WO2015157980A1 - Optical waveguide and printed circuit board - Google Patents

Optical waveguide and printed circuit board Download PDF

Info

Publication number
WO2015157980A1
WO2015157980A1 PCT/CN2014/075642 CN2014075642W WO2015157980A1 WO 2015157980 A1 WO2015157980 A1 WO 2015157980A1 CN 2014075642 W CN2014075642 W CN 2014075642W WO 2015157980 A1 WO2015157980 A1 WO 2015157980A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
waveguide
optical
signal
gain
Prior art date
Application number
PCT/CN2014/075642
Other languages
French (fr)
Chinese (zh)
Inventor
王攀
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480000465.5A priority Critical patent/CN105308487B/en
Priority to PCT/CN2014/075642 priority patent/WO2015157980A1/en
Publication of WO2015157980A1 publication Critical patent/WO2015157980A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical waveguide and a printed circuit board. The optical waveguide comprises a lower clad layer (1), an upper clad layer, and a waveguide core layer formed between the lower clad layer (1) and the upper clad layer. The waveguide core layer comprises at least one waveguide unit (100). Each waveguide unit (100) comprises a signal optical waveguide used for transmitting an optical signal, and a gain optical waveguide (3) used for amplifying, under a pump effect of pump light, the optical signal transmitted by the signal optical waveguide. The signal optical waveguide and the gain optical waveguide (3) are disposed on the surface of the side of the lower clad layer (1) facing the upper clad layer, and the signal optical waveguide and the gain optical waveguide (3) are connected into an integral structure by means of end surfaces, so that normal operation of the system can be ensured, and the optical interconnection bottleneck problem caused by great loss of optical signal transmission can be avoided.

Description

一种光波导和印刷电路板 技术领域  Optical waveguide and printed circuit board
本发明涉及光通信领域, 尤其涉及一种光波导和印刷电路板。 背景技术  The present invention relates to the field of optical communications, and more particularly to an optical waveguide and a printed circuit board. Background technique
随着高速数据传输需求的不断提高, 数据中心需要多个处理器协同完成 相关数据的处理, 进而使得数据中心对芯片间互连带宽的要求也变得越来越 高, 因此, 对系统内印刷电路板( Printed circuit board , PCB )之间和 /或 PCB 上芯片之间的互连速率、 带宽和通道密度均提出了更高的要求。  As the demand for high-speed data transmission continues to increase, the data center needs multiple processors to coordinate the processing of related data, which in turn makes the data center's requirements for inter-chip interconnect bandwidth become higher and higher. Higher interconnect rates, bandwidths, and channel densities between printed boards (PCBs) and/or chips on the PCB place higher demands.
传统的 PCB上芯片间基于金属线的电互连方式, 由于金属线本身固有的 物理特性使其在高速数据传输过程中存在严重的传输损耗、 有限的传输距离 (传输速率越高, 传输距离越短)、 严重串扰等一系列瓶颈问题, 使得电互连方 式不能够满足高速信息的处理和传输需求。 相比传统的电互连技术, 光互连 ( Optical interconnect )技术釆用光波作为信息传输的载体, 具有高时空带宽 积、 高集成密度、 可波分复用、 抗电磁干扰以及低传输损耗等优点, 故结合 光互连技术与电互连技术, 发展一种 OE-PCB (Opto-electrical hybrid printed circuit board, 光电混合印刷电路板), 对于促进未来数据中心、 高性能计算机 的发展具有极其重要的意义和应用价值。  Traditional metal-based electrical interconnection between chips on a PCB. Due to the inherent physical characteristics of the metal wire, it has serious transmission loss and limited transmission distance in high-speed data transmission. (The higher the transmission rate, the higher the transmission distance. A series of bottlenecks, such as short) and severe crosstalk, make the electrical interconnection method unable to meet the processing and transmission requirements of high-speed information. Compared with traditional electrical interconnection technology, optical interconnect technology uses light waves as a carrier for information transmission, with high space-time bandwidth product, high integration density, wavelength division multiplexing, anti-electromagnetic interference and low transmission loss. Advantages, therefore, the development of an OE-PCB (Opto-electrical hybrid printed circuit board) in combination with optical interconnect technology and electrical interconnection technology is extremely important for promoting the development of future data centers and high-performance computers. The meaning and application value.
目前制作 0E-PCB , 通常是在传统的 PCB板中嵌入用于传输高速光信号 的光波导, 而低速的电信号仍然在 PCB中利用电的方式传输。 实际使用中, 在 PCB板中嵌入的光波导使得光信号存在传输损耗, 光信号在传输一定距离 后损耗很大, 使得检测端接收到的信号光的光功率过小, 进而导致探测器误 码率提高, 影响系统的正常运行, 使芯片间光互连面临瓶颈问题。 发明内容  Currently producing 0E-PCBs, optical waveguides for transmitting high-speed optical signals are usually embedded in conventional PCB boards, and low-speed electrical signals are still transmitted electrically in the PCB. In actual use, the optical waveguide embedded in the PCB board causes transmission loss of the optical signal, and the optical signal loses a large amount after transmitting a certain distance, so that the optical power of the signal light received by the detecting end is too small, thereby causing the error of the detector. The rate increases, affecting the normal operation of the system, and causing bottlenecks in the optical interconnection between chips. Summary of the invention
本发明实施例提供一种光波导和印刷电路板, 以解决芯片间光互连的瓶 颈问题。 第一方面, 提供一种光波导, 包括下包层、 上包层以及形成在所述下包 层和所述上包层之间的波导芯层; Embodiments of the present invention provide an optical waveguide and a printed circuit board to solve the bottleneck problem of optical interconnection between chips. In a first aspect, an optical waveguide is provided, including a lower cladding layer, an upper cladding layer, and a waveguide core layer formed between the lower cladding layer and the upper cladding layer;
所述波导芯层包括至少一个波导单元, 每一所述波导单元中包括用于传 输光信号的信号光波导, 和用于在泵浦光的泵浦作用下对所述信号光波导传 输的光信号进行放大的增益光波导;  The waveguide core layer includes at least one waveguide unit, each of which includes a signal optical waveguide for transmitting an optical signal, and light for transmitting the signal optical waveguide under pumping of pump light a gain optical waveguide in which the signal is amplified;
所述信号光波导和所述增益光波导设置在所述下包层面向所述上包层一 侧的表面上, 且所述信号光波导和所述增益光波导通过端面连接为一体结构。  The signal optical waveguide and the gain optical waveguide are disposed on a surface of the lower cladding layer facing the upper cladding layer, and the signal optical waveguide and the gain optical waveguide are connected to each other through an end surface.
结合第一方面, 在第一种实现方式中, 所述信号光波导包括光路前端部 分和光路后端部分;  With reference to the first aspect, in a first implementation manner, the signal optical waveguide includes a front end portion of the optical path and a rear end portion of the optical path;
所述增益光波导设置在所述光路前端部分和所述光路后端部分之间, 所 述增益光波导的一个端面与所述光路前端部分面向所述光路后端部分的端面 连接为一体结构, 另一个端面与所述光路后端部分面向所述光路前端部分的 端面连接为一体结构。  The gain optical waveguide is disposed between the front end portion of the optical path and the rear end portion of the optical path, and an end surface of the gain optical waveguide and an end surface of the optical path front end portion facing the rear end portion of the optical path are integrally connected. The other end surface is connected to the end surface of the optical path rear end portion facing the front end portion of the optical path as a unitary structure.
结合第一方面或者第一方面的第一种实现方式, 在第二种实现方式中, 所述增益光波导的端面截面尺寸和所述信号光波导的端面截面尺寸一致。  In conjunction with the first aspect or the first implementation of the first aspect, in a second implementation manner, an end face cross-sectional dimension of the gain optical waveguide is identical to an end cross-sectional dimension of the signal optical waveguide.
结合第一方面的第一种实现方式, 在第三种实现方式中, 所述波导单元 还包括传输所述泵浦光的泵浦光波导; 所述泵浦光波导, 设置在所述下包层 面向所述上包层一侧的表面上。  In conjunction with the first implementation of the first aspect, in a third implementation, the waveguide unit further includes a pump optical waveguide that transmits the pump light; and the pump optical waveguide is disposed in the lower package The layer faces the surface on one side of the upper cladding.
结合第一方面的第三种实现方式, 在第四种实现方式中, 所述泵浦光波 导与所述信号光波导的光路前端部分为一体结构。  In conjunction with the third implementation of the first aspect, in the fourth implementation, the pump light waveguide is integral with the front end portion of the optical path of the signal optical waveguide.
结合第一方面的第四种实现方式, 在第五种实现方式中, 所述泵浦光波 导的端面截面尺寸与所述信号光波导的端面截面尺寸一致。  In conjunction with the fourth implementation of the first aspect, in a fifth implementation, the cross-sectional dimension of the end face of the pump light waveguide is the same as the cross-sectional dimension of the end face of the signal optical waveguide.
结合结合第一方面的第三种实现方式, 在第六种实现方式中, 所述泵浦 光波导的光路后端部分与所述增益光波导平行设置。  In conjunction with the third implementation of the first aspect, in a sixth implementation, the optical path rear end portion of the pump optical waveguide is disposed in parallel with the gain optical waveguide.
结合第一方面的第六种实现方式, 在第七种实现方式中, 所述泵浦光波 导的光路后端部分与所述增益光波导之间的间距不大于 100 nm。  In conjunction with the sixth implementation of the first aspect, in a seventh implementation, a distance between a rear end portion of the optical path of the pump light waveguide and the gain optical waveguide is no more than 100 nm.
结合第一方面的第六种实现方式, 或者第一方面的第七种实现方式, 在 第八种实现方式中, 所述泵浦光波导的端面截面尺寸不大于所述增益光波导 的端面截面尺寸。 Combining the sixth implementation of the first aspect, or the seventh implementation of the first aspect, In an eighth implementation manner, an end face cross-sectional dimension of the pump optical waveguide is not greater than an end surface cross-sectional dimension of the gain optical waveguide.
结合第一方面的第三种实现方式, 在第九种实现方式中, 每一所述波导 单元中还包括布拉格光栅, 所述布拉格光栅设置在所述信号光波导的光路后 端部分, 用于滤除经过所述增益光波导但未被吸收的泵浦光。  In conjunction with the third implementation of the first aspect, in the ninth implementation, each of the waveguide units further includes a Bragg grating disposed at a rear end portion of the optical path of the signal optical waveguide, Pump light that passes through the gain optical waveguide but is not absorbed is filtered out.
结合第一方面的第三种实现方式至第一方面的第九种实现方式中的任一 种实现方式, 在第十种实现方式中, 所述波导单元的数量为至少两个, 其中, 至少两个所述波导单元呈阵列排布, 相邻两个波导单元中的信号光波导 之间以及泵浦光波导之间的间距不小于 10 μπι。  With reference to the third implementation of the first aspect, to any one of the ninth implementation manners of the first aspect, in the tenth implementation, the number of the waveguide units is at least two, wherein, at least The two waveguide units are arranged in an array, and the distance between the signal optical waveguides in the adjacent two waveguide units and between the pump optical waveguides is not less than 10 μm.
第二方面, 提供一种印刷电路板, 该印刷电路板包括第一方面任一种实 现方式中的光波导。  In a second aspect, a printed circuit board is provided, the printed circuit board comprising an optical waveguide in any of the implementations of the first aspect.
本发明实施例提供的光波导和印刷电路板, 光波导中的波导芯层包括用 于传输光信号的信号光波导, 和用于在泵浦光的泵浦作用下对信号光波导传 输的光信号进行放大的增益光波导, 并且增益光波导与信号光波导连接为一 体结构, 故增益光波导与信号光波导之间不存在耦合损耗, 故通过本发明能 够在避免耦合损耗的前提下对信号光波导传输的光信号进行放大, 进而能够 避免由于检测端接收到的光信号光功率过小造成的探测器误码率过高的问 题, 保证系统的正常运行, 避免光信号传输损耗大引起的光互连瓶颈问题出 现。 附图说明  The optical waveguide and the printed circuit board provided by the embodiments of the present invention, the waveguide core layer in the optical waveguide includes a signal optical waveguide for transmitting an optical signal, and light for transmitting the signal optical waveguide under the pumping action of the pumping light The gain optical waveguide is amplified by the signal, and the gain optical waveguide is connected to the signal optical waveguide as an integral structure, so that there is no coupling loss between the gain optical waveguide and the signal optical waveguide, so that the signal can be avoided under the premise of avoiding the coupling loss by the present invention. The optical signal transmitted by the optical waveguide is amplified, thereby avoiding the problem that the error rate of the detector is too high due to the light power of the optical signal received by the detecting end is too small, thereby ensuring normal operation of the system and avoiding the loss of optical signal transmission. Optical interconnect bottlenecks have emerged. DRAWINGS
图 1为本发明实施例提供的光波导结构示意图;  1 is a schematic structural diagram of an optical waveguide according to an embodiment of the present invention;
图 2Α-图 2Β为本发明实施例提供的设置有泵浦光波导的光波导结构示意 图;  2A-2 are schematic diagrams showing an optical waveguide structure provided with a pump optical waveguide according to an embodiment of the present invention;
图 3为本发明实施例提供的设置有布拉格光栅的光波导结构示意图; 图 4为本发明实施例提供的又一光波导构成示意图;  3 is a schematic structural diagram of an optical waveguide provided with a Bragg grating according to an embodiment of the present invention; FIG. 4 is a schematic diagram of another optical waveguide according to an embodiment of the present invention;
图 5为本发明实施例提供的光波导制作流程图; 图 6A-图 6F为本发明实施例提供的光波导制作过程示意图; 图 7A-图 7B为本发明实施例提供的又一光波导制作过程示意图。 具体实施方式 FIG. 5 is a flow chart of manufacturing an optical waveguide according to an embodiment of the present invention; FIG. 6A-6F are schematic diagrams showing a manufacturing process of an optical waveguide according to an embodiment of the present invention; and FIGS. 7A-7B are schematic diagrams showing another optical waveguide manufacturing process according to an embodiment of the present invention. detailed description
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 并 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。  The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
本发明实施例提供一种光波导, 在该光波导中设置与信号光波导连接为 一体结构的增益光波导, 通过该增益光波导对信号光波导传输的光信号进行 放大, 以解决目前 OE-PCB光链路中传输的光信号的传输损耗问题。  Embodiments of the present invention provide an optical waveguide in which a gain optical waveguide integrally connected with a signal optical waveguide is disposed, and an optical signal transmitted by the signal optical waveguide is amplified by the gain optical waveguide to solve the current OE- Transmission loss problem of optical signals transmitted in PCB optical links.
光波导一般包括波导芯层, 以及位于波导芯层上方的上包层和位于波导 芯层下方的下包层, 而本发明实施例提供的光波导包括上包层和下包层, 以 及形成在下包层和上包层之间的波导芯层, 波导芯层包括至少一个波导单元, 每一波导单元中包括用于传输信号光的信号光波导和用于在泵浦光的泵浦作 用下对信号光波导传输的信号光进行放大的增益光波导, 信号光波导和增益 光波导设置在下包层面向上包层一侧的表面上, 且信号光波导和增益光波导 比在于波导芯层的构成不同。  The optical waveguide generally includes a waveguide core layer, and an upper cladding layer located above the waveguide core layer and a lower cladding layer located below the waveguide core layer, and the optical waveguide provided by the embodiment of the present invention includes an upper cladding layer and a lower cladding layer, and is formed under a waveguide core layer between the cladding layer and the upper cladding layer, the waveguide core layer comprising at least one waveguide unit, each waveguide unit including a signal optical waveguide for transmitting signal light and for pumping under pumping light a gain optical waveguide in which the signal light transmitted by the signal optical waveguide is amplified, the signal optical waveguide and the gain optical waveguide are disposed on a surface of the lower cladding layer on the side of the upper cladding layer, and the ratio of the signal optical waveguide to the gain optical waveguide is different in the configuration of the waveguide core layer .
本发明实施例中增益光波导可以在设定位置处与信号光波导通过端面连 接为一体结构, 例如可以是在信号光波导的末端, 也可以设置在信号光波导 的某一设定位置处, 本发明实施例不做限定, 本发明实施例以下将以增益光 波导设置在信号光波导的设定位置处为例进行说明。  In the embodiment of the present invention, the gain optical waveguide may be integrated with the signal optical waveguide through the end surface at a set position, for example, at the end of the signal optical waveguide, or at a certain set position of the signal optical waveguide. The embodiment of the present invention is not limited. The embodiment of the present invention will be described below by taking a gain optical waveguide at a set position of the signal optical waveguide.
图 1所示为本发明实施例提供的光波导结构示意图, 图 1 中光波导包括 上包层(图中未标示)和下包层 1 , 还包括形成在上包层和下包层之间波导芯 层, 波导芯层包括一个波导单元 100, 图 1中, 信号光波导形成在下包层 1面 向上包层一侧的表面上, 用于传输光信号。 信号光波导包括不连续的光路前 端部分 201和光路后端部分 202。光路前端部分 201可以认为是光信号在光信 号波导中传输路径的前端部分, 光路后端部分 202 可以认为是光信号在光信 号波导中传输路径的后端部分, 二者的材料构成以及端面截面尺寸可以认为 是一致的,与现有光波导不同之处在于光路前端部分 201和光路后端部分 202 之间存在有空留区域。 本发明实施例中信号光波导的材料可釆用聚合物材料, 但该聚合物材料的折射率应不小于下包层构成材料的折射率。 1 is a schematic structural view of an optical waveguide according to an embodiment of the present invention. The optical waveguide of FIG. 1 includes an upper cladding layer (not shown) and a lower cladding layer 1 , and further includes an upper cladding layer and a lower cladding layer. The waveguide core layer, the waveguide core layer includes a waveguide unit 100. In Fig. 1, a signal optical waveguide is formed on a surface of the lower cladding layer 1 facing the upper cladding layer for transmitting an optical signal. Signal optical waveguide includes a discontinuous optical path End portion 201 and optical path rear end portion 202. The optical path front end portion 201 can be regarded as the front end portion of the optical signal in the optical signal waveguide, and the optical path rear end portion 202 can be regarded as the rear end portion of the optical signal in the optical signal waveguide, the material composition and the end surface cross section of the optical signal. The size can be considered to be uniform, which is different from the existing optical waveguide in that there is a vacant area between the optical path front end portion 201 and the optical path rear end portion 202. In the embodiment of the present invention, the material of the signal optical waveguide may be a polymer material, but the refractive index of the polymer material should be not less than the refractive index of the under cladding material.
增益光波导 3设置在信号光波导光路前端部分 201和信号光波导光路后 端部分 202之间, 增益光波导 3的一个端面与光路前端部分 201面向光路后 端部分 202的端面连接为一体结构, 另一个端面与光路后端部分 202面向光 路前端部分 201的端面连接为一体结构, 具体如图 1所示。  The gain optical waveguide 3 is disposed between the signal optical waveguide optical path front end portion 201 and the signal optical waveguide optical path rear end portion 202, and one end surface of the gain optical waveguide 3 and the end surface of the optical path front end portion 201 facing the optical path rear end portion 202 are integrally connected. The other end surface is connected to the end surface of the optical path rear end portion 202 facing the optical path front end portion 201 as a unitary structure, as shown in FIG.
进一步的, 本发明实施例中增益光波导 3 的端面截面尺寸和与其连接的 信号光波导的端面截面尺寸一致, 即增益光波导 3 高度和宽度与信号光波导 的高度和宽度一致, 即增益光波导 3和信号光波导通过端面完全耦合在一起, 二者之间无需单独进行对准装配, 不存在耦合问题, 能够避免不必要的耦合 损耗。  Further, in the embodiment of the present invention, the cross-sectional dimension of the end face of the gain optical waveguide 3 is the same as the cross-sectional dimension of the end surface of the signal optical waveguide connected thereto, that is, the height and width of the gain optical waveguide 3 are the same as the height and width of the signal optical waveguide, that is, the gain light. The waveguide 3 and the signal optical waveguide are completely coupled together through the end faces, and there is no need for separate alignment assembly between the two, and there is no coupling problem, and unnecessary coupling loss can be avoided.
本发明实施例中增益光波导 3 中掺杂增益介质, 该增益介质在泵浦光的 泵浦作用下, 能够对信号光波导中传输的信号光进行放大。  In the embodiment of the present invention, the gain optical waveguide 3 is doped with a gain medium, and the gain medium can amplify the signal light transmitted in the signal optical waveguide under the pumping action of the pump light.
本发明实施例中增益光波导 3 中掺杂的增益介质可以是稀土离子、 染料 分子和 /或量子点等, 其掺杂浓度可根据需要达到的目标增益系数确定。  The gain medium doped in the gain optical waveguide 3 in the embodiment of the present invention may be a rare earth ion, a dye molecule, and/or a quantum dot, etc., and the doping concentration thereof may be determined according to a target gain coefficient that needs to be achieved.
本发明实施例中对增益光波导 3 进行泵浦作用的泵浦光可由激光光源提 供, 并且本发明实施例中可以直接利用激光光源对增益光波导 3从侧面进行 泵浦, 在泵浦光从侧面穿过增益光波导 3时, 被增益光波导 3 中的增益介质 吸收。  The pump light for pumping the gain optical waveguide 3 in the embodiment of the present invention may be provided by a laser light source, and in the embodiment of the present invention, the gain light waveguide 3 may be directly pumped from the side by the laser light source, and the pump light is pumped from the side. When the side passes through the gain optical waveguide 3, it is absorbed by the gain medium in the gain optical waveguide 3.
较佳的, 本发明实施例提供的光波导还包括泵浦光波导 4, 该泵浦光波导 4用于传输对增益光波导 3进行泵浦作用的泵浦光,该泵浦光波导 4通过耦合 结构与增益光波导 3耦合, 以对增益光波导 3进行泵浦, 相对直接利用激光 光源对增益光波导侧面进行泵浦, 泵浦光在可在光波导内部传输, 使得泵浦 光能够不断的被增益光波导 3 中的增益介质吸收, 并非只在泵浦光侧面穿过 增益光波导时被吸收, 提高了泵浦光的利用率。 Preferably, the optical waveguide provided by the embodiment of the present invention further includes a pump optical waveguide 4 for transmitting pump light for pumping the gain optical waveguide 3, and the pump optical waveguide 4 passes The coupling structure is coupled with the gain optical waveguide 3 to pump the gain optical waveguide 3, and the side of the gain optical waveguide is relatively directly pumped by the laser light source, and the pump light can be transmitted inside the optical waveguide, so that the pump is pumped The light can be continuously absorbed by the gain medium in the gain optical waveguide 3, and is not absorbed only when the side of the pump light passes through the gain optical waveguide, thereby improving the utilization of the pump light.
进一步的, 本发明实施例中用于传输信号光的信号光波导和用于传输泵 浦光的泵浦光波导 4可釆用相同的材料, 例如都釆用聚苯乙烯、 聚曱基丙烯 酸曱酯、 聚碳酸酯、 聚酰亚胺及其氟化物等聚合物材料, 故本发明实施例中 为简化制作工艺, 可将泵浦光波导 4制作在下包层 1 面向上包层一侧的表面 上, 并在制作信号光波导的同时制作泵浦光波导。  Further, in the embodiment of the present invention, the signal optical waveguide for transmitting signal light and the pump optical waveguide 4 for transmitting the pump light may be made of the same material, for example, polystyrene, polyacrylic acid ruthenium hydride. a polymer material such as an ester, a polycarbonate, a polyimide, or a fluoride thereof. Therefore, in the embodiment of the present invention, in order to simplify the manufacturing process, the pump optical waveguide 4 can be formed on the surface of the lower cladding layer 1 facing the upper cladding layer. Above, and making a pump optical waveguide while making a signal optical waveguide.
具体的,本发明实施例优选泵浦光波导 4、信号光波导光路前端部分 201、 信号光波导光路后端部分 202和增益光波导 3设置在下包层 1面向上包层一 侧的表面上, 而不是将泵浦光波导 4设置在信号光波导和 /或增益光波导 3的 上方, 能够减少泵浦光波导在 OE-PCB中占用的空间资源。  Specifically, in the embodiment of the present invention, the pump optical waveguide 4, the signal optical waveguide optical path front end portion 201, the signal optical waveguide optical path rear end portion 202, and the gain optical waveguide 3 are disposed on a surface of the lower cladding layer 1 facing the upper cladding layer. Rather than placing the pump optical waveguide 4 above the signal optical waveguide and/or the gain optical waveguide 3, the space resources occupied by the pump optical waveguide in the OE-PCB can be reduced.
较佳的,本发明实施例中泵浦光波导 4与信号光波导的光路前端部分 201 可以为一体结构, 使得泵浦光波导 4与信号光波导可一体形成, 进一步简化 制作工艺,图 2A所示为本发明实施例提供的波导单元中信号光波导和泵浦光 波导 4为一体结构的结构示意图。  Preferably, in the embodiment of the present invention, the optical path front end portion 201 of the pump optical waveguide 4 and the signal optical waveguide may be an integrated structure, so that the pump optical waveguide 4 and the signal optical waveguide can be integrally formed, which further simplifies the manufacturing process, and FIG. 2A The schematic diagram of the signal optical waveguide and the pump optical waveguide 4 in the waveguide unit provided by the embodiment of the present invention is an integrated structure.
进一步的, 本发明实施例中在泵浦光波导 4与信号光波导为一体结构时, 优选泵浦光波导 4 的端面截面尺寸与信号光波导的端面截面尺寸一致, 例如 泵浦光波导 4与信号光波导的端面截面为正方形时, 该正方形的边长尺寸可 以为 10 ± 0.5 μπι。 泵浦光波导 4的端面截面尺寸与信号光波导的端面截面尺 寸保持一致, 能够使得二者在制作时, 釆用相同的工艺, 进一步简化工艺, 并且能够使泵浦光波导中传输的泵浦光较好的耦合到增益光波导。  Further, in the embodiment of the present invention, when the pump optical waveguide 4 and the signal optical waveguide are integrated, the cross-sectional dimension of the end face of the pump optical waveguide 4 is preferably the same as the cross-sectional dimension of the end surface of the signal optical waveguide, for example, the pump optical waveguide 4 and When the end face of the signal optical waveguide is square, the square may have a side length of 10 ± 0.5 μm. The cross-sectional dimension of the end face of the pump optical waveguide 4 is consistent with the cross-sectional dimension of the end face of the signal optical waveguide, so that the same process can be used in the fabrication, the process is further simplified, and the pump can be pumped in the pump optical waveguide. Light is preferably coupled to the gain optical waveguide.
较佳的, 本发明实施例中还可选择泵浦光波导 4与信号光波导为分立的 结构, 泵浦光波导 4的光路后端部分与增益光波导 3平行设置, 使得泵浦光 波导 4传输的泵浦光与增益光波导 3之间以倏逝波耦合方式相互作用, 进而 被增益光波导中的增益介质吸收, 提高泵浦光的利用率, 如图 2Β 所示, 图 设置的结构示意图。 具体的, 本发明实施例中泵浦光波导 4 的光路后端部分与增益光波导 3 平行设置, 二者之间的间距不大于 100 nm, 泵浦光波导 4的端面截面尺寸不 大于增益光波导 3的端面截面尺寸, 例如增益光波导 3的端面截面为边长为 10微米左右正方形时, 泵浦光波导 4的端面截面可为边长为 5微米左右正方 形, 泵浦光波导 4的端面截面尺寸越小, 在泵浦光波导 4外部传输的倏逝波 能量越大, 因此为了提高泵浦光的利用率, 本发明实施例中泵浦光波导 4 的 端面截面尺寸应不大于增益光波导的端面截面尺寸。 Preferably, in the embodiment of the present invention, the pump optical waveguide 4 and the signal optical waveguide are selected to be discrete structures, and the optical fiber rear end portion of the pump optical waveguide 4 is disposed in parallel with the gain optical waveguide 3, so that the pump optical waveguide 4 is disposed. The transmitted pump light and the gain optical waveguide 3 interact in an evanescent wave coupling manner, and are absorbed by the gain medium in the gain optical waveguide to improve the utilization of the pump light, as shown in FIG. 2A, the structure of the diagram is set. schematic diagram. Specifically, in the embodiment of the present invention, the rear end portion of the optical path of the pump optical waveguide 4 is disposed in parallel with the gain optical waveguide 3, and the spacing between the two is not more than 100 nm, and the cross-sectional dimension of the end surface of the pump optical waveguide 4 is not greater than the gain light. When the end face cross-sectional dimension of the waveguide 3, for example, the end face section of the gain optical waveguide 3 is a square having a side length of about 10 μm, the end face section of the pump optical waveguide 4 may be a square having a side length of about 5 μm, and the end face of the pump optical waveguide 4 The smaller the cross-sectional size is, the larger the evanescent wave energy transmitted outside the pump optical waveguide 4 is. Therefore, in order to improve the utilization of the pump light, the cross-sectional dimension of the end face of the pump optical waveguide 4 in the embodiment of the present invention should be no larger than the gain light. The cross-sectional dimension of the end face of the waveguide.
更进一步的, 本发明实施例中波导单元中还包括布拉格光栅 5 , 布拉格光 栅 5设置在信号光波导的光路后端部分 202上, 如图 3所示, 用于滤除经过 增益光波导 3但未被吸收的泵浦光, 以防止在检测端进行信号光检测时, 泵 浦光对信号光的干扰。  Further, in the embodiment of the present invention, the waveguide unit further includes a Bragg grating 5 disposed on the optical path rear end portion 202 of the signal optical waveguide, as shown in FIG. 3, for filtering out the gain optical waveguide 3 but The pump light that is not absorbed to prevent the pump light from interfering with the signal light when the signal light is detected at the detecting end.
具体的, 本发明实施例中布拉格光栅所需的结构参数(如周期、 周期数 等)可以根据需要滤除的泵浦光的波长、 目标消光比等进行设定。  Specifically, the structural parameters (such as the period, the number of cycles, and the like) required for the Bragg grating in the embodiment of the present invention can be set according to the wavelength of the pump light to be filtered, the target extinction ratio, and the like.
较佳的, 本发明实施例中另一较佳的实施例中, 可在上包层和下包层之 间设置至少两个波导单元 100, 至少两个波导单元呈阵列排布, 如图 4所示, 图 4所示为本发明实施例提供的光波导构成的另一示意图。  Preferably, in another preferred embodiment of the present invention, at least two waveguide units 100 may be disposed between the upper cladding layer and the lower cladding layer, and at least two waveguide units are arranged in an array, as shown in FIG. 4 is another schematic view showing the configuration of an optical waveguide according to an embodiment of the present invention.
具体的, 本发明实施例中光波导单元阵列中的每一波导单元 100可以是 上述实施例涉及的任一中波导单元, 在该波导单元中包括信号光波导和增益 光波导, 还可包括泵浦光波导和 /或光栅光波导, 本发明实施例中图 4所示的 结构仅是示意性说明, 并不引以为限。  Specifically, each waveguide unit 100 in the optical waveguide unit array in the embodiment of the present invention may be any medium waveguide unit involved in the foregoing embodiment, and includes a signal optical waveguide and a gain optical waveguide in the waveguide unit, and may further include a pump. The structure shown in FIG. 4 in the embodiment of the present invention is only a schematic description, and is not limited thereto.
具体的, 本发明实施例中相邻两个波导单元中的信号光波导之间的间距 不小于 ΙΟ μπι, 泵浦光波导之间的间距不小于 10 μπι, 以避免邻近光波导之间 传输的信号之间相互干扰。 波导结构, 可以完成对多路光信号的放大, 并可在每个波导单元中的增益光 波导中设置不同的放大系数, 对不同通道中光信号进行放大。  Specifically, in the embodiment of the present invention, the spacing between the signal optical waveguides in the adjacent two waveguide units is not less than ΙΟ μπι, and the spacing between the pump optical waveguides is not less than 10 μπι to avoid transmission between adjacent optical waveguides. The signals interfere with each other. The waveguide structure can complete the amplification of the multi-path optical signals, and can set different amplification factors in the gain optical waveguides in each waveguide unit to amplify the optical signals in different channels.
本发明实施例还提供一种印刷电路板, 该印刷电路板包括上述实施例涉 及的任一种光波导。 The embodiment of the invention further provides a printed circuit board, which comprises the above embodiment Any of the optical waveguides.
本发明实施例提供的印刷电路板, 除光波导结构与现有不同以外, 其它 结构与现有技术相同或相似, 在此不再赘述。  The printed circuit board provided by the embodiment of the present invention is the same as or similar to the prior art except that the optical waveguide structure is different from the prior art, and details are not described herein again.
需要说明的是, 本发明实施例中附图所示的光波导结构, 只是对光波导 中需要设置增益光波导部分进行示意性说明, 并不是整个光波导。  It should be noted that the optical waveguide structure shown in the drawings in the embodiments of the present invention is only a schematic description of the portion of the optical waveguide in which the gain optical waveguide is required, and is not the entire optical waveguide.
基于上述实施例提供的光波导, 本发明实施例提供了以下制作方法, 当 然本发明实施例涉及的光波导制作方法只是进行举例说明, 对于光波导的制 作方法, 还可釆用其它的制作形式, 本发明实施例并不作限定。  Based on the optical waveguide provided by the above embodiments, the following embodiments are provided. The optical waveguide manufacturing method according to the embodiment of the present invention is merely an example. For the optical waveguide manufacturing method, other manufacturing methods may be used. The embodiment of the invention is not limited.
图 5所示为本发明实施例提供的光波导制作方法, 包括:  FIG. 5 is a diagram of a method for fabricating an optical waveguide according to an embodiment of the present invention, including:
S101 : 在衬底基板上形成下包层 1 , 如图 6A所示。  S101: forming an under cladding layer 1 on the base substrate as shown in Fig. 6A.
具体的, 本发明实施例中可在干净的 PCB常用材料 FR4 (玻璃环氧树脂 覆铜板)板材上釆用例如旋涂的方式形成一层厚度约为 5 μπι的低折射率聚合 物材料, 该聚合物材料可以是例如聚硅氧烷等, 然后釆用紫外光大范围曝光 该聚合物材料, 形成固化的结构, 用作聚合物光波导的下包层。  Specifically, in the embodiment of the present invention, a low refractive index polymer material having a thickness of about 5 μm can be formed on a clean PCB common material FR4 (glass epoxy copper clad laminate) by, for example, spin coating. The polymeric material can be, for example, a polysiloxane or the like, and then the polymeric material is exposed extensively with ultraviolet light to form a cured structure for use as an under cladding of the polymeric optical waveguide.
S102: 在下包层 1上形成包括至少一个波导单元的波导芯层。  S102: forming a waveguide core layer including at least one waveguide unit on the lower cladding layer 1.
具体的, 本发明实施例中每一波导单元中至少包括用于传输光信号的信 号光波导和用于在泵浦光的泵浦作用下对信号光波导传输的光信号进行放大 的增益光波导 3 , 信号光波导和增益光波导 3通过端面连接为一体结构。  Specifically, each waveguide unit in the embodiment of the present invention includes at least a signal optical waveguide for transmitting an optical signal and a gain optical waveguide for amplifying the optical signal transmitted by the signal optical waveguide under the pumping action of the pump light. 3. The signal optical waveguide and the gain optical waveguide 3 are connected to each other through an end surface.
进一步的, 本发明实施例中每一波导单元中还可包括泵浦光波导 4和 /或 布拉格光栅。  Further, in the embodiment of the present invention, the pump optical waveguide 4 and/or the Bragg grating may be further included in each waveguide unit.
S103: 在完成 S102基础上, 形成覆盖 S102中形成的包括至少一个波导 单元的波导芯层的上包层。  S103: On the basis of completing S102, an upper cladding layer covering the waveguide core layer including at least one waveguide unit formed in S102 is formed.
具体的, 本发明实施例中上包层釆用的材料可以和下包层釆用的材料相 同, 例如聚硅氧烷等聚合物材料, 并利用紫外光曝光方法固化形成。  Specifically, in the embodiment of the present invention, the material for the upper cladding layer may be the same as the material for the lower cladding layer, such as a polymer material such as polysiloxane, and is cured by ultraviolet light exposure.
进一步的, 本发明实施例以下将结合实际应用对上述步骤 S102中形成包 括至少一个波导单元的波导芯层的过程进行详细说明。  Further, the process of forming the waveguide core layer including at least one waveguide unit in the above step S102 will be described in detail below with reference to practical applications.
本发明实施例中首先以形成一个波导单元的过程进行说明。 A、 在图 6A基础上, 形成信号光波导, 在信号光波导上设定位置处预留 空留区域, 由该空留区域界定信号光波导的光路前端部分 201 和光路后端部 分 202。 In the embodiment of the present invention, a process of forming a waveguide unit will be first described. A. Based on Fig. 6A, a signal optical waveguide is formed, and a vacant area is reserved at a set position on the signal optical waveguide, and the optical path front end portion 201 and the optical path rear end portion 202 of the signal optical waveguide are defined by the vacant area.
具体的, 本发明实施例中, 可在图 6A基础上, 釆用例如旋涂的方式形成 一层厚度约为 10 μπι的用于制作信号光波导的聚合物材料, 该聚合物材料与 下包层 1 所用的材料不同, 本发明实施例中可选用例如聚苯乙烯、 聚曱基丙 烯酸曱酯、 聚碳酸酯、 聚酰亚胺及其氟化物等聚合物材料。 该材料的折射率 应不小于下包层 1的材料的折射率。  Specifically, in the embodiment of the present invention, a polymer material for fabricating a signal optical waveguide having a thickness of about 10 μm can be formed on the basis of FIG. 6A by, for example, spin coating, the polymer material and the underlying package. The material used for layer 1 is different, and a polymer material such as polystyrene, polydecyl methacrylate, polycarbonate, polyimide, and fluoride thereof may be selected in the embodiment of the present invention. The refractive index of the material should not be less than the refractive index of the material of the under cladding layer 1.
本发明实施例中可选用例如紫外曝光或者软刻蚀等方式形成信号光波导 的结构, 信号光波导的高和宽均为 10 μπι左右。  In the embodiment of the present invention, the structure of the signal optical waveguide can be formed by, for example, ultraviolet exposure or soft etching, and the height and width of the signal optical waveguide are both about 10 μπι.
较佳的, 本发明实施例中可在下包层上形成信号光波导的同时, 一体形 成用于传输泵浦光的泵浦光波导 4 ,使得信号光波导和泵浦光波导 4为一体结 构, 如图 6Β所示。  Preferably, in the embodiment of the present invention, the signal optical waveguide can be formed on the lower cladding layer, and the pump optical waveguide 4 for transmitting the pump light is integrally formed, so that the signal optical waveguide and the pump optical waveguide 4 are integrated. As shown in Figure 6Β.
当然, 本发明实施例中在下包层上形成信号光波导时, 还可釆用在下包 层上形成分立的信号光波导和泵浦光波导 4,信号光波导的空留区域与泵浦光 波导 4的光路后端部分平行设置, 如图 6C所示。  Of course, in the embodiment of the present invention, when the signal optical waveguide is formed on the lower cladding layer, the discrete signal optical waveguide and the pump optical waveguide 4 are formed on the lower cladding layer, and the vacant area of the signal optical waveguide and the pump optical waveguide are used. The rear end portions of the optical paths of 4 are arranged in parallel as shown in Fig. 6C.
进一步的, 本发明实施例中, 还可在信号光波导的光路后端部分形成布 拉格光栅 5 , 用于滤除经过增益光波导之后未被完全吸收的泵浦光, 防止泵浦 光干扰信号光的探测。 其中, 加工布拉格光栅所需的结构参数由需要滤除的 泵浦光波长决定。  Further, in the embodiment of the present invention, the Bragg grating 5 may be formed at the rear end portion of the optical path of the signal optical waveguide for filtering the pump light that is not completely absorbed after passing through the gain optical waveguide, and preventing the pump light from interfering with the signal light. Detection. Among them, the structural parameters required to process the Bragg grating are determined by the wavelength of the pump light that needs to be filtered out.
本发明实施例中布拉格光栅 5 的制作, 可以在形成信号光波导和泵浦光 波导 3的同时利用软刻蚀法制作, 也可在完成信号光波导和泵浦光波导 3后, 釆用激光切除方法进行加工处理, 形成如图 6D或图 6Ε的结构。  In the embodiment of the present invention, the Bragg grating 5 can be fabricated by using a soft etching method while forming the signal optical waveguide and the pump optical waveguide 3, or after the signal optical waveguide and the pump optical waveguide 3 are completed, the laser is used. The cutting method is processed to form a structure as shown in Fig. 6D or Fig. 6A.
Β、 在信号光波导的空留区域内形成增益光波导 3 , 使增益光波导 3的一 个端面与光路前端部分 201 面向光路后端部分 202的端面连接为一体结构, 另一个端面与光路后端部分 202面向光路前端部分 201 的端面连接为一体结 构。 较佳的, 本发明实施例可在完成图 6B或图 6C的基础上, 或者在完成图 6D或图 6E的基础上,可在信号光波导的空留区域内形成增益光波导 3 ,使增 益光波导 3 与信号光波导的光路前端部分和光路后端部分连接为一体结构, 且端面截面尺寸和与其连接的信号光波导的端面截面尺寸一致。 增益, the gain optical waveguide 3 is formed in the vacant area of the signal optical waveguide, and one end surface of the gain optical waveguide 3 and the end surface of the optical path front end portion 201 facing the optical path rear end portion 202 are integrally connected, and the other end surface and the optical path rear end are connected The end faces of the portion 202 facing the front end portion 201 of the optical path are connected in a unitary structure. Preferably, the embodiment of the present invention can form the gain optical waveguide 3 in the vacant area of the signal optical waveguide on the basis of completing FIG. 6B or FIG. 6C or on the basis of completing FIG. 6D or FIG. 6E. The optical waveguide 3 is connected to the front end portion of the optical path of the signal optical waveguide and the rear end portion of the optical path, and has an end face cross-sectional dimension which is identical to the end cross-sectional dimension of the signal optical waveguide to which it is connected.
具体的, 本发明实施例中可选用合适的增益介质, 如稀土离子、 量子点 和 /或染料分子等, 将其按适当的浓度掺杂进入聚合物溶液中, 混合均勾, 以 备用。 本发明实施例中可选用例如旋涂的方式, 将上述掺杂有增益介质的聚 合物混合溶液均勾涂覆在已制作的光波导结构上, 然后利用紫外曝光或软刻 蚀等方法在预留的空留区域位置处形成含增益介质的增益光波导, 对信号光 波导传输的光信号进行放大, 该增益光波导正好处于信号光波导的光路前段 部分和光路后端部分之间, 且端面截面尺寸与信号光波导的端面截面尺寸一 致, 从而实现增益光波导与信号光波导之间很好的耦合, 若在图 6B或图 6C 的基础上制作增益光波导,则最终的结构图如图 2A或图 2B所示,若在图 6D 或图 6E的基础上制作增益光波导,则最终的结构示意图如图 6F或图 3所示。  Specifically, in the embodiment of the present invention, a suitable gain medium, such as a rare earth ion, a quantum dot, and/or a dye molecule, may be selected and doped into the polymer solution at an appropriate concentration, and mixed and hooked for use. In the embodiment of the present invention, the polymer mixed solution doped with the gain medium may be coated on the prepared optical waveguide structure by, for example, spin coating, and then pre-prescribed by ultraviolet exposure or soft etching. A gain optical waveguide containing a gain medium is formed at a position of the remaining air leaving region, and the optical signal transmitted by the signal optical waveguide is amplified, and the gain optical waveguide is located between the front portion of the optical path of the signal optical waveguide and the rear end portion of the optical path, and the end surface The cross-sectional dimension is the same as the cross-sectional dimension of the signal optical waveguide, so that a good coupling between the gain optical waveguide and the signal optical waveguide is achieved. If the gain optical waveguide is fabricated on the basis of FIG. 6B or FIG. 6C, the final structural diagram is as shown in FIG. 2A or FIG. 2B, if a gain optical waveguide is fabricated on the basis of FIG. 6D or FIG. 6E, the final structural diagram is as shown in FIG. 6F or FIG.
本发明的再一实施例中以形成波导单元阵列的过程为例进行说明。  In another embodiment of the present invention, a process of forming a waveguide element array will be described as an example.
本发明实施例中形成波导单元阵列的过程与上述形成一个波导单元的过 程类似, 不同之处在于在图 6A的基础上, 需要形成波导单元阵列, 该波导单 元阵列包括至少两个波导单元, 每个波导单元中包括信号光波导和泵浦光波 导 4, 并且在信号光波导上设定位置处预留空留区域, 由该空留区域界定信号 光波导的光路前端部分 201和光路后端部分 202。  The process of forming the waveguide unit array in the embodiment of the present invention is similar to the above process of forming a waveguide unit, except that on the basis of FIG. 6A, it is required to form a waveguide unit array including at least two waveguide units, each The waveguide unit includes a signal optical waveguide and a pump optical waveguide 4, and a reserved space is reserved at a set position on the signal optical waveguide, and the optical path front end portion 201 and the optical path rear end portion of the signal optical waveguide are defined by the empty area 202.
进一步的, 本发明实施例中可在信号光波导的光路后端部分制作布拉格 光栅。  Further, in the embodiment of the invention, a Bragg grating can be fabricated at the rear end portion of the optical path of the signal optical waveguide.
更进一步的,本发明实施例中每个波导单元之间的间距不小于 10 μπι, 即 相邻波导单元中的信号光波导之间的间距不小于 ΙΟμπι, 泵浦光波导之间的间 距也不小于 ΙΟμπι, 以避免邻近光波导之间的相互干扰, 具体如图 7Α所示。  Further, in the embodiment of the present invention, the spacing between each waveguide unit is not less than 10 μπι, that is, the spacing between the signal optical waveguides in adjacent waveguide units is not less than ΙΟμπι, and the spacing between the pump optical waveguides is not Less than ΙΟμπι, to avoid mutual interference between adjacent optical waveguides, as shown in Figure 7Α.
需要说明的是,本发明实施例中图 7Α是以信号光波导和泵浦光波导 4为 一体结构为例进行说明的, 对于信号光波导和泵浦光波导 4为分立的结构相 似, 本发明实施例在此不再赘述。 It should be noted that, in the embodiment of the present invention, FIG. 7A is an example in which the signal optical waveguide and the pump optical waveguide 4 are integrated, and the signal optical waveguide and the pump optical waveguide 4 are discrete structural phases. The embodiments of the present invention are not described herein again.
更进一步的, 本发明实施例在图 7A基础上, 在每个波导单元中都需要制 作增益光波导, 如图 7B所示, 具体的制作方法与制作一个波导单元中增益光 波导的制作过程类似, 在此不再赘述。  Further, in the embodiment of the present invention, on the basis of FIG. 7A, a gain optical waveguide is required in each waveguide unit, as shown in FIG. 7B, and the specific fabrication method is similar to the process of fabricating the gain optical waveguide in a waveguide unit. , will not repeat them here.
本发明实施例提供的光波导的制作方法, 形成用于传输光信号的信号光 波导, 和用于在泵浦光的泵浦作用下对信号光波导传输的光信号进行放大的 增益光波导, 并且增益光波导与信号光波导连接为一体结构, 故增益光波导 与信号光波导之间不存在耦合损耗, 故通过本发明能够在避免耦合损耗的前 提下对信号光波导传输的光信号进行放大, 进而能够避免由于检测端接收到 的光信号光功率过小造成的探测器误码率过高的问题, 保证系统的正常运行, 避免光信号传输损耗大引起的光互连瓶颈问题出现。  The optical waveguide manufacturing method provided by the embodiment of the invention forms a signal optical waveguide for transmitting an optical signal, and a gain optical waveguide for amplifying the optical signal transmitted by the signal optical waveguide under the pumping action of the pump light, Moreover, the gain optical waveguide and the signal optical waveguide are connected in an integrated structure, so that there is no coupling loss between the gain optical waveguide and the signal optical waveguide, so that the optical signal transmitted by the signal optical waveguide can be amplified by the invention without the coupling loss. In addition, the problem that the error rate of the detector is too high due to the excessive light power of the optical signal received by the detecting end can be avoided, the normal operation of the system is ensured, and the optical interconnect bottleneck problem caused by the large transmission loss of the optical signal is avoided.
更进一步的, 本发明实施例中形成的信号光波导包括不连续的光路前端 部分和光路后端部分, 增益光波导形成在不连续的信号光波导的光路前端部 分和光路后端部分之间, 分别与信号光波导的光路前端部分和光路后端部分 连接为一体结构, 并且端面截面尺寸一致, 进一步保证在无耦合问题的前提 下, 对信号光波导传输的信号光进行放大, 避免由于检测端接收到的光信号 光功率过小造成的探测器误码率过高的问题, 保证系统的正常运行, 避免光 信号传输损耗大引起的光互连瓶颈问题出现。  Further, the signal optical waveguide formed in the embodiment of the present invention includes a discontinuous optical path front end portion and an optical path rear end portion, and the gain optical waveguide is formed between the optical path front end portion and the optical path rear end portion of the discontinuous signal optical waveguide. The front end portion of the optical path of the signal optical waveguide and the rear end portion of the optical path are respectively connected as an integral structure, and the cross-sectional dimensions of the end faces are uniform, thereby further ensuring that the signal light transmitted by the signal optical waveguide is amplified without the coupling problem, thereby avoiding the detection end The problem that the error rate of the detector is too high due to the excessively small optical power of the received optical signal ensures the normal operation of the system and avoids the problem of optical interconnection bottleneck caused by the large loss of optical signal transmission.
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。  Those skilled in the art will appreciate that embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。 The present invention has been described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG. These computer program instructions can be provided to a general purpose computer, a special purpose computer, An embedded processor or processor of another programmable data processing device to generate a machine such that instructions executed by a processor of a computer or other programmable data processing device are generated for implementation in a flow or a flow of flowcharts and/or Or a block diagram of a device in a box or a function specified in a plurality of boxes.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。  The computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device. The apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。  These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. The instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。  Although the preferred embodiment of the invention has been described, it will be apparent to those skilled in the < Therefore, the appended claims are intended to be interpreted as including the preferred embodiments and the modifications and modifications The spirit and scope of the embodiments of the present invention are departed. Thus, it is intended that the present invention cover the modifications and modifications of the embodiments of the invention.

Claims

权 利 要 求 Rights request
1、 一种光波导, 其特征在于, 包括下包层、 上包层以及形成在所述下包 层和所述上包层之间的波导芯层; 1. An optical waveguide, characterized in that it includes a lower cladding layer, an upper cladding layer, and a waveguide core layer formed between the lower cladding layer and the upper cladding layer;
所述波导芯层包括至少一个波导单元, 每一个所述波导单元中包括用于 传输光信号的信号光波导, 和用于在泵浦光的泵浦作用下对所述信号光波导 传输的光信号进行放大的增益光波导; The waveguide core layer includes at least one waveguide unit, each of the waveguide units includes a signal optical waveguide for transmitting optical signals, and light for transmitting to the signal optical waveguide under the pumping action of pump light. Gain optical waveguide for signal amplification;
所述信号光波导和所述增益光波导设置在所述下包层面向所述上包层一 侧的表面上, 且所述信号光波导和所述增益光波导通过端面连接为一体结构。 The signal optical waveguide and the gain optical waveguide are arranged on the surface of the lower cladding layer facing the upper cladding layer, and the signal optical waveguide and the gain optical waveguide are connected into an integrated structure through end faces.
2、 如权利要求 1所述的光波导, 其特征在于, 所述信号光波导包括光路 前端部分和光路后端部分; 2. The optical waveguide according to claim 1, characterized in that the signal optical waveguide includes an optical path front end part and an optical path rear end part;
所述增益光波导设置在所述光路前端部分和所述光路后端部分之间, 所 述增益光波导的一个端面与所述光路前端部分面向所述光路后端部分的端面 连接为一体结构, 所述增益光波导的另一个端面与所述光路后端部分面向所 述光路前端部分的端面连接为一体结构。 The gain optical waveguide is arranged between the front end portion of the optical path and the rear end portion of the optical path, and one end surface of the gain optical waveguide is connected to an end surface of the front end portion of the optical path facing the rear end portion of the optical path to form an integrated structure. The other end face of the gain optical waveguide is connected to an end face of the rear end portion of the optical path facing the front end portion of the optical path to form an integrated structure.
3、 如权利要求 1或 2所述的光波导, 其特征在于, 所述增益光波导的端 面截面尺寸和所述信号光波导的端面截面尺寸一致。 3. The optical waveguide according to claim 1 or 2, characterized in that the end cross-sectional size of the gain optical waveguide is consistent with the end cross-sectional size of the signal optical waveguide.
4、 如权利要求 2所述的光波导, 其特征在于, 所述波导单元还包括传输 所述泵浦光的泵浦光波导; 4. The optical waveguide according to claim 2, wherein the waveguide unit further includes a pump optical waveguide that transmits the pump light;
所述泵浦光波导, 设置在所述下包层面向所述上包层一侧的表面上。 The pump optical waveguide is disposed on the surface of the lower cladding facing the upper cladding.
5、 如权利要求 4所述的光波导, 其特征在于, 所述泵浦光波导与所述信 号光波导的光路前端部分为一体结构。 5. The optical waveguide according to claim 4, characterized in that the optical path front end portion of the pump optical waveguide and the signal optical waveguide is an integral structure.
6、 如权利要求 5所述的光波导, 其特征在于, 所述泵浦光波导的端面截 面尺寸与所述信号光波导的端面截面尺寸一致。 6. The optical waveguide according to claim 5, characterized in that the end cross-sectional size of the pump optical waveguide is consistent with the end cross-sectional size of the signal optical waveguide.
7、 如权利要求 4所述的光波导, 其特征在于, 所述泵浦光波导的光路后 端部分与所述增益光波导平行设置。 7. The optical waveguide according to claim 4, wherein the rear end portion of the optical path of the pump optical waveguide is arranged parallel to the gain optical waveguide.
8、 如权利要求 7所述的光波导, 其特征在于, 所述泵浦光波导的光路后 端部分与所述增益光波导之间的间距不大于 100 nm。 8. The optical waveguide according to claim 7, characterized in that, after the optical path of the pump optical waveguide The distance between the end portion and the gain optical waveguide is not greater than 100 nm.
9、 如权利要求 7或 8所述的光波导, 其特征在于, 所述泵浦光波导的端 面截面尺寸不大于所述增益光波导的端面截面尺寸。 9. The optical waveguide according to claim 7 or 8, characterized in that the end cross-sectional size of the pump optical waveguide is not larger than the end cross-sectional size of the gain optical waveguide.
10、 如权利要求 4所述的光波导, 其特征在于, 每一所述波导单元中还 包括布拉格光栅, 所述布拉格光栅设置在所述信号光波导的光路后端部分, 用于滤除经过所述增益光波导但未被吸收的泵浦光。 10. The optical waveguide according to claim 4, characterized in that each waveguide unit further includes a Bragg grating, and the Bragg grating is disposed at the rear end of the optical path of the signal optical waveguide for filtering out The gain light is waveguided but the pump light is not absorbed.
11、 如权利要求 4-10任一项所述的光波导, 其特征在于, 所述波导单元 的数量为至少两个, 其中, 11. The optical waveguide according to any one of claims 4 to 10, characterized in that the number of said waveguide units is at least two, wherein,
至少两个所述波导单元呈阵列排布, 相邻两个波导单元中的信号光波导 之间以及泵浦光波导之间的间距不小于 10 μπι。 At least two of the waveguide units are arranged in an array, and the distance between the signal light waveguides and the pump light waveguides in two adjacent waveguide units is not less than 10 μm.
12、 一种印刷电路板, 其特征在于, 包括权利要求 1-11任一项所述的光 波导。 12. A printed circuit board, characterized by including the optical waveguide according to any one of claims 1-11.
PCT/CN2014/075642 2014-04-17 2014-04-17 Optical waveguide and printed circuit board WO2015157980A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480000465.5A CN105308487B (en) 2014-04-17 2014-04-17 A kind of optical waveguide and printed circuit board
PCT/CN2014/075642 WO2015157980A1 (en) 2014-04-17 2014-04-17 Optical waveguide and printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075642 WO2015157980A1 (en) 2014-04-17 2014-04-17 Optical waveguide and printed circuit board

Publications (1)

Publication Number Publication Date
WO2015157980A1 true WO2015157980A1 (en) 2015-10-22

Family

ID=54323409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075642 WO2015157980A1 (en) 2014-04-17 2014-04-17 Optical waveguide and printed circuit board

Country Status (2)

Country Link
CN (1) CN105308487B (en)
WO (1) WO2015157980A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071199B2 (en) 2018-10-09 2021-07-20 City University Of Hong Kong Optical printed circuit board and its fabrication method
RU2778285C1 (en) * 2021-05-18 2022-08-17 Акционерное общество "Научно-Исследовательский Технологический Институт "Авангард" Method for manufacturing the structure of an optoelectronic bus of a printed circuit board and apparatus for implementation thereof
US11899255B2 (en) 2022-06-17 2024-02-13 City University Of Hong Kong Optical printed circuit board and its fabricating method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081643B2 (en) * 2003-08-20 2006-07-25 Samsumg Electronics Co., Ltd. Gain-clamped semiconductor optical amplifier having horizontal lasing structure and manufacturing method thereof
CN1963575A (en) * 2005-11-08 2007-05-16 阿尔卡特公司 Amplifying optical fiber
CN101013249A (en) * 2007-02-12 2007-08-08 清华大学 Narrow pulse fiber amplifier
EP2226659A1 (en) * 2007-12-21 2010-09-08 Fujikura, Ltd. Optical waveguide, method for manufacturing the optical waveguide, and optical device provided with the optical waveguide
CN101876773A (en) * 2009-11-27 2010-11-03 北京交通大学 Large-power multiband single-core optical fiber amplifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908121A (en) * 1973-11-19 1975-09-23 Gte Laboratories Inc Integrated optical frequency-division multiplexer
DE4113354A1 (en) * 1991-04-24 1992-10-29 Siemens Ag OPTICALLY PUMPED WAVE GUIDE
US20030142388A1 (en) * 2002-01-31 2003-07-31 Sergey Frolov Waveguide optical amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081643B2 (en) * 2003-08-20 2006-07-25 Samsumg Electronics Co., Ltd. Gain-clamped semiconductor optical amplifier having horizontal lasing structure and manufacturing method thereof
CN1963575A (en) * 2005-11-08 2007-05-16 阿尔卡特公司 Amplifying optical fiber
CN101013249A (en) * 2007-02-12 2007-08-08 清华大学 Narrow pulse fiber amplifier
EP2226659A1 (en) * 2007-12-21 2010-09-08 Fujikura, Ltd. Optical waveguide, method for manufacturing the optical waveguide, and optical device provided with the optical waveguide
CN101876773A (en) * 2009-11-27 2010-11-03 北京交通大学 Large-power multiband single-core optical fiber amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071199B2 (en) 2018-10-09 2021-07-20 City University Of Hong Kong Optical printed circuit board and its fabrication method
RU2778285C1 (en) * 2021-05-18 2022-08-17 Акционерное общество "Научно-Исследовательский Технологический Институт "Авангард" Method for manufacturing the structure of an optoelectronic bus of a printed circuit board and apparatus for implementation thereof
US11899255B2 (en) 2022-06-17 2024-02-13 City University Of Hong Kong Optical printed circuit board and its fabricating method

Also Published As

Publication number Publication date
CN105308487B (en) 2018-09-21
CN105308487A (en) 2016-02-03

Similar Documents

Publication Publication Date Title
US10007061B2 (en) Three-dimensional (3D) photonic chip-to-fiber interposer
US7251389B2 (en) Embedded on-die laser source and optical interconnect
TW201403152A (en) Optical waveguide, optical interconnection part, optical module, opto-electrical hybrid board, and electronic device
JP2015087756A (en) Double mirror structure for wavelength division multiplexing with polymer waveguides
CN108873161B (en) Silicon-based optical waveguide structure and manufacturing method thereof
US9122820B2 (en) Subwavelength grating coupler
JP5696538B2 (en) Manufacturing method of opto-electric hybrid board
WO2015157980A1 (en) Optical waveguide and printed circuit board
JP2001007463A (en) Substrate for mixedly mounting optical and electrical parts and its manufacture
CN103713357B (en) A kind of silicon-based optical waveguide polarization converter and preparation method thereof
JP5054724B2 (en) Optical coupling structure and manufacturing method thereof
KR20070083376A (en) Opto-electric printed circuit board, method of preparing the same, and method of transmitting opto-electric using the same
CN203673098U (en) Silicon substrate optical waveguide polarization converter
JPH1152198A (en) Optical connecting structure
TW201732336A (en) Substrate integrated waveguide
JP7430812B2 (en) Optical modulator and related equipment
JP2009128899A (en) Method of manufacturing optical board
US9274297B2 (en) Photonic waveguide
CN203117454U (en) Optical waveguide
JP2004177730A (en) Three dimensional optical waveguide, three dimensional optical coupling structure, and optical communication system
JP5300700B2 (en) Optical wiring board
Tsiokos et al. Optical interconnects: fundamentals
JP2004053623A (en) Optical waveguide substrate equipped with optical path changing part and its manufacture method
JP2015219295A (en) Polarization rotation element
JP3808804B2 (en) Optical waveguide structure and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480000465.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889715

Country of ref document: EP

Kind code of ref document: A1