2015076290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195832A (en) * 2016-04-07 2019-01-11 西门子移动有限公司 position determination system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464951B2 (en) * 2015-07-28 2019-02-06 株式会社デンソー Parking assistance system
CN106532973A (en) * 2016-10-11 2017-03-22 中国科学院电工研究所 Wireless charging positioning device for electric vehicle
US11912149B2 (en) 2018-10-05 2024-02-27 Ihi Corporation Misalignment detection device and coil device
JP7243450B2 (en) * 2019-05-27 2023-03-22 株式会社デンソー Power supply system while driving
JP7386071B2 (en) 2019-12-20 2023-11-24 株式会社Subaru Vehicle control equipment and vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131346A1 (en) * 2009-05-14 2010-11-18 トヨタ自動車株式会社 Non-contact power reception device and vehicle equipped with same
JP2012080770A (en) * 2010-03-10 2012-04-19 Toyota Motor Corp Vehicle and parking assistance device for vehicle
JP2013110822A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Power transmission system, vehicle, and power supply facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131346A1 (en) * 2009-05-14 2010-11-18 トヨタ自動車株式会社 Non-contact power reception device and vehicle equipped with same
JP2012080770A (en) * 2010-03-10 2012-04-19 Toyota Motor Corp Vehicle and parking assistance device for vehicle
JP2013110822A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Power transmission system, vehicle, and power supply facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195832A (en) * 2016-04-07 2019-01-11 西门子移动有限公司 position determination system

Also Published As

Publication number Publication date
JP2015100230A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6217388B2 (en) Power receiving device and vehicle including the same
US10052963B2 (en) Contactless power transfer system and method of controlling the same
WO2015076290A1 (en) Non-contact electric power transmission and reception system
JP5083480B2 (en) Non-contact power supply facility, vehicle, and control method for non-contact power supply system
JP6135510B2 (en) Power transmission equipment
JP5979125B2 (en) Contactless power transmission equipment
WO2011142419A1 (en) Resonance-type non-contact power supply system
JP5920371B2 (en) Non-contact power transmission system
JP2017139952A (en) vehicle
JP6213353B2 (en) Power receiving device and vehicle including the same
US10899234B2 (en) Non-contact electric power transmission system, charging station, and vehicle
JP6056778B2 (en) Non-contact power transmission system
JP5842901B2 (en) Non-contact power transmission system
JP6566131B2 (en) Method for detecting coil position of non-contact power feeding system and non-contact power feeding system
US9637015B2 (en) Non-contact electric power transmission system and charging station
WO2013118368A1 (en) Charging station and relative position control method
JP2015100246A (en) Non-contact power transmission system, charging station and vehicle
JP2015154603A (en) non-contact power transmission system
JP2016059197A (en) Noncontact power reception device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864215

Country of ref document: EP

Kind code of ref document: A1