WO2013118368A1 - Charging station and relative position control method - Google Patents

Charging station and relative position control method Download PDF

Info

Publication number
WO2013118368A1
WO2013118368A1 PCT/JP2012/080022 JP2012080022W WO2013118368A1 WO 2013118368 A1 WO2013118368 A1 WO 2013118368A1 JP 2012080022 W JP2012080022 W JP 2012080022W WO 2013118368 A1 WO2013118368 A1 WO 2013118368A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
charging
vehicle
secondary coil
Prior art date
Application number
PCT/JP2012/080022
Other languages
French (fr)
Japanese (ja)
Inventor
順治 井上
孝治 比嘉
加藤 伊三美
近藤 直
博樹 戸叶
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013118368A1 publication Critical patent/WO2013118368A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charging stand for charging a battery included in a vehicle in a contactless manner.
  • non-contact charging using electromagnetic induction In order to charge a battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle, non-contact charging using electromagnetic induction has been proposed.
  • a high frequency current is passed through the primary coil of the charging stand, and the magnetic field generated in the primary coil is periodically changed.
  • an induction current is generated in the secondary coil of the vehicle by electromagnetic induction from the primary coil, and electric power is transmitted to the secondary coil via the primary coil.
  • the battery is charged using the power received by the vehicle.
  • the ratio between the power transmitted from the primary coil and the power received by the secondary coil depends on the relative position between the primary coil and the secondary coil. Change. And power receiving efficiency will fall, so that the relative position of a primary coil and a secondary coil leaves
  • the relative position of the primary coil and the secondary coil between the vehicle and the charging stand is conventionally positioned at a relative position (hereinafter referred to as an optimal position) at which optimal power reception efficiency is obtained.
  • Control for alignment (hereinafter referred to as alignment control) is performed.
  • Patent Documents 1 to 4 the technology relating to the alignment between the primary coil of the charging stand and the secondary coil of the vehicle is disclosed in the following Patent Documents 1 to 4 and the like.
  • Patent Document 1 before power is supplied to a moving body, a test signal having a lower intensity than a radio wave for charging is output from the antenna of the power feeding device in order to align the antenna. Then, according to the strength of the test signal received by the antenna of the moving body, it is described that the positional relationship between the antenna of the power feeding device and the antenna of the moving body is grasped and the positional relationship is adjusted to the optimum position. Yes.
  • Patent Document 2 when the vehicle starts parking, a magnetic field is generated from the power feeding device. Then, the vehicle detects the magnetic field strength in the power receiving unit. Further, the detected magnetic field strength is compared with the magnetic field strength generated by the power feeding device. Thereby, the power receiving efficiency of the power receiving unit at the current position of the vehicle is specified, and it is determined whether or not the positional relationship between the power feeding device and the vehicle is optimal. Further, it is described that the power reception guidance process for guiding the vehicle to the optimal position is repeatedly performed at a predetermined cycle based on the power reception efficiency.
  • Patent Document 3 a positioning marker is installed behind the parking space. Then, when the vehicle is parked in the parking space, the positioning marker is imaged with a camera mounted on the vehicle, and the image is displayed on the display unit. This describes that the vehicle is guided to the optimum position.
  • Patent Document 4 a minute electric power is supplied to the power supply coil to generate a magnetic field.
  • a minute electric power is transmitted from the power supply side coil to the power reception side coil, it is determined that the power supply side coil and the power reception side coil are in a positional relationship where power can be supplied.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a charging stand that suppresses power consumption in alignment control between a primary coil and a secondary coil.
  • the test power is periodically transmitted from the primary coil of the charging stand to the secondary coil of the vehicle, and the received power of the secondary coil is measured.
  • the transmission interval of the test power is changed according to the received power of the secondary coil.
  • FIG. 1 It is a block diagram of the non-contact charge system of Embodiment 1.
  • 3 is a flowchart of charge start control according to the first embodiment.
  • 3 is a flowchart of alignment control according to the first embodiment.
  • 3 is a flowchart of alignment control according to the first embodiment.
  • 6 is an explanatory diagram of a transmission interval according to Embodiment 1.
  • FIG. It is a block diagram of the non-contact charge system of Embodiment 2.
  • FIG. 1 is a configuration diagram of the contactless charging system according to the first embodiment.
  • the contactless charging system includes a vehicle 100 and a charging stand 200.
  • the vehicle 100 also includes a secondary coil 101, a wireless communication unit A102, a charging control unit 103, a converter 104, a battery 105, a load 106, a wattmeter 107, and a storage unit A108.
  • the charging stand 200 includes a primary coil 201, a wireless communication unit B202, a power supply control unit 203, a high frequency power supply 204, and a storage unit B205.
  • Secondary coil 101 for example, a known coil configured by winding an electric wire such as a copper wire can be employed. Secondary coil 101 is disposed on the bottom surface of vehicle 100.
  • a known wireless terminal can be adopted as the wireless communication unit A102. And a signal is transmitted / received between radio
  • FIG. The wireless communication unit A102 can be used not only for the wireless communication unit B202 but also for transmission and reception of signals with other wireless terminals.
  • the charging control unit 103 may employ a computer equipped with a memory as a work space such as an ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • the secondary coil 101 is monitored, and the power value measured by the wattmeter 107 when the secondary coil 101 receives the test power transmitted from the primary coil 201. Get the received power value.
  • control is performed to transmit the acquired received power value from the vehicle 100 to the charging station 200 by the wireless communication unit A102. Further, during the charging of the battery of the vehicle 100, various controls relating to charging are performed.
  • the converter 104 includes, for example, an AC-DC converter and a DC-DC converter.
  • the AC-DC converter converts AC current into DC current
  • the DC-DC converter transforms the voltage to supply charging current to the battery 105. .
  • the battery 105 may be a storage battery such as a lithium ion battery, a lead battery, a nickel cadmium battery, or a nickel metal hydride battery. More specifically, it is used as a high voltage power source for driving the load 106 by connecting a plurality of battery cells in series to form an assembled battery.
  • the load 106 is, for example, an inverter circuit for driving a motor, and is a component of the vehicle 100 that is driven by power supplied from the battery 105.
  • the wattmeter 107 has, for example, a configuration including a voltmeter and an ammeter.
  • the wattmeter 107 connects a voltmeter in parallel with the secondary coil 101 to measure the electromotive force of the secondary coil, and connects an ammeter in series with the secondary coil 101 to the secondary coil 101. Measure the induced current that flows. Further, the wattmeter 107 calculates the received power value of the secondary coil 101 from the voltage value and current value measured using this voltmeter and ammeter. Further, the wattmeter 107 outputs the received power value to the charging control unit 103 in response to a request from the charging control unit 103. The calculation of the received power value is performed by the charging control unit 103 by transmitting the voltage value and the current value measured by the wattmeter 107 to the charging control unit 103 in response to a request from the charging control unit 103. You may do it.
  • the storage unit A108 for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive) or the like can be employed.
  • the storage unit A 108 stores various data necessary for the processing of the charging control unit 103.
  • the primary coil 201 for example, a known coil configured by winding an electric wire such as a copper wire can be employed.
  • the primary coil 201 is embedded in the ground of the parking position where the vehicle 100 is parked when charging using the charging stand 200.
  • a known wireless terminal can be used as the wireless communication unit B202. And a signal is transmitted / received between radio
  • FIG. The wireless communication unit B202 can be used not only for the wireless communication unit A102 but also for transmission / reception of signals with other wireless terminals.
  • the power supply control unit 203 can employ, for example, a computer equipped with a memory as a work space such as an ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • the electric power feeding control part 203 controls the electric current supplied to the primary coil 201 from the high frequency power supply 204.
  • the power feeding control unit 203 intermittently generates a first current that is an alternating current necessary for transmitting test power from the primary coil 201 to the secondary coil 101.
  • the high frequency power supply 204 is controlled so as to be supplied to the primary coil 201.
  • an electromagnetic wave transmitted from the primary coil 201 when a first current is supplied to the primary coil 201 is referred to as a first electromagnetic wave. That is, the first electromagnetic wave is an electromagnetic wave transmitted from the primary coil 201 to the secondary coil 101 when test power is transmitted from the primary coil 201 to the secondary coil 101.
  • the power supply control unit 203 supplies a second current, which is an alternating current necessary for transmitting charging power, which is charging power required from the vehicle 100, to the primary coil 201.
  • the high frequency power supply 204 is controlled so as to be supplied to Note that the electromagnetic wave transmitted from the primary coil 201 when the second current is supplied to the primary coil 201 is referred to as a second electromagnetic wave. That is, the second electromagnetic wave is an electromagnetic wave transmitted from the primary coil 201 to the secondary coil 101 when charging power is transmitted from the primary coil 201 to the secondary coil 101.
  • size of test electric power should just be a magnitude
  • the magnitude of the test power may be constant or may be changed according to the distance between the coils.
  • the output time of the test power is to measure the power value (hereinafter referred to as test power value) of the test power transmitted from the primary coil 201 to the secondary coil 101 with the accuracy desired by the user using the power meter 107. It should be set so that it can.
  • the power supply control unit 203 changes the cycle (transmission interval) at which the test power is transmitted from the high-frequency power source 204 to the vehicle 100 according to the extracted inter-coil distance. Specifically, the power supply control unit 203 increases the transmission interval when the inter-coil distance is long, and shortens the transmission interval as the inter-coil distance approaches. Further, depending on the application, the power supply control unit 203 may perform control to shorten the transmission interval when the inter-coil distance is long and to increase the transmission interval as the inter-coil distance approaches.
  • the high frequency power supply 204 is connected to the system power supply 300 and converts AC power taken from the system power supply 300 into a sine wave signal having a predetermined cycle.
  • the high-frequency power supply 204 supplies an alternating current having a required magnitude to the primary coil 201 by being controlled by the power supply control unit 203. Further, the high frequency power supply 204 may be configured to convert AC power taken from the system power supply 300 into a pulse signal as long as the signal has a predetermined cycle.
  • the storage unit B205 can employ, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like.
  • various types of data necessary for the processing of the power supply control unit 203 are stored.
  • the various data includes at least a test power value, a charging power value, a power reception efficiency-coil distance table 503, a test power output time, and an optimum power reception efficiency.
  • the optimum power receiving efficiency is a power receiving efficiency suitable for charging.
  • the power feeding control unit 203 positions the primary coil 201 and the secondary coil 101 at the optimum positions. Judge that there is. This optimum power receiving efficiency is a value determined by the user through experiments based on the shapes and materials of the primary coil 201 and the secondary coil 101.
  • test power value table As an example of the test power value table, although not particularly shown, it is preferable to store an inter-coil distance-test power value table in which a test power value is set according to the inter-coil distance.
  • the storage unit B205 is a feature of the present invention.
  • the inter-coil distance-transmission interval table 504 shown in FIG. 5 is used to change the transmission interval of the first electromagnetic wave (test power) according to the inter-coil distance. Is remembered.
  • the inter-coil distance-transmission interval table 504 is a table showing the correspondence between the inter-coil distance and the transmission interval of the first electromagnetic wave. The fact that the transmission interval at the inter-coil distance c is not defined indicates that the primary coil and the secondary coil are aligned at the optimum position at the inter-coil distance c. That is, since it is not necessary to transmit the test power, the transmission interval is not determined.
  • the present invention is not limited to this, and the operation can be appropriately changed as long as the characteristics of the present invention can be applied.
  • FIG. 2 is a flowchart of charge start control according to the first embodiment.
  • each piece of information is transmitted and received by a signal representing that information.
  • a signal transmitted from the vehicle 100 is generated by the charging control unit 103, and a signal transmitted from the charging station 200 is generated by the power supply control unit 203.
  • transmission / reception of signals between the vehicle 100 and the charging station 200 is performed between the wireless communication unit A102 and the wireless communication unit B202.
  • the charging stand 200 will be described on the assumption that the charging of the vehicle 100 is acceptable.
  • a vehicle authentication signal is sent from the vehicle 100 to the charging station 200 by pressing a vehicle authentication signal output switch (not shown). Output (S201).
  • This vehicle authentication signal is a connection request signal for the charging station 200 of the vehicle 100.
  • the charging station 200 transmits the stand authentication signal and the vehicle authentication signal to the vehicle 100 (S203).
  • This stand authentication signal is a signal for confirming the response of the vehicle 100. If the stand that has received the vehicle authentication signal at the time of S202 has already charged the other vehicle 100 or cannot accept the charge of the vehicle 100 for other reasons, it cannot be accepted from the charging stand 200. May be transmitted to the vehicle 100.
  • the station authentication signal is transmitted to the vehicle 100 only from the charging station 200 having the highest vehicle authentication signal reception level among the charging stations 200. You may do it.
  • the comparison of the reception level of the vehicle authentication signal of each charging station 200 may be performed by a stand control unit (not shown) to which each charging station 200 is connected.
  • the vehicle 100 When the vehicle 100 receives the stand authentication signal and the vehicle authentication signal (S204), the vehicle 100 authenticates the connection of communication with the charging stand 200 and recognizes that the charging stand 200 can be charged. It is determined to charge at 200 (S205). Then, the vehicle 100 transmits a stand authentication signal to the charging stand 200 (S206).
  • the charging station 200 when the charging station 200 receives the station authentication signal (S207), the charging station 200 authenticates the communication connection with the vehicle 100 and recognizes the vehicle 100 as a vehicle to be charged (S208).
  • the charging station 200 starts alignment control for guiding the vehicle 100 to the optimum position (S209). Details of the alignment control will be described with reference to FIGS.
  • charging of the battery 105 of the vehicle 100 is started by transmitting charging power for charging from the charging stand 200 (S210).
  • the charging power is obtained by controlling the high-frequency power supply 204 so that the power feeding control unit 203 acquires the charging power value stored in the storage unit B 205 and supplies the power of the charging power value to the primary coil 201. Is transmitted.
  • the authentication of the vehicle 100 and the charging station 200 in S201 to S208 uses almost the same method as a general three-way handshake, but is not limited to this, and any method that allows mutual authentication is used as appropriate.
  • a known technique can be applied.
  • the charging power since the charging power is constant, the charging power value stored in the storage unit B205 is used. However, the charging power may be appropriately changed based on the charging power value requested from the vehicle 100. good.
  • 3 and 4 are flowcharts of the alignment control according to the first embodiment.
  • vehicle 100 is capable of identifying the first electromagnetic wave from authenticated charging station 200 and measuring the received power value even when there are a plurality of charging stations 200.
  • the charging station 200 includes a modulation circuit, and the identification signal of the charging station 200 is superimposed on the first electromagnetic wave.
  • the vehicle 100 includes a demodulation circuit, and the vehicle 100 recognizes the identification signal superimposed on the first electromagnetic wave. Thereby, it is preferable to recognize the first electromagnetic wave from the authenticated charging stand 200.
  • the power supply control unit 203 acquires a test power value used for alignment control from the storage unit B 205, and based on the acquired test power value, a first current is supplied from the high-frequency power source 204 to the primary coil 201. (S301). Furthermore, the power supply control unit 203 stores the test power value acquired from the storage unit B205 in the workspace.
  • the power supply control unit 203 acquires the output time of the test power stored in the storage unit B205, and supplies the first current from the high frequency power supply 204 to the primary coil 201 during the acquired output time of the test power. Control is performed (S302).
  • the primary coil 201 transmits the first electromagnetic wave (S303).
  • the secondary coil 101 receives the first electromagnetic wave (S304).
  • the charging control unit 103 detects that the secondary coil 101 has received the first electromagnetic wave, the charging control unit 103 causes the wattmeter 107 to measure the received power (S305). Furthermore, the charging control unit 103 acquires a received power value from the wattmeter 107 and transmits the received power value to the charging station 200 (S306).
  • the power supply control unit 203 uses the test power value and the received power value stored in the workspace to obtain the power receiving efficiency according to the equation (1). Is calculated (S308).
  • the power supply control unit 203 compares the power reception efficiency (calculated value) calculated in S308 with the optimum power reception efficiency stored in the storage unit B205, and the calculated power reception efficiency is equal to or greater than the optimum power reception efficiency. It is determined whether or not (S309).
  • the power supply control unit 203 refers to the power reception efficiency-coil distance table 503 shown in FIG. 5 stored in the storage unit B205 (S310), and extracts the inter-coil distance corresponding to the calculated power reception efficiency (S310). S311).
  • the power supply control unit 203 transmits the extracted distance between the coils to the vehicle 100 (S312).
  • the vehicle 100 also informs the driver of the distance between the coils by using notifying means such as a display and a speaker (not shown). Thereby, in the vehicle 100, a driver
  • the power supply control unit 203 refers to the inter-coil distance-transmission interval table 504 and extracts a transmission interval corresponding to the inter-coil distance extracted in S310 (S313).
  • the power supply control unit 203 waits for the transmission interval extracted in S313, and then proceeds to S302 (S314). Thereafter, S302 to S309 are executed.
  • the power feeding control unit 203 acquires the charging power value from the storage unit B 205 and supplies the second current supplied to the primary coil 201 to transmit the charging power value from the high-frequency power source 204 to the primary coil 201. Set to supply. Then, the process proceeds to S210 in FIG.
  • an optimal received power value corresponding to the constant test power is stored in the storage unit B205 instead of the optimal power receiving efficiency.
  • the optimum received power value is compared with the received power value received from the vehicle 100. If the received received power value is equal to or greater than the optimum received power value, the primary coil 201 and the secondary coil 101 are compared. May be determined to be in the optimum position. Further, as shown in the received power-transmission interval table 505 shown in FIG. 5, the correspondence relationship between the received power value and the inter-coil distance corresponding to the constant test power is stored in the storage unit B205, and in S311, The corresponding inter-coil distance may be extracted directly from the received power value.
  • the correspondence relationship between the received power value and the transmission interval corresponding to a constant test power is stored in the storage unit B205, and in S313, the received power is received.
  • the corresponding transmission interval may be extracted directly from the power value.
  • FIG. 5 is an explanatory diagram of a transmission interval according to the first embodiment.
  • the power reception efficiency-coil distance graph A501 indicates the transmission interval of the first electromagnetic wave (test power) of the first embodiment.
  • the horizontal axis is the distance between the coils. The distance between the primary coil 201 and the secondary coil 101 in the order of the inter-coil distance a, the inter-coil distance d, the inter-coil distance b, the inter-coil distance e, and the inter-coil distance c. Is approaching.
  • the vertical axis represents the power reception efficiency, and the curve shown in the power reception efficiency-inter-coil distance graph A501 indicates the power reception efficiency according to the inter-coil distance.
  • the up arrow is the transmission timing of the first electromagnetic wave transmitted intermittently from the primary coil 201 during the alignment control.
  • the transmission interval is shortened as the inter-coil distance approaches.
  • the transmission interval can be increased to reduce power consumption.
  • the transmission interval is shortened and the distance between the coils is transmitted to the driver in detail. Can do.
  • the times ta to td indicating the transmission intervals in the inter-coil distance-transmission interval table 504 are set to be shorter in the order of time ta, time td, time tb, time te, and time tc.
  • the power reception efficiency-coil distance graph B502 shows the setting of the transmission interval of another first electromagnetic wave (test power) of the first embodiment.
  • the horizontal axis represents the distance between the coils, and the distance between the coils approaches in order of the distance between the coils a, the distance d between the coils, the distance b between the coils, the distance e between the coils, and the distance c between the coils.
  • the vertical axis represents the power reception efficiency
  • the curve shown in the power reception efficiency-coil distance graph B502 represents the power reception efficiency according to the distance between the coils.
  • the up arrow is the transmission timing of the first electromagnetic wave transmitted intermittently from the primary coil 201 during the alignment control.
  • the transmission interval is increased as the inter-coil distance approaches.
  • the received power measured by acquiring a plurality of measurement values by shortening the transmission interval. The value can be appropriately corrected by a known technique to improve the measurement accuracy.
  • the times ta to td indicating the transmission intervals in the inter-coil distance-transmission interval table 504 are set to increase in the order of time ta, time td, time tb, time te, and time tc. Yes.
  • the test power value, the charging power value, the power reception efficiency-coil distance graph A501 (power reception efficiency-coil distance graph B502), the test power output time, and the optimum power reception efficiency are obtained.
  • these pieces of information may be stored in the storage unit A108.
  • the charge control unit 103 may acquire and calculate necessary information.
  • the output of the test power may be set to increase as the distance between the coils increases and decrease as the distance between the coils approaches.
  • the noise can be made relatively small compared to the first electromagnetic wave. Therefore, the measurement accuracy of the received power can be improved.
  • the distance between the coils is short, noise due to external factors received by the first electromagnetic wave is reduced, so that the first electromagnetic wave is reduced within an output range where desired measurement accuracy can be obtained. Therefore, power consumption can be suppressed when the distance between the coils is short.
  • FIG. 6 is a configuration diagram of the contactless charging system according to the second embodiment.
  • Embodiment 2 has a configuration including a modulation / demodulation circuit A 602 and a modulation / demodulation circuit B 612 in place of the wireless communication unit A 102 and the wireless communication unit B 202 of the first embodiment.
  • Other configurations and controls are the same as those in the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the modulation / demodulation circuit A 602 and the modulation / demodulation circuit B 612 will be described.
  • the modulation / demodulation circuit A 602 includes a known modulator and demodulator.
  • the modulation / demodulation circuit A 602 is controlled by the charging control unit 103 and transmits a signal to the charging stand 610 by applying a voltage to the secondary coil 101. Further, the modulation / demodulation circuit A 602 detects a signal received from the charging stand 610 by demodulating a signal superimposed on the electromagnetic wave received by the secondary coil 101, and inputs it to the charging control unit 103.
  • the modulation / demodulation circuit B 612 includes a known modulator and demodulator. Modulation / demodulation circuit B 612 is controlled by power supply control unit 203 and applies a voltage to primary coil 201 to transmit a signal to vehicle 600. Further, the modulation / demodulation circuit B 612 detects a signal received from the vehicle 600 by demodulating a signal superimposed on the electromagnetic wave received by the primary coil 201 and inputs the detected signal to the power feeding control unit 203.
  • communication can be performed between the vehicle 600 and the charging stand 610 without using the wireless communication unit A102 and the wireless communication unit B202.
  • the same control can be realized with different configurations.

Abstract

When performing wireless charging between a charging station having a primary coil and a vehicle having a secondary coil, a test power is transmitted from the primary coil to the secondary coil and the inter-coil distance is estimated from the power received by the secondary coil. When transmitting the test power, the transmission intervals thereof are made longer, as the power received decreases.

Description

充電スタンド及び相対位置制御方法Charging stand and relative position control method
 本発明は、車両が備える電池を非接触で充電する充電スタンドに関する。 The present invention relates to a charging stand for charging a battery included in a vehicle in a contactless manner.
 ハイブリッド車や電気自動車等の車両に搭載された電池を充電するために、電磁誘導を利用した非接触充電が提案されている。この非接触充電は、充電スタンドが有する1次コイルに高周波電流を流し、1次コイルに発生する磁界を周期的に変化させる。これにより、1次コイルからの電磁誘導作用で、車両が有する2次コイルに誘導電流を発生させ、1次コイルを介して電力を2次コイルに伝送する。そして、車両が受電した電力を利用して電池を充電するものである。 In order to charge a battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle, non-contact charging using electromagnetic induction has been proposed. In this non-contact charging, a high frequency current is passed through the primary coil of the charging stand, and the magnetic field generated in the primary coil is periodically changed. Thus, an induction current is generated in the secondary coil of the vehicle by electromagnetic induction from the primary coil, and electric power is transmitted to the secondary coil via the primary coil. The battery is charged using the power received by the vehicle.
 このような非接触充電においては、1次コイルから送信した電力と、2次コイルで受信した電力との比(以下、受電効率という。)が、1次コイルと2次コイルとの相対位置により変化する。そして、1次コイルと2次コイルとの相対位置が離れるほど、受電効率が低下してしまう。 In such non-contact charging, the ratio between the power transmitted from the primary coil and the power received by the secondary coil (hereinafter referred to as power reception efficiency) depends on the relative position between the primary coil and the secondary coil. Change. And power receiving efficiency will fall, so that the relative position of a primary coil and a secondary coil leaves | separates.
 そこで、非接触充電では、従来から車両と充電スタンドとの間で、1次コイルと2次コイルとの相対位置を、最適な受電効率が得られる相対位置(以下、最適位置という。)に位置合わせをする制御(以下、位置合わせ制御という。)が行なわれている。 Therefore, in non-contact charging, the relative position of the primary coil and the secondary coil between the vehicle and the charging stand is conventionally positioned at a relative position (hereinafter referred to as an optimal position) at which optimal power reception efficiency is obtained. Control for alignment (hereinafter referred to as alignment control) is performed.
 また、充電スタンドが有する1次コイルと、車両が有する2次コイルとの位置合わせに関する技術に関しては、下記の特許文献1~4等に開示されている。 Further, the technology relating to the alignment between the primary coil of the charging stand and the secondary coil of the vehicle is disclosed in the following Patent Documents 1 to 4 and the like.
 特許文献1では、移動体への電力の供給を行う前に、給電装置のアンテナから、アンテナの位置合わせを行うために、充電用の電波よりも強度の低いテスト信号を出力する。そして、移動体のアンテナで受信したテスト信号の強度に応じて、給電装置のアンテナと、移動体のアンテナとの位置関係を把握し、その位置関係を最適な位置に調整することが記載されている。 In Patent Document 1, before power is supplied to a moving body, a test signal having a lower intensity than a radio wave for charging is output from the antenna of the power feeding device in order to align the antenna. Then, according to the strength of the test signal received by the antenna of the moving body, it is described that the positional relationship between the antenna of the power feeding device and the antenna of the moving body is grasped and the positional relationship is adjusted to the optimum position. Yes.
 特許文献2では、車両が駐車を開始すると、給電装置から磁界を発生する。そして、車両は、受電部における磁界強度を検出する。また、検出した磁界強度と、給電装置が発生した磁界強度とを比較する。これにより、車両の現在位置における受電部の受電効率を特定し、給電装置と車両との位置関係が最適であるか否かを判断する。さらに、受電効率に基づいて、車両を最適な位置へと誘導する受電案内処理を、所定の周期で繰り返し行うことが記載されている。 In Patent Document 2, when the vehicle starts parking, a magnetic field is generated from the power feeding device. Then, the vehicle detects the magnetic field strength in the power receiving unit. Further, the detected magnetic field strength is compared with the magnetic field strength generated by the power feeding device. Thereby, the power receiving efficiency of the power receiving unit at the current position of the vehicle is specified, and it is determined whether or not the positional relationship between the power feeding device and the vehicle is optimal. Further, it is described that the power reception guidance process for guiding the vehicle to the optimal position is repeatedly performed at a predetermined cycle based on the power reception efficiency.
 特許文献3では、駐車スペースの後方に位置決めマーカを設置する。そして、車両を駐車スペースに駐車させるときに、位置決めマーカを車両に搭載したカメラで撮像して、その画像を表示部に表示する。これにより、車両を最適位置に誘導することが記載されている。 In Patent Document 3, a positioning marker is installed behind the parking space. Then, when the vehicle is parked in the parking space, the positioning marker is imaged with a camera mounted on the vehicle, and the image is displayed on the display unit. This describes that the vehicle is guided to the optimum position.
 特許文献4では、給電側コイルに微小電力を供給し、磁界を発生させる。そして、給電側コイルから受電側コイルに微小電力が伝送されたときに、給電側コイルと受電側コイルとが給電可能な位置関係にあると判断されることが記載されている。 In Patent Document 4, a minute electric power is supplied to the power supply coil to generate a magnetic field. In addition, it is described that when a minute electric power is transmitted from the power supply side coil to the power reception side coil, it is determined that the power supply side coil and the power reception side coil are in a positional relationship where power can be supplied.
特開2011-182633JP2011-182633 特開2010-172184JP 2010-172184 A 特開2010-226945JP 2010-226945 特開2011-182624JP2011-182624
 従来では、車側受電部(2次コイル)が受ける給電装置側給電部(1次コイル)からのテスト信号や磁界強度により1次コイルと2次コイルとの位置関係を把握することは開示されている。 Conventionally, it has been disclosed that the positional relationship between a primary coil and a secondary coil is grasped based on a test signal or magnetic field strength from a power feeding device side power feeding unit (primary coil) received by a vehicle side power receiving unit (secondary coil). ing.
 しかし、2次コイルの受信強度が大きくなっても1次コイルからの出力強度は一定なので給電装置側の送信電力は無駄に消費されるという問題がある。 However, since the output intensity from the primary coil is constant even if the reception intensity of the secondary coil increases, there is a problem that the transmission power on the power feeding device side is wasted.
 本発明は上記問題に鑑みてなされたもので、1次コイルと2次コイルとの位置合わせ制御の電力消費を抑制する充電スタンドを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a charging stand that suppresses power consumption in alignment control between a primary coil and a secondary coil.
 上述した課題を解決し、目的を達成するため、充電スタンドが有する1次コイルから車両が有する2次コイルにテスト電力を周期的に送信し、該2次コイルの受電電力を測定することで、該受電電力が大きいほど該1次コイルと該2次コイルとの間の距離が近いと判定する前記充電スタンドにおいて、前記2次コイルの受電電力に応じて、前記テスト電力の送信間隔を変更する制御部を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the test power is periodically transmitted from the primary coil of the charging stand to the secondary coil of the vehicle, and the received power of the secondary coil is measured. In the charging stand that determines that the distance between the primary coil and the secondary coil is shorter as the received power is larger, the transmission interval of the test power is changed according to the received power of the secondary coil. A control unit is provided.
 本発明によれば、1次コイルと2次コイルとの位置合わせ制御の電力消費を抑制することができる。 According to the present invention, it is possible to suppress the power consumption of the alignment control between the primary coil and the secondary coil.
実施形態1の非接触充電システムの構成図である。It is a block diagram of the non-contact charge system of Embodiment 1. 実施形態1の充電開始制御のフローチャートである。3 is a flowchart of charge start control according to the first embodiment. 実施形態1の位置合わせ制御のフローチャートである。3 is a flowchart of alignment control according to the first embodiment. 実施形態1の位置合わせ制御のフローチャートである。3 is a flowchart of alignment control according to the first embodiment. 実施形態1の送信間隔の説明図である。6 is an explanatory diagram of a transmission interval according to Embodiment 1. FIG. 実施形態2の非接触充電システムの構成図である。It is a block diagram of the non-contact charge system of Embodiment 2.
 以下、実施形態の非接触充電システムについて説明する。
[実施形態1]
 実施形態1の非接触充電システムについて説明する。
Hereinafter, the non-contact charging system of the embodiment will be described.
[Embodiment 1]
The non-contact charging system of Embodiment 1 will be described.
 図1は、実施形態1の非接触充電システムの構成図である。 FIG. 1 is a configuration diagram of the contactless charging system according to the first embodiment.
 実施形態1の非接触充電システムは、車両100と、充電スタンド200とを備えている。また、車両100は、2次コイル101と、無線通信部A102と、充電制御部103と、変換器104と、電池105と、負荷106と、電力計107と、記憶部A108とを備えている。また、充電スタンド200は、1次コイル201と、無線通信部B202と、給電制御部203と、高周波電源204と、記憶部B205とを備えている。 The contactless charging system according to Embodiment 1 includes a vehicle 100 and a charging stand 200. The vehicle 100 also includes a secondary coil 101, a wireless communication unit A102, a charging control unit 103, a converter 104, a battery 105, a load 106, a wattmeter 107, and a storage unit A108. . The charging stand 200 includes a primary coil 201, a wireless communication unit B202, a power supply control unit 203, a high frequency power supply 204, and a storage unit B205.
 2次コイル101には、例えば、銅線等の電線を巻き回すことで構成される公知のコイルを採用することができる。そして、2次コイル101は、車両100の底面に配置されている。 As the secondary coil 101, for example, a known coil configured by winding an electric wire such as a copper wire can be employed. Secondary coil 101 is disposed on the bottom surface of vehicle 100.
 無線通信部A102には、公知の無線端末を採用することができる。そして、充電スタンド200側の無線通信部B202との間で信号の送受信をする。なお、無線通信部A102は、無線通信部B202だけではなく、他の無線端末との信号の送受信にも用いることができる。 A known wireless terminal can be adopted as the wireless communication unit A102. And a signal is transmitted / received between radio | wireless communication parts B202 by the side of the charging stand 200. FIG. The wireless communication unit A102 can be used not only for the wireless communication unit B202 but also for transmission and reception of signals with other wireless terminals.
 充電制御部103は、例えば、ECU(Electronic Control Unit)等のワークスペースとしてメモリを搭載するコンピュータを採用することができる。そして、位置合わせ制御をする場合、2次コイル101を監視して、1次コイル201から伝送されたテスト電力を2次コイル101が受信したときに、電力計107で測定された電力値である受電電力値を取得する。さらに、取得した受電電力値を無線通信部A102により、車両100から充電スタンド200に送信する制御を行なう。また、車両100の電池の充電中には、充電に関する各種制御を行なう。 The charging control unit 103 may employ a computer equipped with a memory as a work space such as an ECU (Electronic Control Unit). When the alignment control is performed, the secondary coil 101 is monitored, and the power value measured by the wattmeter 107 when the secondary coil 101 receives the test power transmitted from the primary coil 201. Get the received power value. Further, control is performed to transmit the acquired received power value from the vehicle 100 to the charging station 200 by the wireless communication unit A102. Further, during the charging of the battery of the vehicle 100, various controls relating to charging are performed.
 変換器104は、例えば、AC-DCコンバータとDC-DCコンバータ等を備えて構成される。そして、2次コイル101から電力が供給されると、AC-DCコンバータにより交流電流を直流電流に変換し、さらに、DC-DCコンバータにより電圧を変圧することで、電池105に充電電流を供給する。 The converter 104 includes, for example, an AC-DC converter and a DC-DC converter. When power is supplied from the secondary coil 101, the AC-DC converter converts AC current into DC current, and the DC-DC converter transforms the voltage to supply charging current to the battery 105. .
 電池105は、リチウムイオン電池、鉛電池、ニッカド電池及びニッケル水素電池等の蓄電池を採用することができる。より具体的には、複数の電池セルを直列に接続して組電池とすることにより、負荷106を駆動する高電圧電源として用いられる。 The battery 105 may be a storage battery such as a lithium ion battery, a lead battery, a nickel cadmium battery, or a nickel metal hydride battery. More specifically, it is used as a high voltage power source for driving the load 106 by connecting a plurality of battery cells in series to form an assembled battery.
 負荷106は、例えば、モータ駆動用のインバータ回路等であり、電池105から電力が供給されることにより駆動する車両100の構成要素である。 The load 106 is, for example, an inverter circuit for driving a motor, and is a component of the vehicle 100 that is driven by power supplied from the battery 105.
 電力計107は、例えば、電圧計と、電流計とを有する構成である。そして、電力計107は、2次コイル101と並列に電圧計を接続して2次コイルの起電力を測定し、かつ、2次コイル101と直列に電流計を接続して2次コイル101に流れる誘導電流を測定する。さらに、電力計107は、この電圧計と、電流計とを用いて測定した電圧値と電流値とから、2次コイル101の受電電力値を算出する。また、電力計107は、充電制御部103からの要求に応じて、受電電力値を充電制御部103に出力する。なお、受電電力値の算出については、充電制御部103からの要求に応じて、充電制御部103に電力計107により測定した電圧値と電流値とを送信することで、充電制御部103で行なうようにしても良い。 The wattmeter 107 has, for example, a configuration including a voltmeter and an ammeter. The wattmeter 107 connects a voltmeter in parallel with the secondary coil 101 to measure the electromotive force of the secondary coil, and connects an ammeter in series with the secondary coil 101 to the secondary coil 101. Measure the induced current that flows. Further, the wattmeter 107 calculates the received power value of the secondary coil 101 from the voltage value and current value measured using this voltmeter and ammeter. Further, the wattmeter 107 outputs the received power value to the charging control unit 103 in response to a request from the charging control unit 103. The calculation of the received power value is performed by the charging control unit 103 by transmitting the voltage value and the current value measured by the wattmeter 107 to the charging control unit 103 in response to a request from the charging control unit 103. You may do it.
 記憶部A108には、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)等を採用することができる。この記憶部A108には、充電制御部103の処理に必要な各種データが記憶されている。 As the storage unit A108, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive) or the like can be employed. The storage unit A 108 stores various data necessary for the processing of the charging control unit 103.
 1次コイル201には、例えば、銅線等の電線を巻き回すことで構成される公知のコイルを採用することができる。そして、1次コイル201は、充電スタンド200を用いて充電する場合に、車両100を駐車する駐車位置の地面に埋め込まれている。 As the primary coil 201, for example, a known coil configured by winding an electric wire such as a copper wire can be employed. The primary coil 201 is embedded in the ground of the parking position where the vehicle 100 is parked when charging using the charging stand 200.
 無線通信部B202には、例えば、公知の無線端末を採用することができる。そして、車両100側の無線通信部A102との間で信号の送受信をする。なお、無線通信部B202は、無線通信部A102だけでなく、他の無線端末との信号の送受信にも用いることができる。 For example, a known wireless terminal can be used as the wireless communication unit B202. And a signal is transmitted / received between radio | wireless communication parts A102 by the side of the vehicle 100. FIG. The wireless communication unit B202 can be used not only for the wireless communication unit A102 but also for transmission / reception of signals with other wireless terminals.
 給電制御部203は、例えば、ECU(Electronic Control Unit)等のワークスペースとしてメモリを搭載するコンピュータを採用することができる。 The power supply control unit 203 can employ, for example, a computer equipped with a memory as a work space such as an ECU (Electronic Control Unit).
 そして、給電制御部203は、高周波電源204から1次コイル201に供給する電流を制御する。 And the electric power feeding control part 203 controls the electric current supplied to the primary coil 201 from the high frequency power supply 204. FIG.
 具体的には、給電制御部203は、位置合わせ制御をする場合、1次コイル201から2次コイル101にテスト電力を伝送するのに必要な交流電流である第1の電流を、間歇的に1次コイル201に供給するように高周波電源204の制御をする。なお、第1の電流を1次コイル201に供給したときに、1次コイル201から送信される電磁波を第1の電磁波という。すなわち、第1の電磁波とは、テスト電力を1次コイル201から2次コイル101に伝送するときに、1次コイル201から2次コイル101に送信される電磁波である。 Specifically, when performing the alignment control, the power feeding control unit 203 intermittently generates a first current that is an alternating current necessary for transmitting test power from the primary coil 201 to the secondary coil 101. The high frequency power supply 204 is controlled so as to be supplied to the primary coil 201. Note that an electromagnetic wave transmitted from the primary coil 201 when a first current is supplied to the primary coil 201 is referred to as a first electromagnetic wave. That is, the first electromagnetic wave is an electromagnetic wave transmitted from the primary coil 201 to the secondary coil 101 when test power is transmitted from the primary coil 201 to the secondary coil 101.
 また、給電制御部203は、電池105を充電する場合、車両100から要求される充電用の電力である充電電力を伝送するのに必要な交流電流である第2の電流を、1次コイル201に供給するように高周波電源204の制御をする。なお、第2の電流を1次コイル201に供給したときに、1次コイル201から送信される電磁波を第2の電磁波という。すなわち、第2の電磁波とは、充電電力を1次コイル201から2次コイル101に伝送するときに、1次コイル201から2次コイル101に送信される電磁波である。 In addition, when charging the battery 105, the power supply control unit 203 supplies a second current, which is an alternating current necessary for transmitting charging power, which is charging power required from the vehicle 100, to the primary coil 201. The high frequency power supply 204 is controlled so as to be supplied to Note that the electromagnetic wave transmitted from the primary coil 201 when the second current is supplied to the primary coil 201 is referred to as a second electromagnetic wave. That is, the second electromagnetic wave is an electromagnetic wave transmitted from the primary coil 201 to the secondary coil 101 when charging power is transmitted from the primary coil 201 to the secondary coil 101.
 なお、以下の説明においては、特に断らない限り、簡単のため充電電力は常に一定の大きさであるものとして説明する。また、テスト電力の大きさは、1次コイル201と2次コイル101との位置関係を把握できる程度の大きさであれば良い。よって、充電電力の大きさよりも十分小さくすることができる。また、テスト電力の大きさは、一定でも良いし、コイル間距離に従って変更するようにしても良い。そして、テスト電力の出力時間は、電力計107でユーザの所望する精度で1次コイル201から2次コイル101に伝送されるテスト電力の電力値(以下、テスト電力値という。)を測定することができるように設定すれば良い。 In the following explanation, unless otherwise noted, the explanation will be made assuming that the charging power is always constant for simplicity. Moreover, the magnitude | size of test electric power should just be a magnitude | size which can grasp | ascertain the positional relationship of the primary coil 201 and the secondary coil 101. FIG. Therefore, it can be made sufficiently smaller than the magnitude of the charging power. The magnitude of the test power may be constant or may be changed according to the distance between the coils. The output time of the test power is to measure the power value (hereinafter referred to as test power value) of the test power transmitted from the primary coil 201 to the secondary coil 101 with the accuracy desired by the user using the power meter 107. It should be set so that it can.
 また、給電制御部203は、1次コイル201からテスト電力を伝送したときに、その電力値をワークスペースに記憶する。そして、給電制御部203は、2次コイル101が受信した受電電力値を車両100から受信すると、下記式(1)を用いて受電効率を算出する。
受電電力値/テスト電力値=受電効率    (1)
 また、給電制御部203は、得られた受電効率と対応するコイル間距離を、図5に示す受電効率-コイル間距離テーブル503から抽出する。そして、給電制御部203は、無線通信部B202を介して、抽出したコイル間距離を車両100に送信する。
In addition, when the test power is transmitted from the primary coil 201, the power supply control unit 203 stores the power value in the work space. And the electric power feeding control part 203 will calculate electric power reception efficiency using following formula (1), if the received electric power value which the secondary coil 101 received from the vehicle 100 is received.
Received power value / Test power value = Power reception efficiency (1)
Further, the power feeding control unit 203 extracts the obtained power receiving efficiency and the inter-coil distance corresponding to the power receiving efficiency-coil distance table 503 shown in FIG. Then, the power feeding control unit 203 transmits the extracted inter-coil distance to the vehicle 100 via the wireless communication unit B202.
 さらに、給電制御部203は、抽出したコイル間距離に応じて、高周波電源204から車両100にテスト電力を送信する周期(送信間隔)を変更する。具体的には、給電制御部203は、コイル間距離が離れている場合、送信間隔を長くし、コイル間距離が近づくにつれて、送信間隔を短くする。また、用途によって、給電制御部203は、コイル間距離が離れている場合、送信間隔を短くし、コイル間距離が近づくにつれて、送信間隔を長くする制御をしても良い。 Furthermore, the power supply control unit 203 changes the cycle (transmission interval) at which the test power is transmitted from the high-frequency power source 204 to the vehicle 100 according to the extracted inter-coil distance. Specifically, the power supply control unit 203 increases the transmission interval when the inter-coil distance is long, and shortens the transmission interval as the inter-coil distance approaches. Further, depending on the application, the power supply control unit 203 may perform control to shorten the transmission interval when the inter-coil distance is long and to increase the transmission interval as the inter-coil distance approaches.
 高周波電源204は、系統電源300に接続され、系統電源300から取り込んだ交流電力を所定周期の正弦波信号に変換する。そして、高周波電源204は、給電制御部203に制御されることにより、必要な大きさの交流電流を1次コイル201に供給する。また、高周波電源204は、所定周期の信号であれば、系統電源300から取り込んだ交流電力をパルス信号に変換する構成であっても良い。 The high frequency power supply 204 is connected to the system power supply 300 and converts AC power taken from the system power supply 300 into a sine wave signal having a predetermined cycle. The high-frequency power supply 204 supplies an alternating current having a required magnitude to the primary coil 201 by being controlled by the power supply control unit 203. Further, the high frequency power supply 204 may be configured to convert AC power taken from the system power supply 300 into a pulse signal as long as the signal has a predetermined cycle.
 記憶部B205は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)等を採用することができる。この記憶部B205には、給電制御部203の処理に必要な各種データが記憶されている。この各種データには、少なくとも、テスト電力値と、充電電力値と、受電効率-コイル間距離テーブル503と、テスト電力の出力時間と、最適な受電効率とが含まれている。また、最適な受電効率とは、充電に適する受電効率であり、この受電効率が得られたときに、給電制御部203は、1次コイル201と2次コイル101とが最適位置に位置しているものと判定する。この最適な受電効率は、1次コイル201と2次コイル101との形状及び材質などにより、実験によりユーザが定めた値である。また、テスト電力値は、位置合わせ制御において一定の値を用いる場合には、一つの値を記憶しておけば良い。これに対して、位置合わせ制御において、テスト電力値を変更する場合には、テスト電力値テーブルを備えると良い。テスト電力値テーブルの一例としては、特に図示しないが、コイル間距離に応じてテスト電力値を設定したコイル間距離-テスト電力値テーブル等を記憶しておくと良い。 The storage unit B205 can employ, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like. In the storage unit B205, various types of data necessary for the processing of the power supply control unit 203 are stored. The various data includes at least a test power value, a charging power value, a power reception efficiency-coil distance table 503, a test power output time, and an optimum power reception efficiency. The optimum power receiving efficiency is a power receiving efficiency suitable for charging. When this power receiving efficiency is obtained, the power feeding control unit 203 positions the primary coil 201 and the secondary coil 101 at the optimum positions. Judge that there is. This optimum power receiving efficiency is a value determined by the user through experiments based on the shapes and materials of the primary coil 201 and the secondary coil 101. Further, when a constant value is used for the alignment control, one value may be stored as the test power value. On the other hand, when changing the test power value in the alignment control, it is preferable to provide a test power value table. As an example of the test power value table, although not particularly shown, it is preferable to store an inter-coil distance-test power value table in which a test power value is set according to the inter-coil distance.
 また、記憶部B205は、さらに本発明の特徴である、第1の電磁波(テスト電力)の送信間隔をコイル間距離に応じて変更するための、図5に示すコイル間距離-送信間隔テーブル504を記憶している。コイル間距離-送信間隔テーブル504は、コイル間距離と第1の電磁波の送信間隔の対応関係をテーブルにしたものである。なお、コイル間距離cのときの送信間隔が定められていないのは、コイル間距離cのとき、1次コイルと2次コイルとが最適位置に位置合わせされたことを示している。すなわち、テスト電力を送信する必要がないので、送信間隔を定めていない。 Further, the storage unit B205 is a feature of the present invention. The inter-coil distance-transmission interval table 504 shown in FIG. 5 is used to change the transmission interval of the first electromagnetic wave (test power) according to the inter-coil distance. Is remembered. The inter-coil distance-transmission interval table 504 is a table showing the correspondence between the inter-coil distance and the transmission interval of the first electromagnetic wave. The fact that the transmission interval at the inter-coil distance c is not defined indicates that the primary coil and the secondary coil are aligned at the optimum position at the inter-coil distance c. That is, since it is not necessary to transmit the test power, the transmission interval is not determined.
 次に、図2~4を参照して、実施形態1の非接触充電システムの動作を説明する。 Next, the operation of the contactless charging system according to the first embodiment will be described with reference to FIGS.
 以下では、実施形態1の非接触充電システムの動作を詳細に説明するが、これに限らず本発明の特徴を適用できる範囲であれば、その動作を適宜変更することができる。 Hereinafter, the operation of the contactless charging system according to the first embodiment will be described in detail. However, the present invention is not limited to this, and the operation can be appropriately changed as long as the characteristics of the present invention can be applied.
 図2は、実施形態1の充電開始制御のフローチャートである。 FIG. 2 is a flowchart of charge start control according to the first embodiment.
 なお、以下の説明においては、特に断らない限り、各情報はその情報を表す信号により送受信されているものとする。そして、車両100から送信される信号は、充電制御部103で生成され、充電スタンド200から送信される信号は、給電制御部203で生成されるものとする。また、車両100と、充電スタンド200との間の信号の送受信は、無線通信部A102と無線通信部B202との間で行なわれているものとする。そして、充電スタンド200は、車両100の充電を受付け可能な状態であることを前提として説明する。 In the following description, unless otherwise specified, it is assumed that each piece of information is transmitted and received by a signal representing that information. A signal transmitted from the vehicle 100 is generated by the charging control unit 103, and a signal transmitted from the charging station 200 is generated by the power supply control unit 203. In addition, transmission / reception of signals between the vehicle 100 and the charging station 200 is performed between the wireless communication unit A102 and the wireless communication unit B202. The charging stand 200 will be described on the assumption that the charging of the vehicle 100 is acceptable.
 まず、車両100の運転者が充電ステーションに立ち寄り、充電を開始することを決定したときに、図示しない車両認証信号出力スイッチを押下げするなどして、車両100から充電スタンド200に車両認証信号を出力する(S201)。この車両認証信号は、車両100の充電スタンド200に対する接続要求信号である。 First, when the driver of the vehicle 100 decides to stop at the charging station and start charging, a vehicle authentication signal is sent from the vehicle 100 to the charging station 200 by pressing a vehicle authentication signal output switch (not shown). Output (S201). This vehicle authentication signal is a connection request signal for the charging station 200 of the vehicle 100.
 そして、充電スタンド200は、車両認証信号を受信する(S202)と、スタンド認証信号と車両認証信号とを車両100に送信する(S203)。このスタンド認証信号は車両100の応答を確認する信号である。なお、S202の時点で車両認証信号を受信したスタンドが既に他の車両100を充電している、または、他の理由で車両100の充電を受付けられない場合には、充電スタンド200から受付不可能を通知する信号を車両100に送信するようにしても良い。また、車両100を受け入れ可能な充電スタンド200が複数ある場合には、各充電スタンド200の中で、車両認証信号の受信レベルが最も大きい充電スタンド200からのみ、スタンド認証信号を車両100に送信するようにしても良い。この場合、各充電スタンド200の車両認証信号の受信レベルの比較は、各充電スタンド200が接続された、図示しないスタンド制御部等により行なうと良い。 Then, when the charging station 200 receives the vehicle authentication signal (S202), the charging station 200 transmits the stand authentication signal and the vehicle authentication signal to the vehicle 100 (S203). This stand authentication signal is a signal for confirming the response of the vehicle 100. If the stand that has received the vehicle authentication signal at the time of S202 has already charged the other vehicle 100 or cannot accept the charge of the vehicle 100 for other reasons, it cannot be accepted from the charging stand 200. May be transmitted to the vehicle 100. When there are a plurality of charging stations 200 that can receive the vehicle 100, the station authentication signal is transmitted to the vehicle 100 only from the charging station 200 having the highest vehicle authentication signal reception level among the charging stations 200. You may do it. In this case, the comparison of the reception level of the vehicle authentication signal of each charging station 200 may be performed by a stand control unit (not shown) to which each charging station 200 is connected.
 そして、車両100は、スタンド認証信号と車両認証信号とを受信する(S204)と、充電スタンド200との通信の接続を認証するとともに、充電スタンド200が充電可能であることを認識して充電スタンド200で充電することを決定する(S205)。そして、車両100は、スタンド認証信号を充電スタンド200に送信する(S206)。 When the vehicle 100 receives the stand authentication signal and the vehicle authentication signal (S204), the vehicle 100 authenticates the connection of communication with the charging stand 200 and recognizes that the charging stand 200 can be charged. It is determined to charge at 200 (S205). Then, the vehicle 100 transmits a stand authentication signal to the charging stand 200 (S206).
 また、充電スタンド200は、スタンド認証信号を受信する(S207)と、車両100との通信の接続を認証するとともに、車両100を充電対象の車両として認識する(S208)。 In addition, when the charging station 200 receives the station authentication signal (S207), the charging station 200 authenticates the communication connection with the vehicle 100 and recognizes the vehicle 100 as a vehicle to be charged (S208).
 次に、充電スタンド200は、車両100を最適位置に誘導するための位置合わせ制御を開始する(S209)。この位置合わせ制御の詳細に関しては、図3、4を参照して説明する。 Next, the charging station 200 starts alignment control for guiding the vehicle 100 to the optimum position (S209). Details of the alignment control will be described with reference to FIGS.
 位置合わせ制御が終了すると、充電スタンド200から充電用の充電電力を伝送することで、車両100の電池105の充電を開始する(S210)。なお、充電電力は、給電制御部203が記憶部B205に記憶されている充電電力値を取得し、その充電電力値の電力を1次コイル201に供給するように高周波電源204を制御することで伝送される。 When the alignment control is completed, charging of the battery 105 of the vehicle 100 is started by transmitting charging power for charging from the charging stand 200 (S210). The charging power is obtained by controlling the high-frequency power supply 204 so that the power feeding control unit 203 acquires the charging power value stored in the storage unit B 205 and supplies the power of the charging power value to the primary coil 201. Is transmitted.
 なお、S201~S208の車両100と充電スタンド200の認証に関しては、一般的な3ウェイハンドシェイクとほぼ同じ手法を用いているが、これに限らず、相互認証が可能な方式であれば、適宜公知の技術を適用することができる。また、上述では、充電電力は一定のため、記憶部B205に記憶された充電電力値を用いたが、充電電力は車両100から要求される充電電力値に基づいて、適宜変更するようにしても良い。 Note that the authentication of the vehicle 100 and the charging station 200 in S201 to S208 uses almost the same method as a general three-way handshake, but is not limited to this, and any method that allows mutual authentication is used as appropriate. A known technique can be applied. In the above description, since the charging power is constant, the charging power value stored in the storage unit B205 is used. However, the charging power may be appropriately changed based on the charging power value requested from the vehicle 100. good.
 次に、実施形態1の位置合わせ制御の動作を説明する。 Next, the alignment control operation of the first embodiment will be described.
 図3、4は、実施形態1の位置合わせ制御のフローチャートである。 3 and 4 are flowcharts of the alignment control according to the first embodiment.
 以下の説明においては、車両100は、複数の充電スタンド200が存在する場合であっても、認証した充電スタンド200からの第1の電磁波を識別して、その受電電力値を測定できるものとする。例えば、充電スタンド200に変調回路を備え、第1の電磁波に充電スタンド200の識別信号を重畳させる。さらに、車両100に復調回路を備え、車両100が第1の電磁波に重畳された識別信号を認識する。これにより、認証済みの充電スタンド200からの第1の電磁波を認識すると良い。 In the following description, vehicle 100 is capable of identifying the first electromagnetic wave from authenticated charging station 200 and measuring the received power value even when there are a plurality of charging stations 200. . For example, the charging station 200 includes a modulation circuit, and the identification signal of the charging station 200 is superimposed on the first electromagnetic wave. Furthermore, the vehicle 100 includes a demodulation circuit, and the vehicle 100 recognizes the identification signal superimposed on the first electromagnetic wave. Thereby, it is preferable to recognize the first electromagnetic wave from the authenticated charging stand 200.
 まず、図3において、給電制御部203は、位置合わせ制御に用いるテスト電力値を記憶部B205から取得し、取得したテスト電力値に基づいて、第1の電流を高周波電源204から1次コイル201に供給する設定をする(S301)。さらに、給電制御部203は、ワークスペースに記憶部B205から取得したテスト電力値を記憶しておく。 First, in FIG. 3, the power supply control unit 203 acquires a test power value used for alignment control from the storage unit B 205, and based on the acquired test power value, a first current is supplied from the high-frequency power source 204 to the primary coil 201. (S301). Furthermore, the power supply control unit 203 stores the test power value acquired from the storage unit B205 in the workspace.
 そして、給電制御部203は、記憶部B205に記憶されているテスト電力の出力時間を取得し、取得したテスト電力の出力時間の間、高周波電源204から1次コイル201に第1の電流を供給するように制御をする(S302)。 The power supply control unit 203 acquires the output time of the test power stored in the storage unit B205, and supplies the first current from the high frequency power supply 204 to the primary coil 201 during the acquired output time of the test power. Control is performed (S302).
 また、高周波電源204から第1の電流が入力されると、1次コイル201は、第1の電磁波を送信する(S303)。 Further, when the first current is input from the high frequency power supply 204, the primary coil 201 transmits the first electromagnetic wave (S303).
 すると、2次コイル101は、第1の電磁波を受信(S304)する。 Then, the secondary coil 101 receives the first electromagnetic wave (S304).
 また、充電制御部103は、第1の電磁波を2次コイル101が受信したことを検出すると、電力計107に受電電力を測定させる(S305)。さらに、充電制御部103は、電力計107から受電電力値を取得し、その受信電力値を充電スタンド200に送信する(S306)。 Further, when the charging control unit 103 detects that the secondary coil 101 has received the first electromagnetic wave, the charging control unit 103 causes the wattmeter 107 to measure the received power (S305). Furthermore, the charging control unit 103 acquires a received power value from the wattmeter 107 and transmits the received power value to the charging station 200 (S306).
 そして、充電スタンド200は、受信電力値を受信する(S307)と、給電制御部203で、ワークスペースに記憶されているテスト電力値と受電電力値とを用いて、式(1)により受電効率を算出する(S308)。 When the charging station 200 receives the received power value (S307), the power supply control unit 203 uses the test power value and the received power value stored in the workspace to obtain the power receiving efficiency according to the equation (1). Is calculated (S308).
 さらに、給電制御部203は、S308で算出した受電効率(算出値)と、記憶部B205に記憶されている最適な受電効率とを比較して、算出した受電効率が最適な受電効率以上であるか否かを判定する(S309)。 Furthermore, the power supply control unit 203 compares the power reception efficiency (calculated value) calculated in S308 with the optimum power reception efficiency stored in the storage unit B205, and the calculated power reception efficiency is equal to or greater than the optimum power reception efficiency. It is determined whether or not (S309).
 その結果、最適な受電効率よりも算出した受電効率が低い場合(S309にてNo)には、図4のS310に移行する。そして、給電制御部203は、記憶部B205に記憶されている図5に示す受電効率-コイル間距離テーブル503を参照(S310)して、算出した受電効率に対応したコイル間距離を抽出する(S311)。 As a result, when the power receiving efficiency calculated is lower than the optimum power receiving efficiency (No in S309), the process proceeds to S310 in FIG. Then, the power supply control unit 203 refers to the power reception efficiency-coil distance table 503 shown in FIG. 5 stored in the storage unit B205 (S310), and extracts the inter-coil distance corresponding to the calculated power reception efficiency (S310). S311).
 そして、給電制御部203は、抽出したコイル間距離を車両100に送信する(S312)。また、車両100は、図示しないディスプレイやスピーカー等の報知手段を用いてコイル間距離を運転者に知らせる。これにより、車両100において、1次コイル201と2次コイル101とを、最適位置とさせるように、運転者を誘導することができる。 Then, the power supply control unit 203 transmits the extracted distance between the coils to the vehicle 100 (S312). The vehicle 100 also informs the driver of the distance between the coils by using notifying means such as a display and a speaker (not shown). Thereby, in the vehicle 100, a driver | operator can be induced | guided | derived so that the primary coil 201 and the secondary coil 101 may be made into an optimal position.
 また、給電制御部203は、コイル間距離-送信間隔テーブル504を参照して、S310で抽出したコイル間距離に対応した送信間隔を抽出する(S313)。 Further, the power supply control unit 203 refers to the inter-coil distance-transmission interval table 504 and extracts a transmission interval corresponding to the inter-coil distance extracted in S310 (S313).
 そして、給電制御部203は、S313で抽出した送信間隔の間待機したあと、S302に移行する(S314)。その後、S302~S309を実行する。 The power supply control unit 203 waits for the transmission interval extracted in S313, and then proceeds to S302 (S314). Thereafter, S302 to S309 are executed.
 図3のS309において、算出した受信効率が最適な受電効率以上であった場合(S309にてYes)、1次コイル201と2次コイル101とが最適位置にあると判定し、図4に示すS315に移行する。また、この時点で、1次コイル201と、2次コイル101とは、最適位置に位置合わせされたので、テスト電力の送信を終了する。 In S309 of FIG. 3, when the calculated reception efficiency is equal to or higher than the optimal power reception efficiency (Yes in S309), it is determined that the primary coil 201 and the secondary coil 101 are in the optimal positions, and is shown in FIG. The process proceeds to S315. At this time, since the primary coil 201 and the secondary coil 101 are aligned at the optimum positions, the transmission of the test power is finished.
 そして、給電制御部203は、充電電力値を記憶部B205から取得し、その充電電力値を伝送するために1次コイル201に供給する第2の電流を、高周波電源204から1次コイル201に供給させる設定をする。そして、図2のS210に移行する。 Then, the power feeding control unit 203 acquires the charging power value from the storage unit B 205 and supplies the second current supplied to the primary coil 201 to transmit the charging power value from the high-frequency power source 204 to the primary coil 201. Set to supply. Then, the process proceeds to S210 in FIG.
 上記の処理において、常に一定のテスト電力を用いる場合には、最適な受電効率に代えて、一定のテスト電力に対応した、最適な受電電力値を記憶部B205に記憶する。そして、S309において、最適な受電電力値と車両100から受信した受電電力値とを比較し、受信した受電電力値が最適な受電電力値以上である場合に、1次コイル201と2次コイル101とが最適位置にあるという判定をしても良い。また、図5に示す受電電力-送信間隔テーブル505に示すように、一定のテスト電力に対応した、受電電力値とコイル間距離との対応関係を記憶部B205に記憶しておき、S311において、受電電力値から直接対応するコイル間距離を抽出しても良い。さらに、図5に示す受電電力-送信間隔テーブル505に示すように、一定のテスト電力に対応した、受電電力値と送信間隔との対応関係を記憶部B205に記憶しておき、S313において、受電電力値から直接対応する送信間隔を抽出しても良い。このように設定することで、一定のテスト電力を用いる場合には、S308の受電効率の算出を省略することができ、処理を簡略化することができる。 In the above processing, when a constant test power is always used, an optimal received power value corresponding to the constant test power is stored in the storage unit B205 instead of the optimal power receiving efficiency. In S309, the optimum received power value is compared with the received power value received from the vehicle 100. If the received received power value is equal to or greater than the optimum received power value, the primary coil 201 and the secondary coil 101 are compared. May be determined to be in the optimum position. Further, as shown in the received power-transmission interval table 505 shown in FIG. 5, the correspondence relationship between the received power value and the inter-coil distance corresponding to the constant test power is stored in the storage unit B205, and in S311, The corresponding inter-coil distance may be extracted directly from the received power value. Further, as shown in the received power-transmission interval table 505 shown in FIG. 5, the correspondence relationship between the received power value and the transmission interval corresponding to a constant test power is stored in the storage unit B205, and in S313, the received power is received. The corresponding transmission interval may be extracted directly from the power value. By setting in this way, when a constant test power is used, the calculation of the power reception efficiency in S308 can be omitted, and the processing can be simplified.
 図5は、実施形態1の送信間隔の説明図である。 FIG. 5 is an explanatory diagram of a transmission interval according to the first embodiment.
 受電効率-コイル間距離グラフA501は、実施形態1の第1の電磁波(テスト電力)の送信間隔を示している。横軸はコイル間距離であり、コイル間距離a、コイル間距離d、コイル間距離b、コイル間距離e、コイル間距離cの順で1次コイル201と2次コイル101とのコイル間距離が近づいている。また、縦軸は、受電効率であり、受電効率-コイル間距離グラフA501に示す曲線は、コイル間距離に応じた受電効率を示している。そして、上矢印は、位置合わせ制御の際に1次コイル201から間歇的に送信される第1の電磁波の送信タイミングである。 The power reception efficiency-coil distance graph A501 indicates the transmission interval of the first electromagnetic wave (test power) of the first embodiment. The horizontal axis is the distance between the coils. The distance between the primary coil 201 and the secondary coil 101 in the order of the inter-coil distance a, the inter-coil distance d, the inter-coil distance b, the inter-coil distance e, and the inter-coil distance c. Is approaching. The vertical axis represents the power reception efficiency, and the curve shown in the power reception efficiency-inter-coil distance graph A501 indicates the power reception efficiency according to the inter-coil distance. The up arrow is the transmission timing of the first electromagnetic wave transmitted intermittently from the primary coil 201 during the alignment control.
 実施形態1では、受電効率-コイル間距離グラフA501に示すように、コイル間距離が近づくにつれて、送信間隔を短くする。これにより、1次コイル201と2次コイル101との詳細な位置合わせを必要としない区間、すなわちコイル間距離が離れている場合には、送信間隔を長くして消費電力を抑制することができる。また、1次コイル201と2次コイル101との詳細な位置合わせを必要とする区間、すなわちコイル間距離が近い場合には、送信間隔を短くして運転者にコイル間距離を詳細に伝えることができる。 In the first embodiment, as shown in the power receiving efficiency-inter-coil distance graph A501, the transmission interval is shortened as the inter-coil distance approaches. As a result, when the detailed alignment between the primary coil 201 and the secondary coil 101 is not required, that is, when the inter-coil distance is long, the transmission interval can be increased to reduce power consumption. . In addition, when a section where detailed alignment between the primary coil 201 and the secondary coil 101 is required, that is, when the distance between the coils is short, the transmission interval is shortened and the distance between the coils is transmitted to the driver in detail. Can do.
 なお、この場合、コイル間距離-送信間隔テーブル504の送信間隔を示す時間ta~tdは、時間ta、時間td、時間tb、時間te、時間tcの順で短くなるように設定されている。 In this case, the times ta to td indicating the transmission intervals in the inter-coil distance-transmission interval table 504 are set to be shorter in the order of time ta, time td, time tb, time te, and time tc.
 また、受電効率-コイル間距離グラフB502は、実施形態1の別の第1の電磁波(テスト電力)の送信間隔の設定を示している。横軸は、コイル間距離であり、コイル間距離a、コイル間距離d、コイル間距離b、コイル間距離e、コイル間距離cの順でコイル間距離が近づいている。また、縦軸は、受電効率であり、受電効率-コイル間距離グラフB502に示す曲線は、コイル間距離に応じた受電効率を示している。そして、上矢印は、位置合わせ制御の際に1次コイル201から間歇的に送信される第1の電磁波の送信タイミングである。 The power reception efficiency-coil distance graph B502 shows the setting of the transmission interval of another first electromagnetic wave (test power) of the first embodiment. The horizontal axis represents the distance between the coils, and the distance between the coils approaches in order of the distance between the coils a, the distance d between the coils, the distance b between the coils, the distance e between the coils, and the distance c between the coils. The vertical axis represents the power reception efficiency, and the curve shown in the power reception efficiency-coil distance graph B502 represents the power reception efficiency according to the distance between the coils. The up arrow is the transmission timing of the first electromagnetic wave transmitted intermittently from the primary coil 201 during the alignment control.
 この実施形態1の別の制御では、受電効率-コイル間距離グラフB502に示すように、コイル間距離が近づくにつれて、送信間隔を長くする。これにより、1次コイル201と2次コイル101との位置が近いときには、消費電力を抑制することができる。また、1次コイル201と2次コイル101との距離が離れていて受電効率が悪い位置関係にあるときには、送信間隔を短くすることにより、複数の測定値を取得することで、測定した受信電力値を適宜公知の技術で補正し、測定精度を向上させることができる。 In another control of the first embodiment, as shown in the power receiving efficiency-inter-coil distance graph B502, the transmission interval is increased as the inter-coil distance approaches. Thereby, when the position of the primary coil 201 and the secondary coil 101 is near, power consumption can be suppressed. Further, when the distance between the primary coil 201 and the secondary coil 101 is long and the power reception efficiency is poor, the received power measured by acquiring a plurality of measurement values by shortening the transmission interval. The value can be appropriately corrected by a known technique to improve the measurement accuracy.
 なお、この場合には、コイル間距離-送信間隔テーブル504の送信間隔を示す時間ta~tdは、時間ta、時間td、時間tb、時間te、時間tcの順で長くなるように設定されている。 In this case, the times ta to td indicating the transmission intervals in the inter-coil distance-transmission interval table 504 are set to increase in the order of time ta, time td, time tb, time te, and time tc. Yes.
 また、実施形態1では、テスト電力値と、充電電力値と、受電効率-コイル間距離グラフA501(受電効率-コイル間距離グラフB502)と、テスト電力の出力時間と、最適な受電効率とを記憶部B205に記憶したが、これらの情報を記憶部A108に記憶しておいても良い。 In the first embodiment, the test power value, the charging power value, the power reception efficiency-coil distance graph A501 (power reception efficiency-coil distance graph B502), the test power output time, and the optimum power reception efficiency are obtained. Although stored in the storage unit B205, these pieces of information may be stored in the storage unit A108.
 また、受電効率を給電制御部203で算出するようにしたが、充電制御部103が必要な情報を取得して、算出するようにしても良い。 In addition, although the power reception efficiency is calculated by the power supply control unit 203, the charge control unit 103 may acquire and calculate necessary information.
 また、テスト電力(第1の電磁波)の出力を、コイル間距離が離れるに従って大きくし、コイル間距離が近づくに従って小さくするように設定しても良い。これにより、コイル間距離が離れていて第1の電磁波が、外的要因によるノイズを受けやすい場合には、そのノイズを第1の電磁波と比較して相対的に小さくできる。従って、受電電力の測定精度を向上させることができる。これに対して、コイル間距離が近い場合には、第1の電磁波が受ける、外的要因によるノイズが少なくなるので、所望の測定精度が得られる出力範囲内で第1の電磁波を小さくする。従って、コイル間距離が近い場合には、消費電力を抑制することができる。
[実施形態2]
 図6は、実施形態2の非接触充電システムの構成図である。
The output of the test power (first electromagnetic wave) may be set to increase as the distance between the coils increases and decrease as the distance between the coils approaches. As a result, when the distance between the coils is long and the first electromagnetic wave is susceptible to noise due to external factors, the noise can be made relatively small compared to the first electromagnetic wave. Therefore, the measurement accuracy of the received power can be improved. On the other hand, when the distance between the coils is short, noise due to external factors received by the first electromagnetic wave is reduced, so that the first electromagnetic wave is reduced within an output range where desired measurement accuracy can be obtained. Therefore, power consumption can be suppressed when the distance between the coils is short.
[Embodiment 2]
FIG. 6 is a configuration diagram of the contactless charging system according to the second embodiment.
 実施形態2は、実施形態1の無線通信部A102及び無線通信部B202に代えて、変調/復調回路A602及び変調/復調回路B612を備えた構成である。その他の構成及び制御に関しては、実施形態1と同じである。従って、実施形態1と同じ構成については同じ符号を付し、変調/復調回路A602及び変調/復調回路B612について説明する。 Embodiment 2 has a configuration including a modulation / demodulation circuit A 602 and a modulation / demodulation circuit B 612 in place of the wireless communication unit A 102 and the wireless communication unit B 202 of the first embodiment. Other configurations and controls are the same as those in the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the modulation / demodulation circuit A 602 and the modulation / demodulation circuit B 612 will be described.
 変調/復調回路A602は、公知の変調器及び復調器で構成される。そして、変調/復調回路A602は、充電制御部103により制御され、2次コイル101に電圧を印加することで、充電スタンド610に信号を送信する。また、変調/復調回路A602は、2次コイル101で受信した電磁波に重畳されている信号を復調することで、充電スタンド610から受信した信号を検出して、充電制御部103に入力する。 The modulation / demodulation circuit A 602 includes a known modulator and demodulator. The modulation / demodulation circuit A 602 is controlled by the charging control unit 103 and transmits a signal to the charging stand 610 by applying a voltage to the secondary coil 101. Further, the modulation / demodulation circuit A 602 detects a signal received from the charging stand 610 by demodulating a signal superimposed on the electromagnetic wave received by the secondary coil 101, and inputs it to the charging control unit 103.
 変調/復調回路B612は、公知の変調器及び復調器で構成される。そして、変調/復調回路B612は、給電制御部203により制御され、1次コイル201に電圧を印加することで、車両600に信号を送信する。また、変調/復調回路B612は、1次コイル201で受信した電磁波に重畳されている信号を復調することで、車両600から受信した信号を検出して、給電制御部203に入力する。 The modulation / demodulation circuit B 612 includes a known modulator and demodulator. Modulation / demodulation circuit B 612 is controlled by power supply control unit 203 and applies a voltage to primary coil 201 to transmit a signal to vehicle 600. Further, the modulation / demodulation circuit B 612 detects a signal received from the vehicle 600 by demodulating a signal superimposed on the electromagnetic wave received by the primary coil 201 and inputs the detected signal to the power feeding control unit 203.
 以上の構成により、実施形態2では、無線通信部A102及び無線通信部B202を用いなくとも、車両600と充電スタンド610との間で通信をすることができるので、図5に示す実施形態1と同じ制御を別の構成で実現することができる。
 
With the above configuration, in the second embodiment, communication can be performed between the vehicle 600 and the charging stand 610 without using the wireless communication unit A102 and the wireless communication unit B202. The same control can be realized with different configurations.

Claims (6)

  1.  充電スタンドが有する1次コイルから車両が有する2次コイルにテスト電力を周期的に送信し、該2次コイルの受電電力を測定することで、該受電電力が大きいほど該1次コイルと該2次コイルとの間の距離が近いと判定する前記充電スタンドにおいて、
     前記2次コイルの受電電力に応じて、前記テスト電力の送信間隔を変更する制御部を備えることを特徴とする充電スタンド。
    The test power is periodically transmitted from the primary coil included in the charging stand to the secondary coil included in the vehicle, and the received power of the secondary coil is measured. As the received power increases, the primary coil and the 2 In the charging stand that determines that the distance to the next coil is short,
    A charging station comprising: a control unit that changes a transmission interval of the test power according to the received power of the secondary coil.
  2.  前記制御部は、前記受電電力が小さくなるに従い、前記テスト電力の送信間隔を長くすることを特徴とする請求項1に記載の充電スタンド。 The charging station according to claim 1, wherein the control unit increases the transmission interval of the test power as the received power decreases.
  3.  前記制御部は、前記受電電力が大きくなるに従い、前記テスト電力の送信間隔を短くすることを特徴とする請求項2に記載の充電スタンド。 The charging station according to claim 2, wherein the control unit shortens a transmission interval of the test power as the received power increases.
  4.  前記制御部は、前記受電電力が大きくなるに従い、前記テスト電力の送信間隔を長くすることを特徴とする請求項1に記載の充電スタンド。 The charging station according to claim 1, wherein the control unit increases the transmission interval of the test power as the received power increases.
  5.  前記制御部は、前記受電電力が小さくなるに従い、前記テスト電力の送信間隔を短くすることを特徴とする請求項4に記載の充電スタンド。 The charging station according to claim 4, wherein the control unit shortens the transmission interval of the test power as the received power decreases.
  6.  充電スタンドが有する1次コイルから車両が有する2次コイルにテスト電力を周期的に送信し、該2次コイルの受電電力を測定することで、該受電電力が大きいほど該1次コイルと該2次コイルとの間の距離が近いと判定する充電スタンドが行なう相対位置推定方法において、
     前記2次コイルの受電電力に応じて、前記テスト電力の送信間隔を変更することを特徴とする相対位置推定方法。
    The test power is periodically transmitted from the primary coil included in the charging stand to the secondary coil included in the vehicle, and the received power of the secondary coil is measured. As the received power increases, the primary coil and the 2 In the relative position estimation method performed by the charging stand that determines that the distance between the secondary coil and the next coil is short,
    A relative position estimation method, wherein a transmission interval of the test power is changed in accordance with received power of the secondary coil.
PCT/JP2012/080022 2012-02-08 2012-11-20 Charging station and relative position control method WO2013118368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012024851A JP2013162707A (en) 2012-02-08 2012-02-08 Charging stand and relative position control method
JP2012-024851 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118368A1 true WO2013118368A1 (en) 2013-08-15

Family

ID=48947155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080022 WO2013118368A1 (en) 2012-02-08 2012-11-20 Charging station and relative position control method

Country Status (2)

Country Link
JP (1) JP2013162707A (en)
WO (1) WO2013118368A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213195A1 (en) * 2014-07-08 2016-01-14 Robert Bosch Gmbh Device and method for operating an inductive charging system
JP6860430B2 (en) * 2017-06-07 2021-04-14 本田技研工業株式会社 Contactless power transfer system
JP2020078123A (en) * 2018-11-06 2020-05-21 トヨタ自動車株式会社 Notification system and notification method
CN112421787B (en) 2019-08-21 2023-12-19 北京小米移动软件有限公司 Wireless charging device, wireless charging system, wireless charging control method, wireless charging equipment and wireless storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731064A (en) * 1993-07-06 1995-01-31 Tdk Corp Non-contact type charger
JP2000166129A (en) * 1998-11-26 2000-06-16 Sanyo Electric Co Ltd Method and apparatus for reducing stand-by power of noncontact charger
JP2008141816A (en) * 2006-11-30 2008-06-19 Asuka Electron Kk Noncontact transmission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731064A (en) * 1993-07-06 1995-01-31 Tdk Corp Non-contact type charger
JP2000166129A (en) * 1998-11-26 2000-06-16 Sanyo Electric Co Ltd Method and apparatus for reducing stand-by power of noncontact charger
JP2008141816A (en) * 2006-11-30 2008-06-19 Asuka Electron Kk Noncontact transmission device

Also Published As

Publication number Publication date
JP2013162707A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
US9666359B2 (en) Vehicle, power receiving device, power transmitting device, and contactless power supply system
KR101560964B1 (en) Contactless electricity supply device
EP2730007B1 (en) Energy receiver, detection method and power transmission system
JP5950026B2 (en) Contactless power supply system
US9073447B2 (en) Power transmitting device, vehicle, and contactless power transfer system
EP3132518B1 (en) System and method for frequency protection in wireless charging
CN104620465A (en) Vehicle and contactless power supply system
EP3214729B1 (en) Power transmission device, power transmission method, and non-contact power supply system
US10899234B2 (en) Non-contact electric power transmission system, charging station, and vehicle
EP2866328A1 (en) Non-contact power transmission device
WO2015076290A1 (en) Non-contact electric power transmission and reception system
JP2013198260A (en) Power transmission system
US10457149B2 (en) Contactless power transfer system and power transmission device
WO2013118368A1 (en) Charging station and relative position control method
CN112912271A (en) Wireless power transmission device, method and system
US11254226B2 (en) Coil position detecting method for non-contact power supply system, and non-contact power supply system
US9637015B2 (en) Non-contact electric power transmission system and charging station
CN109155539B (en) Coil position detection method for non-contact power supply system and power receiving device
JP2014017894A (en) Transmitting apparatus and contactless power transmission system
JP5761508B2 (en) Power transmission system
EP3054561A1 (en) Non-contact charging system, vehicle, and power-feeding device
JP2014110681A (en) Non-contact power supply device, non-contact power supply system, and non-contact power supply method
WO2014069148A1 (en) Non-contact power transmission device, and power reception apparatus
JP2015100246A (en) Non-contact power transmission system, charging station and vehicle
JP6179384B2 (en) Non-contact power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868157

Country of ref document: EP

Kind code of ref document: A1