JP2011215034A - Automatic fluorine analyzer - Google Patents

Automatic fluorine analyzer Download PDF

Info

Publication number
JP2011215034A
JP2011215034A JP2010084372A JP2010084372A JP2011215034A JP 2011215034 A JP2011215034 A JP 2011215034A JP 2010084372 A JP2010084372 A JP 2010084372A JP 2010084372 A JP2010084372 A JP 2010084372A JP 2011215034 A JP2011215034 A JP 2011215034A
Authority
JP
Japan
Prior art keywords
distillation
fluorine
solution
tank
fluorine concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010084372A
Other languages
Japanese (ja)
Inventor
Megumi Yoshikawa
惠 吉川
Kazuhide Kato
和秀 加藤
Atsushi Kurui
敦士 久留井
Yasuhiko Miyoshi
康彦 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RABOTEKKU KK
Original Assignee
RABOTEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RABOTEKKU KK filed Critical RABOTEKKU KK
Priority to JP2010084372A priority Critical patent/JP2011215034A/en
Publication of JP2011215034A publication Critical patent/JP2011215034A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic fluorine analyzer capable of analyzing fluorine concentration contained in a sample solution.SOLUTION: The automatic fluorine analyzer includes a weighing means of sampling and weighing a predetermined amount of a fluorine-containing solution; a distillation means of adding the weighed fluorine-containing solution and a mixture solution of sulfuric acid or perchloric acid, phosphoric acid and silicon dioxide powder dispersed therein to a distillation bath and performing steam distillation while supplying water vapor from a steam generator; a neutralization means of adding an acidic solution and/or a basic solution to the liquid that results from cooling the gas exhausted from the distillation bath and neutralizing it; and a fluorine concentration measurement means of adding a buffer solution to the neutralized liquid to measure a fluorine concentration by an ion electrode method. The analyzer includes a control device for performing the processing in the weighing, distillation, neutralization and fluorine concentration measurement means, in the order of weighing, distillation, neutralization and fluorine concentration measurement means.

Description

この発明は、フッ素自動分析装置に関する。   The present invention relates to an automatic fluorine analyzer.

フッ素化合物は、電子工業製品の製造や機能性医薬品等、種々の用途に広く使われている。そして、製造工場等ではフッ素化合物を含有する廃液が生じる。フッ素化合物は難分解性で環境悪化を招く物質である。   Fluorine compounds are widely used in various applications such as the manufacture of electronic industrial products and functional pharmaceuticals. And in a manufacturing factory etc., the waste liquid containing a fluorine compound arises. Fluorine compounds are difficult to decompose and cause environmental degradation.

フッ素含有廃液の排出については法的規制があり、水質汚濁防止法によれば、海域以外の公共用水域に排出される廃液中のフッ素濃度は8mg/L以内、海域に排出される廃液中のフッ素濃度は15mg/L以内であることが定められている。このため、フッ素含有廃液の排出の際には、廃液中の含有フッ素量の分析が求められている。   There is a legal restriction on the discharge of fluorine-containing waste liquid, and according to the Water Pollution Control Law, the fluorine concentration in waste liquid discharged to public water areas other than sea areas is within 8 mg / L, and in waste liquid discharged to sea areas The fluorine concentration is determined to be within 15 mg / L. For this reason, when the fluorine-containing waste liquid is discharged, analysis of the amount of fluorine contained in the waste liquid is required.

フッ素を含有する溶液中のフッ素濃度を測定し得るものとして、例えば亜鉛電解液中のフッ素濃度測定装置(特許文献1)等があるが、種々の廃液中のフッ素の分析においては、主としてJIS K0102に基づいた含有フッ素濃度の分析が行われている。   As a device capable of measuring the fluorine concentration in a solution containing fluorine, for example, there is a fluorine concentration measuring device in a zinc electrolyte (Patent Document 1), etc., but in the analysis of fluorine in various waste liquids, mainly JIS K0102. Analysis of the fluorine content based on the above has been conducted.

特開平11−352099号公報Japanese Patent Laid-Open No. 11-352099

JIS K0102に基づく分析手法はこれまで分析者が1サンプル毎手動で行っていた。JIS K0102に基づく分析手法では、試薬の調製、蒸留温度の管理、蒸気発生量の管理、pH調整等々、手間が掛かるとともに、分析者の熟練度を要するという問題があった。   Until now, the analysis method based on JIS K0102 has been manually performed by an analyst for each sample. In the analysis method based on JIS K0102, there are problems such as preparation of reagents, management of distillation temperature, management of steam generation amount, pH adjustment, and the like, as well as requiring skill of the analyst.

本発明は上記事項に鑑みてなされたものであり、その目的は、簡単にサンプル溶液に含まれるフッ素の濃度を測定できるフッ素自動分析装置を提供することにある。   The present invention has been made in view of the above matters, and an object thereof is to provide an automatic fluorine analyzer that can easily measure the concentration of fluorine contained in a sample solution.

本発明に係るフッ素自動分析装置は、
所定量のフッ素含有溶液を分取して計量する計量手段と、
計量した前記フッ素含有溶液、及び、硫酸或いは過塩素酸とリン酸に二酸化ケイ素粉末を分散させた混合溶液を蒸留槽に添加し、蒸気発生装置から水蒸気を供給しながら水蒸気蒸留を行う蒸留手段と、
前記蒸留槽から排出された気体を冷却して得られた液体に酸性溶液及び/又は塩基性溶液を添加して中和する中和手段と、
中和した液体に緩衝液を添加しイオン電極法でフッ素濃度を測定するフッ素濃度測定手段と、
前記計量手段、前記蒸留手段、前記中和手段、及び、前記フッ素濃度測定手段における処理を行わせ、且つ、前記計量手段、前記蒸留手段、前記中和手段、前記フッ素濃度測定手段の順に行わせる制御装置と、を備える、
ことを特徴とする。
Fluorine automatic analyzer according to the present invention,
Measuring means for separating and weighing a predetermined amount of fluorine-containing solution;
A distillation means for performing steam distillation while adding the measured fluorine-containing solution and a mixed solution in which silicon dioxide powder is dispersed in sulfuric acid or perchloric acid and phosphoric acid, and supplying water vapor from a steam generator; ,
Neutralizing means for neutralizing the liquid obtained by cooling the gas discharged from the distillation tank by adding an acidic solution and / or a basic solution;
A fluorine concentration measuring means for adding a buffer solution to the neutralized liquid and measuring the fluorine concentration by an ion electrode method;
The measurement unit, the distillation unit, the neutralization unit, and the fluorine concentration measurement unit are processed, and the measurement unit, the distillation unit, the neutralization unit, and the fluorine concentration measurement unit are sequentially performed. A control device,
It is characterized by that.

また、前記蒸気発生装置は水蒸気発生流路が内設された金属ブロックに加熱装置が配置されて構成され、
前記制御装置が前記水蒸気発生流路に定量的に水を供給することで、供給した水の全量を加熱蒸発して定量的に水蒸気を前記蒸留槽に供給することが好ましい。
Further, the steam generator is configured by arranging a heating device on a metal block in which a steam generation flow path is provided,
It is preferable that the control device supplies water quantitatively to the water vapor generation flow path so that the total amount of the supplied water is heated and evaporated to quantitatively supply water vapor to the distillation tank.

また、前記蒸留槽は、前記フッ素含有溶液が充填される蒸留フラスコと、前記蒸留フラスコが収容される金属容器と、前記金属容器に設置された加熱装置と、前記蒸留フラスコ内の前記フッ素含有溶液の温度を測定する温度センサと、から構成され、
前記制御装置は前記加熱装置を制御して前記蒸留フラスコ内の液体の温度を140℃以上150℃以下の範囲に維持することが好ましい。
The distillation tank includes a distillation flask filled with the fluorine-containing solution, a metal container in which the distillation flask is accommodated, a heating device installed in the metal container, and the fluorine-containing solution in the distillation flask. And a temperature sensor for measuring the temperature of
It is preferable that the control device controls the heating device to maintain the temperature of the liquid in the distillation flask in a range of 140 ° C. or higher and 150 ° C. or lower.

本発明に係るフッ素自動分析装置は、計量手段、蒸留手段、中和手段、及び、フッ素濃度測定手段における処理を行わせ、且つ、計量手段、蒸留手段、中和手段、フッ素濃度測定手段の順に行わせる制御装置と、を備えている。このため、分析者の熟練及び手間を要さず容易にフッ素を含有するサンプル溶液中のフッ素濃度の測定ができる。   The automatic fluorine analyzer according to the present invention performs processing in the measuring means, distillation means, neutralizing means, and fluorine concentration measuring means, and in the order of measuring means, distillation means, neutralizing means, and fluorine concentration measuring means. And a control device to be performed. Therefore, the fluorine concentration in the sample solution containing fluorine can be easily measured without requiring the skill and labor of the analyst.

本発明に係るフッ素自動分析装置の概略構成図である。It is a schematic block diagram of the fluorine automatic analyzer which concerns on this invention. 蒸留槽の外観図である。It is an external view of a distillation tank. 蒸留槽の断面図である。It is sectional drawing of a distillation tank. (A)は水蒸気発生装置の構造を示す水平断面図、(B)は水蒸気発生装置の構造を示す側面透視図である。(A) is a horizontal sectional view showing the structure of the steam generator, and (B) is a side perspective view showing the structure of the steam generator. (A)は測定槽の構造を示す水平断面図、(B)は(A)のX−X’断面図、(C)は(A)のY−Y’断面図である。(A) is a horizontal sectional view showing the structure of the measuring tank, (B) is an X-X 'sectional view of (A), and (C) is a Y-Y' sectional view of (A).

本実施の形態に係るフッ素自動分析装置は、計量手段、蒸留手段、中和手段、及び、フッ素濃度測定手段を備え、計量手段、蒸留手段、中和手段、フッ素濃度測定手段を順に行わせる制御装置を備えている。具体的には、図1の概略構成図に示すように、フッ素自動分析装置1は主として、オートサンプラー10と、計量槽20と、蒸留槽30と、水蒸気発生装置40と、中和槽50と、測定槽60と、制御装置70と、を備える。   The automatic fluorine analyzer according to the present embodiment includes a measuring unit, a distillation unit, a neutralizing unit, and a fluorine concentration measuring unit, and performs control in which the measuring unit, the distillation unit, the neutralizing unit, and the fluorine concentration measuring unit are sequentially performed. Equipment. Specifically, as shown in the schematic configuration diagram of FIG. 1, the fluorine automatic analyzer 1 mainly includes an autosampler 10, a metering tank 20, a distillation tank 30, a water vapor generator 40, and a neutralization tank 50. The measuring tank 60 and the control device 70 are provided.

オートサンプラー10はフッ素を含有するサンプル溶液が複数配置され、そして、順次サンプル溶液を分取し計量槽20へと供給する装置である。   The autosampler 10 is a device in which a plurality of sample solutions containing fluorine are arranged, and the sample solutions are sequentially collected and supplied to the weighing tank 20.

計量槽20はオートサンプラー10にて分取されたサンプル溶液が充填され、所定量のサンプル溶液が計量される槽である。   The measuring tank 20 is a tank in which the sample solution sorted by the autosampler 10 is filled and a predetermined amount of the sample solution is weighed.

蒸留槽30は、水蒸気発生装置40で発生させた水蒸気を利用しサンプル溶液の水蒸気蒸留を行う槽である。   The distillation tank 30 is a tank that performs steam distillation of the sample solution using the steam generated by the steam generator 40.

中和槽50は、蒸留槽30で生成した気体が冷却された溶液に酸性溶液或いは塩基性溶液を添加して中和する槽である。   The neutralization tank 50 is a tank that is neutralized by adding an acidic solution or a basic solution to the solution in which the gas generated in the distillation tank 30 is cooled.

測定槽60は、中和された溶液のフッ素濃度を測定する槽である。   The measurement tank 60 is a tank for measuring the fluorine concentration of the neutralized solution.

制御装置70は、オートサンプラー10、計量槽20、蒸留槽30、水蒸気発生装置40、中和槽50及び測定槽60でそれぞれ行われる処理を制御する装置である。   The control device 70 is a device that controls processes performed in the auto sampler 10, the measurement tank 20, the distillation tank 30, the water vapor generation device 40, the neutralization tank 50, and the measurement tank 60, respectively.

以下、フッ素自動分析装置1によるサンプル溶液中のフッ素濃度の測定の流れについて説明する。   Hereinafter, the flow of measurement of the fluorine concentration in the sample solution by the fluorine automatic analyzer 1 will be described.

まず、フッ素自動分析装置1を駆動させる前に、以下のようにして、各サンプル溶液を用意する。廃液等、Fイオンを30μg以上含有する試料をビーカー等にとり、フェノールフタレイン溶液(5g/L)を加え、水酸化ナトリウム溶液(100g/L)を滴下して微塩基性とした後、加熱して約30mlに濃縮する。 First, before driving the fluorine automatic analyzer 1, each sample solution is prepared as follows. A sample containing 30 μg or more of F ions such as waste liquid is placed in a beaker or the like, a phenolphthalein solution (5 g / L) is added, and a sodium hydroxide solution (100 g / L) is added dropwise to make it slightly basic, followed by heating. To about 30 ml.

このようにして調製した各サンプル溶液をオートサンプラー10にセットする。   Each sample solution thus prepared is set in the autosampler 10.

(計量手段)
そして、不図示のフッ素自動分析装置1のスイッチをオンすると、オートサンプラー10にセットされたサンプル溶液がポンプにより計量槽20に送られる。計量槽20には液面検出センサ21が設置されており、液面検出センサ21が充填されるサンプル溶液の液面を検出すると、オートサンプラー10からのサンプル溶液の供給が停止される。これにより一定量(15ml)のサンプル溶液が計量される。
(Measuring means)
When the switch of the fluorine automatic analyzer 1 (not shown) is turned on, the sample solution set in the autosampler 10 is sent to the measuring tank 20 by a pump. A liquid level detection sensor 21 is installed in the measuring tank 20, and when the liquid level of the sample solution filled in the liquid level detection sensor 21 is detected, the supply of the sample solution from the autosampler 10 is stopped. As a result, a fixed amount (15 ml) of the sample solution is weighed.

(蒸留手段)
水蒸気蒸留は、蒸気圧の高い高沸点の化合物を沸点以下の温度で蒸留する方法である。水蒸気を連続的に蒸留槽30に導入すると共に、蒸留槽30を加熱状態にし、蒸留槽30内を水蒸気発生装置40から供給させる加熱水蒸気で満たし、フッ素化合物とともに流出する加熱水蒸気を冷却管35で冷却して目的物であるフッ素化合物を水と共に冷却捕集する。
(Distillation means)
Steam distillation is a method of distilling a high boiling point compound having a high vapor pressure at a temperature below the boiling point. Steam is continuously introduced into the distillation tank 30, the distillation tank 30 is brought into a heated state, the inside of the distillation tank 30 is filled with heated steam supplied from the steam generator 40, and the heated steam flowing out together with the fluorine compound is cooled by the cooling pipe 35. Cool and collect the target fluorine compound together with water.

上記のようにして計量されたサンプル溶液は、計量槽20から蒸留槽30へと送られる。また、蒸留槽30へは、試薬槽22内に充填されている過塩素酸とリン酸に二酸化ケイ素(SiO)粉末を分散させた混合溶液が一定量(15ml)送られる。なお、混合溶液は、二酸化ケイ素1g、リン酸1ml、過塩素酸40mlの割合で調製されている。また、二酸化ケイ素は、後述の蒸留手段において、サンプル溶液に含有するフッ素を反応させ、テトラフルオロケイ酸(SiF)を生成させるために加えられる。二酸化ケイ素の粉末は上記の配合で過塩素酸及びリン酸に配合し、また、試薬槽22内を攪拌して二酸化ケイ素粉末を溶液中に均一に分散させているので、一定量の二酸化ケイ素が過塩素酸及びリン酸とともに蒸留槽30へと送られる。なお、過塩素酸に代えて硫酸を用いてもよい。 The sample solution weighed as described above is sent from the weighing tank 20 to the distillation tank 30. A fixed amount (15 ml) of a mixed solution in which silicon dioxide (SiO 2 ) powder is dispersed in perchloric acid and phosphoric acid filled in the reagent tank 22 is sent to the distillation tank 30. The mixed solution was prepared at a ratio of 1 g of silicon dioxide, 1 ml of phosphoric acid, and 40 ml of perchloric acid. In addition, silicon dioxide is added in order to cause the fluorine contained in the sample solution to react and produce tetrafluorosilicic acid (SiF 4 ) in the distillation means described later. The silicon dioxide powder is blended with perchloric acid and phosphoric acid in the above blending, and the reagent tank 22 is stirred to uniformly disperse the silicon dioxide powder in the solution. It is sent to the distillation tank 30 together with perchloric acid and phosphoric acid. Note that sulfuric acid may be used in place of perchloric acid.

蒸留槽30は、図2及び図3に示すように、サンプル溶液及び混合溶液が充填される蒸留フラスコ31、蒸留フラスコ31が収容される金属容器32、金属容器32の外周を包囲するよう設置されたバンドヒーター33、及び蒸留フラスコ31内の溶液の温度を測定する液温計34から構成されている。バンドヒーター33は、蒸留フラスコ31内における目標温度と現状温度との差によって、制御装置70によって制御され、蒸留フラスコ31内の温度を短時間で目標温度に到達させ、且つ、目標温度に保たせる。   As shown in FIGS. 2 and 3, the distillation tank 30 is installed so as to surround the outer periphery of the distillation flask 31 filled with the sample solution and the mixed solution, the metal container 32 in which the distillation flask 31 is accommodated, and the metal container 32. And a liquid thermometer 34 for measuring the temperature of the solution in the distillation flask 31. The band heater 33 is controlled by the control device 70 based on the difference between the target temperature in the distillation flask 31 and the current temperature, and allows the temperature in the distillation flask 31 to reach the target temperature in a short time and keep it at the target temperature. .

サンプル溶液及び混合溶液からなる溶液が蒸留フラスコ31に充填されると、制御装置70によりバンドヒーター33による加熱が始められ、蒸留フラスコ31内の溶液が加熱される。まず、蒸留フラスコ31内の溶液は、溶液の温度が140℃になるまで加熱される。   When the distillation flask 31 is filled with the solution composed of the sample solution and the mixed solution, heating by the band heater 33 is started by the controller 70, and the solution in the distillation flask 31 is heated. First, the solution in the distillation flask 31 is heated until the temperature of the solution reaches 140 ° C.

蒸留フラスコ31内の溶液が凡そ140℃になったことを液温計34が検知すると、制御装置70によって水蒸気発生装置40から蒸留フラスコ31内への水蒸気の供給が行われる。溶液中のフッ素化合物は、加熱によって二酸化ケイ素と反応してガス状の4フッ化ケイ素(SiF)となる。この4フッ化ケイ素が供給された水蒸気によって蒸留フラスコ31から留出する。 When the thermometer 34 detects that the solution in the distillation flask 31 has reached approximately 140 ° C., the controller 70 supplies the steam from the steam generator 40 into the distillation flask 31. The fluorine compound in the solution reacts with silicon dioxide by heating to become gaseous silicon tetrafluoride (SiF 4 ). Distillation from the distillation flask 31 is performed by the water vapor supplied with the silicon tetrafluoride.

制御装置70は蒸留フラスコ31内の溶液が140℃以上150℃以下の範囲に保たれるよう、液温計34からのフィードバックに基づきバンドヒーター33による加熱を制御する。このように制御することで、フッ素化合物の水蒸気蒸留が適正に行われる。   The control device 70 controls heating by the band heater 33 based on feedback from the liquid thermometer 34 so that the solution in the distillation flask 31 is maintained in a range of 140 ° C. or higher and 150 ° C. or lower. By controlling in this way, steam distillation of a fluorine compound is performed appropriately.

水蒸気蒸留により生成した蒸気は順次蒸留槽30から排出され、冷却管35を通過する際に液化し、中和槽50に流入する。なお、水蒸気蒸留が始まる前に、制御装置70は中和槽50に、純水槽41から純水10mlを、また、塩基性溶液槽52から水酸化ナトリウム水溶液0.1mlをそれぞれ添加する。そして、蒸留中は中和槽50内の溶液が塩基性を保つように制御される。蒸留槽30から留出するガスは酸性であり、液化しなかった酸性ガスを速やかに溶液に吸収させるためである。中和槽50にはpHメーター51が設置されており、留出させて得られた溶液のpHが8を下回ると、制御装置70が適宜塩基性溶液槽52から水酸化ナトリウム水溶液を添加して、pH8以上を保つよう制御している。   Steam generated by steam distillation is sequentially discharged from the distillation tank 30, liquefied when passing through the cooling pipe 35, and flows into the neutralization tank 50. Before the steam distillation starts, the controller 70 adds 10 ml of pure water from the pure water tank 41 and 0.1 ml of an aqueous sodium hydroxide solution from the basic solution tank 52 to the neutralization tank 50. And during distillation, it controls so that the solution in the neutralization tank 50 may keep basicity. This is because the gas distilled from the distillation tank 30 is acidic, and the acidic gas that has not been liquefied is quickly absorbed into the solution. A pH meter 51 is installed in the neutralization tank 50. When the pH of the solution obtained by distillation is less than 8, the controller 70 appropriately adds an aqueous sodium hydroxide solution from the basic solution tank 52. The pH is controlled to be 8 or more.

中和槽30に流入した液体が一定量(90ml)になるまで水蒸気蒸留が行われる。なお、本実施の形態で計量したサンプル溶液の量(15ml)では、中和槽30に流入した液体が90mlに達すると、サンプル溶液に含有しているフッ化物イオンの全量が留出したものと認められる。   Steam distillation is performed until the liquid flowing into the neutralization tank 30 reaches a certain amount (90 ml). In addition, in the amount (15 ml) of the sample solution weighed in the present embodiment, when the liquid flowing into the neutralization tank 30 reaches 90 ml, the total amount of fluoride ions contained in the sample solution is distilled. Is recognized.

このように、制御装置70によって蒸留フラスコ31内の溶液が140℃以上150℃以下の範囲に保たれるため、以下の問題が生じない。即ち、溶液の温度が低くなった場合(140℃よりも低い場合)、供給された水蒸気が蒸留フラスコ31内で水となり、溶液の量が増加してしまうとともに、水蒸気による気化したガスの排出作用が低下し、気化したフッ素が蒸留フラスコ31から留出しなくなる。一方、溶液の温度が高くなった場合(150℃よりも高い場合)、過塩素酸が留出してしまう。   Thus, since the solution in the distillation flask 31 is maintained in the range of 140 ° C. or higher and 150 ° C. or lower by the control device 70, the following problem does not occur. That is, when the temperature of the solution becomes low (when the temperature is lower than 140 ° C.), the supplied water vapor becomes water in the distillation flask 31 and the amount of the solution increases, and the vaporized gas is discharged by the water vapor. Decreases and vaporized fluorine does not distill from the distillation flask 31. On the other hand, when the temperature of the solution becomes high (when it is higher than 150 ° C.), perchloric acid is distilled off.

また、水蒸気発生装置40は、図4(A)、(B)に示すように、金属ブロック42内部に水蒸気発生流路43と、棒状の加熱装置44と、温度センサ45とを有する構造としている。金属ブロックとして熱容量の大きい金属、例えばステンレス等が用いられる。加熱装置44による加熱により金属ブロック42が凡そ150℃に熱せられる。制御装置70は温度センサ45による検出温度に基づいて、金属ブロック42が凡そ150℃を維持するよう加熱装置44を制御している。   Further, as shown in FIGS. 4A and 4B, the water vapor generating device 40 has a structure having a water vapor generating flow path 43, a rod-shaped heating device 44, and a temperature sensor 45 inside the metal block. . A metal having a large heat capacity, such as stainless steel, is used as the metal block. The metal block 42 is heated to about 150 ° C. by heating by the heating device 44. Based on the temperature detected by the temperature sensor 45, the control device 70 controls the heating device 44 so that the metal block 42 maintains about 150 ° C.

そして、純水槽41から供給された純水が水蒸気発生流路43に流入し、金属ブロック42が上記のように熱せられていることから、流入した純水が即座に加熱されて水蒸気に変わり、蒸留槽30へと送られる。純水槽41から水蒸気発生流路53に流入させる純水の供給量を3〜5ml/minに制御することで、流入した純水の全てが水蒸気となって蒸留槽30に送られるので、蒸留槽30における留出速度も3〜5ml/minとなる。このように、蒸気発生量を定量的に把握しながら蒸留槽30へと供給することができ、サンプル溶液中のフッ化物イオンが全量流出した90mlの留出液を得ることができる。   And since the pure water supplied from the pure water tank 41 flows into the water vapor generation flow path 43 and the metal block 42 is heated as described above, the pure water that has flowed in is immediately heated to turn into water vapor, It is sent to the distillation tank 30. By controlling the amount of pure water supplied from the pure water tank 41 to the water vapor generation flow path 53 to 3 to 5 ml / min, all of the pure water that has flowed in is sent to the distillation tank 30 as water vapor. The distillation rate at 30 is also 3 to 5 ml / min. As described above, the vapor generation amount can be quantitatively grasped and supplied to the distillation tank 30, and 90 ml of distillate from which all the fluoride ions in the sample solution have flowed out can be obtained.

(中和手段)
蒸留が終わると、制御装置70は得られた溶液の中和を行う。中和槽50にはpHメーター51が設置されており、留出した溶液のpH6.5〜7.5の範囲になるように、中和される。pH6.5〜7.5を上回ったならば、制御装置70によって酸性溶液槽53から塩酸溶液が添加されるよう制御されている。一方、pH6.5〜7.5を下回ったならば、塩基性溶液槽52から水酸化ナトリウム水溶液が添加される。
(Neutralizing means)
When the distillation is completed, the controller 70 neutralizes the obtained solution. The neutralization tank 50 is provided with a pH meter 51 and neutralized so that the pH of the distilled solution is in the range of 6.5 to 7.5. When the pH exceeds 6.5 to 7.5, the control device 70 controls the hydrochloric acid solution to be added from the acidic solution tank 53. On the other hand, when the pH is lower than 6.5 to 7.5, an aqueous sodium hydroxide solution is added from the basic solution tank 52.

以上のようにして中和した後、制御装置70は純水槽41から中和槽50に純水を添加し、一定量(100ml)の溶液が調製される。   After neutralization as described above, the control device 70 adds pure water from the pure water tank 41 to the neutralization tank 50 to prepare a fixed amount (100 ml) of solution.

(フッ素濃度測定手段)
中和された溶液は、次に測定槽60へ送られる。なお、中和された溶液は、50ml測定槽60に送られ、残りの50mlは吸光度測定に用いられる。
(Measurement of fluorine concentration)
The neutralized solution is then sent to the measuring tank 60. The neutralized solution is sent to the 50 ml measuring tank 60, and the remaining 50 ml is used for absorbance measurement.

また、測定槽60には緩衝液槽62から緩衝液が添加される。なお、緩衝液は、塩化ナトリウム58gとクエン酸水素二アンモニウム1gを水500mlに加えて溶かし、これに酢酸50mlを添加した溶液に、水酸化ナトリウム水溶液(200g/L)をpH5.2になるよう滴下して調節した後、水を加えて1Lに調製された液体が用いられる。制御装置70は中和された溶液に緩衝液を5ml添加し、pH5.0〜5.5に調整する。   A buffer solution is added from the buffer solution tank 62 to the measurement tank 60. The buffer solution was dissolved by adding 58 g of sodium chloride and 1 g of diammonium hydrogen citrate to 500 ml of water, and adding 50 ml of acetic acid to this solution so that an aqueous sodium hydroxide solution (200 g / L) was adjusted to pH 5.2. After adjusting by dropping, a liquid prepared to 1 L by adding water is used. The controller 70 adds 5 ml of the buffer solution to the neutralized solution and adjusts the pH to 5.0 to 5.5.

そして、測定槽60ではフッ化物イオン電極61を指示電極として電位を測定し、溶液中のフッ化物イオンが定量される。   In the measurement tank 60, the potential is measured using the fluoride ion electrode 61 as an indicator electrode, and the fluoride ions in the solution are quantified.

なお、測定槽61は、図5(A)、(B)、(C)に示すように、金属容器63内部に棒状の加熱装置64及び温度センサ65が設けられた構造としている。また、金属容器63内に攪拌子を備え、溶液のフッ素イオン濃度が均一になるようにしている。制御装置70は温度センサ65の検出温度に基づいて加熱装置64による加熱を制御し、金属容器63を略30℃に維持させる。金属容器63として熱容量の比較的大きい金属を用いることで、外部の温度変化の影響を受けにくくしている。   The measurement tank 61 has a structure in which a rod-shaped heating device 64 and a temperature sensor 65 are provided inside the metal container 63 as shown in FIGS. 5 (A), (B), and (C). In addition, a stirrer is provided in the metal container 63 so that the fluorine ion concentration of the solution becomes uniform. The control device 70 controls the heating by the heating device 64 based on the temperature detected by the temperature sensor 65, and maintains the metal container 63 at approximately 30 ° C. By using a metal having a relatively large heat capacity as the metal container 63, it is difficult to be affected by external temperature changes.

イオン電極法により溶液中のフッ化物イオンを正確に定量するには、測定槽60内の溶液の温度を約30℃に保つ必要がある。本実施の形態では上記のように熱容量の大きい金属容器63を用い、また、制御装置70により加熱装置64を制御することにより、測定槽60内の溶液を約30℃に保つことが可能である。これにより、イオン電極法においても正確にフッ素イオン濃度を定量することが可能になる。   In order to accurately determine fluoride ions in the solution by the ion electrode method, the temperature of the solution in the measurement tank 60 needs to be maintained at about 30 ° C. In the present embodiment, as described above, the metal container 63 having a large heat capacity is used, and the heating device 64 is controlled by the control device 70, whereby the solution in the measurement tank 60 can be kept at about 30 ° C. . This makes it possible to accurately determine the fluorine ion concentration even in the ion electrode method.

以上のようにフッ素自動分析装置1は、制御装置70によって計量手段、蒸留手段、中和手段、及び、フッ素濃度測定手段における処理を行わせ、且つ、計量手段、蒸留手段、中和手段、フッ素濃度測定手段の順に自動的に行わせるため、分析者の熟練及び手間を要さず容易にフッ素を含有するサンプル溶液中のフッ素濃度の測定ができる。   As described above, the automatic fluorine analyzer 1 causes the control device 70 to perform processing in the measuring means, the distillation means, the neutralizing means, and the fluorine concentration measuring means, and the measuring means, the distillation means, the neutralizing means, and the fluorine. Since the measurement is automatically performed in the order of the concentration measuring means, the fluorine concentration in the sample solution containing fluorine can be easily measured without requiring the skill and labor of the analyst.

上記では、蒸留槽30及び中和槽50が一組の例について説明したが、蒸留槽30及び中和槽50が複数組設けられていてもよい。蒸留槽30及び中和槽50を複数組備えることで、多数のサンプル溶液を短時間で効率よく分析することができる。   In the above, an example in which the distillation tank 30 and the neutralization tank 50 are one set has been described, but a plurality of sets of the distillation tank 30 and the neutralization tank 50 may be provided. By providing a plurality of sets of the distillation tank 30 and the neutralization tank 50, a large number of sample solutions can be efficiently analyzed in a short time.

1 フッ素自動分析装置
10 オートサンプラー
20 計量槽
21 液面検出センサ
22 試薬槽
30 蒸留槽
31 蒸留フラスコ
32 金属容器
33 バンドヒーター
35 冷却管
34 液温計
40 水蒸気発生装置
41 純水槽
42 金属ブロック
43 水蒸気発生流路
44 加熱装置
45 温度センサ
50 中和槽
51 pHメーター
52 塩基性溶液槽
53 酸性溶液槽
60 測定槽
61 フッ化物イオン電極
62 緩衝液槽
63 金属容器
64 加熱装置
65 温度センサ
70 制御装置
DESCRIPTION OF SYMBOLS 1 Fluorine automatic analyzer 10 Autosampler 20 Measuring tank 21 Liquid level detection sensor 22 Reagent tank 30 Distillation tank 31 Distillation flask 32 Metal container 33 Band heater 35 Cooling pipe 34 Thermometer 40 Steam generator 41 Pure water tank 42 Metal block 43 Steam Generation channel 44 Heating device 45 Temperature sensor 50 Neutralization tank 51 pH meter 52 Basic solution tank 53 Acidic solution tank 60 Measurement tank 61 Fluoride ion electrode 62 Buffer solution tank 63 Metal container 64 Heating device 65 Temperature sensor 70 Control device

Claims (3)

所定量のフッ素含有溶液を分取して計量する計量手段と、
計量した前記フッ素含有溶液、及び、硫酸或いは過塩素酸とリン酸に二酸化ケイ素粉末を分散させた混合溶液を蒸留槽に添加し、蒸気発生装置から水蒸気を供給しながら水蒸気蒸留を行う蒸留手段と、
前記蒸留槽から排出された気体を冷却して得られた液体に酸性溶液及び/又は塩基性溶液を添加して中和する中和手段と、
中和した液体に緩衝液を添加しイオン電極法でフッ素濃度を測定するフッ素濃度測定手段と、
前記計量手段、前記蒸留手段、前記中和手段、及び、前記フッ素濃度測定手段における処理を行わせ、且つ、前記計量手段、前記蒸留手段、前記中和手段、前記フッ素濃度測定手段の順に行わせる制御装置と、を備える、
ことを特徴とするフッ素自動分析装置。
Measuring means for separating and weighing a predetermined amount of fluorine-containing solution;
A distillation means for performing steam distillation while adding the measured fluorine-containing solution and a mixed solution in which silicon dioxide powder is dispersed in sulfuric acid or perchloric acid and phosphoric acid, and supplying water vapor from a steam generator; ,
Neutralizing means for neutralizing the liquid obtained by cooling the gas discharged from the distillation tank by adding an acidic solution and / or a basic solution;
A fluorine concentration measuring means for adding a buffer solution to the neutralized liquid and measuring the fluorine concentration by an ion electrode method;
The measurement unit, the distillation unit, the neutralization unit, and the fluorine concentration measurement unit are processed, and the measurement unit, the distillation unit, the neutralization unit, and the fluorine concentration measurement unit are sequentially performed. A control device,
Fluorine automatic analyzer characterized by that.
前記蒸気発生装置は水蒸気発生流路が内設された金属ブロックに加熱装置が配置されて構成され、
前記制御装置が前記水蒸気発生流路に定量的に水を供給することで、供給した水の全量を加熱蒸発して定量的に水蒸気を前記蒸留槽に供給することを特徴とする請求項1に記載のフッ素自動分析装置。
The steam generator is configured by arranging a heating device on a metal block in which a steam generation flow path is provided,
2. The control device according to claim 1, wherein the control device supplies water quantitatively to the water vapor generation flow path, thereby heating and evaporating the entire amount of supplied water and supplying water vapor quantitatively to the distillation tank. The fluorine automatic analyzer described.
前記蒸留槽は、前記フッ素含有溶液が充填される蒸留フラスコと、前記蒸留フラスコが収容される金属容器と、前記金属容器に設置された加熱装置と、前記蒸留フラスコ内の前記フッ素含有溶液の温度を測定する温度センサと、から構成され、
前記制御装置は前記加熱装置を制御して前記蒸留フラスコ内の液体の温度を140℃以上150℃以下の範囲に維持することを特徴とする請求項1又は2に記載のフッ素自動分析装置。
The distillation tank includes a distillation flask filled with the fluorine-containing solution, a metal container in which the distillation flask is accommodated, a heating device installed in the metal container, and a temperature of the fluorine-containing solution in the distillation flask. A temperature sensor for measuring, and
3. The fluorine automatic analyzer according to claim 1, wherein the control device controls the heating device to maintain the temperature of the liquid in the distillation flask in a range of 140 ° C. or more and 150 ° C. or less.
JP2010084372A 2010-03-31 2010-03-31 Automatic fluorine analyzer Pending JP2011215034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010084372A JP2011215034A (en) 2010-03-31 2010-03-31 Automatic fluorine analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084372A JP2011215034A (en) 2010-03-31 2010-03-31 Automatic fluorine analyzer

Publications (1)

Publication Number Publication Date
JP2011215034A true JP2011215034A (en) 2011-10-27

Family

ID=44944917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084372A Pending JP2011215034A (en) 2010-03-31 2010-03-31 Automatic fluorine analyzer

Country Status (1)

Country Link
JP (1) JP2011215034A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150095461A (en) * 2014-02-13 2015-08-21 (주) 휴마스 The method for analysis of Fluoride ion and apparatus in water
KR101791624B1 (en) * 2017-05-11 2017-10-30 동문이엔티(주) Automatic distillation unit
KR200492724Y1 (en) * 2019-08-27 2020-11-30 (주)한일랩테크 Apparatus for measuring fluorine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150095461A (en) * 2014-02-13 2015-08-21 (주) 휴마스 The method for analysis of Fluoride ion and apparatus in water
KR101597182B1 (en) 2014-02-13 2016-02-25 (주)휴마스 The method for analysis of Fluoride ion and apparatus in water
KR101791624B1 (en) * 2017-05-11 2017-10-30 동문이엔티(주) Automatic distillation unit
KR200492724Y1 (en) * 2019-08-27 2020-11-30 (주)한일랩테크 Apparatus for measuring fluorine

Similar Documents

Publication Publication Date Title
US20130285821A1 (en) Water quality monitoring apparatus
JP2011215034A (en) Automatic fluorine analyzer
Bruneel et al. Determination of the gas-to-liquid partitioning coefficients using a new dynamic absorption method (DynAb method)
US20160061791A1 (en) Automatic Ammonium Analyzer
CN103235028A (en) Method for detecting loss of desulphurized organic components and technology for desulphurizing regenerable flue gas
KR101597182B1 (en) The method for analysis of Fluoride ion and apparatus in water
CN110261556A (en) Measure the component of water or waste water or the measuring mechanism and method of mass parameter
JP5752563B2 (en) Water-soluble selenium analysis system
CN102605384B (en) For electrolysis installation, the system and method for the Nitrogen trifluoride of keeping the safety in production
JP6880354B2 (en) Analytical measurement system
JP2016095288A (en) Flow apparatus for automatic analysis of halogen and sulfur in organic compound, automatic analyzer using the flow apparatus, and method for automatic analysis
Ravindranath et al. Evaluation of cadmium concentration in vapour phase by a novel approach
JP6976875B2 (en) Analysis method of water-soluble selenium and wastewater treatment system for selenium-containing wastewater using it
Jayarathna et al. Experimentally based evaluation of accuracy of absorption equilibrium measurements
JP7453882B2 (en) Dissolved ammonia concentration measuring device and method for measuring dissolved ammonia concentration using the same
JP2020047413A (en) Ammonia gas concentration detector and fuel cell system
JP6657851B2 (en) Determination of trace chlorine components
JP2014079672A (en) Ammonia removal apparatus
JP5951250B2 (en) How to condition a hydrogen selenide gas detector
US20170356891A1 (en) Method and apparatus for measuring concentration of oxidant and system for cleaning electronic material
RU2661074C1 (en) Gas analytical equipment calibration mixtures manufacturing method using the solid state electrolysis cell
KR20120098158A (en) Water pollution measurement system by using gas sensor and water quality sensor
JPS6047954A (en) Apparatus for measuring dissolved oxygen concentration
RU2053507C1 (en) Method of determination of total content of organic substances in water and device for its implementation
Xiong et al. Capillary point Discharge-Optical emission spectrometer: Field portable mercury analyzer