WO2015159711A1 - Water-quality management device, water-quality management system, and water-quality management method - Google Patents

Water-quality management device, water-quality management system, and water-quality management method Download PDF

Info

Publication number
WO2015159711A1
WO2015159711A1 PCT/JP2015/060320 JP2015060320W WO2015159711A1 WO 2015159711 A1 WO2015159711 A1 WO 2015159711A1 JP 2015060320 W JP2015060320 W JP 2015060320W WO 2015159711 A1 WO2015159711 A1 WO 2015159711A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water quality
water treatment
concentration
quality management
Prior art date
Application number
PCT/JP2015/060320
Other languages
French (fr)
Japanese (ja)
Inventor
信太郎 森
幸祐 志村
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2015159711A1 publication Critical patent/WO2015159711A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/27Association of two or more measuring systems or cells, each measuring a different parameter, where the measurement results may be either used independently, the systems or cells being physically associated, or combined to produce a value for a further parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to a water quality management device, a water quality management system, and a water quality management method for circulating water systems such as cooling water and boiler water.
  • water systems including various heat exchangers such as refrigerators are provided, and circulating water (cooling water) and the object to be cooled are brought into contact with each other via the heat exchanger to cool the object to be cooled. is doing.
  • circulating water has been operated with higher concentration in order to save water. Under such operating conditions, ionic components are concentrated as the circulating water evaporates. However, scale may precipitate and adhere to the refrigerator.
  • Patent Document 1 there is known a method for controlling the concentration of water treatment chemicals present in the circulation water by measuring the concentration of organic substances contained in the circulation water and determining the addition amount of the water treatment chemicals based on the measured values.
  • Patent Document 1 the oxidation-reduction potential of the cooling water is measured, and the electrolyzed water that controls the energization of the electrode immersed in the cooling water based on the measured value and generates a chlorine-based oxidant from chloride ions contained in the water.
  • the present invention has been made in view of the above circumstances, and can analyze a plurality of water quality parameters of a circulating water system such as cooling water and boiler water on site, and can promptly present appropriate measures based on the analysis result. It is an object to provide a water quality management device, a water quality management system, and a water quality management method.
  • the water quality management device of the present invention includes an input unit for inputting a plurality of water quality parameters measured for sample water collected from a water treatment facility, changes in the plurality of water quality parameters, and a water treatment status in the water treatment facility.
  • a storage unit that stores countermeasure data in combination, a calculation unit that refers to the countermeasure data, selects a water treatment status corresponding to a plurality of input water quality parameters, and a water treatment status selected by the calculation unit.
  • a display unit for displaying.
  • the countermeasure data is a combination of a plurality of water quality parameter changes, a water treatment status in the water treatment facility, and a measure to be applied to the water treatment facility.
  • the measure corresponding to the plurality of water quality parameters is selected, and the display unit displays the measure selected by the calculation unit.
  • the storage unit stores a water quality parameter input via the input unit, and the calculation unit uses a trend including past water quality parameters stored in the storage unit. The water treatment status or measures are selected.
  • the apparatus further includes a plurality of water quality measuring devices that measure a plurality of water quality parameters of the sample water
  • the calculation unit refers to the countermeasure data and includes a plurality of water quality measuring devices measured by the plurality of water quality measuring devices. The water treatment status corresponding to the water quality parameter is selected.
  • the water quality measuring instrument includes at least two of an optical measuring instrument for measuring transmittance or absorbance, one or two ion electrodes, and an electric conductivity meter. It is characterized by that.
  • the water quality management system of the present invention has an input unit for inputting a plurality of water quality parameters measured for sample water collected from a water treatment facility, a communication unit for transmitting the plurality of input water quality parameters, and a display unit.
  • a server device that selects a water treatment status and countermeasures corresponding to a plurality of water quality parameters received from the data communication device, and notifies the data communication device of the selected water treatment status and countermeasures, the data communication device Displays the water treatment status and countermeasures notified from the server device on the display unit.
  • the data communication device is provided in an analyzer having a plurality of water quality measuring devices for measuring a plurality of water quality parameters of sample water.
  • the water quality management method of the present invention measures a plurality of water quality parameters for water collected from a water treatment facility using one or a plurality of analyzers, changes in the plurality of water quality parameters, and water treatment status in the water treatment facility
  • a water quality management device that stores countermeasure data combining countermeasures to be applied to the water treatment facility, refers to the countermeasure data, selects a water treatment status and countermeasure corresponding to the measured water quality parameter, and a display unit The selected water treatment status and countermeasures are displayed.
  • pH, electrical conductivity, chloride ion concentration, sulfate ion concentration, acid consumption (pH 4.8), acid consumption (pH 8.3), magnesium hardness, calcium hardness, silica concentration, iron Concentration, copper concentration, ammonium ion concentration, residual chlorine concentration, redox potential, TOC (total organic carbon), COD (chemical oxygen demand), polymer concentration, total phosphate concentration, zinc concentration, and turbidity Two or more kinds of water quality parameters selected from the above are measured.
  • the present invention referring to countermeasure data combining a plurality of water quality parameter changes, water treatment status in the water treatment facility, and measures to be taken on the water treatment facility, two types detected on-site by the analyzer Since the water treatment status and countermeasures corresponding to the above water quality parameters are automatically displayed on the display unit, the user can promptly confirm and implement appropriate countermeasures at the site regardless of his / her discretion and experience level. it can.
  • two or more types of water quality parameters it is possible to detect the occurrence of a failure that cannot be determined (or overlooked) by changing only one type of water quality parameter, and promptly take appropriate measures for the water treatment device. Thus, it is possible to suppress a failure that occurs in the circulating water system.
  • the analyzer has a plurality of water quality measuring instruments, so that a single analyzer can measure a plurality of water quality parameters.
  • a single analyzer can measure a plurality of water quality parameters.
  • one analyzer can analyze multiple water quality parameters, determine the water treatment status in the water treatment facility, and take measures to be taken on the water treatment facility. Can be presented.
  • FIG. 1 is a schematic diagram of a water quality management system according to an embodiment of the present invention.
  • the water quality management system includes a water treatment facility 100, a water treatment device 102, a plurality of analyzers 104, and a water quality management device 110.
  • the water treatment facility 100 is a circulating cooling water system in which circulating water (cooling water) and an object to be cooled are brought into contact with each other via a heat exchanger to cool the object to be cooled.
  • FIG. 2 shows an example of a circulating cooling water system.
  • FIG. 2 is a schematic diagram of an open circulation type cooling water system which is one type of circulation type cooling water system.
  • water treatment chemicals such as a scale inhibitor, an anticorrosive, a sludge dispersant, a disinfectant, and a slime inhibitor into the water used in the water treatment facility 100.
  • water treatment chemicals are injected into the water stored in the cooling tower 60 shown in FIG.
  • the analyzer 104 analyzes the water quality parameter of the circulating water or makeup water of the water treatment facility 100.
  • a plurality of analyzers 104 are provided, and a plurality of types of water quality parameters are analyzed.
  • the water quality parameters to be analyzed are in accordance with the use of the water treatment facility 100 and the type of water treatment chemical injected by the water treatment apparatus 102.
  • pH For example, pH, electrical conductivity, chloride ion concentration, sulfate ion concentration , Acid consumption (pH 4.8), acid consumption (pH 8.3), magnesium hardness, calcium hardness, silica concentration, iron concentration, copper concentration, ammonium ion concentration, residual chlorine concentration, redox potential, TOC (total organic Carbon), COD (chemical oxygen demand), polymer concentration, total phosphoric acid concentration, zinc concentration, and two or more selected from the group consisting of turbidity, more preferably three or more.
  • the analysis of each water quality parameter may be performed according to a known method, and detailed description is omitted.
  • the analyzer 104 analyzes water quality parameters of sample water collected from the water treatment facility 100. For example, water in the pit of the cooling tower 60 shown in FIG. 2, water supplied to the heat exchanger 61 by the pump 63, or water supplied from the heat exchanger 61 to the cooling tower 60, preferably water in the pit. A part is collected and used as sample water for circulating water. Further, a part of the makeup water supplied from the pipe 65 to the cooling tower 60 is sampled and used as the makeup water sample water.
  • the analyzer 104 may be portable or may be a constant analyzer using an apparatus capable of online analysis.
  • the water quality management device 110 estimates the water treatment status in the water treatment facility 100 based on the analysis result of the analyzer 104, and presents measures to be taken on the water treatment facility 100 according to the estimated status. It may be left as evidence of plant management by recording the implementation history of the presented countermeasures.
  • Fig. 3 shows a block diagram of the water quality management device 110.
  • the water quality management device 110 includes an input unit 112, a display unit 114, a calculation unit 116, and a memory 118, and can be configured by a portable device such as a notebook PC (personal computer) or a tablet terminal.
  • the input unit 112 is configured by, for example, a button, a switch, a numeric keypad, and the like, and a user can input water quality parameters obtained by the analyzer 104.
  • the water quality parameter may be transferred from the analyzer 104 to the water quality management device 110 via a wireless / wired network.
  • the input water quality parameter is stored in the memory 118.
  • the calculation unit 116 may calculate the concentration factor using the input water quality parameter of the circulating water and the water quality parameter of the makeup water, and store the calculated concentration factor in the memory 118.
  • the calculation unit 116 may calculate a Langeria index, a Risner index, a Mattson ratio, and the like and store them in the memory 118.
  • the Langeria index (saturation index) of the circulating water system can be calculated using the acid consumption (pH 4.8), pH, calcium hardness, and electrical conductivity.
  • the Langeria index is a difference between the pH of circulating water and the saturated pH (pHs) of calcium carbonate, and is an index for measuring the corrosivity of metal materials such as piping and heat exchangers in an aqueous system.
  • the pHs is obtained by the following formula 1 by a simple calculation method (Nodel method).
  • the A value is a value determined by the concentration of the evaporation residue, and is obtained from the electric conductivity.
  • the B value is a value determined from the temperature of the circulating water.
  • the C value is a value determined by the calcium hardness.
  • the D value is a value determined by the acid consumption (pH 4.8).
  • the Rizner index RSI (Ryznar Stability Index), which is an index of the corrosiveness of water and the tendency of scale formation, can be calculated by the following formula 2 using the pH of circulating water and the saturated pH (pHs) of calcium carbonate. .
  • the RSI When the RSI is less than 6, it indicates that the water tends to form a scale, when the RSI is 6 or more and less than 7, it indicates that the water is in a stable state, and when the RSI is 7 or more, it indicates that the water tends to corrode. .
  • the Mattson ratio which is an index of occurrence of copper pitting corrosion, can be calculated using the sulfate ion concentration, the acid consumption (pH 4.8), and the acid consumption (pH 8.3).
  • the Mattson ratio is the ratio of the bicarbonate ion concentration to the sulfate ion concentration in water ([HCO 3 ⁇ ] / [SO 4 2 ⁇ ]), and the bicarbonate ion concentration HCO 3 ⁇ (mgHCO 3 ⁇ / L) is 3 can be obtained.
  • the display unit 114 of the water quality management device 110 is, for example, a liquid crystal display, and displays a water treatment status estimated by a calculation unit 116 described later and measures to be taken on the water treatment facility 100.
  • the memory 118 stores the water quality parameters input via the input unit 112, the concentration factor calculated by the calculation unit 116, and the like.
  • the memory 118 stores countermeasure data that combines item names of a plurality of water quality parameters, changes in the water quality parameters, estimated water treatment status in the water treatment facility 100, and measures to be taken on the water treatment facility 100.
  • the change of the water quality parameter includes not only that the measurement value changes but also that the measurement value continues to maintain a predetermined reference value.
  • FIG. 4 shows an example of countermeasure data.
  • Countermeasure data D3 In the countermeasure data D3, paying attention to the chloride ion concentration, the sulfate ion concentration, and the Mattson ratio, even if the chloride ion concentration and the sulfate ion concentration maintain the reference value concentrations, It is presumed that corrosion of the copper material has begun to occur in the processing facility 100, and this is a measure against the situation where the reduction of the concentration factor due to the increase in the blow amount and the increase in the injection amount of the anticorrosive agent are estimated.
  • chloride ion concentration and sulfate ion concentration maintain the reference value concentration even when the Mattson ratio is 1 or less. Therefore, it is judged that there is no problem, and the detection of the occurrence of corrosion of the copper material is delayed.
  • the Mattson ratio becomes 1 or less. It is possible to detect the corrosion of copper material at an early stage and take appropriate measures.
  • Countermeasure data D4, D5 In the countermeasure data D4 and D5, paying attention to turbidity and iron concentration / copper concentration, when the turbidity and iron concentration / copper concentration increase, corrosion in the water treatment facility 100 or secondary corrosion due to brought-in iron begins to occur. This is a countermeasure for the situation where the increase in the amount of anticorrosive injected is estimated.
  • Countermeasure data D6 In the countermeasure data D6, paying attention to the polymer concentration and the COD, if the COD with respect to the polymer concentration in the circulating water is increased even if the polymer concentration is maintained at the reference value concentration, the COD component from the outside in the water treatment facility 100 It is estimated that there is a possibility that slime has begun to be generated due to the mixing of, and this is a measure against the situation where an increase in the injection amount of the slime inhibitor is estimated.
  • Countermeasure data D7 In the countermeasure data D7, paying attention to the free residual chlorine concentration and the makeup water ammonium ion concentration, when the free residual chlorine concentration decreases, it is estimated that slime may be generated, and the circulating water system is estimated from the makeup water ammonium ion concentration. The amount of hypochlorous acid required for the test is obtained, and sodium hypochlorite is added.
  • the free residual chlorine concentration does not increase even if the amount of sodium hypochlorite added is decreased. , The adjustment of free residual chlorine concentration is delayed, and the amount of slime generated increases.
  • an increase in the amount of slime generated can be prevented.
  • Countermeasure data D8 In the countermeasure data D8, focusing on the silica concentration and the magnesium hardness, when the silica concentration and the magnesium hardness are reduced, it is estimated that the scale is deposited with magnesium silicate in the water treatment facility 100, and the magnesium silicate scale inhibitor This is a measure against the situation where the reduction of the concentration factor due to the increase in the injection amount or the increase in the blow amount is estimated.
  • the silica concentration decreases, it is determined that the concentration factor has decreased, and measures are taken to increase the concentration factor by lowering the blow rate. In addition to not being able to detect the precipitation, there is a risk of worsening the scale adhesion.
  • the silica concentration and the magnesium hardness are lowered, the scale precipitation in the magnesium silicate can be detected at an early stage, and an appropriate countermeasure can be taken.
  • Countermeasure data D9 In the countermeasure data D9, paying attention to turbidity and COD, when turbidity and COD increase, it is estimated that slime may be generated in the water treatment facility 100, and an increase in the injection amount of the slime inhibitor is estimated. It will be a countermeasure for the situation.
  • the calculation unit 116 of the water quality management device 110 refers to the countermeasure data stored in the memory 118, and responds to the change in the water quality parameter when the change in the input water quality parameter matches the change in the water quality parameter in the countermeasure data.
  • the display unit 114 displays the water treatment status and countermeasures to be performed. The user can take an appropriate measure for the water treatment facility 100 based on the countermeasure displayed on the display unit 114, and can suppress a failure occurring in the circulating water system.
  • the countermeasure data referred to by the calculation unit 116 may be selected by the user using the input unit 112.
  • an input screen for water quality parameters to be input is displayed on the display unit 114.
  • the water quality management apparatus 110 includes a plurality of water quality parameter item names, changes in the water quality parameters, estimated water treatment status in the water treatment facility 100, and measures to be taken on the water treatment facility 100. Is stored in the memory 118, and when two or more types of water quality parameters detected on-site by the analyzer 104 are input, the countermeasure data is referred to and water treatment corresponding to the input water quality parameters is stored. The situation and countermeasures are automatically displayed on the display unit 114. By using two or more types of water quality parameters, it is possible to detect the occurrence of a failure that cannot be determined (or overlooked) by changing only one type of water quality parameter, and promptly take appropriate measures for the water treatment apparatus 100. It can be executed and the trouble that occurs in the circulating water system can be suppressed.
  • the user can promptly confirm and execute appropriate measures at the site regardless of his / her discretion and experience level.
  • a plurality of analyzers 104 are used, but an analyzer capable of obtaining a plurality of water quality parameters may be used. Such an analyzer will be described with reference to FIGS.
  • FIG. 5 and 6 are external perspective views of an analyzer capable of measuring a plurality of water quality parameters
  • FIG. 7 is a block diagram of the analyzer.
  • the analyzer includes an absorbance measurement unit 1, an electrode measurement unit 2, an electrical conductivity measurement unit 3, an operation unit 4, a display unit 5, a calculation unit 6, and a memory 7. H.
  • the housing H is made of a synthetic resin case having a substantially rectangular parallelepiped shape, and an operation unit 4 and a display unit 5 made of a liquid crystal display or the like are provided on one half of the upper surface thereof.
  • the operation unit 4 includes buttons, switches, touch panels, and the like that are operated by the user.
  • a cell installation portion 10 is provided in a concave step shape and is covered with a cover 11 that can be opened and closed.
  • an arrangement part 21 for the sample water container 20 is provided on the other half side of the upper surface of the housing H, and a sensor installation board 15 capable of rotating in a standing direction is provided above the arrangement part 21. .
  • the cover 11 and the sensor installation board 15 are rotatably attached to the housing H by hinges.
  • the cell installation unit 10 is provided with insertion holes 13A, 13B, and 13C for the absorbance measurement cells 12A, 12B, and 12C.
  • a light emitting element, a spectroscope, and a light receiving element are provided so as to face each other with the insertion holes 12A to 12C interposed therebetween.
  • the spectrometer may be omitted.
  • the cells 12A to 12C are preliminarily sealed with a specified amount of coloring reagent. The coloring reagents in the cells 12A to 12C are different from each other.
  • the coloring reagent varies depending on the component to be measured.
  • the component to be measured is silica
  • one containing molybdenum can be used
  • one containing phenolphthalein can be used.
  • sulfate ions those containing barium chromate can be used.
  • the absorbance measuring unit 1 is configured by the cells 12A to 12C, the light emitting elements, the spectroscope and the light receiving element, the drive circuit for each element, and the light receiving signal processing circuit.
  • the sensor installation board 15 can be turned up and down by a hinge so as to be able to take the standing state of FIG. 5 and the lying state of FIG.
  • the sensor installation panel 15 includes ion electrodes 16 and 17, a pH glass electrode 18 and a comparative electrode 23 that constitute the electrode measuring unit 2, and an electric conductivity meter 19 that constitutes the electric conductivity measuring unit 3. It is installed in a form in which the side protrudes downward from the lower surface of the sensor installation board 15 of the lodging device.
  • the ion electrode 16 is a divalent cation selective electrode
  • the ion electrode 17 is a calcium ion selective electrode.
  • a sample water container 20 is arranged below the sensor installation board 15 in a lying state, and when the sensor installation board 15 falls, the ion electrodes 16 and 17, the pH glass electrode 18, the comparison electrode 23, and the electric conductivity meter.
  • the lower end side of 19 is configured to be immersed in the sample water W (FIG. 5) in the container 20.
  • the sample water container 20 is provided with a handle 20a, and the sample water container 20 can be taken in and out of the container arrangement portion 21 of the housing H by grasping the handle 20a.
  • a protective cap for various electrodes can be stored in a space S adjacent to the container 20.
  • an LED, a xenon flash lamp, a halogen lamp, or the like can be used.
  • a filter such as an interference filter or a colored glass filter, a prism such as crystal or fused silica, or a diffraction grating such as a plane diffraction grating or a concave diffraction grating can be used.
  • the light receiving element is, for example, a photodiode, and converts transmitted light from the sample into an electrical signal. The absorbance is obtained from the intensity of the transmitted light based on this electrical signal and the intensity of the incident light on the sample. The transmittance may be obtained instead of the absorbance.
  • a calibration curve is prepared in advance by measuring the absorbance of the standard solution of the measurement target component, and data of this calibration curve is stored in the memory 7.
  • the dissolved component concentration of the measurement target component in the sample water can be determined from the calculated absorbance.
  • the calculation of the absorbance and the dissolved component concentration may be performed by the calculation unit (not shown) of the absorbance measurement unit 1 or the calculation unit 6.
  • the ion selective electrode and the comparative electrode constituting the electrode measuring unit 2 have a high degree of selectivity with respect to the measurement target ion, and generate a potential corresponding to the ion concentration (dissolved component concentration).
  • the ion-selective electrode constitutes a battery by combining with a reference electrode, and its electromotive force (potential difference generated between both electrodes) E is measured by a potentiometer.
  • E ind the electrode potential of the comparison electrode
  • E ref the potential difference between the sample water W and the comparison electrode
  • E j the electromotive force E is expressed by Equation 4 below.
  • E ref is a constant value
  • E j can be ignored by using an appropriate salt bridge. Therefore, E is determined only by the value of E ind , and the ion concentration to be measured can be expressed as an electromotive force of this battery.
  • the ion concentration to be measured in the sample can be obtained from the measured value of the potentiometer.
  • the total hardness total hardness + magnesium hardness
  • the divalent cation selective electrode 16 and the comparison electrode 23 can be obtained by using the divalent cation selective electrode 16 and the comparison electrode 23.
  • calcium hardness can be calculated
  • the magnesium hardness can be determined from the difference between the total hardness and the calcium hardness.
  • Calibration curve data is stored in the memory 7.
  • the calculation of the measurement target ion concentration may be performed by the calculation unit (not shown) of the electrode measurement unit 2 or the calculation unit 6.
  • the pH glass electrode 18 and the comparative electrode 23 constituting the electrode measuring unit 2 measure the pH of the sample water W by a so-called glass electrode method. Specifically, the potential difference generated between the pH glass electrode 18 made of a special glass film responsive to the hydrogen ion activity and the comparison electrode 23 showing a constant potential regardless of pH is measured with a potentiometer. And calculate the pH.
  • the electric conductivity meter 19 constituting the electric conductivity measuring unit 3 obtains the electric conductivity of the sample water W by a so-called AC two-electrode method. Specifically, an AC voltage is applied between a pair of electrodes using an AC power source, the current flowing at this time is measured with an AC ammeter, the liquid resistance of the sample water W is obtained, and the electrical conductivity is calculated. Stainless steel or platinum is used for the electrode.
  • the electric conductivity meter 19 includes a temperature sensor such as a resistance temperature detector.
  • the sample water W accommodated in the cells 12A to 12C and the sample water container 20 is circulating water or makeup water of a circulating cooling water system as shown in FIG.
  • the operation unit 4 of the analyzer performs switching setting between the circulating water mode and the makeup water mode.
  • the values measured by the absorbance measuring unit 1, the electrode measuring unit 2, and the electrical conductivity measuring unit 3 when the circulating water mode is set are stored in the memory 7 as measured values of the circulating water.
  • the values measured by the absorbance measurement unit 1, the electrode measurement unit 2, and the electrical conductivity measurement unit 3 when the makeup water mode is set are stored in the memory 7 as the measured value of makeup water.
  • the calculation unit 6 is an index indicating how many times the salt concentration in the circulating water is higher than that of the makeup water based on the measurement value when the circulation water mode is set and the measurement value when the makeup water mode is set. Calculate multiples. For example, for the same dissolved component, the concentration factor is calculated by dividing the dissolved component concentration measured when the circulating water mode is set by the dissolved component concentration measured when the makeup water mode is set. For example, the concentration factor is also calculated by dividing the electrical conductivity measured when the circulating water mode is set by the electrical conductivity measured when the makeup water mode is set.
  • This analyzer can acquire multiple concentration multiples. That is, the concentration multiple based on the dissolved component concentration obtained from each absorbance of the cells 12A to 12C, the concentration multiple based on the ion concentration obtained from the ion electrode measurement value, and the concentration multiple based on the electrical conductivity are calculated.
  • the display unit 5 displays a plurality of concentration multiples calculated by the calculation unit 6 and measurement values obtained by the respective measurement units.
  • the memory 7 stores measurement values by each measurement unit, calibration curve data, a plurality of concentration multiples calculated by the calculation unit 6, and the like.
  • the calculation unit 6 may obtain a Langeria index (saturation index), a Risner index, and a Mattson ratio.
  • the user inputs a plurality of water quality parameters, concentration multiples, and the like displayed on the display unit 5 to the water quality management device 110.
  • the analyzer shown in FIGS. 5 to 7 may have the function of the water quality management device 110. That is, countermeasure data as shown in FIG. 4 is stored in the memory 7, and the calculation unit 6 refers to the countermeasure data stored in the memory 7 and determines the water treatment status and countermeasures corresponding to the measurement values by each measurement unit. Displayed automatically on the display unit 5. Thereby, it is possible to analyze a plurality of water quality parameters, judge the water treatment status in the water treatment facility 100, and present measures to be taken to the water treatment facility 100 with one analyzer at the site.
  • an external server 120 that determines the water treatment status in the water treatment facility 100 and selects measures to be taken on the water treatment facility 100, and the analysis result of the analyzer 104 are wired / wirelessly transmitted to the water quality management system.
  • You may provide the data communication apparatus 130 which transmits to the external server 120 via a network.
  • the external server 120 includes a database of countermeasure data and receives the analysis result of the analyzer 104 from the data communication device 130, the external server 120 notifies the data communication device 130 of the water treatment status and the countermeasure corresponding to the analysis result.
  • a portable terminal such as a smartphone can be used as the data communication device 130, and the water treatment status and countermeasures notified from the external server 120 are displayed on the display unit.
  • the external server 120 may have a part of the function of the water quality management device 110. If the analysis of makeup water is not performed on site, the latest past data may be cited from the cloud and used.
  • the analyzer shown in FIGS. 5 to 7 may be provided with a communication unit, and the communication unit may extract the measurement value obtained by each measurement unit from the memory 7 and output it to the external server 120.
  • the external server 120 receives the measurement value from the analyzer, the external server 120 notifies the analyzer of the water treatment status and the countermeasure corresponding to the measurement value.
  • the analyzer displays the notified water treatment status and countermeasures on the display unit 5.
  • the user confirms the countermeasure displayed on the display unit 5 at the site and promptly executes an appropriate treatment for the water treatment apparatus 100, a failure occurring in the circulating water system can be suppressed.
  • Example 1 The apparatus shown in FIG. 1 continuously analyzes the concentration of the polymer mainly composed of acrylic acid as a scale inhibitor in the circulating water of the cooling water system of the pilot plant (hereinafter referred to as the first plant).
  • the chemical injection amount was automatically controlled so that In this system, TOC was measured in batches using a portable analyzer.
  • TOC was measured in batches using a portable analyzer.
  • Table 1 The measurement results are shown in Table 1.
  • the polymer concentration was measured at the same time. Therefore, it was possible to maintain the appropriate chemical injection amount without making a mistaken decision to reduce the chemical injection amount.
  • Example 2 With the apparatus shown in FIG. 1, the anti-slime agent mainly composed of monochlororosfaminic acid is obtained based on the ORP measurement value in the circulating water of the cooling water system of the pilot plant (hereinafter referred to as the second plant) different from the first plant. The amount of water treatment chemicals contained was controlled. In this system, the pH was measured in batches using a portable analyzer. In the second plant, hydrochloric acid was added to the cooling water system simulating a leak from the process 4 days after the start of measurement. The measurement results are shown in Table 2.
  • Example 3 With the apparatus shown in FIG. 1, residual chlorine and silica were measured for circulating water and make-up water in a circulating water system installed in a pilot plant (hereinafter referred to as a third plant) different from the first and second plants.
  • a water treatment chemical containing a slime inhibitor mainly composed of monochlororosfamic acid was injected with a timer. Assuming the drought time in summer, the turbidity of the actual cooling water was batched daily. Table 3 shows each analysis result and the change over time of the concentration factor calculated from silica.
  • the concentration factor calculated from the silica concentration changed from 5.1 to 5.3 times, and the chemical injection amount was injected at the same set value during the period.
  • the total residual chlorine concentration decreased over time.
  • the condition of the total residual chlorine concentration of 5mgCL / L which is the control value of this plant, was satisfied, but considering the decreasing trend in the 1st to 22nd days, the total residual chlorine concentration was Since it was predicted to be below the control value, a measure to increase the amount of chemical injection was presented.
  • the stroke of the chemical injection pump was increased in accordance with the proposed countermeasures, and the total residual chlorine concentration was adjusted to be maintained at 5 mg CL / L or more.
  • the cooling tower pit 43 days after the start of the test is kept clean, and the attached slime sensor (current is supplied periodically to the resistor built in the sensor to generate heat, and the heating temperature and non-heating temperature are set.
  • a sensor that measures with a temperature sensor If slime adheres to the sensor, heat transfer is hindered, and the temperature difference between the heating temperature and the non-heating temperature increases, so the tendency of slime adhesion is detected). It was confirmed that the circulating water system including the heat exchanger was maintained clean.
  • control value can be easily maintained and the heat transfer efficiency can be maintained by changing the dose amount in advance using the past tendency.
  • Example 4 With the apparatus shown in FIG. 1, the circulating water and make-up water of the circulating water system installed in a pilot plant (hereinafter referred to as the fourth plant) different from the first to third plants is batch-measured by a portable analyzer. The chemical concentration and the silica concentration were measured. Further, the concentration factor was calculated from the measured silica concentration. The measurement results and calculation results are shown in Table 4 below. In this plant, the cooling water chemicals containing alkali were injected into the timer.
  • the pH of the circulating water is 9.5 and the copper material is corroded, and the amount of injected chemical is 750 mg / L, which is compared with the target value of 300 mg / L. Was significantly higher. Judging only from these two items, it is highly possible to extend the setting interval of chemical injection and increase the blow rate for the purpose of reducing the chemical concentration in the system and lowering the pH. It was found that the circulating water was not concentrated from the silica concentration.
  • the water quality management device determines that the load on the cooling tower is low and only chemicals are continuously being injected, and blows the water in the system and if the cooling tower is in a stopped state such as in winter, the cooling water It was proposed as a measure to remove and store in dry.
  • Example 5 With the apparatus shown in FIG. 1, the electrical conductivity, calcium hardness, and acid consumption of circulating water and make-up water in the circulating water system installed in a pilot plant (hereinafter referred to as fifth plant) different from the first to fourth plants. (PH 4.8) and silica concentration were measured, and the concentration factor was calculated from each measured value. The measurement results are shown in Table 5 below.
  • the concentration factor calculated from the electrical conductivity was higher than the concentration factor calculated from the silica concentration (5.2 times). This is because there was an increase in electrical conductivity derived from chemicals, and the current concentration factor was determined to be 5.2 times.
  • the concentration factor calculated from the silica concentration and the electric conductivity was 5.2 times or more, whereas the concentration factor calculated from the calcium hardness and the acid consumption (pH 4.8) was 3.7 to 3.8 times. It was significantly lower.
  • the water quality management device determined that calcium carbonate component and acid consumption (pH 4.8) component reacted in the circulating water system and precipitated calcium carbonate, and suggested measures to promote the operation to lower the concentration factor. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided are: a water-quality management device capable of analyzing multiple types of water-quality parameters for a circulating water system such as one for coolant or boiler water while in the field, and quickly presenting a suitable measure on the basis of the analysis results; a water-quality management system; and a water-quality management method. This water-quality management device is equipped with: an input unit (112) for receiving the input of a plurality of water-quality parameters obtained by measuring a water sample collected from a water treatment facility; a storage unit (118) for storing data about a measure which incorporates changes to the plurality of water-quality parameters and the water treatment state of the water treatment facility; a computation unit (116) for referring to the data about the measure and selecting the water treatment state corresponding to the inputted plurality of water-quality parameters; and a display unit (114) for displaying the water treatment state selected by the computation unit (116).

Description

水質管理装置、水質管理システム、及び水質管理方法Water quality management device, water quality management system, and water quality management method
 本発明は、冷却水やボイラー水等の循環水系の水質管理装置、水質管理システム、及び水質管理方法に関する。 The present invention relates to a water quality management device, a water quality management system, and a water quality management method for circulating water systems such as cooling water and boiler water.
 各種工場、ビル等では、冷凍機等の各種の熱交換器を含む水系が設けられ、循環水(冷却水)と被冷却体とを熱交換器を介して接触させて、被冷却体を冷却している。近年、循環水系においては、節水を図るために、循環水がより高濃縮で運転されるようになってきているが、このような運転条件下では、循環水の蒸発に伴ってイオン成分が濃縮し、スケールが析出して冷凍機内に付着することがある。 In various factories, buildings, etc., water systems including various heat exchangers such as refrigerators are provided, and circulating water (cooling water) and the object to be cooled are brought into contact with each other via the heat exchanger to cool the object to be cooled. is doing. In recent years, in circulating water systems, circulating water has been operated with higher concentration in order to save water. Under such operating conditions, ionic components are concentrated as the circulating water evaporates. However, scale may precipitate and adhere to the refrigerator.
 スケールが冷凍機内に付着すると、被冷却体から循環水への伝熱が阻害される。これにより、凝縮器において、被冷却体凝縮量が減少したり、圧力が上昇したり、被冷却体温度の上昇に伴い圧縮機の負荷が上昇して高圧カット(一定以上で圧縮機が停止する。)に至ったりする等の事態が生じ得る。また、スケールの付着により、冷凍機の冷凍能力が低下して消費電力量が増加し、エネルギー効率が低下する。このため、循環水系の濃縮管理及びスケール防止剤の濃度管理を適切に行い、スケールの析出を抑制する必要がある。 When the scale adheres to the refrigerator, heat transfer from the cooled object to the circulating water is hindered. As a result, in the condenser, the amount of the object to be cooled decreases, the pressure increases, the load on the compressor increases as the temperature of the object to be cooled increases, and the high pressure cut (the compressor stops at a certain level or more) )) May occur. Moreover, due to the adhesion of the scale, the refrigerating capacity of the refrigerator is reduced, the power consumption is increased, and the energy efficiency is lowered. For this reason, it is necessary to appropriately control the concentration of the circulating water system and the concentration of the scale inhibitor to suppress the precipitation of scale.
 開放循環冷却水系では、水を蒸発させるためファンで大気を吸引しており、大気中に含まれる土砂や粉塵、有機溶媒等のBOD(Biochemical Oxygen Demand)成分が循環水系に溶け込んだり、日光により藻類やスライムが発生したりすることにより、熱交換器でのエネルギー効率の低下や腐食など、種々の障害が発生する。このため、開放循環冷却水系においては、スライムコントロール剤の濃度を適切に管理することが重要である。 In an open circulating cooling water system, the air is sucked with a fan to evaporate water, and BOD (Biochemical Oxygen Demand) components such as earth and sand, dust, and organic solvents contained in the atmosphere dissolve in the circulating water system, or algae by sunlight. The occurrence of various types of obstacles such as reduction in energy efficiency and corrosion in the heat exchanger occurs due to the generation of slime. For this reason, in an open circulation cooling water system, it is important to appropriately manage the concentration of the slime control agent.
 例えば、循環水中に含まれる有機物濃度を測定し、測定値に基づいて水処理薬品の添加量を決定することで、循環水中に存在する水処理薬品の濃度を制御する方法が知られている(特許文献1参照)。また、冷却水の酸化還元電位を測定し、この測定値に基づいて冷却水中に浸漬した電極への通電を制御し、水中に含まれる塩化物イオンから塩素系酸化剤を生成させた電解処理水を冷却水系の冷却水に含有させることで、冷却水中の塩素系酸化剤濃度を適正範囲に制御し、冷却水系内のスライムの発生を防止する方法が知られている(特許文献2参照)。 For example, there is known a method for controlling the concentration of water treatment chemicals present in the circulation water by measuring the concentration of organic substances contained in the circulation water and determining the addition amount of the water treatment chemicals based on the measured values ( Patent Document 1). In addition, the oxidation-reduction potential of the cooling water is measured, and the electrolyzed water that controls the energization of the electrode immersed in the cooling water based on the measured value and generates a chlorine-based oxidant from chloride ions contained in the water. Is contained in the cooling water of the cooling water system to control the concentration of the chlorine-based oxidant in the cooling water to an appropriate range and prevent the generation of slime in the cooling water system (see Patent Document 2).
特開2002-210454号公報Japanese Patent Laid-Open No. 2002-210454 特許第3521896号公報Japanese Patent No. 3521896
 冷却水系で発生する障害を防止するには、水処理薬品注入量の調整だけでなく、殺菌剤やスケール防止剤等の消耗薬品の残留濃度など、多種多様な情報に応じた正確な対応が必要であり、特許文献1や2のように、有機物濃度や酸化還元電位等の水質の1項目だけに着目した制御では、誤った判断を行い、水処理設備を適切に管理できない場合があった。 In order to prevent failures that occur in the cooling water system, it is necessary not only to adjust the water treatment chemical injection amount, but also to accurately respond to various types of information such as the residual concentration of consumable chemicals such as bactericides and scale inhibitors. Thus, as in Patent Documents 1 and 2, in the control that focuses on only one item of water quality such as organic substance concentration and oxidation-reduction potential, an erroneous determination may be made and water treatment equipment may not be managed appropriately.
 そこで、現場で採取した水を持ち帰った後、複数の水質パラメータの分析を行い、これらの値に基づいて各種薬剤の注入量やブロー量を調整することが行われている。しかし、この場合、分析から対応策の実行までのタイムラグが数日程度と長くなり、この間に障害が発生する状態へ移行するおそれがあった。また、実行する対応策の判断が個人の裁量や経験レベルに負うところが大きく、判断ミスが起こり得るという問題があった。 Therefore, after bringing back the water collected at the site, a plurality of water quality parameters are analyzed, and the injection amount and blow amount of various drugs are adjusted based on these values. However, in this case, the time lag from the analysis to the execution of the countermeasure is as long as several days, and there is a possibility that a failure may occur during this time. In addition, there is a problem that judgment of countermeasures to be taken depends largely on the discretion and experience level of the individual, and judgment errors can occur.
 本発明は、以上の実情に鑑みてなされたものであり、冷却水やボイラー水等の循環水系の複数種の水質パラメータを現場で分析し、分析結果に基づいて適切な対策を速やかに提示できる水質管理装置、水質管理システム、及び水質管理方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and can analyze a plurality of water quality parameters of a circulating water system such as cooling water and boiler water on site, and can promptly present appropriate measures based on the analysis result. It is an object to provide a water quality management device, a water quality management system, and a water quality management method.
 本発明の水質管理装置は、水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、複数の水質パラメータの変化と、前記水処理設備における水処理状況とを組み合わせた対策データを記憶する記憶部と、前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、前記演算部により選択された水処理状況を表示する表示部と、を備える。 The water quality management device of the present invention includes an input unit for inputting a plurality of water quality parameters measured for sample water collected from a water treatment facility, changes in the plurality of water quality parameters, and a water treatment status in the water treatment facility. A storage unit that stores countermeasure data in combination, a calculation unit that refers to the countermeasure data, selects a water treatment status corresponding to a plurality of input water quality parameters, and a water treatment status selected by the calculation unit. A display unit for displaying.
 本発明の一態様では、前記対策データは、複数の水質パラメータの変化と、前記水処理設備における水処理状況と、前記水処理設備に施す対策とが組み合わされており、前記演算部は、入力された複数の水質パラメータに対応する対策を選択し、前記表示部は、前記演算部により選択された対策を表示することを特徴とする。 In one aspect of the present invention, the countermeasure data is a combination of a plurality of water quality parameter changes, a water treatment status in the water treatment facility, and a measure to be applied to the water treatment facility. The measure corresponding to the plurality of water quality parameters is selected, and the display unit displays the measure selected by the calculation unit.
 本発明の一態様では、前記記憶部は、前記入力部を介して入力された水質パラメータを記憶し、前記演算部は、前記記憶部に記憶されている過去の水質パラメータを含むトレンドを用いて、水処理状況又は対策の選択を行うことを特徴とする。 In one aspect of the present invention, the storage unit stores a water quality parameter input via the input unit, and the calculation unit uses a trend including past water quality parameters stored in the storage unit. The water treatment status or measures are selected.
 本発明の一態様では、試料水の複数の水質パラメータを測定する複数の水質測定器をさらに備え、前記演算部は、前記対策データを参照し、前記複数の水質測定器により測定された複数の水質パラメータに対応する水処理状況を選択することを特徴とする。 In one aspect of the present invention, the apparatus further includes a plurality of water quality measuring devices that measure a plurality of water quality parameters of the sample water, and the calculation unit refers to the countermeasure data and includes a plurality of water quality measuring devices measured by the plurality of water quality measuring devices. The water treatment status corresponding to the water quality parameter is selected.
 本発明の一態様では、前記水質測定器として、透過率又は吸光度を測定するための光学的測定器、1種又は2種のイオン電極、及び電気伝導率計のうちの少なくとも2個を備えたことを特徴とする。 In one aspect of the present invention, the water quality measuring instrument includes at least two of an optical measuring instrument for measuring transmittance or absorbance, one or two ion electrodes, and an electric conductivity meter. It is characterized by that.
 本発明の水質管理システムは、水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部、入力された複数の水質パラメータを送信する通信部、及び表示部を有するデータ通信装置と、複数の水質パラメータの変化と、前記水処理設備における水処理状況と、前記水処理設備に施す対策とが組み合わされた対策データを記憶したデータベースを有し、前記データベースを検索して前記データ通信装置から受信した複数の水質パラメータに対応する水処理状況及び対策を選択し、選択した水処理状況及び対策を前記データ通信装置に通知するサーバ装置と、を備え、前記データ通信装置は、前記サーバ装置から通知された水処理状況及び対策を前記表示部に表示することを特徴とする。 The water quality management system of the present invention has an input unit for inputting a plurality of water quality parameters measured for sample water collected from a water treatment facility, a communication unit for transmitting the plurality of input water quality parameters, and a display unit. A data communication device; a database storing countermeasure data in which a plurality of water quality parameter changes, a water treatment status in the water treatment facility, and a measure to be applied to the water treatment facility are stored; A server device that selects a water treatment status and countermeasures corresponding to a plurality of water quality parameters received from the data communication device, and notifies the data communication device of the selected water treatment status and countermeasures, the data communication device Displays the water treatment status and countermeasures notified from the server device on the display unit.
 本発明の一態様では、前記データ通信装置は、試料水の複数の水質パラメータを測定する複数の水質測定器を有する分析計に設けられていることを特徴とする。 In one aspect of the present invention, the data communication device is provided in an analyzer having a plurality of water quality measuring devices for measuring a plurality of water quality parameters of sample water.
 本発明の水質管理方法は、1又は複数の分析計を用いて、水処理設備から採取した水について複数の水質パラメータを測定し、複数の水質パラメータの変化と、前記水処理設備における水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する水質管理装置が、前記対策データを参照し、測定された水質パラメータに対応する水処理状況及び対策を選択し、表示部が、前記選択された水処理状況及び対策を表示することを特徴とする。 The water quality management method of the present invention measures a plurality of water quality parameters for water collected from a water treatment facility using one or a plurality of analyzers, changes in the plurality of water quality parameters, and water treatment status in the water treatment facility And a water quality management device that stores countermeasure data combining countermeasures to be applied to the water treatment facility, refers to the countermeasure data, selects a water treatment status and countermeasure corresponding to the measured water quality parameter, and a display unit The selected water treatment status and countermeasures are displayed.
 本発明の一態様では、pH、電気伝導率、塩化物イオン濃度、硫酸イオン濃度、酸消費量(pH4.8)、酸消費量(pH8.3)、マグネシウム硬度、カルシウム硬度、シリカ濃度、鉄濃度、銅濃度、アンモニウムイオン濃度、残留塩素濃度、酸化還元電位、TOC(全有機炭素)、COD(化学的酸素要求量)、ポリマー濃度、全りん酸濃度、亜鉛濃度、及び濁度からなる群より選ばれる2種以上の水質パラメータを測定することを特徴とする。 In one embodiment of the present invention, pH, electrical conductivity, chloride ion concentration, sulfate ion concentration, acid consumption (pH 4.8), acid consumption (pH 8.3), magnesium hardness, calcium hardness, silica concentration, iron Concentration, copper concentration, ammonium ion concentration, residual chlorine concentration, redox potential, TOC (total organic carbon), COD (chemical oxygen demand), polymer concentration, total phosphate concentration, zinc concentration, and turbidity Two or more kinds of water quality parameters selected from the above are measured.
 本発明によれば、複数の水質パラメータの変化と、水処理設備における水処理状況と、水処理設備へ施すべき対策とを組み合わせた対策データを参照し、分析計により現場で検出された2種以上の水質パラメータに対応する水処理状況及び対策を表示部に自動で表示するため、ユーザは、自身の裁量や経験レベルによらず、適切な対策を現場で速やかに確認し、実行することができる。2種以上の水質パラメータを用いることで、1種の水質パラメータの変化のみでは判断できない(見落としてしまう)障害の発生を検知することができ、水処理装置に対して適切な処置を速やかに実行し、循環水系に発生する障害を抑制することができる。 According to the present invention, referring to countermeasure data combining a plurality of water quality parameter changes, water treatment status in the water treatment facility, and measures to be taken on the water treatment facility, two types detected on-site by the analyzer Since the water treatment status and countermeasures corresponding to the above water quality parameters are automatically displayed on the display unit, the user can promptly confirm and implement appropriate countermeasures at the site regardless of his / her discretion and experience level. it can. By using two or more types of water quality parameters, it is possible to detect the occurrence of a failure that cannot be determined (or overlooked) by changing only one type of water quality parameter, and promptly take appropriate measures for the water treatment device. Thus, it is possible to suppress a failure that occurs in the circulating water system.
 分析計が複数の水質測定器を有することで、1台の分析計で複数の水質パラメータの測定を行うことができる。この分析計に水質管理装置の機能を搭載することで、現場において、1台の分析計で、複数の水質パラメータの分析、水処理設備における水処理状況の判断、及び水処理設備へ施すべき対策の提示を行うことができる。 The analyzer has a plurality of water quality measuring instruments, so that a single analyzer can measure a plurality of water quality parameters. By installing the water quality management function in this analyzer, one analyzer can analyze multiple water quality parameters, determine the water treatment status in the water treatment facility, and take measures to be taken on the water treatment facility. Can be presented.
本発明の実施形態に係る水質管理システムの概略図である。It is the schematic of the water quality management system which concerns on embodiment of this invention. 開放循環式冷却水系の構成図である。It is a block diagram of an open circulation type cooling water system. 本発明の実施形態に係る水質管理装置のブロック図である。It is a block diagram of the water quality management device concerning the embodiment of the present invention. 対策データの一例を示す図である。It is a figure which shows an example of countermeasure data. 複数の水質パラメータを測定可能な分析計の斜視図である。It is a perspective view of the analyzer which can measure a some water quality parameter. 図5の分析計を用いた測定方法を説明する斜視図である。It is a perspective view explaining the measuring method using the analyzer of FIG. 図5の分析計のブロック図である。It is a block diagram of the analyzer of FIG. 変形例による水質管理システムの概略図である。It is the schematic of the water quality management system by a modification.
 以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 図1は、本発明の実施形態に係る水質管理システムの概略図である。図1に示すように、水質管理システムは、水処理設備100、水処理装置102、複数の分析計104、及び水質管理装置110を備えている。 FIG. 1 is a schematic diagram of a water quality management system according to an embodiment of the present invention. As shown in FIG. 1, the water quality management system includes a water treatment facility 100, a water treatment device 102, a plurality of analyzers 104, and a water quality management device 110.
 水処理設備100は、循環水(冷却水)と被冷却体とを熱交換器を介して接触させて、被冷却体を冷却させる循環式冷却水系である。図2に、循環式冷却水系の一例を示す。図2は、循環式冷却水系の1種である開放循環式冷却水系の模式図である。 The water treatment facility 100 is a circulating cooling water system in which circulating water (cooling water) and an object to be cooled are brought into contact with each other via a heat exchanger to cool the object to be cooled. FIG. 2 shows an example of a circulating cooling water system. FIG. 2 is a schematic diagram of an open circulation type cooling water system which is one type of circulation type cooling water system.
 図2に示すように、開放循環式冷却水系では、熱交換器61における熱交換により温度が上昇した水が冷却塔60に供給される。冷却塔60に供給された温水は充填材62を流下し、空気と向流接触して一部が蒸発する。蒸発潜熱によって冷却された水は冷却塔60の下部のピットに貯留され、ポンプ63により熱交換器61に供給される。ブロー水配管64のブロー弁(図示略)を開とすることによりブローが行われる。蒸発量とブロー水量との合計量に相当する補給水が補給水配管65からボールタップ(図示略)を介して冷却塔60に供給される。 As shown in FIG. 2, in the open circulation type cooling water system, water whose temperature is increased by heat exchange in the heat exchanger 61 is supplied to the cooling tower 60. The warm water supplied to the cooling tower 60 flows down the filler 62, and countercurrently contacts with air to partially evaporate. The water cooled by the latent heat of vaporization is stored in a pit below the cooling tower 60 and supplied to the heat exchanger 61 by the pump 63. Blow is performed by opening a blow valve (not shown) of the blow water pipe 64. Makeup water corresponding to the total amount of evaporation and blown water is supplied from the make-up water pipe 65 to the cooling tower 60 via a ball tap (not shown).
 図1に示す水処理装置102は、水処理設備100で使用される水にスケール防止剤、防食剤、スラッジ分散剤、殺菌剤、スライム防止剤等の水処理薬品を注入する。例えば、図2に示す冷却塔60に貯留されている水に水処理薬品が注入される。 1 injects water treatment chemicals such as a scale inhibitor, an anticorrosive, a sludge dispersant, a disinfectant, and a slime inhibitor into the water used in the water treatment facility 100. For example, water treatment chemicals are injected into the water stored in the cooling tower 60 shown in FIG.
 分析計104は、水処理設備100の循環水又は補給水の水質パラメータの分析を行う。分析計104は複数設けられており、複数種類の水質パラメータの分析が行われる。分析対象の水質パラメータは、水処理設備100の用途や、水処理装置102が注入する水処理薬品の種類に応じたものであり、例えば、pH、電気伝導率、塩化物イオン濃度、硫酸イオン濃度、酸消費量(pH4.8)、酸消費量(pH8.3)、マグネシウム硬度、カルシウム硬度、シリカ濃度、鉄濃度、銅濃度、アンモニウムイオン濃度、残留塩素濃度、酸化還元電位、TOC(全有機炭素)、COD(化学的酸素要求量)、ポリマー濃度、全りん酸濃度、亜鉛濃度、及び濁度からなる群より選ばれる2種以上、より好ましくは3種以上である。各水質パラメータの分析は、公知の方法に従って行えばよく、詳細な説明を省略する。 The analyzer 104 analyzes the water quality parameter of the circulating water or makeup water of the water treatment facility 100. A plurality of analyzers 104 are provided, and a plurality of types of water quality parameters are analyzed. The water quality parameters to be analyzed are in accordance with the use of the water treatment facility 100 and the type of water treatment chemical injected by the water treatment apparatus 102. For example, pH, electrical conductivity, chloride ion concentration, sulfate ion concentration , Acid consumption (pH 4.8), acid consumption (pH 8.3), magnesium hardness, calcium hardness, silica concentration, iron concentration, copper concentration, ammonium ion concentration, residual chlorine concentration, redox potential, TOC (total organic Carbon), COD (chemical oxygen demand), polymer concentration, total phosphoric acid concentration, zinc concentration, and two or more selected from the group consisting of turbidity, more preferably three or more. The analysis of each water quality parameter may be performed according to a known method, and detailed description is omitted.
 分析計104は、水処理設備100から採取された試料水の水質パラメータの分析を行う。例えば、図2に示す冷却塔60のピット内の水、ポンプ63により熱交換器61に供給される水、又は熱交換器61から冷却塔60に供給される水、好ましくはピット内の水の一部を採取して、循環水の試料水とする。また、配管65から冷却塔60に供給される補給水の一部を採取して、補給水の試料水とする。 The analyzer 104 analyzes water quality parameters of sample water collected from the water treatment facility 100. For example, water in the pit of the cooling tower 60 shown in FIG. 2, water supplied to the heat exchanger 61 by the pump 63, or water supplied from the heat exchanger 61 to the cooling tower 60, preferably water in the pit. A part is collected and used as sample water for circulating water. Further, a part of the makeup water supplied from the pipe 65 to the cooling tower 60 is sampled and used as the makeup water sample water.
 分析計104は、持ち運びが可能なものでもよいし、オンライン分析が可能な装置による常時分析計でもよい。 The analyzer 104 may be portable or may be a constant analyzer using an apparatus capable of online analysis.
 水質管理装置110は、分析計104の分析結果に基づき、水処理設備100における水処理状況を推定し、推定した状況に応じ、水処理設備100へ施すべき対策を提示する。提示された対策の実施履歴を記録することで、プラント管理のエビデンスとして残してもよい。 The water quality management device 110 estimates the water treatment status in the water treatment facility 100 based on the analysis result of the analyzer 104, and presents measures to be taken on the water treatment facility 100 according to the estimated status. It may be left as evidence of plant management by recording the implementation history of the presented countermeasures.
 図3に水質管理装置110のブロック図を示す。水質管理装置110は、入力部112、表示部114、演算部116、及びメモリ118を備え、例えばノート型PC(パーソナルコンピュータ)やタブレット端末等の携帯可能な装置により構成することができる。入力部112は、例えばボタン、スイッチ、テンキー等により構成され、分析計104により求められた水質パラメータをユーザが入力できるようになっている。分析計104から水質管理装置110へ水質パラメータを無線/有線ネットワークを介して転送するようにしてもよい。入力された水質パラメータはメモリ118に記憶される。 Fig. 3 shows a block diagram of the water quality management device 110. The water quality management device 110 includes an input unit 112, a display unit 114, a calculation unit 116, and a memory 118, and can be configured by a portable device such as a notebook PC (personal computer) or a tablet terminal. The input unit 112 is configured by, for example, a button, a switch, a numeric keypad, and the like, and a user can input water quality parameters obtained by the analyzer 104. The water quality parameter may be transferred from the analyzer 104 to the water quality management device 110 via a wireless / wired network. The input water quality parameter is stored in the memory 118.
 演算部116が、入力された循環水の水質パラメータと補給水の水質パラメータとを用いて濃縮倍数を算出し、算出した濃縮倍数をメモリ118に記憶してもよい。演算部116は、ランゲリア指数、リズナー指数、マットソン比などを算出してメモリ118に記憶してもよい。 The calculation unit 116 may calculate the concentration factor using the input water quality parameter of the circulating water and the water quality parameter of the makeup water, and store the calculated concentration factor in the memory 118. The calculation unit 116 may calculate a Langeria index, a Risner index, a Mattson ratio, and the like and store them in the memory 118.
 例えば、循環水系のランゲリア指数(飽和指数)は、酸消費量(pH4.8)、pH、カルシウム硬度、及び電気伝導率を用いて算出できる。ランゲリア指数は、循環水のpHと炭酸カルシウムの飽和pH(pHs)との差であり、水系における配管や熱交換器等の金属材料の腐食性を測る指標となる。pHsは、簡便計算法(ノーデル法)により、以下の数式1で求められる。 For example, the Langeria index (saturation index) of the circulating water system can be calculated using the acid consumption (pH 4.8), pH, calcium hardness, and electrical conductivity. The Langeria index is a difference between the pH of circulating water and the saturated pH (pHs) of calcium carbonate, and is an index for measuring the corrosivity of metal materials such as piping and heat exchangers in an aqueous system. The pHs is obtained by the following formula 1 by a simple calculation method (Nodel method).
 pHs=(9.3+A値+B値)-(C値+D値)   …(数式1) PHs = (9.3 + A value + B value) − (C value + D value) (Equation 1)
 ここで、A値は、蒸発残留物の濃度により定まる値であり、電気伝導率から求まる。B値は循環水の水温から定まる値である。C値は、カルシウム硬度により定まる値である。D値は、酸消費量(pH4.8)により定まる値である。 Here, the A value is a value determined by the concentration of the evaporation residue, and is obtained from the electric conductivity. The B value is a value determined from the temperature of the circulating water. The C value is a value determined by the calcium hardness. The D value is a value determined by the acid consumption (pH 4.8).
 また、水の腐食性とスケール生成の傾向の指標となるリズナー指数RSI(Ryznar Stability Index)は、循環水のpHと炭酸カルシウムの飽和pH(pHs)とを用いて、以下の数式2により算出できる。 In addition, the Rizner index RSI (Ryznar Stability Index), which is an index of the corrosiveness of water and the tendency of scale formation, can be calculated by the following formula 2 using the pH of circulating water and the saturated pH (pHs) of calcium carbonate. .
 RSI=2pHs-pH   …(数式2) RSI = 2pHs-pH (Formula 2)
 RSIが6未満のとき水はスケール生成傾向にあることを示し、RSIが6以上7未満のとき水は安定状態にあることを示し、RSIが7以上のとき水は腐食傾向にあることを示す。 When the RSI is less than 6, it indicates that the water tends to form a scale, when the RSI is 6 or more and less than 7, it indicates that the water is in a stable state, and when the RSI is 7 or more, it indicates that the water tends to corrode. .
 銅の孔食発生の指標となるマットソン比は、硫酸イオン濃度、酸消費量(pH4.8)、及び酸消費量(pH8.3)を用いて算出できる。マットソン比は水中の炭酸水素イオン濃度と硫酸イオン濃度の比([HCO ]/[SO 2-])であり、炭酸水素イオン濃度HCO (mgHCO /L)は以下の数式3により求めることができる。 The Mattson ratio, which is an index of occurrence of copper pitting corrosion, can be calculated using the sulfate ion concentration, the acid consumption (pH 4.8), and the acid consumption (pH 8.3). The Mattson ratio is the ratio of the bicarbonate ion concentration to the sulfate ion concentration in water ([HCO 3 ] / [SO 4 2− ]), and the bicarbonate ion concentration HCO 3 (mgHCO 3 / L) is 3 can be obtained.
 HCO (mgHCO /L)=1.22×(酸消費量(pH4.8)-2×酸消費量(pH8.3))   …(数式3) HCO 3 (mgHCO 3 /L)=1.22×(acid consumption (pH 4.8) −2 × acid consumption (pH 8.3)) (Formula 3)
 マットソン比が1以下で、残留塩素が存在するとき、60℃程度の温水で、銅に孔食が生じやすいと判断される(出展:JRA-GL02(1994) (社)日本冷凍空調工業会)。 When the Mattson ratio is 1 or less and residual chlorine is present, it is judged that pitting corrosion is likely to occur in copper with hot water of about 60 ° C (Exhibition: JRA-GL02 (1994) Japan Refrigeration and Air Conditioning Industry Association) .
 水質管理装置110の表示部114は、例えば液晶ディスプレイであり、後述する演算部116により推定された水処理状況や、水処理設備100へ施すべき対策を表示する。 The display unit 114 of the water quality management device 110 is, for example, a liquid crystal display, and displays a water treatment status estimated by a calculation unit 116 described later and measures to be taken on the water treatment facility 100.
 メモリ118は、入力部112を介して入力された水質パラメータや、演算部116により算出された濃縮倍数等を記憶する。メモリ118は、複数の水質パラメータの項目名と、水質パラメータの変化と、水処理設備100における推定される水処理状況と、水処理設備100へ施すべき対策とを組み合わせた対策データを記憶する。水質パラメータの変化とは、測定値が変化することだけでなく、測定値が所定の基準値を維持し続けることも含むものとする。図4に対策データの例を示す。 The memory 118 stores the water quality parameters input via the input unit 112, the concentration factor calculated by the calculation unit 116, and the like. The memory 118 stores countermeasure data that combines item names of a plurality of water quality parameters, changes in the water quality parameters, estimated water treatment status in the water treatment facility 100, and measures to be taken on the water treatment facility 100. The change of the water quality parameter includes not only that the measurement value changes but also that the measurement value continues to maintain a predetermined reference value. FIG. 4 shows an example of countermeasure data.
 [対策データD1、D2]
 対策データD1、D2では、ポリマー濃度と亜鉛濃度/全りん酸濃度に着目し、ポリマー濃度が基準値濃度を維持していても、亜鉛濃度/全りん酸濃度が、ポリマー濃度及び水処理剤の配合率から算出される濃度より低い場合、水処理設備100において腐食が発生し始めている可能性があると推定され、防食剤の注入量増加が推定された状況への対策となる。
[Countermeasure data D1, D2]
In the countermeasure data D1 and D2, paying attention to the polymer concentration and the zinc concentration / total phosphoric acid concentration, even if the polymer concentration maintains the reference value concentration, the zinc concentration / total phosphoric acid concentration is the polymer concentration and the water treatment agent. When the concentration is lower than the concentration calculated from the blending rate, it is estimated that there is a possibility that corrosion has started to occur in the water treatment facility 100, and this is a measure against a situation where an increase in the amount of anticorrosive injected is estimated.
 水処理設備100に亜鉛、りん酸、ポリマーが一剤で注入され、水処理薬品の注入をポリマー濃度のみで制御する場合、上述のように、亜鉛濃度/全りん酸濃度の低下が起きていても、ポリマー濃度が基準値濃度を維持していることで、問題が無いと判断し、腐食発生の検知が遅れる。しかし、ポリマー濃度とあわせて、亜鉛濃度/全りん酸濃度を監視することで、ポリマー濃度が基準値濃度を維持していても、亜鉛濃度/全りん酸濃度の低下により腐食発生を早期に検知し、適切な対処をとることができる。 When zinc, phosphoric acid, and polymer are injected into the water treatment facility 100 as a single agent, and the injection of water treatment chemicals is controlled only by the polymer concentration, the zinc concentration / total phosphoric acid concentration is reduced as described above. However, since the polymer concentration is maintained at the reference value concentration, it is determined that there is no problem, and detection of the occurrence of corrosion is delayed. However, by monitoring the zinc concentration / total phosphoric acid concentration together with the polymer concentration, even if the polymer concentration is maintained at the standard value concentration, the occurrence of corrosion can be detected early due to the decrease in the zinc concentration / total phosphoric acid concentration. And take appropriate action.
 [対策データD3]
 対策データD3では、塩化物イオン濃度、硫酸イオン濃度、及びマットソン比に着目し、塩化物イオン濃度及び硫酸イオン濃度が基準値濃度を維持していても、マットソン比が1以下である場合、水処理設備100において銅材の腐食が発生し始めていると推定され、ブロー量増加による濃縮倍数の低減と防食剤の注入量増加が推定された状況への対策となる。
[Countermeasure data D3]
In the countermeasure data D3, paying attention to the chloride ion concentration, the sulfate ion concentration, and the Mattson ratio, even if the chloride ion concentration and the sulfate ion concentration maintain the reference value concentrations, It is presumed that corrosion of the copper material has begun to occur in the processing facility 100, and this is a measure against the situation where the reduction of the concentration factor due to the increase in the blow amount and the increase in the injection amount of the anticorrosive agent are estimated.
 循環水中の腐食性アニオンを塩化物イオン濃度及び硫酸イオン濃度のみで監視する場合、上述のように、マットソン比が1以下となっても、塩化物イオン濃度及び硫酸イオン濃度が基準値濃度を維持していることで、問題が無いと判断し、銅材の腐食発生の検知が遅れる。しかし、塩化物イオン濃度及び硫酸イオン濃度とあわせて、マットソン比を監視することで、塩化物イオン濃度及び硫酸イオン濃度が基準値濃度を維持していても、マットソン比が1以下となることで銅材の腐食発生を早期に検知し、適切な対処をとることができる。 When corrosive anions in circulating water are monitored only by chloride ion concentration and sulfate ion concentration, as described above, chloride ion concentration and sulfate ion concentration maintain the reference value concentration even when the Mattson ratio is 1 or less. Therefore, it is judged that there is no problem, and the detection of the occurrence of corrosion of the copper material is delayed. However, by monitoring the Mattson ratio together with the chloride ion concentration and the sulfate ion concentration, even if the chloride ion concentration and the sulfate ion concentration maintain the reference value concentration, the Mattson ratio becomes 1 or less. It is possible to detect the corrosion of copper material at an early stage and take appropriate measures.
 [対策データD4、D5]
 対策データD4、D5では、濁度と鉄濃度/銅濃度に着目し、濁度及び鉄濃度/銅濃度が上昇した場合、水処理設備100において腐食、又は持込み鉄による二次腐食が発生し始めていると推定され、防食剤の注入量増加が推定された状況への対策となる。
[Countermeasure data D4, D5]
In the countermeasure data D4 and D5, paying attention to turbidity and iron concentration / copper concentration, when the turbidity and iron concentration / copper concentration increase, corrosion in the water treatment facility 100 or secondary corrosion due to brought-in iron begins to occur. This is a countermeasure for the situation where the increase in the amount of anticorrosive injected is estimated.
 水処理薬品の注入を濁度のみで制御する場合、上述のように、濁度が上昇しても、その原因には、補給水質の悪化、濃縮倍数の上昇、プロセスリーク等、様々なものがあり、原因を特定できず、腐食発生の検知が遅れる。しかし、濁度とあわせて、鉄濃度/銅濃度を監視することで、濁度の上昇原因が鉄/銅に起因するものと特定でき、腐食発生を早期に検知し、適切な対処をとることができる。 When the injection of water treatment chemicals is controlled only by turbidity, as described above, even if the turbidity rises, there are various causes such as deterioration of makeup water quality, increase of concentration factor, process leak, etc. Yes, the cause cannot be identified, and detection of corrosion occurrence is delayed. However, by monitoring the iron concentration / copper concentration together with the turbidity, it is possible to identify the cause of the increase in turbidity as a result of iron / copper, detect the occurrence of corrosion at an early stage, and take appropriate measures. Can do.
 [対策データD6]
 対策データD6では、ポリマー濃度及びCODに着目し、ポリマー濃度が基準値濃度を維持していても、循環水中のポリマー濃度に対するCODが上昇している場合、水処理設備100において外部からのCOD成分の混入によりスライムが発生し始めている可能性があると推定され、スライム防止剤の注入量増加が推定された状況への対策となる。
[Countermeasure data D6]
In the countermeasure data D6, paying attention to the polymer concentration and the COD, if the COD with respect to the polymer concentration in the circulating water is increased even if the polymer concentration is maintained at the reference value concentration, the COD component from the outside in the water treatment facility 100 It is estimated that there is a possibility that slime has begun to be generated due to the mixing of, and this is a measure against the situation where an increase in the injection amount of the slime inhibitor is estimated.
 水処理薬品の注入をポリマー濃度のみで制御する場合、上述のように、循環水中のポリマー濃度に対するCODが上昇していても、ポリマー濃度が基準値濃度を維持していることで、問題が無いと判断し、スライム発生の検知が遅れる。しかし、ポリマー濃度とあわせて、CODを監視することで、ポリマー濃度が基準値濃度を維持していても、循環水中のポリマー濃度に対するCODが上昇することで、スライム発生を早期に検知し、適切な対処をとることができる。 When the injection of water treatment chemicals is controlled only by the polymer concentration, there is no problem because the polymer concentration is maintained at the reference value concentration even if the COD with respect to the polymer concentration in the circulating water is increased as described above. The detection of slime is delayed. However, by monitoring the COD together with the polymer concentration, even if the polymer concentration is maintained at the reference value concentration, the COD with respect to the polymer concentration in the circulating water is increased so that the occurrence of slime can be detected at an early stage. You can take corrective action.
 [対策データD7]
 対策データD7では、遊離残留塩素濃度及び補給水アンモニウムイオン濃度に着目し、遊離残留塩素濃度が低下した場合、スライムが発生している可能性があると推定され、補給水アンモニウムイオン濃度から循環水系に必要な次亜塩素酸量を求め、次亜塩素酸ナトリウムの添加を行う。
[Countermeasure data D7]
In the countermeasure data D7, paying attention to the free residual chlorine concentration and the makeup water ammonium ion concentration, when the free residual chlorine concentration decreases, it is estimated that slime may be generated, and the circulating water system is estimated from the makeup water ammonium ion concentration. The amount of hypochlorous acid required for the test is obtained, and sodium hypochlorite is added.
 水処理薬品の注入を遊離残留塩素濃度のみで制御する場合、上述のように、遊離残留塩素濃度が低下し、次亜塩素酸ナトリウムの添加量を増やしても、遊離残留塩素濃度は上昇せず、遊離残留塩素濃度の調整が遅れ、スライム発生量が増加する。しかし、遊離残留塩素濃度とあわせて、補給水アンモニウムイオン濃度を監視し、補給水アンモニウムイオン濃度から循環水系に必要な次亜塩素酸量を求めることで、スライム発生量の増加を防止できる。 When the injection of water treatment chemicals is controlled only by the free residual chlorine concentration, as described above, the free residual chlorine concentration does not increase even if the amount of sodium hypochlorite added is decreased. , The adjustment of free residual chlorine concentration is delayed, and the amount of slime generated increases. However, by monitoring the makeup water ammonium ion concentration together with the free residual chlorine concentration and obtaining the amount of hypochlorous acid necessary for the circulating water system from the makeup water ammonium ion concentration, an increase in the amount of slime generated can be prevented.
 [対策データD8]
 対策データD8では、シリカ濃度及びマグネシウム硬度に着目し、シリカ濃度及びマグネシウム硬度が低下した場合、水処理設備100においてケイ酸マグネシウムでのスケールが析出していると推定され、ケイ酸マグネシウムスケール防止剤の注入量増加又はブロー量増加による濃縮倍数の低減が推定された状況への対策となる。
[Countermeasure data D8]
In the countermeasure data D8, focusing on the silica concentration and the magnesium hardness, when the silica concentration and the magnesium hardness are reduced, it is estimated that the scale is deposited with magnesium silicate in the water treatment facility 100, and the magnesium silicate scale inhibitor This is a measure against the situation where the reduction of the concentration factor due to the increase in the injection amount or the increase in the blow amount is estimated.
 水処理設備100の管理をシリカ濃度のみで行う場合、上述のように、シリカ濃度が低下すると、濃縮倍数が低下したと判断し、ブロー率を下げて濃縮倍数を上げるような対策をとり、スケール析出を検知できないばかりか、かえってスケール付着を悪化させるおそれがある。しかし、シリカ濃度とあわせて、マグネシウム硬度を監視することで、シリカ濃度及びマグネシウム硬度が低下した場合にケイ酸マグネシウムでのスケール析出を早期に検知し、適切な対処をとることができる。 When the water treatment facility 100 is managed only by the silica concentration, as described above, if the silica concentration decreases, it is determined that the concentration factor has decreased, and measures are taken to increase the concentration factor by lowering the blow rate. In addition to not being able to detect the precipitation, there is a risk of worsening the scale adhesion. However, by monitoring the magnesium hardness together with the silica concentration, when the silica concentration and the magnesium hardness are lowered, the scale precipitation in the magnesium silicate can be detected at an early stage, and an appropriate countermeasure can be taken.
 [対策データD9]
 対策データD9では、濁度及びCODに着目し、濁度及びCODが上昇した場合、水処理設備100においてスライムが発生している可能性があると推定され、スライム防止剤の注入量増加が推定された状況への対策となる。
[Countermeasure data D9]
In the countermeasure data D9, paying attention to turbidity and COD, when turbidity and COD increase, it is estimated that slime may be generated in the water treatment facility 100, and an increase in the injection amount of the slime inhibitor is estimated. It will be a countermeasure for the situation.
 濁度のみを監視する場合、上述のように濁度が上昇するとブロー量を増加させるような対策をとり、スライム発生を検知できないばかりか、系内のスライム防止剤の濃度が低下し、かえってスライム障害を悪化させるおそれがある。しかし、濁度とあわせてCODを監視することで、濁度とともにCODが上昇することによりスライム発生を早期に検知し、適切な対処をとることができる。 When monitoring only the turbidity, take measures to increase the blow rate when the turbidity increases as described above, and not only the occurrence of slime is not detected, but also the concentration of the slime inhibitor in the system decreases, May exacerbate obstacles. However, by monitoring the COD together with the turbidity, the increase in COD with the turbidity can detect the occurrence of slime at an early stage and take appropriate measures.
 水質管理装置110の演算部116は、メモリ118に記憶されている対策データを参照し、入力された水質パラメータの変化が、対策データ内の水質パラメータ変化と一致した場合、この水質パラメータ変化に対応する水処理状況及び対策を表示部114に表示する。ユーザは、表示部114に表示された対策に基づいて、水処理設備100に対して適切な処置を施すことができ、循環水系に発生する障害を抑制することができる。 The calculation unit 116 of the water quality management device 110 refers to the countermeasure data stored in the memory 118, and responds to the change in the water quality parameter when the change in the input water quality parameter matches the change in the water quality parameter in the countermeasure data. The display unit 114 displays the water treatment status and countermeasures to be performed. The user can take an appropriate measure for the water treatment facility 100 based on the countermeasure displayed on the display unit 114, and can suppress a failure occurring in the circulating water system.
 演算部116が参照する対策データは、ユーザが入力部112を用いて選択してもよい。対策データが選択されると、入力すべき水質パラメータの入力画面が表示部114に表示される。 The countermeasure data referred to by the calculation unit 116 may be selected by the user using the input unit 112. When countermeasure data is selected, an input screen for water quality parameters to be input is displayed on the display unit 114.
 このように、本実施形態による水質管理装置110は、複数の水質パラメータの項目名と、水質パラメータの変化と、水処理設備100における推定される水処理状況と、水処理設備100へ施すべき対策とを組み合わせた対策データをメモリ118に記憶し、分析計104により現場で検出された2種以上の水質パラメータが入力されると、対策データを参照し、入力された水質パラメータに対応する水処理状況及び対策を表示部114に自動で表示する。2種以上の水質パラメータを用いることで、1種の水質パラメータの変化のみでは判断できない(見落としてしまう)障害の発生を検知することができ、水処理装置100に対して適切な処置を速やかに実行し、循環水系に発生する障害を抑制することができる。 As described above, the water quality management apparatus 110 according to the present embodiment includes a plurality of water quality parameter item names, changes in the water quality parameters, estimated water treatment status in the water treatment facility 100, and measures to be taken on the water treatment facility 100. Is stored in the memory 118, and when two or more types of water quality parameters detected on-site by the analyzer 104 are input, the countermeasure data is referred to and water treatment corresponding to the input water quality parameters is stored. The situation and countermeasures are automatically displayed on the display unit 114. By using two or more types of water quality parameters, it is possible to detect the occurrence of a failure that cannot be determined (or overlooked) by changing only one type of water quality parameter, and promptly take appropriate measures for the water treatment apparatus 100. It can be executed and the trouble that occurs in the circulating water system can be suppressed.
 また、ユーザは、水質管理装置110を用いることで、自身の裁量や経験レベルによらず、適切な対策を現場で速やかに確認し、実行することができる。 Also, by using the water quality management device 110, the user can promptly confirm and execute appropriate measures at the site regardless of his / her discretion and experience level.
 上記実施形態では、複数の分析計104を用いていたが、複数の水質パラメータを求めることができる分析計を用いてもよい。このような分析計を図5~図7を用いて説明する。 In the above embodiment, a plurality of analyzers 104 are used, but an analyzer capable of obtaining a plurality of water quality parameters may be used. Such an analyzer will be described with reference to FIGS.
 図5、6は複数の水質パラメータを測定可能な分析計の外観斜視図であり、図7は分析計のブロック図である。図7の通り、分析計は、吸光度測定部1、電極測定部2、電気伝導率測定部3、操作部4、表示部5、演算部6、及びメモリ7を備えており、これらが筐体Hに設置されている。 5 and 6 are external perspective views of an analyzer capable of measuring a plurality of water quality parameters, and FIG. 7 is a block diagram of the analyzer. As shown in FIG. 7, the analyzer includes an absorbance measurement unit 1, an electrode measurement unit 2, an electrical conductivity measurement unit 3, an operation unit 4, a display unit 5, a calculation unit 6, and a memory 7. H.
 図5、6の通り、筐体Hは、略々直方体形状の合成樹脂製のケースよりなり、その上面の一半側に操作部4と、液晶ディスプレイ等よりなる表示部5とが設けられている。操作部4は、ユーザによって操作されるボタン、スイッチ、タッチパネル等によって構成されている。 As shown in FIGS. 5 and 6, the housing H is made of a synthetic resin case having a substantially rectangular parallelepiped shape, and an operation unit 4 and a display unit 5 made of a liquid crystal display or the like are provided on one half of the upper surface thereof. . The operation unit 4 includes buttons, switches, touch panels, and the like that are operated by the user.
 筐体Hの上面の他半側には、セル設置部10が凹段部状に設けられ、開閉回動可能なカバー11で覆われている。また、筐体Hの上面の他半側には、試料水容器20の配置部21が設けられており、この配置部21の上方に起立方向回動可能なセンサ設置盤15が設けられている。カバー11及びセンサ設置盤15はヒンジによって筐体Hに対し回動可能に取り付けられている。 On the other half side of the upper surface of the housing H, a cell installation portion 10 is provided in a concave step shape and is covered with a cover 11 that can be opened and closed. In addition, an arrangement part 21 for the sample water container 20 is provided on the other half side of the upper surface of the housing H, and a sensor installation board 15 capable of rotating in a standing direction is provided above the arrangement part 21. . The cover 11 and the sensor installation board 15 are rotatably attached to the housing H by hinges.
 セル設置部10には、吸光度測定用セル12A,12B,12Cの差込穴13A,13B,13Cが設けられている。筐体H内には、各差込穴12A~12Cを挟んで対峙するようにそれぞれ発光素子、分光器及び受光素子が設けられている。分光器は省略される場合がある。セル12A~12Cには予め規定量の発色試薬が封入されている。セル12A~12C内の発色試薬は互いに別種のものである。 The cell installation unit 10 is provided with insertion holes 13A, 13B, and 13C for the absorbance measurement cells 12A, 12B, and 12C. In the housing H, a light emitting element, a spectroscope, and a light receiving element are provided so as to face each other with the insertion holes 12A to 12C interposed therebetween. The spectrometer may be omitted. The cells 12A to 12C are preliminarily sealed with a specified amount of coloring reagent. The coloring reagents in the cells 12A to 12C are different from each other.
 発色試薬は、測定対象成分によって異なり、例えば測定対象成分がシリカの場合はモリブデンを含有するものを使用することができ、酸消費量(pH4.8)を求める場合はブロモフェノールブルーを含有するものを使用することができ、酸消費量(pH8.3)を求める場合はフェノールフタレインを含有するものを使用することができる。硫酸イオンを測定する場合は、クロム酸バリウムを含有するものを使用することができる。 The coloring reagent varies depending on the component to be measured. For example, when the component to be measured is silica, one containing molybdenum can be used, and when determining the acid consumption (pH 4.8), one containing bromophenol blue When the acid consumption (pH 8.3) is determined, one containing phenolphthalein can be used. When measuring sulfate ions, those containing barium chromate can be used.
 セル12A~12Cのキャップを開け、セル12A~12C内に規定量の試料水を注入した後、キャップを閉じ、試料水と発色試薬とを混合した後、セル12A~12Cを差込穴13A~13Cに差し込み、吸光度を測定することができる。このセル12A~12Cと、各発光素子、分光器及び受光素子と、各素子の駆動回路と、受光信号処理回路とによって吸光度測定部1が構成されている。 Open the caps of the cells 12A to 12C, inject a specified amount of sample water into the cells 12A to 12C, close the cap, mix the sample water and the coloring reagent, and then insert the cells 12A to 12C into the insertion holes 13A to 13A It can be inserted into 13C and the absorbance can be measured. The absorbance measuring unit 1 is configured by the cells 12A to 12C, the light emitting elements, the spectroscope and the light receiving element, the drive circuit for each element, and the light receiving signal processing circuit.
 センサ設置盤15はヒンジによって、図5の起立状態と、図6の倒伏状態とをとりうるように上下方向に回動可能となっている。センサ設置盤15には、電極測定部2を構成するイオン電極16、17、pHガラス電極18及び比較電極23と、電気伝導率測定部3を構成する電気伝導率計19とが、各々の下端側が倒伏装置のセンサ設置盤15の下面から下方に突出する形態にて設置されている。 The sensor installation board 15 can be turned up and down by a hinge so as to be able to take the standing state of FIG. 5 and the lying state of FIG. The sensor installation panel 15 includes ion electrodes 16 and 17, a pH glass electrode 18 and a comparative electrode 23 that constitute the electrode measuring unit 2, and an electric conductivity meter 19 that constitutes the electric conductivity measuring unit 3. It is installed in a form in which the side protrudes downward from the lower surface of the sensor installation board 15 of the lodging device.
 この実施の形態では、イオン電極16は2価陽イオン選択性電極であり、イオン電極17はカルシウムイオン選択性電極である。 In this embodiment, the ion electrode 16 is a divalent cation selective electrode, and the ion electrode 17 is a calcium ion selective electrode.
 倒伏状態のセンサ設置盤15の下方には、試料水容器20が配置されており、センサ設置盤15が倒伏すると、イオン電極16,17、pHガラス電極18、比較電極23、及び電気伝導率計19の下端側が容器20内の試料水W(図5)に浸漬されるように構成されている。試料水容器20には把手20aが設けられており、この把手20aを摘んで試料水容器20を筐体Hの容器配置部21に出し入れすることが可能である。容器20に隣接するスペースSに各種電極の保護キャップが収納できるようになっている。 A sample water container 20 is arranged below the sensor installation board 15 in a lying state, and when the sensor installation board 15 falls, the ion electrodes 16 and 17, the pH glass electrode 18, the comparison electrode 23, and the electric conductivity meter. The lower end side of 19 is configured to be immersed in the sample water W (FIG. 5) in the container 20. The sample water container 20 is provided with a handle 20a, and the sample water container 20 can be taken in and out of the container arrangement portion 21 of the housing H by grasping the handle 20a. A protective cap for various electrodes can be stored in a space S adjacent to the container 20.
 吸光度測定部1の発光素子には、LED、キセノンフラッシュランプやハロゲンランプ等を用いることができる。分光器には、干渉フィルタや色ガラスフィルタ等のフィルタ、水晶や溶融石英等のプリズム、又は平面回折格子や凹面回折格子等の回折格子を用いることができる。受光素子は、例えばフォトダイオードであり、試料からの透過光を電気信号に変換する。この電気信号に基づく透過光の強度、及び試料への入射光強度から、吸光度が求まる。吸光度の代りに透過率を求めてもよい。 As the light emitting element of the absorbance measuring unit 1, an LED, a xenon flash lamp, a halogen lamp, or the like can be used. As the spectroscope, a filter such as an interference filter or a colored glass filter, a prism such as crystal or fused silica, or a diffraction grating such as a plane diffraction grating or a concave diffraction grating can be used. The light receiving element is, for example, a photodiode, and converts transmitted light from the sample into an electrical signal. The absorbance is obtained from the intensity of the transmitted light based on this electrical signal and the intensity of the incident light on the sample. The transmittance may be obtained instead of the absorbance.
 予め測定対象成分の標準液の吸光度を測定して検量線が作成され、この検量線のデータがメモリ7に記憶されている。この検量線を参照することで、算出された吸光度から、試料水における測定対象成分の溶存成分濃度を求めることができる。吸光度や溶存成分濃度の算出は、吸光度測定部1の演算部(図示せず)が行ってもよいし、演算部6が行ってもよい。 A calibration curve is prepared in advance by measuring the absorbance of the standard solution of the measurement target component, and data of this calibration curve is stored in the memory 7. By referring to this calibration curve, the dissolved component concentration of the measurement target component in the sample water can be determined from the calculated absorbance. The calculation of the absorbance and the dissolved component concentration may be performed by the calculation unit (not shown) of the absorbance measurement unit 1 or the calculation unit 6.
 電極測定部2を構成するイオン選択性電極及び比較電極は、測定対象イオンに対して高度の選択性を持ち、イオン濃度(溶存成分濃度)に応じた電位を生じる。イオン選択性電極は、比較電極と組み合わせることによって電池を構成し、その起電力(両電極間に生じる電位差)Eが電位差計により測定される。イオン選択性電極の電極電位をEind、比較電極の電極電位をEref、試料水Wと比較電極との間の電位差をEとすると、起電力Eは以下の数式4のようになる。 The ion selective electrode and the comparative electrode constituting the electrode measuring unit 2 have a high degree of selectivity with respect to the measurement target ion, and generate a potential corresponding to the ion concentration (dissolved component concentration). The ion-selective electrode constitutes a battery by combining with a reference electrode, and its electromotive force (potential difference generated between both electrodes) E is measured by a potentiometer. When the electrode potential of the ion selective electrode is E ind , the electrode potential of the comparison electrode is E ref , and the potential difference between the sample water W and the comparison electrode is E j , the electromotive force E is expressed by Equation 4 below.
  E=Eind-Eref+E   …(数式4) E = E ind −E ref + E j (Equation 4)
 ここでErefは一定値であり、Eは適当な塩橋を用いることで無視できる。従って、EはEindの値のみによって定まることになり、測定対象イオン濃度は、この電池の起電力として表すことができる。予め、標準液を用いてイオン濃度と、電極間電位差との関係(検量線)を求めておくことで、電位差計の測定値から試料中の測定対象イオン濃度を求めることができる。例えば、2価陽イオン選択性電極16及び比較電極23を用いることで、全硬度(総硬度=カルシウム硬度+マグネシウム硬度)を求めることができる。また、カルシウムイオン選択性電極17及び比較電極23を用いることでカルシウム硬度を求めることができる。全硬度とカルシウム硬度との差分からマグネシウム硬度を求めることができる。検量線のデータはメモリ7に記憶されている。測定対象イオン濃度の算出は、電極測定部2の演算部(図示せず)が行ってもよいし、演算部6が行ってもよい。 Here, E ref is a constant value, and E j can be ignored by using an appropriate salt bridge. Therefore, E is determined only by the value of E ind , and the ion concentration to be measured can be expressed as an electromotive force of this battery. By previously obtaining a relationship (calibration curve) between the ion concentration and the interelectrode potential difference using a standard solution, the ion concentration to be measured in the sample can be obtained from the measured value of the potentiometer. For example, the total hardness (total hardness = calcium hardness + magnesium hardness) can be obtained by using the divalent cation selective electrode 16 and the comparison electrode 23. Moreover, calcium hardness can be calculated | required by using the calcium ion selective electrode 17 and the comparison electrode 23. FIG. The magnesium hardness can be determined from the difference between the total hardness and the calcium hardness. Calibration curve data is stored in the memory 7. The calculation of the measurement target ion concentration may be performed by the calculation unit (not shown) of the electrode measurement unit 2 or the calculation unit 6.
 電極測定部2を構成するpHガラス電極18及び比較電極23は、いわゆるガラス電極法により、試料水WのpHを測定する。具体的には、水素イオン活量に応答する特殊なガラス膜で作られたpHガラス電極18と、pHに無関係に一定の電位を示す比較電極23との間に発生した電位差を電位差計で測定し、pHを算出する。 The pH glass electrode 18 and the comparative electrode 23 constituting the electrode measuring unit 2 measure the pH of the sample water W by a so-called glass electrode method. Specifically, the potential difference generated between the pH glass electrode 18 made of a special glass film responsive to the hydrogen ion activity and the comparison electrode 23 showing a constant potential regardless of pH is measured with a potentiometer. And calculate the pH.
 電気伝導率測定部3を構成する電気伝導率計19は、いわゆる交流二電極法により試料水Wの電気伝導率を求める。具体的には、交流電源を用いて1対の電極間に交流電圧を印加し、この時に流れる電流を交流電流計により測定して試料水Wの液抵抗を求め、電気伝導率を算出する。電極にはステンレス鋼や白金などが用いられる。電気伝導率計19には測温抵抗体等の温度センサが内蔵されている。 The electric conductivity meter 19 constituting the electric conductivity measuring unit 3 obtains the electric conductivity of the sample water W by a so-called AC two-electrode method. Specifically, an AC voltage is applied between a pair of electrodes using an AC power source, the current flowing at this time is measured with an AC ammeter, the liquid resistance of the sample water W is obtained, and the electrical conductivity is calculated. Stainless steel or platinum is used for the electrode. The electric conductivity meter 19 includes a temperature sensor such as a resistance temperature detector.
 セル12A~12C及び試料水容器20に収容される試料水Wは、図2に示すような循環式冷却水系の循環水又は補給水である。 The sample water W accommodated in the cells 12A to 12C and the sample water container 20 is circulating water or makeup water of a circulating cooling water system as shown in FIG.
 分析計の操作部4は、循環水モードと補給水モードとの切り替え設定を行う。循環水モードの設定時に吸光度測定部1、電極測定部2、電気伝導率測定部3により測定された値は、循環水の測定値としてメモリ7に記憶される。補給水モードの設定時に吸光度測定部1、電極測定部2、電気伝導率測定部3により測定された値は、補給水の測定値としてメモリ7に記憶される。 The operation unit 4 of the analyzer performs switching setting between the circulating water mode and the makeup water mode. The values measured by the absorbance measuring unit 1, the electrode measuring unit 2, and the electrical conductivity measuring unit 3 when the circulating water mode is set are stored in the memory 7 as measured values of the circulating water. The values measured by the absorbance measurement unit 1, the electrode measurement unit 2, and the electrical conductivity measurement unit 3 when the makeup water mode is set are stored in the memory 7 as the measured value of makeup water.
 演算部6は、循環水モード設定時の測定値及び補給水モード設定時の測定値に基づいて、循環水中の塩類濃度が補給水と比較して何倍になっているかを示す指標である濃縮倍数を算出する。例えば、同一の溶存成分について、循環水モード設定時に測定された溶存成分濃度を補給水モード設定時に測定された溶存成分濃度で除算することで、濃縮倍数が算出される。例えば、循環水モード設定時に測定された電気伝導率を補給水モード設定時に測定された電気伝導率で除算することでも、濃縮倍数が算出される。 The calculation unit 6 is an index indicating how many times the salt concentration in the circulating water is higher than that of the makeup water based on the measurement value when the circulation water mode is set and the measurement value when the makeup water mode is set. Calculate multiples. For example, for the same dissolved component, the concentration factor is calculated by dividing the dissolved component concentration measured when the circulating water mode is set by the dissolved component concentration measured when the makeup water mode is set. For example, the concentration factor is also calculated by dividing the electrical conductivity measured when the circulating water mode is set by the electrical conductivity measured when the makeup water mode is set.
 この分析計は、複数の濃縮倍数を取得できる。即ち、セル12A~12Cの各吸光度から求めた溶存成分濃度に基づく濃縮倍数、イオン電極測定値により求めたイオン濃度に基づく濃縮倍数、電気伝導率に基づく濃縮倍数が算出される。 This analyzer can acquire multiple concentration multiples. That is, the concentration multiple based on the dissolved component concentration obtained from each absorbance of the cells 12A to 12C, the concentration multiple based on the ion concentration obtained from the ion electrode measurement value, and the concentration multiple based on the electrical conductivity are calculated.
 表示部5は、演算部6により算出された複数の濃縮倍数や、各測定部による測定値を表示する。メモリ7は、各測定部による測定値、検量線データ、演算部6により算出された複数の濃縮倍数などを記憶する。演算部6は、ランゲリア指数(飽和指数)、リズナー指数、マットソン比を求めてもよい。 The display unit 5 displays a plurality of concentration multiples calculated by the calculation unit 6 and measurement values obtained by the respective measurement units. The memory 7 stores measurement values by each measurement unit, calibration curve data, a plurality of concentration multiples calculated by the calculation unit 6, and the like. The calculation unit 6 may obtain a Langeria index (saturation index), a Risner index, and a Mattson ratio.
 ユーザは、表示部5に表示された複数の水質パラメータや濃縮倍数等を水質管理装置110に入力する。 The user inputs a plurality of water quality parameters, concentration multiples, and the like displayed on the display unit 5 to the water quality management device 110.
 図5~7に示す分析計が、水質管理装置110の機能を備えていてもよい。すなわち、メモリ7に図4に示すような対策データが記憶され、演算部6は、メモリ7に記憶されている対策データを参照し、各測定部による測定値に対応する水処理状況及び対策を表示部5に自動で表示する。これにより、現場において、1台の分析計で、複数の水質パラメータの分析、水処理設備100における水処理状況の判断、及び水処理設備100へ施すべき対策の提示を行うことができる。 The analyzer shown in FIGS. 5 to 7 may have the function of the water quality management device 110. That is, countermeasure data as shown in FIG. 4 is stored in the memory 7, and the calculation unit 6 refers to the countermeasure data stored in the memory 7 and determines the water treatment status and countermeasures corresponding to the measurement values by each measurement unit. Displayed automatically on the display unit 5. Thereby, it is possible to analyze a plurality of water quality parameters, judge the water treatment status in the water treatment facility 100, and present measures to be taken to the water treatment facility 100 with one analyzer at the site.
 図8に示すように、水質管理システムに、水処理設備100における水処理状況の判断及び水処理設備100へ施すべき対策の選定を行う外部サーバ120と、分析計104の分析結果を有線/無線ネットワークを介して外部サーバ120へ送信するデータ通信装置130を設けてもよい。外部サーバ120は、対策データのデータベースを備え、データ通信装置130から分析計104の分析結果を受信すると、この分析結果に対応する水処理状況及び対策をデータ通信装置130に通知する。データ通信装置130には、スマートフォン等の携帯端末を用いることができ、外部サーバ120から通知された水処理状況及び対策を表示部に表示する。このように、水質管理装置110の機能の一部を外部サーバ120に持たせるようにしてもよい。現場で補給水の分析を実施しなかった場合には、過去の最新データをクラウド上から引用して使用してもよい。 As shown in FIG. 8, an external server 120 that determines the water treatment status in the water treatment facility 100 and selects measures to be taken on the water treatment facility 100, and the analysis result of the analyzer 104 are wired / wirelessly transmitted to the water quality management system. You may provide the data communication apparatus 130 which transmits to the external server 120 via a network. When the external server 120 includes a database of countermeasure data and receives the analysis result of the analyzer 104 from the data communication device 130, the external server 120 notifies the data communication device 130 of the water treatment status and the countermeasure corresponding to the analysis result. A portable terminal such as a smartphone can be used as the data communication device 130, and the water treatment status and countermeasures notified from the external server 120 are displayed on the display unit. As described above, the external server 120 may have a part of the function of the water quality management device 110. If the analysis of makeup water is not performed on site, the latest past data may be cited from the cloud and used.
 図5~7に示す分析計に通信部を設け、この通信部が、各測定部による測定値をメモリ7から取り出し、外部サーバ120へ出力してもよい。外部サーバ120は、分析計から測定値を受信すると、この測定値に対応する水処理状況及び対策を分析計に通知する。分析計は、通知された水処理状況及び対策を表示部5に表示する。ユーザが、現場において、表示部5に表示された対策を確認し、水処理装置100に対して適切な処置を速やかに実行することで、循環水系に発生する障害を抑制することができる。 The analyzer shown in FIGS. 5 to 7 may be provided with a communication unit, and the communication unit may extract the measurement value obtained by each measurement unit from the memory 7 and output it to the external server 120. When the external server 120 receives the measurement value from the analyzer, the external server 120 notifies the analyzer of the water treatment status and the countermeasure corresponding to the measurement value. The analyzer displays the notified water treatment status and countermeasures on the display unit 5. When the user confirms the countermeasure displayed on the display unit 5 at the site and promptly executes an appropriate treatment for the water treatment apparatus 100, a failure occurring in the circulating water system can be suppressed.
 以下に実施例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
[実施例1]
 図1に示す装置により、パイロットプラント(以下、第1プラント)の冷却水系の循環水で、スケール防止剤としてアクリル酸を主体とするポリマーの濃度を連続して分析し、分析した結果が一定となるように薬品注入量を自動制御した。この系では、別途、持ち運び可能な分析計によりTOCをバッチで測定した。なお、第1プラントの脇で、測定開始後の26日以降から、近辺での有機溶剤の取り扱いを想定して、冷却塔脇に有機溶剤の排気ダクトの一部を引っ張り、運転を継続した。測定結果を表1に示す。
[Example 1]
The apparatus shown in FIG. 1 continuously analyzes the concentration of the polymer mainly composed of acrylic acid as a scale inhibitor in the circulating water of the cooling water system of the pilot plant (hereinafter referred to as the first plant). The chemical injection amount was automatically controlled so that In this system, TOC was measured in batches using a portable analyzer. In addition, from the 26th day after the start of measurement on the side of the first plant, assuming the handling of the organic solvent in the vicinity, a part of the exhaust duct of the organic solvent was pulled to the side of the cooling tower, and the operation was continued. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の通り、第1プラントでは、測定開始から28日以降で大気中から循環水系に流入した有機溶剤由来と推定されるTOCの増加が判明した。ここで、ポリマー濃度ではなく、TOCのみを指標とした薬品注入量の制御を実施していた場合、TOCの増加に伴って薬品注入量を減少させることで、循環水系内のポリマー濃度が減少してスケール付着のリスクが著しく上昇していたと推定される。 As shown in Table 1, in the first plant, an increase in TOC estimated to be derived from the organic solvent flowing into the circulating water system from the atmosphere after 28 days from the start of measurement was found. Here, when the chemical injection amount is controlled using only the TOC as an index instead of the polymer concentration, the polymer concentration in the circulating water system is reduced by decreasing the chemical injection amount as the TOC increases. It is estimated that the risk of scale adhesion was significantly increased.
 本プラントでは、TOCに加えて、ポリマー濃度を同時測定していたために、誤って薬品注入量を低減する判断を行うことがなく、適切な薬品の注入量が維持できた。 In this plant, in addition to the TOC, the polymer concentration was measured at the same time. Therefore, it was possible to maintain the appropriate chemical injection amount without making a mistaken decision to reduce the chemical injection amount.
[実施例2]
 図1に示す装置により、第1プラントとは別のパイロットプラント(以下、第2プラント)の冷却水系の循環水で、ORP測定値に基づいて、モノクロロスファミン酸を主体とするスライム防止剤を含む水処理薬品の注入量を制御した。この系では、別途、持ち運び可能な分析計によりpHをバッチで測定した。なお、第2プラントでは、測定開始後の4日後にプロセスからのリークを模擬して冷却水系内に塩酸を添加した。測定結果を表2に示す。
[Example 2]
With the apparatus shown in FIG. 1, the anti-slime agent mainly composed of monochlororosfaminic acid is obtained based on the ORP measurement value in the circulating water of the cooling water system of the pilot plant (hereinafter referred to as the second plant) different from the first plant. The amount of water treatment chemicals contained was controlled. In this system, the pH was measured in batches using a portable analyzer. In the second plant, hydrochloric acid was added to the cooling water system simulating a leak from the process 4 days after the start of measurement. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の通り、第2プラントでは、5日以降にプロセスからの塩酸の混入を模擬した塩酸の投入を行ったため、pHの急激な低下が起こった。ここで、ORPのみを指標として薬品注入量を増加する制御を実施していた場合、塩酸の混入に気づかず、循環水系内のpH低下に加えて、酸化剤の過剰添加により、系内配管および熱交換器の腐食のリスクが著しく上昇していたことがわかった。 As shown in Table 2, in the second plant, since hydrochloric acid was added to simulate the mixing of hydrochloric acid from the process after 5 days, the pH dropped rapidly. Here, when the control for increasing the amount of chemical injection is performed using only ORP as an index, it is not noticed that hydrochloric acid is mixed in, and in addition to lowering the pH in the circulating water system, the excessive addition of an oxidizing agent causes the piping in the system and It was found that the risk of corrosion of the heat exchanger was significantly increased.
 本プラントでは、ORPに加えて、pHを同時に測定することで、迅速にプロセスリークを模擬した塩酸の混入を検知することができた。 In this plant, in addition to ORP, by measuring pH simultaneously, it was possible to quickly detect hydrochloric acid contamination simulating process leak.
 [実施例3]
 図1に示す装置により、第1、2のプラントとは別のパイロットプラント(以下、第3プラント)に設置された循環水系の循環水及び補給水について、残留塩素およびシリカを測定した。本プラントでは、モノクロロスファミン酸を主体とするスライム防止剤を含む水処理薬品をタイマー注入した。また、夏場の渇水時期を想定して、実機冷却水の濁質をバッチで毎日投入した。それぞれの分析結果とシリカから算出した濃縮倍数の経時変化を表3に示す。
[Example 3]
With the apparatus shown in FIG. 1, residual chlorine and silica were measured for circulating water and make-up water in a circulating water system installed in a pilot plant (hereinafter referred to as a third plant) different from the first and second plants. In this plant, a water treatment chemical containing a slime inhibitor mainly composed of monochlororosfamic acid was injected with a timer. Assuming the drought time in summer, the turbidity of the actual cooling water was batched daily. Table 3 shows each analysis result and the change over time of the concentration factor calculated from silica.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の通り、第3のプラントでは、シリカ濃度から算出した濃縮倍数が5.1~5.3倍で推移し、薬品注入量も期間中は同じ設定値で注入されていたにもかかわらず、全残留塩素の濃度が経時的に減少した。測定開始から22日の時点では、本プラントの管理値である全残留塩素濃度5mgCL/L)以上の条件を満足していたが、1~22日における低下傾向を考慮すると、全残留塩素濃度が管理値を下回ることが予測されたため、薬品注入量を増加する対策を提示した。 As shown in Table 3, in the third plant, the concentration factor calculated from the silica concentration changed from 5.1 to 5.3 times, and the chemical injection amount was injected at the same set value during the period. The total residual chlorine concentration decreased over time. On the 22nd day from the start of measurement, the condition of the total residual chlorine concentration of 5mgCL / L), which is the control value of this plant, was satisfied, but considering the decreasing trend in the 1st to 22nd days, the total residual chlorine concentration was Since it was predicted to be below the control value, a measure to increase the amount of chemical injection was presented.
 ここで、本循環水系より分岐させた別の循環水系で、提示された対策に従って薬品注入ポンプのストロークを上げ、全残留塩素濃度が5mgCL/L以上を維持する調整を行った。試験開始から43日後の冷却塔ピットは清浄に保たれており、付属するスライムセンサ(センサに内蔵されている抵抗に電流を周期的に供給して発熱させ、加熱時温度と非加熱時温度を温度センサで測定するセンサ。センサにスライムが付着すると伝熱阻害を受けて、加熱時温度と非加熱時温度との温度差が上昇することからスライムの付着傾向を検知する)の温度上昇も認められなかったため、熱交換器を含めた循環水系が清浄に維持できていたことを確認した。 Here, in another circulating water system branched from this circulating water system, the stroke of the chemical injection pump was increased in accordance with the proposed countermeasures, and the total residual chlorine concentration was adjusted to be maintained at 5 mg CL / L or more. The cooling tower pit 43 days after the start of the test is kept clean, and the attached slime sensor (current is supplied periodically to the resistor built in the sensor to generate heat, and the heating temperature and non-heating temperature are set. A sensor that measures with a temperature sensor.If slime adheres to the sensor, heat transfer is hindered, and the temperature difference between the heating temperature and the non-heating temperature increases, so the tendency of slime adhesion is detected). It was confirmed that the circulating water system including the heat exchanger was maintained clean.
 一方、ポンプストロークを現状のまま維持して運転を続けた循環水系では、全残留塩素濃度が29日後に3.5mgCL/Lとなり、管理値の5mgCL/Lを下回ったため、ポンプストロークを上げて調整したが、36日後では1.4mgCL/Lと依然として管理値以下であり、ポンプストロークをさらに上げたところ、43日後には5.3mgCL/Lと管理値まで回復した。このとき、冷却塔ピット内に藻類が見られ、スライムセンサ温度は0.4℃(伝熱効率やや不良の領域)となり、好適な水処理が実施できていなかった。 On the other hand, in the circulating water system that continued operation with the pump stroke maintained as it is, the total residual chlorine concentration reached 3.5 mgCL / L after 29 days, which was below the control value of 5 mgCL / L. However, after 36 days, it was still below the control value of 1.4 mg CL / L, and when the pump stroke was further increased, it recovered to the control value of 5.3 mg CL / L after 43 days. At this time, algae were observed in the cooling tower pit, and the slime sensor temperature was 0.4 ° C. (region of slightly poor heat transfer efficiency), and a suitable water treatment could not be performed.
 このように、過去の傾向を利用して薬注量を事前に変更することで、管理値を容易に維持することができ、かつ伝熱効率も維持できることが確認できた。 As described above, it was confirmed that the control value can be easily maintained and the heat transfer efficiency can be maintained by changing the dose amount in advance using the past tendency.
 [実施例4]
 図1に示す装置により、第1~3のプラントとは別のパイロットプラント(以下、第4プラント)に設置された循環水系の循環水及び補給水について、持ち運び可能な分析計によりバッチでpH、薬品濃度、およびシリカ濃度を測定した。さらに測定したシリカ濃度から濃縮倍数を算出した。測定結果及び算出結果を以下の表4に示す。なお、本プラントでは、アルカリを含んだ冷却水用薬品をタイマー注入した。
[Example 4]
With the apparatus shown in FIG. 1, the circulating water and make-up water of the circulating water system installed in a pilot plant (hereinafter referred to as the fourth plant) different from the first to third plants is batch-measured by a portable analyzer. The chemical concentration and the silica concentration were measured. Further, the concentration factor was calculated from the measured silica concentration. The measurement results and calculation results are shown in Table 4 below. In this plant, the cooling water chemicals containing alkali were injected into the timer.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の通り、第4プラントでは、循環水のpHが9.5と銅材が腐食する領域であり、また、注入されている薬品量も750mg/Lと目標値の300mg/Lと比較して大幅に高くなっていた。この2項目からのみ判断すると、系内の薬品濃度の低減とpHの低下を目的として、薬品注入の設定タイマー間隔の延長とブロー量のアップ対応をする可能性が高いが、本プラントでは同時に測定しているシリカ濃度から循環水が濃縮していないことが判明していた。そのため、水質管理装置は、冷却塔の負荷が低く、薬品のみが注入され続けていたと判断し、系内の水をブローすることと、冷却塔が冬季等の停止状態である場合には冷却水を抜いて乾燥保管することを対策として提示した。 As shown in Table 4, in the 4th plant, the pH of the circulating water is 9.5 and the copper material is corroded, and the amount of injected chemical is 750 mg / L, which is compared with the target value of 300 mg / L. Was significantly higher. Judging only from these two items, it is highly possible to extend the setting interval of chemical injection and increase the blow rate for the purpose of reducing the chemical concentration in the system and lowering the pH. It was found that the circulating water was not concentrated from the silica concentration. Therefore, the water quality management device determines that the load on the cooling tower is low and only chemicals are continuously being injected, and blows the water in the system and if the cooling tower is in a stopped state such as in winter, the cooling water It was proposed as a measure to remove and store in dry.
 [実施例5]
 図1に示す装置により、第1~4のプラントとは別のパイロットプラント(以下、第5プラント)に設置された循環水系の循環水及び補給水について、電気伝導率、カルシウム硬度、酸消費量(pH4.8)及びシリカ濃度を測定し、さらにそれぞれの測定値から濃縮倍数を算出した。測定結果を以下の表5に示す。
[Example 5]
With the apparatus shown in FIG. 1, the electrical conductivity, calcium hardness, and acid consumption of circulating water and make-up water in the circulating water system installed in a pilot plant (hereinafter referred to as fifth plant) different from the first to fourth plants. (PH 4.8) and silica concentration were measured, and the concentration factor was calculated from each measured value. The measurement results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 第5プラントでは、電気伝導率から算出した濃縮倍数(5.5倍)が、シリカ濃度から算出した濃縮倍数(5.2倍)と比較して高くなっていた。これは、薬品由来の電気伝導率の上昇があったためであり、現状の濃縮倍数は5.2倍と判断した。 In the fifth plant, the concentration factor calculated from the electrical conductivity (5.5 times) was higher than the concentration factor calculated from the silica concentration (5.2 times). This is because there was an increase in electrical conductivity derived from chemicals, and the current concentration factor was determined to be 5.2 times.
 シリカ濃度および電気伝導率から算出した濃縮倍数が5.2倍以上であったのに対し、カルシウム硬度および酸消費量(pH4.8)から算出した濃縮倍数は3.7~3.8倍と大幅に低かった。水質管理装置は、カルシウム硬度成分と酸消費量(pH4.8)成分とが循環水系内で反応し、炭酸カルシウムの析出が起こっていると判断し、濃縮倍数を下げる操作を促す対策を提示した。 The concentration factor calculated from the silica concentration and the electric conductivity was 5.2 times or more, whereas the concentration factor calculated from the calcium hardness and the acid consumption (pH 4.8) was 3.7 to 3.8 times. It was significantly lower. The water quality management device determined that calcium carbonate component and acid consumption (pH 4.8) component reacted in the circulating water system and precipitated calcium carbonate, and suggested measures to promote the operation to lower the concentration factor. .
 ここで、本循環水系より分岐した別の循環水系で、提示された対策に従って、各水質項目の濃縮倍数が3.8倍になるようブロー量を増加し、以下の表6の水質を維持した。1ヵ月後に開放点検した結果、熱交換器に炭酸カルシウムを主成分とするスケールの付着は認められなかった。 Here, in another circulating water system branched from this circulating water system, according to the proposed measures, the amount of blow was increased so that the concentration factor of each water quality item was 3.8 times, and the water quality shown in Table 6 below was maintained. . As a result of an open inspection one month later, no adhesion of scales mainly composed of calcium carbonate to the heat exchanger was observed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 一方、各水質項目が表5に示す値のまま運転を続けた循環水系を、1ヵ月後に開放点検した結果、熱交換器に炭酸カルシウムを主成分とするスケールの付着が認められた。 On the other hand, as a result of an open inspection of the circulating water system in which each water quality item continued to operate with the values shown in Table 5 after one month, adhesion of scales mainly composed of calcium carbonate to the heat exchanger was observed.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年4月18日付で出願された日本特許出願2014-086544に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2014-086544 filed on April 18, 2014, which is incorporated by reference in its entirety.

Claims (9)

  1.  水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
     複数の水質パラメータの変化と、前記水処理設備における水処理状況とを組み合わせた対策データを記憶する記憶部と、
     前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
     前記演算部により選択された水処理状況を表示する表示部と、
     を備える水質管理装置。
    An input unit for inputting a plurality of water quality parameters measured for sample water collected from a water treatment facility;
    A storage unit for storing countermeasure data combining a plurality of water quality parameter changes and a water treatment status in the water treatment facility;
    A calculation unit that refers to the countermeasure data and selects a water treatment status corresponding to the plurality of input water quality parameters;
    A display unit for displaying the water treatment status selected by the calculation unit;
    A water quality management device.
  2.  前記対策データは、複数の水質パラメータの変化と、前記水処理設備における水処理状況と、前記水処理設備に施す対策とが組み合わされており、
     前記演算部は、入力された複数の水質パラメータに対応する対策を選択し、
     前記表示部は、前記演算部により選択された対策を表示することを特徴とする請求項1に記載の水質管理装置。
    The countermeasure data is a combination of changes in a plurality of water quality parameters, water treatment status in the water treatment facility, and measures to be applied to the water treatment facility,
    The calculation unit selects measures corresponding to the plurality of input water quality parameters,
    The water quality management device according to claim 1, wherein the display unit displays a countermeasure selected by the calculation unit.
  3.  前記記憶部は、前記入力部を介して入力された水質パラメータを記憶し、
     前記演算部は、前記記憶部に記憶されている過去の水質パラメータを含むトレンドを用いて、水処理状況又は対策の選択を行うことを特徴とする請求項2に記載の水質管理装置。
    The storage unit stores water quality parameters input via the input unit,
    The water quality management device according to claim 2, wherein the calculation unit selects a water treatment situation or a measure using a trend including past water quality parameters stored in the storage unit.
  4.  試料水の複数の水質パラメータを測定する複数の水質測定器をさらに備え、
     前記演算部は、前記対策データを参照し、前記複数の水質測定器により測定された複数の水質パラメータに対応する水処理状況を選択することを特徴とする請求項1乃至3のいずれかに記載の水質管理装置。
    A plurality of water quality measuring devices for measuring a plurality of water quality parameters of the sample water;
    The said calculating part selects the water treatment condition corresponding to the several water quality parameter measured with the said several water quality measuring device with reference to the said countermeasure data, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. Water quality management equipment.
  5.  前記水質測定器として、透過率又は吸光度を測定するための光学的測定器、1種又は2種のイオン電極、及び電気伝導率計のうちの少なくとも2個を備えたことを特徴とする請求項4に記載の水質管理装置。 The water quality measuring instrument comprises at least two of an optical measuring instrument for measuring transmittance or absorbance, one or two ion electrodes, and an electric conductivity meter. 4. The water quality management device according to 4.
  6.  水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部、入力された複数の水質パラメータを送信する通信部、及び表示部を有するデータ通信装置と、
     複数の水質パラメータの変化と、前記水処理設備における水処理状況と、前記水処理設備に施す対策とが組み合わされた対策データを記憶したデータベースを有し、前記データベースを検索して前記データ通信装置から受信した複数の水質パラメータに対応する水処理状況及び対策を選択し、選択した水処理状況及び対策を前記データ通信装置に通知するサーバ装置と、
     を備え、
     前記データ通信装置は、前記サーバ装置から通知された水処理状況及び対策を前記表示部に表示することを特徴とする水質管理システム。
    A data communication device having an input unit for inputting a plurality of water quality parameters measured for sample water collected from a water treatment facility, a communication unit for transmitting the plurality of input water quality parameters, and a display unit;
    A data storage device that stores countermeasure data in which a plurality of water quality parameter changes, a water treatment status in the water treatment facility, and measures to be applied to the water treatment facility are combined; A server device that selects a water treatment status and measures corresponding to a plurality of water quality parameters received from the server, and notifies the data communication device of the selected water treatment status and measures;
    With
    The said data communication apparatus displays the water treatment status and countermeasure notified from the said server apparatus on the said display part, The water quality management system characterized by the above-mentioned.
  7.  前記データ通信装置は、試料水の複数の水質パラメータを測定する複数の水質測定器を有する分析計に設けられていることを特徴とする請求項6に記載の水質管理システム。 The water quality management system according to claim 6, wherein the data communication device is provided in an analyzer having a plurality of water quality measuring devices for measuring a plurality of water quality parameters of sample water.
  8.  1又は複数の分析計を用いて、水処理設備から採取した水について複数の水質パラメータを測定し、
     複数の水質パラメータの変化と、前記水処理設備における水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する水質管理装置が、前記対策データを参照し、測定された水質パラメータに対応する水処理状況及び対策を選択し、
     表示部が、前記選択された水処理状況及び対策を表示することを特徴とする水質管理方法。
    Using one or more analyzers, measure multiple water quality parameters for the water collected from the water treatment facility,
    A water quality management device that stores countermeasure data combining a plurality of water quality parameter changes, a water treatment status in the water treatment facility, and a measure to be applied to the water treatment facility, refers to the measure data, and measures the measured water quality Select the water treatment status and measures corresponding to the parameters,
    A water quality management method, wherein a display unit displays the selected water treatment status and countermeasures.
  9.  pH、電気伝導率、塩化物イオン濃度、硫酸イオン濃度、酸消費量(pH4.8)、酸消費量(pH8.3)、マグネシウム硬度、カルシウム硬度、シリカ濃度、鉄濃度、銅濃度、アンモニウムイオン濃度、残留塩素濃度、酸化還元電位、TOC(全有機炭素)、COD(化学的酸素要求量)、ポリマー濃度、全りん酸濃度、亜鉛濃度、及び濁度からなる群より選ばれる2種以上の水質パラメータを測定することを特徴とする請求項8に記載の水質管理方法。 pH, electrical conductivity, chloride ion concentration, sulfate ion concentration, acid consumption (pH 4.8), acid consumption (pH 8.3), magnesium hardness, calcium hardness, silica concentration, iron concentration, copper concentration, ammonium ion Two or more selected from the group consisting of concentration, residual chlorine concentration, redox potential, TOC (total organic carbon), COD (chemical oxygen demand), polymer concentration, total phosphoric acid concentration, zinc concentration, and turbidity The water quality management method according to claim 8, wherein a water quality parameter is measured.
PCT/JP2015/060320 2014-04-18 2015-04-01 Water-quality management device, water-quality management system, and water-quality management method WO2015159711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014086544A JP2015205237A (en) 2014-04-18 2014-04-18 Apparatus, system and method for water quality management
JP2014-086544 2014-04-18

Publications (1)

Publication Number Publication Date
WO2015159711A1 true WO2015159711A1 (en) 2015-10-22

Family

ID=54323922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060320 WO2015159711A1 (en) 2014-04-18 2015-04-01 Water-quality management device, water-quality management system, and water-quality management method

Country Status (2)

Country Link
JP (1) JP2015205237A (en)
WO (1) WO2015159711A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173131A (en) * 2016-03-24 2017-09-28 宇部興産株式会社 Coagulation start time calculation method of cement by electric conductivity
WO2018010482A1 (en) * 2016-07-11 2018-01-18 张利萍 Water quality tester for laboratory use
CN113917101A (en) * 2021-10-09 2022-01-11 中国人民大学 Method for predicting chronic toxicity of copper in watershed water environment and deriving long-term reference
CN113917102A (en) * 2021-10-09 2022-01-11 中国人民大学 Method for acquiring copper short-term water quality reference through parameter correction
EP4273103A4 (en) * 2021-01-29 2024-06-19 Kurita Water Industries Ltd. Estimation device, prediction device, control device, estimation system, prediction system, control system, estimation program, prediction program, control program, estimation method, prediction method, and control method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683008B2 (en) * 2016-05-13 2020-04-15 三浦工業株式会社 Water treatment system
KR101683266B1 (en) * 2016-05-20 2016-12-06 (주)큐앤테크 Water quality analysis device
JP6874739B2 (en) * 2018-05-30 2021-05-19 栗田工業株式会社 Water treatment control monitoring device
JP7310334B2 (en) * 2019-06-07 2023-07-19 三浦工業株式会社 Maintenance management device
JP2022056057A (en) * 2020-09-29 2022-04-08 三菱重工業株式会社 Water quality management device of plant, plant, and water quality management method of plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205249A (en) * 2000-01-24 2001-07-31 Ffc:Kk Water quality management service providing system
JP2001263605A (en) * 2000-03-17 2001-09-26 Kurita Water Ind Ltd Facility/equipment control system
JP2001265426A (en) * 2000-03-17 2001-09-28 Kurita Water Ind Ltd Equipment management system
US20030236649A1 (en) * 2002-06-25 2003-12-25 Kodukula Prasad S. Water treatment monitoring system
JP2006300870A (en) * 2005-04-25 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> Water quality measuring system
JP2007128440A (en) * 2005-11-07 2007-05-24 Kurita Water Ind Ltd Operation management device for water treatment plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205249A (en) * 2000-01-24 2001-07-31 Ffc:Kk Water quality management service providing system
JP2001263605A (en) * 2000-03-17 2001-09-26 Kurita Water Ind Ltd Facility/equipment control system
JP2001265426A (en) * 2000-03-17 2001-09-28 Kurita Water Ind Ltd Equipment management system
US20030236649A1 (en) * 2002-06-25 2003-12-25 Kodukula Prasad S. Water treatment monitoring system
JP2006300870A (en) * 2005-04-25 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> Water quality measuring system
JP2007128440A (en) * 2005-11-07 2007-05-24 Kurita Water Ind Ltd Operation management device for water treatment plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173131A (en) * 2016-03-24 2017-09-28 宇部興産株式会社 Coagulation start time calculation method of cement by electric conductivity
WO2018010482A1 (en) * 2016-07-11 2018-01-18 张利萍 Water quality tester for laboratory use
EP4273103A4 (en) * 2021-01-29 2024-06-19 Kurita Water Industries Ltd. Estimation device, prediction device, control device, estimation system, prediction system, control system, estimation program, prediction program, control program, estimation method, prediction method, and control method
CN113917101A (en) * 2021-10-09 2022-01-11 中国人民大学 Method for predicting chronic toxicity of copper in watershed water environment and deriving long-term reference
CN113917102A (en) * 2021-10-09 2022-01-11 中国人民大学 Method for acquiring copper short-term water quality reference through parameter correction
CN113917102B (en) * 2021-10-09 2024-01-12 中国人民大学 Method for obtaining copper short-term water quality standard through parameter correction
CN113917101B (en) * 2021-10-09 2024-01-12 中国人民大学 Method for predicting chronic toxicity of copper in watershed water environment and deducing long-term reference

Also Published As

Publication number Publication date
JP2015205237A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
WO2015159711A1 (en) Water-quality management device, water-quality management system, and water-quality management method
JP6202135B2 (en) Water quality management device
JP5895967B2 (en) Concentration multiple measurement device, concentration multiple measurement method, and water quality index value measurement method
Gilliam et al. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures
JP2771611B2 (en) Cooling tower water continuous on-stream monitoring device
JP5818907B2 (en) Equipment and hot water heating / heating system
CN106680520B (en) A kind of water quality automatic detection analysis instrument
ES2741651T3 (en) Method and device to monitor and control the status of a process stream
CN113401954A (en) Prediction method and device for industrial circulating cooling water
JP5612822B2 (en) Slime control method
CN114839166A (en) Real-time byproduct quantitative determination device based on sodium hypochlorite optical concentration analysis
Meghana et al. Design and development of real-time water quality monitoring system
KR102555505B1 (en) Water quality multi-item measurement system equipped with electrochemical residual chlorine sensor of rotating electrode method using pH electrode
JP2005337585A (en) Boiler device and its corrosion suppressing method
CN116185089B (en) Automatic power circulating water monitoring control device
JP4292380B2 (en) Concentration management method and concentration management apparatus for water treatment chemicals
Palmer et al. Isopiestic determination of the osmotic and activity coefficients of K2SO4 (aq) at the temperatures 298.15 and 323.15 K, and revision of the thermodynamic properties of the K2SO4+ H2O system
Yusri et al. IoT based water quality monitoring system and test for swimming pool water physicochemical quality
JP4543388B2 (en) Concentration control method for water treatment chemicals
US20050036903A1 (en) Pewitt analyzer
JP2009139119A (en) Cod automatic measuring instrument and cod measuring method
CN106885914A (en) Multi-pollutant is into different water automatic detection analysis instrument and detection method
Beck et al. Novel Bare Amperometric Sensors to Provide Accurate Stabilized Bromine Dosing in Cooling Towers
JP2011215034A (en) Automatic fluorine analyzer
AU2020221906A1 (en) System for electro-chemically inhibiting biological growth in air treatment units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779783

Country of ref document: EP

Kind code of ref document: A1