WO2015159488A1 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
WO2015159488A1
WO2015159488A1 PCT/JP2015/001664 JP2015001664W WO2015159488A1 WO 2015159488 A1 WO2015159488 A1 WO 2015159488A1 JP 2015001664 W JP2015001664 W JP 2015001664W WO 2015159488 A1 WO2015159488 A1 WO 2015159488A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
driven
transmission device
power transmission
side rotating
Prior art date
Application number
PCT/JP2015/001664
Other languages
French (fr)
Japanese (ja)
Inventor
中嶋 寛
陽平 櫛田
奥田 清美
昭 岸淵
敏弘 林
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015001839.5T priority Critical patent/DE112015001839B4/en
Priority to US15/300,701 priority patent/US10113596B2/en
Priority to CN201580020001.5A priority patent/CN106233038B/en
Publication of WO2015159488A1 publication Critical patent/WO2015159488A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/76Friction clutches specially adapted to incorporate with other transmission parts, i.e. at least one of the clutch parts also having another function, e.g. being the disc of a pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/40Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs in which the or each axially-movable member is pressed exclusively against an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/02Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings
    • F16D27/04Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings with axially-movable friction surfaces
    • F16D27/06Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings with axially-movable friction surfaces with friction surfaces arranged within the flux
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/64Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts
    • F16D3/68Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts the elements being made of rubber or similar material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/78Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members shaped as an elastic disc or flat ring, arranged perpendicular to the axis of the coupling parts, different sets of spots of the disc or ring being attached to each coupling part, e.g. Hardy couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D9/00Couplings with safety member for disconnecting, e.g. breaking or melting member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/1216Torsional springs, e.g. torsion bar or torsionally-loaded coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0827Means for varying tension of belts, ropes, or chains for disconnecting the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/02Auxiliary drives directly from an engine shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D9/00Couplings with safety member for disconnecting, e.g. breaking or melting member
    • F16D9/02Couplings with safety member for disconnecting, e.g. breaking or melting member by thermal means, e.g. melting member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • F16H2055/366Pulleys with means providing resilience or vibration damping

Definitions

  • the present disclosure relates to a power transmission device that transmits a rotational driving force.
  • Patent Document 1 discloses an electromagnetic clutch that transmits a rotational driving force output from an engine to a compressor of a refrigeration cycle as a power transmission device.
  • the electromagnetic clutch is equipped with a cover that covers the outer periphery of the electromagnetic clutch, and it prevents foreign objects such as water and dust from entering the bearing that constitutes the friction surface of the clutch and the attachment to the compressor. ing.
  • This disclosure is intended to provide a power transmission device that can suppress the intrusion of foreign matter into the interior without increasing the number of parts.
  • a power transmission device that transmits a rotational driving force output from a driving source to a driving target device is a driven side rotating body that rotates by the rotational driving force, and a driven that rotates together with the rotating shaft of the driving target device.
  • a connecting member which is formed in a plate shape extending in a direction perpendicular to the rotation axis and connected to at least one of the driving side rotating body and the driven side rotating body. The driving side rotating body and the driven side rotating body can be connected to each other through a connecting member.
  • the connecting member has a through hole penetrating the connecting member in the axial direction of the rotating shaft.
  • the driven-side rotator When viewed from the axial direction of the rotation shaft, the driven-side rotator has an overlapping portion that is overlapped with the through hole of the connecting member.
  • the driven-side rotator is an essential configuration for transmitting the rotational driving force output from the driving source to the drive target device.
  • the driven side rotating body which is an essential configuration, has the overlapping portion, the through hole formed in the connecting member can be covered without increasing the number of parts. Thereby, it can suppress that a foreign material penetrate
  • the connecting member may be a plate-like elastic member that absorbs fluctuations in rotational torque transmitted from the driving side rotating body to the driven side rotating body when connected to both the driving side rotating body and the driven side rotating body.
  • the connecting member may be a plate-like elastic member that applies a load in the axial direction of the rotating shaft to at least one of the driving side rotating body and the driven side rotating body.
  • the plate-like elastic member is generally formed with a through-hole penetrating the front and back in order to ensure a sufficient amount of elastic deformation. Furthermore, the through hole is formed in an appropriate shape in order to ensure a sufficient amount of elastic deformation. On the other hand, the fact that the driven-side rotator has the overlapped portion is effective in that foreign matter can be prevented from entering the power transmission device regardless of the shape of the through hole.
  • a power transmission device that transmits a rotational driving force output from a driving source to a driving target device is a driven side rotating body that rotates by the rotational driving force, and a driven that rotates together with the rotating shaft of the driving target device.
  • the driven-side rotating body is formed with a through-hole penetrating the front and back in the axial direction of the rotating shaft, and the buffer member is arranged so as to overlap with the through-hole when viewed from the axial direction of the rotating shaft. It has a superposition part.
  • a through hole is formed in part of the driven-side rotator to enhance the electromagnetic force. Is done.
  • a general electromagnetic clutch includes a buffer member for alleviating an impact when the driven side rotator and the drive side rotator are coupled by electromagnetic force.
  • the buffer member provided in the general electromagnetic clutch has the overlapping portion, the through hole can be covered without increasing the number of parts. Thereby, it can suppress that a foreign material penetrate
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle to which a power transmission device according to a first embodiment is applied. It is a partial axial sectional view of the power transmission device of the first embodiment. It is a side view of the power transmission device of a 1st embodiment. It is a partial axial sectional view of the power transmission device of the second embodiment. It is a side view of the power transmission device of 2nd Embodiment.
  • the power transmission device 20 of this embodiment transmits the rotational driving force output from the internal combustion engine (engine) E mounted in the vehicle to the compressor 2 of the vapor compression refrigeration cycle 1. Therefore, the drive source in the present embodiment is the engine E, and the drive target device is the compressor 2.
  • the refrigeration cycle 1 of the present embodiment cools the air blown into the passenger compartment in the vehicle air conditioner. More specifically, the refrigeration cycle 1 is configured by sequentially connecting a compressor 2, a radiator 3, a temperature type expansion valve 4, and an evaporator 5 with piping as shown in FIG.
  • the compressor 2 compresses and discharges the refrigerant in the refrigeration cycle 1.
  • a swash plate type variable displacement compressor is employed as the compressor 2.
  • the variable capacity compressor by reducing the discharge capacity to approximately 0%, the compressor 2 can be brought into an operation stop state that does not substantially exhibit the refrigerant discharge capacity.
  • the power transmission device 20 employs a clutchless configuration in which the engine E and the compressor 2 are always coupled via the belt V.
  • the discharge capacity (refrigerant discharge capacity) of the compressor 2 is controlled by a control signal output from a control device (not shown) to the discharge capacity control valve of the compressor 2.
  • the heat radiator 3 is a heat exchanger for heat radiation that causes heat exchange between the high-temperature and high-pressure refrigerant discharged from the compressor 2 and the outside air to condense the refrigerant.
  • the temperature-type expansion valve 4 has a temperature sensing unit that detects the degree of superheat of the evaporator 5 outlet-side refrigerant based on the temperature and pressure of the evaporator 5 outlet-side refrigerant.
  • the pressure reducing means adjusts the throttle opening by a mechanical mechanism so as to be within a defined reference range.
  • the evaporator 5 is an endothermic heat exchanger that exchanges heat between the low-pressure refrigerant decompressed by the temperature type expansion valve 4 and the blown air blown into the passenger compartment, and evaporates the low-pressure refrigerant to exert an endothermic effect. is there.
  • the power transmission device 20 includes a pulley 21 that rotates by the rotational driving force output from the engine E, an inner hub 22 that rotates together with the rotating shaft 2 a of the compressor 2, and a pulley 21 and A plate 26 and the like connected to both of the inner hubs 22 are provided.
  • FIG. 2 is a partial cross-sectional view in the axial direction of the power transmission device 20, and more specifically, a cross-sectional view taken along the line II-II in FIG.
  • the pulley 21 has an outer cylindrical portion 21a, an inner cylindrical portion 21b, and an end surface portion 21c.
  • the outer cylindrical portion 21 a has a cylindrical shape and is disposed coaxially with the rotation shaft 2 a of the compressor 2.
  • the inner cylindrical portion 21b has a cylindrical shape, is disposed on the inner peripheral side of the outer cylindrical portion 21a, and is disposed coaxially with the rotation shaft 2a.
  • the end surface portion 21c spreads so as to connect the opposite end portions of the outer cylindrical portion 21a and the inner cylindrical portion 21b to the compressor 2.
  • the pulley 21 has a substantially U-shaped radial cross section. Further, on the outer peripheral side of the outer cylindrical portion 21a, a V groove (specifically, a poly V groove) on which a belt V that transmits the rotational driving force output from the engine E is applied is formed.
  • a V groove specifically, a poly V groove
  • the outer peripheral side of the ball bearing 23 is fixed to the inner peripheral side of the inner cylindrical portion 21b, and a shaft from the housing forming the outer shell of the compressor 2 to the power transmission device 20 side is fixed to the inner peripheral side of the ball bearing 23.
  • a cylindrical boss 2b protruding in the direction is fixed.
  • the pulley 21 is fixed to the housing of the compressor 2 so as to be rotatable coaxially with the rotary shaft 2a.
  • the inner hub 22 has a disc-like portion 22a in which a circular through-hole penetrating in the axial direction is formed in the center portion, and a cylindrical portion 22b extending coaxially with the rotating shaft 2a.
  • the inner diameter of the disc-shaped portion 22a of the inner hub 22 is formed to be approximately the same as the outer diameter of the cylindrical portion 22b.
  • the outer diameter of the disc-like portion 22a is formed to have a dimension substantially equal to the outer diameter of the plate 26, as shown in FIG. Accordingly, the disk-like portion 22a is formed in an annular shape that spreads so as to overlap with the entire region of the plate 26 when viewed from the axial direction of the rotating shaft 2a.
  • a washer 24 formed of a relatively hard iron-based metal is joined to the end of the compressor 2 by spot welding or caulking. Has been.
  • the washer 24 is formed in an annular shape, and the rotating shaft 2 a of the compressor 2 is inserted on the inner peripheral side of the washer 24.
  • the end surface of the washer 24 on the compressor 2 side in the direction of the rotation shaft 2a is in contact with a stepped portion 2c formed on the rotation shaft 2a.
  • the stepped portion 2c restricts the washer 24 and the inner hub 22 from being displaced toward the compressor 2 along the rotating shaft 2a.
  • a limiter (power cut-off member) 25 made of iron-based metal is spot-welded at the opposite end of the compressor 2 among the axial ends of the cylindrical portion 22b of the inner hub 22, or Joined by caulking or the like.
  • the limiter 25 includes a cylindrical portion 25b formed with a female screw portion 25a screwed to the male screw portion 2d of the rotary shaft 2a, and a load generated when the cylindrical portion 25b is tightened in the rotation direction of the rotary shaft 2a.
  • a breakage portion 25d that breaks when the load received by the pressure receiving portion 25c is equal to or higher than a predetermined reference load is formed at a portion where the cylindrical portion 25b and the pressure receiving portion 25c of the limiter 25 are connected.
  • the cylindrical portion 25b of the limiter 25 is disposed coaxially with the rotation shaft of the compressor 2 on the inner peripheral side of the cylindrical portion 22b of the inner hub 22. Since the outer diameter of the cylindrical portion 25b is smaller than the inner diameter of the cylindrical portion 22b of the inner hub 22, the outer peripheral surface of the cylindrical portion 25b of the limiter 25 is the same as that of the cylindrical portion 22b of the inner hub 22. There is no contact with the inner peripheral surface.
  • the pressure receiving portion 25c is formed in an annular shape in which a through hole penetrating in the axial direction is provided at the rotation center portion, and the axial end of the cylindrical portion 22b of the inner hub 22 is spot welded on the outer peripheral side thereof. Or, it is joined by caulking or the like.
  • the fracture part 25d is formed as a part having a smaller diameter than the outer diameter of the cylindrical part 25b. That is, the outer diameter of the fracture portion 25d is smaller than the outer diameter of the cylindrical portion 25b and the outer diameter of the pressure receiving portion 25c.
  • the breaking portion 25d is configured by a thin portion provided in the limiter 25.
  • the plate 26 is formed of a substantially disk-shaped metal that spreads in a direction perpendicular to the rotation shaft 2 a of the compressor 2. More specifically, the plate 26 is a plate-like elastic member (plate spring) formed so as to be elastically deformable in the rotational direction and the axial direction of the rotary shaft 2a of the compressor 2. In the present embodiment, the plate 26 is made of spring steel (specifically, S60CM).
  • a hub side mounting portion 26a to which the inner hub 22 is attached is provided on the inner peripheral side of the plate 26, and a pulley side mounting portion 26b to which the pulley 21 is attached is provided on the outer peripheral side of the plate 26.
  • the hub-side mounting portion 26a is formed by a plurality of (three in this embodiment) through-holes provided at positions overlapping with the disk-like portion 22a of the inner hub 22 when viewed from the axial direction of the rotating shaft 2a. Has been. Furthermore, when viewed from the axial direction of the rotary shaft 2a, inner hub side through holes that penetrate the front and back of the disk-like portion 22a of the inner hub 22 are provided at locations corresponding to the hub side mounting portions 26a of the inner hub 22. Is formed.
  • the inner hub 22 and the plate 26 are connected by a rivet 27 that simultaneously penetrates a through hole that is a hub side mounting portion 26a of the plate 26 and an inner hub side through hole formed in the disc-like portion 22a of the inner hub 22. .
  • the pulley-side attachment portion 26b is formed by a plurality of (three in this embodiment) through holes provided at positions where the pulley-side attachment portion 26b overlaps with the end surface portion 21c of the pulley 21 when viewed from the direction of the rotation shaft 2a of the compressor 2. ing. Furthermore, when viewed from the direction of the rotating shaft 2 a of the compressor 2, a pulley-side through hole penetrating the front and back of the end surface portion 21 c of the pulley 21 is formed at a location corresponding to the pulley-side mounting portion 26 b of the pulley 21. Yes.
  • the pulley 21 and the plate 26 are coupled by tightening a bolt 28 a and a nut 28 b that simultaneously penetrate the through hole that is the pulley side mounting portion 26 b of the plate 26 and the pulley side through hole formed in the end surface portion 21 c of the pulley 21. Has been.
  • the plate 26 has a plurality of plate side through holes 26c penetrating the front and back in the axial direction when viewed from the axial direction of the rotary shaft 2a (in the present embodiment, as shown by thin broken lines in FIG. 3). 3 places).
  • the plate-side through hole 26c is formed so that the plate 26 can be appropriately and sufficiently elastically deformed when a rotational load of the rotary shaft 2a or an axial load is applied to the plate 26.
  • the disk-like portion 22a of the inner hub 22 of the present embodiment is formed in a shape that spreads so as to overlap with the entire area of the plate 26 when viewed from the axial direction of the rotating shaft 2a. Accordingly, the disc-like portion 22 a of the inner hub 22 is arranged so as to overlap with the plate-side through hole 26 c of the plate 26.
  • a through hole through which the bolt 28a is passed is formed between the surface of the end surface portion 21c of the pulley 21 on the side opposite to the compressor 2 and the surface of the plate 26 on the compressor 2 side.
  • a disk-shaped shim 29 is sandwiched.
  • the pulley 21 of the present embodiment constitutes a drive side rotating body.
  • the inner hub 22, the washer 24, and the limiter 25 constitute a driven side rotating body.
  • the plate 26 corresponds to a connecting member and may correspond to a plate-like elastic member.
  • the plate side through hole 26c constitutes a through hole of the connecting member.
  • the disc-like portion 22a of the inner hub 22 constitutes a superposed portion of the driven side rotating body.
  • the power transmission device 20 of this embodiment has a clutchless configuration, when the engine E is started, the rotational driving force output from the engine E is a pulley that is a driving side rotating body via the belt V. 21 and the pulley 21 rotates.
  • the plate 26 constituting the connecting member, the inner hub 22 constituting the driven side rotating body, the washer 24, and the limiter 25 rotate together.
  • the rotating shaft 2a of the compressor 2 connected to the driven side rotating body rotates together with the driven side rotating body. That is, the rotational driving force output from the engine E is transmitted to the rotating shaft 2 a of the compressor 2, and the compressor 2 compresses and discharges the refrigerant in the refrigeration cycle 1.
  • the plate 26 of this embodiment is connected to both the pulley 21 and the driven side rotating body, which are driving side rotating bodies, and can be elastically deformed in the rotational direction of the rotating shaft 2a, Variations in rotational torque transmitted to the driven side rotating body can be absorbed.
  • the plate 26 of the present embodiment applies a load in a direction away from the rotary shaft 2a of the compressor 2 to the inner hub 22 when the fracture portion 25d is not fractured. Therefore, when the breaking portion 25d breaks, the portion of the driven-side rotating body that is separated from the rotating shaft 2a of the compressor 2 is displaced to the side away from the rotating shaft 2a of the compressor 2.
  • the rotational driving force output from the engine E can be transmitted to the compressor 2. Further, when the compressor 2 is locked and the rotating shaft 2a cannot rotate, transmission of the rotational driving force from the engine E to the compressor 2 can be interrupted.
  • the inner hub 22 that is an essential component for transmitting the rotational driving force from the engine E to the compressor 2 has a disk-shaped portion 22a that is a superposed portion. Therefore, the plate-side through hole 26c formed in the plate 26 can be covered without increasing the number of parts.
  • a plate-like elastic member that requires elastic deformation in the rotational direction or the axial direction of the rotary shaft 2a such as the plate 26 of the present embodiment, has an appropriate shape to ensure a sufficient amount of elastic deformation.
  • a plate-side through hole 26c is formed. Therefore, as in this embodiment, the inner hub 22 is provided with the overlapping portion (disk-like portion 22a) regardless of the shape of the plate-side through hole 26c. This is effective in that it can suppress the entry of foreign matter.
  • the compressor 2 of the refrigeration cycle 1 applied to the vehicle air conditioner generally, the compressor Since No. 2 is arranged in the engine room outside the vehicle compartment, foreign matter is likely to enter the power transmission device more easily than in the case of being arranged in the vehicle compartment. Therefore, it is very effective to be able to suppress the entry of foreign matter into the interior as in the power transmission device 20 of the present embodiment.
  • the power transmission device 20 is configured as an electromagnetic clutch. That is, the power transmission device 20 according to the present embodiment rotates together with the drive-side rotating body that rotates by the rotational driving force output from the engine E and the rotating shaft 2 a of the compressor 2 by the electromagnetic force generated by the electromagnet 30. It is the structure which connects a driven side rotary body.
  • the power transmission device 20 of the present embodiment is connected to a pulley 21, an inner hub 22, and a plate 26 connected to the inner hub 22 similar to those of the first embodiment.
  • an electromagnet 30, an armature 40, a buffer member 50, and the like are provided.
  • FIGS. 4 and 5 are drawings corresponding to FIGS. 2 and 3 of the first embodiment, respectively, and the same or equivalent components as those of the first embodiment are denoted by the same reference numerals.
  • FIG. 4 is a partial cross-sectional view in the axial direction of the power transmission device 20 of the present embodiment, and is a cross-sectional view taken along the line IV-IV in FIG. In the following description, overlapping description of the same or equivalent configuration as in the first embodiment is omitted.
  • the electromagnet 30 generates an electromagnetic force that couples the driven-side rotator (specifically, the armature 40) and the drive-side rotator (specifically, the pulley 21) by being supplied with electric power.
  • the electromagnet 30 includes an annular stator 30a formed of a magnetic material (specifically, iron) and disposed coaxially with the rotary shaft 2a of the compressor 2, a coil 30b accommodated in the stator 30a, and the like. Have.
  • the coil 30b is fixed to the stator 30a while being molded with an insulating resin material, and is electrically insulated from the stator 30a.
  • the electromagnet 30 is disposed in an internal space having a substantially U-shaped cross section sandwiched between the inner peripheral side of the outer cylindrical portion 21a of the pulley 21 and the outer peripheral side of the inner cylindrical portion 21b. Switching between energization and non-energization of the electromagnet 30 is performed by a control voltage output from a control device (not shown).
  • the pulley 21 of the present embodiment is made of a magnetic material (specifically, iron) and constitutes a part of a magnetic circuit of electromagnetic force generated by the electromagnet 30. Further, the surface on the opposite side of the compressor 2 of the end surface portion 21c of the pulley 21 forms a friction surface that comes into contact with the armature 40 of the driven side rotating body when connected to the driven side rotating body.
  • a magnetic material specifically, iron
  • a friction member 21d for increasing the friction coefficient of the end surface portion 21c is disposed on a part of the surface of the end surface portion 21c.
  • the friction member 21d is made of a non-magnetic material. Specifically, a material obtained by solidifying alumina (aluminum oxide) with a resin, a sintered material of metal powder (specifically, aluminum powder), or the like is used. it can.
  • the end surface portion 21c of the pulley 21 when viewed from the axial direction of the rotary shaft 2a, has slit holes 21e and 21f penetrating through the front and back thereof in an arc shape centering on the axial center of the rotary shaft 2a. Is formed.
  • the slit holes 21e and 21f are arranged in two rows in the radial direction when viewed from the axial direction of the rotary shaft 2a, and are formed in a plurality in the circumferential direction.
  • the armature 40 is a disk-shaped member that extends perpendicularly to the direction of the rotating shaft 2a of the compressor 2 and that has a through-hole penetrating the front and back at the center.
  • the armature 40 is formed of a magnetic material (specifically, iron) and constitutes a part of a magnetic circuit of electromagnetic force generated by the electromagnet 30 together with the pulley 21.
  • the armature 40 is formed with a slit hole 40a penetrating through the front and back when viewed from the axial direction of the rotary shaft 2a in an arc shape centering on the axial center of the rotary shaft 2a.
  • the slit holes 40a are formed in one row in the radial direction when viewed from the axial direction, and plural in the circumferential direction (three in this embodiment). Is formed. Also, as shown in FIG. 4, the diameter of the slit hole 40a is larger than the radially inner slit hole 21e formed in the end surface portion 21c of the pulley 21 and smaller than the diameter of the radially outer slit hole 21f. Has been.
  • the slit holes 21e and 21f formed in the end surface portion 21c of the pulley 21 and the slit hole 40a formed in the armature 40 suppress the short circuit of the magnetic circuit caused by the electromagnet 30 and the armature 40 of the driven side rotating body. It is formed in order to reinforce the electromagnetic force that couples the pulley 21 of the driving side rotating body.
  • the surface of the armature 40 on the compressor 2 side faces the end surface portion 21 c of the pulley 21, and forms a friction surface that comes into contact with the pulley 21 when connected to the armature 40.
  • a plurality of projecting portions 40 b projecting in the axial direction are provided on the surface of the armature 40 opposite to the compressor 2.
  • the plate 26 is fixed to the protruding portion 40b. More specifically, in this embodiment, the plate 26 and the armature 40 are squeezed by crushing the tip of the protrusion 40b in a state where the protrusion 40b is inserted into the fixing through hole formed in the plate 26. It is fixed by caulking.
  • the plate 26 of the present embodiment applies an axial load on the side away from the pulley 21 to the armature 40 when the armature 40 is attracted and displaced toward the pulley 21 by the electromagnetic force of the electromagnet 30. Therefore, the plate side through hole 26c of the plate 26 of the present embodiment is formed so that the plate 26 can be elastically deformed appropriately and sufficiently in the axial direction of the rotating shaft 2a.
  • the outer diameter dimension of the plate 26 of the present embodiment is formed substantially equal to the outer diameter dimension of the armature 40. Moreover, the outer peripheral side of the disk-shaped part 22a of the inner hub 22 is being fixed to the inner peripheral side of the plate 26 of this embodiment by the rivet 27a.
  • the rotating shaft 2a of the compressor 2 is fixed to the cylindrical portion 22b of the inner hub 22 by fastening means such as bolt fastening.
  • the inner hub 22 and the rotating shaft 2a may be fixed by spline (serration) coupling or a keyway.
  • the outer diameter of the disc-shaped portion 22 a of the inner hub 22 of the present embodiment is formed smaller than the inner diameter of the armature 40, and the inner hub 22 is the inner peripheral side of the armature 40. Is arranged. Therefore, the disk-like portion 22a of the inner hub 22 of the present embodiment is not arranged so as to overlap with the entire area of the plate 26.
  • the plate 26 of the present embodiment is integrally formed with the buffer member 50 formed in a substantially disc shape by insert molding or the like.
  • the buffer member 50 is made of an elastically deformable rubber material (specifically, EPDM (ethylene / propylene / diene rubber)), and a driven side rotating body (specifically, armature 40) and a driving side rotating body. (Specifically, the impact when the pulley 21 is coupled is reduced.
  • the buffer member 50 spreads over the entire area of the plate-side through hole 26c formed in the plate 26 and covers the plate-side through hole 26c as shown by the point hatching in FIG.
  • a thick portion 50b is disposed between the plate 26 and the disc-shaped portion 22a of the inner hub 22 and has a thickness in the axial direction of the rotating shaft 2a rather than the flat portion 50a. is doing.
  • the thick portion 50 b is sandwiched between the plate 26 and the inner hub 22 and elastically deformed, whereby the armature 40 and the pulley Mitigates the impact when 21 is connected.
  • the flat portion 50a is disposed so as to close the plate-side through hole 26c, it is overlapped with the slit hole 40a of the armature 40 when viewed from the axial direction of the rotating shaft 2a as shown in FIG. Has been.
  • the armature 40, the plate 26, and the inner hub 22 of the present embodiment constitute a driven side rotating body.
  • the flat surface portion 50a of the buffer member 50 constitutes an overlapping portion.
  • the slit hole 40a of the armature 40 constitutes a through hole of the driven side rotating body.
  • the power transmission device 20 of the present embodiment is configured as an electromagnetic clutch, when a control voltage is output from the control device and electric power is supplied to the electromagnet 30, the driven rotor is driven by the electromagnetic force generated by the electromagnet 30. And the drive-side rotator are connected.
  • the armature 40 of the driven side rotating body is attracted to the pulley 21 side by the electromagnetic force generated by the electromagnet 30.
  • the driven-side rotator and the drive-side rotator are connected by the elastically deforming the thick-walled portion 50b of the buffer member 50 sandwiched between the plate 26 and the disc-like portion 22a of the inner hub 22. The shock of is reduced.
  • the armature 40, the plate 26, and the inner hub 22 constituting the driven side rotating body rotate together.
  • the rotating shaft 2a of the compressor 2 connected to the driven side rotating body rotates together with the driven side rotating body. That is, the rotational driving force output from the engine E is transmitted to the rotating shaft 2 a of the compressor 2, and the compressor 2 can compress and discharge the refrigerant in the refrigeration cycle 1.
  • the power transmission device 20 of the present embodiment when the control device supplies power to the electromagnet 30, the armature 40 is connected to the pulley 21 and the rotational drive output from the engine E is performed. The force can be transmitted to the compressor 2. Further, when the control device stops supplying power to the electromagnet 30, the armature 40 and the pulley 21 are disconnected, and transmission of the rotational driving force from the engine E to the compressor 2 can be cut off.
  • a slit hole 40a for reinforcing electromagnetic force is formed in the armature 40 that is a part of the driven side rotating body.
  • a general electromagnetic clutch includes a buffer member 50 for reducing an impact when the armature 40 and the pulley 21 are coupled by electromagnetic force.
  • the buffer member 50 provided in a general electromagnetic clutch since the buffer member 50 provided in a general electromagnetic clutch has the flat surface portion 50a that constitutes the overlapping portion, the armature 40 does not increase in the number of parts.
  • the formed slit hole 40a can be covered.
  • water, dust, and the like can be introduced into the friction surface of the clutch disposed inside the power transmission device 20 and the ball bearing 23 without increasing the manufacturing cost of the power transmission device 20. It is possible to improve the reliability of the power transmission device 20 by suppressing entry of foreign matter.
  • the power transmission device 20 is applied to transmit the rotational driving force output from the engine E to the compressor 2
  • the application of the power transmission device 20 is not limited thereto. That is, the power transmission device 20 can be widely applied to transmit the rotational driving force output from the rotational driving source to the drive target device.
  • the present disclosure may be applied to transmit a rotational driving force output from an engine or an electric motor to a generator or the like.
  • the power transmission device 20 when the torque transmitted from the drive source (engine E) to the drive target device (compressor 2) becomes equal to or higher than a predetermined reference torque, it breaks and the drive source to the drive target device
  • the power transmission device 20 having a so-called torque limiter function in which the breaking portion 25d for interrupting the transmission of the rotational driving force is formed has been described
  • the power transmission device 20 of the second embodiment also has a similar torque limiter function. May be.
  • a thin portion is formed at the connecting portion between the disc-like portion 22a and the cylindrical portion 22b of the inner hub 22, and the thin portion is transmitted from the driving side rotating body to the driven side rotating body.
  • a breaking portion may be formed that breaks when the torque to be exceeded is equal to or higher than a predetermined reference torque.
  • you may add the limiter 25 similar to 1st Embodiment to the power transmission device 20 of 2nd Embodiment.
  • the temperature exceeds a predetermined reference temperature due to friction between the pulley 21 and the armature 40 and friction between the pulley 21 and the belt V. It is possible to provide a temperature fuse that is disconnected at this time and stops the supply of electric power to the electromagnet 30, and a torque limiter function may be realized by this temperature fuse.
  • the driven-side rotating body is configured by the armature 40, the plate 26, and the inner hub 22.
  • the driven body is driven by the inner hub 22 and the buffer member 50 that rotate together with the rotating shaft 2a of the compressor 2.
  • a side rotation body is comprised and a connection member is good also as what is comprised by the plate 26 connected with the inner hub 22 which comprises a driven side rotation body.
  • the flat part 50a of the buffer member 50 with which a general electromagnetic clutch is provided corresponds to the overlapping part of the driven side rotating body, and the plate side through hole (through hole of the connecting member) 26c formed in the plate 26 is provided. Can be covered. Therefore, it is possible to prevent foreign matter from entering the power transmission device through the plate-side through hole 26c without increasing the number of components.
  • a driven side rotating body is constituted by the inner hub 22 and the buffer member 50 rotating together with the rotating shaft 2a of the compressor 2, and a connecting member is constituted by the plate 26 and the armature 40 connected to the inner hub 22 constituting the driven side rotating body. May be configured.
  • the flat part 50a of the buffer member 50 with which a general electromagnetic clutch is provided corresponds to the overlapping part of the driven side rotating body, and the plate side through hole 26c formed in the plate 26 and the slit formed in the armature 40.
  • the hole 40a can be covered. Accordingly, it is possible to prevent foreign matter from entering the power transmission device through the plate-side through hole 26c and the slit hole 40a without increasing the number of parts.
  • a driven side rotating body is constituted by the inner hub 22, the plate 26 and the buffer member 50 which rotate together with the rotating shaft 2a of the compressor 2, and the connecting member is constituted by the armature 40 which is connected to the plate 26 constituting the driven side rotating body. It may be configured.
  • the flat part 50a of the buffer member 50 with which a general electromagnetic clutch is provided corresponds to the overlapping part of the driven side rotating body, and the plate side through hole 26c formed in the plate 26 and the slit formed in the armature 40.
  • the hole 40a can be covered. Therefore, it is possible to prevent foreign matter from entering the power transmission device through the slit hole 40a without increasing the number of parts.
  • the shape of the inner hub 22 is not limited to this.
  • a portion that protrudes outward in the axial direction of the rotating shaft 2 a from the armature 40 (opposite side of the compressor 2) is provided on the disk-like portion 22 a of the inner hub 22, and the outer diameter of this portion is the outer diameter of the armature 40. It may be enlarged to the same size.
  • the driven-side rotating body is configured by the inner hub 22 that is a component that rotates together with the rotating shaft 2a of the compressor 2, and the plate 26 and the armature connected to the inner hub 22 that configures the driven-side rotating body.
  • the connecting member may be constituted by 40.
  • the disk-like portion 22a of the inner hub 22 that is an essential component for transmitting the rotational driving force from the engine E to the compressor 2 functions as a superposed portion, and the plate side formed on the plate 26
  • the through hole 26c and the slit hole 40a formed in the armature 40 can be covered.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Pulleys (AREA)
  • Transmission Devices (AREA)

Abstract

A power transmission device for transmitting rotational drive force outputted from a driving source (E) to an apparatus to be driven (2) includes: a driving-side rotational body (21) rotated by the rotational drive force; a driven-side rotational body (22, 24, 25, 26, 50) that rotates in conjunction with a rotation axis (2a) of the apparatus to be driven (2); and a coupling member (26, 40). The coupling member is formed in the shape of a plate extending in a direction perpendicular to the rotation axis so as to be coupled to at least one of the driving-side rotational body and the driven-side rotational body and capable of coupling the driving-side rotational body and the driven-side rotational body to each other. The coupling member has a through-hole (26c, 40a), and the driven-side rotational body has an overlapping section (22a, 50a) which is disposed to overlap the through-hole when viewed in the axial direction of the rotation axis.

Description

動力伝達装置Power transmission device 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年4月17日に出願された日本出願番号2014-85282号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2014-85282 filed on April 17, 2014, the contents of which are incorporated herein by reference.
 本開示は、回転駆動力を伝達する動力伝達装置に関する。 The present disclosure relates to a power transmission device that transmits a rotational driving force.
 従来、駆動源から出力された回転駆動力を駆動対象装置へ伝達する種々の形式の動力伝達装置が知られている。 Conventionally, various types of power transmission devices that transmit a rotational driving force output from a driving source to a device to be driven are known.
 特許文献1には、動力伝達装置として、エンジンから出力された回転駆動力を冷凍サイクルの圧縮機へ伝達する電磁クラッチが開示されている。電磁クラッチは、電磁クラッチの外周側を覆うカバーを備えており、水や粉塵等の異物が、クラッチの摩擦面や圧縮機への取付部を構成するベアリング内へ侵入してしまうことを抑制している。 Patent Document 1 discloses an electromagnetic clutch that transmits a rotational driving force output from an engine to a compressor of a refrigeration cycle as a power transmission device. The electromagnetic clutch is equipped with a cover that covers the outer periphery of the electromagnetic clutch, and it prevents foreign objects such as water and dust from entering the bearing that constitutes the friction surface of the clutch and the attachment to the compressor. ing.
特開2004-293734号公報JP 2004-293734 A
 しかしながら、内部への異物の侵入を抑制するためにカバーを追加する場合、部品点数が増加し、動力伝達装置の組付工数の増加や製造コストの増加を招いてしまう。 However, when a cover is added to suppress the entry of foreign matter into the interior, the number of parts increases, leading to an increase in the number of assembly steps of the power transmission device and an increase in manufacturing costs.
 本開示は、部品点数の増加を招くことなく、内部への異物の侵入を抑制可能な動力伝達装置を提供することを目的とする。 This disclosure is intended to provide a power transmission device that can suppress the intrusion of foreign matter into the interior without increasing the number of parts.
 本開示の一形態において、駆動源から出力された回転駆動力を駆動対象装置へ伝達する動力伝達装置は、回転駆動力によって回転する駆動側回転体と、駆動対象装置の回転軸とともに回転する従動側回転体と、回転軸に対して垂直な方向に広がる板状に形成されて、駆動側回転体および従動側回転体の少なくとも一方に連結された連結部材と、を備える。駆動側回転体と従動側回転体は連結部材を通じて互いに連結可能である。 In one embodiment of the present disclosure, a power transmission device that transmits a rotational driving force output from a driving source to a driving target device is a driven side rotating body that rotates by the rotational driving force, and a driven that rotates together with the rotating shaft of the driving target device. And a connecting member which is formed in a plate shape extending in a direction perpendicular to the rotation axis and connected to at least one of the driving side rotating body and the driven side rotating body. The driving side rotating body and the driven side rotating body can be connected to each other through a connecting member.
 連結部材は、回転軸の軸方向に、連結部材を貫通する貫通穴を有する。従動側回転体は、回転軸の軸方向から見たときに、連結部材の貫通穴と重合して配置される重合部を有している。 The connecting member has a through hole penetrating the connecting member in the axial direction of the rotating shaft. When viewed from the axial direction of the rotation shaft, the driven-side rotator has an overlapping portion that is overlapped with the through hole of the connecting member.
 従動側回転体は、駆動源から出力された回転駆動力を駆動対象装置へ伝達するために必須の構成である。 The driven-side rotator is an essential configuration for transmitting the rotational driving force output from the driving source to the drive target device.
 従って、必須の構成である従動側回転体が重合部を有しているので、部品点数の増加を招くことなく、連結部材に形成された貫通穴を覆うことができる。これにより、部品点数の増加を招くことなく、貫通穴を介して、動力伝達装置の内部へ異物が侵入してしまうことを抑制できる。 Therefore, since the driven side rotating body, which is an essential configuration, has the overlapping portion, the through hole formed in the connecting member can be covered without increasing the number of parts. Thereby, it can suppress that a foreign material penetrate | invades into the inside of a power transmission device through a through-hole, without causing the increase in a number of parts.
 連結部材は、駆動側回転体および従動側回転体の双方に連結される時、駆動側回転体から従動側回転体へ伝達される回転トルクの変動を吸収する板状弾性部材であってもよい。また、連結部材は、駆動側回転体および従動側回転体の少なくとも一方に、回転軸の軸方向に荷重をかける板状弾性部材であってもよい。 The connecting member may be a plate-like elastic member that absorbs fluctuations in rotational torque transmitted from the driving side rotating body to the driven side rotating body when connected to both the driving side rotating body and the driven side rotating body. . Further, the connecting member may be a plate-like elastic member that applies a load in the axial direction of the rotating shaft to at least one of the driving side rotating body and the driven side rotating body.
 板状弾性部材には、一般的に、充分な弾性変形量を確保するために、表裏を貫通する貫通穴が形成される。さらに、貫通穴は、充分な弾性変形量を確保するために適切な形状に形成される。これに対して、従動側回転体が重合部を有していることは、貫通穴の形状によらず、動力伝達装置の内部への異物の侵入を抑制できる点で有効である。 The plate-like elastic member is generally formed with a through-hole penetrating the front and back in order to ensure a sufficient amount of elastic deformation. Furthermore, the through hole is formed in an appropriate shape in order to ensure a sufficient amount of elastic deformation. On the other hand, the fact that the driven-side rotator has the overlapped portion is effective in that foreign matter can be prevented from entering the power transmission device regardless of the shape of the through hole.
 本開示の一形態において、駆動源から出力された回転駆動力を駆動対象装置へ伝達する動力伝達装置は、回転駆動力によって回転する駆動側回転体と、駆動対象装置の回転軸とともに回転する従動側回転体と、従動側回転体と駆動側回転体とを連結させる電磁力を生じさせる電磁石と、従動側回転体と駆動側回転体が連結する際に生じる衝撃を緩和する緩衝部材と、を備える。 In one embodiment of the present disclosure, a power transmission device that transmits a rotational driving force output from a driving source to a driving target device is a driven side rotating body that rotates by the rotational driving force, and a driven that rotates together with the rotating shaft of the driving target device. A side rotating body, an electromagnet that generates an electromagnetic force that connects the driven side rotating body and the driving side rotating body, and a buffer member that alleviates an impact generated when the driven side rotating body and the driving side rotating body are connected. Prepare.
 従動側回転体には、回転軸の軸方向に、表裏を貫通する貫通穴が形成されており、緩衝部材は、回転軸の軸方向から見たときに、貫通穴と重合して配置される重合部を有している。 The driven-side rotating body is formed with a through-hole penetrating the front and back in the axial direction of the rotating shaft, and the buffer member is arranged so as to overlap with the through-hole when viewed from the axial direction of the rotating shaft. It has a superposition part.
 電磁石が発生する電磁力によって従動側回転体と駆動側回転体とを連結させる動力伝達装置(すなわち、電磁クラッチ)では、従動側回転体の一部に電磁力を強化するための貫通穴が形成される。一般的な電磁クラッチでは、従動側回転体と駆動側回転体が電磁力によって連結される際の衝撃を緩和するための緩衝部材を備えている。 In a power transmission device (that is, an electromagnetic clutch) that connects a driven-side rotator and a drive-side rotator by an electromagnetic force generated by an electromagnet, a through hole is formed in part of the driven-side rotator to enhance the electromagnetic force. Is done. A general electromagnetic clutch includes a buffer member for alleviating an impact when the driven side rotator and the drive side rotator are coupled by electromagnetic force.
 従って、一般的な電磁クラッチが備える緩衝部材が重合部を有しているので、部品点数の増加を招くことなく、貫通穴を覆うことができる。これにより、部品点数の増加を招くことなく、貫通穴を介して、動力伝達装置の内部へ異物が侵入してしまうことを抑制できる。 Therefore, since the buffer member provided in the general electromagnetic clutch has the overlapping portion, the through hole can be covered without increasing the number of parts. Thereby, it can suppress that a foreign material penetrate | invades into the inside of a power transmission device through a through-hole, without causing the increase in a number of parts.
第1実施形態にかかる動力伝達装置が適用される冷凍サイクルの全体構成図である。1 is an overall configuration diagram of a refrigeration cycle to which a power transmission device according to a first embodiment is applied. 第1実施形態の動力伝達装置の軸方向一部断面図である。It is a partial axial sectional view of the power transmission device of the first embodiment. 第1実施形態の動力伝達装置の側面図である。It is a side view of the power transmission device of a 1st embodiment. 第2実施形態の動力伝達装置の軸方向一部断面図である。It is a partial axial sectional view of the power transmission device of the second embodiment. 第2実施形態の動力伝達装置の側面図である。It is a side view of the power transmission device of 2nd Embodiment.
 (第1実施形態)
 図1~図3により、第1実施形態を説明する。本実施形態の動力伝達装置20は、車両に搭載された内燃機関(エンジン)Eから出力された回転駆動力を、蒸気圧縮式の冷凍サイクル1の圧縮機2へ伝達する。従って、本実施形態における駆動源は、エンジンEであり、駆動対象装置は、圧縮機2である。
(First embodiment)
The first embodiment will be described with reference to FIGS. The power transmission device 20 of this embodiment transmits the rotational driving force output from the internal combustion engine (engine) E mounted in the vehicle to the compressor 2 of the vapor compression refrigeration cycle 1. Therefore, the drive source in the present embodiment is the engine E, and the drive target device is the compressor 2.
 本実施形態の冷凍サイクル1は、車両用空調装置において、車室内へ送風される送風空気を冷却する。より具体的には、冷凍サイクル1は、図1に示すように、圧縮機2、放熱器3、温度式膨張弁4、および蒸発器5を順次配管で接続することによって構成されている。 The refrigeration cycle 1 of the present embodiment cools the air blown into the passenger compartment in the vehicle air conditioner. More specifically, the refrigeration cycle 1 is configured by sequentially connecting a compressor 2, a radiator 3, a temperature type expansion valve 4, and an evaporator 5 with piping as shown in FIG.
 圧縮機2は、冷凍サイクル1において冷媒を圧縮して吐出する。本実施形態では、圧縮機2として、斜板式の可変容量型圧縮機を採用している。可変容量型圧縮機では、吐出容量を略0%に減少させることで、圧縮機2を実質的に冷媒吐出能力を発揮しない作動停止状態とすることができる。 The compressor 2 compresses and discharges the refrigerant in the refrigeration cycle 1. In this embodiment, a swash plate type variable displacement compressor is employed as the compressor 2. In the variable capacity compressor, by reducing the discharge capacity to approximately 0%, the compressor 2 can be brought into an operation stop state that does not substantially exhibit the refrigerant discharge capacity.
 従って、本実施形態では、動力伝達装置20として、エンジンEと圧縮機2とを、ベルトVを介して常時連結するクラッチレスの構成を採用している。なお、圧縮機2の吐出容量(冷媒吐出能力)は、図示しない制御装置から圧縮機2の吐出容量制御弁に出力される制御信号によって制御される。 Therefore, in this embodiment, the power transmission device 20 employs a clutchless configuration in which the engine E and the compressor 2 are always coupled via the belt V. Note that the discharge capacity (refrigerant discharge capacity) of the compressor 2 is controlled by a control signal output from a control device (not shown) to the discharge capacity control valve of the compressor 2.
 放熱器3は、圧縮機2から吐出された高温高圧冷媒と外気とを熱交換させて、冷媒を凝縮させる放熱用の熱交換器である。 The heat radiator 3 is a heat exchanger for heat radiation that causes heat exchange between the high-temperature and high-pressure refrigerant discharged from the compressor 2 and the outside air to condense the refrigerant.
 温度式膨張弁4は、蒸発器5出口側冷媒の温度および圧力に基づいて蒸発器5出口側冷媒の過熱度を検知する感温部を有し、蒸発器5出口側冷媒の過熱度が予め定めた基準範囲内となるように機械的機構によって絞り開度を調整する減圧手段である。 The temperature-type expansion valve 4 has a temperature sensing unit that detects the degree of superheat of the evaporator 5 outlet-side refrigerant based on the temperature and pressure of the evaporator 5 outlet-side refrigerant. The pressure reducing means adjusts the throttle opening by a mechanical mechanism so as to be within a defined reference range.
 蒸発器5は、温度式膨張弁4にて減圧された低圧冷媒と車室内へ送風される送風空気とを熱交換させ、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用の熱交換器である。 The evaporator 5 is an endothermic heat exchanger that exchanges heat between the low-pressure refrigerant decompressed by the temperature type expansion valve 4 and the blown air blown into the passenger compartment, and evaporates the low-pressure refrigerant to exert an endothermic effect. is there.
 次に、動力伝達装置20について説明する。動力伝達装置20は、図2、図3に示すように、エンジンEから出力された回転駆動力によって回転するプーリ21、圧縮機2の回転軸2aとともに回転するインナーハブ22、並びに、プーリ21およびインナーハブ22の双方に連結されたプレート26等を備えている。図2は、動力伝達装置20の軸方向一部断面図であって、具体的には、図3のII-II線における断面図である。 Next, the power transmission device 20 will be described. As shown in FIGS. 2 and 3, the power transmission device 20 includes a pulley 21 that rotates by the rotational driving force output from the engine E, an inner hub 22 that rotates together with the rotating shaft 2 a of the compressor 2, and a pulley 21 and A plate 26 and the like connected to both of the inner hubs 22 are provided. FIG. 2 is a partial cross-sectional view in the axial direction of the power transmission device 20, and more specifically, a cross-sectional view taken along the line II-II in FIG.
 プーリ21は、外側円筒部21a、内側円筒部21bと端面部21cを有している。外側円筒部21aは、円筒状であり、圧縮機2の回転軸2aに対して同軸上に配置される。内側円筒部21bは、円筒状であり、外側円筒部21aの内周側に配置されるとともに、回転軸2aに対して同軸上に配置される。端面部21cは、外側円筒部21aおよび内側円筒部21bの圧縮機2の反対側の端部同士を結ぶように広がる。 The pulley 21 has an outer cylindrical portion 21a, an inner cylindrical portion 21b, and an end surface portion 21c. The outer cylindrical portion 21 a has a cylindrical shape and is disposed coaxially with the rotation shaft 2 a of the compressor 2. The inner cylindrical portion 21b has a cylindrical shape, is disposed on the inner peripheral side of the outer cylindrical portion 21a, and is disposed coaxially with the rotation shaft 2a. The end surface portion 21c spreads so as to connect the opposite end portions of the outer cylindrical portion 21a and the inner cylindrical portion 21b to the compressor 2.
 プーリ21は、図2に示すように、径方向断面が略コの字状に形成されている。また、外側円筒部21aの外周側には、エンジンEから出力される回転駆動力を伝達するベルトVが掛けられるV溝(具体的には、ポリV溝)が形成されている。 As shown in FIG. 2, the pulley 21 has a substantially U-shaped radial cross section. Further, on the outer peripheral side of the outer cylindrical portion 21a, a V groove (specifically, a poly V groove) on which a belt V that transmits the rotational driving force output from the engine E is applied is formed.
 さらに、内側円筒部21bの内周側には、ボールベアリング23の外周側が固定され、ボールベアリング23の内周側には、圧縮機2の外殻を形成するハウジングから動力伝達装置20側へ軸方向に突出する円筒状のボス部2bが固定されている。これにより、プーリ21は、圧縮機2のハウジングに対して、回転軸2aと同軸上に回転自在に固定されている。 Further, the outer peripheral side of the ball bearing 23 is fixed to the inner peripheral side of the inner cylindrical portion 21b, and a shaft from the housing forming the outer shell of the compressor 2 to the power transmission device 20 side is fixed to the inner peripheral side of the ball bearing 23. A cylindrical boss 2b protruding in the direction is fixed. Thereby, the pulley 21 is fixed to the housing of the compressor 2 so as to be rotatable coaxially with the rotary shaft 2a.
 インナーハブ22は、中心部に軸方向に貫通する円形状の貫通穴が形成された円板状部22a、および回転軸2aに対して同軸上に延びる円筒状部22bを有している。 The inner hub 22 has a disc-like portion 22a in which a circular through-hole penetrating in the axial direction is formed in the center portion, and a cylindrical portion 22b extending coaxially with the rotating shaft 2a.
 インナーハブ22の円板状部22aの内径は、図2に示すように、円筒状部22bの外径と略同等の寸法に形成されている。一方、円板状部22aの外径は、図3に示すように、プレート26の外径と略同等の寸法に形成されている。従って、円板状部22aは、回転軸2aの軸方向から見たときに、プレート26の略全域と重合するように広がる円環状に形成されている。 As shown in FIG. 2, the inner diameter of the disc-shaped portion 22a of the inner hub 22 is formed to be approximately the same as the outer diameter of the cylindrical portion 22b. On the other hand, the outer diameter of the disc-like portion 22a is formed to have a dimension substantially equal to the outer diameter of the plate 26, as shown in FIG. Accordingly, the disk-like portion 22a is formed in an annular shape that spreads so as to overlap with the entire region of the plate 26 when viewed from the axial direction of the rotating shaft 2a.
 インナーハブ22の円筒状部22bの軸方向端部のうち、圧縮機2側の端部には、比較的硬度の高い鉄系金属で形成されたワッシャ24がスポット溶接、あるいは、かしめ等によって接合されている。 Of the axial ends of the cylindrical portion 22b of the inner hub 22, a washer 24 formed of a relatively hard iron-based metal is joined to the end of the compressor 2 by spot welding or caulking. Has been.
 ワッシャ24は、円環状に形成されており、ワッシャ24の内周側には、圧縮機2の回転軸2aが挿入されている。ワッシャ24の回転軸2a方向の圧縮機2側の端面は、回転軸2aに形成された段差部2cに当接している。この段差部2cにより、ワッシャ24およびインナーハブ22は、回転軸2aに沿って圧縮機2へ近づく側へ変位することが規制されている。 The washer 24 is formed in an annular shape, and the rotating shaft 2 a of the compressor 2 is inserted on the inner peripheral side of the washer 24. The end surface of the washer 24 on the compressor 2 side in the direction of the rotation shaft 2a is in contact with a stepped portion 2c formed on the rotation shaft 2a. The stepped portion 2c restricts the washer 24 and the inner hub 22 from being displaced toward the compressor 2 along the rotating shaft 2a.
 一方、インナーハブ22の円筒状部22bの軸方向端部のうち、圧縮機2の反対側の端部には、鉄系金属で形成されたリミッタ(動力遮断部材)25がスポット溶接、あるいは、かしめ等によって接合されている。 On the other hand, a limiter (power cut-off member) 25 made of iron-based metal is spot-welded at the opposite end of the compressor 2 among the axial ends of the cylindrical portion 22b of the inner hub 22, or Joined by caulking or the like.
 リミッタ25は、回転軸2aの雄ネジ部2dに螺合される雌ネジ部25aが形成された円筒状部25b、および円筒状部25bが回転軸2aの回転方向に締め付けられた際に生じる荷重をワッシャ24とともに受ける受圧部25cを有している。さらに、リミッタ25の円筒状部25bと受圧部25cとを連結する部位には、受圧部25cが受ける荷重が予め定めた基準荷重以上となったときに破断する破断部25dが形成されている。 The limiter 25 includes a cylindrical portion 25b formed with a female screw portion 25a screwed to the male screw portion 2d of the rotary shaft 2a, and a load generated when the cylindrical portion 25b is tightened in the rotation direction of the rotary shaft 2a. Has a pressure receiving portion 25c that receives the washer 24 together with the washer 24. Furthermore, a breakage portion 25d that breaks when the load received by the pressure receiving portion 25c is equal to or higher than a predetermined reference load is formed at a portion where the cylindrical portion 25b and the pressure receiving portion 25c of the limiter 25 are connected.
 リミッタ25の円筒状部25bは、インナーハブ22の円筒状部22bの内周側に、圧縮機2の回転軸と同軸上に配置されている。なお、円筒状部25bの外径は、インナーハブ22の円筒状部22bの内径よりも小さく形成されているので、リミッタ25の円筒状部25bの外周面がインナーハブ22の円筒状部22bの内周面に接触してしまうことはない。 The cylindrical portion 25b of the limiter 25 is disposed coaxially with the rotation shaft of the compressor 2 on the inner peripheral side of the cylindrical portion 22b of the inner hub 22. Since the outer diameter of the cylindrical portion 25b is smaller than the inner diameter of the cylindrical portion 22b of the inner hub 22, the outer peripheral surface of the cylindrical portion 25b of the limiter 25 is the same as that of the cylindrical portion 22b of the inner hub 22. There is no contact with the inner peripheral surface.
 受圧部25cは、その回転中心部に軸方向に貫通する貫通穴が設けられた円環状に形成されており、その外周側にインナーハブ22の円筒状部22bの軸方向端部が、スポット溶接、あるいは、かしめ等によって接合されている。 The pressure receiving portion 25c is formed in an annular shape in which a through hole penetrating in the axial direction is provided at the rotation center portion, and the axial end of the cylindrical portion 22b of the inner hub 22 is spot welded on the outer peripheral side thereof. Or, it is joined by caulking or the like.
 破断部25dは、円筒状部25bの外径よりも径の小さい部位として形成されている。つまり、破断部25dの外径は、円筒状部25bの外径および受圧部25cの外径よりも小さく形成されている。換言すると、破断部25dは、リミッタ25に設けられた薄肉部によって構成されている。 The fracture part 25d is formed as a part having a smaller diameter than the outer diameter of the cylindrical part 25b. That is, the outer diameter of the fracture portion 25d is smaller than the outer diameter of the cylindrical portion 25b and the outer diameter of the pressure receiving portion 25c. In other words, the breaking portion 25d is configured by a thin portion provided in the limiter 25.
 プレート26は、圧縮機2の回転軸2aに対して垂直方向に広がる略円板状の金属で形成されている。より具体的には、プレート26は、圧縮機2の回転軸2aの回転方向および軸方向に弾性変形可能に形成された板状弾性部材(板バネ)である。本実施形態では、このプレート26として、ばね鋼(具体的には、S60CM)にて形成されたものを採用している。 The plate 26 is formed of a substantially disk-shaped metal that spreads in a direction perpendicular to the rotation shaft 2 a of the compressor 2. More specifically, the plate 26 is a plate-like elastic member (plate spring) formed so as to be elastically deformable in the rotational direction and the axial direction of the rotary shaft 2a of the compressor 2. In the present embodiment, the plate 26 is made of spring steel (specifically, S60CM).
 また、プレート26の内周側には、インナーハブ22が取り付けられるハブ側取付部26aが設けられており、プレート26の外周側には、プーリ21が取り付けられるプーリ側取付部26bが設けられている。 Further, a hub side mounting portion 26a to which the inner hub 22 is attached is provided on the inner peripheral side of the plate 26, and a pulley side mounting portion 26b to which the pulley 21 is attached is provided on the outer peripheral side of the plate 26. Yes.
 ハブ側取付部26aは、回転軸2aの軸方向から見たときに、インナーハブ22の円板状部22aと重合する位置に設けられた複数(本実施形態では3つ)の貫通穴によって形成されている。さらに、回転軸2aの軸方向から見たときに、インナーハブ22のハブ側取付部26aに対応する箇所には、インナーハブ22の円板状部22aの表裏を貫通するインナーハブ側貫通穴が形成されている。 The hub-side mounting portion 26a is formed by a plurality of (three in this embodiment) through-holes provided at positions overlapping with the disk-like portion 22a of the inner hub 22 when viewed from the axial direction of the rotating shaft 2a. Has been. Furthermore, when viewed from the axial direction of the rotary shaft 2a, inner hub side through holes that penetrate the front and back of the disk-like portion 22a of the inner hub 22 are provided at locations corresponding to the hub side mounting portions 26a of the inner hub 22. Is formed.
 インナーハブ22およびプレート26は、プレート26のハブ側取付部26aである貫通穴およびインナーハブ22の円板状部22aに形成されたインナーハブ側貫通穴を同時に貫通するリベット27によって連結されている。 The inner hub 22 and the plate 26 are connected by a rivet 27 that simultaneously penetrates a through hole that is a hub side mounting portion 26a of the plate 26 and an inner hub side through hole formed in the disc-like portion 22a of the inner hub 22. .
 プーリ側取付部26bは、圧縮機2の回転軸2a方向から見たときに、プーリ21の端面部21cと重合する位置に設けられた複数(本実施形態では3つ)の貫通穴によって形成されている。さらに、圧縮機2の回転軸2a方向から見たときに、プーリ21のプーリ側取付部26bに対応する箇所には、プーリ21の端面部21cの表裏を貫通するプーリ側貫通穴が形成されている。 The pulley-side attachment portion 26b is formed by a plurality of (three in this embodiment) through holes provided at positions where the pulley-side attachment portion 26b overlaps with the end surface portion 21c of the pulley 21 when viewed from the direction of the rotation shaft 2a of the compressor 2. ing. Furthermore, when viewed from the direction of the rotating shaft 2 a of the compressor 2, a pulley-side through hole penetrating the front and back of the end surface portion 21 c of the pulley 21 is formed at a location corresponding to the pulley-side mounting portion 26 b of the pulley 21. Yes.
 プーリ21およびプレート26は、プレート26のプーリ側取付部26bである貫通穴とプーリ21の端面部21cに形成されたプーリ側貫通穴とを同時に貫通するボルト28aとナット28bとを締め付けることによって連結されている。 The pulley 21 and the plate 26 are coupled by tightening a bolt 28 a and a nut 28 b that simultaneously penetrate the through hole that is the pulley side mounting portion 26 b of the plate 26 and the pulley side through hole formed in the end surface portion 21 c of the pulley 21. Has been.
 また、プレート26には、回転軸2aの軸方向から見たときに、図3の細破線で示すように、軸方向に表裏を貫通するプレート側貫通穴26cが複数箇所(本実施形態では、3箇所)に形成されている。プレート側貫通穴26cは、プレート26に対して回転軸2aの回転方向あるいは軸方向の荷重がかかった際に、プレート26が適切かつ充分に弾性変形することができるように形成される。 Further, the plate 26 has a plurality of plate side through holes 26c penetrating the front and back in the axial direction when viewed from the axial direction of the rotary shaft 2a (in the present embodiment, as shown by thin broken lines in FIG. 3). 3 places). The plate-side through hole 26c is formed so that the plate 26 can be appropriately and sufficiently elastically deformed when a rotational load of the rotary shaft 2a or an axial load is applied to the plate 26.
 本実施形態のインナーハブ22の円板状部22aは、回転軸2aの軸方向から見たときに、プレート26の略全域と重合するように広がる形状に形成されている。従って、インナーハブ22の円板状部22aは、プレート26のプレート側貫通穴26cと重合して配置されている。 The disk-like portion 22a of the inner hub 22 of the present embodiment is formed in a shape that spreads so as to overlap with the entire area of the plate 26 when viewed from the axial direction of the rotating shaft 2a. Accordingly, the disc-like portion 22 a of the inner hub 22 is arranged so as to overlap with the plate-side through hole 26 c of the plate 26.
 また、本実施形態では、プーリ21の端面部21cの圧縮機2と反対側の面とプレート26の圧縮機2側の面との間に、前述のボルト28aを貫通させる貫通穴が形成された円板状のシム29が挟み込まれている。 Further, in the present embodiment, a through hole through which the bolt 28a is passed is formed between the surface of the end surface portion 21c of the pulley 21 on the side opposite to the compressor 2 and the surface of the plate 26 on the compressor 2 side. A disk-shaped shim 29 is sandwiched.
 これにより、リミッタ25の円筒状部25bが圧縮機2の回転軸2aに螺合され、さらに、プーリ21とプレート26が固定された際に、プレート26が圧縮機2の軸方向に弾性変形して、インナーハブ22に対して圧縮機2から離れる方向の荷重をかけている。 As a result, the cylindrical portion 25b of the limiter 25 is screwed into the rotating shaft 2a of the compressor 2, and when the pulley 21 and the plate 26 are fixed, the plate 26 is elastically deformed in the axial direction of the compressor 2. Thus, a load in a direction away from the compressor 2 is applied to the inner hub 22.
 以上の説明から明らかなように、本実施形態のプーリ21は、駆動側回転体を構成している。インナーハブ22、ワッシャ24、およびリミッタ25は、従動側回転体を構成している。 As is clear from the above description, the pulley 21 of the present embodiment constitutes a drive side rotating body. The inner hub 22, the washer 24, and the limiter 25 constitute a driven side rotating body.
 プレート26は、連結部材に相当し、板状弾性部材に相当してもよい。プレート側貫通穴26cは、連結部材の貫通穴を構成している。インナーハブ22の円板状部22aは、従動側回転体の重合部を構成している。 The plate 26 corresponds to a connecting member and may correspond to a plate-like elastic member. The plate side through hole 26c constitutes a through hole of the connecting member. The disc-like portion 22a of the inner hub 22 constitutes a superposed portion of the driven side rotating body.
 動力伝達装置20の作動について説明する。本実施形態の動力伝達装置20は、クラッチレスの構成となっているので、エンジンEが始動すると、エンジンEから出力された回転駆動力が、ベルトVを介して、駆動側回転体であるプーリ21に伝達され、プーリ21が回転する。 The operation of the power transmission device 20 will be described. Since the power transmission device 20 of this embodiment has a clutchless configuration, when the engine E is started, the rotational driving force output from the engine E is a pulley that is a driving side rotating body via the belt V. 21 and the pulley 21 rotates.
 さらに、このプーリ21の回転に伴って、連結部材を構成するプレート26、従動側回転体を構成するインナーハブ22、ワッシャ24、およびリミッタ25が一体となって回転する。 Further, as the pulley 21 rotates, the plate 26 constituting the connecting member, the inner hub 22 constituting the driven side rotating body, the washer 24, and the limiter 25 rotate together.
 この際、圧縮機2にロックが生じていなければ、従動側回転体に連結された圧縮機2の回転軸2aが、従動側回転体とともに回転する。つまり、エンジンEから出力された回転駆動力が圧縮機2の回転軸2aに伝達されて、圧縮機2が冷凍サイクル1において冷媒を圧縮して吐出する。 At this time, if the compressor 2 is not locked, the rotating shaft 2a of the compressor 2 connected to the driven side rotating body rotates together with the driven side rotating body. That is, the rotational driving force output from the engine E is transmitted to the rotating shaft 2 a of the compressor 2, and the compressor 2 compresses and discharges the refrigerant in the refrigeration cycle 1.
 さらに、本実施形態のプレート26は、駆動側回転体であるプーリ21および従動側回転体の双方に連結されて、回転軸2aの回転方向に弾性変形することができるので、駆動側回転体から従動側回転体へ伝達される回転トルクの変動を吸収することができる。 Furthermore, since the plate 26 of this embodiment is connected to both the pulley 21 and the driven side rotating body, which are driving side rotating bodies, and can be elastically deformed in the rotational direction of the rotating shaft 2a, Variations in rotational torque transmitted to the driven side rotating body can be absorbed.
 一方、圧縮機2にロックが生じて回転軸2aが回転できない場合は、プーリ21の回転に伴って、従動側回転体が回転することによって、リミッタ25の円筒状部25bの雌ネジ部25aが回転軸2aの雄ネジ部2dに締め付けられる。これにより、リミッタ25の円筒状部25bが圧縮機2側へ変位する。 On the other hand, when the compressor 2 is locked and the rotating shaft 2a cannot rotate, the driven-side rotating body rotates as the pulley 21 rotates, so that the female screw portion 25a of the cylindrical portion 25b of the limiter 25 is rotated. Fastened to the male screw portion 2d of the rotary shaft 2a. Thereby, the cylindrical part 25b of the limiter 25 is displaced to the compressor 2 side.
 これに対して、リミッタ25の受圧部25cは、回転軸2aの軸方向に変位することができないので、受圧部25cと円筒状部25bとを連結する破断部25dに引っ張り応力がかかる。受圧部25cが受ける荷重が予め定めた所定値以上になると、破断部25dが破断して、円筒状部25bが受圧部25cから切り離される。 On the other hand, since the pressure receiving portion 25c of the limiter 25 cannot be displaced in the axial direction of the rotating shaft 2a, tensile stress is applied to the fracture portion 25d that connects the pressure receiving portion 25c and the cylindrical portion 25b. When the load received by the pressure receiving part 25c is equal to or greater than a predetermined value, the fractured part 25d is broken and the cylindrical part 25b is separated from the pressure receiving part 25c.
 その結果、従動側回転体のうちリミッタ25の円筒状部25b以外の部位が圧縮機2の回転軸2aから切り離され、エンジンEから圧縮機2への回転駆動力の伝達が遮断される。 As a result, portions of the driven side rotating body other than the cylindrical portion 25b of the limiter 25 are disconnected from the rotating shaft 2a of the compressor 2, and transmission of the rotational driving force from the engine E to the compressor 2 is interrupted.
 さらに、本実施形態のプレート26は、破断部25dが破断していないときに、インナーハブ22に対して、圧縮機2の回転軸2aから離れる方向の荷重をかけている。従って、破断部25dが破断すると、従動側回転体のうち圧縮機2の回転軸2aから切り離された部位は、圧縮機2の回転軸2aから離れる側に変位する。 Furthermore, the plate 26 of the present embodiment applies a load in a direction away from the rotary shaft 2a of the compressor 2 to the inner hub 22 when the fracture portion 25d is not fractured. Therefore, when the breaking portion 25d breaks, the portion of the driven-side rotating body that is separated from the rotating shaft 2a of the compressor 2 is displaced to the side away from the rotating shaft 2a of the compressor 2.
 これにより、破断部25dが破断した後に、従動側回転体のうち圧縮機2の回転軸2aから切り離された部位が、圧縮機2の回転軸2aに接触して異音を生じさせてしまうことを抑制できる。 Thereby, after the fracture | rupture part 25d fractures | ruptures, the site | part cut | disconnected from the rotating shaft 2a of the compressor 2 among the driven side rotary bodies will contact the rotating shaft 2a of the compressor 2, and will generate an abnormal noise. Can be suppressed.
 以上の如く、本実施形態の動力伝達装置20によれば、圧縮機2にロックが生じていなければ、エンジンEから出力された回転駆動力を圧縮機2へ伝達することができる。また、圧縮機2にロックが生じており、回転軸2aが回転できない場合には、エンジンEから圧縮機2への回転駆動力の伝達を遮断することができる。 As described above, according to the power transmission device 20 of the present embodiment, if the compressor 2 is not locked, the rotational driving force output from the engine E can be transmitted to the compressor 2. Further, when the compressor 2 is locked and the rotating shaft 2a cannot rotate, transmission of the rotational driving force from the engine E to the compressor 2 can be interrupted.
 さらに、本実施形態の動力伝達装置20では、エンジンEから圧縮機2へ回転駆動力を伝達するために必須の構成となるインナーハブ22が重合部である円板状部22aを有しているので、部品点数の増加を招くことなく、プレート26に形成されたプレート側貫通穴26cを覆うことができる。 Furthermore, in the power transmission device 20 of the present embodiment, the inner hub 22 that is an essential component for transmitting the rotational driving force from the engine E to the compressor 2 has a disk-shaped portion 22a that is a superposed portion. Therefore, the plate-side through hole 26c formed in the plate 26 can be covered without increasing the number of parts.
 従って、動力伝達装置20の製造コストの増加等を招くことなく、動力伝達装置20の内部に配置されるボールベアリング23内へ水や粉塵等の異物が侵入してしまうことを抑制して、動力伝達装置20の信頼性を向上させることができる。 Accordingly, it is possible to suppress the entry of foreign matter such as water and dust into the ball bearing 23 disposed inside the power transmission device 20 without increasing the manufacturing cost of the power transmission device 20. The reliability of the transmission device 20 can be improved.
 さらに、本実施形態のプレート26のように、回転軸2aの回転方向あるいは軸方向への弾性変形が要求される板状弾性部材には、充分な弾性変形量を確保するために適切な形状のプレート側貫通穴26cが形成される。従って、本実施形態のように、インナーハブ22に、重合部(円板状部22a)が設けられていることは、プレート側貫通穴26cの形状によらず、動力伝達装置20の内部への異物の侵入を抑制できる点で有効である。 Further, a plate-like elastic member that requires elastic deformation in the rotational direction or the axial direction of the rotary shaft 2a, such as the plate 26 of the present embodiment, has an appropriate shape to ensure a sufficient amount of elastic deformation. A plate-side through hole 26c is formed. Therefore, as in this embodiment, the inner hub 22 is provided with the overlapping portion (disk-like portion 22a) regardless of the shape of the plate-side through hole 26c. This is effective in that it can suppress the entry of foreign matter.
 また、本実施形態のように、駆動源が車両走行用のエンジンEであり、駆動対象装置が車両用空調装置に適用される冷凍サイクル1の圧縮機2である場合、一般的に、圧縮機2は車室外となるエンジンルームに配置されるため、車室内に配置される場合よりも動力伝達装置の内部に異物が侵入しやすい。従って、本実施形態の動力伝達装置20の如く、内部への異物の侵入を抑制できることは極めて有効である。 Further, as in the present embodiment, when the drive source is the engine E for vehicle travel and the drive target device is the compressor 2 of the refrigeration cycle 1 applied to the vehicle air conditioner, generally, the compressor Since No. 2 is arranged in the engine room outside the vehicle compartment, foreign matter is likely to enter the power transmission device more easily than in the case of being arranged in the vehicle compartment. Therefore, it is very effective to be able to suppress the entry of foreign matter into the interior as in the power transmission device 20 of the present embodiment.
 (第2実施形態)
 本実施形態では、動力伝達装置20を、電磁クラッチとして構成した例を説明する。つまり、本実施形態の動力伝達装置20は、電磁石30が生じさせる電磁力によって、エンジンEから出力された回転駆動力にて回転する駆動側回転体と、圧縮機2の回転軸2aとともに回転する従動側回転体とを連結させる構成になっている。
(Second Embodiment)
In the present embodiment, an example in which the power transmission device 20 is configured as an electromagnetic clutch will be described. That is, the power transmission device 20 according to the present embodiment rotates together with the drive-side rotating body that rotates by the rotational driving force output from the engine E and the rotating shaft 2 a of the compressor 2 by the electromagnetic force generated by the electromagnet 30. It is the structure which connects a driven side rotary body.
 より具体的には、本実施形態の動力伝達装置20は、図4、図5に示すように、第1実施形態と同様のプーリ21、インナーハブ22、インナーハブ22に連結されたプレート26に加えて、電磁石30、アーマチュア40、および緩衝部材50等を備えている。 More specifically, as shown in FIGS. 4 and 5, the power transmission device 20 of the present embodiment is connected to a pulley 21, an inner hub 22, and a plate 26 connected to the inner hub 22 similar to those of the first embodiment. In addition, an electromagnet 30, an armature 40, a buffer member 50, and the like are provided.
 図4、図5は、それぞれ第1実施形態の図2、図3に対応する図面であって、第1実施形態と同一もしくは均等の構成には同一の符号を付している。図4は、本実施形態の動力伝達装置20の軸方向一部断面図であって、図5のIV-IV線における断面図である。以下の説明では、第1実施形態と同一もしくは均等の構成についての重複する説明を省略する。 FIGS. 4 and 5 are drawings corresponding to FIGS. 2 and 3 of the first embodiment, respectively, and the same or equivalent components as those of the first embodiment are denoted by the same reference numerals. FIG. 4 is a partial cross-sectional view in the axial direction of the power transmission device 20 of the present embodiment, and is a cross-sectional view taken along the line IV-IV in FIG. In the following description, overlapping description of the same or equivalent configuration as in the first embodiment is omitted.
 電磁石30は、電力を供給されることによって従動側回転体(具体的には、アーマチュア40)と駆動側回転体(具体的には、プーリ21)とを連結させる電磁力を生じさせる。電磁石30は、磁性材(具体的には、鉄)で形成されて圧縮機2の回転軸2aと同軸上に配置された円環状のステータ30a、ステータ30aの内部に収容されたコイル30b等を有する。 The electromagnet 30 generates an electromagnetic force that couples the driven-side rotator (specifically, the armature 40) and the drive-side rotator (specifically, the pulley 21) by being supplied with electric power. The electromagnet 30 includes an annular stator 30a formed of a magnetic material (specifically, iron) and disposed coaxially with the rotary shaft 2a of the compressor 2, a coil 30b accommodated in the stator 30a, and the like. Have.
 コイル30bは、絶縁性の樹脂材でモールディングされた状態でステータ30aに固定されており、ステータ30aに対して電気的に絶縁されている。また、電磁石30は、プーリ21の外側円筒部21aの内周側と内側円筒部21bの外周側とに挟まれた断面略コの字状の内部空間に配置されている。電磁石30への通電、非通電の切り換え制御は、図示しない制御装置から出力される制御電圧によって行われる。 The coil 30b is fixed to the stator 30a while being molded with an insulating resin material, and is electrically insulated from the stator 30a. The electromagnet 30 is disposed in an internal space having a substantially U-shaped cross section sandwiched between the inner peripheral side of the outer cylindrical portion 21a of the pulley 21 and the outer peripheral side of the inner cylindrical portion 21b. Switching between energization and non-energization of the electromagnet 30 is performed by a control voltage output from a control device (not shown).
 本実施形態のプーリ21は、磁性材(具体的には、鉄)で形成されており、電磁石30が生じさせる電磁力の磁気回路の一部を構成する。また、プーリ21の端面部21cの圧縮機2の反対側の面は、従動側回転体と連結した際に、従動側回転体のアーマチュア40と接触する摩擦面を形成している。 The pulley 21 of the present embodiment is made of a magnetic material (specifically, iron) and constitutes a part of a magnetic circuit of electromagnetic force generated by the electromagnet 30. Further, the surface on the opposite side of the compressor 2 of the end surface portion 21c of the pulley 21 forms a friction surface that comes into contact with the armature 40 of the driven side rotating body when connected to the driven side rotating body.
 端面部21cの表面の一部に、端面部21cの摩擦係数を増加させるための摩擦部材21dが配置されている。摩擦部材21dは、非磁性材で形成されており、具体的には、アルミナ(酸化アルミニウム)を樹脂で固めたものや、金属粉末(具体的には、アルミニウム粉末)の焼結材等を採用できる。 A friction member 21d for increasing the friction coefficient of the end surface portion 21c is disposed on a part of the surface of the end surface portion 21c. The friction member 21d is made of a non-magnetic material. Specifically, a material obtained by solidifying alumina (aluminum oxide) with a resin, a sintered material of metal powder (specifically, aluminum powder), or the like is used. it can.
 さらに、本実施形態のプーリ21の端面部21cには、回転軸2aの軸方向から見たときに、その表裏を貫通するスリット穴21e、21fが回転軸2aの軸中心を中心とする円弧状に形成されている。スリット穴21e、21fは、回転軸2aの軸方向から見たときに径方向に2列に並んで、周方向に複数形成されている。 Furthermore, when viewed from the axial direction of the rotary shaft 2a, the end surface portion 21c of the pulley 21 according to the present embodiment has slit holes 21e and 21f penetrating through the front and back thereof in an arc shape centering on the axial center of the rotary shaft 2a. Is formed. The slit holes 21e and 21f are arranged in two rows in the radial direction when viewed from the axial direction of the rotary shaft 2a, and are formed in a plurality in the circumferential direction.
 アーマチュア40は、圧縮機2の回転軸2a方向に対して垂直に広がるとともに、中央部にその表裏を貫通する貫通穴が形成された円板状部材である。アーマチュア40は、磁性材(具体的には、鉄)にて形成され、プーリ21とともに、電磁石30が生じさせる電磁力の磁気回路の一部を構成する。 The armature 40 is a disk-shaped member that extends perpendicularly to the direction of the rotating shaft 2a of the compressor 2 and that has a through-hole penetrating the front and back at the center. The armature 40 is formed of a magnetic material (specifically, iron) and constitutes a part of a magnetic circuit of electromagnetic force generated by the electromagnet 30 together with the pulley 21.
 さらに、アーマチュア40には、回転軸2aの軸方向から見たときに、その表裏を貫通するスリット穴40aが回転軸2aの軸中心を中心とする円弧状に形成されている。 Further, the armature 40 is formed with a slit hole 40a penetrating through the front and back when viewed from the axial direction of the rotary shaft 2a in an arc shape centering on the axial center of the rotary shaft 2a.
 より具体的には、スリット穴40aは、図5の細破線で示すように、軸方向から見たときに径方向に1列に形成され、周方向に複数(本実施形態では、3つ)形成されている。また、スリット穴40aの径は、図4に示すように、プーリ21の端面部21cに形成された径方向内側のスリット穴21eよりも大きく、径方向外側のスリット穴21fの径よりも小さく形成されている。 More specifically, as shown by a thin broken line in FIG. 5, the slit holes 40a are formed in one row in the radial direction when viewed from the axial direction, and plural in the circumferential direction (three in this embodiment). Is formed. Also, as shown in FIG. 4, the diameter of the slit hole 40a is larger than the radially inner slit hole 21e formed in the end surface portion 21c of the pulley 21 and smaller than the diameter of the radially outer slit hole 21f. Has been.
 プーリ21の端面部21cに形成されたスリット穴21e、21f、およびアーマチュア40に形成されたスリット穴40aは、電磁石30が生じさせる磁気回路の短絡を抑制して、従動側回転体のアーマチュア40と駆動側回転体のプーリ21とを連結させる電磁力を強化するために形成されている。 The slit holes 21e and 21f formed in the end surface portion 21c of the pulley 21 and the slit hole 40a formed in the armature 40 suppress the short circuit of the magnetic circuit caused by the electromagnet 30 and the armature 40 of the driven side rotating body. It is formed in order to reinforce the electromagnetic force that couples the pulley 21 of the driving side rotating body.
 また、アーマチュア40の圧縮機2側の面は、プーリ21の端面部21cに対向しており、アーマチュア40と連結した際に、プーリ21と接触する摩擦面を形成している。一方、アーマチュア40の圧縮機2の反対側の面には、軸方向に突出する複数の突出部40bが設けられている。 Further, the surface of the armature 40 on the compressor 2 side faces the end surface portion 21 c of the pulley 21, and forms a friction surface that comes into contact with the pulley 21 when connected to the armature 40. On the other hand, a plurality of projecting portions 40 b projecting in the axial direction are provided on the surface of the armature 40 opposite to the compressor 2.
 突出部40bには、プレート26が固定されている。より具体的には、本実施形態では、プレート26に形成された固定用貫通穴に突出部40bを挿入した状態で、突出部40bの先端部を押しつぶすことによって、プレート26とアーマチュア40とを、かしめ固定している。 The plate 26 is fixed to the protruding portion 40b. More specifically, in this embodiment, the plate 26 and the armature 40 are squeezed by crushing the tip of the protrusion 40b in a state where the protrusion 40b is inserted into the fixing through hole formed in the plate 26. It is fixed by caulking.
 本実施形態のプレート26は、電磁石30の電磁力によってアーマチュア40がプーリ21側へ吸引されて変位した際に、アーマチュア40に対して、プーリ21から離れる側の軸方向荷重をかける。従って、本実施形態のプレート26のプレート側貫通穴26cは、プレート26が回転軸2aの軸方向へ適切かつ充分に弾性変形することができるように形成されている。 The plate 26 of the present embodiment applies an axial load on the side away from the pulley 21 to the armature 40 when the armature 40 is attracted and displaced toward the pulley 21 by the electromagnetic force of the electromagnet 30. Therefore, the plate side through hole 26c of the plate 26 of the present embodiment is formed so that the plate 26 can be elastically deformed appropriately and sufficiently in the axial direction of the rotating shaft 2a.
 さらに、本実施形態のプレート26の外径寸法は、アーマチュア40の外径寸法と略同等に形成されている。また、本実施形態のプレート26の内周側には、インナーハブ22の円板状部22aの外周側がリベット27aによって固定されている。 Furthermore, the outer diameter dimension of the plate 26 of the present embodiment is formed substantially equal to the outer diameter dimension of the armature 40. Moreover, the outer peripheral side of the disk-shaped part 22a of the inner hub 22 is being fixed to the inner peripheral side of the plate 26 of this embodiment by the rivet 27a.
 インナーハブ22の円筒状部22bには、ボルト締め等の締結手段によって、圧縮機2の回転軸2aが固定されている。インナーハブ22と回転軸2aは、スプライン(セレーション)結合や、キー溝によって固定されていてもよい。 The rotating shaft 2a of the compressor 2 is fixed to the cylindrical portion 22b of the inner hub 22 by fastening means such as bolt fastening. The inner hub 22 and the rotating shaft 2a may be fixed by spline (serration) coupling or a keyway.
 ここで、本実施形態のインナーハブ22の円板状部22aの外径は、図4に示すように、アーマチュア40の内径よりも小さく形成されており、インナーハブ22はアーマチュア40の内周側に配置されている。従って、本実施形態のインナーハブ22の円板状部22aは、プレート26の略全域と重合するように配置されたものではない。 Here, as shown in FIG. 4, the outer diameter of the disc-shaped portion 22 a of the inner hub 22 of the present embodiment is formed smaller than the inner diameter of the armature 40, and the inner hub 22 is the inner peripheral side of the armature 40. Is arranged. Therefore, the disk-like portion 22a of the inner hub 22 of the present embodiment is not arranged so as to overlap with the entire area of the plate 26.
 また、本実施形態のプレート26は、インサート成形等によって略円板状に形成された緩衝部材50と一体的に形成されている。緩衝部材50は、弾性変形可能なゴム材料(具体的には、EPDM(エチレン・プロピレン・ジエンゴム))で形成されており、従動側回転体(具体的には、アーマチュア40)と駆動側回転体(具体的には、プーリ21)が連結する際の衝撃を緩和する。 Further, the plate 26 of the present embodiment is integrally formed with the buffer member 50 formed in a substantially disc shape by insert molding or the like. The buffer member 50 is made of an elastically deformable rubber material (specifically, EPDM (ethylene / propylene / diene rubber)), and a driven side rotating body (specifically, armature 40) and a driving side rotating body. (Specifically, the impact when the pulley 21 is coupled is reduced.
 より具体的には、緩衝部材50は、図5の点ハッチングで示すように、プレート26に形成されたプレート側貫通穴26cの全域に亘って拡がって、プレート側貫通穴26cを塞ぐ平面部50aと、図4に示すように、プレート26とインナーハブ22の円板状部22aとの間に配置されて、平面部50aよりも回転軸2aの軸方向の厚みを有する厚肉部50bを有している。 More specifically, the buffer member 50 spreads over the entire area of the plate-side through hole 26c formed in the plate 26 and covers the plate-side through hole 26c as shown by the point hatching in FIG. As shown in FIG. 4, a thick portion 50b is disposed between the plate 26 and the disc-shaped portion 22a of the inner hub 22 and has a thickness in the axial direction of the rotating shaft 2a rather than the flat portion 50a. is doing.
 厚肉部50bは、電磁石30が生じさせる電磁力によって、アーマチュア40がプーリ21側へ変位した際に、プレート26とインナーハブ22との間に挟み込まれて弾性変形することによって、アーマチュア40とプーリ21が連結する際の衝撃を緩和する。 When the armature 40 is displaced toward the pulley 21 by the electromagnetic force generated by the electromagnet 30, the thick portion 50 b is sandwiched between the plate 26 and the inner hub 22 and elastically deformed, whereby the armature 40 and the pulley Mitigates the impact when 21 is connected.
 平面部50aは、プレート側貫通穴26cを塞ぐように配置されているので、回転軸2aの軸方向から見たときに、図5に示すように、アーマチュア40のスリット穴40aと重合して配置されている。 Since the flat portion 50a is disposed so as to close the plate-side through hole 26c, it is overlapped with the slit hole 40a of the armature 40 when viewed from the axial direction of the rotating shaft 2a as shown in FIG. Has been.
 本実施形態のアーマチュア40、プレート26、およびインナーハブ22は、従動側回転体を構成している。緩衝部材50の平面部50aは、重合部を構成している。アーマチュア40のスリット穴40aは、従動側回転体の貫通穴を構成している。 The armature 40, the plate 26, and the inner hub 22 of the present embodiment constitute a driven side rotating body. The flat surface portion 50a of the buffer member 50 constitutes an overlapping portion. The slit hole 40a of the armature 40 constitutes a through hole of the driven side rotating body.
 動力伝達装置20の作動について説明する。本実施形態の動力伝達装置20は、電磁クラッチとして構成されているので、制御装置から制御電圧が出力されて電磁石30に電力が供給されると、電磁石30によって生じる電磁力によって、従動側回転体と駆動側回転体が連結される。 The operation of the power transmission device 20 will be described. Since the power transmission device 20 of the present embodiment is configured as an electromagnetic clutch, when a control voltage is output from the control device and electric power is supplied to the electromagnet 30, the driven rotor is driven by the electromagnetic force generated by the electromagnet 30. And the drive-side rotator are connected.
 より具体的には、電磁石30によって生じる電磁力によって、従動側回転体のアーマチュア40がプーリ21側へ吸引される。この際、緩衝部材50の厚肉部50bがプレート26とインナーハブ22の円板状部22aとの間に挟み込まれて弾性変形することによって、従動側回転体と駆動側回転体が連結する際の衝撃が緩和される。 More specifically, the armature 40 of the driven side rotating body is attracted to the pulley 21 side by the electromagnetic force generated by the electromagnet 30. At this time, when the driven-side rotator and the drive-side rotator are connected by the elastically deforming the thick-walled portion 50b of the buffer member 50 sandwiched between the plate 26 and the disc-like portion 22a of the inner hub 22. The shock of is reduced.
 プーリ21の回転に伴って、従動側回転体を構成するアーマチュア40、プレート26、およびインナーハブ22が一体となって回転する。これにより、従動側回転体に連結された圧縮機2の回転軸2aが、従動側回転体とともに回転する。つまり、エンジンEから出力された回転駆動力が圧縮機2の回転軸2aに伝達されて、圧縮機2が冷凍サイクル1において冷媒を圧縮して吐出することができる。 As the pulley 21 rotates, the armature 40, the plate 26, and the inner hub 22 constituting the driven side rotating body rotate together. Thereby, the rotating shaft 2a of the compressor 2 connected to the driven side rotating body rotates together with the driven side rotating body. That is, the rotational driving force output from the engine E is transmitted to the rotating shaft 2 a of the compressor 2, and the compressor 2 can compress and discharge the refrigerant in the refrigeration cycle 1.
 また、制御装置から電磁石30への電力の供給が停止されると、プレート26がアーマチュア40にかける荷重によって、アーマチュア40がプーリ21から切り離される。これにより、エンジンEから圧縮機2への回転駆動力の伝達が遮断される。 Further, when the supply of electric power from the control device to the electromagnet 30 is stopped, the armature 40 is separated from the pulley 21 by the load applied to the armature 40 by the plate 26. Thereby, transmission of the rotational driving force from the engine E to the compressor 2 is interrupted.
 以上の如く、本実施形態の動力伝達装置20によれば、制御装置が電磁石30に電力を供給している際には、アーマチュア40がプーリ21に連結されて、エンジンEから出力された回転駆動力を圧縮機2へ伝達することができる。また、制御装置が電磁石30への電力の供給を停止した際には、アーマチュア40とプーリ21が切り離されて、エンジンEから圧縮機2への回転駆動力の伝達を遮断することができる。 As described above, according to the power transmission device 20 of the present embodiment, when the control device supplies power to the electromagnet 30, the armature 40 is connected to the pulley 21 and the rotational drive output from the engine E is performed. The force can be transmitted to the compressor 2. Further, when the control device stops supplying power to the electromagnet 30, the armature 40 and the pulley 21 are disconnected, and transmission of the rotational driving force from the engine E to the compressor 2 can be cut off.
 さらに、本実施形態のように、電磁クラッチとして構成された動力伝達装置20では、従動側回転体の一部であるアーマチュア40に、電磁力を強化するためのスリット穴40aが形成される。また、一般的な電磁クラッチでは、アーマチュア40とプーリ21が電磁力によって連結される際の衝撃を緩和するための緩衝部材50を備えている。 Further, as in the present embodiment, in the power transmission device 20 configured as an electromagnetic clutch, a slit hole 40a for reinforcing electromagnetic force is formed in the armature 40 that is a part of the driven side rotating body. Further, a general electromagnetic clutch includes a buffer member 50 for reducing an impact when the armature 40 and the pulley 21 are coupled by electromagnetic force.
 つまり、本実施形態の動力伝達装置20では、一般的な電磁クラッチが備える緩衝部材50が重合部を構成する平面部50aを有しているので、部品点数の増加を招くことなく、アーマチュア40に形成されたスリット穴40aを覆うことができる。 That is, in the power transmission device 20 of the present embodiment, since the buffer member 50 provided in a general electromagnetic clutch has the flat surface portion 50a that constitutes the overlapping portion, the armature 40 does not increase in the number of parts. The formed slit hole 40a can be covered.
 従って、第1実施形態と同様に、動力伝達装置20の製造コストの増加等を招くことなく、動力伝達装置20の内部に配置されるクラッチの摩擦面やボールベアリング23内へ水や粉塵等の異物が侵入してしまうことを抑制して、動力伝達装置20の信頼性を向上させることができる。 Accordingly, as in the first embodiment, water, dust, and the like can be introduced into the friction surface of the clutch disposed inside the power transmission device 20 and the ball bearing 23 without increasing the manufacturing cost of the power transmission device 20. It is possible to improve the reliability of the power transmission device 20 by suppressing entry of foreign matter.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の各実施形態では、動力伝達装置20をエンジンEから出力された回転駆動力を圧縮機2へ伝達するために適用した例を説明したが、動力伝達装置20の適用はこれに限定されない。つまり、動力伝達装置20は、回転駆動源から出力された回転駆動力を駆動対象装置へ伝達するために幅広く適用可能である。 In each of the above-described embodiments, the example in which the power transmission device 20 is applied to transmit the rotational driving force output from the engine E to the compressor 2 has been described, but the application of the power transmission device 20 is not limited thereto. That is, the power transmission device 20 can be widely applied to transmit the rotational driving force output from the rotational driving source to the drive target device.
 例えば、エンジンあるいは電動モータ等から出力された回転駆動力を発電機等へ伝達するために本開示を適用してもよい。 For example, the present disclosure may be applied to transmit a rotational driving force output from an engine or an electric motor to a generator or the like.
 第1実施形態では、駆動源(エンジンE)から駆動対象装置(圧縮機2)へ伝達されるトルクが予め定めた基準トルク以上になった際に破断して、駆動源から駆動対象装置への回転駆動力の伝達を遮断する破断部25dが形成された、いわゆるトルクリミッタ機能付きの動力伝達装置20について説明したが、第2実施形態の動力伝達装置20も同様のトルクリミッタ機能を有していてもよい。 In the first embodiment, when the torque transmitted from the drive source (engine E) to the drive target device (compressor 2) becomes equal to or higher than a predetermined reference torque, it breaks and the drive source to the drive target device Although the power transmission device 20 having a so-called torque limiter function in which the breaking portion 25d for interrupting the transmission of the rotational driving force is formed has been described, the power transmission device 20 of the second embodiment also has a similar torque limiter function. May be.
 例えば、図4に示すように、インナーハブ22の円板状部22aと円筒状部22bとの接続部に薄肉部を形成し、この薄肉部によって駆動側回転体から従動側回転体へ伝達されるトルクが予め定めた基準トルク以上になった際に破断する破断部を形成してもよい。また、第2実施形態の動力伝達装置20に、第1実施形態と同様のリミッタ25を追加してもよい。 For example, as shown in FIG. 4, a thin portion is formed at the connecting portion between the disc-like portion 22a and the cylindrical portion 22b of the inner hub 22, and the thin portion is transmitted from the driving side rotating body to the driven side rotating body. A breaking portion may be formed that breaks when the torque to be exceeded is equal to or higher than a predetermined reference torque. Moreover, you may add the limiter 25 similar to 1st Embodiment to the power transmission device 20 of 2nd Embodiment.
 さらに、第2実施形態のように電磁クラッチとして構成された動力伝達装置20は、プーリ21とアーマチュア40との摩擦やプーリ21とベルトVとの摩擦によって温度が予め定めた基準温度以上となった際に断線して、電磁石30への電力の供給を停止する温度ヒューズを備え、この温度ヒューズによってトルクリミッタ機能を実現してもよい。 Furthermore, in the power transmission device 20 configured as an electromagnetic clutch as in the second embodiment, the temperature exceeds a predetermined reference temperature due to friction between the pulley 21 and the armature 40 and friction between the pulley 21 and the belt V. It is possible to provide a temperature fuse that is disconnected at this time and stops the supply of electric power to the electromagnet 30, and a torque limiter function may be realized by this temperature fuse.
 第2実施形態では、アーマチュア40、プレート26、およびインナーハブ22によって従動側回転体が構成されるものとして説明したが、圧縮機2の回転軸2aとともに回転するインナーハブ22および緩衝部材50によって従動側回転体が構成され、従動側回転体を構成するインナーハブ22に連結されるプレート26によって連結部材が構成されるものとしてもよい。 In the second embodiment, the driven-side rotating body is configured by the armature 40, the plate 26, and the inner hub 22. However, the driven body is driven by the inner hub 22 and the buffer member 50 that rotate together with the rotating shaft 2a of the compressor 2. A side rotation body is comprised and a connection member is good also as what is comprised by the plate 26 connected with the inner hub 22 which comprises a driven side rotation body.
 これによれば、一般的な電磁クラッチが備える緩衝部材50の平面部50aが従動側回転体の重合部に対応し、プレート26に形成されたプレート側貫通穴(連結部材の貫通穴)26cを覆うことができる。従って、部品点数の増加を招くことなく、プレート側貫通穴26cを介して、動力伝達装置の内部へ異物が侵入してしまうことを抑制できる。 According to this, the flat part 50a of the buffer member 50 with which a general electromagnetic clutch is provided corresponds to the overlapping part of the driven side rotating body, and the plate side through hole (through hole of the connecting member) 26c formed in the plate 26 is provided. Can be covered. Therefore, it is possible to prevent foreign matter from entering the power transmission device through the plate-side through hole 26c without increasing the number of components.
 また、圧縮機2の回転軸2aとともに回転するインナーハブ22および緩衝部材50によって従動側回転体が構成され、従動側回転体を構成するインナーハブ22に連結されるプレート26およびアーマチュア40によって連結部材が構成されるものとしてもよい。 Further, a driven side rotating body is constituted by the inner hub 22 and the buffer member 50 rotating together with the rotating shaft 2a of the compressor 2, and a connecting member is constituted by the plate 26 and the armature 40 connected to the inner hub 22 constituting the driven side rotating body. May be configured.
 これによれば、一般的な電磁クラッチが備える緩衝部材50の平面部50aが従動側回転体の重合部に対応し、プレート26に形成されたプレート側貫通穴26cおよびアーマチュア40に形成されたスリット穴40aを覆うことができる。従って、部品点数の増加を招くことなく、プレート側貫通穴26cおよびスリット穴40aを介して、動力伝達装置の内部へ異物が侵入してしまうことを抑制できる。 According to this, the flat part 50a of the buffer member 50 with which a general electromagnetic clutch is provided corresponds to the overlapping part of the driven side rotating body, and the plate side through hole 26c formed in the plate 26 and the slit formed in the armature 40. The hole 40a can be covered. Accordingly, it is possible to prevent foreign matter from entering the power transmission device through the plate-side through hole 26c and the slit hole 40a without increasing the number of parts.
 また、圧縮機2の回転軸2aとともに回転するインナーハブ22、プレート26および緩衝部材50によって従動側回転体が構成され、従動側回転体を構成するプレート26に連結されるアーマチュア40によって連結部材が構成されるものとしてもよい。 Further, a driven side rotating body is constituted by the inner hub 22, the plate 26 and the buffer member 50 which rotate together with the rotating shaft 2a of the compressor 2, and the connecting member is constituted by the armature 40 which is connected to the plate 26 constituting the driven side rotating body. It may be configured.
 これによれば、一般的な電磁クラッチが備える緩衝部材50の平面部50aが従動側回転体の重合部に対応し、プレート26に形成されたプレート側貫通穴26cおよびアーマチュア40に形成されたスリット穴40aを覆うことができる。従って、部品点数の増加を招くことなく、スリット穴40aを介して、動力伝達装置の内部へ異物が侵入してしまうことを抑制できる。 According to this, the flat part 50a of the buffer member 50 with which a general electromagnetic clutch is provided corresponds to the overlapping part of the driven side rotating body, and the plate side through hole 26c formed in the plate 26 and the slit formed in the armature 40. The hole 40a can be covered. Therefore, it is possible to prevent foreign matter from entering the power transmission device through the slit hole 40a without increasing the number of parts.
 第2実施形態では、インナーハブ22の円板状部22aの外径をアーマチュア40の内径よりも小さく形成した例を説明したが、インナーハブ22の形状は、これに限定されない。例えば、インナーハブ22の円板状部22aにアーマチュア40よりも回転軸2aの軸方向外側(圧縮機2の反対側)に張り出した部位を設け、この部位の外径をアーマチュア40の外径と同程度の寸法に拡大してもよい。 In the second embodiment, the example in which the outer diameter of the disk-like portion 22a of the inner hub 22 is formed smaller than the inner diameter of the armature 40 has been described, but the shape of the inner hub 22 is not limited to this. For example, a portion that protrudes outward in the axial direction of the rotating shaft 2 a from the armature 40 (opposite side of the compressor 2) is provided on the disk-like portion 22 a of the inner hub 22, and the outer diameter of this portion is the outer diameter of the armature 40. It may be enlarged to the same size.
 このような構成では、圧縮機2の回転軸2aとともに回転する構成部材であるインナーハブ22によって従動側回転体が構成され、従動側回転体を構成するインナーハブ22に連結されるプレート26およびアーマチュア40によって連結部材が構成されるものとしてもよい。 In such a configuration, the driven-side rotating body is configured by the inner hub 22 that is a component that rotates together with the rotating shaft 2a of the compressor 2, and the plate 26 and the armature connected to the inner hub 22 that configures the driven-side rotating body. The connecting member may be constituted by 40.
 これによれば、エンジンEから圧縮機2へ回転駆動力を伝達するために必須の構成となるインナーハブ22の円板状部22aが重合部として機能して、プレート26に形成されたプレート側貫通穴26cおよびアーマチュア40に形成されたスリット穴40aを覆うことができる。 According to this, the disk-like portion 22a of the inner hub 22 that is an essential component for transmitting the rotational driving force from the engine E to the compressor 2 functions as a superposed portion, and the plate side formed on the plate 26 The through hole 26c and the slit hole 40a formed in the armature 40 can be covered.
 従って、部品点数の増加を招くことなく、プレート側貫通穴26cおよびスリット穴40aを介して、動力伝達装置の内部へ異物が侵入してしまうことを抑制できる。 Therefore, it is possible to prevent foreign matter from entering the power transmission device through the plate-side through hole 26c and the slit hole 40a without increasing the number of parts.

Claims (7)

  1.  駆動源(E)から出力された回転駆動力を駆動対象装置(2)へ伝達する動力伝達装置であって、
     前記回転駆動力によって回転する駆動側回転体(21)と、
     前記駆動対象装置(2)の回転軸(2a)とともに回転する従動側回転体(22、24、25、50)と、
     前記回転軸(2a)の垂直方向に広がる板状に形成されて、前記駆動側回転体および前記従動側回転体の少なくとも一方に連結され、かつ前記駆動側回転体と前記従動側回転体を互いに連結可能である連結部材(26、40)と、を備え、
     前記連結部材は、前記回転軸(2a)の軸方向に前記連結部材を貫通する貫通穴(26c、40a)を有し、
     前記従動側回転体は、前記回転軸(2a)の軸方向から見たときに、前記貫通穴(26c、40a)と重合して配置される重合部(22a、50a)を有している動力伝達装置。
    A power transmission device that transmits the rotational driving force output from the drive source (E) to the drive target device (2),
    A driving side rotating body (21) that rotates by the rotational driving force;
    A driven rotating body (22, 24, 25, 50) that rotates together with the rotation shaft (2a) of the drive target device (2);
    It is formed in a plate shape extending in the vertical direction of the rotating shaft (2a), is connected to at least one of the driving side rotating body and the driven side rotating body, and connects the driving side rotating body and the driven side rotating body to each other. Connecting members (26, 40) that are connectable,
    The connecting member has through holes (26c, 40a) penetrating the connecting member in the axial direction of the rotating shaft (2a);
    The driven rotating body has a superposition part (22a, 50a) arranged so as to overlap with the through hole (26c, 40a) when viewed from the axial direction of the rotary shaft (2a). Transmission device.
  2.  前記連結部材は、前記駆動側回転体および前記従動側回転体の双方に連結される時、前記駆動側回転体から前記従動側回転体へ伝達される回転トルクの変動を吸収する板状弾性部材(26)で構成されている請求項1に記載の動力伝達装置。 The connecting member is a plate-like elastic member that absorbs fluctuations in rotational torque transmitted from the driving side rotating body to the driven side rotating body when connected to both the driving side rotating body and the driven side rotating body. The power transmission device according to claim 1, comprising: (26).
  3.  前記連結部材は、弾性変形することによって、前記駆動側回転体および前記従動側回転体の少なくとも一方に、前記回転軸(2a)の軸方向に荷重をかける板状弾性部材(26)で構成されている請求項1に記載の動力伝達装置。 The connecting member is composed of a plate-like elastic member (26) that applies a load in the axial direction of the rotating shaft (2a) to at least one of the driving side rotating body and the driven side rotating body by elastic deformation. The power transmission device according to claim 1.
  4.  駆動源(E)から出力された回転駆動力を駆動対象装置(2)へ伝達する動力伝達装置であって、
     前記回転駆動力によって回転する駆動側回転体(21)と、
     前記駆動対象装置(2)の回転軸(2a)とともに回転する従動側回転体(22、26、40)と、
     前記従動側回転体と前記駆動側回転体(21)とを連結させる電磁力を生じさせる電磁石(30)と、
     前記従動側回転体と前記駆動側回転体(21)が連結する際に生じる衝撃を緩和する緩衝部材(50)と、を備え、
     前記従動側回転体は、前記回転軸(2a)の軸方向に前記従動側回転体を貫通する貫通穴(40a)を有し、
     前記緩衝部材(50)は、前記回転軸(2a)の軸方向から見たときに、前記貫通穴(40a)と重合して配置される重合部(50a)を有している動力伝達装置。
    A power transmission device that transmits the rotational driving force output from the drive source (E) to the drive target device (2),
    A driving side rotating body (21) that rotates by the rotational driving force;
    A driven rotating body (22, 26, 40) that rotates together with the rotation shaft (2a) of the drive target device (2);
    An electromagnet (30) for generating an electromagnetic force for connecting the driven side rotating body and the driving side rotating body (21);
    A shock-absorbing member (50) that relieves an impact generated when the driven-side rotator and the drive-side rotator (21) are coupled, and
    The driven-side rotating body has a through hole (40a) penetrating the driven-side rotating body in the axial direction of the rotating shaft (2a);
    The said buffer member (50) is a power transmission device which has the superimposition part (50a) arrange | positioned by overlapping with the said through hole (40a), when it sees from the axial direction of the said rotating shaft (2a).
  5.  前記緩衝部材(50)は、ゴムで形成されている請求項4に記載の動力伝達装置。 The power transmission device according to claim 4, wherein the buffer member (50) is formed of rubber.
  6.  前記従動側回転体は、前記駆動源(E)から前記駆動対象装置(2)へ伝達されるトルクが予め定めた基準トルク以上になった際に破断して、前記駆動源(E)から前記駆動対象装置(2)への前記回転駆動力の伝達を遮断する破断部(25d)を有している請求項1ないし5のいずれか1つに記載の動力伝達装置。 The driven-side rotator is broken when the torque transmitted from the drive source (E) to the drive target device (2) becomes equal to or higher than a predetermined reference torque, and the drive source (E) The power transmission device according to any one of claims 1 to 5, further comprising a breaking portion (25d) that blocks transmission of the rotational driving force to the driven device (2).
  7.  前記駆動源は、内燃機関(E)であり、
     前記駆動対象装置は、圧縮機(2)である請求項1ないし6のいずれか1つに記載の動力伝達装置。
    The drive source is an internal combustion engine (E),
    The power transmission device according to any one of claims 1 to 6, wherein the drive target device is a compressor (2).
PCT/JP2015/001664 2014-04-17 2015-03-24 Power transmission device WO2015159488A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015001839.5T DE112015001839B4 (en) 2014-04-17 2015-03-24 Power transmission device
US15/300,701 US10113596B2 (en) 2014-04-17 2015-03-24 Power transmission device
CN201580020001.5A CN106233038B (en) 2014-04-17 2015-03-24 Power transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-085282 2014-04-17
JP2014085282A JP6248773B2 (en) 2014-04-17 2014-04-17 Power transmission device

Publications (1)

Publication Number Publication Date
WO2015159488A1 true WO2015159488A1 (en) 2015-10-22

Family

ID=54323716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001664 WO2015159488A1 (en) 2014-04-17 2015-03-24 Power transmission device

Country Status (5)

Country Link
US (1) US10113596B2 (en)
JP (1) JP6248773B2 (en)
CN (1) CN106233038B (en)
DE (1) DE112015001839B4 (en)
WO (1) WO2015159488A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6248773B2 (en) 2014-04-17 2017-12-20 株式会社デンソー Power transmission device
JP6548941B2 (en) * 2014-08-08 2019-07-24 株式会社ヴァレオジャパン Electromagnetic clutch
WO2017010479A1 (en) 2015-07-13 2017-01-19 株式会社デンソー Electromagnetic clutch
KR102436354B1 (en) * 2017-02-27 2022-08-25 한온시스템 주식회사 Clutch and compressor having the same
CN107448491B (en) * 2017-06-07 2020-08-18 江苏徐塘发电有限责任公司 Automatic disengaging type coupling for rolling-in foreign matter
US10883552B2 (en) 2019-04-10 2021-01-05 Warner Electric Technology Llc Rotational coupling device with flux conducting bearing shield
US11009085B2 (en) 2019-05-17 2021-05-18 Rolls-Royce Corporation Electromagnetic clutch for gas turbine accessories
WO2021112045A1 (en) * 2019-12-06 2021-06-10 株式会社デンソー Drive transmission device and drive device
US11466735B2 (en) 2020-03-13 2022-10-11 Rolls-Royce Corporation Electromagnetic clutch system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639105Y2 (en) * 1986-07-23 1994-10-12 サンデン株式会社 Pulley direct-coupled compressor
JP2000337480A (en) * 1999-05-17 2000-12-05 Luk Lamellen & Kupplungsbau Gmbh Transmission device
JP2001041308A (en) * 1999-07-28 2001-02-13 Denso Corp Power transmission device
JP2002206564A (en) * 2000-10-27 2002-07-26 Denso Corp Torque transmission device
JP3421619B2 (en) * 1998-12-11 2003-06-30 小倉クラッチ株式会社 Power transmission device
JP2003214336A (en) * 2002-01-25 2003-07-30 Zexel Valeo Climate Control Corp Refrigerant compressor
JP2005233338A (en) * 2004-02-20 2005-09-02 Denso Corp Electromagnetic clutch

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639105A (en) 1992-07-27 1994-02-15 Nifco Inc Structure of indication part of game machine
JP2583661Y2 (en) 1992-08-12 1998-10-27 株式会社デンソー Adhesion prevention mechanism for electromagnetic clutch
US5445256A (en) 1993-04-26 1995-08-29 Nippondenso Co., Ltd. Electromagnetic clutch
JP4174896B2 (en) * 1998-09-22 2008-11-05 株式会社デンソー Electromagnetic clutch
DE10066236B4 (en) 1999-06-21 2016-12-15 Denso Corporation Circulation transmission device with torque limiting device
US6802779B2 (en) 2000-10-27 2004-10-12 Denso Corporation Pulley type torque transmitting apparatus
JP2004293734A (en) 2003-03-28 2004-10-21 Calsonic Compressor Seizo Kk Electromagnetic clutch and gas compressor
JP4413107B2 (en) * 2004-08-30 2010-02-10 サンデン株式会社 Power transmission device
JP2006233847A (en) * 2005-02-24 2006-09-07 Sanden Corp Electromagnetic clutch of compressor
JP2006275229A (en) * 2005-03-30 2006-10-12 Sanden Corp Electromagnetic clutch
JP4713293B2 (en) * 2005-10-07 2011-06-29 サンデン株式会社 Compressor
JP4985749B2 (en) * 2009-11-30 2012-07-25 株式会社デンソー Clutch mechanism
JP6040844B2 (en) 2013-04-05 2016-12-07 株式会社デンソー Power transmission device
JP6248773B2 (en) 2014-04-17 2017-12-20 株式会社デンソー Power transmission device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639105Y2 (en) * 1986-07-23 1994-10-12 サンデン株式会社 Pulley direct-coupled compressor
JP3421619B2 (en) * 1998-12-11 2003-06-30 小倉クラッチ株式会社 Power transmission device
JP2000337480A (en) * 1999-05-17 2000-12-05 Luk Lamellen & Kupplungsbau Gmbh Transmission device
JP2001041308A (en) * 1999-07-28 2001-02-13 Denso Corp Power transmission device
JP2002206564A (en) * 2000-10-27 2002-07-26 Denso Corp Torque transmission device
JP2003214336A (en) * 2002-01-25 2003-07-30 Zexel Valeo Climate Control Corp Refrigerant compressor
JP2005233338A (en) * 2004-02-20 2005-09-02 Denso Corp Electromagnetic clutch

Also Published As

Publication number Publication date
JP2015206375A (en) 2015-11-19
US20170122384A1 (en) 2017-05-04
CN106233038B (en) 2019-03-29
DE112015001839B4 (en) 2021-09-16
CN106233038A (en) 2016-12-14
US10113596B2 (en) 2018-10-30
JP6248773B2 (en) 2017-12-20
DE112015001839T5 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
WO2015159488A1 (en) Power transmission device
JP2000161389A (en) Electromagnetic clutch
CN108884881B (en) Electromagnetic clutch mechanism
JP6040844B2 (en) Power transmission device
JP5263129B2 (en) Power transmission device
JP3596072B2 (en) Electromagnetic clutch
US7017726B2 (en) Electromagnetic clutch
US7213695B2 (en) Electromagnetic clutch
JP5445178B2 (en) Electromagnetic clutch
US9835205B2 (en) Friction clutch
WO2016189973A1 (en) Electromagnetic clutch for gas compressor, and gas compressor
JP6606972B2 (en) Power transmission device
JP6680272B2 (en) Power transmission device
JP5397246B2 (en) Electromagnetic clutch
KR20080010726A (en) Power transfer assembly for compressor
KR101629424B1 (en) Disc and hub assembly of electromagnetic clutch
WO2017212784A1 (en) Power transmitting device
JP2017219092A (en) Power transmission device
JP6458766B2 (en) Power transmission device
KR20210015165A (en) Clutch and compressor including the same
JP2002048155A (en) Electromagnetic clutch
JPH09126247A (en) Electromagnetic clutch
JP2002276685A (en) Power transmission device
JP2004052828A (en) Power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15300701

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201606936

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 112015001839

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779541

Country of ref document: EP

Kind code of ref document: A1