WO2015156437A1 - 해상용 풍력발전타워 시공장치 및 이의 시공방법 - Google Patents

해상용 풍력발전타워 시공장치 및 이의 시공방법 Download PDF

Info

Publication number
WO2015156437A1
WO2015156437A1 PCT/KR2014/003106 KR2014003106W WO2015156437A1 WO 2015156437 A1 WO2015156437 A1 WO 2015156437A1 KR 2014003106 W KR2014003106 W KR 2014003106W WO 2015156437 A1 WO2015156437 A1 WO 2015156437A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
cylinder
coupling means
pillar
coupling
Prior art date
Application number
PCT/KR2014/003106
Other languages
English (en)
French (fr)
Inventor
하평옥
Original Assignee
주식회사 대하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대하 filed Critical 주식회사 대하
Publication of WO2015156437A1 publication Critical patent/WO2015156437A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to an offshore wind power tower construction apparatus and a construction method thereof, and more particularly, a plurality of pillars are installed in multiple stages to form a tower, among which the upper and lower ends of the neighboring lower pillars Is coupled, is located in the inner side of the lower column, the length and stretch of the cylinder, the lower column coupling means for engaging and releasing the lower portion and the lower column of the cylinder, the upper and the upper column of the cylinder coupled and released Including the upper column coupling means and the column coupling means for coupling and releasing the upper pillar and the lower pillar, do not use a large crane mounted crane facility, eliminating the difficulty of construction work, and reduce the construction cost and construction time
  • the present invention relates to an offshore wind power tower construction apparatus and a construction method thereof.
  • Wind power generation is a promising alternative energy source that can replace fossil fuels. It is a clean energy source that does not cause environmental pollution, and is currently known to be the most economical alternative energy source.
  • the wind power generator is constructed using a crane, such a wind power generator has a high center of gravity, and thus a construction site is high, and there are difficulties and risks of work that must be performed by a crane for aerial work.
  • the efficiency of wind power generators increases as the wind speed increases and the wind direction changes little. Since the sea has little influence due to the terrain, which reduces the flow of wind, the average wind speed of the sea wind is higher than that of the ground wind, and the air volume of the sea wind is also richer than that of the ground wind. In particular, the offshore wind farther inland, the less turbulent characteristics are more advantageous for wind power generation.
  • the offshore wind power generators installed at sea are generally manufactured on land, loaded on a barge and operated in an installed sea area, and are suspended from the barge by a large crane mounted on a crane ship so as to stand on the foundation structure.
  • Figure 1 is a view showing a conventional offshore wind generator installation system (Korea Patent No. 10-1337646, offshore wind generator, offshore wind generator lifting lifting jig and offshore wind generator installation method and system using the same)
  • the lifting jig 20 installed on the tower 10 of the offshore wind generator and the lifting jig 20 on both sides of the tower 10 may be lifted above the center of gravity G of the offshore wind generator. It is comprised by the crane 30 which exists.
  • the conventional offshore wind turbine is a wind turbine is built using a crane mounted on a crane, the installation may be delayed or limited by the weather conditions of the sea, the direction difficult to control due to the surrounding foundation structure In the offshore wind power tower construction is not easy, there is a problem that takes a long period of construction.
  • the present invention has been made to solve the above problems and an object of the present invention is to provide an offshore wind power tower construction apparatus and construction method that can be installed without using a large crane-mounted crane facility. will be.
  • Another object of the present invention can reduce the constraints on the construction of the offshore wind power tower generated due to weather conditions and surrounding foundations, and thus the construction cost of the offshore wind power tower construction apparatus and construction thereof can also be reduced To provide a way.
  • the present invention is a plurality of pillars are installed in a multi-stage to form a tower, the offshore wind power generation of the top of the neighboring lower column and the lower end of the pillars are assembled
  • a tower construction device comprising: a cylinder which is positioned inside the lower column and is stretched in length; Lower column coupling means for engaging and releasing the lower portion of the cylinder and the lower column; Upper column coupling means for engaging and releasing the upper column and the upper column of the cylinder; And including the column coupling means for coupling and releasing the upper column and the lower column,
  • the pillar coupling means is released, and the cylinder is extended to lift the upper pillar while the upper pillar coupling means and the lower pillar coupling means are coupled.
  • the cylinder provides a factory for offshore wind power generation, characterized in that by repeatedly expanding and contracting to raise the upper pillar over the lower pillar.
  • the lower column coupling means includes a plurality of lower column fastening holes formed in the lower column and pins fastened to the lower column fastening holes.
  • the lower column coupling means further comprises a frame connecting the lower portion of the cylinder with the pin.
  • the column coupling means is fastened to the lower column fastening hole, the plurality of upper column fastening holes and the lower column fastening hole and the upper column fastening hole formed to correspond to the lower column fastening hole in the upper column. It includes a pin.
  • the upper and lower intervals of the lower column fastening holes are constant with the length that the cylinder stretches.
  • the cylinder is plural.
  • the cylinders are arranged along an edge inside the lower pillar, and are symmetrical with each other about the lower pillar.
  • the construction of the offshore wind power tower construction apparatus including a column assembly step of assembling the upper column rising step and the lower end of the elevated upper column and the top of the lower column in order to construct a marine wind tower factory factory
  • the upper column rising step is the column coupling means is released, while the lower column coupling means, the upper column coupling means is coupled, the cylinder is extended while the upper portion of the cylinder to the upper column Lifting cylinder extension step
  • a lower column coupling release step of releasing the lower column coupling means A cylinder contraction step in which the upper column coupling means and the column coupling means are coupled and the cylinder is contracted in a state in which the lower column coupling means is released
  • the cylinder is plural.
  • the cylinder is stretched by hydraulic pressure.
  • the present invention has the following excellent effects.
  • the marine wind power tower construction apparatus and a construction method thereof according to the present invention can be used to construct a marine wind power tower without using a large crane-mounted crane.
  • the marine wind power tower construction apparatus and construction method thereof according to the present invention can reduce the constraints on the construction of marine wind power towers caused by meteorological conditions and surrounding basic structures, thereby reducing the construction cost Can be.
  • FIG. 1 is a view showing a conventional offshore wind generator installation system.
  • FIG. 2 is a view showing a marine wind power tower according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing a factory for offshore wind power generation tower according to another embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing a factory for offshore wind power tower according to another embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a factory for offshore wind power tower according to another embodiment of the present invention.
  • Figure 6 is a cut perspective view showing a factory for offshore wind power tower according to another embodiment of the present invention.
  • Figure 7 is a step of the marine wind power tower construction method according to the invention.
  • Figure 8a is a view showing the preparation state before the cylinder expansion step of the marine wind power tower construction method according to the present invention.
  • Figure 8b is a view showing a cylinder expansion step of the marine wind power tower construction method according to the present invention.
  • Figure 8c is a view showing the column coupling step of the offshore wind power tower construction method according to the present invention.
  • Figure 8d is a view showing the lower pillar coupling release step of the marine wind power tower construction method according to the present invention.
  • 8E is a view showing a cylinder contraction step of the marine wind power tower construction method according to the present invention.
  • Figure 8f is a view showing the lower column coupling step of the offshore wind power tower construction method according to the present invention.
  • Figure 8g is a view showing a column decoupling step of the offshore wind power tower construction method according to the present invention.
  • Marine wind power tower construction apparatus 100 as shown in Figure 2, without using a large crane mounted crane, a plurality of pillars 110 is installed in multiple stages to form a tower to be.
  • the pillars located at the upper side according to the positional relationship between the neighboring pillars 110 may be described as the upper pillar 111 and the lower pillar 112 positioned at the lower portion.
  • the tower is installed in a structure in which the upper end of the neighboring lower pillars 112 and the lower end of the upper pillars 111 are assembled from the pillars 110.
  • the pillars 110 are blades rotated by wind, a body supporting a nacelle for converting the rotational force of the blade into electrical energy, and if the blades and the nacelle can be supported, the materials and shapes thereof are not limited. .
  • the offshore wind power tower construction apparatus 100 is a device for forming a tower in which a plurality of pillars 110 are installed in multiple stages, the cylinder 120, the lower column coupling means 130, the upper column coupling means 140, and pillar coupling means 150.
  • the cylinder 120 is stretched and stretched by hydraulic pressure, and lifts the upper pillar 111, and is located upright inside the lower pillar 112.
  • the cylinder 120 is erected at the inner center of the lower pillar 112, because it can effectively correspond to the load generated during the expansion and contraction of the cylinder 120.
  • the lower portion 121 of the cylinder is connected to the lower column coupling means 130
  • the upper portion 122 of the cylinder is connected to the upper column coupling means 140.
  • a plurality of cylinders 120 may be used.
  • the cylinders 120 may be arranged along the edge of the inner side of the lower pillar 112, and may be lifted in a balanced manner by being symmetrical with respect to the lower pillar 112. .
  • the cylinders 120 are located at the inner edge of the lower pillar 112 to form a structure symmetrical with each other, is not limited.
  • the installation angle of the frame connecting the cylinder 120 is 180 degrees, so that the cylinder 120 is symmetrical with each other It is located at the edge of the lower pillar 112.
  • the crossing angle of the frame forms 120 degrees, and the cylinders 120 are symmetric with each other.
  • the lower column coupling means 130 is a means capable of coupling and releasing the lower 121 and the lower pillar 112 of the cylinder.
  • the lower column coupling means 130 couples the lower 121 and the lower pillar 112 of the cylinder, it supports a load generated when the upper 122 of the cylinder is extended.
  • the lower column coupling means 130 releases the coupling of the lower 121 and the lower pillar 112 of the cylinder, the lower 121 of the cylinder may be contracted.
  • the lower column coupling means 130 includes a plurality of lower column fastening holes and pins 132 fastened to the lower column fastening holes.
  • the lower column fastening hole is formed in the lower column 112
  • the upper and lower intervals of the lower column fastening hole is preferably formed at regular intervals to match the length of the cylinder 120 stretch.
  • the lower column fastening hole may be used as the column coupling means 150.
  • the lower column coupling means 130 may further include a frame 131 for connecting the lower portion 121 of the cylinder with the pin 132.
  • the upper pillar coupling means 140 is a means for coupling the upper 122 and the upper pillar 111 of the cylinder, and is not particularly limited, as shown in FIG. 6 of the upper pillar 111 It can be used in the form of a bracket connected to the inner wall.
  • the upper column coupling means 140 When the upper column coupling means 140 is coupled to the upper portion 122 and the upper column 111 of the cylinder, the upper portion 122 of the cylinder is extended, it is possible to lift the upper column 111. .
  • the upper column coupling means 140 may be separated from the upper column 111.
  • the pillar coupling means 150 is a means for coupling and releasing the upper pillar 111 and the lower pillar 112.
  • the pillar coupling means 150 is not limited as long as it is a means for coupling and releasing the upper pillar 111 and the lower pillar 112, but is formed in the lower pillar fastening hole, the upper pillar 111, A plurality of upper column fastening holes formed to correspond to the lower column fastening holes and pins fastened to the lower column fastening holes and the upper column fastening holes may be used.
  • the column coupling means 150 is the upper column fastening hole and the lower column fastening hole so that the upper column 111 does not fall in the state in which the upper column 111 is lifted by the upper portion 122 of the cylinder. Engage with pins.
  • the upper portion 122 of the cylinder may be extended to lift the upper pillar 111.
  • the column coupling means 150 is released, and the upper portion 122 of the cylinder is extended in the state in which the lower column coupling means 130 is coupled to the upper portion coupled to the upper portion 122 of the cylinder. Lift the pillar 111.
  • the pillar coupling means 150 is coupled, and the lower portion 121 of the cylinder is contracted by the extension length of the upper portion 122 of the cylinder while the lower pillar coupling means 130 is released, and as a result, The lower portion 121 of the cylinder is raised, and the lower column coupling means 130 coupled with the lower portion 121 of the cylinder is also raised.
  • the cylinder 120 is extended and contracted to form the tower by raising the upper pillar 111 above the lower pillar 112.
  • the present invention provides a construction method for constructing the offshore wind power plant factory.
  • Marine wind power generation tower construction method as shown in Figure 7, the upper column rising step (S10) and the pillar assembly step (S20).
  • the upper column rising step (S10) is a cylinder extension step (S11), column coupling step (S12), lower column coupling release step (S13), cylinder contraction step (S14), lower column coupling step (S15) and column coupling release Including step S16, but is repeatedly performed.
  • the cylinder extending step S11 is a step in which the upper portion 122 of the cylinder is extended to lift the upper pillar 111.
  • the lower column coupling means 130 is coupled to the lower portion 121 and the lower column 112 of the cylinder, to support the load generated when the upper portion 122 of the cylinder is extended.
  • the cylinder 120 is composed of a plurality, it is possible to lift the upper pillar 111 more stably than when using one cylinder.
  • the cylinder 120 may be a hydraulic cylinder that is stretched hydraulically.
  • the column coupling step (S12) for coupling the raised upper column 111 and the lower column 112 to the column coupling means 150 is performed.
  • the pillar coupling step is a step of coupling the lower column 112 so that the raised upper column 111 does not fall.
  • the lower column coupling release step (S13) for releasing the coupling of the lower 121 and the lower pillar 112 of the cylinder is performed.
  • the lower portion 121 of the cylinder in which the lower pillar 112 is uncoupled, is contracted by an extended length of the upper portion 122 of the cylinder, resulting in the lower portion 121 of the cylinder. ) Is raised.
  • the lower column coupling step (S15) for coupling the lower portion 121 and the lower column 112 of the contracted cylinder is performed.
  • the column coupling release step (S16) for releasing the coupling of the upper column 111 and the lower column 112 is performed.
  • the cylinder extension step (S11), the column coupling step (S12), the lower column coupling release step (S13), the cylinder contraction step (S14), the lower column coupling step (S15) and the column coupling release step ( S16) is repeated so that the upper pillar 111 is raised.
  • the pillar assembly step (S20) is to assemble the lower end of the raised upper pillar 111 and the upper end of the lower pillar 112, the offshore wind power tower is constructed.
  • the offshore wind power tower construction apparatus and construction method thereof according to the present invention can be installed offshore wind power tower without using a large crane-mounted crane, weather conditions and surrounding foundation structures It can reduce the restrictions on the construction of the offshore wind power tower generated by, and thus can reduce the construction cost.
  • the present invention is applicable to the construction of wind power towers that are used to produce alternative energy sources.

Abstract

본 발명은 해상용 풍력발전타워 시공장치 및 이의 시공방법에 관한 것으로, 보다 상세하게는 복수개의 기둥이 다단으로 설치되어 타워를 형성하되, 상기 기둥들 중에서 이웃하는 하부기둥의 상단과 상부기둥의 하단이 결합되며, 상기 하부기둥의 내측에 세워져 위치하고, 길이가 신축되는 실린더와, 상기 실린더의 하부와 상기 하부기둥을 결합 및 해제시키는 하부기둥결합수단과, 상기 실린더의 상부과 상기 상부기둥을 결합 및 해제시키는 상부기둥결합수단 및 상기 상부기둥과 상기 하부기둥을 결합 및 해제시키는 기둥결합수단을 포함하여, 대형 크레인 탑재된 기중시설을 사용하지 않아, 시공작업의 곤란성을 해소시키고, 시공비용 및 시공시간을 절감시킬 수 있는 해상용 풍력발전타워 시공장치 및 이의 시공방법에 관한 것이다.

Description

해상용 풍력발전타워 시공장치 및 이의 시공방법
본 발명은 해상용 풍력발전타워 시공장치 및 이의 시공방법에 관한 것으로, 보다 상세하게는 복수개의 기둥이 다단으로 설치되어 타워를 형성하되, 상기 기둥들 중에서 이웃하는 하부기둥의 상단과 상부기둥의 하단이 결합되며, 상기 하부기둥의 내측에 세워져 위치하고, 길이가 신축되는 실린더와, 상기 실린더의 하부와 상기 하부기둥을 결합 및 해제시키는 하부기둥결합수단과, 상기 실린더의 상부과 상기 상부기둥을 결합 및 해제시키는 상부기둥결합수단 및 상기 상부기둥과 상기 하부기둥을 결합 및 해제시키는 기둥결합수단을 포함하여, 대형 크레인 탑재된 기중시설을 사용하지 않아, 시공작업의 곤란성을 해소시키고, 시공비용 및 시공시간을 절감시킬 수 있는 해상용 풍력발전타워 시공장치 및 이의 시공방법에 관한 것이다.
풍력발전은 화석연료를 대체할 수 있는 유망한 대체에너지원으로, 환경오염을 유발하지 않는 청정에너지원이며, 현재 대체에너지원 중 가장 경제성이 높은 것으로 알려져 있다.
따라서, 대규모의 풍력발전단지가 육상 및 해상에서 건설되어 대체에너지를 생산하고 있다.
이와 같은 풍력발전기는 크레인을 이용하여 풍력발전시설이 구축되기 때문에, 무게중심이 높은 관계로 시공 장소가 높아져, 고소작업용 크레인으로 작업을 하여야하는 작업의 곤란성과 위험성이 존재한다.
또한 풍력발전기의 효율은 풍속이 강하면서 풍향의 변화가 적을수록 높아진다. 해상에서는 바람의 유동을 저하시키는 지형 등에 따른 영향이 적으므로, 해상풍의 평균풍속이 지상풍의 풍속보다 높고 해상풍의 풍량 또한 지상풍의 풍량보다 풍부하다. 특히, 내륙에서 먼 곳의 해상풍일수록 난류의 특성이 작아지므로 풍력발전에 더욱 유리하다.
또한 풍력발전기를 지상에 설치할 경우에는 소음 및 미관 등의 제약에 의해 풍력발전기를 설치할 수 있는 장소가 한정되나, 풍력발전기를 해상에 설치할 경우에는 이러한 제약을 거의 받지 않는다는 점에서도 유리하다.
따라서, 현재 대규모의 해상풍력발전단지가 건설되기도 하며, 이를 위한 연구 및 개발이 활발히 진행되고 있다.
해상에서 설치되는 해상풍력발전기는 보편적으로 육상에서 제작하고, 바지선에 실어 설치해역으로 운항하고, 상기 바지선과 별도로 기중기선에 탑재된 대형 크레인으로 풍력발전기를 매달아 기초구조물 본체에 기립되게 설치한다.
일 예로, 도 1은 종래의 해상 풍력 발전기 설치 시스템(대한민국등록특허, 제 10-1337646호, 해상 풍력 발전기, 해상 풍력 발전기 이송용 리프팅 지그 및 이를 이용한 해상 풍력 발전기 설치 방법 및 시스템)을 보여주는 도면으로, 해상 풍력 발전기의 무게 중심(G)보다 상측에서, 상기 해상 풍력 발전기의 타워(10)에 설치되는 리프팅 지그(20) 및 상기 타워(10)의 양측에서 상기 리프팅 지그(20)를 들어올릴 수 있는 크레인(30)으로 구성되어 있다.
따라서 종래의 해상용 풍력발전기는 기중기선에 탑재된 크레인을 이용하여 풍력발전시설이 구축되기 때문에, 해상의 기상조건에 의하여 설치가 지연 또는 제한될 수 있고, 주변 기초구조물로 인해 방향조절이 어려운 이유에서 해상용 풍력발전타워의 시공이 쉽지 않으며, 시공기간도 오랜 기간이 걸리는 문제점이 있다.
본 발명은 이러한 문제점을 해결하기 위하여 안출된 것으로 본 발명의 목적은 대형 크레인 탑재된 기중시설을 사용하지 않고서도 풍력발전타워를 시공할 수 있는 해상용 풍력발전타워 시공장치 및 이의 시공방법을 제공하는 것이다.
본 발명의 다른 목적은 기상조건 및 주변 기초구조물로 인하여 발생되는 해상용 풍력발전타워의 시공에 대한 제약을 감소시킬 수 있으며, 이에 따라 시공비용도 줄일 수 있는 해상용 풍력발전타워 시공장치 및 이의 시공방법을 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술된 본 발명의 목적을 달성하기 위해, 먼저 본 발명은 복수개의 기둥이 다단으로 설치되어 타워를 형성하되, 상기 기둥들 중에서 이웃하는 하부기둥의 상단과 상부기둥의 하단이 조립되는 해상용 풍력발전타워 시공장치에 있어서, 상기 하부기둥의 내측에 세워져 위치하고, 길이가 신축되는 실린더; 상기 실린더의 하부과 상기 하부기둥을 결합 및 해제시키는 하부기둥결합수단; 상기 실린더의 상부과 상기 상부기둥을 결합 및 해제시키는 상부기둥결합수단; 및 상기 상부기둥과 상기 하부기둥을 결합 및 해제시키는 기둥결합수단을 포함하되,
상기 기둥결합수단이 해제되고, 상기 상부기둥 결합수단 및 상기 하부기둥결합수단이 결합되어 있는 상태에서 상기 실린더가 신장되어 상기 상부기둥을 들어올리고,
상기 상부기둥결합수단 및 상기 기둥결합수단이 결합되고, 상기 하부기둥결합수단이 해제되어 있는 상태에서 상기 실린더가 수축되며,
상기 실린더가 신장 및 수축을 반복하여 상기 상부기둥을 상기 하부기둥 위로 상승시키는 것을 특징으로 하는 해상용 풍력발전타워 시공장치를 제공한다.
바람직한 실시예에 있어서, 상기 하부기둥결합수단은 상기 하부기둥에 형성된 복수개의 하부기둥체결홀 및 상기 하부기둥체결홀에 체결되는 핀을 포함한다.
바람직한 실시예에 있어서, 상기 하부기둥결합수단은 상기 실린더의 하부를 상기 핀과 연결시키는 프레임을 더 포함한다.
바람직한 실시예에 있어서, 상기 기둥결합수단은 상기 하부기둥체결홀, 상기 상부기둥에 상기 하부기둥체결홀과 대응되도록 형성된 복수개의 상부기둥체결홀 및 상기 하부기둥체결홀과 상기 상부기둥체결홀에 체결되는 핀을 포함한다.
바람직한 실시예에 있어서, 상기 하부기둥체결홀들의 상하간격은 상기 실린더가 신축하는 길이와 일정하다.
바람직한 실시예에 있어서, 상기 실린더는 복수개이다.
바람직한 실시예에 있어서, 상기 실린더들은 상기 하부기둥 내측의 가장자리를 따라 배열되되, 하부기둥을 중심으로 서로 대칭된다.
또한 본 발명은 해상용 풍력발전 타워시공장치를 시공하기 위하여, 상부기둥상승단계 및 상승된 상부기둥의 하단과 하부기둥의 상단을 조립하는 기둥조립단계를 포함하는 해상용 풍력발전 타워 시공장치의 시공방법에 있어서, 상기 상부기둥상승단계는 상기 기둥결합수단이 해제되어 있고, 상기 하부기둥결합수단, 상기 상부기둥결합수단이 결합되어 있는 상태에서, 상기 실린더가 신장되면서 상기 실린더의 상부가 상부기둥을 들어올리는 실린더 신장단계; 들어올려진 상기 상부기둥이 낙하되지 않도록 상기 상부기둥과 상기 하부기둥이 기둥결합수단으로 결합시키는 기둥결합단계; 상기 하부기둥결합수단이 해제되는 하부기둥결합해제단계; 상기 상부기둥 결합수단 및 상기 기둥결합수단이 결합되고, 상기 하부기둥결합수단이 해제되어 있는 상태에서, 상기 실린더가 수축되는 실린더 수축단계; 수축된 상기 실린더의 하부와 상기 하부기둥을 상기 하부기둥결합수단으로 결합시키는 하부기둥결합단계; 및 상기 기둥결합수단이 해제되는 기둥결합해제단계를 포함하고, 상기 실린더 신장단계, 상기 기둥결합단계, 상기 하부기둥결합해제단계, 상기 실린더 수축단계, 상기 하부기둥결합단계 및 상기 기둥결합해제단계가 반복되는 것을 특징으로 하는 해상용 풍력발전타워 시공방법을 제공한다.
바람직한 실시예에 있어서, 상기 실린더는 복수개이다.
바람직한 실시예에 있어서, 상기 실린더는 유압에 의하여 신축된다.
본 발명은 다음과 같은 우수한 효과를 갖는다.
먼저 본 발명에 따른 해상용 풍력발전타워 시공장치 및 이의 시공방법에 의하면 대형 크레인 탑재된 기중시설을 사용하지 않고서도 해상용 풍력발전타워를 시공할 수 있다.
또한 본 발명에 따른 해상용 풍력발전타워 시공장치 및 이의 시공방법에 의하면 기상조건 및 주변 기초구조물로 인하여 발생되는 해상용 풍력발전타워의 시공에 대한 제약을 감소시킬 수 있으며, 이에 따라 시공비용도 줄일 수 있다.
도 1은 종래의 해상 풍력 발전기 설치 시스템을 보여주는 도면이다.
도 2는 본 발명의 일실시예에 따른 해상용 풍력발전타워를 보여주는 도면이다.
도 3은 본 발명의 다른 일실시예에 따른 해상용 풍력발전타워 시공장치를 보여주는 단면도이다.
도 4는 본 발명의 또 다른 일실시예에 따른 해상용 풍력발전타워 시공장치를 보여주는 단면도이다.
도 5는 본 발명의 또 다른 일실시예에 따른 해상용 풍력발전타워 시공장치를 보여주는 단면도이다.
도 6은 본 발명의 또 다른 일실시예에 따른 해상용 풍력발전타워 시공장치를 보여주는 절단사시도이다.
도 7은 본 발명에 따른 해상용 풍력발전타워 시공방법의 단계도이다.
도 8a는 본 발명에 따른 해상용 풍력발전타워 시공방법의 실린더신장단계 이전의 준비상태를 보여주는 도면이다.
도 8b는 본 발명에 따른 해상용 풍력발전타워 시공방법의 실린더신장단계를 보여주는 도면이다.
도 8c는 본 발명에 따른 해상용 풍력발전타워 시공방법의 기둥결합단계를 보여주는 도면이다.
도 8d는 본 발명에 따른 해상용 풍력발전타워 시공방법의 하부기둥결합해제단계를 보여주는 도면이다.
도 8e는 본 발명에 따른 해상용 풍력발전타워 시공방법의 실린더수축단계를 보여주는 도면이다.
도 8f는 본 발명에 따른 해상용 풍력발전타워 시공방법의 하부기둥결합단계를 보여주는 도면이다.
도 8g는 본 발명에 따른 해상용 풍력발전타워 시공방법의 기둥결합해제단계를 보여주는 도면이다.
100 : 해상용 풍력발전타워 시공장치 110 : 기둥
111 : 상부기둥 112 : 하부기둥
120 : 실린더 121 : 실린더의 하부
122 : 실린더의 상부 130 : 하부기둥결합수단
131 : 프레임 132 : 핀
140 : 상부기둥결합수단 150 : 기둥결합수단
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.
이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.
그러나 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.
본 발명에 따른 해상용 풍력발전타워 시공장치(100)는 도 2에 도시된 바와 같이, 대형 크레인 탑재된 기중시설을 사용하지 않고, 복수개의 기둥(110)이 다단으로 설치되어 타워를 형성하는 장치이다.
이때 이웃하는 기둥들(110) 중에서 상하의 위치관계에 따라 상부에 위치하는 기둥은 상부기둥(111), 하부에 위치하는 하부기둥(112)으로 설명할 수 있다.
즉 상기 기둥들(110) 중에서 이웃하는 하부기둥(112)의 상단과 상부기둥(111)의 하단이 조립되는 구조로 타워가 설치되는 것이다.
상기 기둥들(110)은 바람에 의해 회전되는 블레이드, 상기 블레이드의 회전력을 전기에너지로 변환시키는 나셀을 지지하는 몸체이며, 상기 블레이드 및 상기 나셀을 지지할 수 있으면, 그 재질 및 형태는 제한되지 않는다.
도 3에 도시된 바와 같이, 본 발명에 따른 해상용 풍력발전타워 시공장치(100)는 복수개의 기둥(110)이 다단으로 설치되어 타워를 형성하는 장치로서, 실린더(120), 하부기둥결합수단(130), 상부기둥결합수단(140), 기둥결합수단(150)을 포함한다.
상기 실린더(120)는 길이가 유압에 의하여 신축되어, 상기 상부기둥(111)을 들어올리는 것으로, 상기 하부기둥(112)의 내측에 세워져 위치한다.
이때 상기 실린더(120)는 상기 하부기둥(112)의 내측 중심에 세워지는 것이 바람직하며, 이는 상기 실린더(120)의 신장 및 수축시 발생하는 하중에 효율적으로 대응할 수 있기 때문이다.
또한 상기 실린더의 하부(121)는 상기 하부기둥결합수단(130)과 연결되고, 상기 실린더의 상부(122)는 상기 상부기둥결합수단(140)과 연결된다.
도 4 내지 도 6에 도시된 바와 같이, 상기 실린더(120)는 복수개가 이용될 수 있다.
이는 하나의 실린더(120)를 이용할 경우에는 상기 상부기둥(111)을 들어올릴 수 있는 고출력의 실린더(120)를 사용해야 하나, 복수개의 실린더(120)를 사용하게 되면 병렬적인 구조로 설치하여, 보다 낮은 출력의 실린더(120)들을 이용할 수 있게 되고, 고출력의 실린더 하나를 이용하는 것보다, 재료비용이 절감될 수 있기 때문이다.
이때 상기 실린더들(120)은 상기 하부기둥(112) 내측의 가장자리를 따라 배열되되, 상기 하부기둥(112)을 중심으로 서로 대칭되도록 구성됨으로써 상기 상부기둥(111)을 균형적으로 들어올릴 수 있다.
또한 상기 실린더들(120)은 상기 하부기둥(112) 내측의 가장자리에 위치하여 서로 대칭되는 구조를 이루면, 제한되지 않는다.
보다 구체적으로 상기 실린더(120)가 두 개인 경우에는 도 5에 도시된 바와 같이, 상기 실린더(120)들을 연결하는 프레임의 설치각도가 180도를 이루게 되어, 상기 실린더(120)가 서로 대칭 되도록 상기 하부기둥(112) 내측의 가장자리에 위치한다.
또한 상기 실린더(120)가 세개인 경우에는 도면에는 도시하지 않았으나, 상기 프레임의 교차각도가 120도를 이루고, 상기 실린더들(120)이 서로 대칭된다.
또한 도 6에 도시된 바와 같이, 상기 실린더가(120)가 네 개인 경우에는 상기 프레임의 교차각도가 90도를 이루게 되며, 상기 실린더들(120)이 서로 대칭된다.
상기 하부기둥결합수단(130)은 상기 실린더의 하부(121)와 상기 하부기둥(112)을 결합 및 해제시킬 수 있는 수단이다.
상기 하부기둥결합수단(130)이 상기 실린더의 하부(121)와 상기 하부기둥(112)을 결합시키게 되면, 상기 실린더의 상부(122)가 신장될 경우에 발생하는 하중을 지지한다.
또한 상기 하부기둥결합수단(130)이 상기 실린더의 하부(121)와 상기 하부기둥(112)의 결합을 해제하게 되면, 상기 실린더의 하부(121)가 수축될 수 있게 된다.
또한 구체적으로 제한되지는 않으나, 도 4에 도시된 바와 같이, 상기 실린더들(120)이 상기 하부기둥(112) 내측의 가장자리에 위치하여, 상기 기둥들(110)과 근접한 거리에 설치될 경우, 상기 하부기둥결합수단(130)은 복수개의 하부기둥체결홀 및 상기 하부기둥체결홀에 체결되는 핀(132)을 포함한다.
이때 상기 하부기둥체결홀은 상기 하부기둥(112)에 형성되고, 상기 하부기둥체결홀의 상하간격은 상기 실린더(120)가 신축하는 길이와 일치하도록 일정한 간격으로 형성되는 것이 바람직하다.
또한 상기 하부기둥체결홀은 상기 기둥결합수단(150)으로 사용될 수 있다.
또한 도 5에 도시된 바와 같이, 상기 하부기둥결합수단(130)은 상기 실린더의 하부(121)를 상기 핀(132)과 연결시키는 프레임(131)을 더 포함할 수 있다.
이는 상기 실린더의 하부(121)를 상기 프레임(131)으로 연결시켜, 보다 균형적이고 안정적으로 상기 상부기둥(111)을 들어올릴 수 있게 된다.
상기 상부기둥결합수단(140)은 상기 실린더의 상부(122)와 상기 상부기둥(111)을 결합시키는 수단이며, 구체적으로 제한되지는 않으나, 도 6에 도시된 바와 같이 상기 상부기둥(111)의 내벽에 연결되는 브라켓의 형태로 이용될 수 있다.
상부기둥결합수단(140)이 상기 실린더의 상부(122)와 상기 상부기둥(111)을 결합시키게 되면, 상기 실린더의 상부(122)가 신장되어, 상기 상부기둥(111)을 들어올릴 수 있게 된다.
또한 상기 상부기둥결합수단(140)은 상기 상부기둥(111)으로부터 분리시킬 수 있다.
이는 상부기둥결합수단(140)이 상기 상부기둥(111)으로부터 분리될 경우, 본 발명에 따른 해상용 풍력발전타워 시공장치(100)의 재사용이 가능하기 때문이다.
상기 기둥결합수단(150)은 상기 상부기둥(111)과 상기 하부기둥(112)을 결합 및 해제시키는 수단이다.
또한 상기 기둥결합수단(150)은 상기 상부기둥(111)과 상기 하부기둥(112)을 결합 및 해제시키는 수단이면 제한되지 않으나, 상기 하부기둥체결홀, 상기 상부기둥(111)에 형성되고, 상기 하부기둥체결홀과 대응되도록 형성된 복수개의 상부기둥체결홀 및 상기 하부기둥체결홀과 상기 상부기둥체결홀에 체결되는 핀이 이용될 수 있다.
상기 기둥결합수단(150)은 상기 상부기둥(111)이 상기 실린더의 상부(122)에 의해 들어올려진 상태에서 상기 상부기둥(111)이 낙하되지 않도록 상기 상부기둥체결홀과 상기 하부기둥체결홀을 핀으로 결합시킨다.
또한 상기 기둥결합수단(150)이 해제되어 있는 상태에서 상기 실린더의 상부(122)가 신장되어 상기 상부기둥(111)을 들어올릴 수 있게 된다.
즉, 상기 기둥결합수단(150)이 해제되고, 상기 하부기둥결합수단(130)이 결합되어 있는 상태에서 상기 실린더의 상부(122)가 신장되어, 상기 실린더의 상부(122)와 결합된 상기 상부기둥(111)을 들어올리게 된다.
또한 상기 기둥결합수단(150)이 결합되고, 상기 하부기둥결합수단(130)이 해제되어 있는 상태에서 상기 실린더의 하부(121)가 상기 실린더의 상부(122)의 신장길이만큼 수축되어, 결과적으로 상기 실린더의 하부(121)가 상승되고, 상기 실린더의 하부(121)와 결합된 상기 하부기둥결합수단(130) 역시 상승하는 것이다.
이와 같이, 상기 실린더(120)가 신장 및 수축을 반복하여 상기 상부기둥(111)을 상기 하부기둥(112) 위로 상승시켜 타워를 형성하게 되는 것이다.
본 발명은 해상용 풍력발전 타워 시공장치를 시공하기 위한 시공방법을 제공한다.
본 발명에 따른 해상용 풍력발전 타워 시공방법은 도 7에 도시된 바와 같이,상부기둥상승단계(S10) 및 기둥조립단계(S20)를 포함한다.
상기 상부기둥상승단계(S10)는 실린더신장단계(S11), 기둥결합단계(S12), 하부기둥결합해제단계(S13), 실린더수축단계(S14), 하부기둥결합단계(S15) 및 기둥결합해제단계(S16)를 포함하되, 반복적으로 수행된다.
먼저 도 8a에 도시된 바와 같이, 상기 기둥결합수단(150)이 해제되어 있고, 상기 하부기둥결합수단(130), 상기 상부기둥결합수단(140)이 결합되어 있는 상태에서, 상기 실린더 신장단계(S11)가 수행된다.
도 8b에 도시된 바와 같이, 상기 실린더 신장단계(S11)는 상기 실린더의 상부(122)가 신장되어 상기 상부기둥(111)을 들어올리는 단계이다.
이때 상기 하부기둥결합수단(130)은 상기 실린더의 하부(121)와 상기 하부기둥(112)을 결합시켜, 상기 실린더의 상부(122)가 신장될 경우에 발생되는 하중을 지지한다.
또한 상기 실린더(120)는 복수개로 구성되어, 하나의 실린더를 이용하는 경우보다 안정적으로 상기 상부기둥(111)을 들어올릴 수 있다.
또한 구체적으로 제한되는 것은 아니나, 상기 실린더(120)는 유압으로 신축되는 유압실린더가 이용될 수 있다.
다음으로 도 8c에 도시된 바와 같이, 들어올려진 상기 상부기둥(111)과 상기 하부기둥(112)을 상기 기둥결합수단(150)으로 결합시키는 상기 기둥결합단계(S12)가 수행된다.
상기 기둥결합단계는 들어올려진 상기 상부기둥(111)이 낙하되지 않도록 상기 하부기둥(112)과 결합시키는 단계이다.
다음으로 도 8d에 도시된 바와 같이, 상기 실린더의 하부(121)와 상기 하부기둥(112)의 결합을 해제시키는 하부기둥결합해제단계(S13)가 수행된다.
다음으로 도 8e에 도시된 바와 같이, 상기 상부기둥결합수단(140) 및 상기 기둥결합수단(150)이 결합되고, 상기 하부기둥결합수단(130)이 해제되어 있는 상태에서, 상기 실린더의 하부(121)가 수축되는 실린더 수축단계(S14)가 수행된다.
상기 실린더 수축단계(S14)에서 상기 하부기둥(112)과 결합이 해제된 상기 실린더의 하부(121)는 상기 실린더의 상부(122)가 신장된 길이만큼 수축되어, 결과적으로 상기 실린더의 하부(121)가 상승되는 것이다.
다음으로 도 8f에 도시된 바와 같이, 수축된 상기 실린더의 하부(121)와 상기 하부기둥(112)을 결합시키는 하부기둥결합단계(S15)가 수행된다.
다음으로 도 8g에 도시된 바와 같이, 상기 상부기둥(111)과 상기 하부기둥(112)의 결합을 해제시키는 상기 기둥결합해제단계(S16)가 수행된다.
다음으로 상기 실린더신장단계(S11), 상기 기둥결합단계(S12), 상기 하부기둥결합해제단계(S13), 상기 실린더수축단계(S14), 상기 하부기둥결합단계(S15) 및 기둥결합해제단계(S16)가 반복되어 상부기둥(111)이 상승되게 된다.
상기 기둥조립단계(S20)는 상승된 상기 상부기둥(111)의 하단과 상기 하부기둥(112)의 상단을 조립하여, 해상용 풍력발전 타워가 시공되는 것이다.
상술한 구성으로 인하여, 본 발명에 따른 해상용 풍력발전타워 시공장치 및 이의 시공방법은 대형 크레인 탑재된 기중시설을 사용하지 않고서도 해상용 풍력발전타워를 시공할 수 있고, 기상조건 및 주변 기초구조물로 인하여 발생되는 해상용 풍력발전타워의 시공에 대한 제약을 감소시킬 수 있으며, 이에 따라 시공비용도 줄일 수 있다.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 대체에너지원을 생산하기 위하여 이용되고 있는 풍력발전타워의 시공에 적용가능하다.

Claims (10)

  1. 복수개의 기둥이 다단으로 설치되어 타워를 형성하되, 상기 기둥들 중에서 이웃하는 하부기둥의 상단과 상부기둥의 하단이 조립되는 해상용 풍력발전타워 시공장치에 있어서,
    상기 하부기둥의 내측에 세워져 위치하고, 길이가 신축되는 실린더;
    상기 실린더의 하부과 상기 하부기둥을 결합 및 해제시키는 하부기둥결합수단;
    상기 실린더의 상부과 상기 상부기둥을 결합 및 해제시키는 상부기둥결합수단; 및
    상기 상부기둥과 상기 하부기둥을 결합 및 해제시키는 기둥결합수단을 포함하되,
    상기 기둥결합수단이 해제되고, 상기 상부기둥 결합수단 및 상기 하부기둥결합수단이 결합되어 있는 상태에서 상기 실린더가 신장되어 상기 상부기둥을 들어올리고,
    상기 상부기둥결합수단 및 상기 기둥결합수단이 결합되고, 상기 하부기둥결합수단이 해제되어 있는 상태에서 상기 실린더가 수축되며,
    상기 실린더가 신장 및 수축을 반복하여 상기 상부기둥을 상기 하부기둥 위로 상승시키는 것을 특징으로 하는 해상용 풍력발전타워 시공장치.
  2. 제 1항에 있어서,
    상기 하부기둥결합수단은 상기 하부기둥에 형성된 복수개의 하부기둥체결홀 및 상기 하부기둥체결홀에 체결되는 핀을 포함하는 것을 특징으로 하는 해상용 풍력발전타워 시공장치.
  3. 제 2항에 있어서,
    상기 하부기둥결합수단은 상기 실린더의 하부를 상기 핀과 연결시키는 프레임을 더 포함하는 것을 특징으로 하는 해상용 풍력발전타워 시공장치.
  4. 제 1항에 있어서,
    상기 기둥결합수단은 상기 하부기둥체결홀, 상기 상부기둥에 상기 하부기둥체결홀과 대응되도록 형성된 복수개의 상부기둥체결홀 및 상기 하부기둥체결홀과 상기 상부기둥체결홀에 체결되는 핀을 포함하는 것을 특징으로 하는 해상용 풍력발전타워 시공장치.
  5. 제 2항에 있어서,
    상기 하부기둥체결홀들의 상하간격은 상기 실린더가 신축하는 길이와 일정한 것을 특징으로 하는 해상용 풍력발전타워 시공장치.
  6. 제 1항에 있어서,
    상기 실린더는 복수개인 것을 특징으로 하는 해상용 풍력발전타워 시공장치.
  7. 제 6항에 있어서,
    상기 실린더들은 상기 하부기둥 내측의 가장자리를 따라 배열되되, 하부기둥을 중심으로 서로 대칭되는 것을 특징으로 하는 해상용 풍력발전타워 시공장치.
  8. 제 1항 내지 제 7항 중 어느 한 항의 해상용 풍력발전 타워시공장치를 시공하기 위하여, 상부기둥상승단계 및 상승된 상부기둥의 하단과 하부기둥의 상단을 조립하는 기둥조립단계를 포함하는 해상용 풍력발전 타워 시공장치의 시공방법에 있어서,
    상기 상부기둥상승단계는
    상기 기둥결합수단이 해제되어 있고, 상기 하부기둥결합수단, 상기 상부기둥결합수단이 결합되어 있는 상태에서, 상기 실린더가 신장되면서 상기 실린더의 상부가 상부기둥을 들어올리는 실린더 신장단계;
    들어올려진 상기 상부기둥이 낙하되지 않도록 상기 상부기둥과 상기 하부기둥이 기둥결합수단으로 결합시키는 기둥결합단계;
    상기 하부기둥결합수단이 해제되는 하부기둥결합해제단계;
    상기 상부기둥 결합수단 및 상기 기둥결합수단이 결합되고, 상기 하부기둥결합수단이 해제되어 있는 상태에서, 상기 실린더가 수축되는 실린더 수축단계;
    수축된 상기 실린더의 하부과 상기 하부기둥을 상기 하부기둥결합수단으로 결합시키는 하부기둥결합단계; 및
    상기 기둥결합수단이 해제되는 기둥결합해제단계를 포함하고,
    상기 실린더 신장단계, 상기 기둥결합단계, 상기 하부기둥결합해제단계, 상기 실린더 수축단계, 상기 하부기둥결합단계 및 상기 기둥결합해제단계가 반복되는 것을 특징으로 하는 해상용 풍력발전타워 시공방법.
  9. 제 8항에 있어서,
    상기 실린더는 복수개인 것을 특징으로 하는 해상용 풍력발전타워 시공방법.
  10. 제 8항에 있어서,
    상기 실린더는 유압에 의하여 신축되는 것을 특징으로 하는 풍력발전타워 시공방법.
PCT/KR2014/003106 2014-04-10 2014-04-10 해상용 풍력발전타워 시공장치 및 이의 시공방법 WO2015156437A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0042905 2014-04-10
KR20140042905A KR101509666B1 (ko) 2014-04-10 2014-04-10 해상용 풍력발전타워 시공장치 및 이의 시공방법

Publications (1)

Publication Number Publication Date
WO2015156437A1 true WO2015156437A1 (ko) 2015-10-15

Family

ID=53032636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003106 WO2015156437A1 (ko) 2014-04-10 2014-04-10 해상용 풍력발전타워 시공장치 및 이의 시공방법

Country Status (2)

Country Link
KR (1) KR101509666B1 (ko)
WO (1) WO2015156437A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152571A (ja) * 2004-11-25 2006-06-15 Kajima Corp 塔状構造物の建設方法、及び建設装置
JP2007071097A (ja) * 2005-09-07 2007-03-22 Takenaka Komuten Co Ltd 風力発電タワーの構築方法
KR101225691B1 (ko) * 2011-09-02 2013-01-23 삼성중공업 주식회사 풍력 발전기의 유지보수 로봇
KR20130073117A (ko) * 2011-12-23 2013-07-03 현대중공업 주식회사 해상 타워구조물 설치방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152571A (ja) * 2004-11-25 2006-06-15 Kajima Corp 塔状構造物の建設方法、及び建設装置
JP2007071097A (ja) * 2005-09-07 2007-03-22 Takenaka Komuten Co Ltd 風力発電タワーの構築方法
KR101225691B1 (ko) * 2011-09-02 2013-01-23 삼성중공업 주식회사 풍력 발전기의 유지보수 로봇
KR20130073117A (ko) * 2011-12-23 2013-07-03 현대중공업 주식회사 해상 타워구조물 설치방법

Also Published As

Publication number Publication date
KR101509666B1 (ko) 2015-04-07

Similar Documents

Publication Publication Date Title
US9879441B2 (en) Modular monopole tower foundation
WO2020162665A1 (ko) 풍력 발전기 설치, 분리 장치 및 이를 이용한 시공 방법
US6955025B2 (en) Self-erecting tower and method for raising the tower
WO2013008986A1 (ko) 해상 풍력 발전기, 해상 풍력 발전기 이송용 리프팅 지그 및 이를 이용한 해상 풍력 발전기 설치 방법 및 시스템
WO2019203417A1 (ko) 가변형 각도조절장치를 구비한 태양광 발전시스템
EP3130796B1 (en) Wind turbine assembly system and related method
WO2016122047A1 (ko) 다수의 부유체로 이루어지는 해상 부유 구조물
US20200166022A1 (en) Electrical unit for a wind turbine
KR20090103374A (ko) 태양광 발전기용 풍해방지장치
WO2014129800A1 (ko) 솔라패널 어레이 지지시스템
WO2020209470A1 (ko) 내구성이 향상된 부유체와 이를 이용한 수상 태양광발전장치
WO2022059847A1 (ko) 해상 풍력발전 부유체의 설치방법
WO2019045253A1 (ko) 솔라셀 패널의 종방향 설치 방법과 시스템 장치
WO2022169118A1 (ko) 태양광 및 풍력 하이브리드 발전시스템
WO2015156437A1 (ko) 해상용 풍력발전타워 시공장치 및 이의 시공방법
WO2019207188A1 (es) Módulo móvil para el izado de torres telescópicas y procedimiento de izado de torres telescópicas
WO2013157696A1 (ko) 계통연계형 분산형 스마트 에너지 발전 공급 대량 시스템용 태양광 풍력 다방면 추적 융합발전시스템
WO2013100305A1 (ko) 토네이도형 풍력발전장치
KR101372294B1 (ko) 잭 장치를 이용한 기상타워 인상 시공방법
WO2016093389A1 (ko) 비행체의 날개에 구비되는 태양광 패널장치와 이를 구비한 비행체 날개 및 비행체
TWM632456U (zh) 模組化太陽能板導流暨快速拆架結構
WO2017171275A2 (ko) 수상 태양광 발전시설 및 그 시공방법
KR20090051388A (ko) 해상교량
WO2017164503A1 (ko) 건물일체형 풍력 및 태양광 발전시스템
KR101428329B1 (ko) 풍력발전기 및 풍력발전기 설치장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888925

Country of ref document: EP

Kind code of ref document: A1