WO2015158198A1 - 一种基于神经网络自学习的故障识别方法及系统 - Google Patents

一种基于神经网络自学习的故障识别方法及系统 Download PDF

Info

Publication number
WO2015158198A1
WO2015158198A1 PCT/CN2015/075005 CN2015075005W WO2015158198A1 WO 2015158198 A1 WO2015158198 A1 WO 2015158198A1 CN 2015075005 W CN2015075005 W CN 2015075005W WO 2015158198 A1 WO2015158198 A1 WO 2015158198A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
neural network
data
layer
category
Prior art date
Application number
PCT/CN2015/075005
Other languages
English (en)
French (fr)
Inventor
鲍侠
Original Assignee
北京泰乐德信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京泰乐德信息技术有限公司 filed Critical 北京泰乐德信息技术有限公司
Publication of WO2015158198A1 publication Critical patent/WO2015158198A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks

Definitions

  • the invention provides a fault recognition method and system based on neural network self-learning, relating to technical fields such as railway signal data, railway communication data, railway knowledge data, system alarm data, machine learning, neural network, self-learning, expert system, etc. To solve the problems faced by data analysis of rail transit monitoring data.
  • TJWX-I and TJWX-2000 and other continuously upgraded signal centralized monitoring CSM systems In order to improve the modern maintenance level of China's railway signal system equipment, since the 1990s, it has independently developed TJWX-I and TJWX-2000 and other continuously upgraded signal centralized monitoring CSM systems. At present, most stations use a computer monitoring system to realize real-time monitoring of the status of the station signal equipment, and provide basic information for the electrical department to grasp the current state of the equipment and conduct accident analysis by monitoring and recording the main operational status of the signal equipment. Based on, played an important role. Moreover, for urban rail transit signal equipment, centralized monitoring CSM system is also widely deployed in urban rail centralized stations/vehicle sections, etc., for urban rail operation and maintenance.
  • Neural network also known as artificial neural network, is an algorithm learning model that imitates the behavioral characteristics of animal neural networks and performs distributed parallel information processing. It is a complex network formed by a large number of simple processing units (neurons) connected to each other. Through complex internal connections, various complex functions are simulated for various data analysis problems.
  • the neural network is generally divided into an input layer, a hidden layer and an output layer.
  • the input layer includes a large number of neurons for accepting a large amount of nonlinear input information;
  • the hidden layer includes one or more layers of neurons through the layer and other levels of nerves.
  • the meta-connection simulates various models; the output layer, the information is transmitted, analyzed, and weighed in the neuron link to form an output result.
  • the neural network is further divided into a single layer neural network and a multilayer neural network according to the number of layers of the hidden layer.
  • the present invention provides a fault recognition method and system based on neural network self-learning.
  • the system includes data acquisition, data preprocessing, feature selection, model training, real-time data analysis and self-learning.
  • a fault recognition method based on neural network self-learning the steps of which include:
  • Data collection The system firstly monitors and collects various monitoring quantities of rail transit equipment through the CSM system to obtain sample data of the system during operation; the CSM includes stored historical collection data and real-time monitoring data, and the historical monitoring data includes faults and The data collected by each monitoring device when the fault occurs, used for neural network training; real-time monitoring data is used for fault analysis and early warning;
  • Data preprocessing For the collected monitoring data, the data should first be denoised, normalized, and VSM formatted and preprocessed, and the collected monitoring data is converted into a data format suitable for data mining;
  • the system obtains a large amount of training sample data by collecting and pre-processing the monitoring data. For a fault, it is only related to some monitoring data. Therefore, relevant monitoring data needs to be extracted according to expert knowledge and practical experience.
  • As an input to a neural network As an input to a neural network;
  • Model training The neural network consists of an input layer, a hidden layer, and an output layer, and approximates various functions through the connections between neurons in each layer of the system.
  • Step 3) Analyze the obtained sample data as input, combine various existing expert knowledge, enter the neural network system through the input layer, and then correct the weight of each layer according to the result of the output layer and the correction of the sample, thereby establishing a model.
  • the system will design a neural network according to each fault, then use the fault data to train, get the corresponding model, and then merge all the models into one neural network by adding a hidden layer;
  • Real-time data analysis After the real-time monitoring data collected by the CSM system is subjected to the steps of preprocessing, feature selection, etc., as a step 4), the input of the model is established, and after the connection of the neurons of each layer of the neural network is converted, the output is output.
  • the layer outputs the analysis result, which can be used to estimate whether the fault has occurred and the specific type and cause of the fault;
  • Self-learning The neural network is not static after training through the training set. It will continuously adapt and improve according to the real-time monitoring and fault conditions. For example, the monitoring data will change in a certain range in different seasons, in order to better For fault warning and analysis, the model needs to be constantly revised and improved.
  • the data collection component of step 1) includes historical monitoring data collection and real-time data collection, and is used for collecting historical monitoring data stored in a centralized monitoring system (CSM) of a station and an electric service segment.
  • CSM centralized monitoring system
  • the data preprocessing described in step 2) includes checking and processing the abnormal points in the data, checking the integrity of the data, fusing the monitoring signals of different stations and electric power segments, transforming the monitoring data, and normalizing. Such operations, unified data format and value range. Converting data into data in vector space (VSM) format is convenient for neural networks to analyze and process.
  • VSM vector space
  • the abnormal point check and data integrity described in step 2) include data hopping, data missing, and the like.
  • railway monitoring data sometimes varies to varying degrees with seasonal temperature changes, such as a cyclical curve that exhibits a periodic curve.
  • the data normalized in step 2) is because the monitoring data guarantees the Boolean, the analog quantity, the positive and negative values, etc., and the normalization of the monitoring data requires special processing to ensure the readiness and convergence speed of the neural network. .
  • step 3) utilizes an empirical or feature selection algorithm to select data related to the problem. These data are extracted from the raw data to form a separate data set for each type of failure. If the junction box is faulty, the fault line related to the fault includes the terminal box receiving voltage, the brushing cable terminal voltage, and the sending terminal voltage. By preprocessing the collected three voltage data, the junction box fault can be formed. Training data, the results of the analysis include no faults, indoor faults, outdoor faults, indoor open circuits.
  • the three types of neural network classification described in step 4) include a feedforward neural network, a feedback neural network, and a self-organizing neural network.
  • a feedforward neural network we divide the fault into three categories, one is the fault and the cause of the fault, the model is established by the feedforward neural network; the second is the known fault and the cause. Construct a feedback neural network to build a model, and use the characteristics of the feedback model to self-learn to analyze the faults and causes; the third is the unknown faults and causes.
  • the model is built through the network's own learning. Predict new failures and causes.
  • the neural network described in step 4) performs model training. Because the neural network naturally supports parallel computing, the parallel processing algorithm can be written to optimize and speed up the training and analysis process of the model.
  • the real-time data analysis described in step 5) can speed up the calculation by means of an in-memory database, a cache, etc., to improve the speed of failure warning and analysis.
  • steps 2) to 5) can utilize the cloud platform to perform distributed storage of monitoring data, and utilize the parallel computing architecture of the cloud platform to speed up the speed of model training and fault analysis, and the system has better scalability.
  • system can be combined with an expert system to take advantage of the existing knowledge base of the expert system to aid analysis. To achieve accurate fault warning and analysis and maximize the use of existing resources.
  • the invention speeds up the speed of fault identification, and adopts a self-learning neural network algorithm to identify the fault characteristics of the rail transit monitoring data, which can speed up the fault identification, and can quickly find the fault by analyzing the real-time monitoring data, and Identify the type of failure.
  • the invention saves a lot of labor costs by using the model to identify faults, and no longer needs to manually observe the monitoring information and then perform fault identification and analysis.
  • the invention realizes distributed storage and parallel computing of monitoring data through the cloud platform, and can solve the problem of increasing storage and processing of the rail transit monitoring data. Therefore, it is possible to compare the causes of complicated equipment failures and driving accidents.
  • the ability of fault recognition can be continuously improved, and through continuous self-learning, it can be found that the new fault that the artificial has not yet summarized, and the new cause of the fault. And because some of the monitoring data will fluctuate with different conditions with temperature, season and other factors, through continuous self-learning, we can better adapt to the law of data changes.
  • Figure 1 is a basic flow chart of a neural network.
  • Figure 2 is a schematic diagram of a neuron.
  • FIG. 3 is a flow chart of the classification and recognition analysis of the rail transit monitoring fault data of the present invention.
  • FIG. 4 is a schematic diagram of a pre-feedback neural network.
  • Figure 5 is a schematic diagram of a post feedback neural network.
  • Figure 6 is a schematic diagram of a self-organizing neural network.
  • Figure 7 is an architectural diagram of the cloud platform.
  • Figure 8 is a flow chart of the neural network orbital monitoring fault identification in the form of aggregation.
  • Figure 9 is a rule diagram of the analysis of the operation and maintenance level track failure of the example of the present invention.
  • a fault recognition method and system based on neural network self-learning in this embodiment is composed of the following components: a data acquisition subsystem based on CSM, a data preprocessing subsystem, a feature selection subsystem, a model training subsystem, and a real-time data analyzer.
  • System and self-learning subsystem It is used to solve the technical problems of large workload, low efficiency and high risk in the manual diagnosis of railway signal system failure in the prior art.
  • the neural network is mainly composed of neurons.
  • the structure of the neurons is shown in Figure 2.
  • a1 ⁇ an are the components of the input vector.
  • W1 ⁇ wn are the weights of the synapses of neurons
  • f is a transfer function, usually a nonlinear function. There are generally sigmod(), traingd(), tansig(), hardlim(). The following default is hardlim().
  • t is the neuron output
  • the function of a neuron is to obtain a scalar result via a nonlinear transfer function after finding the inner product of the input vector and the weight vector.
  • the role of a single neuron divide an n-dimensional vector space into two parts using a hyperplane (called a decision boundary). Given an input vector, the neuron can determine which side of the hyperplane the vector is on.
  • the neural network must first learn with certain learning criteria before it can work.
  • the identification of the two letters "A” and "B” by the neural network is taken as an example. It is stipulated that when “A” is input into the network, “1" should be output, and when the input is “B”, the output is “0.” ".
  • the criteria for e-learning should be: If the network makes a wrong decision, then learning through the network should make the network less likely to make the same mistake next time. First, assign a random value in the interval of (0, 1) to each connection weight of the network, input the image mode corresponding to "A" to the network, and the network will weight the input mode, compare it with the threshold, and then perform non-transfer. Linear operation, get the output of the network. In this case, the probability that the network outputs "1" and "0" is 50% each, that is, it is completely random. At this time, if the output is "1" (the result is correct), the connection weight is increased so that the network can still make a correct judgment when it encounters the "A" mode input again.
  • the neural network changes the connections between neurons and the weights between the connections through learning and training to adapt to the surrounding environmental requirements. Using the same initial network configuration to learn through different training sets, the resulting neural network is completely different.
  • a neural network is a learning system that develops knowledge beyond the designer's original level of knowledge. Usually, its learning and training methods can be divided into two types, one is supervised learning, then use the given sample criteria for classification or imitation; the other is unsupervised learning, in which case only learning is prescribed Mode or some rules, the specific learning content varies with the environment in which the system is located (ie, the input signal), and the system can automatically discover environmental characteristics and regularity. Has a more similar function to the human brain. The structural characteristics of the neural network determine that it is more suitable for distributed storage and parallel computing.
  • neural network are very suitable for fault analysis and early warning of rail transit, and the system can obtain massive monitoring data through CSM.
  • Two learning methods of parallel neural networks can train known fault analysis, and can also learn new fault types and causes through continuous learning.
  • the fault identification model mainly consists of three steps: one is the data preparation phase, the original monitoring data is preprocessed, feature selection and format conversion, and the training set that the neural network can process is obtained; secondly, the appropriate training set is found according to the given training set. The number of neural network layers and parameters; the third is to use the function model completed in the first step to analyze the real-time monitoring data to get the system failure and the cause of the failure.
  • the data acquisition subsystem is connected with the CSM system of the railway company, the railway bureau, and the electric power segment to obtain historical monitoring data stored in the CSM and monitoring data acquired in real time.
  • the historical monitoring data is used in the model training phase to train the model to obtain the classification model.
  • the trained model is used to classify the real-time monitoring data to obtain the current operating status of the system, such as whether there is a fault and the cause of the fault. .
  • the data preprocessing subsystem processes the collected monitoring data, including data denoising, data formatting, normalization, etc., and converts the data into spatial vector format data. This format of data facilitates subsequent feature selection and neural network processing.
  • the monitoring data includes Boolean and analog quantities.
  • the difference between different data is large, and the range of values of the data is quite different, and some monitoring data such as temperature and water temperature also include negative values.
  • the normalization algorithm is designed for different data types:
  • the corresponding data is normalized to two values of -1 and 1;
  • the CSM collects more signals and some of the signals are redundant. After these signals are converted into features, they are similarly calculated and then redundant features are removed, which greatly reduces the amount of computation and processing.
  • Va and Vb respectively represent the values of the collection points a and b.
  • the Va and Vb are normalized, that is, the range of the two features is the same, and is limited to [0, 1]. Then calculate the features:
  • n is the number of Va and Vb included in the training set.
  • Va and Vb are the same. If the value of the above formula is less than a given threshold, Va and Vb are redundant features. Remove the Vb value and leave the value of Va.
  • the selection of the threshold depends mainly on the noise of the collection point. When the noise is large and the number is large, the threshold needs to be set larger, and vice versa. Through the above steps, the redundancy features can be greatly reduced.
  • the feature selection subsystem is used to process the spatial vector data after preprocessing, because only part of the monitoring data is related to a specific fault, and it is necessary to sort out the fault-related features according to the existing knowledge to form a fault signature database.
  • Features that are not used can be used for unsupervised learning to discover new knowledge.
  • the model's role is to obtain the determined models and parameters based on the training data, and then use the model to analyze the real-time monitored data. And early warning.
  • the model of the feedforward neural network is shown in Figure 4. It is a 3-layer feedforward neural network, where the first layer is the input unit, the second layer is called the hidden layer, and the third layer is called the output layer.
  • W1 to W3 represent the connection weight vectors of each layer of the network
  • f(x) shows the function function of the 3 layers of the neural network.
  • W weights are randomly initialized
  • the error calculation model is a function that reflects the magnitude of the error between the expected output of the neural network and the calculated output:
  • tj is the expected value of the output layer node j
  • oj is the actual value of the output layer node j
  • ⁇ Wij(n+1) h ⁇ Ep ⁇ Oj+a ⁇ Wij(n)
  • n represents the number of iterations, and n+1 times of weight in the course of training is based on the weight of the nth iteration and the output value Calculated from the difference between the expected values;
  • ⁇ Wij(n) is the weight change of the jth node of the i-th layer at the nth iteration.
  • This neural network can be trained for any determined fault, and an analysis model for the fault can be obtained.
  • the fault of the junction box is a kind of known fault.
  • the corresponding data is the voltage of the junction box, the voltage of the cable terminal, the voltage of the terminal, and the pre-processing of the collected voltage data to form training. data.
  • n1 sqrt(n+m)+d, where n1 is the number of hidden layer units
  • n is the number of input units
  • n is the number of output units
  • d is a constant between 0 and 10
  • the number of neurons n1 is seven.
  • the input layer and the hidden layer and the weight between the hidden layer and the output layer are randomly initialized, the value range is between (0, 1), and the transfer function uses the sigmod function. Then the formation is a three-layer neural network, the input layer contains three stages, the hidden layer contains 7 nodes, the output layer contains 4 nodes, and then the training data is used for training to obtain all the parameters of the neural network.
  • the neural network structure is shown in Figure 9.
  • the obtained neural network is used as input for the real-time monitoring data, and then according to the output of the neural network, it can be judged whether there is a fault and the type of the fault.
  • the structure of the feedback neural network is shown in Figure 5. Assume that there are n inputs (I1, I2.., In), m outputs (o1, o2, .. om), and each input is output to different types of faults through feedback. The impact of the results.
  • R(I)+ (o t -o t-1 )*(I t -I t-1 )
  • o t is the output at time t
  • I t is the input value at time t, which is calculated by the training set. It is possible to obtain a vector, record the correlation between the input data a and the output value o, and then remove the input data with low correlation, continuously calculate, and constantly improve the correlation between the fault and the feature until it is related to the fault. The characteristics are all determined. The final data left in this way is the data related to the fault.
  • the input data uses as much of the relevant monitoring data as possible as possible, in addition to the known relevant data.
  • Figure 5 is a schematic diagram of a feedback neural network model.
  • the biggest difference with the feedforward neural network is that it not only uses historical monitoring data for learning, but also uses real-time monitoring data for training.
  • the fault is manually marked to form a fault sample.
  • the feedback data in Figure 5 is used as the model data, and the model will automatically learn and improve the network to achieve the ability of fault analysis.
  • the network has the ability to identify and analyze new faults by automatically finding the inherent laws and essential attributes in the sample, self-organizing and adaptively changing the parameters and results of the network.
  • Self-organizing neural networks are unsupervised learning networks. It automatically and systematically changes the network parameters and structure by automatically finding the inherent laws and essential properties in the sample. As shown in Figure 6, the network consists of two layers: the input layer and the competition layer. In the case of no tutor learning, the model has clustering ability. According to this feature, the system is designed to integrate faultless into one class and fault clustering. This also identifies the fault.
  • the purpose of clustering is to classify similar pattern samples into one class, and to separate dissimilarities to achieve intra-class similarity and inter-class separation of pattern samples.
  • the fault is also clustered as a feature, and the feature has time series, because the fault itself has a certain timing, and when some collection points are abnormal, the fault will also occur.
  • Feature clustering algorithm design ideas :
  • C it represents the value of fault i (center point) at time t
  • F jt represents the value of feature j at time t
  • the result of the clustering is that the fault Ci is related to all features under the category.
  • the three types of neural networks correspond to three different types of faults, feedback neural network and self-organizing neural network, not only using neural network for fault analysis, but also feature selection and causality mining.
  • the three models ultimately analyze and predict the collected monitoring data through the form of neural network.
  • Each model will have multiple models. Although the structure and initial values are the same, the results obtained by different trainings are different, that is, different models.
  • the output of the N models can produce the squared state of N.
  • the system uses a Hash table to map the state of the binary and convert it to the displayed state. If all 0s, there is no fault, and 1 means a fault. Through this fusion, different models can be converted into a unified system to facilitate various processing of data.
  • the trained model is transmitted to the analysis component through a connection to the real-time analysis component.
  • Real-time monitoring data also needs to go through a process similar to historical monitoring data.
  • the real-time monitoring data in VSM format is input as input to the real-time data analysis component, and the current system can be obtained by calculation to determine whether there is a specific fault and the fault is generated. s reason.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

一种基于神经网络自学习的故障识别方法及系统。本方法为:1)监测和采集设定的轨道交通设备的各种监测量,并将采集到的监测数据转化为适于神经网络训练的样本数据;2)根据故障类别对所述样本数据进行分类,得到每一故障类别对应的样本数据集;3)根据每一故障类别分别设计一神经网络,然后利用该故障的样本数据集进行训练,得到该故障类别的识别模型;4)将所有故障类别的识别模型融合为一个神经网络,对实时采集的监测数据进行故障识别。可以从容的应复杂的设备故障和行车事故原因。

Description

一种基于神经网络自学习的故障识别方法及系统 技术领域
本发明提供一种基于神经网络自学习的故障识别方法及系统,涉及铁路信号数据、铁路通信数据、铁路知识数据、系统报警数据、机器学习、神经网络、自学习、专家系统等技术领域,用以解决轨道交通监测数据的数据分析所面临的问题。
背景技术
为了提高我国铁路信号系统设备的现代化维修水平,从90年代开始,先后自主研制了TJWX-I型和TJWX-2000型等不断升级中的信号集中监测CSM系统。目前大部分车站都采用了计算机监测系统,实现了对车站信号设备状态的实时监测,并通过监测与记录信号设备的主要运行状态,为电务部门掌握设备的当前状态和进行事故分析提供了基本依据,发挥了重要作用。并且,对城市轨道交通信号设备,集中监测CSM系统也被广泛部署在城轨集中站/车辆段等处,供城轨运维使用。
但是,针对很多复杂设备故障和行车事故原因的诊断方面,该系统却无能为力,目前仍需依靠人工经验分析判断,很多情况下只有在出现重大问题时才发现故障,不仅导致了人工诊断铁路信号系统故障时工作量大、故障监测与诊断效率低下等技术问题,而且增加了行车的危险。
神经网络又称人工神经网络,它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法学习模型。是由大量简单的处理单元(神经元)相互连接而形成的复杂网络,通过内部复杂的连接,模拟出各种复杂的函数用于各类数据分析问题。神经网络一般分为输入层、隐藏层和输出层,输入层包括大量的神经元用于接受大量的非线性输入信息;隐藏层包括一层或者多层神经元,通过本层与其他层级的神经元连接模拟各种模型;输出层,信息在神经元链接中传输、分析、权衡,形成输出结果。神经网络按照隐藏层的层数又分为单层神经网络和多层神经网络。
发明内容
为了解决现有技术中人工诊断铁路信号系统故障时工作量大、效率低下、风险性高等技术问题,本发明提供了一种基于神经网络自学习的故障识别方法及系统。系统包括数据采集、数据预处理、特征选择、模型训练、实时数据分析和自学习六个部分。
本发明采用的技术方案如下:
一种基于神经网络自学习的故障识别方法,其步骤包括:
1)数据采集:系统首先通过CSM系统监测和采集轨道交通设备的各种监测量,得到系统在运行过程中的样本数据;CSM包括存储的历史采集数据及实时监测数据,历史监测数据包括故障以及在故障发生时各个监测设备采集到的数据,用于神经网络的训练;实时监测数据用于故障分析和预警;
2)数据预处理:对于采集到的监测数据首先要对数据进行去噪、归一化、VSM格式化预处理步骤,将采集到的监测数据转化为适于数据挖掘的数据格式;
3)特征选择:系统通过采集及预处理监测数据,得到大量的训练样本数据,对于一种故障来说,仅与部分监测数据相关,因此需要根据专家知识和实践经验将相关的监测数据抽取出来作为神经网络的输入;
4)模型训练:神经网络包含输入层、隐藏层和输出层,通过系统内各层之间神经元之间的连接来逼近各种函数。步骤3)分析得到的样本数据作为输入,结合已有的各类专家知识,通过输入层进入神经网络系统,然后根据输出层的结果和样本的校正来对各个层的权重进行校正,从而建立模型。系统会根据每种故障分别设计一个神经网络,然后利用该故障的数据进行训练,得到相应的模型,然后通过增加一个隐藏层的方式将所有的模型融合为一个神经网络;
5)实时数据分析:CSM系统采集到的实时监测数据经过预处理、特征选择等步骤后,作为步骤4)建立好的模型的输入,经过神经网络的各层神经元的连接转换后,通过输出层将分析结果输出,可以推算是是否出现故障以及故障的具体类型及原因;
6)自学习:神经网络在经过训练集训练之后并不是一成不变的,会根据实时监测及故障的情况不断的自我适应及完善,如在不同的季节监测数据会发生一定范围的变化,为了更好的进行故障预警和分析,就需要对模型进行不断的修正和完善。
进一步地,步骤1)所述数据归集组件包括历史监测数据归集和实时数据归集,用于对车站、电务段的集中监测系统(CSM)中存储的历史监测数据进行采集。
进一步地,步骤2)所述的数据预处理包括检查并处理数据中的异常点、检查数据的完整性、对不同车站、电务段的监测信号进行融合、对监测数据进行变换、归一化等操作,统一数据的格式和取值范围。将数据转换为向量空间(VSM)格式的数据,是便于神经网络对其进行分析处理。
进一步地,步骤2)所述的异常点检查、数据完整性包括数据跳变、数据缺失等情况, 但是铁路监测数据有时候会随着季节温度的变化出现不同程度的变化,如道岔电流会呈现周期性的曲线变化。进一步地,步骤2)所述的数据归一化因为监测数据保证布尔、模拟量、正负值等情况,对监测数据的归一化需要特殊的处理,以保证神经网络的准备性和收敛速度。
进一步的,步骤3)利用利用经验或特征选择算法选择出与问题相关的数据。将这些数据从原始数据中抽取出来,针对每一类故障形成单独的数据集。如分线盒故障,与该故障相关的包括分线盒受端电压、刷开电缆端子电压、送端电压,通过对采集到的这三个电压数据进行预处理,就可以形成分线盒故障训练数据,分析的结果包括无故障、室内故障、室外故障、室内开路。
进一步地,步骤4)所述的神经网络分类三类包括前馈神经网络、反馈神经网络、自组织型神经网络。根据已有的专家知识,我们将故障分为三类,一类是已经明确的故障和故障原因,通过前馈型神经网络建立确定的模型;第二种是部分已知的故障及原因,通过构建反馈型神经网络建立模型,并利用反馈模型的特点,自学习的去分析故障及原因;第三者是未知的故障及原因,通过构建自组织的神经网络,通过网络自身的学习建立模型,预测新的故障及原因。
更进一步地,步骤4)所述的神经网络进行模型训练,因为神经网络天然的支持并行计算,可以通过编写并行处理算法来优化和加快模型的训练及分析过程。
进一步地,步骤5)所述的实时数据分析可以通过内存数据库、缓存等方式加快计算速度,以提高故障预警及分析的速度。
更进一步地,步骤2)到5)可以利用云平台对监测数据进行分布式存储,并利用云平台的并行计算架构加快模型训练和故障分析的速度,也是的系统具有更好的伸缩性。
更进一步地,该系统可以与专家系统相结合,利用专家系统已有知识库的优点,辅助分析。以实现精确的故障预警及分析并最大限度的利用已有资源。
与现有技术相比,该发明的优点是:
本发明加快了故障识别的速度,采用自学习的神经网络算法针对轨道交通监测数据的分类特点进行故障识别,可以加快故障识别的速度,通过对实时监测数据进行分析,可以快速的发现故障,并识别出故障的类型。
本发明通过使用模型识别故障,节省了大量的人力成本,不再需要人工的去观察监测信息然后进行故障识别和分析。
本发明通过云平台对监测数据进行分布式存储和并行计算,可以解决不断增加的轨道交通监测数据的存储和处理问题。从而可以比较从容的应复杂的设备故障和行车事故原因。
在本发明的基础上,加入算法的学习能力,则可以不断的提高故障识别的能力,通过不断的自学习可以发现人工还没有总结出现的新故障,以及故障产生的新原因。并且因为部分监测数据会随着气温、季节等因素出现不同情况的波动,通过不断的自学习可以更好的适应数据变化的规律。
附图说明
图1是神经网络的基本流程图。
图2是神经元示意图。
图3是本发明的轨道交通监测故障数据分类识别分析的流程图。
图4是前反馈神经网络示意图。
图5是后反馈神经网络示意图。
图6是自组织神经网络示意图。
图7是云平台的架构图。
图8聚合形式的神经网络轨道交通监测故障识别流程图。
图9是本发明实例运维级轨道故障分析的规则图。
具体实施方式
下面通过具体实施例和附图,对本发明做详细的说明。
本实施例的一种基于神经网络自学习的故障识别方法及系统由以下部分组成:基于CSM的数据采集子系统、数据预处理子系统、特征选择子系统、模型训练子系统、实时数据分析子系统及自学习子系统。用于解决现有技术中人工诊断铁路信号系统故障时工作量大、效率低下、风险性高等技术问题。
神经网络主要由神经元构成,神经元的结构如图2所示,a1~an为输入向量的各个分量
w1~wn为神经元各个突触的权值
b为偏置
f为传递函数,通常为非线性函数。一般有sigmod(),traingd(),tansig(),hardlim()。以下默认为hardlim()。
t为神经元输出
数学表示
Figure PCTCN2015075005-appb-000001
Figure PCTCN2015075005-appb-000002
为权向量
Figure PCTCN2015075005-appb-000003
为输入向量,
Figure PCTCN2015075005-appb-000004
Figure PCTCN2015075005-appb-000005
的转置
b为偏置
f为传递函数
可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。
单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。
该超平面的方程:
Figure PCTCN2015075005-appb-000006
Figure PCTCN2015075005-appb-000007
权向量
b偏置
Figure PCTCN2015075005-appb-000008
超平面上的向量
神经网络首先要以一定的学习准则进行学习,然后才能工作。以神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
神经网络通过学习和训练改变神经元之间的连接,以及连接之间的权重,以适应周围的环境要求。使用相同的初始网络配置通过不同的训练集进行学习,得到的神经网络是完全不同的。神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习的学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性, 具有更近似人脑的功能。神经网络的结构特点决定了它比较适合使用分布式存储及并行计算。
神经网络的这些特点很适合轨道交通的故障分析和预警,系统通过CSM可以获取海量的监测数据。并行神经网络的两种学习方式可以训练已知的故障分析,也可以通过不断的学习挖掘到新的故障类型和原因。
故障识别模型主要由三个步骤:一个是数据准备阶段,将原始的监测数据进行预处理、特征选择和格式转换,获取神经网络可以处理的训练集;二是根据给定的训练集找到合适的神经网络层数及参数;三是使用第一步训练完成的函数模型分析实时监测数据,以得到系统是否出现故障以及故障产生的原因。
1、数据采集子系统
数据采集子系统通过与铁路总公司、铁路局、电务段的CSM系统连接,获取存储在CSM中的历史监测数据及实时获取的监测数据。历史监测数据在模型训练阶段使用,用于对模型进行训练以得到分类模型;训练得到的模型用于对实时监测数据进行分类,以得到系统当前的运行状态,如是否有故障以及故障的原因等。
2、数据预处理子系统
数据预处理子系统对采集到的监测数据进行处理,包括数据去噪、数据格式化、归一化等操作,将数据转化为空间向量格式的数据。这种格式的数据便于后续进行特征选择及神经网络处理。
监测数据包括布尔量、模拟量,不同数据之间的差异较大,并且数据的取值范围区别较大,而且部分监测数据如气温、水温等还包括负值。针对这种情况,针对不同的数据类型分别设计归一化算法:
(1)布尔量
当数据的取值只包含两个值时,将对应的数据归一化为-1、1两个值;
(2)仅包含正数的模拟量
y=2*(x-min)/(max-min)–1,这条公式将数据归一化到[-1,1]区间。
(3)包含正负数的模拟量
y=x/|max|,这条公式也将数据规划到[-1,1]区间。
3、特征选择子系统
CSM采集到的信号较多,并且有些信号属于冗余信号。这些信号转换为特征之后,对其进行相似度计算,然后去除冗余特征,这样可以很大程度上减少计算和处理量。
与一般的相似度计算方法不同,CSM采集到的很多都是电压、电流信号,这些信号具有 连续性和相关性,比如A点的电流增加,那么与其直接相连的B点的电流也会随之增大。由此特点可知,A点的电流值可以代替B点的电流值的变化趋势,则B为A的冗余特征。通过电压、电流之间的相关性,来进行特征选择,具体的计算方法如下:
Va,Vb分别代表采集点a、b的值,首先对Va,Vb进行归一化,也就是两个特征的取值范围相同,限制在[0,1]。然后对特征进行计算:
Figure PCTCN2015075005-appb-000009
其中n为训练集中包含的Va、Vb的个数,通过归一化,Va和Vb的取值范围相同,如果上述公式的值小于给定的阈值的话,则Va,Vb属于冗余特征,可以去掉Vb值保留Va的值。阈值的选取主要取决于采集点噪音的情况,当噪音较大且较多的时候,阈值需要设置的较大,反之亦然。通过上述步骤,可以大量减少冗余特征。
特征选择子系统用于对预处理之后的空间向量数据进行处理,因为仅有部分监测数据跟一个特定的故障相关,需要根据已有的知识,整理出来与故障相关的特征,形成故障特征库。对于未使用到的特征可以用于无监督学习,用于发现新的知识。
4、模型训练子系统
由本文前面的章节可知,本系统中神经网络分类三类:前馈神经网络、反馈神经网络、自组织神经网络,三种模型的设计分别如下:
(1)前馈神经网络
根据已有的专家知识,可以总结出一些确定的故障,以及引起该故障的具体原因,因此该模型的作用在于根据训练数据得到确定的模型及参数,然后利用模型对实时监测到的数据进行分析和预警。前馈神经网络的模型如图4所示。是一个3层的前馈神经网络,其中第一层是输入单元,第二层称为隐含层,第三层称为输出层。对于一个3层的前馈神经网络,若用X表示网络的输入向量,W1~W3表示网络各层的连接权向量,f(x)示神经网络3层的作用函数。
W权重进行随机初始化;
隐含层对应的神经元节点输出模型:Oj=f(∑Wij×Xi-qj);Wij为第i层第j个节点的权重;
输出节点输出模型:Yk=f(∑Tjk×Oj-qk)其中Yk表示输出层的第k个节点;Tjk表示的是隐含层节点j与输出层节点k之间连接的权重;qk这里是正则因子,Xi为第i层的输入数据;
f-为非线形作用函数:f(x)=1/(1+e-x)
误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:
Figure PCTCN2015075005-appb-000010
其中tj为输出层节点j的预期值;oj为输出层节点j的实际值;
通过误差来重新调整权重:
△Wij(n+1)=h×Ep×Oj+a×△Wij(n)其中n表示迭代次数,在训练的过程中n+1次的权重,是根据第n次迭代的权重以及输出值与期望值之间的差别进行计算的;△Wij(n)为第n此迭代时第i层第j个节点的权重变化量。
其中h-学习因子;Ep-输出节点i的计算误差;Oj-输出节点j的计算输出;a-动量因子。
通过上述步骤,可以得到确定的神经网络模型及参数,这个神经网络可以针对任意确定的故障进行训练,都可以得到针对本故障的分析模型。
如上述的分线盒故障是一类已知的故障,相应的采集数据为分线盒受端电压、刷开电缆端子电压、送端电压,通过对采集到的电压数据进行预处理,形成训练数据。
构建三层神经网络,电压作为输入层;
利用经验公式n1=sqrt(n+m)+d确定神经元的个数,n1为隐层单元数
n为输入单元数
m为输出单元数
d为0到10之间的常数
该故障n=3,m=4,d设置为5。从而得到神经元n1的个数为7。
输入层与隐藏层以及隐藏层与输出层之间的权重进行随机的初始化,取值范围在(0,1)之间,传递函数使用sigmod函数。那么形成的即为一个三层神经网络,输入层包含三个阶段、隐藏层包含7个节点、输出层包含4个节点,然后利用训练数据进行训练,得到神经网络的所有参数。神经网络结构如图9所示。
最后利用得到的神经网络对实时监测的数据,作为输入,然后根据神经网络的输出就可以进行判断是否有故障,以及故障的类型。
(2)反馈神经网络。
根据现场技术人员已有的经验,可以知道一些故障,但是对故障产生的原因认识不全面,只能够了解产生故障的部分原因。这时候反馈神经网络的模型的作用就体现出来。
反馈神经网络的结构如图5所示,假设有n个输入(I1,I2..,In),m个输出(o1,o2,..om),通过反馈计算每个输入对不同类型故障输出结果的影响。
R(I)+=(ot-ot-1)*(It-It-1)其中,ot为t时刻的输出,It为t时刻的输入值,通过训练集的计算,就可以得到一个向量,记录了输入数据a与输出值o之间的相关度,然后去掉相关度小 的输入数据,不断的进行计算,不断的去完善故障与特征的相关度,直到与故障相关的特征全部确定。这样最终剩下的数据均是与该故障相关的数据。
输入数据除了已知的相关数据外,尽可能多的使用可能相关的监测数据作为输入特征。
不仅可以根据已有的训练数据进行模型的训练,还可以根据得到的实时数据和状态,不断的去分析和挖掘故障与监测数据之间的关系,从而不断的改进模型。图5是反馈神经网络模型示意图。
与前馈神经网络的最大却别在于,它不仅会利用历史监测数据进行学习,而且会利用实时监测数据进行训练,当出现故障的时候,人工对故障进行标注,形成故障样本。图5中的反馈数据作为模型的数据,该模型就会自动的去学习和完善网络,以实现故障分析的能力。
(3)自组织神经网络:
随着铁路监测系统的不断发展,会有更多的监测数据产生,也可能会出现各类新的故障,为了能够对故障保障较强的识别能力,需要系统有自学习的能力,自组织神经网络通过自动寻找样本中内在的规律和本质属性,自组织、自适应的改变网络的参数与结果,从而具有新故障识别与分析的能力。
自组织神经网络是无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。如图6所示:该网络包括输入层和竞争层两层,在无导师学习的情况下,模型具有聚类能力,根据这个特点系统设计为将无故障聚为一类,有故障聚类,这样也可以对故障进行识别。
聚类的目的是将相似的模式样本划归一类,而将不相似的分离开来,实现模式样本的类内相似性和类间分离性。
这里将故障也作为一个特征进行聚类,特征具有时序性,因为故障本身具有一定的时序性,当一些采集点出现异常时,故障也才会随之产生。特征聚类算法设计思路:
●以故障特征作为中心特征进行聚类,产生的聚类结果即为与该故障相关的特征;
●对于每个中心点计算所有非故障特征与中心点的相似度,当相似度超过一定阈值的时候,该特征就聚为一类;
●因为有些特征可能与多个故障相关,因此聚类的结果是可以交叉的,也就是一个特征可以属于多个中心点;
●剩余未被分类的特征点直接选择与其相关度最大的中心点作为一类即可;
相似度的计算公式为:
Cit代表故障i(中心点)在t时刻的取值;Fjt代表特征j在t时刻的取值;
Figure PCTCN2015075005-appb-000011
Figure PCTCN2015075005-appb-000012
sim=1/w
l表示训练集时间范围的最大值;n表示训练集的个数,当sim大于给定的阈值的时候,那么判断该特征j与故障i相似,属于同一个类别。
聚类的结果即为故障Ci与该类别下的所有特征相关。
(4)模型融合
三种类型的神经网络分别对应三种不同类型的故障,反馈神经网络和自组织型神经网络,不仅是利用神经网络进行故障分析,而且还进行特征选择,因果关系挖掘。但是三种模型最终都是通过神经网络的形式对采集的监测数据进行分析预测。每种模型会有多个模型,这些模型虽然结构和初始值相同,但是通过不同的训练,得到的结果是不同的,也就是不同的模型。
假设有N个模型,那对N个模型的输出进行编码,有故障的表示为1,无故障表示为0;
N个模型的输出可以产生N的平方个状态,系统使用一张Hash表对二进制的状态进行映射,转换为显示的状态,如全0的时候就是无故障,一个1则表示一个故障。通过这种方式的融合,可以将不同的模型转换为一个统一的系统,以方便对数据进行各种处理。
获取VSM格式的监测数据,然后使用不同的参数对该数据进行十倍交叉验证。以得到分类和泛华能力最好的模型以及参数。通过与实时分析组件的连接,将训练好的模型传输给分析组件。
6、实时数据分析子系统
实时监测数据也需要经历与历史监测数据类似的流程,最后将VSM格式的实时监测数据作为输入,输入到实时数据分析组件,通过计算就可以得到当前的系统是否存在特定的故障,以及该故障产生的原因。

Claims (11)

  1. 一种基于神经网络自学习的故障识别方法,其步骤为:
    1)监测和采集设定的轨道交通设备的各种监测量,并将采集到的监测数据转化为适于神经网络训练的样本数据;
    2)根据故障类别对所述样本数据进行分类,得到每一故障类别对应的样本数据集;
    3)根据每一故障类别分别设计一神经网络,然后利用该故障的样本数据集进行训练,得到该故障类别的识别模型;
    4)将所有故障类别的识别模型融合为一个神经网络,对实时采集的监测数据进行故障识别。
  2. 如权利要求1所述的方法,其特征在于所述故障类别包括三类,其中第一类为已知的故障及其原因;第二类为部分已知的故障及其原因;第三类为未知的故障及其原因;对于第一类故障类别,通过前馈型神经网络建立该故障类别的识别模型;对于第二类故障类别,通过反馈型神经网络建立该故障类别的识别模型,并分析故障及原因;对于第三类故障类别,通过自组织神经网络建立该故障类别的识别模型,并分析故障及原因。
  3. 如权利要求2所述的方法,其特征在于所述前馈型神经网络包括三层:第一层是输入单元,第二层称为隐含层,第三层称为输出层;其中,隐含层对应的神经元节点输出模型为:Oj=f(∑Wij×Xi-qj),输出层对应的神经元节点输出模型:Yk=f(∑Tjk×Oj-qk),函数f(x)=1/(1+e-x),误差计算模型为:
    Figure PCTCN2015075005-appb-100001
    通过公式△Wij(n+1)=h×Ep×Oj+a×△Wij(n)调整网络各层的连接权重W;其中,h为学习因子,Ep为输出节点i的计算误差;Oj为输出节点j的计算输出,a-动量因子,Yk表示输出层的第k个节点,Tjk表示的是隐含层节点j与输出层节点k之间连接的权重,qk是正则因子;Wij为第i层第j个节点的权重,△Wij(n)为第n此迭代时第i层第j个节点的权重变化量,Xi为第i层的输入数据;tj为输出层节点j的预期值;oj为输出层节点j的实际值。
  4. 如权利要求2所述的方法,其特征在于所述反馈型神经网络包括三层:第一层是输入单元,第二层称为隐含层,第三层称为输出层;所述反馈型神经网络通过公式R(I)+=(ot-ot-1)*(It-It-1)计算输入数据I与输出值o之间的相关度R(I),去掉相关度小于设定阈值的输入数据,最终剩下与故障相关的数据;其中,ot为t时刻的输出,It为t时刻的输入值。
  5. 如权利要求2所述的方法,其特征在于所述自组织神经网络包括输入层和竞争层两层;所述自组织神经网络以故障特征作为中心特征对属于该故障类别的样本数据集进行聚类,其 中对每一中心特征,计算所有非故障特征与中心特征的相似度,当相似度超过一定阈值的时候,将该特征就聚为一类,最后得到与第三类故障类别相关的特征;其中,相似度的计算公式为sim=1/w,
    Figure PCTCN2015075005-appb-100002
    Cit代表中心特征i在t时刻的取值;Fjt代表特征j在t时刻的取值,n为样本数据集中样本总数,l表示训练集时间范围的最大值。
  6. 如权利要求1~5任一所述的方法,其特征在于根据监测数据的连续性和相关性对所述监测数据进行过滤,其方法为:首先对Va、Vb进行归一化,将其取值范围归一化为相同的取值范围;然后利用公式
    Figure PCTCN2015075005-appb-100003
    计算Va、Vb之间的相关性,如果计算结果小于设定阈值,则Va、Vb属于冗余特征,去掉Vb、Va中的一个监测数据;其中,Va,Vb分别代表采集点a、b的监测数据。
  7. 如权利要求6所述的方法,其特征在于所述监测数据包括布尔量、模拟量,对所述监测数据进行归一化处理;其中,对于布尔量监测数据,将对应的数据归一化为-1、1两个值;对于包含正负数的模拟量监测数据,通过公式y=x/|max|将数据规划到[-1,1]区间;对于仅包含正数的模拟量监测数据,通过公式y=2*(x-min)/(max-min)–1将数据归一化到[-1,1]区间,y为归一化后的数据,x为监测数据,max为监测数据最大值,min为监测数据最小值。
  8. 如权利要求1~5任一所述的方法,其特征在于将所有故障类别的识别模型融合为一个神经网络的方法为:对N个模型的输出进行编码,有故障的表示为1,无故障表示为0;然后使用一张Hash表对所有模型二进制的状态进行映射,转换为显示的状态;其中,每一故障类别的识别模型包括一个或多个模型,N为模型总数。
  9. 一种基于神经网络自学习的故障识别系统,其特征在于包括数据采集子系统、模型训练子系统、实时数据分析子系统;其中,
    所述数据采集子系统,用于监测和采集设定的轨道交通设备的各种监测量,并将采集到的监测数据转化为适于神经网络训练的样本数据;并且根据故障类别对所述样本数据进行分类,得到每一故障类别对应的样本数据集;
    模型训练子系统,用于根据每一故障类别分别设计一神经网络,然后利用该故障的样本数据集进行训练,得到该故障类别的识别模型,并且将所有故障类别的识别模型融合为一个神经网络;
    实时数据分析子系统,用于根据融合后的神经网络对实时采集的监测数据进行故障识 别。
  10. 如权利要求9所述的系统,其特征在于还包括一特征选择子系统,用于根据监测数据的连续性和相关性对所述监测数据进行过滤,所述特征选择子系统首先对Va、Vb进行归一化,将其取值范围归一化为相同的取值范围;然后利用公式
    Figure PCTCN2015075005-appb-100004
    计算Va、Vb之间的相关性,如果计算结果小于设定阈值,则Va、Vb属于冗余特征,去掉Vb、Va中的一个监测数据;其中,Va,Vb分别代表采集点a、b的监测数据。
  11. 如权利要求9所述的系统,其特征在于所述故障类别包括三类,其中第一类为已知的故障及其原因;第二类为部分已知的故障及其原因;第三类为未知的故障及其原因;对于第一类故障类别,通过前馈型神经网络建立该故障类别的识别模型;对于第二类故障类别,通过反馈型神经网络建立该故障类别的识别模型,并分析故障及原因;对于第三类故障类别,通过自组织神经网络建立该故障类别的识别模型,并分析故障及原因。
PCT/CN2015/075005 2014-04-17 2015-03-25 一种基于神经网络自学习的故障识别方法及系统 WO2015158198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410154817.4A CN103914735B (zh) 2014-04-17 2014-04-17 一种基于神经网络自学习的故障识别方法及系统
CN201410154817.4 2014-04-17

Publications (1)

Publication Number Publication Date
WO2015158198A1 true WO2015158198A1 (zh) 2015-10-22

Family

ID=51040399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075005 WO2015158198A1 (zh) 2014-04-17 2015-03-25 一种基于神经网络自学习的故障识别方法及系统

Country Status (2)

Country Link
CN (1) CN103914735B (zh)
WO (1) WO2015158198A1 (zh)

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3185184A1 (en) 2015-12-21 2017-06-28 Aiton Caldwell SA The method for analyzing a set of billing data in neural networks
CN107292154A (zh) * 2017-06-09 2017-10-24 北京奇安信科技有限公司 一种终端特征识别方法及系统
CN107622253A (zh) * 2017-09-30 2018-01-23 天津帕比特科技有限公司 一种基于神经网络识别设备类型的图像识别方法
CN107908874A (zh) * 2017-11-15 2018-04-13 上海华兴数字科技有限公司 工况识别方法和装置及工程机械设备
CN108073898A (zh) * 2017-12-08 2018-05-25 腾讯科技(深圳)有限公司 人头区域识别方法、装置及设备
CN108829912A (zh) * 2018-04-16 2018-11-16 浙江工业大学 一种基于APHash的电路输入向量特征化方法
CN109615004A (zh) * 2018-12-07 2019-04-12 江苏瑞中数据股份有限公司 一种多源数据融合的防窃电预警方法
CN109635881A (zh) * 2019-01-08 2019-04-16 浙江大学 基于集成学习的强鲁棒采煤机故障诊断系统
CN109766927A (zh) * 2018-12-10 2019-05-17 清华大学 基于混合深度学习的高铁道岔智能故障检测方法
CN110020637A (zh) * 2019-04-16 2019-07-16 重庆大学 一种基于多粒度级联森林的模拟电路间歇故障诊断方法
CN110032791A (zh) * 2019-04-08 2019-07-19 西安热工研究院有限公司 基于广义回归神经网络的汽轮机低压缸效率实时计算方法
CN110110740A (zh) * 2019-03-26 2019-08-09 中国地质大学(武汉) 基于多时间尺度特征和神经网络的钻进过程工况识别方法
CN110348005A (zh) * 2019-05-27 2019-10-18 广州供电局有限公司 配网设备状态数据处理方法、装置、计算机设备及介质
CN110414033A (zh) * 2019-05-31 2019-11-05 太原理工大学 结合边缘计算和数字孪生的机械设备预测性维护方法
CN110503133A (zh) * 2019-07-26 2019-11-26 东北大学 一种基于深度学习的离心式压缩机故障预测方法
CN110598905A (zh) * 2019-08-08 2019-12-20 广东毓秀科技有限公司 一种通过多点数据采集进行轨交电缆热失控预测的方法
CN110619386A (zh) * 2019-09-09 2019-12-27 国家电网有限公司 一种tmr运行监测及故障智能研判方法及系统
CN110750876A (zh) * 2019-11-13 2020-02-04 上海海事大学 一种轴承数据模型训练及使用方法
US10552729B2 (en) 2017-03-20 2020-02-04 Hewlett Packard Enterprise Development Lp Baseboard management controller to deconfigure field replaceable units according to deep learning model
CN110808580A (zh) * 2019-10-25 2020-02-18 国网天津市电力公司电力科学研究院 基于小波变换和极限学习机的电压暂降源快速辨识方法
CN110826690A (zh) * 2019-10-10 2020-02-21 深圳供电局有限公司 一种设备状态识别方法及其系统、计算机可读存储介质
CN110837718A (zh) * 2019-11-07 2020-02-25 交控科技股份有限公司 道岔故障检测方法、装置、电子设备及存储介质
CN110942221A (zh) * 2019-08-02 2020-03-31 国网浙江省电力有限公司嘉兴供电公司 一种基于物联网的变电站故障快速修复方法
CN110969206A (zh) * 2019-11-29 2020-04-07 大连理工大学 基于层次划分的电路故障实时诊断与自修复方法
CN111027727A (zh) * 2019-12-27 2020-04-17 中南大学 一种轨道系统跨域运维关键要素辨识方法
CN111062569A (zh) * 2019-11-15 2020-04-24 南京天能科创信息科技有限公司 一种基于bp神经网络的小电流故障判别方法
CN111079857A (zh) * 2019-12-30 2020-04-28 北京工业大学 一种基于过完备宽度学习模型的污水处理过程故障监测方法
CN111209798A (zh) * 2019-12-23 2020-05-29 广州网文三维数字技术有限公司 一种基于神经网络的特种承压设备仪表识别方法
CN111259864A (zh) * 2020-03-04 2020-06-09 哈尔滨理工大学 一种水轮机运转状态识别方法
CN111275136A (zh) * 2020-03-13 2020-06-12 安图实验仪器(郑州)有限公司 基于小样本下的故障预测系统及其预警方法
CN111368890A (zh) * 2020-02-26 2020-07-03 珠海格力电器股份有限公司 故障检测方法及装置、信息物理融合系统
CN111401393A (zh) * 2019-01-02 2020-07-10 中国移动通信有限公司研究院 数据处理方法及装置、电子设备及存储介质
CN111397744A (zh) * 2020-05-13 2020-07-10 金陵科技学院 体温连续远程监测并采用bp神经网络校正的检测预警系统
CN111461551A (zh) * 2020-04-01 2020-07-28 未必然数据科技(北京)有限公司 一种基于深度学习和spc准则的电潜泵故障预警方法
CN111523660A (zh) * 2020-04-15 2020-08-11 南京清然能源科技有限公司 一种基于人工智能的音视热一体化异常检测报警方法
CN111556107A (zh) * 2020-04-16 2020-08-18 福州和达电子科技有限公司 一种基于“应激-反射”模型的智能物联网应用方法
CN111625988A (zh) * 2020-03-10 2020-09-04 河北工程大学 基于深度学习的桥梁健康管理分析与预测系统及方法
CN111666982A (zh) * 2020-05-19 2020-09-15 上海核工程研究设计院有限公司 一种基于深度神经网络的机电设备故障诊断方法
CN111767418A (zh) * 2020-07-07 2020-10-13 中电万维信息技术有限责任公司 基于神经网络的电子图像文件自动分类方法
CN111814108A (zh) * 2020-01-10 2020-10-23 北京航天测控技术有限公司 一种基于自组织特征映射神经网络的连接型间歇故障诊断方法
CN111814976A (zh) * 2020-07-14 2020-10-23 西安建筑科技大学 一种空调系统传感器故障误差再学习方法及系统
CN111860839A (zh) * 2020-07-28 2020-10-30 上海海事大学 基于多信号融合及Adam优化算法的岸桥故障监测方法
CN111914320A (zh) * 2020-06-06 2020-11-10 同济大学 基于深度学习的无样本道岔故障诊断方法
CN111931420A (zh) * 2020-08-07 2020-11-13 合肥工业大学 基于核再生希尔伯特空间的燃气轮机故障预测方法
CN111950708A (zh) * 2020-08-11 2020-11-17 华中师范大学 一种发现大学生日常生活习惯的神经网络结构与方法
CN111966758A (zh) * 2020-06-30 2020-11-20 国网浙江省电力有限公司湖州供电公司 一种基于画像数据分析技术的电力隐患排查方法
CN112085044A (zh) * 2019-06-14 2020-12-15 中南大学 一种基于自动化监测数据的边坡动态分类方法
CN112098715A (zh) * 2020-09-18 2020-12-18 宁波智诚祥科技发展有限公司 基于5g和修正gcn图神经网络的电能监控与预警系统
CN112101445A (zh) * 2020-09-09 2020-12-18 浙江大学 一种基于监督神经网络的连铸坯皮下夹渣缺陷实时预报方法
CN112101617A (zh) * 2020-08-11 2020-12-18 复旦大学 基于层次图卷积的电网故障严重程度预测方法
CN112132394A (zh) * 2020-08-21 2020-12-25 西安交通大学 一种电厂循环水泵预测性状态评估方法及系统
CN112232366A (zh) * 2020-09-09 2021-01-15 国网上海市电力公司 一种基于rfid监测的电气设备故障预警方法及系统
CN112240964A (zh) * 2019-07-16 2021-01-19 北京映翰通网络技术股份有限公司 一种用于配电网故障类型识别的方法
CN112446430A (zh) * 2020-11-27 2021-03-05 云南电网有限责任公司电力科学研究院 一种直流输电系统故障识别方法
CN112464151A (zh) * 2020-10-27 2021-03-09 国电电力湖南新能源开发有限公司 一种基于声学诊断的风电机组偏航系统异音诊断方法
CN112766327A (zh) * 2021-01-05 2021-05-07 格力电器(武汉)有限公司 空调故障预测方法、电子设备和储存介质
CN112785015A (zh) * 2021-02-02 2021-05-11 中国人民解放军空军工程大学 基于案例推理的装备故障诊断方法
CN112817280A (zh) * 2020-12-04 2021-05-18 华能国际电力股份有限公司玉环电厂 一种用于火电厂智慧监盘报警系统实现方法
CN112838946A (zh) * 2020-12-17 2021-05-25 国网江苏省电力有限公司信息通信分公司 基于通信网故障智能感知与预警模型的构建方法
CN112906775A (zh) * 2021-02-05 2021-06-04 深圳市芯聚智科技有限公司 一种设备故障预测方法及系统
CN113008998A (zh) * 2021-03-02 2021-06-22 南京审计大学 一种基于pcnn的隐蔽工程内部缺陷判断方法
CN113109043A (zh) * 2021-04-08 2021-07-13 重庆理工大学 一种主动式汽车传动系统故障模型数据库的建立方法
CN113282000A (zh) * 2021-04-30 2021-08-20 科华数据股份有限公司 数据中心的故障诊断方法、装置及动环监控系统
CN113360159A (zh) * 2021-07-02 2021-09-07 深圳市云房网络科技有限公司 一种软件自动化运维部署的方法及装置
CN113379033A (zh) * 2021-06-11 2021-09-10 国网湖北省电力有限公司黄石供电公司 基于时空网络增强深度学习的电缆健康状态智能预警方法
CN113393143A (zh) * 2021-06-24 2021-09-14 重庆大学 基于信息融合的翅片机加工状态监测方法
CN113420510A (zh) * 2021-07-07 2021-09-21 广东电网有限责任公司 一种基于前端感知和学习的能耗判别方法
CN113486971A (zh) * 2021-07-19 2021-10-08 国网山东省电力公司日照供电公司 基于主成分分析和神经网络的用户状态识别方法、系统
CN113485986A (zh) * 2021-06-25 2021-10-08 国网江苏省电力有限公司信息通信分公司 一种电力数据修复方法
CN113514109A (zh) * 2021-08-18 2021-10-19 广东新创华科环保股份有限公司 一种无人机飞行故障检测方法和系统
CN113625099A (zh) * 2021-06-22 2021-11-09 国网辽宁省电力有限公司大连供电公司 配电网故障区段分层定位方法
CN113641486A (zh) * 2021-07-05 2021-11-12 西安理工大学 一种基于边缘计算网络架构的道岔智能故障诊断方法
CN113687209A (zh) * 2021-07-15 2021-11-23 上海华岭集成电路技术股份有限公司 基于深度学习的集成电路测试异常分析系统及其方法
CN113700558A (zh) * 2021-09-01 2021-11-26 哈尔滨工业大学(威海) 柴油发动机空气系统故障检测方法
CN113779734A (zh) * 2021-09-22 2021-12-10 重庆华渝重工机电有限公司 一种基于人工智能的跨坐式单轨道岔监测及其维护系统
CN113823396A (zh) * 2021-09-16 2021-12-21 武汉联影医疗科技有限公司 医疗设备管理方法、装置、计算机设备和存储介质
CN114076872A (zh) * 2020-08-13 2022-02-22 北京映翰通网络技术股份有限公司 一种配电网故障原因分析方法
CN114091553A (zh) * 2020-08-06 2022-02-25 长沙理工大学 一种滚动轴承故障的诊断方法
CN114154266A (zh) * 2021-12-03 2022-03-08 合肥工业大学 基于偏秩相关的流因果结构学习的燃气轮机故障预测方法
CN114265372A (zh) * 2021-11-01 2022-04-01 浙江众合科技股份有限公司 基于大数据的cbtc系统实时故障智能诊断方法及系统
CN114325433A (zh) * 2021-12-03 2022-04-12 北京航空航天大学 基于电化学阻抗谱测试的锂离子电池故障检测方法和系统
CN114386603A (zh) * 2022-01-13 2022-04-22 合肥工业大学 基于时序因果网络的火电厂发电机故障预警方法
CN114490596A (zh) * 2021-12-08 2022-05-13 大唐水电科学技术研究院有限公司 一种基于机器学习与神经网络的变压器油色谱数据清洗的方法
CN114492938A (zh) * 2021-12-29 2022-05-13 中国大唐集团科学技术研究总院有限公司华东电力试验研究院 基于bpnn模型和自适应阈值的磨煤机故障预警方法和系统
CN114566964A (zh) * 2022-04-29 2022-05-31 国网天津市电力公司电力科学研究院 一种配电网馈线自动化控制方法、装置、设备及存储介质
CN114647980A (zh) * 2022-03-21 2022-06-21 厦门华夏国际电力发展有限公司 一种基于bp神经网络的给煤机偏差监测方法及系统
CN114660399A (zh) * 2022-02-28 2022-06-24 湖北拓普电力有限公司 一种环网柜设备状态监测及故障诊断方法
CN114707410A (zh) * 2022-04-02 2022-07-05 郑州铁路职业技术学院 具有强化补偿能力的铁路轨道高低不平顺诊断方法及系统
CN114707205A (zh) * 2022-03-08 2022-07-05 浙大城市学院 一种基于gru神经网络的轨道基础差异沉降识别方法
CN114760215A (zh) * 2022-03-11 2022-07-15 安徽师范大学 一种计算机网络数据传输性能监测方法及系统
CN114826885A (zh) * 2022-06-30 2022-07-29 南京海汇装备科技有限公司 一种基于数据分析的设备故障监测系统及方法
CN114866402A (zh) * 2022-05-07 2022-08-05 安徽凯炎电力保护设备有限公司 一种系统数据动态对比方法
CN114897286A (zh) * 2022-03-07 2022-08-12 杰克科技股份有限公司 一种基于联盟链的故障模型建立方法
CN114924207A (zh) * 2022-04-20 2022-08-19 国网上海市电力公司 一种基于机器视觉检测间歇性接地故障的方法
CN114969618A (zh) * 2022-05-19 2022-08-30 北京航空航天大学 基于多源因果图路径卷积的复杂机电系统故障检测方法
CN115001941A (zh) * 2022-04-20 2022-09-02 广东省电信规划设计院有限公司 一种通信网管故障的确定方法及装置
CN115048985A (zh) * 2022-05-17 2022-09-13 国网浙江省电力有限公司嘉兴供电公司 一种电气设备故障判别方法
CN115204708A (zh) * 2022-07-25 2022-10-18 江苏海洋大学 一种基于多层感知器神经网络的农村房屋危险等级分类方法
CN115237091A (zh) * 2022-07-18 2022-10-25 西安交通大学 一种机电装备故障溯源方法及系统
CN115773562A (zh) * 2022-11-24 2023-03-10 杭州经纬信息技术股份有限公司 基于联邦学习的统一化暖通空调系统故障检测方法
CN115891741A (zh) * 2022-09-30 2023-04-04 南京邮电大学 一种适用于电动汽车充电过程的远程故障预警方法及装置
CN115935201A (zh) * 2022-11-29 2023-04-07 国网山东省电力公司应急管理中心 一种针对重点应急装备gps及电气量数据采集的监测方法以及装置
CN115951002A (zh) * 2023-03-10 2023-04-11 山东省计量科学研究院 一种气质联用仪故障检测装置
CN116087692A (zh) * 2023-04-12 2023-05-09 国网四川省电力公司电力科学研究院 一种配电网树线放电故障识别方法、系统、终端及介质
CN116304663A (zh) * 2022-12-05 2023-06-23 北京交通大学 基于非平衡样本增强的列控车载设备健康状态管理装置
CN116443080A (zh) * 2023-05-05 2023-07-18 北京交通大学 一种轨道交通行车调度指挥方法、系统、设备及介质
CN116702030A (zh) * 2023-05-31 2023-09-05 浙江大学 一种基于传感器可靠性分析的高炉状态监测方法及装置
CN116776267A (zh) * 2023-06-13 2023-09-19 西南交通大学 一种用于桥梁施工控制的无监督数据处理方法及系统
CN116976862A (zh) * 2023-09-20 2023-10-31 山东国研自动化有限公司 一种工厂设备信息化管理系统及方法
CN117290732A (zh) * 2023-11-24 2023-12-26 山东理工昊明新能源有限公司 故障分类模型的构建方法、风电设备故障分类方法及装置
CN117390999A (zh) * 2023-12-12 2024-01-12 山东工商学院 基于cfd深度学习模型的封闭母线温度故障监测方法
CN117454957A (zh) * 2023-12-22 2024-01-26 环球数科集团有限公司 一种用于图像处理神经网络模型的推理训练系统
CN117579513A (zh) * 2024-01-16 2024-02-20 北京中科网芯科技有限公司 汇聚分流设备的可视化运维系统及其方法
CN117741512A (zh) * 2024-02-20 2024-03-22 山东铁路投资控股集团有限公司 一种基于神经网络的转辙机状态检测方法及系统
CN117807481A (zh) * 2024-02-28 2024-04-02 苏州元脑智能科技有限公司 故障识别方法、模型的训练方法、装置、设备以及介质
CN118078328A (zh) * 2024-04-29 2024-05-28 哈尔滨医科大学 一种胃肠外科超声波仪器故障智能检测方法及系统

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914735B (zh) * 2014-04-17 2017-03-29 北京泰乐德信息技术有限公司 一种基于神经网络自学习的故障识别方法及系统
CN104615983B (zh) * 2015-01-28 2018-07-31 中国科学院自动化研究所 基于递归神经网络和人体骨架运动序列的行为识别方法
CN104793607A (zh) * 2015-04-20 2015-07-22 国家电网公司 一种服务器故障在线诊断、健康分析及失效预报系统及方法
CN105095963B (zh) * 2015-08-17 2017-10-13 中国空气动力研究与发展中心高速空气动力研究所 一种精确诊断与预测风洞设备故障的方法
CN105224986B (zh) * 2015-09-29 2018-01-23 清华大学 基于忆阻器件的深度神经网络系统
CN105740822B (zh) * 2016-02-01 2019-02-19 杭州杰牌传动科技有限公司 一种机械故障诊断优化方法及系统
US11636314B2 (en) 2016-11-15 2023-04-25 Google Llc Training neural networks using a clustering loss
CN106776765A (zh) * 2016-11-22 2017-05-31 中国人民解放军海军潜艇学院 水下爆炸物识别及处置辅助决策系统及决策方法
CN106709567A (zh) * 2016-12-14 2017-05-24 河北省科学院应用数学研究所 基于深度学习模型的道岔故障诊断方法
CN106650932B (zh) * 2016-12-23 2019-05-28 郑州云海信息技术有限公司 一种数据中心监控系统的智能故障分类方法及装置
CN107609569B (zh) * 2017-07-31 2020-11-03 北京映翰通网络技术股份有限公司 一种基于多维特征向量的配电网接地故障定位方法
CN107622308B (zh) * 2017-09-18 2020-07-10 华中科技大学 一种基于dbn网络的发电设备参数预警方法
CN108052092B (zh) * 2017-12-19 2020-02-21 南京轨道交通系统工程有限公司 一种基于大数据分析的地铁机电设备状态异常检测方法
CN108184242A (zh) * 2017-12-27 2018-06-19 安徽省新云安网络科技有限公司 一种无线传感器网络异常数据检测方法
DE102018200876A1 (de) * 2018-01-19 2019-07-25 Zf Friedrichshafen Ag Fahrzeugsystem zum Identifizieren und Lokalisieren von nicht-automobilen Verkehrsteilnehmern mittels Geräuschen
CN108398934B (zh) * 2018-02-05 2019-12-13 常州高清信息技术有限公司 一种用于轨道交通的设备故障监控的系统
WO2019182199A1 (ko) 2018-03-20 2019-09-26 엘지전자 주식회사 이상 상태의 원인을 진단하는 냉장고 및 클라우드 서버
WO2019210237A1 (en) * 2018-04-27 2019-10-31 Alibaba Group Holding Limited Method and system for performing machine learning
CN109109787A (zh) * 2018-07-24 2019-01-01 辽宁工业大学 一种汽车行驶故障监测方法
CN108958033A (zh) * 2018-07-27 2018-12-07 南宁学院 一种城市污水曝气处理智能控制方法
CN109063854A (zh) * 2018-08-23 2018-12-21 河南中裕广恒科技股份有限公司 智能运维云平台系统及其控制方法
CN109242835A (zh) * 2018-08-24 2019-01-18 深圳市兆泰云智能科技有限公司 基于人工智能的车底缺陷检测方法、装置、设备及系统
CN109543814A (zh) * 2018-08-31 2019-03-29 南京理工大学 一种地铁信号系统各设备故障预测方法
CN111224805A (zh) * 2018-11-26 2020-06-02 中兴通讯股份有限公司 一种网络故障根因检测方法、系统及存储介质
CN109633370B (zh) * 2018-12-08 2021-04-23 国网山东省电力公司德州供电公司 一种基于故障信息编码和融合方法的电网故障诊断方法
CN109815983B (zh) * 2018-12-10 2023-08-18 清华大学 基于混合深度学习的高铁道岔智能故障预测方法
CN111385106B (zh) 2018-12-11 2022-03-01 华为技术有限公司 一种用于故障根因的识别方法、装置和设备
CN109738790B (zh) * 2019-01-28 2020-05-15 北京航空航天大学 考虑模糊组预判别的组合神经网络电路故障诊断方法
CN110135273B (zh) * 2019-04-19 2020-05-22 中铁第一勘察设计院集团有限公司 接触网视频图像云端智能监测与故障识别方法
CN110119851B (zh) * 2019-05-23 2021-11-09 上海建工四建集团有限公司 一种建筑机电系统故障智能预测方法和系统
CN110232409A (zh) * 2019-05-30 2019-09-13 国网上海市电力公司 一种配网跳闸故障类型自动识别方法
CN110163332B (zh) * 2019-06-17 2021-08-06 沈阳天眼智云信息科技有限公司 一种变压器故障诊断方法
CN110376519B (zh) * 2019-08-30 2021-11-16 国家电网有限公司 高压断路器故障诊断方法、装置及终端设备
CN110703743A (zh) * 2019-11-12 2020-01-17 深圳市亲邻科技有限公司 设备故障预测与检测系统和方法
CN110991519A (zh) * 2019-11-28 2020-04-10 上海宏力达信息技术股份有限公司 一种智能开关状态分析调整方法及系统
CN111025128A (zh) * 2019-12-20 2020-04-17 中国人民解放军陆军军医大学第一附属医院 基于ai的医疗设备故障检测系统及方法
CN111319655B (zh) * 2020-03-09 2022-03-22 唐智科技湖南发展有限公司 一种轨道伤损检测方法、装置和计算机可读存储介质
CN111813858B (zh) * 2020-07-10 2022-06-24 电子科技大学 基于计算节点自组织分组的分布式神经网络混合同步训练方法
CN111833557A (zh) * 2020-07-27 2020-10-27 中国工商银行股份有限公司 故障识别方法和装置
CN112232370A (zh) * 2020-09-16 2021-01-15 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 发动机的故障分析预测方法
CN112492567B (zh) * 2020-11-19 2022-03-18 江苏恒宝智能系统技术有限公司 一种应急指挥通信中的故障分析和解决方法及装置
CN113139335B (zh) * 2021-04-09 2023-05-09 郑州宥新算法智能科技有限公司 一种基于bp神经网络的轨道电路故障智能诊断方法
CN113255764A (zh) * 2021-05-21 2021-08-13 池测(上海)数据科技有限公司 利用机器学习检测电化学储能系统故障的方法、系统和装置
CN114091504B (zh) * 2021-07-19 2024-10-18 中国科学院空间应用工程与技术中心 一种基于生成对抗网络的旋转机械小样本故障诊断方法
CN113988205B (zh) * 2021-11-08 2022-09-20 福建龙净环保股份有限公司 一种电除尘工况的判定方法及系统
CN114047735A (zh) * 2022-01-12 2022-02-15 华北理工大学 一种多工业主机的故障检测方法、系统和服务系统
CN114633774A (zh) * 2022-03-30 2022-06-17 东莞理工学院 一种基于人工智能的轨道交通故障检测系统
CN115047313B (zh) * 2022-06-02 2024-04-26 黑龙江瑞兴科技股份有限公司 基于oc-svm和dnn的zpw-2000r轨道电路故障诊断方法及装置
CN115360719B (zh) * 2022-08-30 2024-04-12 东北大学秦皇岛分校 基于plnn的电力系统短期电压稳定性评估方法
CN116016142B (zh) * 2022-12-14 2024-03-26 南方电网数字电网研究院有限公司 传感网络故障识别方法、装置、计算机设备和存储介质
CN117978612B (zh) * 2024-03-28 2024-06-04 成都格理特电子技术有限公司 网络故障检测方法、存储介质以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126929A (zh) * 2007-09-05 2008-02-20 东北大学 连采机远程实时故障预测及诊断方法与装置
CN101209714A (zh) * 2006-12-28 2008-07-02 上海轨道交通设备发展有限公司 一种轨道交通综合监控系统及方法
CN101546483A (zh) * 2008-03-26 2009-09-30 中国科学院自动化研究所 一种交通信号控制器的故障诊断系统及方法
US20100023201A1 (en) * 2008-07-24 2010-01-28 David Scott Kinney Method and apparatus for obtaining vehicle data
CN102063109A (zh) * 2010-11-29 2011-05-18 株洲南车时代电气股份有限公司 一种基于神经网络的地铁列车故障诊断装置及其方法
CN103914735A (zh) * 2014-04-17 2014-07-09 北京泰乐德信息技术有限公司 一种基于神经网络自学习的故障识别方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8301576B2 (en) * 2005-10-27 2012-10-30 Ca, Inc. Weighted pattern learning for neural networks
CN102033991A (zh) * 2010-12-07 2011-04-27 昆明理工大学 基于增量改进bp神经网络的微波干燥预测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209714A (zh) * 2006-12-28 2008-07-02 上海轨道交通设备发展有限公司 一种轨道交通综合监控系统及方法
CN101126929A (zh) * 2007-09-05 2008-02-20 东北大学 连采机远程实时故障预测及诊断方法与装置
CN101546483A (zh) * 2008-03-26 2009-09-30 中国科学院自动化研究所 一种交通信号控制器的故障诊断系统及方法
US20100023201A1 (en) * 2008-07-24 2010-01-28 David Scott Kinney Method and apparatus for obtaining vehicle data
CN102063109A (zh) * 2010-11-29 2011-05-18 株洲南车时代电气股份有限公司 一种基于神经网络的地铁列车故障诊断装置及其方法
CN103914735A (zh) * 2014-04-17 2014-07-09 北京泰乐德信息技术有限公司 一种基于神经网络自学习的故障识别方法及系统

Cited By (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3185184A1 (en) 2015-12-21 2017-06-28 Aiton Caldwell SA The method for analyzing a set of billing data in neural networks
US10552729B2 (en) 2017-03-20 2020-02-04 Hewlett Packard Enterprise Development Lp Baseboard management controller to deconfigure field replaceable units according to deep learning model
CN107292154A (zh) * 2017-06-09 2017-10-24 北京奇安信科技有限公司 一种终端特征识别方法及系统
CN107292154B (zh) * 2017-06-09 2020-12-11 奇安信科技集团股份有限公司 一种终端特征识别方法及系统
CN107622253A (zh) * 2017-09-30 2018-01-23 天津帕比特科技有限公司 一种基于神经网络识别设备类型的图像识别方法
CN107622253B (zh) * 2017-09-30 2024-02-02 上海引昱数字科技集团有限公司 一种基于神经网络识别设备类型的图像识别方法
CN107908874B (zh) * 2017-11-15 2021-10-29 上海华兴数字科技有限公司 工况识别方法和装置及工程机械设备
CN107908874A (zh) * 2017-11-15 2018-04-13 上海华兴数字科技有限公司 工况识别方法和装置及工程机械设备
CN108073898A (zh) * 2017-12-08 2018-05-25 腾讯科技(深圳)有限公司 人头区域识别方法、装置及设备
WO2019109793A1 (zh) * 2017-12-08 2019-06-13 腾讯科技(深圳)有限公司 人头区域识别方法、装置及设备
CN108829912A (zh) * 2018-04-16 2018-11-16 浙江工业大学 一种基于APHash的电路输入向量特征化方法
CN109615004A (zh) * 2018-12-07 2019-04-12 江苏瑞中数据股份有限公司 一种多源数据融合的防窃电预警方法
CN109766927A (zh) * 2018-12-10 2019-05-17 清华大学 基于混合深度学习的高铁道岔智能故障检测方法
CN109766927B (zh) * 2018-12-10 2023-08-22 清华大学 基于混合深度学习的高铁道岔智能故障检测方法
CN111401393A (zh) * 2019-01-02 2020-07-10 中国移动通信有限公司研究院 数据处理方法及装置、电子设备及存储介质
CN111401393B (zh) * 2019-01-02 2023-04-07 中国移动通信有限公司研究院 数据处理方法及装置、电子设备及存储介质
CN109635881A (zh) * 2019-01-08 2019-04-16 浙江大学 基于集成学习的强鲁棒采煤机故障诊断系统
CN110110740A (zh) * 2019-03-26 2019-08-09 中国地质大学(武汉) 基于多时间尺度特征和神经网络的钻进过程工况识别方法
CN110110740B (zh) * 2019-03-26 2023-01-03 中国地质大学(武汉) 基于多时间尺度特征和神经网络的钻进过程工况识别方法
CN110032791B (zh) * 2019-04-08 2023-04-07 西安热工研究院有限公司 基于广义回归神经网络的汽轮机低压缸效率实时计算方法
CN110032791A (zh) * 2019-04-08 2019-07-19 西安热工研究院有限公司 基于广义回归神经网络的汽轮机低压缸效率实时计算方法
CN110020637B (zh) * 2019-04-16 2023-04-07 重庆大学 一种基于多粒度级联森林的模拟电路间歇故障诊断方法
CN110020637A (zh) * 2019-04-16 2019-07-16 重庆大学 一种基于多粒度级联森林的模拟电路间歇故障诊断方法
CN110348005A (zh) * 2019-05-27 2019-10-18 广州供电局有限公司 配网设备状态数据处理方法、装置、计算机设备及介质
CN110414033A (zh) * 2019-05-31 2019-11-05 太原理工大学 结合边缘计算和数字孪生的机械设备预测性维护方法
CN112085044A (zh) * 2019-06-14 2020-12-15 中南大学 一种基于自动化监测数据的边坡动态分类方法
CN112085044B (zh) * 2019-06-14 2023-11-24 中南大学 一种基于自动化监测数据的边坡动态分类方法
CN112240964A (zh) * 2019-07-16 2021-01-19 北京映翰通网络技术股份有限公司 一种用于配电网故障类型识别的方法
CN112240964B (zh) * 2019-07-16 2023-06-20 北京映翰通网络技术股份有限公司 一种用于配电网故障类型识别的方法
CN110503133A (zh) * 2019-07-26 2019-11-26 东北大学 一种基于深度学习的离心式压缩机故障预测方法
CN110942221A (zh) * 2019-08-02 2020-03-31 国网浙江省电力有限公司嘉兴供电公司 一种基于物联网的变电站故障快速修复方法
CN110598905A (zh) * 2019-08-08 2019-12-20 广东毓秀科技有限公司 一种通过多点数据采集进行轨交电缆热失控预测的方法
CN110619386B (zh) * 2019-09-09 2022-12-16 国家电网有限公司 一种tmr运行监测及故障智能研判方法及系统
CN110619386A (zh) * 2019-09-09 2019-12-27 国家电网有限公司 一种tmr运行监测及故障智能研判方法及系统
CN110826690A (zh) * 2019-10-10 2020-02-21 深圳供电局有限公司 一种设备状态识别方法及其系统、计算机可读存储介质
CN110808580A (zh) * 2019-10-25 2020-02-18 国网天津市电力公司电力科学研究院 基于小波变换和极限学习机的电压暂降源快速辨识方法
CN110808580B (zh) * 2019-10-25 2023-07-28 国网天津市电力公司电力科学研究院 基于小波变换和极限学习机的电压暂降源快速辨识方法
CN110837718B (zh) * 2019-11-07 2023-12-26 交控科技股份有限公司 道岔故障检测方法、装置、电子设备及存储介质
CN110837718A (zh) * 2019-11-07 2020-02-25 交控科技股份有限公司 道岔故障检测方法、装置、电子设备及存储介质
CN110750876A (zh) * 2019-11-13 2020-02-04 上海海事大学 一种轴承数据模型训练及使用方法
CN111062569A (zh) * 2019-11-15 2020-04-24 南京天能科创信息科技有限公司 一种基于bp神经网络的小电流故障判别方法
CN110969206A (zh) * 2019-11-29 2020-04-07 大连理工大学 基于层次划分的电路故障实时诊断与自修复方法
CN110969206B (zh) * 2019-11-29 2023-06-06 大连理工大学 基于层次划分的电路故障实时诊断与自修复方法
CN111209798B (zh) * 2019-12-23 2023-05-23 广州网文三维数字技术有限公司 一种基于神经网络的特种承压设备仪表识别方法
CN111209798A (zh) * 2019-12-23 2020-05-29 广州网文三维数字技术有限公司 一种基于神经网络的特种承压设备仪表识别方法
CN111027727A (zh) * 2019-12-27 2020-04-17 中南大学 一种轨道系统跨域运维关键要素辨识方法
CN111079857A (zh) * 2019-12-30 2020-04-28 北京工业大学 一种基于过完备宽度学习模型的污水处理过程故障监测方法
CN111079857B (zh) * 2019-12-30 2023-06-02 北京工业大学 一种基于过完备宽度学习模型的污水处理过程故障监测方法
CN111814108A (zh) * 2020-01-10 2020-10-23 北京航天测控技术有限公司 一种基于自组织特征映射神经网络的连接型间歇故障诊断方法
CN111814108B (zh) * 2020-01-10 2024-04-12 北京航天测控技术有限公司 一种基于自组织神经网络的连接型间歇故障诊断方法
CN111368890A (zh) * 2020-02-26 2020-07-03 珠海格力电器股份有限公司 故障检测方法及装置、信息物理融合系统
CN111259864A (zh) * 2020-03-04 2020-06-09 哈尔滨理工大学 一种水轮机运转状态识别方法
CN111259864B (zh) * 2020-03-04 2022-12-02 哈尔滨理工大学 一种水轮机运转状态识别方法
CN111625988A (zh) * 2020-03-10 2020-09-04 河北工程大学 基于深度学习的桥梁健康管理分析与预测系统及方法
CN111275136A (zh) * 2020-03-13 2020-06-12 安图实验仪器(郑州)有限公司 基于小样本下的故障预测系统及其预警方法
CN111275136B (zh) * 2020-03-13 2023-05-02 安图实验仪器(郑州)有限公司 基于小样本下的故障预测系统及其预警方法
CN111461551B (zh) * 2020-04-01 2023-05-02 未必然数据科技(北京)有限公司 一种基于深度学习和spc准则的电潜泵故障预警方法
CN111461551A (zh) * 2020-04-01 2020-07-28 未必然数据科技(北京)有限公司 一种基于深度学习和spc准则的电潜泵故障预警方法
CN111523660A (zh) * 2020-04-15 2020-08-11 南京清然能源科技有限公司 一种基于人工智能的音视热一体化异常检测报警方法
CN111556107A (zh) * 2020-04-16 2020-08-18 福州和达电子科技有限公司 一种基于“应激-反射”模型的智能物联网应用方法
CN111397744B (zh) * 2020-05-13 2022-10-18 金陵科技学院 体温连续远程监测并采用bp神经网络校正的检测预警系统
CN111397744A (zh) * 2020-05-13 2020-07-10 金陵科技学院 体温连续远程监测并采用bp神经网络校正的检测预警系统
CN111666982A (zh) * 2020-05-19 2020-09-15 上海核工程研究设计院有限公司 一种基于深度神经网络的机电设备故障诊断方法
CN111666982B (zh) * 2020-05-19 2023-04-18 上海核工程研究设计院股份有限公司 一种基于深度神经网络的机电设备故障诊断方法
CN111914320B (zh) * 2020-06-06 2024-02-02 同济大学 基于深度学习的无样本道岔故障诊断方法
CN111914320A (zh) * 2020-06-06 2020-11-10 同济大学 基于深度学习的无样本道岔故障诊断方法
CN111966758A (zh) * 2020-06-30 2020-11-20 国网浙江省电力有限公司湖州供电公司 一种基于画像数据分析技术的电力隐患排查方法
CN111966758B (zh) * 2020-06-30 2024-02-02 国网浙江省电力有限公司湖州供电公司 一种基于画像数据分析技术的电力隐患排查方法
CN111767418A (zh) * 2020-07-07 2020-10-13 中电万维信息技术有限责任公司 基于神经网络的电子图像文件自动分类方法
CN111767418B (zh) * 2020-07-07 2023-10-27 中电万维信息技术有限责任公司 基于神经网络的电子图像文件自动分类方法
CN111814976B (zh) * 2020-07-14 2024-04-09 西安建筑科技大学 一种空调系统传感器故障误差再学习方法及系统
CN111814976A (zh) * 2020-07-14 2020-10-23 西安建筑科技大学 一种空调系统传感器故障误差再学习方法及系统
CN111860839A (zh) * 2020-07-28 2020-10-30 上海海事大学 基于多信号融合及Adam优化算法的岸桥故障监测方法
CN114091553A (zh) * 2020-08-06 2022-02-25 长沙理工大学 一种滚动轴承故障的诊断方法
CN111931420A (zh) * 2020-08-07 2020-11-13 合肥工业大学 基于核再生希尔伯特空间的燃气轮机故障预测方法
CN111931420B (zh) * 2020-08-07 2023-09-29 合肥工业大学 基于核再生希尔伯特空间的燃气轮机故障预测方法
CN111950708A (zh) * 2020-08-11 2020-11-17 华中师范大学 一种发现大学生日常生活习惯的神经网络结构与方法
CN112101617A (zh) * 2020-08-11 2020-12-18 复旦大学 基于层次图卷积的电网故障严重程度预测方法
CN111950708B (zh) * 2020-08-11 2023-10-03 华中师范大学 一种发现大学生日常生活习惯的神经网络结构与方法
CN112101617B (zh) * 2020-08-11 2024-03-08 复旦大学 基于层次图卷积的电网故障严重程度预测方法
CN114076872A (zh) * 2020-08-13 2022-02-22 北京映翰通网络技术股份有限公司 一种配电网故障原因分析方法
CN112132394A (zh) * 2020-08-21 2020-12-25 西安交通大学 一种电厂循环水泵预测性状态评估方法及系统
CN112132394B (zh) * 2020-08-21 2024-03-29 西安交通大学 一种电厂循环水泵预测性状态评估方法及系统
CN112232366A (zh) * 2020-09-09 2021-01-15 国网上海市电力公司 一种基于rfid监测的电气设备故障预警方法及系统
CN112101445B (zh) * 2020-09-09 2023-11-28 浙江大学 一种基于监督神经网络的连铸坯皮下夹渣缺陷实时预报方法
CN112232366B (zh) * 2020-09-09 2024-04-16 国网上海市电力公司 一种基于rfid监测的电气设备故障预警方法及系统
CN112101445A (zh) * 2020-09-09 2020-12-18 浙江大学 一种基于监督神经网络的连铸坯皮下夹渣缺陷实时预报方法
CN112098715A (zh) * 2020-09-18 2020-12-18 宁波智诚祥科技发展有限公司 基于5g和修正gcn图神经网络的电能监控与预警系统
CN112098715B (zh) * 2020-09-18 2023-06-06 宁波智诚祥科技发展有限公司 基于5g和修正gcn图神经网络的电能监控与预警系统
CN112464151B (zh) * 2020-10-27 2023-12-29 国电电力湖南新能源开发有限公司 一种基于声学诊断的风电机组偏航系统异音诊断方法
CN112464151A (zh) * 2020-10-27 2021-03-09 国电电力湖南新能源开发有限公司 一种基于声学诊断的风电机组偏航系统异音诊断方法
CN112446430A (zh) * 2020-11-27 2021-03-05 云南电网有限责任公司电力科学研究院 一种直流输电系统故障识别方法
CN112817280A (zh) * 2020-12-04 2021-05-18 华能国际电力股份有限公司玉环电厂 一种用于火电厂智慧监盘报警系统实现方法
CN112838946A (zh) * 2020-12-17 2021-05-25 国网江苏省电力有限公司信息通信分公司 基于通信网故障智能感知与预警模型的构建方法
CN112766327B (zh) * 2021-01-05 2024-05-24 格力电器(武汉)有限公司 空调故障预测方法、电子设备和储存介质
CN112766327A (zh) * 2021-01-05 2021-05-07 格力电器(武汉)有限公司 空调故障预测方法、电子设备和储存介质
CN112785015B (zh) * 2021-02-02 2024-01-19 中国人民解放军空军工程大学 基于案例推理的装备故障诊断方法
CN112785015A (zh) * 2021-02-02 2021-05-11 中国人民解放军空军工程大学 基于案例推理的装备故障诊断方法
CN112906775B (zh) * 2021-02-05 2023-12-01 深圳市芯聚智科技有限公司 一种设备故障预测方法及系统
CN112906775A (zh) * 2021-02-05 2021-06-04 深圳市芯聚智科技有限公司 一种设备故障预测方法及系统
CN113008998A (zh) * 2021-03-02 2021-06-22 南京审计大学 一种基于pcnn的隐蔽工程内部缺陷判断方法
CN113109043A (zh) * 2021-04-08 2021-07-13 重庆理工大学 一种主动式汽车传动系统故障模型数据库的建立方法
CN113282000A (zh) * 2021-04-30 2021-08-20 科华数据股份有限公司 数据中心的故障诊断方法、装置及动环监控系统
CN113379033A (zh) * 2021-06-11 2021-09-10 国网湖北省电力有限公司黄石供电公司 基于时空网络增强深度学习的电缆健康状态智能预警方法
CN113625099A (zh) * 2021-06-22 2021-11-09 国网辽宁省电力有限公司大连供电公司 配电网故障区段分层定位方法
CN113625099B (zh) * 2021-06-22 2024-04-12 国网辽宁省电力有限公司大连供电公司 配电网故障区段分层定位方法
CN113393143B (zh) * 2021-06-24 2022-06-17 重庆大学 基于信息融合的翅片机加工状态监测方法
CN113393143A (zh) * 2021-06-24 2021-09-14 重庆大学 基于信息融合的翅片机加工状态监测方法
CN113485986B (zh) * 2021-06-25 2024-08-02 国网江苏省电力有限公司信息通信分公司 一种电力数据修复方法
CN113485986A (zh) * 2021-06-25 2021-10-08 国网江苏省电力有限公司信息通信分公司 一种电力数据修复方法
CN113360159B (zh) * 2021-07-02 2022-04-26 深圳市云房网络科技有限公司 一种软件自动化运维部署的方法及装置
CN113360159A (zh) * 2021-07-02 2021-09-07 深圳市云房网络科技有限公司 一种软件自动化运维部署的方法及装置
CN113641486A (zh) * 2021-07-05 2021-11-12 西安理工大学 一种基于边缘计算网络架构的道岔智能故障诊断方法
CN113641486B (zh) * 2021-07-05 2024-03-01 西安理工大学 一种基于边缘计算网络架构的道岔智能故障诊断方法
CN113420510B (zh) * 2021-07-07 2022-06-17 广东电网有限责任公司 一种基于前端感知和学习的能耗判别方法
CN113420510A (zh) * 2021-07-07 2021-09-21 广东电网有限责任公司 一种基于前端感知和学习的能耗判别方法
CN113687209A (zh) * 2021-07-15 2021-11-23 上海华岭集成电路技术股份有限公司 基于深度学习的集成电路测试异常分析系统及其方法
CN113486971B (zh) * 2021-07-19 2023-10-27 国网山东省电力公司日照供电公司 基于主成分分析和神经网络的用户状态识别方法、系统
CN113486971A (zh) * 2021-07-19 2021-10-08 国网山东省电力公司日照供电公司 基于主成分分析和神经网络的用户状态识别方法、系统
CN113514109A (zh) * 2021-08-18 2021-10-19 广东新创华科环保股份有限公司 一种无人机飞行故障检测方法和系统
CN113700558A (zh) * 2021-09-01 2021-11-26 哈尔滨工业大学(威海) 柴油发动机空气系统故障检测方法
CN113823396A (zh) * 2021-09-16 2021-12-21 武汉联影医疗科技有限公司 医疗设备管理方法、装置、计算机设备和存储介质
CN113779734A (zh) * 2021-09-22 2021-12-10 重庆华渝重工机电有限公司 一种基于人工智能的跨坐式单轨道岔监测及其维护系统
CN114265372A (zh) * 2021-11-01 2022-04-01 浙江众合科技股份有限公司 基于大数据的cbtc系统实时故障智能诊断方法及系统
CN114325433A (zh) * 2021-12-03 2022-04-12 北京航空航天大学 基于电化学阻抗谱测试的锂离子电池故障检测方法和系统
CN114154266B (zh) * 2021-12-03 2024-02-20 合肥工业大学 基于偏秩相关的流因果结构学习的燃气轮机故障预测方法
CN114154266A (zh) * 2021-12-03 2022-03-08 合肥工业大学 基于偏秩相关的流因果结构学习的燃气轮机故障预测方法
CN114490596B (zh) * 2021-12-08 2024-05-10 大唐水电科学技术研究院有限公司 一种基于机器学习与神经网络的变压器油色谱数据清洗的方法
CN114490596A (zh) * 2021-12-08 2022-05-13 大唐水电科学技术研究院有限公司 一种基于机器学习与神经网络的变压器油色谱数据清洗的方法
CN114492938A (zh) * 2021-12-29 2022-05-13 中国大唐集团科学技术研究总院有限公司华东电力试验研究院 基于bpnn模型和自适应阈值的磨煤机故障预警方法和系统
CN114386603B (zh) * 2022-01-13 2024-02-20 合肥工业大学 基于时序因果网络的火电厂发电机故障预警方法
CN114386603A (zh) * 2022-01-13 2022-04-22 合肥工业大学 基于时序因果网络的火电厂发电机故障预警方法
CN114660399B (zh) * 2022-02-28 2022-12-06 湖北拓普电力有限公司 一种环网柜设备状态监测及故障诊断方法
CN114660399A (zh) * 2022-02-28 2022-06-24 湖北拓普电力有限公司 一种环网柜设备状态监测及故障诊断方法
CN114897286A (zh) * 2022-03-07 2022-08-12 杰克科技股份有限公司 一种基于联盟链的故障模型建立方法
CN114707205A (zh) * 2022-03-08 2022-07-05 浙大城市学院 一种基于gru神经网络的轨道基础差异沉降识别方法
CN114707205B (zh) * 2022-03-08 2024-04-05 浙大城市学院 一种基于gru神经网络的轨道基础差异沉降识别方法
CN114760215A (zh) * 2022-03-11 2022-07-15 安徽师范大学 一种计算机网络数据传输性能监测方法及系统
CN114647980A (zh) * 2022-03-21 2022-06-21 厦门华夏国际电力发展有限公司 一种基于bp神经网络的给煤机偏差监测方法及系统
CN114707410A (zh) * 2022-04-02 2022-07-05 郑州铁路职业技术学院 具有强化补偿能力的铁路轨道高低不平顺诊断方法及系统
CN115001941B (zh) * 2022-04-20 2023-10-13 广东省电信规划设计院有限公司 一种通信网管故障的确定方法及装置
CN114924207A (zh) * 2022-04-20 2022-08-19 国网上海市电力公司 一种基于机器视觉检测间歇性接地故障的方法
CN115001941A (zh) * 2022-04-20 2022-09-02 广东省电信规划设计院有限公司 一种通信网管故障的确定方法及装置
CN114566964A (zh) * 2022-04-29 2022-05-31 国网天津市电力公司电力科学研究院 一种配电网馈线自动化控制方法、装置、设备及存储介质
CN114866402A (zh) * 2022-05-07 2022-08-05 安徽凯炎电力保护设备有限公司 一种系统数据动态对比方法
CN115048985B (zh) * 2022-05-17 2024-02-13 国网浙江省电力有限公司嘉兴供电公司 一种电气设备故障判别方法
CN115048985A (zh) * 2022-05-17 2022-09-13 国网浙江省电力有限公司嘉兴供电公司 一种电气设备故障判别方法
CN114969618B (zh) * 2022-05-19 2024-06-07 北京航空航天大学 基于多源因果图路径卷积的复杂机电系统故障检测方法
CN114969618A (zh) * 2022-05-19 2022-08-30 北京航空航天大学 基于多源因果图路径卷积的复杂机电系统故障检测方法
CN114826885A (zh) * 2022-06-30 2022-07-29 南京海汇装备科技有限公司 一种基于数据分析的设备故障监测系统及方法
CN115237091A (zh) * 2022-07-18 2022-10-25 西安交通大学 一种机电装备故障溯源方法及系统
CN115204708A (zh) * 2022-07-25 2022-10-18 江苏海洋大学 一种基于多层感知器神经网络的农村房屋危险等级分类方法
CN115891741A (zh) * 2022-09-30 2023-04-04 南京邮电大学 一种适用于电动汽车充电过程的远程故障预警方法及装置
CN115773562A (zh) * 2022-11-24 2023-03-10 杭州经纬信息技术股份有限公司 基于联邦学习的统一化暖通空调系统故障检测方法
CN115935201A (zh) * 2022-11-29 2023-04-07 国网山东省电力公司应急管理中心 一种针对重点应急装备gps及电气量数据采集的监测方法以及装置
CN115935201B (zh) * 2022-11-29 2023-10-17 国网山东省电力公司应急管理中心 一种针对重点应急装备gps及电气量数据采集的监测方法以及装置
CN116304663A (zh) * 2022-12-05 2023-06-23 北京交通大学 基于非平衡样本增强的列控车载设备健康状态管理装置
CN116304663B (zh) * 2022-12-05 2023-10-24 北京交通大学 基于非平衡样本增强的列控车载设备健康状态管理装置
CN115951002A (zh) * 2023-03-10 2023-04-11 山东省计量科学研究院 一种气质联用仪故障检测装置
CN116087692B (zh) * 2023-04-12 2023-06-23 国网四川省电力公司电力科学研究院 一种配电网树线放电故障识别方法、系统、终端及介质
CN116087692A (zh) * 2023-04-12 2023-05-09 国网四川省电力公司电力科学研究院 一种配电网树线放电故障识别方法、系统、终端及介质
CN116443080B (zh) * 2023-05-05 2023-12-29 北京交通大学 一种轨道交通行车调度指挥方法、系统、设备及介质
CN116443080A (zh) * 2023-05-05 2023-07-18 北京交通大学 一种轨道交通行车调度指挥方法、系统、设备及介质
CN116702030A (zh) * 2023-05-31 2023-09-05 浙江大学 一种基于传感器可靠性分析的高炉状态监测方法及装置
CN116702030B (zh) * 2023-05-31 2024-01-23 浙江大学 一种基于传感器可靠性分析的高炉状态监测方法及装置
CN116776267B (zh) * 2023-06-13 2024-01-19 西南交通大学 一种用于桥梁施工控制的无监督数据处理方法及系统
CN116776267A (zh) * 2023-06-13 2023-09-19 西南交通大学 一种用于桥梁施工控制的无监督数据处理方法及系统
CN116976862A (zh) * 2023-09-20 2023-10-31 山东国研自动化有限公司 一种工厂设备信息化管理系统及方法
CN116976862B (zh) * 2023-09-20 2024-01-02 山东国研自动化有限公司 一种工厂设备信息化管理系统及方法
CN117290732B (zh) * 2023-11-24 2024-03-01 山东理工昊明新能源有限公司 故障分类模型的构建方法、风电设备故障分类方法及装置
CN117290732A (zh) * 2023-11-24 2023-12-26 山东理工昊明新能源有限公司 故障分类模型的构建方法、风电设备故障分类方法及装置
CN117390999A (zh) * 2023-12-12 2024-01-12 山东工商学院 基于cfd深度学习模型的封闭母线温度故障监测方法
CN117390999B (zh) * 2023-12-12 2024-02-06 山东工商学院 基于cfd深度学习模型的封闭母线温度故障监测方法
CN117454957A (zh) * 2023-12-22 2024-01-26 环球数科集团有限公司 一种用于图像处理神经网络模型的推理训练系统
CN117454957B (zh) * 2023-12-22 2024-03-22 环球数科集团有限公司 一种用于图像处理神经网络模型的推理训练系统
CN117579513A (zh) * 2024-01-16 2024-02-20 北京中科网芯科技有限公司 汇聚分流设备的可视化运维系统及其方法
CN117579513B (zh) * 2024-01-16 2024-04-02 北京中科网芯科技有限公司 汇聚分流设备的可视化运维系统及其方法
CN117741512A (zh) * 2024-02-20 2024-03-22 山东铁路投资控股集团有限公司 一种基于神经网络的转辙机状态检测方法及系统
CN117741512B (zh) * 2024-02-20 2024-06-07 山东铁路投资控股集团有限公司 一种基于神经网络的转辙机状态检测方法及系统
CN117807481A (zh) * 2024-02-28 2024-04-02 苏州元脑智能科技有限公司 故障识别方法、模型的训练方法、装置、设备以及介质
CN117807481B (zh) * 2024-02-28 2024-05-10 苏州元脑智能科技有限公司 故障识别方法、模型的训练方法、装置、设备以及介质
CN118078328A (zh) * 2024-04-29 2024-05-28 哈尔滨医科大学 一种胃肠外科超声波仪器故障智能检测方法及系统

Also Published As

Publication number Publication date
CN103914735A (zh) 2014-07-09
CN103914735B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2015158198A1 (zh) 一种基于神经网络自学习的故障识别方法及系统
CN110262463B (zh) 一种基于深度学习的轨道交通站台门故障诊断系统
CN110929918B (zh) 一种基于CNN和LightGBM的10kV馈线故障预测方法
US10234495B2 (en) Decision tree SVM fault diagnosis method of photovoltaic diode-clamped three-level inverter
CN109141847B (zh) 一种基于mscnn深度学习的飞机系统故障诊断方法
WO2019080367A1 (zh) 一种机械设备健康状态评估方法
CN110829417B (zh) 基于lstm双结构模型的电力系统暂态稳定预测方法
CN104155574A (zh) 基于自适应神经模糊推理系统的配电网故障分类方法
WO2021017416A1 (zh) 一种感知对抗生成下的深度压缩动力锂电池故障诊断方法
US12100954B2 (en) Transient stability assessment method for an electric power system
CN103699698A (zh) 一种基于改进贝叶斯的轨道交通故障识别方法及系统
CN110852365B (zh) 一种zpw-2000a型无绝缘轨道电路故障诊断方法
CN109492790A (zh) 基于神经网络与数据挖掘的风电机组健康管理方法
CN112557826A (zh) 一种船舶电力系统故障诊断方法
CN111680875A (zh) 基于概率基线模型的无人机状态风险模糊综合评价方法
CN113688885A (zh) 一种基于脉冲神经网络的深空探测器自主故障诊断方法
CN116205265A (zh) 一种基于深层神经网络的电网故障诊断方法及装置
WO2019178930A1 (zh) 一种机械设备故障诊断方法
CN117326420A (zh) 一种基于图像识别的联动电梯故障识别、诊断方法
Zhou et al. Fault classification for on-board equipment of high-speed railway based on attention capsule network
CN118152945A (zh) 一种基于组件拓扑图的水电站辅助设备故障定位方法
Wu et al. Remaining useful life prediction of bearings with different failure types based on multi-feature and deep convolution transfer learning
CN117973511A (zh) 一种融合知识图谱和神经网络的电梯故障诊断方法
CN116244600A (zh) 一种gis间歇性放电模式识别模型的构建方法、系统及设备
CN111830934A (zh) 一种电力机车故障源定位方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779481

Country of ref document: EP

Kind code of ref document: A1