WO2015156402A1 - Solar heat storage system - Google Patents

Solar heat storage system Download PDF

Info

Publication number
WO2015156402A1
WO2015156402A1 PCT/JP2015/061287 JP2015061287W WO2015156402A1 WO 2015156402 A1 WO2015156402 A1 WO 2015156402A1 JP 2015061287 W JP2015061287 W JP 2015061287W WO 2015156402 A1 WO2015156402 A1 WO 2015156402A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
shock absorber
control valve
storage system
flow
Prior art date
Application number
PCT/JP2015/061287
Other languages
French (fr)
Japanese (ja)
Inventor
裕昭 桐木
久保 修一
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2015156402A1 publication Critical patent/WO2015156402A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/10Arrangements for storing heat collected by solar heat collectors using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar heat storage system.
  • the area of the power generation panel is highly correlated with the amount of power generation and equipment costs.
  • the area of the mirror is highly correlated with the amount of power generation and equipment costs.
  • the correlation between the area of the mirror and the power generation cost is not high. For this reason, there is a feature that the power cost becomes cheaper as the power generation facility becomes larger, which is suitable for large-scale power generation.
  • Patent Document 1 proposes a regenerator that responds to short-time fluctuations separately from a regenerator for nighttime power generation.
  • a plurality of first heat storage tanks that carry a phase change medium and through which a heat medium flows and a second heat storage tank that does not include a phase change medium are connected in parallel to the solar field.
  • the high-temperature heat medium has been supplied to the stratification tank (second heat storage tank) until just before, a high-temperature heat medium in which the temperature has hardly decreased can be supplied to the solar heat radiating unit. By doing in this way, responsiveness can be made more favorable. That is, it is possible to prevent the power generation system from being cooled when sufficient sunlight cannot be obtained due to clouds or the like. Thus, it is described that a decrease in the amount of power generation due to weather changes can be suppressed.
  • an object of the present invention is to provide a solar heat storage system capable of stably supplying thermal energy.
  • the solar heat storage system of the present invention connects a heat receiving part that absorbs solar heat, an energy conversion part that extracts energy from a heat medium that has passed through the heat receiving part and absorbed the solar heat, and the heat receiving part and the energy conversion part. And a flow path pipe through which the heat medium flows, and a shock absorber connected to the flow path pipe and allowing the heat medium to pass therethrough, the shock absorber being provided inside the case,
  • the heat medium that is in direct contact with the heat medium includes a solid material that is permeable to the heat medium together with direct contact. According to such a solar heat storage system, it has a shock absorber that is internally provided with a solid material that can cope with sudden output fluctuations.
  • the heat medium can enter the inside, and can directly exchange heat with the heat medium, so that heat can be efficiently extracted. For this reason, even if there is a sudden weather change at the time of power generation, the influence on voltage fluctuation and frequency fluctuation can be reduced.
  • the solar heat storage system of the present invention preferably further has the following mode.
  • the solid material is an object selected from at least one of a granule, an aggregate of plates, a foam, and a honeycomb.
  • the heat medium can pass through the inside with a small resistance. For example, even when the sun is clouded and the generated energy is drastically reduced, the amount of heat that smoothly compensates for the decrease in power generation can be supplied without interruption.
  • the shock absorber has a first connection hole and a second connection hole connected to the flow path pipe, and the solid material is a flow of a heat medium connecting the first connection hole and the second connection hole.
  • the honeycomb body has little resistance in the direction of the flow path and can increase the area of the inner wall that directly exchanges heat with the heat medium, so that the flow of the heat medium that connects the first connection hole and the second connection hole By arranging the flow path along, the heat energy stored inside the honeycomb body can be efficiently extracted.
  • the solar heat storage system is connected in series in the order of the heat receiving unit, the buffer, and the energy conversion unit along the flow of the heat medium.
  • the thermal energy supplied to the energy conversion unit is stabilized by temporarily storing the heat energy generated in the heat receiving unit in an intermediate buffer by connecting the heat receiving unit, the buffer, and the energy conversion unit in series. can do.
  • the heat medium may or may not be circulated. If it is not circulated, it is preferable to use air as the heat medium.
  • air is used as the heat medium in a solar heat storage system that does not circulate the heat medium, the air after the heat energy is taken out by the energy conversion part can be released after the air near the heat receiving part is taken in.
  • the flow path pipe forms a closed circuit in which a heat medium circulates between the heat receiving unit and the energy conversion unit, and the shock absorber is connected in parallel with the heat receiving unit and the energy conversion unit.
  • the connection portion between the buffer and the high-temperature channel pipe has a first switching valve that closes the flow of the heat medium to the heat receiving unit or the buffer
  • the buffer and the low-temperature channel A connection point with the pipe has a second switching valve that closes the flow of the heat medium to the heat receiving unit or the shock absorber in conjunction with the first switching valve.
  • the amount of heat can be supplied without interruption, smoothly compensating for the decrease in the amount of power generation.
  • both the first switching valve and the second switching valve are opened in all directions, and the heat energy received in the heat receiving part is converted into energy.
  • Distribute parts and shock absorbers When the heat energy generated in the heat receiving portion is reduced, the flow of the first switching valve and the second switching valve to the heat receiving portion is reduced, and the flow of the heat medium centering on the loop between the buffer and the energy conversion portion is reduced.
  • Form By controlling in this way, for example, even when a cloud is applied to the sun and the generated energy is drastically reduced, the amount of heat that smoothly compensates for a decrease in the amount of power generation can be supplied without interruption.
  • the shock absorber has a first flow control valve, and has a bypass pipe provided with a second flow control valve in parallel with the shock absorber.
  • the first flow rate control valve and the second flow rate control valve are controlled by a control device that keeps the temperature of the heat medium introduced into the energy conversion unit constant. Furthermore, by controlling the first flow rate control valve and the second flow rate control valve with a control device that keeps the temperature of the heat medium constant, fluctuations in the amount of power generation can be suppressed, and the effect on the power system Can be reduced.
  • the shock absorber has a first flow rate control valve, and a heat accumulator having a larger heat capacity than the shock absorber provided with a third flow rate control valve in parallel with the shock absorber.
  • the shock absorber has a first flow rate control valve, and has a heat accumulator having a larger heat capacity than the shock absorber provided with a third flow rate control valve in parallel with the shock absorber. It can be distributed appropriately. When sunshine is weak, open the first flow control valve, throttle the third flow control valve, reduce the ratio of heat energy to store heat, and when sunshine is strong, throttle the first flow control valve and open the third flow control valve , Excess heat energy can be stored.
  • the first flow rate control valve and the third flow rate control valve are controlled by a control device that keeps the temperature of the heat medium introduced into the energy conversion unit constant. Furthermore, by controlling the first flow rate control valve and the third flow rate control valve with a control device that keeps the temperature of the heat medium constant, fluctuations in the amount of power generation can be suppressed, and the effect on the power system Can be reduced.
  • the amount of heat energy to the energy conversion unit is from only the heat receiving unit. It can be freely adjusted in the range of heat energy and heat energy only from the buffer. By making such adjustment, it is possible to prevent hunting or overshooting of the amount of heat energy to the energy conversion unit. More effective effects can be obtained by actively controlling the sun when the sun begins to shine after the sun is clouded.
  • the heat energy generated in the heat receiving portion can be appropriately distributed.
  • the first flow control valve throttle the third flow control valve, reduce the ratio of heat energy to store heat
  • sunshine is strong, throttle the first flow control valve and open the third flow control valve , Excess heat energy can be stored.
  • the first flow control valve, the second flow control valve, or the third flow control valve is connected to a control device that keeps the temperature of the heat medium introduced into the energy conversion unit constant. Furthermore, by controlling the first flow rate control valve, the second flow rate control valve, and the third flow rate control valve with a control device that keeps the temperature of the heat medium constant, fluctuations in the power generation amount can be suppressed. The influence on the power system can be reduced.
  • the solar heat storage system of the present invention has a shock absorber that is internally provided with a solid material that can cope with sudden output fluctuations.
  • the heat medium can enter the inside, and can directly exchange heat with the heat medium, so that heat can be efficiently extracted. For this reason, even if there is a sudden weather change at the time of power generation, the influence on voltage fluctuation and frequency fluctuation can be reduced.
  • FIG. 1 is a system configuration diagram of a solar thermal power generation system 1000 using a solar thermal storage system 100 according to an embodiment of the present invention.
  • the solar thermal power generation system 1000 includes a mirror 120, a solar thermal storage system 100, and a steam gas turbine generator 130.
  • the energy conversion unit 2 that mediates the solar heat storage system 100 and the steam gas turbine generator 130 is configured by a heat exchanger.
  • the solar heat storage system 100 of this embodiment connects the heat receiving part 1 which absorbs the solar heat of sunlight guided by the mirror 120, the energy conversion part 2, the heat receiving part 1 and the energy conversion part 2, and the heat medium circulates. And a shock absorber 4 that is connected to the flow path pipe 3 and through which the heat medium passes.
  • the shock absorber 4 is provided inside the housing 44 (see FIG. 2), and a solid material (a honeycomb body in the example of FIG. 2) that allows the heat medium to directly contact and transmit the heat medium. 43 or an assembly of plates 45).
  • the heat medium that passes through the heat receiving unit 1 absorbs solar heat absorbed by the heat receiving unit 1 and circulates through the flow pipe 3, and the energy conversion unit 2 plays a role of extracting energy based on solar heat from the heat medium.
  • the steam gas turbine generator 130 is operated by the extracted energy, and electric power is generated.
  • the solar heat storage system 100 is capable of dealing with sudden output fluctuations, and has a solid material inside the shock absorber 4 through which the heat medium directly contacts and through which the heat medium can pass.
  • the solid material can infiltrate the heat medium inside and can directly exchange heat with the heat medium, so that heat can be efficiently extracted. For this reason, even if there is a sudden weather change at the time of power generation, the influence on voltage fluctuation and frequency fluctuation can be reduced.
  • the solar heat storage system 100 includes a bypass pipe 71 and a heat storage 72 that are provided in parallel with the shock absorber 4.
  • the portion where the heat medium around the shock absorber 4 stays is defined as the stay portion A, and the shock absorber 4, the bypass pipe 71, the heat accumulator 72, and the first to third flow rate control valves 61, 62, 63 (see FIG. 6). It can be included in the retention part.
  • the solar heat storage system of the present invention has various modes, for example, by changing the following components.
  • the solar heat storage system is not limited to the following components.
  • shock absorber B1 Heat receiving portion, shock absorber, energy conversion portion are in series and both ends open B2 Heat receiving portion, shock absorber, energy conversion portion Closed circuit in series B3 Heat receiving part, shock absorber, energy conversion part in parallel with closed circuit
  • C Bypass pipe provided in parallel with buffer, presence or absence of heat accumulator (mode of staying part) C1 shock absorber only C2 shock absorber and bypass piping
  • FIG. 2 is a perspective view showing an example of an embodiment of the shock absorber 4 used in the solar heat storage system 100.
  • (a) is an example in which the solid material inside the shock absorber 4 is a honeycomb body, and
  • (b) is a shock absorber 4.
  • the solid material inside is an example of an assembly of plates.
  • FIG. 2 in order to explain the solid material inside the shock absorber 4, it is shown in a state where the inside can be seen through the housing 44 of the shock absorber 4.
  • a first connection hole 41 and a second connection hole 42 connected to the flow path pipe 3 are provided at both ends of the housing 44.
  • a honeycomb body 43 in which a flow path 43a is disposed along the flow of the heat medium connecting the first connection hole 41 and the second connection hole 42 as a solid material is provided inside the housing 44.
  • the first connection hole 41 and the second connection hole 42 connected to the flow path pipe 3 are provided at both ends of the housing 44.
  • An assembly 45 of plates arranged along the flow of the heat medium connecting the first connection hole 41 and the second connection hole 42 as a solid material is provided inside the housing 44.
  • the plate assembly 45 includes a plurality of plates 45b arranged in parallel to each other, and a flow path 45a is formed between the plates 45b.
  • the type of solid material is not particularly limited, and examples thereof include honeycomb bodies, aggregates of plates, foams, and granules.
  • honeycomb body a honeycomb body made of a metal such as iron or aluminum can be used in addition to a ceramic honeycomb body such as SiC, cordierite, alumina, graphite, or carbon.
  • the aggregate of the plates is not particularly limited.
  • it is an aggregate of plates arranged at intervals and preferably parallel to each other.
  • the material of the plate is not particularly limited.
  • ceramic plates such as SiC, cordierite, alumina, graphite, and carbon
  • plates such as metals such as iron and aluminum can also be used.
  • Examples of the foam include pumice obtained by volcanic eruption, ceramic foam such as carbon foam obtained by carbonizing foamed phenol resin, and metal foam having pores inside the metal.
  • the granule is not particularly limited, and examples thereof include metals and ceramics.
  • ceramic for example, particles obtained by coarse pulverization with a jaw crusher or the like can be used.
  • the average particle diameter of the granules is not particularly limited, but is, for example, 1 to 30 mm.
  • the average particle diameter of the granules can be measured by a sizing method using a multistage sieve. Specifically, it is obtained by analyzing the size of the voids of the sieve and the weight passing through each sieve.
  • ceramics such as graphite, SiC, cordierite, and alumina, and metals such as iron and aluminum can be used.
  • metals such as iron and aluminum
  • ceramics can be suitably used because they have corrosion resistance and heat resistance.
  • the honeycomb body 43 shown in FIG. 2 (a) has little resistance in the direction of the flow path and can increase the area of the inner wall that directly exchanges heat with the heat medium. Therefore, by disposing the flow path along the flow of the heat medium that connects the first connection hole 41 and the second connection hole 42, it is possible to efficiently draw out the thermal energy stored in the honeycomb body 43.
  • shock absorbers are connected as follows, for example.
  • B1 Heat-receiving unit, buffer, energy conversion unit are connected in series and both ends are open
  • B2 Heat-receiving unit, buffer, energy conversion unit are closed in series
  • B3 Heat-receiving unit, buffer, energy conversion unit are closed circuit in parallel
  • the type of energy conversion unit is not particularly limited.
  • the energy conversion part 2 is comprised from the heat exchanger which heats another heat medium using the heat energy of a heat medium.
  • the energy conversion unit can also be configured by a turbine that converts the heat energy of the heat medium directly into kinetic energy.
  • the turbine is appropriately selected depending on the type of heat medium, and a steam turbine, a gas turbine, or the like can be used.
  • the heat receiving unit 1 in the embodiment of FIG. 1 is a light-heat conversion medium provided in the light collecting unit of the mirror, and various forms such as a honeycomb shape and a porous shape can be used.
  • FIG. 3 is a system configuration diagram illustrating an example of the solar heat storage system 100 in which the heat receiving unit 1, the buffer 4, and the energy conversion unit 2 are connected in series by the flow channel pipe 3 and both ends of the flow channel pipe 3 are opened.
  • B1 When the heat receiving unit 1, the shock absorber 4, and the energy conversion unit 2 are connected in series and both ends are open, since both ends are open, for example, air can be used as the heat medium.
  • ambient air is taken in as a heat medium, heated by the heat receiving unit 1, passed through the buffer pipe 4 through the flow path pipe 3, and then guided to the energy conversion unit 2.
  • the energy conversion unit 2 for example, heat exchange or conversion into kinetic energy by a turbine is performed. After that, the air as the heat medium is returned to the atmosphere.
  • FIG. 4 is a system configuration diagram illustrating an example of a solar heat storage system 100 in which the heat receiving unit 1, the shock absorber 4, and the energy conversion unit 2 are connected in series by the flow channel pipe 3 and the flow channel pipe 3 forms a closed circuit. (B2).
  • the flow path pipe 3 is not opened so that the heat medium returns from the energy conversion unit 2 to the heat receiving unit 1. Composed.
  • a heat medium is not specifically limited, Various things, such as various heat medium oil, gas, a vapor
  • various heat mediums such as oil, gas, and steam are heated by the heat receiving unit 1, and after passing through the flow path pipe 3 and the buffer 4, are then guided to the energy conversion unit 2.
  • the energy conversion unit 2 for example, heat exchange or conversion into kinetic energy by a turbine is performed. Thereafter, the cooled heat medium is returned to the heat receiving unit 1 via the flow path pipe 3.
  • the solar heat storage system 100 having this configuration, since heat energy is stored in the shock absorber 4, even if the amount of sunlight is reduced, the heat energy delivered to the energy conversion unit 2 does not decrease rapidly but decreases gently. In addition, the influence on the power system can be reduced.
  • FIG. 5 is a system configuration diagram illustrating an example of a solar heat storage system 100 in which the heat receiving unit 1, the buffer 4, and the energy conversion unit 2 are connected in parallel by the flow channel pipe 3 and the flow channel pipe 3 forms a closed circuit. (B3).
  • the heat receiving unit 1, the shock absorber 4, and the energy conversion unit 2 are connected in parallel to form a closed circuit, the flow path pipe 3 is not opened, and the heat medium returns from the energy conversion unit 2 to the heat receiving unit 1. Composed.
  • a heat medium is not specifically limited, Various things, such as various heat medium oil, gas, a vapor
  • a first switching valve 51 that closes the flow of the heat medium to the heat receiving portion 1 or the shock absorber 4 is provided at a connection location between the shock absorber 4 and the high-temperature side passage pipe 3.
  • a second switching valve 52 that closes the flow of the heat medium to the heat receiving portion 1 or the buffer 4 in conjunction with the first switching valve 51 is connected at a connection portion between the buffer 4 and the low-temperature side pipe 3. Is provided.
  • various heat mediums such as oil, gas, and steam are heated by the heat receiving unit 1, and then passed through the flow pipe 3 and distributed to the buffer 4 and the energy conversion unit 2 by the first switching valve 51. Is done.
  • the energy conversion unit 2 exclusively performs, for example, heat exchange or conversion into kinetic energy by a turbine.
  • the shock absorber 4 stores thermal energy.
  • the heat medium that has passed through the buffer 4 and the energy conversion unit 2 is collected by the second switching valve 52 and returned to the heat receiving unit 1 through the flow path pipe 3.
  • the solar heat storage system 100 having this configuration when the amount of sunshine decreases, the heat receiving portion 1 side of the first switching valve 51 and the second switching valve 52 is throttled so that the heat medium flows in the reverse direction in the shock absorber 4. Become. By such an operation, the thermal energy accumulated in the shock absorber 4 is guided to the energy conversion unit 2, and a decrease in the amount of power generated due to a decrease in the amount of sunlight can be compensated.
  • the bypass pipe 71 and the heat accumulator 72 provided in parallel with the shock absorber 4 will be described.
  • a portion where the heat medium around the shock absorber 4 stays is referred to as a stay portion A (see FIG. 1).
  • a bypass pipe 71, a heat accumulator 72, first to third flow control valves 61, 62 and 63 may be included in the staying portion.
  • examples of the staying part include the following four forms. This will be described in order below.
  • the heat accumulator 72 has a larger heat capacity than the shock absorber 4. Inside the heat accumulator 72, for example, a lump of concrete, a latent heat storage material, or the like is enclosed. When a latent heat storage material is used for the heat accumulator 72, a flow path pipe passes through the heat accumulator 72, and heat exchange is performed by heat transfer on the wall of the flow path pipe.
  • the solar heat storage system (C1) in which the staying portion is composed only of the shock absorber 4 the solar heat can absorb the decrease in the amount of sunlight due to the action of the shock absorber 4 with a simple structure.
  • a heat storage system can be provided, and the influence of changes in the amount of sunlight on the power system can be reduced.
  • the first flow rate control valve is provided on the shock absorber 4 side.
  • a second flow rate control valve is provided on the bypass pipe side.
  • the amount of heat energy to the energy conversion unit 2 is The heat energy from only the heat receiving unit 1 and the heat energy from only the buffer 4 can be freely adjusted. By making such adjustment, it is possible to prevent hunting or overshooting of the amount of heat energy to the energy conversion unit 2. More effective effects can be obtained by actively controlling the sun when the sun begins to shine after the sun is clouded.
  • first flow rate control valve 61 and the second flow rate control valve 62 of the solar heat storage system of the present embodiment are preferably controlled by the control device 80 that keeps the temperature of the heat medium introduced into the energy conversion unit 2 constant. (See FIG. 8).
  • control device 80 measures the temperature of the heat medium in the inlet of the energy conversion unit 2, the outlet of the buffer 4, and the bypass pipe 71, and the first flow control valve 61 according to the obtained temperature value. And the opening degree of the 2nd flow control valve 62 is adjusted.
  • the temperature of the heat medium in the bypass pipe 71 is the same temperature as long as it is within the range from the heat receiving portion 1 to the bypass pipe 71 or the buffer 4 inlet, and may be measured anywhere.
  • the inlet and the outlet are defined with respect to the flow direction of the heat medium. For this reason, when the heat receiving part 1, the shock absorber 4, and the energy conversion part 2 form a closed circuit as shown in FIG. 5 (B3), the flow direction of the heat medium with respect to the shock absorber 4 is switched.
  • the inlet and outlet vary depending on the direction in which the heat medium flows.
  • the control device 80 controls the first flow rate control valve 61 and the second flow rate control valve 62 by the control device 80 that keeps the temperature of the heat medium constant, fluctuations in the amount of power generation can be suppressed, and the power system Can be reduced.
  • the first flow control valve 61 is provided on the shock absorber 4 side.
  • a third flow rate control valve 63 is provided on the regenerator 72 side.
  • the heat receiving portion 1 By providing a first flow rate control valve 61 upstream of the shock absorber 4 and providing a heat accumulator 72 having a larger heat capacity than the shock absorber 4 provided with the third flow rate control valve 63 in parallel with the shock absorber 4, the heat receiving portion 1.
  • the heat energy generated in can be appropriately distributed.
  • the first flow control valve 61 When the sunlight is weak, the first flow control valve 61 is opened and the third flow control valve 63 is throttled to reduce the ratio of heat energy to be stored.
  • the first flow control valve 61 is throttled to control the third flow control.
  • the valve 63 can be opened to store excess heat energy.
  • the first flow rate control valve 61 and the third flow rate control valve 63 of the solar heat storage system of the present embodiment are preferably controlled by a control device 80 that keeps the temperature of the heat medium introduced into the energy conversion unit 2 constant ( (See FIG. 8).
  • the temperature of the heat medium at the inlet of the energy conversion unit 2, the outlet of the shock absorber 4 and the outlet of the heat accumulator 72 is measured, and the first flow control valve 61 and the third The opening degree of the flow control valve 63 is adjusted.
  • a first flow rate control valve 61 is provided, a second flow rate control valve 62 is provided on the bypass pipe 71 side, and a third flow rate control valve 63 is provided on the heat accumulator 72 side.
  • the amount of heat energy to the energy conversion unit 2 is The heat energy from only the heat receiving unit 1 and the heat energy from only the buffer 4 can be freely adjusted. By making such adjustment, it is possible to prevent hunting or overshooting of the amount of heat energy to the energy conversion unit 2. More effective effects can be obtained by actively controlling the sun when the sun begins to shine after the sun is clouded.
  • the heat energy generated in the heat receiving section 1 can be appropriately distributed.
  • the first flow control valve 61 is opened and the third flow control valve 63 is throttled to reduce the ratio of heat energy to be stored.
  • the first flow control valve 61 is throttled to control the third flow control.
  • the valve 63 can be opened to store excess heat energy.
  • the first flow control valve 61, the second flow control valve 62, or the third flow control valve 63 of the solar heat storage system of the present embodiment is provided in the control device 80 that keeps the temperature of the heat medium introduced into the energy conversion unit 2 constant. It is preferable that they are connected (see FIG. 8).
  • FIG. 7 shows an example of the solar heat storage system 100, and the retention portion shown in FIG. 6C is incorporated in the configuration in which both ends of the flow path pipe 3 shown in FIG. 3 are opened.
  • the solar heat storage system 100 having such a configuration can suitably use air as a heat medium.
  • FIG. 8 shows another example of the solar heat storage system 100, and the retention portion shown in FIG. 6 (d) is incorporated in the closed circuit configuration of the flow path pipe 3 shown in FIG.
  • the heat medium is not particularly limited, and various heat medium oils, gases, steams, and the like can be used.
  • the control apparatus 80 is shown only in this figure, naturally a control apparatus is applicable also to the form shown in the other figure.
  • FIG. 9 shows another example of the solar heat storage system 100.
  • the first flow control is performed between the first switching valve 51 and the second switching valve 52.
  • a series connection of the valve 61 and the shock absorber 4 and a series connection of the third flow rate control valve 63 and the heat accumulator 72 are provided in a mutually connected state.
  • the heat medium is not particularly limited, and various heat medium oils, gases, steams, and the like can be used.
  • the solar heat storage system of the present invention it is possible to suppress the influence on the voltage fluctuation and the frequency fluctuation even if there is a sudden weather change. Can be promoted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A solar heat storage system (100) equipped with: a heat reception unit (1) that absorbs solar heat; an energy conversion unit (2) that extracts energy from a heat medium that has passed through the heat reception unit (1) and has absorbed solar heat; a flow path conduit (3) that connects the heat reception unit (1) and the energy conversion unit (2), and through which the heat medium circulates; and a buffer device (4) that is connected to the flow path conduit (3), and through which the heat medium circulates. The buffer device (4) includes a case (44), and a solid material (43, 45) which is provided inside the case (44) and makes direct contact with the heat medium, and through which the heat medium can pass.

Description

太陽熱蓄熱システムSolar heat storage system
 本発明は、太陽熱蓄熱システムに関する。 The present invention relates to a solar heat storage system.
 近年、化石燃料の枯渇、環境破壊への対策が大きな課題となっている。このような課題を解決するために、水力、風力、潮力、波力、地熱、太陽光、太陽熱などの自然エネルギーの検討、利用が進められている。中でも太陽熱を利用した太陽熱発電は、比較的安価な設備で大きなエネルギーを得ることができること、蓄熱器を利用することにより夜間でも発電が可能になることから、自然エネルギーを利用した大規模発電として、注目されている。 In recent years, countermeasures against fossil fuel depletion and environmental destruction have become major issues. In order to solve such problems, studies and use of natural energy such as hydropower, wind power, tidal power, wave power, geothermal heat, sunlight, and solar heat are being promoted. Above all, solar power generation using solar heat can obtain large energy with relatively inexpensive equipment, and it can generate power at night by using a heat accumulator, so as a large-scale power generation using natural energy, Attention has been paid.
 太陽電池を用いた太陽光発電は、発電パネルの面積が発電量および設備コストと相関が高い。これに対しミラーを用い集熱する太陽熱発電では、ミラーの面積と発電量との相関はあるが、ミラーはコストの高い設備ではないため、ミラーの面積と発電コストとの相関は高くない。このため、発電設備が大規模になるほど電力コストが安くなる特徴があり、大規模発電に向いている。 In solar power generation using solar cells, the area of the power generation panel is highly correlated with the amount of power generation and equipment costs. On the other hand, in solar power generation using a mirror to collect heat, there is a correlation between the area of the mirror and the amount of power generation, but since the mirror is not a high-cost facility, the correlation between the area of the mirror and the power generation cost is not high. For this reason, there is a feature that the power cost becomes cheaper as the power generation facility becomes larger, which is suitable for large-scale power generation.
 しかしながら、太陽熱発電では大規模になるほど、発電量の変動が電力系統に与える影響が大きくなる。例えば、太陽熱発電においては、曇等により急激に発電量が低下することがある。このような問題を解決するために、特許文献1には、夜間の発電のための蓄熱器とは別に短時間の変動に対応する蓄熱器が提案されている。 However, the larger the scale of solar thermal power generation, the greater the impact of fluctuations in power generation on the power system. For example, in solar thermal power generation, the amount of power generation may suddenly decrease due to clouding or the like. In order to solve such a problem, Patent Document 1 proposes a regenerator that responds to short-time fluctuations separately from a regenerator for nighttime power generation.
 具体的には、相変化媒体が担持され、熱媒体が流通する複数の第1蓄熱タンクと、相変化媒体を含まない第2蓄熱タンクがソーラーフィールドに対し並列に接続されている。このようなシステムを用いることにより、曇等により太陽光が急に得られなくなったときには、成層化タンク(第1蓄熱タンク)への熱媒体の供給を止め、代わりに、成層化タンク(第2蓄熱タンク)に貯蔵されている熱媒体を外部へ放出する。即ち、急に十分な太陽光が得られなくなった場合には、成層化タンク(第2蓄熱タンク)に貯蔵されていた熱媒体を太陽熱放熱部に供給する。成層化タンク(第2蓄熱タンク)には、直前まで高温の熱媒体が供給されていたため、ほとんど温度が低下していない高温の熱媒体を太陽熱放熱部に供給することができる。このようにすることにより、応答性をより良好なものにすることができる。即ち、雲等により十分な太陽光が得られない時に、発電システムが冷却されることを防止することができる。これにより、気象変化による発電量の低下を抑制することができることが記載されている。 Specifically, a plurality of first heat storage tanks that carry a phase change medium and through which a heat medium flows and a second heat storage tank that does not include a phase change medium are connected in parallel to the solar field. By using such a system, when sunlight cannot be obtained suddenly due to cloudiness or the like, supply of the heat medium to the stratification tank (first heat storage tank) is stopped, and instead, the stratification tank (second The heat medium stored in the heat storage tank) is released to the outside. That is, when sufficient sunlight cannot be obtained suddenly, the heat medium stored in the stratification tank (second heat storage tank) is supplied to the solar heat radiator. Since the high-temperature heat medium has been supplied to the stratification tank (second heat storage tank) until just before, a high-temperature heat medium in which the temperature has hardly decreased can be supplied to the solar heat radiating unit. By doing in this way, responsiveness can be made more favorable. That is, it is possible to prevent the power generation system from being cooled when sufficient sunlight cannot be obtained due to clouds or the like. Thus, it is described that a decrease in the amount of power generation due to weather changes can be suppressed.
日本国特開2014-47992号公報Japanese Unexamined Patent Publication No. 2014-47992
 しかしながら、太陽熱発電が、大規模になるに従って電力系統に与える影響は大きくなる。曇天時に蓄熱器の応答性が悪いと、充分な熱エネルギーを供給できず発電量の低下をきたし、電圧変動、周波数変動の原因となる。 However, the impact of solar thermal power generation on the power system increases as the scale increases. If the responsiveness of the heat accumulator is poor during cloudy weather, sufficient heat energy cannot be supplied, resulting in a decrease in the amount of power generation, causing voltage fluctuations and frequency fluctuations.
 このような課題を鑑み、本発明では安定して熱エネルギーが供給できる太陽熱蓄熱システムを提供することを目的とする。 In view of such a problem, an object of the present invention is to provide a solar heat storage system capable of stably supplying thermal energy.
 本発明の太陽熱蓄熱システムは、太陽熱を吸収する受熱部と、前記受熱部を通過して前記太陽熱を吸収した熱媒体からエネルギーを取り出すエネルギー変換部と、前記受熱部と前記エネルギー変換部とを接続し、熱媒体が流通する流路配管と、 前記流路配管に接続され、熱媒体が透過する緩衝器と、を備え、前記緩衝器は、筐体と、当該筐体の内部に設けられ、熱媒体と直接接触する熱媒体が直接接触とともに当該熱媒体が透過可能な固体材料を含む。
 このような太陽熱蓄熱システムによれば、急激な出力変動に対応が可能な固体材料を内部に備えた緩衝器を有している。固体材料は、内部に熱媒体が侵入することができ、直接熱媒体と熱交換することができるので、効率良く熱を引き出すことができる。このため、発電時に急激な天候変化があっても電圧変動、周波数変動への影響を小さくすることができる。
The solar heat storage system of the present invention connects a heat receiving part that absorbs solar heat, an energy conversion part that extracts energy from a heat medium that has passed through the heat receiving part and absorbed the solar heat, and the heat receiving part and the energy conversion part. And a flow path pipe through which the heat medium flows, and a shock absorber connected to the flow path pipe and allowing the heat medium to pass therethrough, the shock absorber being provided inside the case, The heat medium that is in direct contact with the heat medium includes a solid material that is permeable to the heat medium together with direct contact.
According to such a solar heat storage system, it has a shock absorber that is internally provided with a solid material that can cope with sudden output fluctuations. In the solid material, the heat medium can enter the inside, and can directly exchange heat with the heat medium, so that heat can be efficiently extracted. For this reason, even if there is a sudden weather change at the time of power generation, the influence on voltage fluctuation and frequency fluctuation can be reduced.
 本発明の太陽熱蓄熱システムは、さらに次の態様が望ましい。 The solar heat storage system of the present invention preferably further has the following mode.
 前記固体材料は、粒体、板の集合体、発泡体またはハニカム体の少なくとも一つから選択される物体である。
 固体材料が粒体、多層板、発泡体またはハニカム体であると、少ない抵抗で熱媒体が内部を通過することができる。例えば、太陽に雲がかかり急激に発生エネルギーが低下したときでも、スムーズに発電量の低下を補う熱量を途切れることなく供給することができる。
The solid material is an object selected from at least one of a granule, an aggregate of plates, a foam, and a honeycomb.
When the solid material is a granule, a multilayer board, a foam or a honeycomb body, the heat medium can pass through the inside with a small resistance. For example, even when the sun is clouded and the generated energy is drastically reduced, the amount of heat that smoothly compensates for the decrease in power generation can be supplied without interruption.
 前記緩衝器は、前記流路配管に接続された第1接続孔と第2接続孔とを有し、前記固体材料は、前記第1接続孔と前記第2接続孔とを結ぶ熱媒体の流れに沿って流路が配置されたハニカム体である。
 ハニカム体は、流路の方向への抵抗は少ないうえに、熱媒体と直接熱交換する内壁の面積を大きくすることができるので、第1接続孔と第2接続孔とを結ぶ熱媒体の流れに沿って流路を配置することにより、ハニカム体内部に蓄えられた熱エネルギーを効率良く引き出すことができる。
The shock absorber has a first connection hole and a second connection hole connected to the flow path pipe, and the solid material is a flow of a heat medium connecting the first connection hole and the second connection hole. Is a honeycomb body in which a flow path is arranged along.
The honeycomb body has little resistance in the direction of the flow path and can increase the area of the inner wall that directly exchanges heat with the heat medium, so that the flow of the heat medium that connects the first connection hole and the second connection hole By arranging the flow path along, the heat energy stored inside the honeycomb body can be efficiently extracted.
 太陽熱蓄熱システムは、熱媒体の流れに沿って、前記受熱部、前記緩衝器、前記エネルギー変換部の順に直列接続されている。
 受熱部と、緩衝器とエネルギー変換部の順に直列接続されることにより、受熱部で発生した熱エネルギーを中間にある緩衝器で一旦蓄えることによって、エネルギー変換部に供給される熱エネルギーを安定化することができる。なお、受熱部、緩衝器、エネルギー変換部の順に直列接続する場合には、熱媒体を循環させても循環させなくてもよく、循環させない場合には、熱媒体として空気を用いることが好ましい。熱媒体を循環させない太陽熱蓄熱システムで空気を熱媒体として用いた場合には、受熱部近傍の空気を取り込んで、エネルギー変換部で熱エネルギーが取り出された後の空気は、放出させることができる。
The solar heat storage system is connected in series in the order of the heat receiving unit, the buffer, and the energy conversion unit along the flow of the heat medium.
The thermal energy supplied to the energy conversion unit is stabilized by temporarily storing the heat energy generated in the heat receiving unit in an intermediate buffer by connecting the heat receiving unit, the buffer, and the energy conversion unit in series. can do. In the case where the heat receiving unit, the buffer, and the energy conversion unit are connected in series in this order, the heat medium may or may not be circulated. If it is not circulated, it is preferable to use air as the heat medium. When air is used as the heat medium in a solar heat storage system that does not circulate the heat medium, the air after the heat energy is taken out by the energy conversion part can be released after the air near the heat receiving part is taken in.
 前記流路配管が、前記受熱部と前記エネルギー変換部との間を熱媒体が循環する閉回路を構成し、前記緩衝器が前記受熱部及び前記エネルギー変換部と並列となるよう接続されるとともに、前記緩衝器と高温側の流路配管との接続箇所には前記受熱部又は前記緩衝器への熱媒体の流れを閉鎖する第1切替弁を有し、前記緩衝器と低温側の流路配管との接続箇所には前記受熱部又は前記緩衝器への熱媒体の流れを第1切替弁と連動して閉鎖する第2切替弁を有する。
 熱媒体が循環するように流路配管が閉回路を構成し、受熱部、エネルギー変換部と並列となるように緩衝器を備えることによっても、太陽に雲がかかり急激に発生エネルギーが低下したときでも、スムーズに発電量の低下を補い熱量を途切れることなく供給することができる。このような流路配管の構成の場合、受熱部で熱エネルギーが発生しているときは、第1切替弁及び第2切替弁ともに全方向を開放し、受熱部で受けた熱エネルギーをエネルギー変換部及び緩衝器に分配する。受熱部で発生する熱エネルギーが低下した場合には、第1切替弁及び第2切替弁の受熱部への流れを絞り、緩衝器とエネルギー変換部とのループが中心となる熱媒体の流れを形成する。このように制御することによって、例えば太陽に雲がかかり急激に発生エネルギーが低下したときでも、スムーズに発電量の低下を補う熱量を途切れることなく供給することができる。
The flow path pipe forms a closed circuit in which a heat medium circulates between the heat receiving unit and the energy conversion unit, and the shock absorber is connected in parallel with the heat receiving unit and the energy conversion unit. In addition, the connection portion between the buffer and the high-temperature channel pipe has a first switching valve that closes the flow of the heat medium to the heat receiving unit or the buffer, and the buffer and the low-temperature channel A connection point with the pipe has a second switching valve that closes the flow of the heat medium to the heat receiving unit or the shock absorber in conjunction with the first switching valve.
When the flow path piping forms a closed circuit so that the heat medium circulates and the shock absorber is provided in parallel with the heat receiving unit and the energy conversion unit, the generated energy is drastically decreased due to clouds on the sun. However, the amount of heat can be supplied without interruption, smoothly compensating for the decrease in the amount of power generation. In the case of such a flow pipe configuration, when heat energy is generated in the heat receiving part, both the first switching valve and the second switching valve are opened in all directions, and the heat energy received in the heat receiving part is converted into energy. Distribute parts and shock absorbers. When the heat energy generated in the heat receiving portion is reduced, the flow of the first switching valve and the second switching valve to the heat receiving portion is reduced, and the flow of the heat medium centering on the loop between the buffer and the energy conversion portion is reduced. Form. By controlling in this way, for example, even when a cloud is applied to the sun and the generated energy is drastically reduced, the amount of heat that smoothly compensates for a decrease in the amount of power generation can be supplied without interruption.
 前記緩衝器は、第1流量制御弁を有し、前記緩衝器と並列して第2流量制御弁を備えたバイパス配管を有する。
 前記緩衝器に第1流量制御弁を有し、前記緩衝器と並列して第2流量制御弁を有するバイパス配管を有することにより、エネルギー変換部への熱エネルギーの量は、受熱部のみからの熱エネルギーと緩衝器のみからの熱エネルギーの範囲で自由に調整することができる。このような調整をすることにより、エネルギー変換部への熱エネルギーの量のハンチングあるいはオーバーシュートを防止することができる。太陽に雲がかかったあと、太陽が照り始めたときなどに能動的に制御することにより、より効果を発揮することができる。
The shock absorber has a first flow control valve, and has a bypass pipe provided with a second flow control valve in parallel with the shock absorber.
By having the first flow rate control valve in the shock absorber and the bypass pipe having the second flow rate control valve in parallel with the shock absorber, the amount of heat energy to the energy conversion unit is from only the heat receiving unit. It can be freely adjusted in the range of heat energy and heat energy only from the buffer. By making such adjustment, it is possible to prevent hunting or overshooting of the amount of heat energy to the energy conversion unit. More effective effects can be obtained by actively controlling the sun when the sun begins to shine after the sun is clouded.
 前記第1流量制御弁及び前記第2流量制御弁は、前記エネルギー変換部に導入される熱媒体の温度を一定にする制御装置により制御される。
 さらに、熱媒体の温度を一定にする制御装置によって、第1流量制御弁及び第2流量制御弁を能動的に制御することにより、発電量の変動を抑制することができ、電力系統へ与える影響を小さくすることができる。
The first flow rate control valve and the second flow rate control valve are controlled by a control device that keeps the temperature of the heat medium introduced into the energy conversion unit constant.
Furthermore, by controlling the first flow rate control valve and the second flow rate control valve with a control device that keeps the temperature of the heat medium constant, fluctuations in the amount of power generation can be suppressed, and the effect on the power system Can be reduced.
 前記緩衝器が第1流量制御弁を有し、前記緩衝器と並列して第3流量制御弁を備えた前記緩衝器よりも熱容量の大きい蓄熱器を有する。
 前記緩衝器に第1流量制御弁を有し、前記緩衝器と並列して第3流量制御弁を備えた前記緩衝器より熱容量の大きい蓄熱器を有することにより、受熱部で発生した熱エネルギーを適宜分配することができる。日照が弱いときには、第1流量制御弁を開け、第3流量制御弁を絞り、蓄熱する熱エネルギーの比率を下げ、日照が強いときには、第1流量制御弁を絞り、第3流量制御弁を開け、余剰な熱エネルギーを蓄熱することができる。
The shock absorber has a first flow rate control valve, and a heat accumulator having a larger heat capacity than the shock absorber provided with a third flow rate control valve in parallel with the shock absorber.
The shock absorber has a first flow rate control valve, and has a heat accumulator having a larger heat capacity than the shock absorber provided with a third flow rate control valve in parallel with the shock absorber. It can be distributed appropriately. When sunshine is weak, open the first flow control valve, throttle the third flow control valve, reduce the ratio of heat energy to store heat, and when sunshine is strong, throttle the first flow control valve and open the third flow control valve , Excess heat energy can be stored.
 前記第1流量制御弁及び前記第3流量制御弁は、前記エネルギー変換部に導入される熱媒体の温度の一定にする制御装置により制御される。
 さらに、熱媒体の温度を一定にする制御装置によって、第1流量制御弁及び第3流量制御弁を能動的に制御することにより、発電量の変動を抑制することができ、電力系統へ与える影響を小さくすることができる。
The first flow rate control valve and the third flow rate control valve are controlled by a control device that keeps the temperature of the heat medium introduced into the energy conversion unit constant.
Furthermore, by controlling the first flow rate control valve and the third flow rate control valve with a control device that keeps the temperature of the heat medium constant, fluctuations in the amount of power generation can be suppressed, and the effect on the power system Can be reduced.
 前記緩衝器に第1流量制御弁と、前記緩衝器と並列して第2流量制御弁を備えたバイパス配管と、前記緩衝器と並列して第3流量制御弁を備えた前記緩衝器よりも熱容量の大きい蓄熱器と、を有する。
 前記緩衝器に第1流量制御弁を有し、前記緩衝器と並列して第2流量制御弁を有するバイパス配管を有することにより、エネルギー変換部への熱エネルギーの量は、受熱部のみからの熱エネルギーと緩衝器のみからの熱エネルギーの範囲で自由に調整することができる。このような調整をすることにより、エネルギー変換部への熱エネルギーの量のハンチングあるいはオーバーシュートを防止することができる。太陽に雲がかかったあと、太陽が照り始めたときなどに能動的に制御することにより、より効果を発揮することができる。
 さらに、前記緩衝器と並列して第3流量制御弁を備えた前記緩衝器より熱容量の大きい蓄熱器を有することにより、受熱部で発生した熱エネルギーを適宜分配することができる。日照が弱いときには、第1流量制御弁を開け、第3流量制御弁を絞り、蓄熱する熱エネルギーの比率を下げ、日照が強いときには、第1流量制御弁を絞り、第3流量制御弁を開け、余剰な熱エネルギーを蓄熱することができる。
Than the first flow rate control valve in the shock absorber, a bypass pipe having a second flow rate control valve in parallel with the shock absorber, and the shock absorber having a third flow rate control valve in parallel with the shock absorber And a heat accumulator having a large heat capacity.
By having the first flow rate control valve in the shock absorber and the bypass pipe having the second flow rate control valve in parallel with the shock absorber, the amount of heat energy to the energy conversion unit is from only the heat receiving unit. It can be freely adjusted in the range of heat energy and heat energy only from the buffer. By making such adjustment, it is possible to prevent hunting or overshooting of the amount of heat energy to the energy conversion unit. More effective effects can be obtained by actively controlling the sun when the sun begins to shine after the sun is clouded.
Furthermore, by having a heat accumulator having a larger heat capacity than the shock absorber provided with the third flow control valve in parallel with the shock absorber, the heat energy generated in the heat receiving portion can be appropriately distributed. When sunshine is weak, open the first flow control valve, throttle the third flow control valve, reduce the ratio of heat energy to store heat, and when sunshine is strong, throttle the first flow control valve and open the third flow control valve , Excess heat energy can be stored.
 前記第1流量制御弁、前記第2流量制御弁または前記第3流量制御弁は、前記エネルギー変換部に導入される熱媒体の温度を一定にする制御装置に接続されている。
 さらに、熱媒体の温度を一定にする制御装置によって、第1流量制御弁、第2流量制御弁及び第3流量制御弁を能動的に制御することにより、発電量の変動を抑制することができ、電力系統へ与える影響を小さくすることができる。
The first flow control valve, the second flow control valve, or the third flow control valve is connected to a control device that keeps the temperature of the heat medium introduced into the energy conversion unit constant.
Furthermore, by controlling the first flow rate control valve, the second flow rate control valve, and the third flow rate control valve with a control device that keeps the temperature of the heat medium constant, fluctuations in the power generation amount can be suppressed. The influence on the power system can be reduced.
 本発明の太陽熱蓄熱システムは、急激な出力変動に対応が可能な固体材料を内部に備えた緩衝器を有している。固体材料は、内部に熱媒体が侵入することができ、直接熱媒体と熱交換することができるので、効率良く熱を引き出すことができる。このため、発電時に急激な天候変化があっても電圧変動、周波数変動への影響を小さくすることができる。 The solar heat storage system of the present invention has a shock absorber that is internally provided with a solid material that can cope with sudden output fluctuations. In the solid material, the heat medium can enter the inside, and can directly exchange heat with the heat medium, so that heat can be efficiently extracted. For this reason, even if there is a sudden weather change at the time of power generation, the influence on voltage fluctuation and frequency fluctuation can be reduced.
本発明の実施形態の太陽熱蓄熱システムを含む太陽熱発電システムのシステム構成図System configuration diagram of a solar thermal power generation system including a solar thermal storage system according to an embodiment of the present invention 太陽熱蓄熱システムにおける緩衝器の例であり、(a)はハニカム体、(b)は板の集合体、を内部に含んで構成される例の斜視図It is an example of the buffer in a solar heat storage system, (a) is a perspective view of the example comprised including a honeycomb body and (b) the aggregate | assembly of a board | plate inside. 受熱部と緩衝器とエネルギー変換部が直列に接続され、流路配管の両端が開放した太陽熱蓄熱システムのシステム構成図System configuration diagram of a solar heat storage system in which the heat receiving part, the shock absorber, and the energy conversion part are connected in series, and both ends of the channel pipe are open 受熱部と緩衝器とエネルギー変換部が直列に接続され、流路配管が閉回路を構成する太陽熱蓄熱システムのシステム構成図System configuration diagram of a solar heat storage system in which the heat receiving section, the buffer, and the energy conversion section are connected in series, and the flow path piping forms a closed circuit 受熱部と緩衝器とエネルギー変換部が並列に接続され、流路配管が閉回路を構成する太陽熱蓄熱システムのシステム構成図System configuration diagram of a solar heat storage system in which the heat receiving unit, the buffer, and the energy conversion unit are connected in parallel, and the flow path piping forms a closed circuit 太陽熱蓄熱システムの緩衝器周辺(滞留部)の構成の例を示し、(a)は滞留部が緩衝器のみから構成される例であり、(b)は緩衝器とバイパス配管が並列接続された滞留部の例であり、(c)は緩衝器と蓄熱器が並列接続された滞留部の例であり、(d)は緩衝器と蓄熱器とバイパス配管が並列接続された滞留部の例。The example of the structure of the buffer heat | fever periphery (stagnation part) of a solar thermal storage system is shown, (a) is an example in which a stay part is comprised only from a buffer, (b) is a buffer and bypass piping connected in parallel. It is an example of a stay part, (c) is an example of the stay part in which the shock absorber and the heat accumulator are connected in parallel, and (d) is an example of the stay part in which the shock absorber, the heat accumulator and the bypass pipe are connected in parallel. 太陽熱蓄熱システムの一例のシステム構成図System configuration diagram of an example of a solar heat storage system 太陽熱蓄熱システムの他の例のシステム構成図System configuration diagram of another example of solar thermal storage system 太陽熱蓄熱システムの更に他の例のシステム構成図System configuration diagram of still another example of a solar heat storage system
 本発明について、図面を用いて詳細に説明する。図1は、本発明の一実施形態である太陽熱蓄熱システム100を用いた太陽熱発電システム1000のシステム構成図である。太陽熱発電システム1000は、ミラー120と、太陽熱蓄熱システム100と、スチームガスタービン発電機130より構成される。本実施形態では、太陽熱蓄熱システム100とスチームガスタービン発電機130を媒介するエネルギー変換部2は熱交換器により構成されている。 The present invention will be described in detail with reference to the drawings. FIG. 1 is a system configuration diagram of a solar thermal power generation system 1000 using a solar thermal storage system 100 according to an embodiment of the present invention. The solar thermal power generation system 1000 includes a mirror 120, a solar thermal storage system 100, and a steam gas turbine generator 130. In this embodiment, the energy conversion unit 2 that mediates the solar heat storage system 100 and the steam gas turbine generator 130 is configured by a heat exchanger.
 本実施形態の太陽熱蓄熱システム100は、ミラー120により導かれた太陽光の太陽熱を吸収する受熱部1と、エネルギー変換部2と、受熱部1とエネルギー変換部2とを接続し熱媒体が流通する流路配管3と、流路配管3に接続され、熱媒体が透過する緩衝器4と、を備える。ここで緩衝器4は、筐体44(図2参照)と、筐体44の内部に設けられ、熱媒体が直接接触するとともに当該熱媒体が透過可能な固体材料(図2の例ではハニカム体43または板の集合体45)とを含む。受熱部1を通過する熱媒体は、受熱部1が吸収した太陽熱を吸収して流路配管3を流通し、エネルギー変換部2は当該熱媒体から太陽熱に基づくエネルギーを取り出す役割を果たす。取り出されたエネルギーにより、スチームガスタービン発電機130が運転し、電力が生成される。 The solar heat storage system 100 of this embodiment connects the heat receiving part 1 which absorbs the solar heat of sunlight guided by the mirror 120, the energy conversion part 2, the heat receiving part 1 and the energy conversion part 2, and the heat medium circulates. And a shock absorber 4 that is connected to the flow path pipe 3 and through which the heat medium passes. Here, the shock absorber 4 is provided inside the housing 44 (see FIG. 2), and a solid material (a honeycomb body in the example of FIG. 2) that allows the heat medium to directly contact and transmit the heat medium. 43 or an assembly of plates 45). The heat medium that passes through the heat receiving unit 1 absorbs solar heat absorbed by the heat receiving unit 1 and circulates through the flow pipe 3, and the energy conversion unit 2 plays a role of extracting energy based on solar heat from the heat medium. The steam gas turbine generator 130 is operated by the extracted energy, and electric power is generated.
 本太陽熱蓄熱システム100は、急激な出力変動に対応が可能であり、熱媒体が直接接触するとともに当該熱媒体が透過可能な固体材料を、緩衝器4の内部に有している。この固体材料は、内部に熱媒体が侵入することができ、直接熱媒体と熱交換することができるので、効率良く熱を引き出すことができる。このため、発電時に急激な天候変化があっても電圧変動、周波数変動への影響を小さくすることができる。 The solar heat storage system 100 is capable of dealing with sudden output fluctuations, and has a solid material inside the shock absorber 4 through which the heat medium directly contacts and through which the heat medium can pass. The solid material can infiltrate the heat medium inside and can directly exchange heat with the heat medium, so that heat can be efficiently extracted. For this reason, even if there is a sudden weather change at the time of power generation, the influence on voltage fluctuation and frequency fluctuation can be reduced.
 また、本太陽熱蓄熱システム100は、緩衝器4と並列に備えられるバイパス配管71、蓄熱器72を備える。緩衝器4周辺の熱媒体が滞留する部分は滞留部Aとして定義付けられ、緩衝器4、バイパス配管71、蓄熱器72、第1~3流量制御弁61、62、63(図6参照)が滞留部に含まれ得る。 The solar heat storage system 100 includes a bypass pipe 71 and a heat storage 72 that are provided in parallel with the shock absorber 4. The portion where the heat medium around the shock absorber 4 stays is defined as the stay portion A, and the shock absorber 4, the bypass pipe 71, the heat accumulator 72, and the first to third flow rate control valves 61, 62, 63 (see FIG. 6). It can be included in the retention part.
 本発明の太陽熱蓄熱システムには、例えば以下の様な各構成要素の変更により、種々の態様が存在する。もちろん、太陽熱蓄熱システムは下記の構成要素に限定されるものではない。 The solar heat storage system of the present invention has various modes, for example, by changing the following components. Of course, the solar heat storage system is not limited to the following components.
(A)緩衝器の内部に備えられた固体材料の態様
(B)緩衝器の接続方法
 B1 受熱部、緩衝器、エネルギー変換部が直列で両端が開放
 B2 受熱部、緩衝器、エネルギー変換部が直列で閉回路
 B3 受熱部、緩衝器、エネルギー変換部が並列で閉回路
(C)緩衝器と並列に備えられるバイパス配管、蓄熱器の有無(滞留部の態様)
 C1 緩衝器のみ
 C2 緩衝器とバイパス配管
 C3 緩衝器と蓄熱器
 C4 緩衝器とバイパス配管と蓄熱器
(A) Aspect of solid material provided inside shock absorber (B) Connection method of shock absorber B1 Heat receiving portion, shock absorber, energy conversion portion are in series and both ends open B2 Heat receiving portion, shock absorber, energy conversion portion Closed circuit in series B3 Heat receiving part, shock absorber, energy conversion part in parallel with closed circuit (C) Bypass pipe provided in parallel with buffer, presence or absence of heat accumulator (mode of staying part)
C1 shock absorber only C2 shock absorber and bypass piping C3 shock absorber and heat storage C4 shock absorber, bypass piping and heat storage
<(A)緩衝器の内部に備えられた固体材料の態様>
 図2は太陽熱蓄熱システム100に用いられる緩衝器4の実施形態の例を示す斜視図であり、(a)は緩衝器4の内部の固体材料がハニカム体の例、(b)は緩衝器4の内部の固体材料が板の集合体の例である。図2では緩衝器4の内部の固体材料を説明するため、緩衝器4の筐体44を通過して内部が見える状態で示している。
<(A) Aspect of solid material provided in shock absorber>
FIG. 2 is a perspective view showing an example of an embodiment of the shock absorber 4 used in the solar heat storage system 100. (a) is an example in which the solid material inside the shock absorber 4 is a honeycomb body, and (b) is a shock absorber 4. The solid material inside is an example of an assembly of plates. In FIG. 2, in order to explain the solid material inside the shock absorber 4, it is shown in a state where the inside can be seen through the housing 44 of the shock absorber 4.
 図2(a)の例では、筐体44の両端に流路配管3に接続された第1接続孔41及び第2接続孔42が設けられている。筐体44の内部に固体材料として第1接続孔41及び第2接続孔42を結ぶ熱媒体の流れに沿って流路43aが配置されたハニカム体43が備えられている。 In the example of FIG. 2A, a first connection hole 41 and a second connection hole 42 connected to the flow path pipe 3 are provided at both ends of the housing 44. A honeycomb body 43 in which a flow path 43a is disposed along the flow of the heat medium connecting the first connection hole 41 and the second connection hole 42 as a solid material is provided inside the housing 44.
 図2(b)の例では、筐体44の両端に流路配管3に接続された第1接続孔41及び第2接続孔42が設けられている。筐体44の内部に固体材料として第1接続孔41及び第2接続孔42を結ぶ熱媒体の流れに沿って配置された板の集合体45が備えられている。板の集合体45は、互いに平行に配置された複数の板45bからなり、各板45bの間には、流路45aが形成される。 In the example of FIG. 2B, the first connection hole 41 and the second connection hole 42 connected to the flow path pipe 3 are provided at both ends of the housing 44. An assembly 45 of plates arranged along the flow of the heat medium connecting the first connection hole 41 and the second connection hole 42 as a solid material is provided inside the housing 44. The plate assembly 45 includes a plurality of plates 45b arranged in parallel to each other, and a flow path 45a is formed between the plates 45b.
 上記の例のように、固体材料の種類は特に限定されないが、例えば、ハニカム体、板の集合体、発泡体、粒体などが挙げられる。 As in the above example, the type of solid material is not particularly limited, and examples thereof include honeycomb bodies, aggregates of plates, foams, and granules.
 ハニカム体としては、SiC、コージェライト、アルミナ、黒鉛、炭素などのセラミックのハニカム体のほか鉄、アルミニウムなど金属などのハニカム体も利用することができる。 As the honeycomb body, a honeycomb body made of a metal such as iron or aluminum can be used in addition to a ceramic honeycomb body such as SiC, cordierite, alumina, graphite, or carbon.
 板の集合体としては、特に限定されないが、例えば、間隔を開けて、好ましくは互いに平行に配置された板の集合体などである。板の材質は特に限定されない。SiC、コージェライト、アルミナ、黒鉛、炭素などのセラミックの板のほか鉄、アルミニウムなど金属などの板も利用することができる。 The aggregate of the plates is not particularly limited. For example, it is an aggregate of plates arranged at intervals and preferably parallel to each other. The material of the plate is not particularly limited. In addition to ceramic plates such as SiC, cordierite, alumina, graphite, and carbon, plates such as metals such as iron and aluminum can also be used.
 発泡体としては、火山の噴火などによって得られる軽石、発泡フェノール樹脂を炭化して得られるカーボンフォームなどのセラミックの発泡体、金属の内部に気孔を有する金属の発泡体などが挙げられる。 Examples of the foam include pumice obtained by volcanic eruption, ceramic foam such as carbon foam obtained by carbonizing foamed phenol resin, and metal foam having pores inside the metal.
 粒体としては、特に限定されないが、金属、セラミックなどが挙げられる。セラミックの場合には、例えばジョークラッシャなどで粗粉砕し得られた粒体などが挙げられる。粒体の粒の平均粒子直径は、特に限定されないが、例えば1~30mmである。粒体の粒の平均粒子直径は、多段の篩を用いた分粒法によって測定することができる。具体的には、篩の空隙の大きさと各篩を通過した重量を分析し、得られる。 The granule is not particularly limited, and examples thereof include metals and ceramics. In the case of ceramic, for example, particles obtained by coarse pulverization with a jaw crusher or the like can be used. The average particle diameter of the granules is not particularly limited, but is, for example, 1 to 30 mm. The average particle diameter of the granules can be measured by a sizing method using a multistage sieve. Specifically, it is obtained by analyzing the size of the voids of the sieve and the weight passing through each sieve.
 いずれの形態の固体材料の材質について、特に限定されないが、例えば、黒鉛、SiC、コージェライト、アルミナなどのセラミック、鉄、アルミニウムなどの金属を利用することができる。中でもセラミックは、耐蝕性、耐熱性を備えているので好適に利用することができる。 There are no particular restrictions on the material of the solid material in any form, but for example, ceramics such as graphite, SiC, cordierite, and alumina, and metals such as iron and aluminum can be used. Among these, ceramics can be suitably used because they have corrosion resistance and heat resistance.
 図2(a)に示したハニカム体43は、流路の方向への抵抗は少ないうえに、熱媒体と直接熱交換する内壁の面積を大きくすることが可能である。したがって、第1接続孔41と第2接続孔42とを結ぶ熱媒体の流れに沿って流路を配置することにより、ハニカム体43の内部に蓄えられた熱エネルギーを効率良く引き出すことができる。 The honeycomb body 43 shown in FIG. 2 (a) has little resistance in the direction of the flow path and can increase the area of the inner wall that directly exchanges heat with the heat medium. Therefore, by disposing the flow path along the flow of the heat medium that connects the first connection hole 41 and the second connection hole 42, it is possible to efficiently draw out the thermal energy stored in the honeycomb body 43.
<(B)緩衝器の接続方法>
 上述したように、緩衝器は、例えば次のように接続される。
 B1 受熱部、緩衝器、エネルギー変換部が直列で両端が開放
 B2 受熱部、緩衝器、エネルギー変換部が直列で閉回路
 B3 受熱部、緩衝器、エネルギー変換部が並列で閉回路
<(B) Connection method of shock absorber>
As described above, the shock absorbers are connected as follows, for example.
B1 Heat-receiving unit, buffer, energy conversion unit are connected in series and both ends are open B2 Heat-receiving unit, buffer, energy conversion unit are closed in series B3 Heat-receiving unit, buffer, energy conversion unit are closed circuit in parallel
 エネルギー変換部の種類は、特に限定されない。図1の例では、エネルギー変換部2は熱媒体の熱エネルギーを用いて別の熱媒体を暖める熱交換器より構成される。また、エネルギー変換部は、熱媒体の熱エネルギーをそのまま運動エネルギーに変換するタービンなどによっても構成され得る。タービンとしては、熱媒体の種類によって適宜選択され、蒸気タービン、ガスタービンなどが利用できる。 The type of energy conversion unit is not particularly limited. In the example of FIG. 1, the energy conversion part 2 is comprised from the heat exchanger which heats another heat medium using the heat energy of a heat medium. The energy conversion unit can also be configured by a turbine that converts the heat energy of the heat medium directly into kinetic energy. The turbine is appropriately selected depending on the type of heat medium, and a steam turbine, a gas turbine, or the like can be used.
 図1の実施形態における受熱部1は、ミラーの集光部に備えられた光-熱変換媒体であり、例えば、ハニカム状、多孔体状など様々な形態の物が利用できる。 The heat receiving unit 1 in the embodiment of FIG. 1 is a light-heat conversion medium provided in the light collecting unit of the mirror, and various forms such as a honeycomb shape and a porous shape can be used.
 図3は、受熱部1と緩衝器4とエネルギー変換部2が流路配管3により直列に接続され、流路配管3の両端が開放された太陽熱蓄熱システム100の例を示すシステム構成図である(B1)。受熱部1、緩衝器4、エネルギー変換部2が直列接続で両端が開放の場合、両端が開放されているので熱媒体としては例えば空気を用いることができる。
 受熱部1では、周囲の空気を熱媒体として取り込み、受熱部1で加熱したのち、流路配管3を通って緩衝器4を経由した後、エネルギー変換部2に導かれる。エネルギー変換部2では、例えば熱交換または、タービンによる運動エネルギーへの変換が行われる。こののち、熱媒体である空気は、大気中に戻される。この構成の太陽熱蓄熱システム100においては、緩衝器4に熱エネルギーが蓄積されているので、日照量が減少しても、エネルギー変換部2に届けられる熱エネルギーは急速に減少せず、なだらかに減少し、電力系統に与える影響を少なくすることができる。
FIG. 3 is a system configuration diagram illustrating an example of the solar heat storage system 100 in which the heat receiving unit 1, the buffer 4, and the energy conversion unit 2 are connected in series by the flow channel pipe 3 and both ends of the flow channel pipe 3 are opened. (B1). When the heat receiving unit 1, the shock absorber 4, and the energy conversion unit 2 are connected in series and both ends are open, since both ends are open, for example, air can be used as the heat medium.
In the heat receiving unit 1, ambient air is taken in as a heat medium, heated by the heat receiving unit 1, passed through the buffer pipe 4 through the flow path pipe 3, and then guided to the energy conversion unit 2. In the energy conversion unit 2, for example, heat exchange or conversion into kinetic energy by a turbine is performed. After that, the air as the heat medium is returned to the atmosphere. In the solar heat storage system 100 having this configuration, since heat energy is stored in the shock absorber 4, even if the amount of sunlight is reduced, the heat energy delivered to the energy conversion unit 2 does not decrease rapidly but decreases gently. In addition, the influence on the power system can be reduced.
 図4は、受熱部1と緩衝器4とエネルギー変換部2が流路配管3により直列に接続され、流路配管3が閉回路を構成する太陽熱蓄熱システム100の例を示すシステム構成図である(B2)。受熱部1、緩衝器4、エネルギー変換部2が直列接続で閉回路を構成する場合、流路配管3は開放しておらず、熱媒体が、エネルギー変換部2から受熱部1に戻るように構成される。このため、熱媒体は特に限定されず、各種の熱媒オイル、ガス、蒸気など様々なものが利用できる。 FIG. 4 is a system configuration diagram illustrating an example of a solar heat storage system 100 in which the heat receiving unit 1, the shock absorber 4, and the energy conversion unit 2 are connected in series by the flow channel pipe 3 and the flow channel pipe 3 forms a closed circuit. (B2). When the heat receiving unit 1, the shock absorber 4, and the energy conversion unit 2 form a closed circuit in series connection, the flow path pipe 3 is not opened so that the heat medium returns from the energy conversion unit 2 to the heat receiving unit 1. Composed. For this reason, a heat medium is not specifically limited, Various things, such as various heat medium oil, gas, a vapor | steam, can be utilized.
 受熱部1では、各種の熱媒オイル、ガス、蒸気などの熱媒体を受熱部1で加熱したのち、流路配管3を通って緩衝器4を経由した後、エネルギー変換部2に導かれる。エネルギー変換部2では、例えば熱交換または、タービンによる運動エネルギーへの変換が行われる。こののち、冷却した熱媒体は、流路配管3を経由して受熱部1に戻される。この構成の太陽熱蓄熱システム100においては、緩衝器4に熱エネルギーが蓄積されているので、日照量が減少しても、エネルギー変換部2に届けられる熱エネルギーは急速に減少せず、なだらかに減少し、電力系統に与える影響を少なくすることができる。 In the heat receiving unit 1, various heat mediums such as oil, gas, and steam are heated by the heat receiving unit 1, and after passing through the flow path pipe 3 and the buffer 4, are then guided to the energy conversion unit 2. In the energy conversion unit 2, for example, heat exchange or conversion into kinetic energy by a turbine is performed. Thereafter, the cooled heat medium is returned to the heat receiving unit 1 via the flow path pipe 3. In the solar heat storage system 100 having this configuration, since heat energy is stored in the shock absorber 4, even if the amount of sunlight is reduced, the heat energy delivered to the energy conversion unit 2 does not decrease rapidly but decreases gently. In addition, the influence on the power system can be reduced.
 図5は、受熱部1と緩衝器4とエネルギー変換部2が流路配管3により並列に接続され、流路配管3が閉回路を構成する太陽熱蓄熱システム100の例を示すシステム構成図である(B3)。受熱部1、緩衝器4、エネルギー変換部2が並列接続で閉回路を構成する場合、流路配管3は開放しておらず、熱媒体が、エネルギー変換部2から受熱部1に戻るように構成される。このため、熱媒体は特に限定されず、各種の熱媒オイル、ガス、蒸気など様々なものが利用できる。 FIG. 5 is a system configuration diagram illustrating an example of a solar heat storage system 100 in which the heat receiving unit 1, the buffer 4, and the energy conversion unit 2 are connected in parallel by the flow channel pipe 3 and the flow channel pipe 3 forms a closed circuit. (B3). When the heat receiving unit 1, the shock absorber 4, and the energy conversion unit 2 are connected in parallel to form a closed circuit, the flow path pipe 3 is not opened, and the heat medium returns from the energy conversion unit 2 to the heat receiving unit 1. Composed. For this reason, a heat medium is not specifically limited, Various things, such as various heat medium oil, gas, a vapor | steam, can be utilized.
 さらにこの実施形態では、緩衝器4と高温側の流路配管3との接続箇所には受熱部1又は緩衝器4への熱媒体の流れを閉鎖する第1切替弁51が設けられている。さらに、緩衝器4と低温側の流路配管3との接続箇所には受熱部1又は緩衝器4への熱媒体の流れを第1切替弁51と連動して閉鎖する第2切替弁52が設けられている。 Furthermore, in this embodiment, a first switching valve 51 that closes the flow of the heat medium to the heat receiving portion 1 or the shock absorber 4 is provided at a connection location between the shock absorber 4 and the high-temperature side passage pipe 3. Further, a second switching valve 52 that closes the flow of the heat medium to the heat receiving portion 1 or the buffer 4 in conjunction with the first switching valve 51 is connected at a connection portion between the buffer 4 and the low-temperature side pipe 3. Is provided.
 受熱部1では、各種の熱媒オイル、ガス、蒸気などの熱媒体を受熱部1で加熱したのち、流路配管3を通り、第1切替弁51で緩衝器4とエネルギー変換部2に分配される。エネルギー変換部2では専ら、例えば熱交換または、タービンによる運動エネルギーへの変換が行われる。また、緩衝器4では、熱エネルギーが貯蔵される。こののち、緩衝器4、エネルギー変換部2を経た熱媒体は、第2切替弁52で集約され流路配管3を経由して受熱部1に戻される。この構成の太陽熱蓄熱システム100においては、日照量が減ると、第1切替弁51および第2切替弁52の受熱部1側が絞られ、緩衝器4の内部を逆方向に熱媒体が流れるようになる。このような操作により、緩衝器4の内部に蓄積された熱エネルギーがエネルギー変換部2に導かれ、日照量の減少により発生する発電量の低下を補うことができる。 In the heat receiving unit 1, various heat mediums such as oil, gas, and steam are heated by the heat receiving unit 1, and then passed through the flow pipe 3 and distributed to the buffer 4 and the energy conversion unit 2 by the first switching valve 51. Is done. The energy conversion unit 2 exclusively performs, for example, heat exchange or conversion into kinetic energy by a turbine. Further, the shock absorber 4 stores thermal energy. After that, the heat medium that has passed through the buffer 4 and the energy conversion unit 2 is collected by the second switching valve 52 and returned to the heat receiving unit 1 through the flow path pipe 3. In the solar heat storage system 100 having this configuration, when the amount of sunshine decreases, the heat receiving portion 1 side of the first switching valve 51 and the second switching valve 52 is throttled so that the heat medium flows in the reverse direction in the shock absorber 4. Become. By such an operation, the thermal energy accumulated in the shock absorber 4 is guided to the energy conversion unit 2, and a decrease in the amount of power generated due to a decrease in the amount of sunlight can be compensated.
<(C)緩衝器と並列に備えられるバイパス配管、蓄熱器の有無(滞留部の態様)>
 次に、緩衝器4と並列に備えられるバイパス配管71、蓄熱器72について説明する。本実施形態では緩衝器4周辺の熱媒体が滞留する部分を滞留部A(図1参照)と呼び、緩衝器4の他にバイパス配管71、蓄熱器72、第1~3流量制御弁61、62、63が滞留部に含まれ得る。
<(C) Presence / absence of bypass pipe and heat accumulator provided in parallel with shock absorber (mode of staying part)>
Next, the bypass pipe 71 and the heat accumulator 72 provided in parallel with the shock absorber 4 will be described. In the present embodiment, a portion where the heat medium around the shock absorber 4 stays is referred to as a stay portion A (see FIG. 1). In addition to the shock absorber 4, a bypass pipe 71, a heat accumulator 72, first to third flow control valves 61, 62 and 63 may be included in the staying portion.
 図6に示すように、滞留部の例として、例えば以下4つの形態が挙げられる。以下順に説明する。 As shown in FIG. 6, examples of the staying part include the following four forms. This will be described in order below.
 C1 緩衝器のみ
 C2 緩衝器とバイパス配管
 C3 緩衝器と蓄熱器
 C4 緩衝器とバイパス配管と蓄熱器
C1 shock absorber only C2 shock absorber and bypass piping C3 shock absorber and heat storage C4 shock absorber, bypass piping and heat storage
 蓄熱器72は、緩衝器4よりも熱容量が大きい。蓄熱器72の内部には、例えば、コンクリートの塊、潜熱蓄熱材などが封入されている。蓄熱器72に潜熱蓄熱材を用いる場合には、蓄熱器72の中を流路配管が通っており、流路配管の壁の伝熱によって熱交換が行われる。 The heat accumulator 72 has a larger heat capacity than the shock absorber 4. Inside the heat accumulator 72, for example, a lump of concrete, a latent heat storage material, or the like is enclosed. When a latent heat storage material is used for the heat accumulator 72, a flow path pipe passes through the heat accumulator 72, and heat exchange is performed by heat transfer on the wall of the flow path pipe.
 図6(a)に示すように、滞留部が緩衝器4のみで構成される太陽熱蓄熱システム(C1)の場合は、簡単な構造で、緩衝器4の作用による日照量の低下を吸収できる太陽熱蓄熱システムを提供することができ、日照量の変化が電力系統へ与える影響を小さくすることができる。 As shown in FIG. 6 (a), in the case of the solar heat storage system (C1) in which the staying portion is composed only of the shock absorber 4, the solar heat can absorb the decrease in the amount of sunlight due to the action of the shock absorber 4 with a simple structure. A heat storage system can be provided, and the influence of changes in the amount of sunlight on the power system can be reduced.
 図6(b)に示すように、滞留部が並列接続された緩衝器4とバイパス配管71で構成される太陽熱蓄熱システム(C2)の場合、緩衝器4側には、第1流量制御弁が設けられ、バイパス配管側には第2流量制御弁が設けられている。 As shown in FIG. 6 (b), in the case of the solar heat storage system (C2) composed of the shock absorber 4 and the bypass pipe 71 in which the stay portions are connected in parallel, the first flow rate control valve is provided on the shock absorber 4 side. A second flow rate control valve is provided on the bypass pipe side.
 緩衝器4の上流側に第1流量制御弁61を設け、緩衝器4と並列して第2流量制御弁62を有するバイパス配管71を設けることにより、エネルギー変換部2への熱エネルギーの量は、受熱部1のみからの熱エネルギーと緩衝器4のみからの熱エネルギーの範囲で自由に調整することができる。このような調整をすることにより、エネルギー変換部2への熱エネルギーの量のハンチングあるいはオーバーシュートを防止することができる。太陽に雲がかかったあと、太陽が照り始めたときなどに能動的に制御することにより、より効果を発揮することができる。 By providing the first flow rate control valve 61 on the upstream side of the shock absorber 4 and providing the bypass pipe 71 having the second flow rate control valve 62 in parallel with the shock absorber 4, the amount of heat energy to the energy conversion unit 2 is The heat energy from only the heat receiving unit 1 and the heat energy from only the buffer 4 can be freely adjusted. By making such adjustment, it is possible to prevent hunting or overshooting of the amount of heat energy to the energy conversion unit 2. More effective effects can be obtained by actively controlling the sun when the sun begins to shine after the sun is clouded.
 さらに本実施形態の太陽熱蓄熱システムの第1流量制御弁61及び第2流量制御弁62は、エネルギー変換部2に導入される熱媒体の温度を一定にする制御装置80により制御されることが好ましい(図8参照)。 Furthermore, the first flow rate control valve 61 and the second flow rate control valve 62 of the solar heat storage system of the present embodiment are preferably controlled by the control device 80 that keeps the temperature of the heat medium introduced into the energy conversion unit 2 constant. (See FIG. 8).
 具体的には、制御装置80は、エネルギー変換部2の入口、緩衝器4の出口、バイパス配管71の熱媒体の温度を測定し、得られた温度の値に応じて第1流量制御弁61及び第2流量制御弁62の開度を調整する。 Specifically, the control device 80 measures the temperature of the heat medium in the inlet of the energy conversion unit 2, the outlet of the buffer 4, and the bypass pipe 71, and the first flow control valve 61 according to the obtained temperature value. And the opening degree of the 2nd flow control valve 62 is adjusted.
 なお、バイパス配管71の熱媒体の温度は、受熱部1からバイパス配管71または緩衝器4入口の範囲の中であれば同等の温度であるので、どこで測定しても良い。 It should be noted that the temperature of the heat medium in the bypass pipe 71 is the same temperature as long as it is within the range from the heat receiving portion 1 to the bypass pipe 71 or the buffer 4 inlet, and may be measured anywhere.
 なお、入口及び出口とは、熱媒体の流れの方向に対して定義される。このため、図5のように受熱部1、緩衝器4、エネルギー変換部2が並列となった閉回路を構成している場合(B3)、緩衝器4に対する熱媒体の流れる方向が入れ替わるので、熱媒体の流れる方向によって、入口及び出口が変わる。 Note that the inlet and the outlet are defined with respect to the flow direction of the heat medium. For this reason, when the heat receiving part 1, the shock absorber 4, and the energy conversion part 2 form a closed circuit as shown in FIG. 5 (B3), the flow direction of the heat medium with respect to the shock absorber 4 is switched. The inlet and outlet vary depending on the direction in which the heat medium flows.
 さらに、熱媒体の温度を一定にする制御装置80によって、第1流量制御弁61及び第2流量制御弁62を能動的に制御することにより、発電量の変動を抑制することができ、電力系統へ与える影響を小さくすることができる。 Furthermore, by controlling the first flow rate control valve 61 and the second flow rate control valve 62 by the control device 80 that keeps the temperature of the heat medium constant, fluctuations in the amount of power generation can be suppressed, and the power system Can be reduced.
 図6(c)に示すように、滞留部が並列接続された緩衝器4と蓄熱器72で構成される太陽熱蓄熱システム(C3)の場合、緩衝器4側には、第1流量制御弁61が備えられ、蓄熱器72側には第3流量制御弁63が備えられている。 As shown in FIG. 6 (c), in the case of a solar heat storage system (C3) composed of a shock absorber 4 and a heat accumulator 72 in which the staying portions are connected in parallel, the first flow control valve 61 is provided on the shock absorber 4 side. And a third flow rate control valve 63 is provided on the regenerator 72 side.
 緩衝器4の上流側に第1流量制御弁61を設け、緩衝器4と並列して第3流量制御弁63を備えた緩衝器4より熱容量の大きい蓄熱器72を設けることにより、受熱部1で発生した熱エネルギーを適宜分配することができる。日照が弱いときには、第1流量制御弁61を開け、第3流量制御弁63を絞り、蓄熱する熱エネルギーの比率を下げ、日照が強いときには、第1流量制御弁61を絞り、第3流量制御弁63を開け、余剰な熱エネルギーを蓄熱することができる。 By providing a first flow rate control valve 61 upstream of the shock absorber 4 and providing a heat accumulator 72 having a larger heat capacity than the shock absorber 4 provided with the third flow rate control valve 63 in parallel with the shock absorber 4, the heat receiving portion 1. The heat energy generated in can be appropriately distributed. When the sunlight is weak, the first flow control valve 61 is opened and the third flow control valve 63 is throttled to reduce the ratio of heat energy to be stored. When the sunlight is strong, the first flow control valve 61 is throttled to control the third flow control. The valve 63 can be opened to store excess heat energy.
 本実施形態の太陽熱蓄熱システムの第1流量制御弁61及び第3流量制御弁63は、エネルギー変換部2に導入される熱媒体の温度の一定にする制御装置80により制御されることが好ましい(図8参照)。 The first flow rate control valve 61 and the third flow rate control valve 63 of the solar heat storage system of the present embodiment are preferably controlled by a control device 80 that keeps the temperature of the heat medium introduced into the energy conversion unit 2 constant ( (See FIG. 8).
 具体的には、エネルギー変換部2の入口、緩衝器4の出口、蓄熱器72の出口の熱媒体の温度を測定し、得られた温度の値に応じて第1流量制御弁61及び第3流量制御弁63の開度を調整する。 Specifically, the temperature of the heat medium at the inlet of the energy conversion unit 2, the outlet of the shock absorber 4 and the outlet of the heat accumulator 72 is measured, and the first flow control valve 61 and the third The opening degree of the flow control valve 63 is adjusted.
 さらに、熱媒体の温度を一定にする制御装置80によって、第1流量制御弁61及び第3流量制御弁63を能動的に制御することにより、発電量の変動を抑制することができ、電力系統へ与える影響を小さくすることができる。 Furthermore, by controlling the first flow rate control valve 61 and the third flow rate control valve 63 by the control device 80 that keeps the temperature of the heat medium constant, fluctuations in the amount of power generation can be suppressed, and the power system Can be reduced.
 図6(d)に示すように、滞留部が並列接続された緩衝器4とバイパス配管71と蓄熱器72とで構成される太陽熱蓄熱システム(C4)の場合、緩衝器4側には、第1流量制御弁61が設けられ、バイパス配管71側には、第2流量制御弁62が設けられ、蓄熱器72側には第3流量制御弁63が設けられている。 As shown in FIG. 6 (d), in the case of the solar heat storage system (C4) including the shock absorber 4, the bypass pipe 71, and the heat accumulator 72 in which the staying portions are connected in parallel, A first flow rate control valve 61 is provided, a second flow rate control valve 62 is provided on the bypass pipe 71 side, and a third flow rate control valve 63 is provided on the heat accumulator 72 side.
 緩衝器4の上流側に第1流量制御弁61を設け、緩衝器4と並列して第2流量制御弁62を有するバイパス配管71を有することにより、エネルギー変換部2への熱エネルギーの量は、受熱部1のみからの熱エネルギーと緩衝器4のみからの熱エネルギーの範囲で自由に調整することができる。このような調整をすることにより、エネルギー変換部2への熱エネルギーの量のハンチングあるいはオーバーシュートを防止することができる。太陽に雲がかかったあと、太陽が照り始めたときなどに能動的に制御することにより、より効果を発揮することができる。 By providing the first flow rate control valve 61 on the upstream side of the shock absorber 4 and having the bypass pipe 71 having the second flow rate control valve 62 in parallel with the shock absorber 4, the amount of heat energy to the energy conversion unit 2 is The heat energy from only the heat receiving unit 1 and the heat energy from only the buffer 4 can be freely adjusted. By making such adjustment, it is possible to prevent hunting or overshooting of the amount of heat energy to the energy conversion unit 2. More effective effects can be obtained by actively controlling the sun when the sun begins to shine after the sun is clouded.
 さらに、緩衝器4と並列して第3流量制御弁63を備えた緩衝器4より熱容量の大きい蓄熱器72を有することにより、受熱部1で発生した熱エネルギーを適宜分配することができる。日照が弱いときには、第1流量制御弁61を開け、第3流量制御弁63を絞り、蓄熱する熱エネルギーの比率を下げ、日照が強いときには、第1流量制御弁61を絞り、第3流量制御弁63を開け、余剰な熱エネルギーを蓄熱することができる。 Furthermore, by having the heat accumulator 72 having a larger heat capacity than the shock absorber 4 provided with the third flow rate control valve 63 in parallel with the shock absorber 4, the heat energy generated in the heat receiving section 1 can be appropriately distributed. When the sunlight is weak, the first flow control valve 61 is opened and the third flow control valve 63 is throttled to reduce the ratio of heat energy to be stored. When the sunlight is strong, the first flow control valve 61 is throttled to control the third flow control. The valve 63 can be opened to store excess heat energy.
 本実施形態の太陽熱蓄熱システムの第1流量制御弁61、第2流量制御弁62または第3流量制御弁63は、エネルギー変換部2に導入される熱媒体の温度を一定にする制御装置80に接続されていることが好ましい(図8参照)。 The first flow control valve 61, the second flow control valve 62, or the third flow control valve 63 of the solar heat storage system of the present embodiment is provided in the control device 80 that keeps the temperature of the heat medium introduced into the energy conversion unit 2 constant. It is preferable that they are connected (see FIG. 8).
 さらに、熱媒体の温度を一定にする制御装置80によって、第1流量制御弁61、第2流量制御弁62及び第3流量制御弁63を能動的に制御することにより、発電量の変動を抑制することができ、電力系統へ与える影響を小さくすることができる。  Furthermore, fluctuations in the amount of power generation are suppressed by actively controlling the first flow rate control valve 61, the second flow rate control valve 62, and the third flow rate control valve 63 by the control device 80 that keeps the temperature of the heat medium constant. And the influence on the power system can be reduced. *
 図7は太陽熱蓄熱システム100の一例を示し、図3に示した流路配管3の両端が開放された構成に、図6(c)に示した滞留部が組み込まれている。このような構成の太陽熱蓄熱システム100は、空気を熱媒体として好適に利用できる。 FIG. 7 shows an example of the solar heat storage system 100, and the retention portion shown in FIG. 6C is incorporated in the configuration in which both ends of the flow path pipe 3 shown in FIG. 3 are opened. The solar heat storage system 100 having such a configuration can suitably use air as a heat medium.
 図8は太陽熱蓄熱システム100の他の例を示し、図4に示した流路配管3の閉回路の構成に、図6(d)に示した滞留部が組み込まれている。熱媒体は特に限定されず、各種の熱媒オイル、ガス、蒸気など様々なものが利用できる。なお、本図においてのみ制御装置80が示されているが、制御装置は他の図に示した形態にも当然適用可能である。 FIG. 8 shows another example of the solar heat storage system 100, and the retention portion shown in FIG. 6 (d) is incorporated in the closed circuit configuration of the flow path pipe 3 shown in FIG. The heat medium is not particularly limited, and various heat medium oils, gases, steams, and the like can be used. In addition, although the control apparatus 80 is shown only in this figure, naturally a control apparatus is applicable also to the form shown in the other figure.
 図9は太陽熱蓄熱システム100の他の例を示し、図5に示した流路配管3の閉回路の構成において、第1切替弁51と第2切替弁52との間に、第1流量制御弁61および緩衝器4の直列接続と、第3流量制御弁63と蓄熱器72の直列接続とが、互いに並列接続された状態で設けられている。熱媒体は特に限定されず、各種の熱媒オイル、ガス、蒸気など様々なものが利用できる。 FIG. 9 shows another example of the solar heat storage system 100. In the closed circuit configuration of the flow path pipe 3 shown in FIG. 5, the first flow control is performed between the first switching valve 51 and the second switching valve 52. A series connection of the valve 61 and the shock absorber 4 and a series connection of the third flow rate control valve 63 and the heat accumulator 72 are provided in a mutually connected state. The heat medium is not particularly limited, and various heat medium oils, gases, steams, and the like can be used.
 以上、本発明の実施形態について説明したが、本発明は前記実施形態において示された事項に限定されず、特許請求の範囲及び明細書の記載、並びに周知の技術に基づいて、当業者がその変更又は応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the matters shown in the above embodiments, and those skilled in the art will understand the scope of the claims and the description, and based on well-known techniques. Modifications or applications are also contemplated by the present invention and are within the scope of seeking protection.
 本出願は、2014年4月11日出願の日本特許出願、特願2014-082220に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2014-082220 filed on Apr. 11, 2014, the contents of which are incorporated herein by reference.
 本発明の太陽熱蓄熱システムによれば、急激な天候変化があっても電圧変動、周波数変動への影響を抑制することが可能なため、安定した熱エネルギーの供給が可能となり、自然エネルギーの利用が促進され得る。 According to the solar heat storage system of the present invention, it is possible to suppress the influence on the voltage fluctuation and the frequency fluctuation even if there is a sudden weather change. Can be promoted.
1  受熱部
2  エネルギー変換部
3  流路配管
4  緩衝器
41 第1接続孔
42 第2接続孔
43 ハニカム体(固体材料)
44 筐体
45 板の集合体(固体材料)
51 第1切替弁
52 第2切替弁
61 第1流量制御弁
62 第2流量制御弁
63 第3流量制御弁
71 バイパス配管
72 蓄熱器
80 制御装置
100 太陽熱蓄熱システム
110 太陽
120 ミラー
130 スチームガスタービン発電機
1000 太陽熱発電システム
DESCRIPTION OF SYMBOLS 1 Heat receiving part 2 Energy conversion part 3 Channel piping 4 Shock absorber 41 1st connection hole 42 2nd connection hole 43 Honeycomb body (solid material)
44 Housing 45 Aggregation of plates (solid material)
51 1st switching valve 52 2nd switching valve 61 1st flow control valve 62 2nd flow control valve 63 3rd flow control valve 71 Bypass piping 72 Regenerator 80 Control device 100 Solar thermal storage system 110 Solar 120 Mirror 130 Steam gas turbine power generation 1000 Solar Power Generation System

Claims (11)

  1.  太陽熱を吸収する受熱部と、
     前記受熱部を通過して前記太陽熱を吸収した熱媒体からエネルギーを取り出すエネルギー変換部と、
     前記受熱部と前記エネルギー変換部とを接続し、熱媒体が流通する流路配管と、
     前記流路配管に接続され、熱媒体が透過する緩衝器と、を備え、
     前記緩衝器は、筐体と、当該筐体の内部に設けられ、熱媒体が直接接触するとともに当該熱媒体が透過可能な固体材料と、を含む、
     太陽熱蓄熱システム。
    A heat receiving part that absorbs solar heat;
    An energy conversion unit that extracts energy from a heat medium that has absorbed the solar heat through the heat receiving unit;
    A flow path pipe through which a heat medium flows, connecting the heat receiving section and the energy conversion section;
    A shock absorber connected to the flow path pipe and through which the heat medium passes,
    The shock absorber includes a housing and a solid material that is provided inside the housing and is in direct contact with the heat medium and is permeable to the heat medium.
    Solar heat storage system.
  2.  前記固体材料は、粒体、板の集合体、発泡体またはハニカム体の少なくとも一つから選択される物体である、請求項1に記載の太陽熱蓄熱システム。 The solar heat storage system according to claim 1, wherein the solid material is an object selected from at least one of a granular body, an aggregate of plates, a foam body, and a honeycomb body.
  3.  前記緩衝器は、前記流路配管に接続された第1接続孔と第2接続孔とを有し、前記固体材料は、前記第1接続孔と前記第2接続孔とを結ぶ熱媒体の流れに沿って流路が配置されたハニカム体である、請求項2に記載の太陽熱蓄熱システム。 The shock absorber has a first connection hole and a second connection hole connected to the flow path pipe, and the solid material is a flow of a heat medium connecting the first connection hole and the second connection hole. The solar heat storage system of Claim 2 which is a honeycomb body by which the flow path was arrange | positioned along.
  4.  前記太陽熱蓄熱システムは、熱媒体の流れに沿って前記受熱部、前記緩衝器、前記エネルギー変換部の順に直列接続されている、請求項1から3のいずれか1項に記載の太陽熱蓄熱システム。 The solar heat storage system according to any one of claims 1 to 3, wherein the solar heat storage system is connected in series in the order of the heat receiving unit, the buffer, and the energy conversion unit along a flow of a heat medium.
  5.  前記太陽熱蓄熱システムは、
     前記流路配管が、前記受熱部と前記エネルギー変換部との間を熱媒体が循環する閉回路を構成し、前記緩衝器が前記受熱部及び前記エネルギー変換部と並列となるよう接続されるとともに、
     前記緩衝器と高温側の流路配管との接続箇所には前記受熱部又は前記緩衝器への熱媒体の流れを閉鎖する第1切替弁を有し、
     前記緩衝器と低温側の流路配管との接続箇所には前記受熱部又は前記緩衝器への熱媒体の流れを前記第1切替弁と連動して閉鎖する第2切替弁を有する、
    請求項1から3のいずれか1項に記載の太陽熱蓄熱システム。
    The solar heat storage system is
    The flow path pipe forms a closed circuit in which a heat medium circulates between the heat receiving unit and the energy conversion unit, and the shock absorber is connected in parallel with the heat receiving unit and the energy conversion unit. ,
    A connection point between the shock absorber and the high-temperature channel pipe has a first switching valve that closes the flow of the heat medium to the heat receiving portion or the shock absorber,
    A connection point between the shock absorber and the low-temperature channel pipe has a second switching valve that closes the flow of the heat medium to the heat receiving part or the shock absorber in conjunction with the first switching valve;
    The solar thermal storage system of any one of Claim 1 to 3.
  6.  前記緩衝器は第1流量制御弁を有し、前記緩衝器と並列して第2流量制御弁を備えたバイパス配管を有する、請求項1から5のいずれか1項に記載の太陽熱蓄熱システム。 The solar heat storage system according to any one of claims 1 to 5, wherein the shock absorber has a first flow rate control valve, and has a bypass pipe having a second flow rate control valve in parallel with the shock absorber.
  7.  前記第1流量制御弁及び前記第2流量制御弁は、前記エネルギー変換部に導入される熱媒体の温度を一定にする制御装置により制御される、請求項6に記載の太陽熱蓄熱システム。 The solar heat storage system according to claim 6, wherein the first flow rate control valve and the second flow rate control valve are controlled by a control device that keeps the temperature of the heat medium introduced into the energy conversion unit constant.
  8.  前記緩衝器は第1流量制御弁を有し、
     前記太陽熱蓄熱システムは、
     前記緩衝器と並列して第3流量制御弁を備えた前記緩衝器よりも熱容量の大きい蓄熱器を有する、請求項1から5のいずれか1項に記載の太陽熱蓄熱システム。
    The shock absorber has a first flow control valve;
    The solar heat storage system is
    The solar thermal energy storage system of any one of Claim 1 to 5 which has a thermal storage with a larger heat capacity than the said buffer provided with the 3rd flow control valve in parallel with the said buffer.
  9.  前記第1流量制御弁及び前記第3流量制御弁は、前記エネルギー変換部に導入される熱媒体の温度の一定にする制御装置により制御される、請求項8に記載の太陽熱蓄熱システム。 The solar heat storage system according to claim 8, wherein the first flow rate control valve and the third flow rate control valve are controlled by a control device that keeps the temperature of the heat medium introduced into the energy conversion unit constant.
  10. 前記緩衝器は第1流量制御弁を有し、
     前記太陽熱蓄熱システムは、
     前記緩衝器と並列して第2流量制御弁を備えたバイパス配管と、
     前記緩衝器と並列して第3流量制御弁を備えた前記緩衝器よりも熱容量の大きい蓄熱器と、
     を有する、請求項1から5のいずれか1項に記載の太陽熱蓄熱システム。
    The shock absorber has a first flow control valve;
    The solar heat storage system is
    A bypass pipe provided with a second flow control valve in parallel with the buffer;
    A heat accumulator having a larger heat capacity than the shock absorber provided with a third flow rate control valve in parallel with the shock absorber;
    The solar heat storage system of any one of Claim 1 to 5 which has these.
  11.  前記第1流量制御弁、前記第2流量制御弁または前記第3流量制御弁は、前記エネルギー変換部に導入される熱媒体の温度を一定にする制御装置に接続されている、請求項10に記載の太陽熱蓄熱システム。 The said 1st flow control valve, the said 2nd flow control valve, or the said 3rd flow control valve is connected to the control apparatus which makes constant the temperature of the heat carrier introduced into the said energy conversion part. The described solar heat storage system.
PCT/JP2015/061287 2014-04-11 2015-04-10 Solar heat storage system WO2015156402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-082220 2014-04-11
JP2014082220A JP2015203515A (en) 2014-04-11 2014-04-11 Solar heat storage system

Publications (1)

Publication Number Publication Date
WO2015156402A1 true WO2015156402A1 (en) 2015-10-15

Family

ID=54287973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061287 WO2015156402A1 (en) 2014-04-11 2015-04-10 Solar heat storage system

Country Status (2)

Country Link
JP (1) JP2015203515A (en)
WO (1) WO2015156402A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10639299B2 (en) 2016-03-29 2020-05-05 Georgia State University Research Foundation, Inc. Calcium sensing receptors, ligands, compositions, and methods of use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640609B2 (en) * 2016-03-02 2020-02-05 三菱日立パワーシステムズ株式会社 Solar thermal power generation system and solar thermal power generation method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599817B2 (en) * 1980-05-19 1984-03-05 日立造船株式会社 hot water equipment
JPS6419252A (en) * 1988-02-19 1989-01-23 Toshiba Corp Solar house
JPH0743235B2 (en) * 1987-08-26 1995-05-15 株式会社日立製作所 Heat storage device
JPH10197075A (en) * 1996-12-27 1998-07-31 Mitsubishi Electric Corp Hybrid solar energy utilization device
JP2002081763A (en) * 2000-09-04 2002-03-22 Sekisui Chem Co Ltd Solar heat and underground heat utilizing system
WO2007072591A1 (en) * 2006-06-16 2007-06-28 Kawasaki Jukogyo Kabushiki Kaisha Solar heat electricity generation facility, heat medium supply facility, and temperature variation suppression device
JP2012093004A (en) * 2010-10-25 2012-05-17 Ibiden Co Ltd Thermal receiver and solar thermal power generation device
WO2012120556A1 (en) * 2011-03-07 2012-09-13 株式会社 日立製作所 Solar heat steam cycle system
JP2013096384A (en) * 2011-11-04 2013-05-20 Jfe Engineering Corp Solar thermal power generation method and facility
WO2013124899A1 (en) * 2012-02-24 2013-08-29 株式会社 日立製作所 Solar heat assisted gas turbine system
JP2014029242A (en) * 2012-07-31 2014-02-13 Miracle Sun Power Japan:Kk Solar light utilization device for housing complex
JP2014047992A (en) * 2012-08-31 2014-03-17 Hitachi Ltd Heat storage system and power generating system having the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599817B2 (en) * 1980-05-19 1984-03-05 日立造船株式会社 hot water equipment
JPH0743235B2 (en) * 1987-08-26 1995-05-15 株式会社日立製作所 Heat storage device
JPS6419252A (en) * 1988-02-19 1989-01-23 Toshiba Corp Solar house
JPH10197075A (en) * 1996-12-27 1998-07-31 Mitsubishi Electric Corp Hybrid solar energy utilization device
JP2002081763A (en) * 2000-09-04 2002-03-22 Sekisui Chem Co Ltd Solar heat and underground heat utilizing system
WO2007072591A1 (en) * 2006-06-16 2007-06-28 Kawasaki Jukogyo Kabushiki Kaisha Solar heat electricity generation facility, heat medium supply facility, and temperature variation suppression device
JP2012093004A (en) * 2010-10-25 2012-05-17 Ibiden Co Ltd Thermal receiver and solar thermal power generation device
WO2012120556A1 (en) * 2011-03-07 2012-09-13 株式会社 日立製作所 Solar heat steam cycle system
JP2013096384A (en) * 2011-11-04 2013-05-20 Jfe Engineering Corp Solar thermal power generation method and facility
WO2013124899A1 (en) * 2012-02-24 2013-08-29 株式会社 日立製作所 Solar heat assisted gas turbine system
JP2014029242A (en) * 2012-07-31 2014-02-13 Miracle Sun Power Japan:Kk Solar light utilization device for housing complex
JP2014047992A (en) * 2012-08-31 2014-03-17 Hitachi Ltd Heat storage system and power generating system having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10639299B2 (en) 2016-03-29 2020-05-05 Georgia State University Research Foundation, Inc. Calcium sensing receptors, ligands, compositions, and methods of use

Also Published As

Publication number Publication date
JP2015203515A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
US9316404B2 (en) Heat pump with integral solar collector
US8960182B2 (en) Device and method for storage and transfer of thermal energy originated from solar radiation based on fluidization of a bed of particles
AU2009312347B2 (en) Solar thermal power plant and dual-purpose pipe for use therewith
US20120247455A1 (en) Solar collector with expandable fluid mass management system
US8307821B2 (en) Continuous moving bed solar steam generation system
KR20150004347A (en) Device, system and method for high level of energetic efficiency for the storage and use of thermal energy of solar origin
Fikri et al. Recent progresses and challenges in cooling techniques of concentrated photovoltaic thermal system: A review with special treatment on phase change materials (PCMs) based cooling
KR20100032408A (en) Combined cycle power plant
Oghogho Design and construction of a solar water heater based on the thermosyphon principle
KR102362508B1 (en) Control system for a solar assisted heat pump system with hybrid solar collectors
CN104813131A (en) Thermal energy storage system comprising a combined heating and cooling machine and a method for using the thermal energy storage system
CN101384819A (en) Method and device to control the energy production in a solar thermal power plant
KR20170052780A (en) Hybrid heat pump system by using complex use of air heat and solar thermal
US10116258B2 (en) Temperature-staged thermal energy storage enabling low thermal exergy loss reflux boiling in full spectrum solar energy systems
US9146039B2 (en) Energy generation system
WO2013098945A1 (en) Solar thermal power generation apparatus
Mishra et al. Recent developments in latent heat energy storage systems using phase change materials (PCMs)—a review
JP2014088821A (en) Solar heat power generation plant and control method of the same
CN103618479A (en) Power-generating and energy-storing system based on waste heat of diesel generating set of South-Pole astronomical observation station in South Pole
WO2015156402A1 (en) Solar heat storage system
GB2484326A (en) Energy generation system for converting solar and heat energy into electrical energy
JP2017048265A (en) Heat storage material, heat accumulator, and solar heat power generating system
CN104236127A (en) Heat storage system of dish type solar thermal power generation system
JP2010285926A (en) Turbine device and control method thereof
ES2664731T3 (en) Efficiency improvement in power plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776906

Country of ref document: EP

Kind code of ref document: A1