JP2004177730A - Three dimensional optical waveguide, three dimensional optical coupling structure, and optical communication system - Google Patents

Three dimensional optical waveguide, three dimensional optical coupling structure, and optical communication system Download PDF

Info

Publication number
JP2004177730A
JP2004177730A JP2002345001A JP2002345001A JP2004177730A JP 2004177730 A JP2004177730 A JP 2004177730A JP 2002345001 A JP2002345001 A JP 2002345001A JP 2002345001 A JP2002345001 A JP 2002345001A JP 2004177730 A JP2004177730 A JP 2004177730A
Authority
JP
Japan
Prior art keywords
optical waveguide
dimensional optical
core
dimensional
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002345001A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002345001A priority Critical patent/JP2004177730A/en
Publication of JP2004177730A publication Critical patent/JP2004177730A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional optical waveguide for three dimensional optical wiring of multibus, which permits easy optical coupling to an optical element and makes large-capacity high-speed data communication possible. <P>SOLUTION: The three-dimensional optical waveguide 10 is a three-dimensional optical waveguide of multimodes and is provided with a plurality of cores 12 extending in a longitudinal direction of the three-dimensional optical waveguide 10 in regular three-dimensional arrays and clads 14 disposed around the cores 12 along the cores 12 and has an inclined end surface 16 at 45° as an end surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、三次元光導波路、面発光半導体レーザアレイ又はフォトダイオードアレイと三次元光導波路との光結合構造、及び光通信システムに関し、更に詳細には、面発光半導体レーザアレイ又はフォトダイオードアレイと高い光結合効率で光結合できる三次元光導波路、三次元光導波路と面発光半導体レーザアレイ又はフォトダイオードアレイとを高い光結合効率で結合させる光結合構造、及び三次元光導波路と面発光半導体レーザアレイ及びフォトダイオードアレイとが高い光結合効率で光結合された光通信システムに関するものである。
【0002】
【従来の技術】
情報化社会の到来と共に、大容量かつ高速の通信方式が必要とされている。一方、従来から情報伝達手段として用いられている電気配線は、システムの高速化に伴い高周波応答に限界が生じてくる。
そこで、電気配線に代わり、大容量かつ高速の通信方式で用いられる次世代光インターコネクションでは、光信号を伝達する光配線が脚光を浴びている。
【0003】
光配線は個人の家庭でも普及しはじめているものの、光配線を家庭で普及させる際の最大の課題は、コストである。
従来から光配線に用いられている石英光導波路は性能が高いものの、コストが嵩むという難点があるために、低コストで作製容易なポリマー系光導波路が光配線材として着目されている。
ポリマー系光導波路による光配線を更に低コストにするために、また光配線ではマルチバスが必要とされているという事情を鑑みて、二次元光導波路を積層化し、コアを三次元の格子状に立体配置することによりバスを効率良く複数本化して、データの通信量を効率的に大容量化することが提案されている。
【0004】
例えば、並列伝送三次元光配線のインターコネクション装置の例として、三次元光導波路が特開平11−183747号公報などに開示されている。
前掲公報は、図6に示すように、所定位置に配置された複数本のコア62と、コア62のまわりに設けられ、コアより屈折率の小さいクラッド64とから構成された高分子光導波路フィルム66を積層し、コア62の長手方向に直交する端面68を有するマルチコア型の高分子光導波路アレイ70を開示している。
【0005】
【特許文献1】
特開平11−183747号公報(図2)
【0006】
【発明が解決しようとする課題】
ところで、上述した従来の三次元光導波路70には、以下のような問題があった。
第1の問題は、半導体レーザ素子或いは受光素子等の光素子と、三次元光導波路70とを高い光結合効率で光結合させることが難しいということである。
高い光結合効率で光素子と三次元光導波路とを光結合させるには、光を各コア62に入射又は出射させる際、垂直に切り出した三次元光導波路の端面68に直交する方向に光を入射させ、また出射させる必要がある。
しかし、三次元光導波路70の端面に露出する複数本のコア62のそれぞれに光素子から光を入射させたり、或いは複数本のコアのそれぞれから光素子に光を出射させることは、実際には、極めて難しい。つまり、各コア62に対向して光素子を狭い端面上に位置決めし、配置することは、物理的にも難しい。また、レンズなどを設けるスペースを考慮すると、光素子及びレンズ等のアライメントのために複雑な機構が要求される。
第2の問題は、作製プロセスが複雑で、コストが嵩み、実用化が難しいということである。
【0007】
本発明は、上記事情に鑑みてなされたものであり、その目的は、光素子との光結合が容易で、大容量高速データ通信を可能にするマルチバス三次元光配線用の三次元光導波路、及び三次元光結合構造、並びにマルチバス三次元光配線を適用した光通信システムを提供することである。
【0008】
【課題を解決するための手段】
本発明者は、先ず、三次元光導波路に関連する光源について考えた結果、端面発光型のファブリペロー半導体レーザ素子を三次元光導波路に集積することは上述のように物理的に困難であると結論した。
それに比べて、面発光半導体レーザ素子は、二次元アレイ状に容易に配列でき、基板面に直交する方向にレーザ光を出射するので、三次元光導波路との結合が遊離である。
そこで、本発明者は、発光素子として面発光半導体レーザ素子を採用し、面発光半導体レーザ素子と高い光結合効率で結合できる三次元光導波路を工夫することにより、本発明を発明するに到った。
【0009】
上記目的を達成するために、本発明に係る三次元光配線は、三次元配列で延在する複数本のコアと、
コアに沿ってコアの周りに延在する、屈折率がコアより小さいクラッドと
を有する三次元光導波路であって、
三次元光導波路の少なくとも一方の端面が、コアの延在方向に斜めに傾斜する傾斜端面であることを特徴としている。
【0010】
本発明の光導波路は、経済性及び取り付け容易性の観点から好適には高分子光導波路であって、ポリマー系樹脂で形成する。
ポリイミド基板、ガラス基板、石英基板、Si基板、又はGaAs基板などの基板上にポリマー系樹脂層からなるコア及びクラッドを設けて基板上に二次元光導波路を形成し、次いで二次元光導波路を積層化して三次元光導波路を形成した後に、端面を傾斜端面に研磨し、次いで基板を剥離することにより、三次元光導波路を形成することができる。
【0011】
本発明では、三次元光導波路の端面が傾斜端面になっているので、垂直な端面に比べて、端面の面積がそれだけ広くなり、光素子との三次元光結合が物理的に容易になる。
光配線に用いられる光インターコネクションは、機器内に設けられることが多いので、小型化が要求されている。本発明に係る三次元光配線は、発光素子として面発光半導体レーザ素子を、受光素子としてフォトダイオードを採用することにより、マルチバス大容量光通信を可能とする光配線を低コストで実現することができる。
【0012】
また、本発明の好適な実施態様では、コアの延在方向が水平で、傾斜端面がコアの延在方向に対して鋭角をなすように三次元光導波路を保持し、三次元光導波路の下方から光を各コアの傾斜端面に照射したとき、下段のコアが上段のコアに投影されないように、コアの延在方向に直交する断面で見て、上段のコアが下段のコアに対して斜め方向の位置に配置される三次元配列で、各コアが配列されている。
これにより、面発光半導体レーザ素子を二次元アレイ状に配置してなる面発光半導体レーザアレイから各コアの傾斜端面に向けレーザ光を出射したとき、レーザ光の光路が相互に重なるような不都合が生じない。
【0013】
本発明の更に好適な実施態様では、傾斜端面がコアの延在方向に対して45°をなしている。これにより、面発光半導体レーザ素子、フォトダイオード等の光素子と三次元光導波路との光結合が容易になる。
【0014】
本発明に係る三次元光結合構造は、請求項2又は3に記載の三次元光導波路と、
二次元アレイ状に配置された複数個の面発光半導体レーザ素子を有する面発光半導体レーザアレイと
を備え、
コアの延在方向が水平で、傾斜端面がコアの延在方向に鋭角をなすように三次元光導波路を保持し、三次元光導波路の下方の面発光半導体レーザ素子から各コアの傾斜端面に向け、それぞれ、光を入射させるとき、各コアの傾斜端面での反射光がコアの延在方向に反射するように、面発光半導体レーザアレイを三次元光導波路の傾斜端面の下方に配置したことを特徴としている。
【0015】
本発明に係る別の三次元光結合構造は、請求項2又は3に記載の三次元光導波路と、
二次元アレイ状に配置された複数個のフォトダイオードを有するフォトダイオードアレイと
を備え、
コアの延在方向が水平で、傾斜端面がコアの延在方向に鋭角をなすように三次元光導波路を保持し、各コアを導波する光の傾斜端面での反射光をそれぞれフォトダイオードで受光するように、フォトダイオードアレイを三次元光導波路の傾斜端面の下方に配置したことを特徴としている。
【0016】
本発明に係る光通信システムは、請求項2又は3に記載の三次元光導波路と、面発光半導体レーザアレイと、
フォトダイオードアレイと
を備え、
面発光半導体レーザアレイは請求項4に記載の三次元光結合構造によって三次元光導波路の一方の端部に光結合され、フォトダイオードアレイは請求項5に記載の三次元光結合構造によって三次元光導波路の一方の端部に光結合されていることを特徴としている。
【0017】
本発明に係る光通信システムは、三次元光導波路、面発光半導体レーザアレイ及びフォトダイオードアレイを効率良く立体配置したことにより、三次元光配線によるデータ通信を実現している。
【0018】
【発明の実施の形態】
以下に、実施形態例を挙げ、添付図面を参照して、本発明の実施の形態を具体的かつ詳細に説明する。
三次元光導波路の実施形態例1
本実施形態例は本発明に係る三次元光導波路の実施形態の一例であって、図1(a)は本実施形態例の三次元光導波路の構成を示す斜視図、図1(b)は三次元光導波路の長手方向(コアの延在方向)の断面図、及び図1(c)は三次元光導波路の長手方向に直交する方向の断面図である。
本実施形態例の三次元光導波路10は、マルチモードの三次元光導波路であって、図1に示すように、規則的な三次元配列で三次元光導波路10の長手方向に延在する複数本のコア12と、コア12に沿ってコア12の周りに設けられたクラッド14とを備え、端面として45°の傾斜端面16を有する。
【0019】
コア12は、屈折率がクラッド14の屈折率より0.2%から2.0%程度大きい高分子有機化合物で形成された、断面20μm〜100μm角の柱状体であって、本実施形態例では、三次元光導波路10の長手方向に直交する横断面で見て、1段当たりの3本のコア12が縦方向に所定の間隔Gで、かつ横方向に所定の間隔Gの3段で配置されている。
クラッド14も屈折率がコア12の高分子有機化合物より小さい高分子有機化合物で形成されている。
【0020】
横方向のコア12とコア12のと間、及び最外側のコア12の外側には、コア12と同じ組成の高分子有機化合物からなるクラッドが設けてある。例えば、高分子有機化合物として、オキセタン樹脂(ソニーケミカル社製)、フッ素化ポリイミド(NTT−AT社製、日立化成社製)がある。
コア12及びクラッド14は、同種類の高分子材料である。コア12は、クラッド14より屈折率が0.2〜2.0%程大きい。屈折率の大きいコア用高分子材料を塗布後、ネガマスクパターンを介して紫外線を照射する。コアとなる部分にのみ紫外線が照射され、その部分の高分子材料は硬化する。一方、ネガマスクの影の部分である紫外線が照射されなかった部分は、アセトンで除去される。このようにして、コア12の光導波路が形成される。
その後、クラッドの屈折率の低い高分子材料を塗布し、全面に紫外線を照射すると、上部クラッド14が形成される。
【0021】
別法として、紫外線照射により、コア12とコア12との間、及び最外側のコア12の外側に屈折率がコア12より低い中間クラッドを形成することもできる。
コア12と同じ高分子有機化合物であって、紫外線照射により屈折率が低くなる高分子有機化合物を塗布して、高分子有機化合物層を成膜する。次いで、マスクを介した紫外線照射により屈折率をコア12より小さくした中間クラッドをコア12とコア12との間、及び最外側のコア12の外側に形成する。そのような高分子有機化合物として、例えばグラシア(日本ペイント製)がある。
【0022】
45°傾斜端面16は、コア12の延在方向に対して45°の角度で傾斜する端面であって、三次元光導波路10の端部を研磨することにより形成されている。V型ブレードを有するダイシング装置(ディスコ社製)で、45°に光導波路の端面を研磨できる。
【0023】
本実施形態例の三次元光導波路10を作製する際には、複数本のコア12(本実施形態例では、3本のコア)を有する二次元光導波路を積層して、三次元光導波路を形成し、次いで三次元光導波路の端部を研磨して45°傾斜端面16を形成する。その後、この三次元光導波路を基板から剥離する。
【0024】
図2を参照して、本実施形態例の三次元光導波路10の作製方法を説明する。この作製例は、オキセタン樹脂(ソニーケミカル社製)を使った例である。図2(a)から(c)は、それぞれ、三次元光導波路を作製する際の主要工程での断面図である。
先ず、図2(a)に示すように、基板18上に屈折率の低いオキセタン樹脂を塗布してスピンコート法で成膜し、紫外線照射して、オキセタン樹脂層を硬化させ、一層目の二次元光導波路を構成するクラッド14を形成する。
次いで、図2(b)に示すように、クラッド14上に、屈折率の高いオキセタン樹脂を塗布して、コア12の膜厚に等しい膜厚のコア形成層22をスピンコート法で成膜する。続いて、フォトリソグラフィ処理によりコア12の開口パターンを有するマスク24を形成し、マスク24上から紫外線を照射して、硬化させ、マスク24の開口パターン下の紫外線照射領域を一層目の二次元光導波路を構成するコア12とする。
次いで、開口パターン外の紫外線非照射領域15のコア形成層22(非硬化層)をアセトンで除去する。
【0025】
次に、図2(c)に示すように、コア12を形成後、屈折率の低いオキセタン樹脂を塗布してスピンコート法で成膜し、紫外線を照射して硬化させ、二層目の二次元光導波路を構成するクラッド14を形成する。これにより、一層目の二次元光導波路10を作製することができる。
【0026】
以下、一層目の二次元光導波路10上に、同様にして、コア形成層を成膜して、順次、二層目の二次元光導波路、三層目の二次元光導波路、・・を形成する。次いで、端部を研磨して45°傾斜端面16(図1参照)を形成し、最後に基板18を剥離することにより、本実施形態例の三次元光導波路10を作製することができる。
【0027】
基板18として、ポリイミド基板、ガラス基板、石英基板、Si基板、又はGaAs基板などを使用することができる。
【0028】
本実施形態例の三次元光導波路10では、45°傾斜端面16に対して45°の角度で入射した光は、45°傾斜端面16で反射して光の進む方向を90°変え、光導波路であるコア12内を全反射により伝播する。
同様に、光導波路のコア12内を全反射により伝播した光は、45°傾斜端面16で反射して光の進む方向を90°変えて、出射する。
実施形態例1の三次元光導波路10を構成するコア12及びクラッド14の幅、厚みなどは、伝送損失が小さくなるように設定する。コア12の断面は正方形に限らず、長方形でも良い。
【0029】
本実施形態例の三次元光導波路10は、端面が45°傾斜端面になっているので、コアの延在方向に直交する端面に比べて、コア12の各端面面積も広くなり、光素子の配置等の物理的な面で有利である。
【0030】
三次元光導波路の実施形態例2
本実施形態例は本発明に係る三次元光導波路の実施形態の別の例である。図3(a)及(b)は、それぞれ、コアの配列を示す三次元光導波路の長手方向に直交する方向の断面図である。
本実施形態例の三次元光導波路30は、三次元光導波路30の長手方向に直交する横断面で見て、図3(a)に示すように、1段当たりの3本のコア32が、3段で縦方向に所定間隔Gで、かつ横方向に所定の間隔Gで、しかも下段のコア32が上段のいずれのコア32にも投影されないように、斜め配列でクラッド34内に配置されていることを除いて、実施形態例1の三次元光導波路10と同じ構成を備えている。
また、間隔Gを小さくして、図3(b)に示すように、コア32を配列することもできる。
本実施形態例の三次元光導波路30は、上述のコア32の配列により、後述するように、光素子、例えば面発光半導体レーザ素子との光結合が容易になる。
【0031】
三次元光結合構造の実施形態例
本実施形態例は本発明に係る三次元光結合構造の実施形態の一例である。図4(a)及び図4(b)は、それぞれ、本実施形態例の三次元光結合構造の構成を示す斜視図及び光導波路と面発光半導体レーザ素子との光結合を示す光導波路の長手方向に平行な方向の模式的断面図である。
本実施形態例の三次元光結合構造40は、図4に示すように、実施形態例2の三次元光導波路30と、三次元光導波路30の端部で光結合する面発光半導体レーザアレイ42とから構成されている。
【0032】
面発光半導体レーザアレイ42は、n型基板上に、順次、n−DBRミラー、λ共振器、及びp−DBRミラーを形成した円筒型の面発光半導体レーザ素子を多数個2次元アレイ状に配置したものであって、上部のp−DBRミラー側から基板に直交する方向にレーザ光を出射する。
本実施形態例では、面発光半導体レーザ素子の各p−DBRミラーが、三次元光導波路30の対応するコア32の45°傾斜端面36の直下にあって、かつp−DBRミラーから出射されるレーザ光がコア32の45°傾斜端面36に対して45°の角度で入射するように、面発光半導体レーザアレイ42が配置されている。
面発光半導体レーザアレイ42は、各面発光半導体レーザ素子の放射角特性に適合するように、三次元光導波路30との距離が設定されている。
【0033】
本実施形態例の光結合構造40では、面発光半導体レーザアレイ42の各面発光半導体レーザ素子から上方に出射されたレーザ光は、それぞれ、真上の三次元光導波路30のコア12の45°傾斜端面36で反射して、コア12内を全反射して伝播する。
以上の構成により、本実施形態例の三次元光結合構造40は、面発光半導体レーザアレイ42と三次元光導波路30とを高い光結合効率で光結合している。また、同様な光結合原理で、三次元光導波路30と、二次元アレイ状に配置された複数個のフォトダイオードを有するフォトダイオードアレイとを高い光結合効率で光結合している三次元光結合構造を構成することができる。
【0034】
光通信システムの実施形態例
本実施形態例は本発明に係る光通信システムの実施形態の一例であって、図5は本実施形態例の光通信システムの構成を示す模式図である。
本実施形態例の光通信システム50は、図5に示すように、実施形態例2の三次元光導波路30と同じ構成の三次元光導波路52と、三次元光導波路52の一方の端部に設けられた45°傾斜端面53Aを介して三次元光導波路52と光結合している2次元面発光半導体レーザアレイ54と、三次元光導波路52の他方の端部に設けられた45°傾斜端面53Bを介して三次元光導波路52と光結合している2次元フォトダイオードアレイ56とを備えている。
【0035】
三次元光導波路52と面発光半導体レーザアレイ54とは、実施形態例の光結合構造40と同じように、光結合されている。
フォトダイオードアレイ56は、基板上に、順次、形成されたn型半導体層、i型半導体層、p型半導体層からなる円筒型のpin構造を2次元アレイ状に備え、上部のp型半導体層を受光面とし、光通信システム50の受光素子として設けられている。
三次元光導波路52とフォトダイオードアレイ56とは、三次元光導波路30と面発光半導体レーザアレイ42とを光結合させた実施形態例の光結合構造40と同じ構成で光結合されている。
【0036】
本実施形態例の光通信システム50では、面発光半導体レーザアレイ42から出射された光は、三次元光導波路50の一方の端部に入射して45°傾斜端面53Aで反射し、三次元光導波路50のコアを通り、三次元光導波路50の他方の端部に伝播する。三次元光導波路50の他方の端部に到達した光は、45°傾斜端面53Bで反射してフォトダイオードアレイ56で受光される。
本光通信システム40は、三次元光導波路42を介して二次元面発光半導体レーザアレイ54と二次元フォトダイオードアレイ56と間で光伝送する、マルチバス大容量光通信を可能にしている。
【0037】
【発明の効果】
本発明によれば、三次元光導波路の少なくとも一方の端面が、コアの延在方向に斜めに傾斜する傾斜端面であることにより、垂直な端面に比べて、端面の面積がそれだけ広くなり、光素子との三次元光結合が物理的に容易になる。
また、本発明によれば、三次元光導波路の下方の面発光半導体レーザ素子から各コアの傾斜端面に向け、それぞれ、光を入射させるとき、各コアの傾斜端面での反射光がコアの延在方向に反射するように、面発光半導体レーザアレイを三次元光導波路の傾斜端面の下方に配置することにより、面発光半導体レーザアレイと三次元光導波路との高い光結合効率の三次元光結合構造を実現している。また、同じ結合原理で三次元光導波路とフォトダイオードアレイとの高い光結合効率の三次元光結合構造を実現している。
更には、本発明に係る三次元光結合構造を適用して、三次元光配線による光通信システムを実現している。
【図面の簡単な説明】
【図1】図1(a)は実施形態例1の三次元光導波路の構成を示す斜視図、図1(b)は実施形態例1の三次元光導波路の長手方向(コアの延在方向)の断面図、及び図1(c)は実施形態例1の三次元光導波路の長手方向に直交する方向の断面図である。
【図2】図2(a)から(c)は、それぞれ、実施形態例1の三次元光導波路を作製する際の主要工程での断面図である。
【図3】図3(a)及(b)は、それぞれ、コアの配列を示す三次元光導波路の長手方向に直交する方向の断面図である。
【図4】図4(a)及び図4(b)は、それぞれ、実施形態例の三次元光結合構造の構成を示す斜視図及び光導波路と面発光半導体レーザ素子との光結合を示す光導波路の長手方向に平行な方向の模式的断面図である。
【図5】実施形態例の光通信システムの構成を示す模式図である。
【図6】従来の三次元光導波路の構成を示す斜視図である。
【符号の説明】
10……実施形態例1の三次元光導波路、12……コア、14……クラッド、16……45°の傾斜端面、18……基板、22……コア形成層、24……マスク、30……実施形態例2の三次元光導波路、32……コア、34……クラッド、36……傾斜端面、40……実施形態例の三次元光結合構造、42……面発光半導体レーザアレイ、50……実施形態例の光通信システム、52……三次元光導波路、54……2次元面発光半導体レーザアレイ、56……2次元フォトダイオードアレイ、62……コア、64……クラッド、66……二次元光導波路、68……垂直端面、70……三次元光導波路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a three-dimensional optical waveguide, an optical coupling structure between a surface-emitting semiconductor laser array or a photodiode array and a three-dimensional optical waveguide, and an optical communication system, and more particularly, to a surface-emitting semiconductor laser array or a photodiode array. Three-dimensional optical waveguide capable of optical coupling with high optical coupling efficiency, optical coupling structure for coupling three-dimensional optical waveguide to surface emitting semiconductor laser array or photodiode array with high optical coupling efficiency, and three-dimensional optical waveguide and surface emitting semiconductor laser The present invention relates to an optical communication system in which an array and a photodiode array are optically coupled with high optical coupling efficiency.
[0002]
[Prior art]
With the advent of the information society, large-capacity and high-speed communication systems are required. On the other hand, electric wirings conventionally used as information transmission means have a limit in high-frequency response as the system speeds up.
Therefore, in the next-generation optical interconnection used in large-capacity and high-speed communication systems instead of electric wiring, optical wiring for transmitting optical signals is in the spotlight.
[0003]
Although optical wiring has begun to spread in private homes, the biggest issue in spreading optical wiring in homes is cost.
Conventionally, a quartz optical waveguide used for an optical wiring has high performance, but has a disadvantage that the cost is increased. Therefore, a low-cost and easy-to-manufacture polymer optical waveguide is attracting attention as an optical wiring material.
In order to further reduce the cost of optical wiring using polymer optical waveguides, and in view of the fact that multi-buses are required for optical wiring, two-dimensional optical waveguides are stacked, and the core is formed in a three-dimensional lattice. It has been proposed that a plurality of buses be efficiently arranged by three-dimensional arrangement to efficiently increase data communication capacity.
[0004]
For example, as an example of an interconnection device for parallel transmission three-dimensional optical wiring, a three-dimensional optical waveguide is disclosed in JP-A-11-183747.
The above publication discloses a polymer optical waveguide film comprising a plurality of cores 62 arranged at predetermined positions and a clad 64 provided around the core 62 and having a smaller refractive index than the cores, as shown in FIG. A multi-core type polymer optical waveguide array 70 having an end surface 68 that is stacked on top of the core 66 and that is orthogonal to the longitudinal direction of the core 62 is disclosed.
[0005]
[Patent Document 1]
JP-A-11-183747 (FIG. 2)
[0006]
[Problems to be solved by the invention]
Incidentally, the above-described conventional three-dimensional optical waveguide 70 has the following problems.
The first problem is that it is difficult to optically couple an optical element such as a semiconductor laser element or a light receiving element with the three-dimensional optical waveguide 70 with high optical coupling efficiency.
In order to optically couple an optical element and a three-dimensional optical waveguide with high optical coupling efficiency, when light is incident on or emitted from each core 62, the light is directed in a direction orthogonal to the end face 68 of the vertically cut three-dimensional optical waveguide. It needs to be incident and emitted.
However, it is actually the case that light enters from each of the plurality of cores 62 exposed at the end face of the three-dimensional optical waveguide 70 from the optical element, or emits light from each of the plurality of cores to the optical element. Extremely difficult. That is, it is physically difficult to position and dispose the optical element on the narrow end face facing each core 62. In addition, a complicated mechanism is required for alignment of an optical element, a lens, and the like in consideration of a space for providing a lens and the like.
The second problem is that the manufacturing process is complicated, the cost is high, and practical use is difficult.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a three-dimensional optical waveguide for a multi-bus three-dimensional optical wiring, which enables easy optical coupling with an optical element and enables high-capacity high-speed data communication. And an optical communication system to which a three-dimensional optical coupling structure and a multi-bus three-dimensional optical wiring are applied.
[0008]
[Means for Solving the Problems]
The inventor first considered a light source related to a three-dimensional optical waveguide, and found that it is physically difficult to integrate an edge-emitting Fabry-Perot semiconductor laser device in a three-dimensional optical waveguide as described above. Concluded.
On the other hand, the surface emitting semiconductor laser elements can be easily arranged in a two-dimensional array and emit laser light in a direction perpendicular to the substrate surface, so that the coupling with the three-dimensional optical waveguide is loose.
Therefore, the present inventor has come to invent the present invention by adopting a surface emitting semiconductor laser element as a light emitting element and devising a three-dimensional optical waveguide that can be coupled to the surface emitting semiconductor laser element with high optical coupling efficiency. Was.
[0009]
In order to achieve the above object, a three-dimensional optical wiring according to the present invention includes a plurality of cores extending in a three-dimensional array,
A three-dimensional optical waveguide having a cladding with a refractive index smaller than the core, extending around the core along the core,
At least one end face of the three-dimensional optical waveguide is characterized by being an inclined end face that is obliquely inclined in the extending direction of the core.
[0010]
The optical waveguide of the present invention is preferably a polymer optical waveguide from the viewpoint of economy and ease of mounting, and is formed of a polymer resin.
A two-dimensional optical waveguide is formed on a substrate such as a polyimide substrate, a glass substrate, a quartz substrate, a Si substrate, or a GaAs substrate. After forming the three-dimensional optical waveguide, the end face is polished to the inclined end face, and then the substrate is peeled off, whereby the three-dimensional optical waveguide can be formed.
[0011]
In the present invention, since the end face of the three-dimensional optical waveguide is an inclined end face, the area of the end face becomes wider as compared with the vertical end face, and three-dimensional optical coupling with the optical element becomes physically easy.
Optical interconnections used for optical wiring are often provided in equipment, so that miniaturization is required. The three-dimensional optical wiring according to the present invention realizes a low-cost optical wiring that enables multi-bus large-capacity optical communication by employing a surface emitting semiconductor laser element as a light emitting element and a photodiode as a light receiving element. Can be.
[0012]
Further, in a preferred embodiment of the present invention, the three-dimensional optical waveguide is held such that the extending direction of the core is horizontal and the inclined end surface forms an acute angle with respect to the extending direction of the core. When light is applied to the inclined end surface of each core from above, the upper core is oblique to the lower core so that the lower core is not projected onto the upper core, as viewed in a cross section orthogonal to the extending direction of the core. Each core is arranged in a three-dimensional array arranged at the position in the direction.
Thus, when laser light is emitted from the surface emitting semiconductor laser array in which the surface emitting semiconductor laser elements are arranged in a two-dimensional array toward the inclined end surface of each core, the inconvenience that the optical paths of the laser light overlap with each other. Does not occur.
[0013]
In a further preferred embodiment of the present invention, the inclined end surface forms 45 ° with respect to the extending direction of the core. This facilitates optical coupling between an optical element such as a surface emitting semiconductor laser element and a photodiode and the three-dimensional optical waveguide.
[0014]
The three-dimensional optical coupling structure according to the present invention is a three-dimensional optical waveguide according to claim 2 or 3,
A surface emitting semiconductor laser array having a plurality of surface emitting semiconductor laser elements arranged in a two-dimensional array,
The three-dimensional optical waveguide is held such that the extending direction of the core is horizontal and the inclined end surface forms an acute angle with the extending direction of the core, and from the surface emitting semiconductor laser element below the three-dimensional optical waveguide to the inclined end surface of each core. The surface emitting semiconductor laser array is arranged below the inclined end face of the three-dimensional optical waveguide such that when light is incident, the reflected light at the inclined end face of each core is reflected in the extending direction of the core. It is characterized by.
[0015]
Another three-dimensional optical coupling structure according to the present invention is a three-dimensional optical waveguide according to claim 2 or 3,
A photodiode array having a plurality of photodiodes arranged in a two-dimensional array,
The three-dimensional optical waveguide is held such that the extending direction of the core is horizontal and the inclined end surface forms an acute angle with the extending direction of the core, and the light reflected on the inclined end surface of light guided through each core is reflected by the photodiode. It is characterized in that the photodiode array is arranged below the inclined end face of the three-dimensional optical waveguide so as to receive light.
[0016]
An optical communication system according to the present invention is a three-dimensional optical waveguide according to claim 2 or 3, a surface emitting semiconductor laser array,
With a photodiode array,
The surface emitting semiconductor laser array is optically coupled to one end of the three-dimensional optical waveguide by the three-dimensional optical coupling structure according to claim 4, and the photodiode array is three-dimensional by the three-dimensional optical coupling structure according to claim 5. The optical waveguide is characterized by being optically coupled to one end of the optical waveguide.
[0017]
The optical communication system according to the present invention realizes data communication by three-dimensional optical wiring by efficiently arranging a three-dimensional optical waveguide, a surface emitting semiconductor laser array, and a photodiode array in a three-dimensional manner.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings.
Embodiment 1 of three-dimensional optical waveguide
This embodiment is an example of an embodiment of a three-dimensional optical waveguide according to the present invention. FIG. 1A is a perspective view showing a configuration of a three-dimensional optical waveguide according to this embodiment, and FIG. FIG. 1C is a cross-sectional view of the three-dimensional optical waveguide in a longitudinal direction (extending direction of the core), and FIG. 1C is a cross-sectional view of the three-dimensional optical waveguide in a direction orthogonal to the longitudinal direction.
The three-dimensional optical waveguide 10 of the present embodiment is a multi-mode three-dimensional optical waveguide, and as shown in FIG. 1, a plurality of three-dimensional optical waveguides extending in the longitudinal direction of the three-dimensional optical waveguide 10 in a regular three-dimensional array. It includes a book core 12 and a clad 14 provided around the core 12 along the core 12, and has a 45 ° inclined end face 16 as an end face.
[0019]
The core 12 is a columnar body having a cross section of 20 μm to 100 μm and made of a high molecular weight organic compound having a refractive index of about 0.2% to 2.0% larger than the refractive index of the clad 14. When viewed in a cross section orthogonal to the longitudinal direction of the three-dimensional optical waveguide 10, three cores 12 per stage are arranged at a predetermined interval GL in the vertical direction and at an interval GH in the horizontal direction. It is arranged in.
The cladding 14 is also formed of a polymer organic compound having a refractive index smaller than that of the core 12.
[0020]
Between the cores 12 in the lateral direction, and outside the outermost core 12, a clad made of a high-molecular organic compound having the same composition as the core 12 is provided. For example, high molecular organic compounds include oxetane resin (manufactured by Sony Chemical) and fluorinated polyimide (manufactured by NTT-AT, manufactured by Hitachi Chemical).
The core 12 and the cladding 14 are the same type of polymer material. The core 12 has a refractive index larger than the cladding 14 by about 0.2 to 2.0%. After applying the core polymer material having a large refractive index, ultraviolet rays are irradiated through a negative mask pattern. Ultraviolet light is applied only to the portion that becomes the core, and the polymer material in that portion is cured. On the other hand, the portion of the negative mask which is not irradiated with ultraviolet rays, which is the shadow portion, is removed with acetone. Thus, the optical waveguide of the core 12 is formed.
Thereafter, a polymer material having a low refractive index is applied to the clad, and the entire surface is irradiated with ultraviolet rays, whereby the upper clad 14 is formed.
[0021]
Alternatively, an intermediate cladding having a lower refractive index than the core 12 can be formed between the cores 12 and outside the outermost core 12 by ultraviolet irradiation.
A high molecular weight organic compound, which is the same high molecular weight organic compound as the core 12 and whose refractive index is reduced by ultraviolet irradiation, is applied to form a high molecular weight organic compound layer. Next, an intermediate cladding whose refractive index is made smaller than that of the core 12 by ultraviolet irradiation through a mask is formed between the cores 12 and outside the outermost core 12. As such a high molecular organic compound, for example, there is Gracia (manufactured by Nippon Paint).
[0022]
The 45 ° inclined end face 16 is an end face inclined at an angle of 45 ° with respect to the extending direction of the core 12, and is formed by polishing the end of the three-dimensional optical waveguide 10. The end face of the optical waveguide can be polished at 45 ° by a dicing apparatus having a V-shaped blade (manufactured by Disco Corporation).
[0023]
When manufacturing the three-dimensional optical waveguide 10 of the present embodiment, a two-dimensional optical waveguide having a plurality of cores 12 (three cores in the present embodiment) is stacked, and the three-dimensional optical waveguide is formed. Then, the end of the three-dimensional optical waveguide is polished to form a 45 ° inclined end face 16. Thereafter, the three-dimensional optical waveguide is separated from the substrate.
[0024]
With reference to FIG. 2, a method for manufacturing the three-dimensional optical waveguide 10 of the present embodiment will be described. This manufacturing example is an example using an oxetane resin (manufactured by Sony Chemical Co., Ltd.). FIGS. 2A to 2C are cross-sectional views showing main steps in manufacturing a three-dimensional optical waveguide.
First, as shown in FIG. 2A, an oxetane resin having a low refractive index is applied on the substrate 18 to form a film by spin coating, and is irradiated with ultraviolet rays to cure the oxetane resin layer. forming the clad 14 1 constituting the dimension optical waveguide.
Then, as shown in FIG. 2 (b), on the cladding 14 1, by applying a high refractive index oxetane resin, forming the core layer 22 having a thickness equal to the thickness of the core 12 by a spin coating method I do. Subsequently, a mask 24 having an opening pattern of the core 12 is formed by photolithography, and ultraviolet light is irradiated from above the mask 24 to cure the mask. the core 12 1 forming the waveguide.
Then, an opening pattern outside of the ultraviolet non-irradiation region 15 1 of the core layer 22 (non-hardened layer) is removed with acetone.
[0025]
Next, as shown in FIG. 2 (c), after forming the core 12 1 is coated with a low refractive index oxetane resin was formed by spin coating, and then cured by irradiation with ultraviolet rays, the second layer forming a cladding 14 2 constituting the two-dimensional optical waveguide. Thus, it is possible to produce a two-dimensional optical waveguide 10 1 of the first layer.
[0026]
Hereinafter, on the two-dimensional optical waveguide 10 1 of the first layer, in a similar manner, by forming a core layer, successively, a second layer of the two-dimensional optical waveguide, the third layer of the two-dimensional optical waveguide, a ... Form. Next, the end portion is polished to form a 45 ° inclined end surface 16 (see FIG. 1), and finally, the substrate 18 is peeled off, whereby the three-dimensional optical waveguide 10 of this embodiment can be manufactured.
[0027]
As the substrate 18, a polyimide substrate, a glass substrate, a quartz substrate, a Si substrate, a GaAs substrate, or the like can be used.
[0028]
In the three-dimensional optical waveguide 10 of the present embodiment, light incident at an angle of 45 ° with respect to the 45 ° inclined end face 16 is reflected by the 45 ° inclined end face 16 and changes the traveling direction of the light by 90 °. And propagates through the core 12 by total internal reflection.
Similarly, light that has propagated in the core 12 of the optical waveguide by total reflection is reflected by the 45 ° inclined end face 16, changes its traveling direction by 90 °, and emerges.
The width, thickness, and the like of the core 12 and the clad 14 constituting the three-dimensional optical waveguide 10 of the first embodiment are set so as to reduce transmission loss. The cross section of the core 12 is not limited to a square, but may be a rectangle.
[0029]
In the three-dimensional optical waveguide 10 of the present embodiment, since the end face is a 45 ° inclined end face, each end face area of the core 12 is larger than the end face orthogonal to the extending direction of the core, and the This is advantageous in physical aspects such as arrangement.
[0030]
Embodiment 2 of three-dimensional optical waveguide
This embodiment is another example of the embodiment of the three-dimensional optical waveguide according to the present invention. FIGS. 3A and 3B are cross-sectional views each showing a core arrangement in a direction orthogonal to the longitudinal direction of the three-dimensional optical waveguide.
In the three-dimensional optical waveguide 30 of the present embodiment, as viewed in a cross section orthogonal to the longitudinal direction of the three-dimensional optical waveguide 30, as shown in FIG. Arranged in the clad 34 in a diagonal arrangement so that the lower core 32 is not projected on any of the upper cores 32 at a predetermined interval GL in the vertical direction and at a predetermined interval GH in the horizontal direction in three stages. Except for this, it has the same configuration as the three-dimensional optical waveguide 10 of the first embodiment.
Alternatively, the cores 32 can be arranged as shown in FIG. 3B by reducing the interval GH .
In the three-dimensional optical waveguide 30 according to the present embodiment, the arrangement of the cores 32 facilitates optical coupling with an optical element, for example, a surface emitting semiconductor laser element, as described later.
[0031]
Embodiment of three-dimensional optical coupling structure This embodiment is an example of an embodiment of a three-dimensional optical coupling structure according to the present invention. FIGS. 4A and 4B are a perspective view showing the configuration of the three-dimensional optical coupling structure of the present embodiment and the length of the optical waveguide showing optical coupling between the optical waveguide and the surface emitting semiconductor laser device, respectively. It is a typical sectional view of a direction parallel to a direction.
As shown in FIG. 4, the three-dimensional optical coupling structure 40 according to the present embodiment includes a three-dimensional optical waveguide 30 according to the second embodiment and a surface emitting semiconductor laser array 42 optically coupled at an end of the three-dimensional optical waveguide 30. It is composed of
[0032]
In the surface emitting semiconductor laser array 42, a large number of cylindrical surface emitting semiconductor laser elements each having an n-DBR mirror, a λ resonator, and a p-DBR mirror are sequentially arranged on an n-type substrate in a two-dimensional array. A laser beam is emitted from the upper p-DBR mirror side in a direction orthogonal to the substrate.
In the present embodiment, each p-DBR mirror of the surface emitting semiconductor laser device is directly below the 45 ° inclined end face 36 of the corresponding core 32 of the three-dimensional optical waveguide 30 and is emitted from the p-DBR mirror. The surface emitting semiconductor laser array 42 is arranged so that the laser light is incident at an angle of 45 ° to the 45 ° inclined end surface 36 of the core 32.
The surface-emitting semiconductor laser array 42 has a distance from the three-dimensional optical waveguide 30 set so as to conform to the radiation angle characteristics of each surface-emitting semiconductor laser element.
[0033]
In the optical coupling structure 40 of the present embodiment, the laser light emitted upward from each surface emitting semiconductor laser element of the surface emitting semiconductor laser array 42 is 45 ° of the core 12 of the three-dimensional optical waveguide 30 directly above. The light is reflected by the inclined end face 36 and totally reflected inside the core 12 and propagated.
With the above configuration, the three-dimensional optical coupling structure 40 of the present embodiment optically couples the surface emitting semiconductor laser array 42 and the three-dimensional optical waveguide 30 with high optical coupling efficiency. Further, based on the same optical coupling principle, the three-dimensional optical waveguide 30 and the photodiode array having a plurality of photodiodes arranged in a two-dimensional array are optically coupled with high optical coupling efficiency. The structure can be configured.
[0034]
Embodiment of optical communication system This embodiment is an example of an embodiment of an optical communication system according to the present invention, and FIG. 5 is a schematic diagram showing a configuration of an optical communication system of the embodiment. is there.
As shown in FIG. 5, an optical communication system 50 according to the present embodiment includes a three-dimensional optical waveguide 52 having the same configuration as the three-dimensional optical waveguide 30 according to the second embodiment, and one end of the three-dimensional optical waveguide 52. A two-dimensional surface emitting semiconductor laser array 54 optically coupled to the three-dimensional optical waveguide 52 via the provided 45 ° inclined end face 53A, and a 45 ° inclined end face provided at the other end of the three-dimensional optical waveguide 52 A two-dimensional photodiode array 56 optically coupled to the three-dimensional optical waveguide 52 via 53B is provided.
[0035]
The three-dimensional optical waveguide 52 and the surface emitting semiconductor laser array 54 are optically coupled in the same manner as the optical coupling structure 40 of the embodiment.
The photodiode array 56 has a cylindrical pin structure composed of an n-type semiconductor layer, an i-type semiconductor layer, and a p-type semiconductor layer formed sequentially on a substrate in a two-dimensional array. Is a light receiving surface, and is provided as a light receiving element of the optical communication system 50.
The three-dimensional optical waveguide 52 and the photodiode array 56 are optically coupled in the same configuration as the optical coupling structure 40 of the embodiment in which the three-dimensional optical waveguide 30 and the surface emitting semiconductor laser array 42 are optically coupled.
[0036]
In the optical communication system 50 of the present embodiment, light emitted from the surface emitting semiconductor laser array 42 enters one end of the three-dimensional optical waveguide 50, is reflected by the 45 ° inclined end face 53A, and is reflected by the three-dimensional optical waveguide 50. The light propagates through the core of the waveguide 50 to the other end of the three-dimensional optical waveguide 50. The light that has reached the other end of the three-dimensional optical waveguide 50 is reflected by the 45 ° inclined end face 53B and received by the photodiode array 56.
The present optical communication system 40 enables multi-bus large-capacity optical communication in which light is transmitted between a two-dimensional surface emitting semiconductor laser array 54 and a two-dimensional photodiode array 56 via a three-dimensional optical waveguide 42.
[0037]
【The invention's effect】
According to the present invention, at least one end face of the three-dimensional optical waveguide is an inclined end face that is obliquely inclined in the extending direction of the core, so that the area of the end face is larger than that of the perpendicular end face, and Three-dimensional optical coupling with the element is physically facilitated.
Further, according to the present invention, when light is incident from the surface emitting semiconductor laser element below the three-dimensional optical waveguide toward the inclined end face of each core, the reflected light at the inclined end face of each core extends through the core. By arranging the surface-emitting semiconductor laser array below the inclined end face of the three-dimensional optical waveguide so as to reflect in the existing direction, three-dimensional optical coupling with high optical coupling efficiency between the surface-emitting semiconductor laser array and the three-dimensional optical waveguide is achieved. The structure is realized. Further, a three-dimensional optical coupling structure with high optical coupling efficiency between the three-dimensional optical waveguide and the photodiode array is realized by the same coupling principle.
Furthermore, an optical communication system using three-dimensional optical wiring is realized by applying the three-dimensional optical coupling structure according to the present invention.
[Brief description of the drawings]
FIG. 1A is a perspective view illustrating a configuration of a three-dimensional optical waveguide according to a first embodiment, and FIG. 1B is a longitudinal direction of the three-dimensional optical waveguide according to the first embodiment (a direction in which a core extends). 1) and FIG. 1C is a cross-sectional view in a direction orthogonal to the longitudinal direction of the three-dimensional optical waveguide according to the first embodiment.
FIGS. 2A to 2C are cross-sectional views of main steps in manufacturing the three-dimensional optical waveguide of the first embodiment.
FIGS. 3A and 3B are cross-sectional views each showing a core arrangement in a direction orthogonal to the longitudinal direction of the three-dimensional optical waveguide.
FIGS. 4A and 4B are a perspective view showing a configuration of a three-dimensional optical coupling structure according to an embodiment and a light guide showing optical coupling between an optical waveguide and a surface emitting semiconductor laser device, respectively. FIG. 3 is a schematic cross-sectional view in a direction parallel to a longitudinal direction of a wave path.
FIG. 5 is a schematic diagram illustrating a configuration of an optical communication system according to an embodiment.
FIG. 6 is a perspective view showing a configuration of a conventional three-dimensional optical waveguide.
[Explanation of symbols]
Reference numeral 10: three-dimensional optical waveguide of the first embodiment, 12: core, 14: clad, 16: 45 ° inclined end face, 18: substrate, 22: core forming layer, 24: mask, 30 ······························································································ 50 optical communication system of the embodiment, 52 three-dimensional optical waveguide, 54 two-dimensional surface emitting semiconductor laser array, 56 two-dimensional photodiode array, 62 core, 64 clad, 66 ... two-dimensional optical waveguide, 68 ... vertical end face, 70 ... three-dimensional optical waveguide.

Claims (6)

三次元配列で延在する複数本のコアと、
コアに沿ってコアの周りに延在する、屈折率がコアより小さいクラッドと
を有する三次元光導波路であって、
三次元光導波路の少なくとも一方の端面が、コアの延在方向に斜めに傾斜する傾斜端面であることを特徴とする三次元光導波路。
A plurality of cores extending in a three-dimensional array;
A three-dimensional optical waveguide having a cladding with a refractive index smaller than the core, extending around the core along the core,
3. A three-dimensional optical waveguide, wherein at least one end face of the three-dimensional optical waveguide is an inclined end face which is obliquely inclined in the extending direction of the core.
コアの延在方向が水平で、傾斜端面がコアの延在方向に対して鋭角をなすように三次元光導波路を保持し、三次元光導波路の下方から光を各コアの傾斜端面に照射したとき、下段のコアが上段のコアに投影されないように、コアの延在方向に直交する断面で見て、上段のコアが下段のコアに対して斜め方向の位置に配置される三次元配列で、各コアが配列されていることを特徴とする請求項1に記載の三次元光導波路。The three-dimensional optical waveguide was held such that the extending direction of the core was horizontal and the inclined end face was at an acute angle to the extending direction of the core, and light was applied to the inclined end face of each core from below the three-dimensional optical waveguide. When viewed in a cross section orthogonal to the extending direction of the core, the upper core is arranged in a three-dimensional array in which the lower core is disposed at an oblique position with respect to the lower core so that the lower core is not projected on the upper core. The three-dimensional optical waveguide according to claim 1, wherein each core is arranged. 傾斜端面がコアの延在方向に対して45°をなしていることを特徴とする請求項1又は2に記載の三次元光導波路。The three-dimensional optical waveguide according to claim 1, wherein the inclined end surface forms an angle of 45 ° with the extending direction of the core. 請求項2又は3に記載の三次元光導波路と、
二次元アレイ状に配置された複数個の面発光半導体レーザ素子を有する面発光半導体レーザアレイと
を備え、
コアの延在方向が水平で、傾斜端面がコアの延在方向に鋭角をなすように三次元光導波路を保持し、三次元光導波路の下方の面発光半導体レーザ素子から各コアの傾斜端面に向け、それぞれ、光を入射させるとき、各コアの傾斜端面での反射光がコアの延在方向に反射するように、面発光半導体レーザアレイを三次元光導波路の傾斜端面の下方に配置したことを特徴とする面発光半導体レーザアレイと三次元光導波路との三次元光結合構造。
A three-dimensional optical waveguide according to claim 2 or 3,
A surface emitting semiconductor laser array having a plurality of surface emitting semiconductor laser elements arranged in a two-dimensional array,
The three-dimensional optical waveguide is held such that the extending direction of the core is horizontal and the inclined end surface forms an acute angle with the extending direction of the core, and from the surface emitting semiconductor laser element below the three-dimensional optical waveguide to the inclined end surface of each core. The surface emitting semiconductor laser array is arranged below the inclined end face of the three-dimensional optical waveguide such that when light is incident, the reflected light at the inclined end face of each core is reflected in the extending direction of the core. A three-dimensional optical coupling structure between a surface emitting semiconductor laser array and a three-dimensional optical waveguide.
請求項2又は3に記載の三次元光導波路と、
二次元アレイ状に配置された複数個のフォトダイオードを有するフォトダイオードアレイと
を備え、
コアの延在方向が水平で、傾斜端面がコアの延在方向に鋭角をなすように三次元光導波路を保持し、各コアを導波する光の傾斜端面での反射光をそれぞれフォトダイオードで受光するように、フォトダイオードアレイを三次元光導波路の傾斜端面の下方に配置したことを特徴とする三次元光導波路とフォトダイオードアレイとの三次元光結合構造。
A three-dimensional optical waveguide according to claim 2 or 3,
A photodiode array having a plurality of photodiodes arranged in a two-dimensional array,
The three-dimensional optical waveguide is held such that the extending direction of the core is horizontal and the inclined end surface forms an acute angle with the extending direction of the core, and the light reflected on the inclined end surface of light guided through each core is reflected by the photodiode. A three-dimensional optical coupling structure between a three-dimensional optical waveguide and a photodiode array, wherein a photodiode array is arranged below an inclined end face of the three-dimensional optical waveguide so as to receive light.
請求項2又は3に記載の三次元光導波路と、
面発光半導体レーザアレイと、
フォトダイオードアレイと
を備え、
面発光半導体レーザアレイは請求項4に記載の三次元光結合構造によって三次元光導波路の一方の端部に光結合され、フォトダイオードアレイは請求項5に記載の三次元光結合構造によって三次元光導波路の一方の端部に光結合されていることを特徴とする光通信システム。
A three-dimensional optical waveguide according to claim 2 or 3,
A surface emitting semiconductor laser array;
With a photodiode array,
The surface emitting semiconductor laser array is optically coupled to one end of the three-dimensional optical waveguide by the three-dimensional optical coupling structure according to claim 4, and the photodiode array is three-dimensional by the three-dimensional optical coupling structure according to claim 5. An optical communication system optically coupled to one end of an optical waveguide.
JP2002345001A 2002-11-28 2002-11-28 Three dimensional optical waveguide, three dimensional optical coupling structure, and optical communication system Pending JP2004177730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345001A JP2004177730A (en) 2002-11-28 2002-11-28 Three dimensional optical waveguide, three dimensional optical coupling structure, and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345001A JP2004177730A (en) 2002-11-28 2002-11-28 Three dimensional optical waveguide, three dimensional optical coupling structure, and optical communication system

Publications (1)

Publication Number Publication Date
JP2004177730A true JP2004177730A (en) 2004-06-24

Family

ID=32706289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345001A Pending JP2004177730A (en) 2002-11-28 2002-11-28 Three dimensional optical waveguide, three dimensional optical coupling structure, and optical communication system

Country Status (1)

Country Link
JP (1) JP2004177730A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054569A1 (en) * 2004-11-17 2006-05-26 Hitachi Chemical Co., Ltd. Photo-electricity combined-circuit mounted board and transmitting apparatus using the same
US7149394B2 (en) 2005-03-09 2006-12-12 Fuji Xerox Co., Ltd. Three-dimensional optical waveguide and optical communication system
JP2014038204A (en) * 2012-08-16 2014-02-27 Fuji Xerox Co Ltd Optical transmitting and receiving apparatus, optical transmission system and multi-core optical fiber
US8961839B2 (en) 2007-05-25 2015-02-24 Fuji Xerox Co., Ltd. Production method of optical waveguide
WO2015132849A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 Photoelectric conversion module and information device using same
US9484482B2 (en) 2014-06-26 2016-11-01 International Business Machines Corporation Efficient optical (light) coupling

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054569A1 (en) * 2004-11-17 2006-05-26 Hitachi Chemical Co., Ltd. Photo-electricity combined-circuit mounted board and transmitting apparatus using the same
JPWO2006054569A1 (en) * 2004-11-17 2008-05-29 日立化成工業株式会社 Opto-electric hybrid circuit mounting board and transmission device using the same
US7680367B2 (en) 2004-11-17 2010-03-16 Hitachi Chemical Company, Ltd. Optoelectronic integrated circuit board and communications device using the same
JP4655042B2 (en) * 2004-11-17 2011-03-23 日立化成工業株式会社 Opto-electric hybrid circuit mounting board and transmission device using the same
US7149394B2 (en) 2005-03-09 2006-12-12 Fuji Xerox Co., Ltd. Three-dimensional optical waveguide and optical communication system
US8961839B2 (en) 2007-05-25 2015-02-24 Fuji Xerox Co., Ltd. Production method of optical waveguide
JP2014038204A (en) * 2012-08-16 2014-02-27 Fuji Xerox Co Ltd Optical transmitting and receiving apparatus, optical transmission system and multi-core optical fiber
WO2015132849A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 Photoelectric conversion module and information device using same
US9484482B2 (en) 2014-06-26 2016-11-01 International Business Machines Corporation Efficient optical (light) coupling

Similar Documents

Publication Publication Date Title
US10591687B2 (en) Optical interconnect modules with 3D polymer waveguide
US9389363B2 (en) Double mirror structure for wavelength division multiplexing with polymer waveguides
KR101448574B1 (en) Optical engine for point-to-point communications
US9470846B2 (en) Wavelength division multiplexing with multi-core fiber
JP2004191564A (en) Optical path converting connector
JP6810596B2 (en) How to Form Wavelength Division Multiplexing Devices, Wavelength Division Multiplexing Systems, and Wavelength Division Multiplexing Devices
JP2008009098A (en) Optical connection device and mounting method
JP2000227524A (en) Optical waveguide device and optical transmission and reception device, and manufacture thereof
JPH11271548A (en) Two-way optical communication unit, and two-way optical communication equipment
JP2008298934A (en) Optical axis transformation element and method of manufacturing the same
JP2004170668A (en) Optical transmitting/receiving module, its manufacturing method and optical communication system
JP2004177730A (en) Three dimensional optical waveguide, three dimensional optical coupling structure, and optical communication system
JP5395042B2 (en) Manufacturing method of optical path conversion device
JPH1152198A (en) Optical connecting structure
JP2008015040A (en) Optical waveguide and optical module
JP2006078606A (en) Method for manufacturing optical connection device, and optical connection device thereof
JP4607063B2 (en) Manufacturing method of optical path conversion connector
JP2004053623A (en) Optical waveguide substrate equipped with optical path changing part and its manufacture method
JP2004279620A (en) Optical integrated circuit
JP2004177816A (en) Optical wiring
JP2000214345A (en) Optical communication device and bi-directional optical communication equipment
JP2009223340A (en) Optical component and optical path changing device used for the same
JP2004264339A (en) Optical waveguide and optical transmitting/receiving module
JP3886840B2 (en) Optical path conversion device
JP2006184758A (en) Optical waveguide and optical waveguide module

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604