WO2015158488A1 - Machine électrique à capteur de champ magnétique pour détecter des courts-circuits de rotor - Google Patents

Machine électrique à capteur de champ magnétique pour détecter des courts-circuits de rotor Download PDF

Info

Publication number
WO2015158488A1
WO2015158488A1 PCT/EP2015/055810 EP2015055810W WO2015158488A1 WO 2015158488 A1 WO2015158488 A1 WO 2015158488A1 EP 2015055810 W EP2015055810 W EP 2015055810W WO 2015158488 A1 WO2015158488 A1 WO 2015158488A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
light
field sensor
electrical machine
rotor
Prior art date
Application number
PCT/EP2015/055810
Other languages
German (de)
English (en)
Inventor
Thomas Bosselmann
Sebastian Strack
Michael Villnow
Michael Willsch
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2015158488A1 publication Critical patent/WO2015158488A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/06Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements

Definitions

  • the invention relates to an electrical machine with a magnetic field sensor for rotor short-circuit detection and a magnetic field sensor device for detecting the radial rotor magnetic field of an electric machine.
  • Object of the present invention is to provide an electrical machine and a sensor device with which a detection of a sectionleiter gleiches in the electric Ma ⁇ machine is recognizable and in which the disadvantages mentioned above are reduced.
  • This object is achieved with respect to the electric machine by an electric machine with at least one magnetic ⁇ field sensor according to the Faraday effect for the detection of the radial rotor magnetic field.
  • the object is achieved by a magnetic field sensor device for detecting the radial rotor magnetic field having the features of claim 10.
  • Another solution is a method having the features of claim 11.
  • the electric machine according to the invention accordingly comprises a magnetic field sensor according to the Faraday effect.
  • This effect consists in the rotation of the direction of polarization of light, which in a material with a non-zero
  • Verdet constant passes through a magnetic field, the magnetic ⁇ field is aligned at least in parts parallel to the direction of light.
  • such a sensor is free of electrical components that must be introduced into the machine and can lead to problems, especially if they are permanently installed.
  • the sensor works purely optically and is therefore also immune to electrically induced disturbances, which are difficult to avoid in an electrical machine.
  • the magnetic field sensor comprises a stator side in the region of the air gap of the electric machine is arranged ⁇ at least partially transparent body, which preferably has a very high Verdet constant.
  • Wei ⁇ terhin comprises the magnetic field sensor optical fiber for reciprocating routing of light to / from the at least partially transparent body.
  • the elements are arranged zuei ⁇ nander so that the light with a deviation of less than 30 °, in particular less than 5 °, to the radial direction of the generator through the body is feasible.
  • the light is preferably guided through the body substantially in the radial direction, with deviations from the radial direction leading to a signal reduced with respect to the exact radial direction.
  • the magnetic field sensor further comprises a light source and two polarizing filters.
  • the polarization filters are arranged before and after the appropriate body so that they polarize the light from the light source before it passes ⁇ passes through the body and let pass only a portion of the light after passage depending on the strength of the polarization rotation.
  • the polarizing filter and the body may be in direct mechanical contact, so that they form a BAULI ⁇ che unit.
  • the electric machine may comprise one or two reflection ⁇ onsprismen. These in turn can be arranged in the light path before and after the body. This will allows deflections in the light beam, which in turn, a large ⁇ ßere flexibility in installation of the magnetic field sensor is achieved.
  • the magnetic field sensor may comprise a mirror which is arranged relative to the body so that the light passes through the body twice.
  • the electric machine may be a generator or a motor.
  • optical waveguides for guiding the light from a light source to the body through the measuring probe
  • Body and both before and after passage through the body by a polarizing element is feasible.
  • the magnetic field sensor is not designed as a direct part of the electric machine, but is realized as a separate sensor.
  • a rigid or flexible measuring lance for introduction into the electrical machine is set up.
  • at least partially transparent body is expediently arranged so as to come, when introduced into the electrical machine of this part in the area of the air gap.
  • the embodiments that are possible for the electric machine are also transferable to the magnetic field sensor device.
  • a magnetic field sensor according to the Faraday effect is used to determine the radial rotor magnetic field of the electric machine. stuffs. Furthermore, it is concluded from the radial rotor magnetic field on the presence of partial short circuits.
  • FIG. 1 shows a section through a generator with a magnetic field sensor according to the Faraday effect
  • FIG. 3 shows a magnetic field sensor with axial light feed in transmission
  • Figure 4 shows a magnetic field sensor with radial light supply in transmission
  • Figure 5 shows a magnetic field sensor with radial light supply in reflection.
  • FIG. 1 shows a highly schematic section through a generator 10 according to an exemplary embodiment of the invention.
  • the generator 10 comprises an outer stator 11 and an inner rotor 12. Between stator 11 and rotor 12, an air gap 15 remains.
  • FIG. 1 further shows a magnetic field sensor 13 according to the Faraday effect.
  • the magnetic field sensor 13 comprises at its in the region of the air gap 15 lie ⁇ constricting spike 14 the optically active elements for the measurement in accordance with the Faraday effect. From the top and to the top lead two optical fibers 16, 17 in order to transport the light signal for the Ab ⁇ question of the magnetic field.
  • Connected to the magnetic field sensor 13 is not shown in Figure 1 transmitter, the rotation of the polarization and how ⁇ derum calculated from the measured intensity of light therefrom, including the material constants of the strength of the rotor magnetic field in the region of the air gap 15 °.
  • An evaluation of the rotor magnetic field yields values from which the presence of partial conductor faults is determined.
  • FIG. 2 shows an embodiment with axial light supply.
  • the optical waveguides 16, 17 are connected directly to a Faraday cell 21.
  • the Faraday cell 21 comprises a trans ⁇ parent body 24 and two arranged on opposite end faces of the body 24 polarizing filter 22, 23.
  • the optical waveguides 16, 17 are suitably arranged so that the light of a light source not shown here through the polarizing filter 22, 23 and the body 24 occurs.
  • the transmission planes of the polarizing filters 22, 23 can be aligned parallel to each other or twisted relative to one another. In any case, there is a change in the intensity of the light due to the rotation of the plane of polarization in the body 24, provided that a magnetic field 28 is applied with component parallel to the light flux in the body 24.
  • For the body 24 is preferably a material with high
  • Verdet constant used for example, a YIG crystal (yttrium iron garnet), a BSO crystal (bismuth silica) or SF-57 glass.
  • FIG. 3 shows a further embodiment in which
  • Light supply also happens axially.
  • the optical waveguides 16, 17 are not connected directly to the Faraday cell 21.
  • the ends of the optical waveguides 16, 17 are rather directed to lens collimators 31, 32, which expand the light beam from the optical waveguide 16 and parallelize or back in direct the optical fiber 17.
  • this embodiment comprises two deflection prisms 33, 34, which direct the light beam from the axial to the radial direction and through the body 24 and from the radial again in the axial direction.
  • FIGS. 4 and 5 Further embodiments in which the supply of light occurs radially are shown in FIGS. 4 and 5.
  • the same elements as in that of Figure 3. the light must not be redirected twice by 90 °, but once by 180 °.
  • the two deflection prisms 33, 34 are arranged in direct contact with each other to effect the deflection by 180 °.
  • the light again passes through the body 24 in the radial direction with respect to the generator 10.
  • FIG. 5 shows a modified structure.
  • the light passes once through the body 24, that is to say when working in transmission, reflection is used in the embodiment of FIG.
  • the body 24 is arranged in direct contact with a mirror 41, which reflects incident light directly into the body 24.
  • the light in this embodiment is slightly deflected from the radial direction into the body 24, and accordingly exits the body 24 again slightly after reflection and re-passage through the body 24 from the radial direction.
  • the polarization filters 22, 23 are arranged directly adjacent to one another on an end face of the body 24 or at a distance from the body 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

L'invention concerne une machine électrique comprenant au moins un capteur de champ magnétique à effet Faraday servant à détecter le champ magnétique radial du rotor de la machine électrique. La détection du champ magnétique du rotor est utilisée pour déterminer des courts-circuits partiels.
PCT/EP2015/055810 2014-04-17 2015-03-19 Machine électrique à capteur de champ magnétique pour détecter des courts-circuits de rotor WO2015158488A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014207376.6 2014-04-17
DE102014207376.6A DE102014207376A1 (de) 2014-04-17 2014-04-17 Elektrische Maschine mit Magnetfeldsensor zur Läuferkurzschlusserkennung

Publications (1)

Publication Number Publication Date
WO2015158488A1 true WO2015158488A1 (fr) 2015-10-22

Family

ID=52697417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/055810 WO2015158488A1 (fr) 2014-04-17 2015-03-19 Machine électrique à capteur de champ magnétique pour détecter des courts-circuits de rotor

Country Status (2)

Country Link
DE (1) DE102014207376A1 (fr)
WO (1) WO2015158488A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1918730A1 (de) * 1968-04-23 1969-11-06 Bbc Brown Boveri & Cie Verfahren und Einrichtung zur Messung der zeitlichen AEnderung der Feldstaerke eines Magnetfeldes
US4428017A (en) * 1980-06-10 1984-01-24 Westinghouse Electric Corp. Electric motor and transformer load sensing technique
US4560932A (en) * 1982-01-29 1985-12-24 Sumitomo Electric Industries, Ltd. Magneto-optical converter utilizing Faraday effect
EP0165803A2 (fr) * 1984-06-18 1985-12-27 Sumitomo Electric Industries Limited Un système et un appareil pour la localisation d'une mise à la terre dans une alimentation en énergie électrique
US4745357A (en) * 1987-03-23 1988-05-17 Westinghouse Electric Corp. Optical interface for a magneto-optical current transducer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59604620D1 (de) * 1995-11-16 2000-04-13 Siemens Ag Strommessung bei turbogeneratoren
EP2097758A2 (fr) * 2006-11-30 2009-09-09 North Sensor A/S Capteur de courant à effet faraday
US20110133743A1 (en) * 2010-04-30 2011-06-09 Werner Barton Fault detection device and method for detecting an electrical fault

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1918730A1 (de) * 1968-04-23 1969-11-06 Bbc Brown Boveri & Cie Verfahren und Einrichtung zur Messung der zeitlichen AEnderung der Feldstaerke eines Magnetfeldes
US4428017A (en) * 1980-06-10 1984-01-24 Westinghouse Electric Corp. Electric motor and transformer load sensing technique
US4560932A (en) * 1982-01-29 1985-12-24 Sumitomo Electric Industries, Ltd. Magneto-optical converter utilizing Faraday effect
EP0165803A2 (fr) * 1984-06-18 1985-12-27 Sumitomo Electric Industries Limited Un système et un appareil pour la localisation d'une mise à la terre dans une alimentation en énergie électrique
US4745357A (en) * 1987-03-23 1988-05-17 Westinghouse Electric Corp. Optical interface for a magneto-optical current transducer

Also Published As

Publication number Publication date
DE102014207376A1 (de) 2015-10-22

Similar Documents

Publication Publication Date Title
DE112008003813B4 (de) Drahtseilfehlererfasser
DE102019114554B3 (de) Stromschiene und Leistungsmodul mit Stromschiene
EP1762852B1 (fr) Dispositif et procédé pour mesurer un courant passant dans un conducteur électrique
DE2541072B2 (de) Magnetooptischer Meßwandler zur Herstellung von Hochspannungsströmen
WO2015158488A1 (fr) Machine électrique à capteur de champ magnétique pour détecter des courts-circuits de rotor
DE69019619T2 (de) Optischer Stromtransformator.
EP3839462B1 (fr) Ceinture dentée avec capteur intégré
DE2935887C2 (fr)
DE7533531U (de) Teilbare spulenanordnung zur erzeugung eines magnetfeldes in einem laenglichen pruefling
EP2942633A1 (fr) Procédé et dispositif de détection de court-circuit entre spires et machine électrique
DE3750237T2 (de) Vorrichtung zur Feststellung von Oberflächenmikrofehlern in einem Metallwerkstück.
EP3095121B1 (fr) Inducteur
DE102017115205B4 (de) System zur Detektion von Windungsschlüssen in einer elektrischen Maschine
DE102008061006A1 (de) Verfahren und Vorrichtung zur Messung von elektrischen Strom
DE102008062779A1 (de) Detektionsvorrichtung und Verfahren zur Temperaturmessung
DE2543643C3 (de) Vorrichtung zur Magnetisierung von Dauermagnetsegmenten
DE3431769A1 (de) Faseroptischer stromsensor
DE685151C (de) Verfahren und Einrichtung zur Messung der Permeabilitaet von gleichmaessig mduktiv belasteten Fernmeldeadern
DE102020128731B3 (de) Wirbelstromsonde und Wirbelstrom-Prüfgerät
EP4080232B1 (fr) Dispositif de mesure et procédé de détermination des propriétés magnétiques d'un gabarit d'essai pouvant être magnétisé
EP3301436A1 (fr) Appareil de mesure de conductivité destiné à mesurer une conductivité électrique d'un milieu liquide
EP1154277A1 (fr) Dispositif de mesure des intensités de courant
EP2538209A2 (fr) Dispositif d'examen non destructif de marchandises longues en métal et utilisation du dispositif
DE1489214B2 (de) Verfahren zum magnetischen markieren magnetisierbarer langgestreckter koerper und zum wiederauffinden der markierung und vorrichtungen zur durchfuehrung des verfahrens
DE102007002722A1 (de) Optische Messeinrichtung und Verfahren zur Bestimmung einer Verformung eines elektrischen Leiters sowie Verwendung der Messeinrichtung und Verwendung des Verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15711151

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15711151

Country of ref document: EP

Kind code of ref document: A1