WO2015156609A1 - Method for measuring shape of free curved surface in optical type using second derivative of local area and system for measuring shape of curved surface using same - Google Patents

Method for measuring shape of free curved surface in optical type using second derivative of local area and system for measuring shape of curved surface using same Download PDF

Info

Publication number
WO2015156609A1
WO2015156609A1 PCT/KR2015/003545 KR2015003545W WO2015156609A1 WO 2015156609 A1 WO2015156609 A1 WO 2015156609A1 KR 2015003545 W KR2015003545 W KR 2015003545W WO 2015156609 A1 WO2015156609 A1 WO 2015156609A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
term
derivative
curved surface
calculating
Prior art date
Application number
PCT/KR2015/003545
Other languages
French (fr)
Korean (ko)
Inventor
김병창
Original Assignee
경남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경남대학교 산학협력단 filed Critical 경남대학교 산학협력단
Publication of WO2015156609A1 publication Critical patent/WO2015156609A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled

Definitions

  • the present invention relates to an optical free curved shape measuring method using a second derivative of a local region and a curved shape measuring system using the same.
  • the shape measurement on a spherical surface or a plane is relatively accurate and easy to measure the shape through the process of extracting the difference between the reflected wave surface and the reference surface (plane, sphere) by irradiating light to the measurement object.
  • the reference surface plane, sphere
  • a correction optical system such as computer hologram (CGH) is used to overcome the wavefront optical path difference from the reference plane, or a method using a contact three-dimensional measuring instrument is used.
  • the method has a low efficiency in terms of facilities and costs and nevertheless has low limits of measurement accuracy.
  • a method of measuring a curved shape Acquiring three-dimensional shape measurement information for each of the minute local areas; Calculating coefficients of the Zernik polynomial from the three-dimensional shape measurement information; Calculating an x-axis second derivative, a y-axis second derivative and an x-y-axis cross differential term from the respective Zernik polynomials; Calculating an x-axis gradient term by integrating the x-axis second derivative and the x-y-axis cross-differential term, and calculating the y-axis slope term by integrating the y-axis secondary differential term and the x-y-axis cross derivative term; And integrating the x-axis slope term and the y-axis slope term to generate a measurement target curved shape.
  • a curved shape measuring system comprising: a sensing unit capable of generating three-dimensional shape measurement information about a minute local area of a curved surface to be measured; A moving unit for moving the sensing unit; The sensing target surface is divided into a plurality of virtual local regions, and the sensing unit controls the sensing unit and the moving unit to generate three-dimensional shape measurement information for each of the plurality of micro local regions, and the three-dimensional shape measurement.
  • the coefficients of the Zernike polynomial are calculated to calculate the x-axis second derivative, the y-axis second derivative and the xy-axis differential derivative, and the x-axis second derivative, the y-axis second derivative and the xy-axis cross derivative
  • a control unit for calculating an x-axis gradient term and a y-axis gradient term and generating the measurement target surface based on the x-axis gradient term and the y-axis gradient term.
  • the curved shape measuring method and system according to the present invention can accurately measure the shape of an aspherical surface or a free curved surface with a relatively simple configuration.
  • FIG. 1 is a schematic view showing a curved shape measuring system according to the present invention
  • FIG. 2 is a conceptual diagram briefly illustrating a plurality of fine local regions
  • 3 is a reference diagram showing the independent shape up to the initial sixth term of the Zernik polynomial
  • FIG. 5 is a flowchart showing a curved shape measuring method according to the present invention.
  • FIG. 6 is a reference diagram showing an arbitrary curved surface (left) and a curved surface (middle) and a measurement error degree (right) measured by the curved shape measuring method and system according to the present invention.
  • FIG. 1 is a schematic diagram showing a curved shape measuring system according to the present invention
  • FIG. 2 is a conceptual diagram showing a measurement object divided into a plurality of fine local regions.
  • the present system may generate the three-dimensional shape measurement information of the local area A by irradiating the local area A in a state close to the surface of the curved surface C.
  • FIG. The sensing unit 10, the moving unit 15 for moving the sensing unit 10, and the measurement target surface C are divided into a plurality of virtual local regions A, and the sensing unit 10 is finely divided.
  • the control unit 20 controls the sensing unit 10 and the moving unit 15 to generate three-dimensional shape measurement information for the local areas A.
  • the measurement information of the three-dimensional shape is a set of x, y, z values per pixel
  • the sensing unit 10 is a Twyman-Green interferometer, a Mirau interferometer or a Fizeau It may be provided as an interferometer.
  • the control unit 20 divides the measurement target surface C into the fine local region A. FIG. At this time, the precision is improved as the distance value s between the adjacent minute local areas A is made smaller and denser.
  • the controller 20 may allow the sensing unit 10 to sequentially irradiate each of the minute local areas A.
  • the control unit 20 moves the sensing unit 10 along the movement path by using the moving unit 15, and when the sensing unit 10 is located at the center 8 of each local area A, the control unit 20 may move to the local area A 3.
  • the controller 20 transmits the measurement information about the three-dimensional shape generated by the sensing unit 10 to the calculator 21.
  • the three-dimensional shape measurement information in the local area A is a set of x, y, and z values per pixel, and the three-dimensional shape measurement information measured in each local area A is directly connected to generate the overall shape.
  • a position error, a tip and tilt, or a height direction error which occurs when the sensing unit 10 moves for each local area A, may occur.
  • the inclination information for each of the first-differential local areas A may be obtained based on the three-dimensional shape measurement information in the plurality of local areas A, the overall shape may be generated.
  • the calculation unit 21 crosses the x-axis second derivative, the y-axis second derivative and the xy-axis intersection based on three-dimensional shape measurement information in each local area A transmitted from the sensing unit 10. Extract the differential term.
  • the height direction (piston) or the tilt error It is not affected by tip and tilt, and the influence of position error is negligible so that the overall shape can be generated with the highest precision.
  • the basis and method for the calculation unit 21 to generate the data of the measurement object from the three-dimensional shape measurement information in the fine local region are as follows.
  • Sx is the x-axis slope and Sy is the y-axis slope.
  • Equation 1 when the differential slope (S y) in the x-axis tilt (S x) and y-direction respectively, Equation 2 and Equation 3].
  • the calculating section 21 Based on this principle, the calculating section 21 generates three second derivatives expressed by Equations 4 to 6 from three-dimensional shape measurement information values for each local area A. Restore the surface shape function Z (x, y) of the target surface from the second derivative. The process is as follows.
  • all three-dimensional shapes of the curved surface may be expressed by Zernike polynomials as shown in Equation 7 below.
  • the Zernik polynomial is characterized by a basis function where each term satisfies orthogonality and completeness within a unit circle.
  • the individual terms of the Zernik polynomial are suitable for expressing optical wavefronts or shape surfaces because they represent different optical properties.
  • a n is a coefficient of the nth term
  • z n is a basis function term defined as in Equations 8 to 13.
  • the basis function terms up to the sixth order are as shown in [Equations 8] to [Equation 13] below.
  • FIG. 3 is a conceptual diagram showing independent shapes up to the first sixth term Z 1 to Z 6 of the Zernik polynomial.
  • the measurement target surface may be generated through the overlapping of the independent shapes shown in FIG. 3.
  • the basis function term is applied to the Zernik polynomial, the three-dimensional shape in the local region A is expressed as shown in [Equation 14].
  • the three-dimensional shape of the local area A may be expressed by a Taylor series expansion as shown in [Equation 15].
  • Equation 14 and [Equation 15] representing the three-dimensional shape of the local area A as described above, respectively, the second derivative with respect to the x-axis, the second derivative with respect to the y-axis, and the second derivative with respect to the xy-crossing axis.
  • the derivative When the derivative is performed, it may be represented by Equations 16 to 18.
  • the second derivative with respect to the x-axis, the second derivative with respect to the y-axis, and the cross derivative with respect to the xy-axis are the fourth in the Zernik polynomial.
  • the fourth and sixth coefficients a 4 , a 5 It can be derived from a 6 value.
  • a 4 , a 5 The value of a 6 is derived by Zernike fitting using the three-dimensional shape measurement information for each local area A. The Zernike fitting method is described in Daniel malacara's book "Optical shop testing".
  • a 4 , a 5 The value of a 6 can be obtained through software associated with a three-dimensional shape measurement interferometer.
  • the calculation unit 21 restores a curved shape from three second derivative terms.
  • the calculation unit 21 generates an x-axis gradient term by integrating the x-axis quadratic derivative and the xy-cross differential term, and integrates the y-axis quadratic derivative and the xy intersection differential term to inject the y-axis gradient. Create a term Then, the x-axis slope term and the y-axis slope term are integrated again to generate the overall shape Z (x, y).
  • the generated shape may be transmitted to the output unit 30 connected to the control unit 20 to be represented as an image.
  • FIG. 5 is a flowchart illustrating a curved shape measuring method according to the present invention.
  • the first surface to be measured is divided into a plurality of fine local regions A (S1).
  • the controller 20 controls the sensing unit 10 to generate three-dimensional shape measurement information for each micro local area A (S2).
  • the sensing unit 10 completes the generation of the 3D shape measurement information for each micro local area A
  • all the generated 3D shape measurement information is transmitted to the calculation unit 21.
  • the calculation unit 21 is based on the three-dimensional shape measurement information for each micro local area A transmitted from the sensing unit 10, the x-axis second derivative, the y-axis second derivative and Compute the xy-axis cross derivative term (S3).
  • the calculating unit 21 calculates the x-axis slope term by integrating the calculated x-axis second derivative and the xy-axis cross-differential term, and integrates the y-axis second derivative and the xy-axis cross derivative to the y-axis gradient term.
  • the calculating unit 21 generates a shape of the measurement target surface by integrating a series of x-axis tilt terms and a y-axis tilt term (S5).
  • the shape of the measurement target surface and the final equation generated in this way may be transmitted to the output unit 30 to be expressed as an image.
  • 6 is a reference diagram showing an arbitrary curved surface (left) and a curved surface (middle) and a measurement error degree (right) measured by the curved shape measuring method and system according to the present invention.
  • 6 is an experimental result of any curved shape in the area of 200mm diameter to verify the curved shape measuring method according to the present invention.
  • the experiment divided the surface to be measured into a total of 501 ⁇ 501 fine local areas A, and then moved the sensing unit 10 by 0.4 mm in the x- and y-axis directions, respectively.
  • the dimensional shape measurement information is generated, and the measurement target surface is generated according to the curved shape measurement method described above based on the generated three-dimensional shape measurement information.
  • the root mean square (RMS) of the measurement target surface (RMS, root mean square) is 0.080449mm
  • the average square root of the surface produced in accordance with the present invention is 0.080461mm with an error of less than 0.000019mm very precise measurement It can be seen that this is possible.
  • the measurement object curved surface C which concerns on this invention is an optical surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention relates to a method for measuring the shape of a free curved surface in an optical type using a second derivative of a local area and a system for measuring the shape of a curved surface using the same. The purpose of the present invention is to provide a method and a system for measuring the shape of a curved surface, which can precisely measure the shape of a non-spherical or free curved surface using a relatively simple configuration. To this end, the method for measuring the shape of a curved surface comprises the steps of: plane-dividing a curved surface, which is to be measured, into virtual multiple micro local areas; acquiring three-dimensional shape measurement information regarding each of the micro local areas; calculating coefficients of Zernike polynomials from each of the three-dimensional shape measurement information; calculating an x-axis second derivative term, a y-axis second derivative term, and an x-y axis cross derivative term from each of the Zernike polynomials; calculating an x-axis inclination term by integrating the x-axis second derivative term and the x-y axis cross derivative term and calculating a y-axis inclination term by integrating the y-axis second derivative term and the x-y axis cross derivative term; and generating a shape of the curved surface, which is to be measured, by integrating the x-axis inclination term and the y-axis inclination term. And the system for measuring the shape of a curved surface according to the present invention comprises: a sensing unit capable of generating three-dimensional shape measurement information regarding a micro local area of a curved surface, which is to be measured; a moving unit for moving the sensing unit; and a control unit for dividing the curved surface, which is to be measured, into virtual micro local areas and controlling the sensing unit and the moving unit such that the sensing unit generates three-dimensional shape measurement information regarding the multiple local areas, the control unit having an operation unit for calculating coefficients of Zernike polynomials on the basis of the three-dimensional shape measurement information, thereby calculating an x-axis second derivative term, a y-axis second derivative term, and an x-y axis cross derivative term, calculating an x-axis inclination term and a y-axis inclination term using the x-axis second derivative term, the y-axis second derivative term, and the x-y axis cross derivative term, and generating the curved surface, which is to be measured, on the basis of the x-axis inclination term and the y-axis inclination term.

Description

국부영역의 이차미분을 이용한 광학식 자유곡면 형상 측정 방법 및 이를 이용한 곡면 형상 측정 시스템Optical Freeform Shape Measurement Method Using Secondary Differential of Local Region and Curved Shape Measurement System Using It
본 발명은 국부영역의 이차미분을 이용한 광학식 자유곡면 형상 측정 방법 및 이를 이용한 곡면 형상 측정 시스템에 관한 것이다.The present invention relates to an optical free curved shape measuring method using a second derivative of a local region and a curved shape measuring system using the same.
구면 또는 평면에 대한 형상 측정은 측정 대상물에 빛을 조사하여 반사된 파면과 기준면(평면, 구면)과의 차이를 추출하는 과정을 거쳐 그 형상을 비교적 정밀하고 쉽게 측정할 수 있다. 반면, 비구면 또는 자유곡면의 경우에는 측정 대상물에 반사된 빛이 기준면으로부터 벗어나는 정도가 크기 때문에 한 번의 빛 조사로써 전체적인 형상을 측정하는 것이 불가능하다.The shape measurement on a spherical surface or a plane is relatively accurate and easy to measure the shape through the process of extracting the difference between the reflected wave surface and the reference surface (plane, sphere) by irradiating light to the measurement object. On the other hand, in the case of an aspherical surface or a free curved surface, since the light reflected from the measurement object is far from the reference plane, it is impossible to measure the overall shape by one light irradiation.
그래서 비구면 또는 자유곡면을 측정할 때는 기준면과의 파면 광경로차를 극복하기 위해 컴퓨터홀로그램(CGH)과 같은 보정광학계를 사용하거나, 접촉식 3차원 측정기 등을 이용한 방법을 이용하기도 하지만, 이러한 측정 형상 방법은 부대시설 및 비용의 측면에서 효율이 낮고, 그럼에도 불구하고 측정 정확도가 낮은 한계가 있다.Therefore, when measuring aspherical or free curved surfaces, a correction optical system such as computer hologram (CGH) is used to overcome the wavefront optical path difference from the reference plane, or a method using a contact three-dimensional measuring instrument is used. The method has a low efficiency in terms of facilities and costs and nevertheless has low limits of measurement accuracy.
본 발명의 목적은 비교적 간단한 구성으로 비구면 또는 자유곡면의 형상을 정밀하게 측정할 수 있는 곡면 형상 측정 방법 및 시스템을 제공하는 것이다.It is an object of the present invention to provide a curved shape measuring method and system capable of precisely measuring the shape of an aspherical surface or a free curved surface with a relatively simple configuration.
본 발명에 따른 곡면 형상 측정방법은 측정대상 곡면을 가상의 다수의 미세 국부영역으로 평면 분할하는 단계; 상기 미세 국부영역 각각에 대한 삼차원 형상 측정정보를 획득하는 단계; 상기 각 삼차원 형상 측정정보로부터 제르니크 다항식의 계수를 산출하는 단계; 상기 각 제르니크 다항식으로부터 x축 이차미분항, y축 이차미분항 및 x-y축 교차미분항을 산출하는 단계; 상기 x축 이차미분항과 상기 x-y축 교차미분항을 적분하여 x축 기울기항을 산출하고, 상기 y축 이차미분항과 상기 x-y축 교차미분항을 적분하여 y축 기울기항을 산출하는 단계; 상기 x축 기울기항과 상기 y축 기울기항을 적분하여 측정 대상 곡면 형상을 생성하는 단계를 포함한다.According to the present invention, there is provided a method of measuring a curved shape; Acquiring three-dimensional shape measurement information for each of the minute local areas; Calculating coefficients of the Zernik polynomial from the three-dimensional shape measurement information; Calculating an x-axis second derivative, a y-axis second derivative and an x-y-axis cross differential term from the respective Zernik polynomials; Calculating an x-axis gradient term by integrating the x-axis second derivative and the x-y-axis cross-differential term, and calculating the y-axis slope term by integrating the y-axis secondary differential term and the x-y-axis cross derivative term; And integrating the x-axis slope term and the y-axis slope term to generate a measurement target curved shape.
본 발명에 따른 곡면 형상 측정 시스템은 측정 대상 곡면의 미세 국부영역에 대한 삼차원 형상 측정정보를 생성할 수 있는 센싱부와; 상기 센싱부를 이동하는 이동부와; 상기 측정 대상 곡면을 가상의 다수의 미세 국부영역으로 분할하고 상기 센싱부로 하여금 상기 다수의 미세 국부영역에 각각에 대한 삼차원 형상 측정정보를 생성하도록 상기 센싱부 및 상기 이동부를 제어하며, 상기 삼차원 형상 측정정보를 기초로 제르니크 다항식의 계수를 산출하여 x축 이차미분항, y축 이차미분항 및 x-y축 교차미분항을 산출하고 상기 x축 이차미분항, y축 이차미분항 및 x-y축 교차미분항을 이용하여 x축 기울기항 및 y축 기울기항을 산출하며 상기 x축 기울기항과 상기 y축 기울기항을 기초로 하여 상기 측정 대상 곡면을 생성하는 연산부를 갖는 제어부를 포함한다.According to the present invention, there is provided a curved shape measuring system comprising: a sensing unit capable of generating three-dimensional shape measurement information about a minute local area of a curved surface to be measured; A moving unit for moving the sensing unit; The sensing target surface is divided into a plurality of virtual local regions, and the sensing unit controls the sensing unit and the moving unit to generate three-dimensional shape measurement information for each of the plurality of micro local regions, and the three-dimensional shape measurement. Based on the information, the coefficients of the Zernike polynomial are calculated to calculate the x-axis second derivative, the y-axis second derivative and the xy-axis differential derivative, and the x-axis second derivative, the y-axis second derivative and the xy-axis cross derivative And a control unit for calculating an x-axis gradient term and a y-axis gradient term and generating the measurement target surface based on the x-axis gradient term and the y-axis gradient term.
본 발명에 따른 곡면 형상 측정 방법 및 시스템은 비교적 간단한 구성으로 비구면 또는 자유곡면의 형상을 정밀하게 측정할 수 있다.The curved shape measuring method and system according to the present invention can accurately measure the shape of an aspherical surface or a free curved surface with a relatively simple configuration.
도 1은 본 발명에 따른 곡면 형상 측정 시스템을 나타낸 개략도이고,1 is a schematic view showing a curved shape measuring system according to the present invention,
도 2는 다수의 미세 국부영역을 간략히 나타낸 개념도이고,2 is a conceptual diagram briefly illustrating a plurality of fine local regions;
도 3은 제르니크 다항식의 초기 6번째 항까지의 독립된 형상을 나타낸 참고도이고,3 is a reference diagram showing the independent shape up to the initial sixth term of the Zernik polynomial,
도 4는 이차미분항으로부터 곡면 형상을 복원하는 적분 개념도이고,4 is an integral conceptual diagram for restoring a curved shape from a second derivative term,
도 5는 본 발명에 따른 곡면 형상 측정 방법을 나타낸 순서도이며,5 is a flowchart showing a curved shape measuring method according to the present invention;
도 6은 임의의 곡면(왼쪽)과, 본 발명에 따른 곡면 형상 측정방법 및 시스템으로 측정한 곡면(중간) 및 측정 오차 정도(오른쪽)을 나타낸 참고도이다.6 is a reference diagram showing an arbitrary curved surface (left) and a curved surface (middle) and a measurement error degree (right) measured by the curved shape measuring method and system according to the present invention.
도 1은 본 발명에 따른 곡면 형상 측정 시스템을 나타낸 개략도이며, 도 2는 측정 대상을 다수의 미세 국부영역으로 분할하여 나타낸 개념도이다.1 is a schematic diagram showing a curved shape measuring system according to the present invention, and FIG. 2 is a conceptual diagram showing a measurement object divided into a plurality of fine local regions.
도 2를 도 1과 함께 참조하여 보면, 본 시스템은 곡면(C)의 표면에 근접한 상태에서 국부영역(A)을 조사하여 해당 국부영역(A)에 대한 3차원 형상의 측정정보를 생성할 수 있는 센싱부(10)와, 센싱부(10)를 이동하는 이동부(15) 및 측정 대상 곡면(C)을 가상의 다수의 미세 국부영역(A)으로 분할하고 센싱부(10)로 하여금 미세 국부영역(A)들에 대한 3차원 형상 측정정보를 생성하도록 센싱부(10) 및 이동부(15)를 제어하는 제어부(20)를 갖는다. 여기서, 3차원 형상의 측정정보는 화소당 x, y, z값의 집합이며, 센싱부(10)는 트와이만-그린(Twyman-Green) 간섭계, 미라우(Mirau) 간섭계 또는 피조(Fizeau)간섭계 등으로 마련될 수 있다.Referring to FIG. 2 together with FIG. 1, the present system may generate the three-dimensional shape measurement information of the local area A by irradiating the local area A in a state close to the surface of the curved surface C. FIG. The sensing unit 10, the moving unit 15 for moving the sensing unit 10, and the measurement target surface C are divided into a plurality of virtual local regions A, and the sensing unit 10 is finely divided. The control unit 20 controls the sensing unit 10 and the moving unit 15 to generate three-dimensional shape measurement information for the local areas A. Here, the measurement information of the three-dimensional shape is a set of x, y, z values per pixel, and the sensing unit 10 is a Twyman-Green interferometer, a Mirau interferometer or a Fizeau It may be provided as an interferometer.
제어부(20)는 측정 대상 곡면(C)을 미세 국부영역(A)으로 분할한다. 이때, 인접한 미세 국부영역(A)들 사이의 거리값(s)을 작게 하여 조밀하게 할수록 정밀도는 향상된다.The control unit 20 divides the measurement target surface C into the fine local region A. FIG. At this time, the precision is improved as the distance value s between the adjacent minute local areas A is made smaller and denser.
이렇게 측정 대상 곡면(C)이 다수의 미세 국부영역(A)으로 분할되면 제어부(20)는 센싱부(10)로 하여금 각 미세 국부영역(A)을 순차적으로 조사할 수 있도록 센싱부(10)의 이동경로를 설정한다. 제어부(20)는 이동부(15)를 이용하여 센싱부(10)를 상기 이동경로를 따라 이동시키면서 각 국부영역(A)의 중심(8)에 위치했을 때 각 국부영역(A)에 대한 3차원 형상의 측정정보를 생성하도록 한다. 그리고 제어부(20)는 센싱부(10)에서 생성된 3차원 형상에 관한 측정정보들을 연산부(21)로 전송하도록 한다. 이때, 국부영역(A)에서의 3차원 형상 측정정보는 화소당 x, y, z값의 집합으로써, 각 국부영역(A)에서 측정된 3차원 형상 측정정보들을 그대로 이어 붙여 전체 형상을 생성할 수도 있지만, 이 경우 센싱부(10)가 국부영역(A)별로 이동할 때 발생하는 위치 오차, 기울기 오차(tip and tilt) 또는 높이방향 오차(piston) 등이 발생하여 정밀도가 크게 낮은 단점이 있다. 그리고 다수의 국부영역(A)에서의 3차원 형상 측정정보를 기초로 일차미분한 각 국부영역(A)에 대한 기울기 정보를 획득하여 전체 형상을 생성할 수도 있지만, 이 경우에도 여전히 센싱부(10)가 이동할 때 발생하는 위치 오차와 기울기 오차(tip and tilt)에 영향을 받아 정밀도가 낮은 단점이 있다.When the surface to be measured C is divided into a plurality of minute local areas A, the controller 20 may allow the sensing unit 10 to sequentially irradiate each of the minute local areas A. Set the movement path of. The control unit 20 moves the sensing unit 10 along the movement path by using the moving unit 15, and when the sensing unit 10 is located at the center 8 of each local area A, the control unit 20 may move to the local area A 3. Create measurement information of dimensional shape. The controller 20 transmits the measurement information about the three-dimensional shape generated by the sensing unit 10 to the calculator 21. In this case, the three-dimensional shape measurement information in the local area A is a set of x, y, and z values per pixel, and the three-dimensional shape measurement information measured in each local area A is directly connected to generate the overall shape. In this case, however, a position error, a tip and tilt, or a height direction error, which occurs when the sensing unit 10 moves for each local area A, may occur. In addition, although the inclination information for each of the first-differential local areas A may be obtained based on the three-dimensional shape measurement information in the plurality of local areas A, the overall shape may be generated. ) Has a disadvantage of low precision due to the position error and tip and tilt caused by the movement.
그래서 본 발명에 따른 연산부(21)는 센싱부(10)로부터 전송되어 온 각 국부영역(A)에서의 3차원 형상 측정정보를 기초로 x축 이차미분항과 y축 이차미분항 및 x-y축 교차미분항을 추출한다.Therefore, the calculation unit 21 according to the present invention crosses the x-axis second derivative, the y-axis second derivative and the xy-axis intersection based on three-dimensional shape measurement information in each local area A transmitted from the sensing unit 10. Extract the differential term.
다수의 국부영역(A)에서 측정된 3차원 형상 측정정보를 기초로 이차미분값에 대한 정보를 획득하여 전체 형상을 생성할 경우에는 센싱부(10)의 높이방향 오차(piston)나 기울기 오차(tip and tilt)에 영향을 받지 않으며, 위치 오차의 영향도 미미하여 가장 높은 정밀도로써 전체 형상을 생성할 수 있다.In the case of generating the overall shape by acquiring the information on the second derivative based on the three-dimensional shape measurement information measured in the plurality of local areas A, the height direction (piston) or the tilt error ( It is not affected by tip and tilt, and the influence of position error is negligible so that the overall shape can be generated with the highest precision.
연산부(21)가 미세 국부영역에서의 3차원 형상 측정정보로부터 측정 대상물의 데이터를 생성하는 근거와 방법은 다음과 같다.The basis and method for the calculation unit 21 to generate the data of the measurement object from the three-dimensional shape measurement information in the fine local region are as follows.
먼저, Z(x, y)를 측정대상 비구면에 대해 얻고자 하는 곡면 형상 함수라고 한다면, Z(x, y)의 미분식은 [수학식 1]과 같이 나타낼 수 있다.First, if Z (x, y) is a curved shape function to be obtained for the measurement target aspherical surface, the differential expression of Z (x, y) may be expressed as Equation 1 below.
수학식 1
Figure PCTKR2015003545-appb-M000001
Equation 1
Figure PCTKR2015003545-appb-M000001
(여기서, Sx는 x축 방향 기울기, Sy는 y축 방향 기울기임.)Where Sx is the x-axis slope and Sy is the y-axis slope.
또, [수학식 1]의 x축 방향의 기울기(Sx) 및 y축 방향의 기울기(Sy)를 미분하면 각각 [수학식 2] 및 [수학식 3]으로 나타낼 수 있다.In addition, it can be represented by Equation 1 when the differential slope (S y) in the x-axis tilt (S x) and y-direction respectively, Equation 2 and Equation 3].
수학식 2
Figure PCTKR2015003545-appb-M000002
Equation 2
Figure PCTKR2015003545-appb-M000002
Figure PCTKR2015003545-appb-I000001
Figure PCTKR2015003545-appb-I000001
수학식 3
Figure PCTKR2015003545-appb-M000003
Equation 3
Figure PCTKR2015003545-appb-M000003
Figure PCTKR2015003545-appb-I000002
Figure PCTKR2015003545-appb-I000002
이와 같이 x축 방향의 기울기 및 y축 방향의 기울기를 미분한 [수학식 2] 및 [수학식 3]에서 볼 수 있듯이, 곡면 형상 Z(x, y)를 이차미분하면 최종적으로 [수학식 4] 내지 [수학식 6]과 같이 x축 이차미분항, y축 이차미분항 및 x-y축 교차미분항으로 표현할 수 있다.As shown in [Equation 2] and [Equation 3], which differentiates the inclination in the x-axis direction and the inclination in the y-axis direction, the second derivative of the curved shape Z (x, y) finally yields [Equation 4]. ] To [Equation 6] can be expressed as the x-axis second derivative, the y-axis second derivative and the xy-axis cross derivative.
수학식 4
Figure PCTKR2015003545-appb-M000004
Equation 4
Figure PCTKR2015003545-appb-M000004
수학식 5
Figure PCTKR2015003545-appb-M000005
Equation 5
Figure PCTKR2015003545-appb-M000005
수학식 6
Figure PCTKR2015003545-appb-M000006
Equation 6
Figure PCTKR2015003545-appb-M000006
그래서 이 세 이차미분값을 기초로 하여, 측정 대상이 되는 곡면 형상을 복원할 수 있다. 이러한 원리에 기초하여, 연산부(21)는 각 국부영역(A)에 대한 3차원 형상 측정정보 값으로부터 [수학식 4] 내지 [수학식 6]으로 표현된 세 이차미분값을 생성하고, 이 세 이차미분값으로부터 대상 곡면의 곡면 형상 함수 Z(x, y)를 복원한다. 그 과정은 다음과 같다.Therefore, based on these three second derivatives, the curved shape to be measured can be restored. Based on this principle, the calculating section 21 generates three second derivatives expressed by Equations 4 to 6 from three-dimensional shape measurement information values for each local area A. Restore the surface shape function Z (x, y) of the target surface from the second derivative. The process is as follows.
먼저, 모든 곡면의 3차원 형상은 아래 [수학식 7]과 같이 제르니크(Zernike) 다항식으로 표현할 수 있다. 제르니크 다항식은 각 항이 단위원 안에서 직교성(orthogonal)과 완전성(complete)을 만족하는 기저함수(basis function)의 특징을 갖는다. 또한 제르니크 다항식의 개별항들은 각기 다른 광학적 특성을 표현하기 때문에 광학식 파면 또는 형상표면을 표현하는데 적합하다.First, all three-dimensional shapes of the curved surface may be expressed by Zernike polynomials as shown in Equation 7 below. The Zernik polynomial is characterized by a basis function where each term satisfies orthogonality and completeness within a unit circle. In addition, the individual terms of the Zernik polynomial are suitable for expressing optical wavefronts or shape surfaces because they represent different optical properties.
수학식 7
Figure PCTKR2015003545-appb-M000007
Equation 7
Figure PCTKR2015003545-appb-M000007
여기서, an은 n번째 항의 계수이며, zn은 [수학식 8] 내지 [수학식 13]과 같이 정의되는 기저함수 항이다. 천체망원경 등 현실적인 대부분의 측정대상물은 그 광학식 표면(Optical surface)이 연삭 가공한 완만한 형상을 가지므로, 7차 이상의 고차항은 생략하여도 무방하다. 6차까지의 기저함수 항은 다음의 [수학식 8] 내지 [수학식 13]과 같다.Here, a n is a coefficient of the nth term, and z n is a basis function term defined as in Equations 8 to 13. Most realistic objects to be measured, such as astronomical telescopes, have a smooth shape whose optical surface is ground, so that higher order terms of seventh order or more may be omitted. The basis function terms up to the sixth order are as shown in [Equations 8] to [Equation 13] below.
수학식 8
Figure PCTKR2015003545-appb-M000008
Equation 8
Figure PCTKR2015003545-appb-M000008
수학식 9
Figure PCTKR2015003545-appb-M000009
Equation 9
Figure PCTKR2015003545-appb-M000009
수학식 10
Figure PCTKR2015003545-appb-M000010
Equation 10
Figure PCTKR2015003545-appb-M000010
수학식 11
Figure PCTKR2015003545-appb-M000011
Equation 11
Figure PCTKR2015003545-appb-M000011
수학식 12
Figure PCTKR2015003545-appb-M000012
Equation 12
Figure PCTKR2015003545-appb-M000012
수학식 13
Figure PCTKR2015003545-appb-M000013
Equation 13
Figure PCTKR2015003545-appb-M000013
도 3은 제르니크 다항식의 초기 6번째 항(Z1 내지 Z6)까지의 독립된 형상을 나타낸 개념도이다. 도 3에서와 같이 나타난 독립된 형상들의 중첩을 통해 측정 대상 곡면을 생성할 수 있다. 그리고 이러한 기저함수 항들을 제르니크 다항식에 적용하면, 국부영역(A)에서의 3차원 형상은 [수학식 14]와 같이 표현된다.3 is a conceptual diagram showing independent shapes up to the first sixth term Z 1 to Z 6 of the Zernik polynomial. The measurement target surface may be generated through the overlapping of the independent shapes shown in FIG. 3. When the basis function term is applied to the Zernik polynomial, the three-dimensional shape in the local region A is expressed as shown in [Equation 14].
수학식 14
Figure PCTKR2015003545-appb-M000014
Equation 14
Figure PCTKR2015003545-appb-M000014
Figure PCTKR2015003545-appb-I000003
Figure PCTKR2015003545-appb-I000003
또한, 국부영역(A)에 대한 3차원 형상은 [수학식 15]와 같이 테일러식(Taylor series expansion)으로도 표현할 수 있다.In addition, the three-dimensional shape of the local area A may be expressed by a Taylor series expansion as shown in [Equation 15].
수학식 15
Figure PCTKR2015003545-appb-M000015
Equation 15
Figure PCTKR2015003545-appb-M000015
Figure PCTKR2015003545-appb-I000004
Figure PCTKR2015003545-appb-I000004
상술한 바와 같이 국부영역(A)에 대한 3차원 형상을 표현하는 [수학식 14]와 [수학식 15]를 각각 x축에 대한 이차미분, y축에 대한 이차미분 및 x-y교차축에 대한 이차미분을 수행하면, [수학식 16] 내지 [수학식 18]로 나타낼 수 있다.[Equation 14] and [Equation 15] representing the three-dimensional shape of the local area A as described above, respectively, the second derivative with respect to the x-axis, the second derivative with respect to the y-axis, and the second derivative with respect to the xy-crossing axis. When the derivative is performed, it may be represented by Equations 16 to 18.
수학식 16
Figure PCTKR2015003545-appb-M000016
Equation 16
Figure PCTKR2015003545-appb-M000016
수학식 17
Figure PCTKR2015003545-appb-M000017
Equation 17
Figure PCTKR2015003545-appb-M000017
수학식 18
Figure PCTKR2015003545-appb-M000018
Equation 18
Figure PCTKR2015003545-appb-M000018
이에 따라, [수학식 16] 내지 [수학식 18]에서 볼 수 있는 바와 같이 x축에 대한 이차미분항, y축에 대한 이차미분항 및 x-y축에 대한 교차미분항은 제르니크 다항식의 네 번째, 다섯 번째 및 여섯 번째 계수인 a4, a5, a6값으로부터 도출될 수 있다. 여기서, a4, a5, a6값은 각 국부영역(A)에 대한 3차원 형상의 측정정보를 이용한 제르니크 피팅(Zernike fitting)으로 도출된다. 제르니크 피팅(Zernike fitting)법은 Daniel malacara의 책인 "Optical shop testing"에 기재되어 있다. 일반적으로, a4, a5, a6값은 3차원 형상 측정 간섭계와 연동되는 소프트웨어를 통해 그 값을 얻을 수 있다.Accordingly, as shown in [Equations 16] to [Equation 18], the second derivative with respect to the x-axis, the second derivative with respect to the y-axis, and the cross derivative with respect to the xy-axis are the fourth in the Zernik polynomial. , The fourth and sixth coefficients a 4 , a 5 , It can be derived from a 6 value. Where a 4 , a 5 , The value of a 6 is derived by Zernike fitting using the three-dimensional shape measurement information for each local area A. The Zernike fitting method is described in Daniel malacara's book "Optical shop testing". In general, a 4 , a 5 , The value of a 6 can be obtained through software associated with a three-dimensional shape measurement interferometer.
이렇게 a4, a5, a6값을 통해 각 국부영역(A)마다의 세 이차미분항을 도출하면, 일련의 국부영역(A)으로부터 전체 곡면 형상을 복원할 수 있다.So a 4 , a 5 , By deriving three second derivatives for each local area A through the value of a 6 , the entire curved shape can be restored from the series of local areas A.
도 4는 연산부(21)가 세 이차미분항으로부터 곡면 형상을 복원하는 적분 개념도를 나타낸 것이다. 도 4에 도시된 바와 같이, 연산부(21)는 x축 이차미분항과 x-y교차미분항을 적분하여 x축 기울기항을 생성시키고, y축 이차미분항과 x-y교차미분항을 적분하여 y축 기울기항을 생성시킨다. 그리고 x축 기울기항과 y축 기울기항을 다시 적분하여 전체 형상 Z(x, y)을 생성한다. 생성된 형상은 제어부(20)와 연결된 출력부(30)에 전송되어 이미지로써 표현될 수 있다. 여기서, 적분은 조날 접근법(Zonal approach)을 이용한 사우스웰 방법(Southwell Method)를 이용하는 것이 바람직하다.4 shows an integral conceptual diagram in which the calculating unit 21 restores a curved shape from three second derivative terms. As shown in FIG. 4, the calculation unit 21 generates an x-axis gradient term by integrating the x-axis quadratic derivative and the xy-cross differential term, and integrates the y-axis quadratic derivative and the xy intersection differential term to inject the y-axis gradient. Create a term Then, the x-axis slope term and the y-axis slope term are integrated again to generate the overall shape Z (x, y). The generated shape may be transmitted to the output unit 30 connected to the control unit 20 to be represented as an image. Here, it is preferable to use the Southwell method using the Zonal approach for integration.
도 5는 본 발명에 따른 곡면 형상 측정 방법을 나타낸 순서도이다. 도 5에서 볼 수 있는 바와 같이, 측정 대상 곡면의 형상을 측정하기 위해 먼저 측정 대상 곡면을 다수의 미세 국부영역(A)으로 분할한다(S1). 그리고 제어부(20)는 센싱부(10)로 하여금 각 미세 국부영역(A)에 대한 3차원 형상 측정정보를 생성하도록 제어한다(S2). 센싱부(10)가 각 미세 국부영역(A)에 대한 3차원 형상 측정정보의 생성을 완료하면, 생성된 모든 3차원 형상 측정정보는 연산부(21)로 전송된다. 연산부(21)는 센싱부(10)로부터 전송된 각 미세 국부영역(A)에 대한 3차원 형상 측정정보를 기초로 각 미세 국부영역(A)의 x축 이차미분항, y축 이차미분항 및 x-y축 교차미분항을 산출한다(S3).5 is a flowchart illustrating a curved shape measuring method according to the present invention. As can be seen in Figure 5, in order to measure the shape of the surface to be measured, the first surface to be measured is divided into a plurality of fine local regions A (S1). In addition, the controller 20 controls the sensing unit 10 to generate three-dimensional shape measurement information for each micro local area A (S2). When the sensing unit 10 completes the generation of the 3D shape measurement information for each micro local area A, all the generated 3D shape measurement information is transmitted to the calculation unit 21. The calculation unit 21 is based on the three-dimensional shape measurement information for each micro local area A transmitted from the sensing unit 10, the x-axis second derivative, the y-axis second derivative and Compute the xy-axis cross derivative term (S3).
계속해서, 연산부(21)는 산출된 x축 이차미분항과 x-y축 교차미분항을 적분하여 x축 기울기항을 산출하며, y축 이차미분항과 x-y축 교차미분항을 적분하여 y축 기울기항을 산출한다(S4). 그리고 연산부(21)는 일련의 x축 기울기항과 y축 기울기항을 적분하여 측정 대상 곡면의 형상을 생성한다(S5). 이렇게 생성된 측정 대상 곡면의 형상과 최종 수식은 출력부(30)로 전송되어 이미지로써 표현될 수 있다.Subsequently, the calculating unit 21 calculates the x-axis slope term by integrating the calculated x-axis second derivative and the xy-axis cross-differential term, and integrates the y-axis second derivative and the xy-axis cross derivative to the y-axis gradient term. To calculate (S4). The calculating unit 21 generates a shape of the measurement target surface by integrating a series of x-axis tilt terms and a y-axis tilt term (S5). The shape of the measurement target surface and the final equation generated in this way may be transmitted to the output unit 30 to be expressed as an image.
도 6은 임의의 곡면(왼쪽)과, 본 발명에 따른 곡면 형상 측정 방법 및 시스템으로 측정한 곡면(중간) 및 측정 오차 정도(오른쪽)을 나타낸 참고도이다. 도 6은 본 발명에 따른 곡면 형상 측정 방법을 검증하기 위해 직경 200mm 영역의 임의의 곡면 형상을 대상으로 한 실험 결과이다. 실험은 측정 대상 곡면을 총 501×501개의 미세 국부영역(A)으로 분할한 다음 센싱부(10)로 하여금 x축 및 y축 방향으로 각각 0.4mm씩 이동시키면서 각 국부영역(A)에 대한 3차원 형상 측정정보를 생성하도록 한 것이며, 생성된 3차원 형상 측정정보를 기초로 하여 상술한 곡면 형상 측정 방법대로 측정 대상 곡면을 생성한 것이다.6 is a reference diagram showing an arbitrary curved surface (left) and a curved surface (middle) and a measurement error degree (right) measured by the curved shape measuring method and system according to the present invention. 6 is an experimental result of any curved shape in the area of 200mm diameter to verify the curved shape measuring method according to the present invention. The experiment divided the surface to be measured into a total of 501 × 501 fine local areas A, and then moved the sensing unit 10 by 0.4 mm in the x- and y-axis directions, respectively. The dimensional shape measurement information is generated, and the measurement target surface is generated according to the curved shape measurement method described above based on the generated three-dimensional shape measurement information.
도 6에서 볼 수 있는 바와 같이, 측정 대상 곡면의 평균평방근(RMS, root mean square)은 0.080449mm이며, 본 발명에 따라 생성된 곡면의 평균평방근은 0.080461mm로 0.000019mm 이하의 오차로써 아주 정밀한 측정이 가능함을 알 수 있다.As can be seen in Figure 6, the root mean square (RMS) of the measurement target surface (RMS, root mean square) is 0.080449mm, the average square root of the surface produced in accordance with the present invention is 0.080461mm with an error of less than 0.000019mm very precise measurement It can be seen that this is possible.
본 발명에 따른 측정 대상 곡면(C)은 광학식 표면인 것이 바람직하다.It is preferable that the measurement object curved surface C which concerns on this invention is an optical surface.

Claims (2)

  1. 곡면 형상 측정방법에 있어서,In the curved shape measurement method,
    측정대상 곡면을 가상의 다수의 미세 국부영역으로 평면 분할하는 단계;Plane dividing the measurement target surface into a plurality of virtual local regions;
    상기 미세 국부영역 각각에 대한 삼차원 형상 측정정보를 획득하는 단계;Acquiring three-dimensional shape measurement information for each of the minute local areas;
    상기 각 삼차원 형상 측정정보로부터 제르니크 다항식의 계수를 산출하는 단계;Calculating coefficients of the Zernik polynomial from the three-dimensional shape measurement information;
    상기 각 제르니크 다항식으로부터 x축 이차미분항, y축 이차미분항 및 x-y축 교차미분항을 산출하는 단계;Calculating an x-axis second derivative, a y-axis second derivative and an x-y-axis cross differential term from the respective Zernik polynomials;
    상기 x축 이차미분항과 상기 x-y축 교차미분항을 적분하여 x축 기울기항을 산출하고, 상기 y축 이차미분항과 상기 x-y축 교차미분항을 적분하여 y축 기울기항을 산출하는 단계;Calculating an x-axis gradient term by integrating the x-axis second derivative and the x-y-axis cross-differential term, and calculating the y-axis slope term by integrating the y-axis secondary differential term and the x-y-axis cross derivative term;
    상기 x축 기울기항과 상기 y축 기울기항을 적분하여 측정 대상 곡면 형상을 생성하는 단계를 포함하는 것을 특징으로 하는 곡면 형상 측정방법.And integrating the x-axis gradient term and the y-axis gradient term to generate a measurement target curved shape.
  2. 곡면 형상 측정 시스템에 있어서,In the curved shape measurement system,
    측정 대상 곡면의 미세 국부영역에 대한 삼차원 형상 측정정보를 생성할 수 있는 센싱부와;A sensing unit capable of generating three-dimensional shape measurement information on the minute local area of the curved surface to be measured;
    상기 센싱부를 이동하는 이동부와;A moving unit for moving the sensing unit;
    상기 측정 대상 곡면을 가상의 다수의 미세 국부영역으로 분할하고 상기 센싱부로 하여금 상기 다수의 미세 국부영역에 각각에 대한 삼차원 형상 측정정보를 생성하도록 상기 센싱부 및 상기 이동부를 제어하며, 상기 삼차원 형상 측정정보를 기초로 제르니크 다항식의 계수를 산출하여 x축 이차미분항, y축 이차미분항 및 x-y축 교차미분항을 산출하고 상기 x축 이차미분항, y축 이차미분항 및 x-y축 교차미분항을 이용하여 x축 기울기항 및 y축 기울기항을 산출하며 상기 x축 기울기항과 상기 y축 기울기항을 기초로 하여 상기 측정 대상 곡면을 생성하는 연산부를 갖는 제어부를 포함하는 것을 특징으로 하는 곡면 형상 측정 시스템.The sensing target surface is divided into a plurality of virtual local regions, and the sensing unit controls the sensing unit and the moving unit to generate three-dimensional shape measurement information for each of the plurality of micro local regions, and the three-dimensional shape measurement. Based on the information, the coefficients of the Zernike polynomial are calculated to calculate the x-axis second derivative, the y-axis second derivative and the xy-axis differential derivative, and the x-axis second derivative, the y-axis second derivative and the xy-axis cross derivative And a control unit for calculating an x-axis slope term and a y-axis slope term and generating the measurement target surface based on the x-axis slope term and the y-axis slope term. Measuring system.
PCT/KR2015/003545 2014-04-08 2015-04-08 Method for measuring shape of free curved surface in optical type using second derivative of local area and system for measuring shape of curved surface using same WO2015156609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140041827A KR101421502B1 (en) 2014-04-08 2014-04-08 Measuring method of curved surface using 2nd differential of a part area and system thereof
KR10-2014-0041827 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015156609A1 true WO2015156609A1 (en) 2015-10-15

Family

ID=51742653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003545 WO2015156609A1 (en) 2014-04-08 2015-04-08 Method for measuring shape of free curved surface in optical type using second derivative of local area and system for measuring shape of curved surface using same

Country Status (2)

Country Link
KR (1) KR101421502B1 (en)
WO (1) WO2015156609A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584723B1 (en) * 2014-12-05 2016-01-15 경남대학교 산학협력단 Measuring method of freeform curved surface using curvature of a part area
KR102081085B1 (en) * 2018-11-22 2020-02-25 주식회사 나노시스템 Device and method for measuring shape of 3D free-form surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030072A (en) * 1998-07-14 2000-01-28 Ricoh Co Ltd Three-dimensional shape generating device
JP3054108B2 (en) * 1997-08-15 2000-06-19 理化学研究所 Free-form surface measurement data synthesis method
JP2003150654A (en) * 2001-11-14 2003-05-23 Ricoh Co Ltd Mass property calculation device for three-dimensional shape, mass property calculation method for three- dimensional shape, program and storage medium
JP2011196954A (en) * 2010-03-23 2011-10-06 Fujifilm Corp Method and device for measuring aspherical surface object

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267438A (en) 2001-03-08 2002-09-18 Toshiba Mach Co Ltd Free curved surface shape measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054108B2 (en) * 1997-08-15 2000-06-19 理化学研究所 Free-form surface measurement data synthesis method
JP2000030072A (en) * 1998-07-14 2000-01-28 Ricoh Co Ltd Three-dimensional shape generating device
JP2003150654A (en) * 2001-11-14 2003-05-23 Ricoh Co Ltd Mass property calculation device for three-dimensional shape, mass property calculation method for three- dimensional shape, program and storage medium
JP2011196954A (en) * 2010-03-23 2011-10-06 Fujifilm Corp Method and device for measuring aspherical surface object

Also Published As

Publication number Publication date
KR101421502B1 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
CN108759699B (en) Method and system for measuring three-dimensional full-field deformation of masonry structure material with large field of view
CN105318891B (en) A kind of caliberating device of star sensor benchmark prism square installation error
Lu et al. A global calibration method for large-scale multi-sensor visual measurement systems
CN108444449B (en) It is a kind of to the object space attitude measurement method with parallel lines feature
Zhao et al. Calibration for stereo vision system based on phase matching and bundle adjustment algorithm
CN204007645U (en) A kind of caliberating device of star sensor benchmark prism square alignment error
CN104748696A (en) Measuring method for full field deformation of large-dip-angle wing
CN110188321A (en) A kind of primary and secondary mirror calibration method based on neural network algorithm
CN102778210B (en) Computer-generated hologram-based aspheric surface absolute detection method
Zhou et al. A novel way of understanding for calibrating stereo vision sensor constructed by a single camera and mirrors
CN106248014A (en) A kind of three-dimensional coordinate measurement method and device based on single-phase
CN107396097B (en) A kind of method and apparatus of the parallax test of virtual reality device
CN102305596B (en) Device and method for controlling rotation error in interference detection of surface shape of spherical surface
CN103471521B (en) The real-time detection method of optical aspherical surface fast and accurately
Yu et al. A calibration method based on virtual large planar target for cameras with large FOV
CN111811433B (en) Structured light system calibration method and device based on red and blue orthogonal stripes and application
CN109031659A (en) A kind of Computer Aided Assembly Process Planning method of coaxial optical system
Isa et al. Volumetric error modelling of a stereo vision system for error correction in photogrammetric three-dimensional coordinate metrology
CN102645202A (en) Method for measuring contour of large-caliber aspheric-surface workpiece
CN103134660A (en) Method acquiring telescope primary and secondary mirror alignment error based on astigmatism decomposition
WO2015156609A1 (en) Method for measuring shape of free curved surface in optical type using second derivative of local area and system for measuring shape of curved surface using same
Liu et al. On-site calibration method for outdoor binocular stereo vision sensors
Cui et al. A measurement method of motion parameters in aircraft ground tests using computer vision
CN112525071B (en) Method for inhibiting non-uniformity influence of optical material in large-aperture interferometer
CN107478172B (en) Laser three-D curved profile positioning projection method based on binocular vision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776820

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776820

Country of ref document: EP

Kind code of ref document: A1