JP2014079672A - Ammonia removal apparatus - Google Patents

Ammonia removal apparatus Download PDF

Info

Publication number
JP2014079672A
JP2014079672A JP2012227962A JP2012227962A JP2014079672A JP 2014079672 A JP2014079672 A JP 2014079672A JP 2012227962 A JP2012227962 A JP 2012227962A JP 2012227962 A JP2012227962 A JP 2012227962A JP 2014079672 A JP2014079672 A JP 2014079672A
Authority
JP
Japan
Prior art keywords
ammonia
gas
amount
water
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012227962A
Other languages
Japanese (ja)
Other versions
JP5973313B2 (en
Inventor
Takahiro Yonehara
崇広 米原
Masahiko Tokuyasu
政彦 徳安
Shigetaka Kojima
成隆 小島
Akitoshi Oonishi
彬聰 大西
Toyokazu Matsunami
豊和 松浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Aquatech Ltd
Original Assignee
Nomura Micro Science Co Ltd
Aquatech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd, Aquatech Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2012227962A priority Critical patent/JP5973313B2/en
Publication of JP2014079672A publication Critical patent/JP2014079672A/en
Application granted granted Critical
Publication of JP5973313B2 publication Critical patent/JP5973313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ammonia removal apparatus with a simple and low-cost apparatus configuration, which efficiently removes ammonia nitrogen in waste water without excessive addition of a chlorine agent.SOLUTION: An ammonia removal apparatus removes ammonia nitrogen in water to be processed by break-point chlorination. The ammonia removal apparatus includes chlorine agent addition means which adds a chlorine agent to a reaction tank for accommodating water to be processed, gas-liquid separation means which separates gas components in the sampled water to be processed from the reaction tank, ammonia gas detection means which detects the ammonia gas amount in the gas components separated by the gas-liquid separation means, and control means which controls the addition amount at the chlorine agent addition means on the basis of detection value of the ammonia gas detection means.

Description

本発明は不連続点塩素添加法により廃水中のアンモニア態窒素を除去するアンモニア除去装置に関する。   The present invention relates to an ammonia removal apparatus for removing ammonia nitrogen from wastewater by a discontinuous point chlorine addition method.

従来、アンモニア態窒素(NH−N、以下同じ。)を含有する廃水の処理方法として、微生物処理方法である硝化脱窒素法や、物理化学的処理方法である不連続点塩素添加法、アンモニアストリッピング法、湿式触媒法が知られており、例えば、廃水中のアンモニア態窒素濃度に応じていずれかの方法が選択して用いられている。 Conventionally, as a treatment method of waste water containing ammonia nitrogen (NH 3 —N, the same shall apply hereinafter), a nitrification denitrification method that is a microbial treatment method, a discontinuous point chlorine addition method that is a physicochemical treatment method, ammonia A stripping method and a wet catalyst method are known. For example, any method is selected and used depending on the ammonia nitrogen concentration in the wastewater.

中でも、不連続点塩素添加法による廃水処理では、非定常的に排出されるアンモニア態窒素含有廃水を貯留した廃水槽から、廃水の一部を反応槽に移し、必要量の塩素剤、例えば次亜塩素酸ナトリウムを添加することで、廃水中のアンモニア態窒素を酸化分解させて窒素ガスとして除去している。
このとき、塩素剤の必要量は、廃水中のアンモニア濃度をアンモニア電極法や膜濃縮法、導電率法によって測定して決定している。
Above all, in the wastewater treatment by the discontinuous point chlorine addition method, a part of the wastewater is transferred from the wastewater tank storing the ammonia nitrogen-containing wastewater discharged unsteadily to the reaction tank, and the required amount of chlorine agent, for example By adding sodium chlorite, ammonia nitrogen in wastewater is oxidatively decomposed and removed as nitrogen gas.
At this time, the required amount of the chlorine agent is determined by measuring the ammonia concentration in the wastewater by the ammonia electrode method, the membrane concentration method, or the conductivity method.

次亜塩素酸でのアンモニア態窒素の酸化分解反応は、例えば次式のように行われる。   The oxidative decomposition reaction of ammonia nitrogen with hypochlorous acid is performed, for example, by the following formula.

Figure 2014079672
Figure 2014079672

(1)、(2)式に示されるように、廃水中のアンモニア態窒素1質量部を酸化するためには、化学量論的に7.6質量部の塩素が必要である。   As shown in the formulas (1) and (2), 7.6 parts by mass of chlorine is required stoichiometrically to oxidize 1 part by mass of ammonia nitrogen in the wastewater.

ところで、一般にアンモニアと塩素の反応には、不連続点(ブレークポイント)が存在することが知られている。   By the way, it is generally known that discontinuities (break points) exist in the reaction between ammonia and chlorine.

例えば、pHが中性付近では、アンモニア態窒素に対する塩素の割合(質量比、以下同じ。)を0から徐々に増加させていくと、当初塩素の割合が増すに従って、残留塩素量が増加する。これは、アンモニアと塩素の反応生成物のほとんどがモノクロラミンとなっているためである。さらに塩素の割合を増やしていくと、残留塩素量は極大点を経て低下し、極小点、すなわち不連続点に至る。不連続点を超えて塩素の割合を増加させると、遊離塩素とトリクロラミンが増加する。このように、不連続点を超えるまでの塩素とアンモニアの反応は複雑であるだけでなく、pHによって反応生成物が変化することもある。   For example, in the vicinity of neutral pH, when the ratio of chlorine to ammonia nitrogen (mass ratio, hereinafter the same) is gradually increased from 0, the amount of residual chlorine increases as the initial chlorine ratio increases. This is because most of the reaction product of ammonia and chlorine is monochloramine. As the proportion of chlorine is further increased, the amount of residual chlorine decreases through a maximum point and reaches a minimum point, that is, a discontinuous point. Increasing the percentage of chlorine beyond the discontinuity increases free chlorine and trichloramine. Thus, the reaction of chlorine and ammonia up to the discontinuity point is not only complicated, but the reaction product may change depending on the pH.

また、廃水中のアンモニア態窒素濃度は変動しているため、実際には必要量より過剰の塩素剤が添加される。そして、塩素剤によるアンモニア態窒素の除去後、残留塩素を除去するため、処理水に亜硫酸ナトリウム、チオ硫酸ナトリウム等の還元剤を添加する後工程が行われる。この反応は、例えば次式(3)により示される。   In addition, since the concentration of ammonia nitrogen in the wastewater is fluctuating, actually, an excessive amount of chlorinating agent is added more than necessary. Then, after removal of the ammonia nitrogen by the chlorine agent, a post-process for adding a reducing agent such as sodium sulfite and sodium thiosulfate to the treated water is performed in order to remove residual chlorine. This reaction is represented, for example, by the following formula (3).

Figure 2014079672
Figure 2014079672

しかしながら、塩素剤の過剰添加は、環境への負荷やコストを増大させるだけでなく、後工程における還元剤の添加量を増加させるという問題がある。
さらに、塩素剤の添加量が適切でないと、次式で示されるようにジクロラミン、トリクロラミン、硝酸等の副生成物が増加するおそれもある。
However, the excessive addition of the chlorine agent not only increases the burden on the environment and the cost, but also increases the amount of the reducing agent added in the subsequent process.
Furthermore, if the addition amount of the chlorinating agent is not appropriate, byproducts such as dichloramine, trichloramine, and nitric acid may increase as shown by the following formula.

Figure 2014079672
Figure 2014079672

そのため、不連続点塩素添加法による廃水処理では、塩素剤の過剰添加を防ぐために、必要量の塩素剤を分割して添加することや、酸化還元電位(ORP)を計測してアンモニアの酸化反応の終了を見極め、塩素剤の添加を終了すること、被処理水中のモノクロラミンやジクロラミンの濃度を測定することにより塩素剤の添加量を制御することが行われている。(例えば、特許文献1、特許文献2、特許文献3参照。)   Therefore, in wastewater treatment by the discontinuous point chlorine addition method, in order to prevent excessive addition of chlorine agent, the required amount of chlorine agent is added in portions, or the oxidation reaction of ammonia by measuring the oxidation-reduction potential (ORP). The addition of the chlorinating agent is determined, and the addition amount of the chlorinating agent is controlled by measuring the concentration of monochloramine or dichloramine in the water to be treated. (For example, see Patent Document 1, Patent Document 2, and Patent Document 3.)

特開2001−225085号公報JP 2001-225085 A 特開平10−28981号公報JP-A-10-28981 特開平10−28982号公報Japanese Patent Laid-Open No. 10-28982

しかしながら、従来の方法では、廃水中のアンモニア濃度等を分析で求め、その都度塩素剤の添加量を決定するため、多大な労力と時間を必要とする。酸化還元電位(ORP)を計測する場合においても、反応終了の目安として用いるのみで、塩素剤の添加量の適切な調節は困難である。さらに、分析に時間を要することから塩素剤の添加量を適量とすることが困難であるという問題もあった。   However, in the conventional method, a great amount of labor and time are required to obtain the ammonia concentration and the like in the wastewater by analysis and determine the amount of the chlorinating agent added each time. Even in the case of measuring the oxidation-reduction potential (ORP), it is only used as a measure for the completion of the reaction, and it is difficult to appropriately adjust the addition amount of the chlorine agent. Furthermore, since analysis requires time, there is a problem that it is difficult to make the addition amount of the chlorine agent appropriate.

本発明は前記したような問題を解決するためになされたものであり、比較的安価で簡素な装置構成で、廃水中のアンモニア態窒素の除去を効率よく行うことができ、塩素剤の過剰添加を抑制することができるアンモニア除去装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can remove ammonia nitrogen in wastewater efficiently with a relatively inexpensive and simple apparatus configuration, and an excessive addition of a chlorine agent. An object of the present invention is to provide an ammonia removing apparatus capable of suppressing the above.

本発明のアンモニア除去装置は、不連続点塩素添加法により被処理水中のアンモニア態窒素を除去するアンモニア除去装置であって、被処理水を収容する反応槽に塩素剤を添加する塩素剤添加手段と、前記反応槽から採取した被処理水中のガス成分を分離する気液分離手段と、前記気液分離手段で分離されたガス成分中のアンモニアガス量を検知するアンモニアガス検知手段と、前記アンモニアガス検知手段の検出値に基づいて前記塩素剤添加手段の添加量を制御する制御手段と、を備えることを特徴とする。   The ammonia removing apparatus of the present invention is an ammonia removing apparatus for removing ammonia nitrogen from the water to be treated by a discontinuous point chlorine addition method, and a chlorine agent adding means for adding a chlorine agent to a reaction tank containing the water to be treated. A gas-liquid separation means for separating the gas component in the water to be collected collected from the reaction tank, an ammonia gas detection means for detecting the amount of ammonia gas in the gas component separated by the gas-liquid separation means, and the ammonia Control means for controlling the addition amount of the chlorinating agent addition means based on the detection value of the gas detection means.

本発明のアンモニア除去装置では、反応槽において廃水に塩素剤を添加してアンモニアを酸化分解する際に未反応の液中アンモニアを気液分離手段によりガス化して、このガス化したアンモニアガス量をアンモニアガス検知手段により検知する。液中アンモニアはガス化することで体積が大幅に増加するから、アンモニアガス量を精密に検知することができる。そして、該検出値に基づいて制御手段により塩素剤の添加量を比例制御する。このとき、アンモニアガス量が精密に検知されているから、比較的簡素な装置構成で、液中のアンモニア量に応じて塩素剤の添加量を連続的かつ適量に調節することができる。   In the ammonia removing apparatus of the present invention, when a chlorine agent is added to wastewater in a reaction tank to oxidatively decompose ammonia, unreacted ammonia in the liquid is gasified by a gas-liquid separation means, and the amount of the gasified ammonia gas is reduced. Detected by ammonia gas detection means. Since the volume of ammonia in the liquid is greatly increased by gasification, the amount of ammonia gas can be accurately detected. And based on this detected value, the addition amount of a chlorine agent is proportionally controlled by a control means. At this time, since the ammonia gas amount is accurately detected, the amount of the chlorinating agent can be adjusted continuously and appropriately in accordance with the ammonia amount in the liquid with a relatively simple apparatus configuration.

本発明のアンモニア除去装置によれば、塩素剤の添加量を適量とすることができるから、残留塩素を還元処理するための設備を簡素化又は省略することができる。   According to the ammonia removing apparatus of the present invention, the addition amount of the chlorinating agent can be set to an appropriate amount, so that the equipment for reducing the residual chlorine can be simplified or omitted.

本発明において、前記気液分離手段は曝気装置を備えることが好ましい。この場合、液中アンモニアを十分にガス化することができる。また、前記気液分離手段は、被処理水を45〜80℃に加熱する加熱手段を備えることが好ましく、アルカリ剤を添加して被処理水のpHを10.5以上とするpH調節手段を備えることが好ましい。この場合、安定にアンモニアガス量を検知することができるとともに、液中アンモニアを十分にガス化して検出されるアンモニアガス量と液中アンモニア態窒素濃度の相関をより高め、適時適量の塩素剤を添加することができる。   In the present invention, the gas-liquid separation means preferably includes an aeration device. In this case, ammonia in the liquid can be sufficiently gasified. The gas-liquid separation means preferably includes a heating means for heating the water to be treated to 45 to 80 ° C., and pH adjusting means for adding an alkaline agent to make the pH of the water to be treated 10.5 or more. It is preferable to provide. In this case, the amount of ammonia gas can be detected stably, and the correlation between the amount of ammonia gas detected by sufficiently gasifying ammonia in the liquid and the concentration of ammonia nitrogen in the liquid is further increased, so that a timely and appropriate amount of chlorine agent can be added. Can be added.

さらに、前記アンモニアガス検知手段は複数基のアンモニアガス検知器を備えてなることが好ましい。これにより、安定にアンモニアガス量を検知することができる。   Furthermore, it is preferable that the ammonia gas detection means includes a plurality of ammonia gas detectors. Thereby, the amount of ammonia gas can be detected stably.

なお、本明細書における気体量は、25℃、1気圧に換算した値である。   In addition, the gas amount in this specification is the value converted into 25 degreeC and 1 atmosphere.

本発明のアンモニア除去装置によれば、比較的安価で簡素な装置構成で、廃水中のアンモニア態窒素を効率よく除去することができ、塩素剤の過剰添加を大幅に抑制することができる。
そのため、アンモニア態窒素含有廃水の廃水処理装置を簡素化するとともに廃水処理コストを削減することができる。
According to the ammonia removing apparatus of the present invention, ammonia nitrogen in wastewater can be efficiently removed with a relatively inexpensive and simple apparatus configuration, and excessive addition of a chlorine agent can be significantly suppressed.
Therefore, it is possible to simplify the wastewater treatment apparatus for ammonia nitrogen-containing wastewater and reduce the wastewater treatment cost.

実施形態のアンモニア除去装置を用いた廃水処理のフロー図である。It is a flowchart of the wastewater treatment using the ammonia removal device of the embodiment. 実施形態のアンモニア除去装置の概略構成図である。It is a schematic block diagram of the ammonia removal apparatus of embodiment. 実施例における次亜塩素酸ナトリウム添加後の経過時間と残留塩素濃度、液中アンモニア態窒素濃度の関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after sodium hypochlorite addition in an Example, a residual chlorine concentration, and the ammonia nitrogen concentration in a liquid. 実施例における液中アンモニア態窒素濃度とアンモニアガス検知濃度の相関関係を示すグラフである。It is a graph which shows the correlation of the ammonia nitrogen density | concentration in a liquid and ammonia gas detection density | concentration in an Example. 比較例における次亜塩素酸ナトリウムの添加量と液中アンモニア態窒素濃度、残留塩素濃度、全窒素濃度の関係を示すグラフである。It is a graph which shows the relationship between the addition amount of sodium hypochlorite in a comparative example, ammonia nitrogen concentration in liquid, residual chlorine concentration, and total nitrogen concentration. 比較例における次亜塩素酸ナトリウムの添加量と残留塩素濃度、pHの関係を示すグラフである。It is a graph which shows the relationship between the addition amount of sodium hypochlorite in a comparative example, residual chlorine concentration, and pH.

本発明によるアンモニア除去装置の一実施形態について以下に図面を参照して説明する。本発明は以下の実施形態に限定されるものではない。なお、図面中同一の機能を持つ装置は同一の符号を付して詳細な説明を省略する。   An embodiment of an ammonia removing apparatus according to the present invention will be described below with reference to the drawings. The present invention is not limited to the following embodiments. In addition, the apparatus which has the same function in drawing is attached | subjected with the same code | symbol, and abbreviate | omits detailed description.

図1は本実施形態のアンモニア除去装置1を用いた廃水処理のフロー図である。廃水槽10に貯留されたアンモニア態窒素含有廃水は、反応槽11に流入されて塩素剤添加手段12により塩素剤が添加されるとともに撹拌され、アンモニア態窒素が酸化除去される。また、反応槽11には被処理水のpHや残留塩素濃度をそれぞれ測定するpH測定手段やORP測定手段が備えられており、不連続点塩素添加法により処理された処理水は、必要に応じて備えられる還元槽13に供給され、ここで還元処理されて系外に放流するようになっている。   FIG. 1 is a flowchart of wastewater treatment using the ammonia removing apparatus 1 of the present embodiment. Ammonia nitrogen-containing wastewater stored in the wastewater tank 10 flows into the reaction tank 11 and is added with a chlorinating agent by the chlorinating agent adding means 12 and stirred to oxidize and remove ammonia nitrogen. Further, the reaction tank 11 is provided with pH measuring means and ORP measuring means for measuring the pH of the water to be treated and the residual chlorine concentration, respectively, and the treated water treated by the discontinuous point chlorine addition method is used as needed. Is supplied to a reduction tank 13, which is reduced and discharged outside the system.

本実施形態では、アンモニア除去装置1は、反応槽11において塩素剤添加手段12による塩素剤の添加量を制御するように構成されている。   In the present embodiment, the ammonia removing apparatus 1 is configured to control the amount of chlorinating agent added by the chlorinating agent adding means 12 in the reaction tank 11.

図2に示されるアンモニア除去装置1は、反応槽11で処理された被処理水の少なくとも一部からガス成分を分離する気液分離手段(気化器21)を備えている。さらに、塩素剤添加手段12として塩素剤タンク22及び塩素剤供給ポンプ23を備えている。   The ammonia removing apparatus 1 shown in FIG. 2 includes gas-liquid separation means (vaporizer 21) that separates a gas component from at least a part of the water to be treated treated in the reaction tank 11. Further, a chlorine agent tank 22 and a chlorine agent supply pump 23 are provided as the chlorine agent adding means 12.

また、気化器21で分離されたガス成分中のアンモニアガス量を検出するアンモニアガス検知手段24と、アンモニアガス検知手段24の検出値により塩素剤供給ポンプ23の供給量を制御する制御手段25を備えている。   Further, an ammonia gas detection means 24 for detecting the amount of ammonia gas in the gas component separated by the vaporizer 21 and a control means 25 for controlling the supply amount of the chlorinating agent supply pump 23 based on the detected value of the ammonia gas detection means 24 I have.

反応槽11には、被処理水を一定流量で気化器21に流入可能とする試料ポンプ26が備えられている。試料ポンプ26としては、定量供給が容易なチューブポンプを用いることが好ましい。
また、被処理水中にごみ等混入物がある場合には、被処理水を一時貯留するサンプル槽を設け、反応槽11の被処理水を、サンプル槽を経て気化器21に供給してもよい。
The reaction tank 11 is provided with a sample pump 26 that allows the water to be treated to flow into the vaporizer 21 at a constant flow rate. As the sample pump 26, it is preferable to use a tube pump which can easily supply a fixed amount.
In addition, when there is a contaminant such as dust in the treated water, a sample tank for temporarily storing the treated water may be provided, and the treated water in the reaction tank 11 may be supplied to the vaporizer 21 through the sample tank. .

本実施形態において、気化器21は、曝気装置27、加熱手段である温度センサー(図示せず)並びに加熱器28、気化器21へ空気を導入する空気供給管29を備えている。このように、気化器21は必要に応じて被処理水を昇温させるとともに、曝気することができるように構成されている。   In the present embodiment, the vaporizer 21 includes an aeration device 27, a temperature sensor (not shown) that is a heating unit, a heater 28, and an air supply pipe 29 that introduces air into the vaporizer 21. As described above, the vaporizer 21 is configured to raise the temperature of the water to be treated as necessary and to perform aeration.

曝気装置27としては、空気中に液中のガス成分を拡散させる曝気装置を用いることができる。本実施形態の曝気装置27は、気化器の上部気相より吸気管27aを通じて散気ポンプ(エアーポンプ)27bで気相ガスを吸引し、散気管27cを通じて気化器21の液中下部に排出して循環曝気するように構成されている。
本実施形態では、気相ガスを用いて循環曝気するので、液中アンモニアをガス化して短時間で気液平衡状態にすることができる。さらに、アンモニアガス検知量を安定化させることができる。なお、曝気装置27としては、散気板を用いてもよい。
As the aeration apparatus 27, an aeration apparatus that diffuses gas components in the liquid into the air can be used. The aeration apparatus 27 of the present embodiment sucks the gas phase gas from the upper vapor phase of the vaporizer through the intake pipe 27a through the air diffusion pump (air pump) 27b and discharges it to the lower part of the vaporizer 21 through the air diffusion pipe 27c. It is configured to circulate aeration.
In the present embodiment, since circulation aeration is performed using gas phase gas, ammonia in the liquid can be gasified to achieve a gas-liquid equilibrium state in a short time. Furthermore, the ammonia gas detection amount can be stabilized. Note that a diffuser plate may be used as the aeration apparatus 27.

加熱手段の態様は特に限定されないが、本実施形態は気化器21内の下部に加熱器28が配されており、気化器21内に配されるためシーズドヒータが用いられている。加熱器28は抵抗加熱によるものであることが、制御が容易であるため好ましい。   Although the aspect of a heating means is not specifically limited, In this embodiment, the heater 28 is arranged in the lower part in the vaporizer 21, and since it arrange | positions in the vaporizer 21, the sheathed heater is used. It is preferable that the heater 28 is by resistance heating because it is easy to control.

さらに、気化器21には、pH調節手段としてアルカリ剤供給ポンプ30及びアルカリ剤タンク31を備えており、被処理水のpHを調節できるようになっている。   Further, the vaporizer 21 includes an alkaline agent supply pump 30 and an alkaline agent tank 31 as pH adjusting means so that the pH of the water to be treated can be adjusted.

気化器21の容量は、好ましくは100〜1,000mL、より好ましくは100〜500mLとする。気化器21の容量が小さすぎると、アンモニアガス検知量が変動し易くなるおそれがある。容量が大きすぎるとサンプリング量を多くしなければならず効率的ではない。
また、気化器21に流入した被処理水は、気化器21からオーバーフロー配管32により反応槽11に循環するようになっている。
The capacity of the vaporizer 21 is preferably 100 to 1,000 mL, and more preferably 100 to 500 mL. If the capacity of the vaporizer 21 is too small, the ammonia gas detection amount may be likely to fluctuate. If the capacity is too large, the sampling amount must be increased, which is not efficient.
Further, the water to be treated which has flowed into the vaporizer 21 is circulated from the vaporizer 21 to the reaction tank 11 through an overflow pipe 32.

気化器21で分離されたガス成分は、オートドレーン33を経てガス供給管34からアンモニアガス検知手段24に流入する。これにより、例えば、アンモニアガス検知手段24での結露による不具合を抑制して、アンモニアガス検知量の精密性を確保することができる。   The gas component separated by the vaporizer 21 flows into the ammonia gas detection means 24 from the gas supply pipe 34 through the auto drain 33. Thereby, for example, problems due to dew condensation in the ammonia gas detection means 24 can be suppressed, and the accuracy of the ammonia gas detection amount can be ensured.

アンモニアガス検知手段24は、ガス成分中のアンモニア量を測定できるものなら特に限定されず、例えば、定電位電解式によるアンモニアガス検知器を使用する。
アンモニアはガス化することにより体積が大幅に増加するから、液中アンモニアをガス化することで、アンモニア量を精密に測定することができる。さらに、近年、ガスセンサー技術の進歩が著しく、より精密なガスセンサーも知られているので、このようなガスセンサーを用いることで、アンモニアガス量をより精密に検知することができる。
The ammonia gas detector 24 is not particularly limited as long as it can measure the amount of ammonia in the gas component. For example, an ammonia gas detector based on a constant potential electrolytic method is used.
Since the volume of ammonia greatly increases when gasified, the amount of ammonia can be accurately measured by gasifying ammonia in the liquid. Furthermore, in recent years, the progress of gas sensor technology has been remarkable, and more precise gas sensors are also known. By using such a gas sensor, the amount of ammonia gas can be detected more precisely.

本実施形態では、アンモニアガス検知手段24は2基のアンモニアガス検知器が並列に接続されており、この2基を交互に使用してアンモニアガスを検知する。各アンモニアガス検知器には、空気を供給する空気供給管35とガス供給管34がそれぞれバルブ36、37を介して切替可能に接続されている。   In this embodiment, the ammonia gas detection means 24 has two ammonia gas detectors connected in parallel, and the ammonia gas is detected by alternately using the two ammonia gas detectors. Each ammonia gas detector is connected to an air supply pipe 35 for supplying air and a gas supply pipe 34 through valves 36 and 37 so as to be switched.

また、アンモニアガス検知器24の空気供給管35及び気化器21の空気供給管29の入気口側には、外部雰囲気中の微量なアンモニアガス等、アンモニアガス検知器に検出されるおそれのある成分を除去する装置、例えば、活性炭塔38が備えられ、外部の空気は活性炭塔38を経て供給されるようになっている。これにより、外部雰囲気中の、検知に影響を及ぼす成分が取り除かれてアンモニアガス検知器に供給されるから、アンモニアガス検知手段24のゼロベース値が変動することがない。   In addition, a small amount of ammonia gas in the external atmosphere may be detected by the ammonia gas detector on the air inlet side of the air supply pipe 35 of the ammonia gas detector 24 and the air supply pipe 29 of the vaporizer 21. An apparatus for removing components, for example, an activated carbon tower 38 is provided, and external air is supplied through the activated carbon tower 38. As a result, components affecting the detection in the external atmosphere are removed and supplied to the ammonia gas detector, so that the zero base value of the ammonia gas detection means 24 does not fluctuate.

そして、アンモニアガス検知手段24の検出値に基づいて制御手段25により塩素剤供給ポンプ23の吐出量が比例制御されるようになっている。塩素剤供給ポンプ23として、吐出量の制御可能なパルスポンプを用いることで、吐出量を適切に制御することができる。
制御手段25としては、PID制御によるものであることが、アンモニアガス検知量に応じて塩素剤の添加量を精密に制御することができるため好ましい。
Based on the detection value of the ammonia gas detection means 24, the discharge amount of the chlorinating agent supply pump 23 is proportionally controlled by the control means 25. By using a pulse pump capable of controlling the discharge amount as the chlorinating agent supply pump 23, the discharge amount can be controlled appropriately.
It is preferable that the control means 25 is based on PID control because the addition amount of the chlorine agent can be precisely controlled according to the detected ammonia gas amount.

以上のように、本実施形態では、不連続点塩素添加法を用いて廃水中のアンモニア態窒素を除去するに際し、液中の未反応のアンモニア濃度に応じて、塩素剤の添加量を制御して適量とすることができる。   As described above, in this embodiment, when removing ammonia nitrogen from wastewater using the discontinuous point chlorine addition method, the amount of chlorinating agent is controlled according to the unreacted ammonia concentration in the liquid. Can be adjusted to an appropriate amount.

次に、アンモニア除去方法の実施形態について、主として図2に基づいて説明をする。   Next, an embodiment of the ammonia removal method will be described mainly based on FIG.

まず、反応槽11の撹拌機39、反応槽11へ廃水を供給する廃水ポンプ40、試料ポンプ26及び塩素剤供給ポンプ23を運転状態としておく。   First, the stirrer 39 in the reaction tank 11, the wastewater pump 40 that supplies the wastewater to the reaction tank 11, the sample pump 26, and the chlorine agent supply pump 23 are put into operation.

反応槽11に廃水を導入して、散気ポンプ(エアーポンプ)27bを始動させる。曝気装置27としてガス成分を空気中に拡散させる方法を用いる場合、散気ポンプ27bによる曝気量は、曝気流量/被処理水流量で示される比(G/L)の値が好ましくは10〜100となるようにする。曝気量が小さすぎるとアンモニアの気化量が十分でなく、曝気量が大きすぎると、安定したアンモニアガス量の検知が困難となる。   Waste water is introduced into the reaction tank 11 and an aeration pump (air pump) 27b is started. When a method of diffusing a gas component into the air is used as the aeration device 27, the aeration amount by the aeration pump 27b is preferably a ratio (G / L) indicated by the aeration flow rate / treated water flow rate of 10 to 100. To be. If the aeration amount is too small, the ammonia vaporization amount is not sufficient, and if the aeration amount is too large, it is difficult to detect a stable ammonia gas amount.

また、加熱器28をオンとするとともに、気化器21内の温度センサーからの信号により加熱器28の加熱出力を制御可能にする。気化器21内の被処理水の液性がpH10.5以上、好ましくはpHが11〜13となるようにアルカリ剤供給ポンプ30でアルカリ剤を添加する。これにより、被処理水中に溶解している未反応のアンモニアを十分にガス化することができるから、精密なアンモニアガス量の測定が可能となる。   Further, the heater 28 is turned on, and the heating output of the heater 28 can be controlled by a signal from the temperature sensor in the vaporizer 21. The alkaline agent is added by the alkaline agent supply pump 30 so that the liquid property of the water to be treated in the vaporizer 21 is pH 10.5 or more, preferably 11 to 13. Thereby, since unreacted ammonia dissolved in the water to be treated can be sufficiently gasified, it is possible to accurately measure the amount of ammonia gas.

この状態で、反応槽11から試料ポンプ26を介して被処理水を気化器21に一定流量で供給し、循環させる。加熱器28を制御して気化器21内の被処理水の温度を好ましくは45〜80℃、より好ましくは55〜70℃の範囲でほぼ一定の温度(±1℃程度)とする。被処理水の温度が低すぎるとアンモニアが十分に気化せず安定したアンモニアガス量の検知が困難となる。また、温度が高すぎると、例えばガス成分中に水蒸気が混入することにより、ガス成分中のアンモニアガス比率が変動するため、適切なアンモニアガス量の検知が困難となる。   In this state, the water to be treated is supplied from the reaction tank 11 to the vaporizer 21 through the sample pump 26 at a constant flow rate and circulated. The temperature of the water to be treated in the vaporizer 21 is controlled to a substantially constant temperature (about ± 1 ° C.) in the range of preferably 45 to 80 ° C., more preferably 55 to 70 ° C. by controlling the heater 28. If the temperature of the water to be treated is too low, ammonia is not sufficiently vaporized and it becomes difficult to detect a stable amount of ammonia gas. On the other hand, if the temperature is too high, for example, water vapor is mixed in the gas component, so that the ammonia gas ratio in the gas component fluctuates, making it difficult to detect an appropriate amount of ammonia gas.

そして、気化器21内の被処理水の温度が安定してからアンモニアガス検知手段24を作動させてガス成分を採取しつつ、ガス成分中のアンモニアガス量を検知する。このアンモニアガス検知手段24の検出値を制御手段であるPID制御装置25に入力する。PID制御装置は、アンモニアガス検出値に基づき、4〜20mAで信号を出力して塩素剤供給ポンプ23の吐出量を比例制御する。   Then, after the temperature of the water to be treated in the vaporizer 21 is stabilized, the ammonia gas detection means 24 is operated to collect the gas component, and the amount of ammonia gas in the gas component is detected. The detection value of the ammonia gas detection means 24 is input to a PID control device 25 which is a control means. Based on the ammonia gas detection value, the PID control device outputs a signal at 4 to 20 mA to proportionally control the discharge amount of the chlorinating agent supply pump 23.

本実施形態では、気化器21で分離されたガス成分は、バルブ37の切替えによりアンモニアガス検知器のいずれか一方で、例えば1時間ごとに交互に採取するようにするとともに、バルブ36を切替えてガス成分を採取していない方のアンモニアガス検知器には、空気供給管35から新鮮空気が採取されるようにする。これにより、アンモニアガス検知器の検知部を清浄に保つことができるから、アンモニアガス量の検知をより精密に行うことができる。   In the present embodiment, the gas component separated by the vaporizer 21 is sampled alternately every one hour, for example, by switching the valve 37 on one of the ammonia gas detectors, and the valve 36 is switched. Fresh air is collected from the air supply pipe 35 in the ammonia gas detector from which the gas component is not collected. Thereby, since the detection part of the ammonia gas detector can be kept clean, the amount of ammonia gas can be detected more precisely.

このように、本実施形態のアンモニア除去装置では、反応槽11の液中アンモニア態窒素濃度を連続的に精密に検知することができる。そのため、反応槽11への塩素剤の添加量を液中アンモニア態窒素濃度に応じて適量にすることができる。その結果、塩素剤の過剰添加を抑制することができ、図1の還元槽13の構成を簡素化又は省略することができる。   Thus, in the ammonia removal apparatus of the present embodiment, the ammonia nitrogen concentration in the reaction tank 11 can be continuously and accurately detected. Therefore, the addition amount of the chlorine agent to the reaction tank 11 can be made an appropriate amount according to the ammonia nitrogen concentration in the liquid. As a result, excessive addition of the chlorine agent can be suppressed, and the configuration of the reduction tank 13 in FIG. 1 can be simplified or omitted.

次に図2に示される装置を用いた実施例について説明する。
実施例において用いた各装置の仕様及び実験条件は次のようである。
反応槽容量:2,000mL、
気化器容量:100mL、
アンモニアガス検知器:定電位電解式アンモニアガス検知器((株)アクアテック社製、AQAM式アンモニアガス検知器)、
pH測定器:TOA−DKK社製、HM−21P、
液中アンモニア態窒素(NH−N)濃度、残留塩素濃度測定、全窒素濃度測定:HACH社製、DR−5000。
Next, an embodiment using the apparatus shown in FIG. 2 will be described.
The specifications and experimental conditions of each device used in the examples are as follows.
Reaction tank capacity: 2,000 mL,
Vaporizer capacity: 100 mL,
Ammonia gas detector: Constant potential electrolytic ammonia gas detector (Aquatech Co., Ltd., AQAM ammonia gas detector),
pH measuring device: manufactured by TOA-DKK, HM-21P,
Ammonia nitrogen (NH 3 -N) concentration in liquid, measurement of residual chlorine concentration, total nitrogen concentration measurement: DR-5000 manufactured by HACH.

(実施例1)
上記した実施形態を用いた例について説明する。
まず、図2に示される装置の反応槽11内に、初期アンモニア態窒素濃度74mg/Lの原水を2,000mL/時で連続導入した。PID制御装置のアンモニアガス濃度を5mg/Lに設定して次亜塩素酸ナトリウムを供給するパルスポンプ(塩素剤供給ポンプ23)の吐出量を制御装置25でPID制御した。
Example 1
An example using the above-described embodiment will be described.
First, raw water having an initial ammonia nitrogen concentration of 74 mg / L was continuously introduced into the reaction tank 11 of the apparatus shown in FIG. 2 at 2,000 mL / hour. The discharge amount of the pulse pump (chlorine agent supply pump 23) for supplying sodium hypochlorite with the ammonia gas concentration of the PID control device set to 5 mg / L was PID controlled by the control device 25.

散気ポンプ27bによる曝気量は60L/時(G/L=30)とし、気化器内の被処理水の温度を55℃のほぼ一定となるようにした。また、アルカリ剤タンク31より、水酸化ナトリウムを添加して、気化器内21の被処理水のpHをおおよそ12.5となるようにした。   The amount of aeration by the air diffusion pump 27b was 60 L / hour (G / L = 30), and the temperature of the water to be treated in the vaporizer was made to be almost constant at 55 ° C. In addition, sodium hydroxide was added from the alkaline agent tank 31 so that the pH of the water to be treated in the vaporizer 21 was approximately 12.5.

また、15分ごとに反応槽11の底部から被処理水をサンプリングし、液中アンモニア態窒素濃度をサリチル酸法(比色法)、残留塩素濃度をDPD法(比色法)によりそれぞれ測定した。
このときの経過時間と残留塩素濃度(Cl mg/L)、液中アンモニア態窒素濃度の関係を図3に示す。
Further, the water to be treated was sampled from the bottom of the reaction tank 11 every 15 minutes, and the ammonia nitrogen concentration in the liquid was measured by the salicylic acid method (colorimetric method), and the residual chlorine concentration was measured by the DPD method (colorimetric method).
FIG. 3 shows the relationship between the elapsed time, the residual chlorine concentration (Cl mg / L), and the ammonia nitrogen concentration in the liquid.

図3より、75分経過後には反応槽の液中アンモニア態窒素濃度は20mg/L程度となりその後徐々に低下した。そして、140分経過後には不連続点に至り、アンモニア態窒素濃度は6.3mg/L、残留塩素濃度は6.4mgCl/Lに低減された。さらに、不連続点を超えても、残留塩素濃度は10mgCl/L以下で安定しており、塩素剤の過剰添加を大幅に抑制できたことが分かる。なお、図3において黒丸は液中の残留塩素濃度、黒三角はアンモニア態窒素濃度をそれぞれ示している。   As shown in FIG. 3, after 75 minutes, the ammonia nitrogen concentration in the reaction tank was about 20 mg / L, and then gradually decreased. After 140 minutes, a discontinuous point was reached, and the ammonia nitrogen concentration was reduced to 6.3 mg / L and the residual chlorine concentration was reduced to 6.4 mgCl / L. Furthermore, even if it exceeds the discontinuous point, the residual chlorine concentration is stable at 10 mg Cl / L or less, and it can be seen that excessive addition of the chlorine agent can be greatly suppressed. In FIG. 3, the black circles indicate the residual chlorine concentration in the liquid, and the black triangles indicate the ammonia nitrogen concentration.

また、このときの液中アンモニア態窒素濃度と、アンモニアガス検知器により検知されたアンモニアガス濃度との相関関係を図4に示す。
図4より、本実施例において液中アンモニア態窒素濃度とアンモニアガス濃度の間には、r(相関係数)=0.8976の高い相関関係が得られていることが分かる。
FIG. 4 shows the correlation between the ammonia nitrogen concentration in the liquid at this time and the ammonia gas concentration detected by the ammonia gas detector.
FIG. 4 shows that in this example, a high correlation of r 2 (correlation coefficient) = 0.8976 is obtained between the ammonia nitrogen concentration in the liquid and the ammonia gas concentration.

(比較例1)
まず、アンモニア態窒素(NH−N)濃度41mg/Lの原水1,000mLを反応槽に導入し、次亜塩素酸ナトリウム5%溶液を塩素剤供給ポンプにより2mLずつ10分ごとに加えていった。このとき、液中アンモニア態窒素濃度と残留塩素濃度を実施例1と同様に測定し、全窒素濃度をペルオキソ二硫酸カリウムで硝酸態窒素に酸化後、紫外線吸光法により測定した。
(Comparative Example 1)
First, 1,000 mL of raw water having an ammonia nitrogen (NH 3 -N) concentration of 41 mg / L was introduced into the reaction tank, and 2 mL of sodium hypochlorite 5% solution was added every 10 minutes by a chlorine agent supply pump. It was. At this time, the ammonia nitrogen concentration and the residual chlorine concentration in the liquid were measured in the same manner as in Example 1, and the total nitrogen concentration was oxidized to nitrate nitrogen with potassium peroxodisulfate and then measured by ultraviolet absorption.

次亜塩素酸ナトリウムの添加量(Cl/(NH−N)、(質量比)、以下同じ。)と液中アンモニア態窒素濃度、残留塩素濃度の関係を図5に示す。なお、図5において黒丸は液中の残留塩素濃度、白三角はアンモニア態窒素濃度、黒四角は全窒素濃度をそれぞれ示している。 FIG. 5 shows the relationship between the amount of sodium hypochlorite added (Cl / (NH 3 —N), (mass ratio), the same applies hereinafter), the ammonia nitrogen concentration in the liquid, and the residual chlorine concentration. In FIG. 5, black circles indicate the residual chlorine concentration in the liquid, white triangles indicate the ammonia nitrogen concentration, and black squares indicate the total nitrogen concentration.

図5に示されるように、次亜塩素酸ナトリウムの添加量を徐々に増加させていくと、当初塩素の割合が増すに従って、残留塩素濃度が増加している。これは、塩素とアンモニアの反応生成物のほとんどがモノクロラミンとなっているためである。そして、Cl/(NH−N)=6を超えると残留塩素濃度は低下していき、Cl/(NH−N)=7.5で残留塩素濃度が最低、すなわち不連続点となっている。 As shown in FIG. 5, when the amount of sodium hypochlorite added is gradually increased, the residual chlorine concentration increases as the initial chlorine ratio increases. This is because most of the reaction product of chlorine and ammonia is monochloramine. When Cl / (NH 3 -N) = 6 is exceeded, the residual chlorine concentration is decreased, and when Cl / (NH 3 -N) = 7.5, the residual chlorine concentration is the lowest, that is, a discontinuous point. Yes.

このときの、次亜塩素酸ナトリウムの添加量と残留塩素濃度、pHの関係を図6に示す。
図6に示されるように、pHはCl/(NH−N)=4.6となるまでは上昇し、その後低下している。そして、Cl/(NH−N)=7.5でpH=9.4となりその後一定となっている。なお、図6において黒丸は液中の残留塩素濃度、黒三角はpHをそれぞれ示している。
FIG. 6 shows the relationship between the amount of sodium hypochlorite added, residual chlorine concentration, and pH at this time.
As shown in FIG. 6, the pH increases until Cl / (NH 3 −N) = 4.6, and then decreases. Then, Cl / (NH 3 −N) = 7.5, pH = 9.4, and thereafter becomes constant. In FIG. 6, the black circles indicate the residual chlorine concentration in the liquid, and the black triangles indicate pH.

pHの上昇は、アンモニアと次亜塩素酸ナトリウムの反応で生成した水酸化ナトリウムによるものであり、モノクロラミンが生成していることを示す。また、その後のpHの低下は、モノクロラミンが窒素ガスとなるとともに、塩酸が生成したことを示す。そのため、図5のように液中アンモニア態窒素濃度も低減されている。このように、不連続点塩素添加法における、モノクロラミンの生成及びアンモニアと塩素の反応機構が確認された。   The increase in pH is due to sodium hydroxide produced by the reaction of ammonia and sodium hypochlorite, indicating that monochloramine is produced. Further, the subsequent decrease in pH indicates that monochloramine becomes nitrogen gas and hydrochloric acid is generated. Therefore, the ammonia nitrogen concentration in the liquid is also reduced as shown in FIG. Thus, the production of monochloramine and the reaction mechanism of ammonia and chlorine in the discontinuous chlorine addition method were confirmed.

また、図5、6から、回分式においては、不連続点を超えて塩素剤を添加すると残留塩素濃度は急激に上昇し、Cl/(NH−N)=8では18mgCl/L、Cl/(NH−N)=8.3では27mgCl/Lまで増加していることがわかる。 5 and 6, in the batch formula, when the chlorine agent is added beyond the discontinuity point, the residual chlorine concentration rapidly increases. When Cl / (NH 3 −N) = 8, 18 mgCl / L, Cl / It can be seen that (NH 3 −N) = 8.3 increases to 27 mgCl / L.

以上に示されるように、本実施形態によれば、液中アンモニア態窒素濃度に応じて連続的に適量の塩素剤を添加することができるから、塩素剤の過剰添加を大幅に抑制することができる。さらに、比較的安価で構成の簡易なアンモニア除去装置とし、廃水中のアンモニア態窒素を効率よく除去することができる。そのため、処理水を還元処理するための装置や操作を簡素化又は省略することができ、廃水処理コストを削減することが可能である。   As described above, according to the present embodiment, an appropriate amount of chlorinating agent can be continuously added according to the concentration of ammonia nitrogen in the liquid, so that excessive addition of chlorinating agent can be significantly suppressed. it can. Furthermore, it is possible to remove ammonia nitrogen from wastewater efficiently by using a relatively inexpensive and simple ammonia removing device. Therefore, the apparatus and operation for reducing the treated water can be simplified or omitted, and the wastewater treatment cost can be reduced.

1…アンモニア除去装置、10…廃水槽、11…反応槽、12…塩素剤添加手段、13…還元槽、21…気化器、22…塩素剤タンク、23…塩素剤供給ポンプ、24…アンモニアガス検知手段、25…制御手段、26…試料ポンプ、27…曝気装置、28…加熱器、29…空気供給管、30…アルカリ剤供給ポンプ、31…アルカリ剤タンク、32…オーバーフロー配管、33…オートドレーン、34…ガス供給管、35…空気供給管、36,37…バルブ、38…活性炭塔、39…撹拌機、40…廃水ポンプ。   DESCRIPTION OF SYMBOLS 1 ... Ammonia removal apparatus, 10 ... Waste water tank, 11 ... Reaction tank, 12 ... Chlorine agent addition means, 13 ... Reduction tank, 21 ... Vaporizer, 22 ... Chlorine agent tank, 23 ... Chlorine agent supply pump, 24 ... Ammonia gas Detection means, 25 ... control means, 26 ... sample pump, 27 ... aeration device, 28 ... heater, 29 ... air supply pipe, 30 ... alkali agent supply pump, 31 ... alkali agent tank, 32 ... overflow pipe, 33 ... auto Drain, 34 ... gas supply pipe, 35 ... air supply pipe, 36, 37 ... valve, 38 ... activated carbon tower, 39 ... stirrer, 40 ... wastewater pump.

Claims (5)

不連続点塩素添加法により被処理水中のアンモニア態窒素を除去するアンモニア除去装置であって、
被処理水を収容する反応槽に塩素剤を添加する塩素剤添加手段と、
前記反応槽から採取した被処理水中のガス成分を分離する気液分離手段と、
前記気液分離手段で分離されたガス成分中のアンモニアガス量を検知するアンモニアガス検知手段と、
前記アンモニアガス検知手段の検出値に基づいて前記塩素剤添加手段の添加量を制御する制御手段と、
を備えることを特徴とするアンモニア除去装置。
An ammonia removal apparatus that removes ammonia nitrogen from water to be treated by a discontinuous point chlorine addition method,
A chlorinating agent adding means for adding a chlorinating agent to a reaction vessel containing treated water;
A gas-liquid separation means for separating a gas component in the water to be collected collected from the reaction tank;
Ammonia gas detection means for detecting the amount of ammonia gas in the gas component separated by the gas-liquid separation means;
Control means for controlling the addition amount of the chlorinating agent addition means based on the detection value of the ammonia gas detection means;
An ammonia removing apparatus comprising:
前記気液分離手段は、曝気装置を備えることを特徴とする請求項1記載のアンモニア除去装置。   2. The ammonia removing apparatus according to claim 1, wherein the gas-liquid separating means includes an aeration apparatus. 前記気液分離手段は、被処理水を45〜80℃に加熱する加熱手段を備えることを特徴とする請求項1又は2記載のアンモニア除去装置。   The ammonia removal apparatus according to claim 1 or 2, wherein the gas-liquid separation means includes a heating means for heating the water to be treated to 45 to 80 ° C. 前記気液分離手段は、アルカリ剤を添加して被処理水のpHを10.5以上とするpH調節手段を備えることを特徴とする請求項1乃至3のいずれか1項記載のアンモニア除去装置。   4. The ammonia removing apparatus according to claim 1, wherein the gas-liquid separating unit includes a pH adjusting unit that adds an alkali agent to adjust the pH of the water to be treated to 10.5 or more. 5. . 前記アンモニアガス検知手段は、複数基のアンモニアガス検知器を備えてなることを特徴とする請求項1乃至4いずれか1項記載のアンモニア除去装置。   The ammonia removal apparatus according to any one of claims 1 to 4, wherein the ammonia gas detection means includes a plurality of ammonia gas detectors.
JP2012227962A 2012-10-15 2012-10-15 Ammonia removal equipment Active JP5973313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012227962A JP5973313B2 (en) 2012-10-15 2012-10-15 Ammonia removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227962A JP5973313B2 (en) 2012-10-15 2012-10-15 Ammonia removal equipment

Publications (2)

Publication Number Publication Date
JP2014079672A true JP2014079672A (en) 2014-05-08
JP5973313B2 JP5973313B2 (en) 2016-08-23

Family

ID=50784401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227962A Active JP5973313B2 (en) 2012-10-15 2012-10-15 Ammonia removal equipment

Country Status (1)

Country Link
JP (1) JP5973313B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213613A (en) * 2021-05-19 2021-08-06 上海波赛统环境科技有限公司 Method for controlling dosage of ammonia nitrogen wastewater chlorination and oxidation agent
CN113620467A (en) * 2021-08-17 2021-11-09 云南铜业股份有限公司西南铜业分公司 Method for removing ammonia nitrogen in waste acid in multiple stages

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435291A (en) * 1982-03-22 1984-03-06 The Babcock & Wilcox Company Breakpoint chlorination control system
JPS5962387A (en) * 1982-09-30 1984-04-09 Toshiba Corp Control device for injection of chlorine
JPS59130595A (en) * 1983-01-14 1984-07-27 Hitachi Ltd Removing method of ammoniac nitrogen
JP2001113265A (en) * 1999-10-20 2001-04-24 Kubota Corp Method for treating organic wastewater/sludge of high nitrogen content
JP2001221720A (en) * 2000-02-07 2001-08-17 Horiba Ltd Method and apparatus for calibrating gas analyzer
JP2003071492A (en) * 2001-08-31 2003-03-11 Sinto Brator Co Ltd Method for controlling amount of hydrogen donor in denitrification reactor and apparatus therefor
JP2004050105A (en) * 2002-07-23 2004-02-19 Aquatech:Kk Apparatus and process for isolating ammonia from ammonium ion-containing liquid
JP2009066465A (en) * 2007-09-10 2009-04-02 Ishikawa Engineering Corp Ammoniac nitrogen-containing water treatment system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435291A (en) * 1982-03-22 1984-03-06 The Babcock & Wilcox Company Breakpoint chlorination control system
JPS5962387A (en) * 1982-09-30 1984-04-09 Toshiba Corp Control device for injection of chlorine
JPS59130595A (en) * 1983-01-14 1984-07-27 Hitachi Ltd Removing method of ammoniac nitrogen
JP2001113265A (en) * 1999-10-20 2001-04-24 Kubota Corp Method for treating organic wastewater/sludge of high nitrogen content
JP2001221720A (en) * 2000-02-07 2001-08-17 Horiba Ltd Method and apparatus for calibrating gas analyzer
JP2003071492A (en) * 2001-08-31 2003-03-11 Sinto Brator Co Ltd Method for controlling amount of hydrogen donor in denitrification reactor and apparatus therefor
JP2004050105A (en) * 2002-07-23 2004-02-19 Aquatech:Kk Apparatus and process for isolating ammonia from ammonium ion-containing liquid
JP2009066465A (en) * 2007-09-10 2009-04-02 Ishikawa Engineering Corp Ammoniac nitrogen-containing water treatment system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213613A (en) * 2021-05-19 2021-08-06 上海波赛统环境科技有限公司 Method for controlling dosage of ammonia nitrogen wastewater chlorination and oxidation agent
CN113213613B (en) * 2021-05-19 2023-02-10 上海波赛统环境科技有限公司 Method for controlling dosage of ammonia nitrogen wastewater chlorination and oxidation agent
CN113620467A (en) * 2021-08-17 2021-11-09 云南铜业股份有限公司西南铜业分公司 Method for removing ammonia nitrogen in waste acid in multiple stages

Also Published As

Publication number Publication date
JP5973313B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5866823B2 (en) Waste water treatment method and treatment apparatus
RU2012102984A (en) METHOD FOR ELECTROCHEMICAL WASTE WATER TREATMENT AND DEVICE FOR ITS IMPLEMENTATION
JP5284196B2 (en) Method for quantitative analysis of selenium
JP7402217B2 (en) Systems and methods for measuring water composition
JP5973313B2 (en) Ammonia removal equipment
JP3931592B2 (en) Ammonia measurement waste liquid treatment method and ammonia measurement device
WO2016114188A1 (en) Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
JP2014004550A (en) Method and program for controlling water treatment facility and water treatment system
WO2017175794A1 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP2007319816A (en) Water treatment apparatus and water treatment method
KR100724707B1 (en) Method of Determinnig Injection Amount of Chlorine/Dechlorination Agent, Controller and Wastewater Purification Apparatus Using the same
JP4321798B2 (en) Method and apparatus for controlling hydrogen donor amount in denitrification reactor
JP2015221424A (en) Organic wastewater treatment method and apparatus
JP2006170897A (en) Method and apparatus for measuring chemical oxygen demand (cod)
TWI841582B (en) Systems and methods for measuring composition of water
JP6749463B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP2014124600A (en) Wastewater treatment system
Jazić et al. Effect of photochemical advanced oxidation processes on the formation potential of emerging disinfection by-products in groundwater from part of the Pannonian Basin
JP7453882B2 (en) Dissolved ammonia concentration measuring device and method for measuring dissolved ammonia concentration using the same
KR102614702B1 (en) A method for correcting analysis error for TOC measuring system
JP2009066465A (en) Ammoniac nitrogen-containing water treatment system and method
JP2009139141A (en) Apparatus and method for detecting ozone concentration, and apparatus and method for controlling ozone supply
JP2009270983A (en) System for measuring volatile component concentration in aqueous solution of volatile component
Bollyky Ozone in water
JP2010094576A (en) Method for purifying wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160714

R150 Certificate of patent or registration of utility model

Ref document number: 5973313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250