JPH10197075A - Hybrid solar energy utilization device - Google Patents

Hybrid solar energy utilization device

Info

Publication number
JPH10197075A
JPH10197075A JP8350304A JP35030496A JPH10197075A JP H10197075 A JPH10197075 A JP H10197075A JP 8350304 A JP8350304 A JP 8350304A JP 35030496 A JP35030496 A JP 35030496A JP H10197075 A JPH10197075 A JP H10197075A
Authority
JP
Japan
Prior art keywords
heat
heat storage
solar
temperature
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8350304A
Other languages
Japanese (ja)
Inventor
Mariko Nakano
真理子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8350304A priority Critical patent/JPH10197075A/en
Publication of JPH10197075A publication Critical patent/JPH10197075A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the temperature in a heat storage tank from being dropped when the heat collection quantity is large, e.g. in summer time, and to keep the temperature in the heat storage tank in some degree when the heat collection quantity is small, e.g. in winter time by flowing and circulating the liquid thermal medium in one heat storage tank when the heat collection quantity is small, and flowing and circulating the medium in a plurality of heat storage tanks when the heat collection quantity is large. SOLUTION: The power is generated in a solar photovoltaic power generation module 1 by receiving the solar energy, and the heat is collected by the liquid thermal medium flowing in a solar heat collection module 2. The liquid medium flows a heat storage tank 4a from a pipe 3a to a pipe 3b by the operation of three-way valves 6a, 6b. The water temperature in the heat storage tank 4a rises by passing the medium through a heat exchanger 5a. When the in-tank temperature to be detected by a temperature sensor 7 built in the heat storage tank 4a reaches the critical temperature set by a judging device 8, the operation of the three-way valves 6a, 6b, and the liquid medium flows into the heat storage tank 4b through the pipe 3a and the pipe 3d. The temperature of water in the heat storage tank 4b rises by passing the medium through the heat exchanger 5b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ハイブリッド式
太陽エネルギ利用装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid solar energy utilizing apparatus.

【0002】[0002]

【従来の技術】一般に、太陽エネルギを利用する場合、
太陽光発電装置と太陽熱集熱装置は全く別構成のものと
して、その一方のみを利用する場合が殆んどであった。
また両者を利用するにしても装置自体は別々である、と
いう方式がとられていた。しかし、受光面積に対して太
陽エネルギをより有効利用できるシステム構築を目的と
して両者を一体型としたハイブリッド式太陽エネルギ利
用装置も開発が進められている。
2. Description of the Related Art Generally, when solar energy is used,
In most cases, the solar power generation device and the solar heat collecting device have completely different structures and only one of them is used.
In addition, a method has been adopted in which the devices themselves are separate even if both are used. However, for the purpose of constructing a system capable of more effectively utilizing solar energy with respect to the light receiving area, a hybrid solar energy utilizing device in which both are integrated is being developed.

【0003】図7、図8は特開平7−253249号公
報に示された従来のハイブリッドパネルおよび太陽エネ
ルギ利用システムの構成図である。図7はハイブリッド
パネルの断面図である。ハイブリッドパネル21のパネ
ルケース22には内部面には断熱材23が隙間なく形成
されている。ハイブリッドパネル21のパネルケース2
2と反対の面側は太陽光を入射させるため透明ガラス2
8をはめ込んでいる。断熱材23上にはハイブリッドコ
レクタ24を形成している。このハイブリッドコレクタ
24は水集熱器25に太陽電池26を積層したものであ
る。水集熱器25は、集熱板に液体熱媒体としての、例
えば不凍液が流通する液体熱媒体流路27を伝熱的に形
成したものである。29は液体熱媒体流路27に不凍液
を導入する液体熱媒体入口であり、30は液体熱媒体流
路27から不凍液を取り出す液体熱媒体出口である。な
お、31は空気取入口、32は空気取出口、33は空気
流路、34,35は空気取入口31および空気取出口3
2をそれぞれ開閉するためのダンパである。
FIGS. 7 and 8 are block diagrams of a conventional hybrid panel and a solar energy utilization system disclosed in Japanese Patent Application Laid-Open No. 7-253249. FIG. 7 is a sectional view of the hybrid panel. A heat insulating material 23 is formed on the inner surface of the panel case 22 of the hybrid panel 21 without any gap. Hybrid panel 21 panel case 2
On the side opposite to 2, transparent glass 2 is used to allow sunlight to enter.
8 is set. A hybrid collector 24 is formed on the heat insulating material 23. This hybrid collector 24 is obtained by stacking a solar cell 26 on a water collector 25. The water collector 25 is a heat collecting plate in which a liquid heat medium passage 27, which is a liquid heat medium and through which, for example, an antifreezing liquid flows, is formed in a heat conductive manner. Reference numeral 29 denotes a liquid heat medium inlet for introducing the antifreeze into the liquid heat medium passage 27, and reference numeral 30 denotes a liquid heat medium outlet for taking out the antifreeze from the liquid heat medium passage 27. In addition, 31 is an air intake, 32 is an air intake, 33 is an air flow path, 34 and 35 are the air intake 31 and the air intake 3.
2 is a damper for opening and closing each of them.

【0004】図8は、ハイブリッドパネル1を用いた太
陽エネルギ利用システムの系統図である。このシステム
では、ハイブリッドパネル21を家屋51の屋根52な
どに設置する。ハイブリッドパネル21内のハイブリッ
ドコレクタは、ハイブリッドコレクタ24A、24B、
24Cの3つを並列に形成したものである。55は蓄熱
器としての蓄熱槽であり、導管56が蓄熱槽55と液体
熱媒体入口29とを結ぶ。また、導管57が蓄熱槽55
と液体熱媒体出口30とを結ぶ。このような構成をとる
ことによって導管56、57を介して液体熱媒体を液体
熱媒体流路27に流通させ、蓄熱槽55内の蓄熱材たる
水に吸熱させて蓄熱する。なお、62はインバータ、6
3は商用電源である。
FIG. 8 is a system diagram of a solar energy utilization system using the hybrid panel 1. In this system, the hybrid panel 21 is installed on a roof 52 of a house 51 or the like. The hybrid collectors in the hybrid panel 21 are hybrid collectors 24A, 24B,
24C are formed in parallel. 55 is a heat storage tank as a heat storage device, and a conduit 56 connects the heat storage tank 55 and the liquid heat medium inlet 29. In addition, the conduit 57 is the heat storage tank 55.
And the liquid heat medium outlet 30. With such a configuration, the liquid heat medium is circulated through the liquid heat medium flow path 27 through the conduits 56 and 57, and the water, which is the heat storage material in the heat storage tank 55, absorbs heat to store heat. In addition, 62 is an inverter, 6
3 is a commercial power supply.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来のハ
イブリッド太陽エネルギ利用システムでは、季節の区別
に関係なく1つの蓄熱槽に同じ熱交換能力で集熱される
ことになる。しかし、夏期は日射量が多く外界温度も高
く市水温度も高いため、他の季節にあわせてシステムを
組むと蓄熱槽内温度が非常に高くなり、無駄な蓄熱をす
るばかりかそこを通ってハイブリッドパネルへ戻る液体
熱媒体も高温になるため、発電セルの発電効率を極端に
低下させたり、発電セル自体を痛めてしまう危険性があ
った。一方、冬期はその逆で、日射量は少なく外界温度
も低く市水温度も低いため、他の季節にあわせてシステ
ムを組むと蓄熱槽内温度が非常に低くなってしまい、場
合によっては給湯できる温度が取れなくなるという問題
点があった。
In the conventional hybrid solar energy utilization system as described above, heat is collected in one heat storage tank with the same heat exchange capacity regardless of the season. However, in summer, the solar radiation is high, the outside temperature is high, and the city water temperature is high, so if the system is assembled according to other seasons, the temperature inside the heat storage tank will become extremely high, and not only will the waste heat be stored, but it will pass through it. Since the liquid heat medium returning to the hybrid panel also has a high temperature, there is a risk that the power generation efficiency of the power generation cell may be extremely reduced or the power generation cell itself may be damaged. On the other hand, in winter, the opposite is true: the solar radiation is low, the outside temperature is low, and the city water temperature is low, so if the system is set up in another season, the temperature in the heat storage tank will be very low, and in some cases hot water can be supplied. There was a problem that the temperature could not be obtained.

【0006】この発明は、上述のような課題を解決する
ためになされたもので、夏期など集熱量が多い場合の蓄
熱槽内温度を発電セルの発電効率を極端に下げず発電セ
ル自体を痛める危険性もない温度に維持し、かつ冬期な
ど集熱量が少ない場合にはある程度の蓄熱槽内温度を維
持できるようにすることができるハイブリッド式太陽エ
ネルギ利用装置を得るものである。
The present invention has been made in order to solve the above-mentioned problems, and does not significantly lower the power generation efficiency of the power generation cell and damages the power generation cell itself when the amount of heat collected is large, such as during summer. (EN) A hybrid solar energy utilization device capable of maintaining a temperature without danger and maintaining a certain temperature in a heat storage tank when the amount of collected heat is small such as in winter.

【0007】[0007]

【課題を解決するための手段】この発明に係るハイブリ
ッド式太陽エネルギ利用装置においては、太陽光発電モ
ジュールと太陽熱集熱モジュールを一体化し、太陽光発
電モジュールが太陽熱集熱モジュール内を流通する液体
熱媒体の熱影響を受けるように構成されたものにおい
て、上記太陽熱集熱モジュールで集熱した液体熱媒体を
流通循環させる配管と、この配管の途中に並列に設けら
れた複数の蓄熱槽とを備え、集熱量が少ないときは、そ
れを検知して上記液体熱媒体を1つの蓄熱槽に流通循環
させ、一方、集熱量が多いときは、それを検知して上記
液体熱媒体を複数の蓄熱槽に流通循環させたものであ
る。
In the hybrid solar energy utilizing apparatus according to the present invention, a solar power generation module and a solar heat collection module are integrated, and the solar power generation module distributes liquid heat flowing in the solar heat collection module. In what is configured to be affected by the heat of the medium, a pipe that circulates and circulates the liquid heat medium collected by the solar heat collecting module, and a plurality of heat storage tanks provided in parallel in the middle of the pipe are provided. When the heat collection amount is small, it is detected and the liquid heat medium is circulated and circulated in one heat storage tank, while when the heat collection amount is large, it is detected and the liquid heat medium is stored in a plurality of heat storage tanks. It has been circulated in circulation.

【0008】また、蓄熱槽内温度を検知する槽内温度検
知手段を備え、まず上記液体熱媒体を1つの蓄熱槽に流
通循環させ、次にその1つの蓄熱槽内温度が設定温度以
上になったとき、それを検知して上記液体熱媒体を他の
1つの蓄熱槽に流通循環させるように切り替え、これを
所定の蓄熱槽数に達するまで繰り返すものである。
Further, the apparatus is provided with a tank temperature detecting means for detecting the temperature in the heat storage tank, and first, the liquid heat medium is circulated and circulated in one heat storage tank, and then the temperature in the one heat storage tank becomes equal to or higher than a set temperature. When such a state is detected, the liquid heat medium is switched to be circulated and circulated to another heat storage tank, and this operation is repeated until a predetermined number of heat storage tanks is reached.

【0009】また、外界温度を検知する外界温度検知手
段を備え、外界温度を検知して予め設定温度に合わせて
設定してある任意の数の蓄熱槽に上記液体熱媒体を流通
循環させるように切り替えたものである。
Further, an external temperature detecting means for detecting the external temperature is provided, and the liquid heat medium is circulated and circulated through an arbitrary number of heat storage tanks which are set to match the preset temperature by detecting the external temperature. It has been switched.

【0010】また、日射量を検知する日射量検知手段を
備え、日射量を検知して予め設定日射量に合わせて設定
してある任意の数の蓄熱槽に上記液体熱媒体を流通循環
させるように切り替えたものである。
Further, a solar radiation amount detecting means for detecting the solar radiation amount is provided, and the liquid heat medium is circulated and circulated through an arbitrary number of heat storage tanks which are detected in accordance with the solar radiation amount and are preset according to the preset solar radiation amount. It has been switched to.

【0011】さらに、外界温度を検知する外界温度検知
手段と、日射量を検知する日射量検知手段とを備え、外
界温度および日射量を検知して予め設定温度および設定
日射量に合わせて設定してある任意の数の蓄熱槽に上記
液体熱媒体を流通循環させたものである。
Further, the apparatus is provided with an outside temperature detecting means for detecting the outside temperature and an insolation detecting means for detecting the amount of insolation. The outside temperature and the amount of insolation are detected and set in advance according to the set temperature and the set amount of insolation. The liquid heat medium is circulated in any given number of heat storage tanks.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は、この発明の実施の形態1である
ハイブリッド式太陽エネルギ利用装置を示すもので、最
も基本的な例である蓄熱槽が2つ並列に設けられた場合
について説明するが、蓄熱槽の数は3以上の並列であっ
ても差し支えない。
Embodiment 1. FIG. 1 shows a hybrid solar energy utilizing apparatus according to a first embodiment of the present invention. The most basic example is a case where two heat storage tanks are provided in parallel. The number may be three or more in parallel.

【0013】1は単結晶Siやアモルファスなどによる
光起電力効果を有するデバイスからなる太陽光発電モジ
ュール、2は太陽熱集熱モジュールであり、図7、図8
に示す従来のハイブリッドパネル21とほぼ同様に一体
化構成されている。3a〜3eは液体熱媒体としての不
凍液が流通する配管、4a、4bは水などを蓄熱材とし
た蓄熱槽、5a、5bは熱交換器、6a、6bは三方弁
である。7は蓄熱槽内温度センサ、8はマイコンなどの
センサからの信号の判定器である。なお、11はインバ
ータ、12は商用電源である。
Reference numeral 1 denotes a photovoltaic power generation module comprising a device having a photovoltaic effect using single crystal Si, amorphous, or the like, and 2 denotes a solar heat collecting module.
The integrated structure is similar to the conventional hybrid panel 21 shown in FIG. Reference numerals 3a to 3e denote pipes through which antifreeze as a liquid heat medium flows, 4a and 4b denote heat storage tanks using water as a heat storage material, 5a and 5b denote heat exchangers, and 6a and 6b denote three-way valves. Reference numeral 7 denotes a temperature sensor in the heat storage tank, and 8 denotes a judging device for a signal from a sensor such as a microcomputer. Note that 11 is an inverter, and 12 is a commercial power supply.

【0014】次に、実施の形態1の動作を説明する。太
陽光発電モジュール1と太陽熱集熱モジュール2は両者
隙間なく接している。ここで太陽エネルギを受け、太陽
光発電モジュール1で発電し、太陽熱集熱モジュール2
内を流れる液体熱媒体で集熱する。この液体熱媒体は三
方弁6a、6bの動作により配管3aから配管3bを通
って蓄熱槽4aに流れていく。その中で液体熱媒体は熱
交換器5aを通ることで蓄熱槽4a内の水温を上昇させ
る。その後液体熱媒体は配管3cから配管3aを通って
太陽熱集熱モジュール2に戻っていく。この循環を繰り
返すことで蓄熱槽4a内の水の温度を上げていく。
Next, the operation of the first embodiment will be described. The solar power generation module 1 and the solar heat collection module 2 are in contact with each other without any gap. Here, solar energy is received, power is generated by the solar power generation module 1, and the solar heat collection module 2
Heat is collected by the liquid heat medium flowing inside. This liquid heat medium flows from the pipe 3a to the heat storage tank 4a through the pipe 3b by the operation of the three-way valves 6a and 6b. The liquid heat medium raises the water temperature in the heat storage tank 4a by passing through the heat exchanger 5a. Thereafter, the liquid heat medium returns from the pipe 3c to the solar heat collecting module 2 through the pipe 3a. By repeating this circulation, the temperature of the water in the heat storage tank 4a is increased.

【0015】ここで、蓄熱槽4aに組み込まれた温度セ
ンサ7の検知する槽内温度が予めマイコン等の判定器8
で設定しておいた限界温度に達した場合、三方弁6a、
6bの動作が切り替わり、液体熱媒体は配管3aから配
管3dを通って蓄熱槽4bに流れていく。そして熱交換
器5bを通ることで蓄熱槽4b内の水温を上昇させる。
その後液体熱媒体は配管3eから配管3aを通って太陽
熱集熱モジュール2に戻っていく。この循環を繰り返す
ことで蓄熱槽4b内の水の温度を上げていく。なお、蓄
熱槽4a内の水温が時間の経過により、限界温度を下回
ると、再び三方弁6a、6bが動作し、元の状態に復帰
して蓄熱槽4a内の水温を上昇させることになる。
Here, the temperature inside the tank detected by the temperature sensor 7 incorporated in the heat storage tank 4a is previously determined by a judging device 8 such as a microcomputer.
When the temperature limit is reached, the three-way valve 6a,
The operation of 6b is switched, and the liquid heat medium flows from the pipe 3a to the heat storage tank 4b through the pipe 3d. Then, the water temperature in the heat storage tank 4b is raised by passing through the heat exchanger 5b.
After that, the liquid heat medium returns from the pipe 3e to the solar heat collecting module 2 through the pipe 3a. By repeating this circulation, the temperature of the water in the heat storage tank 4b is increased. When the water temperature in the heat storage tank 4a falls below the limit temperature due to the passage of time, the three-way valves 6a and 6b operate again to return to the original state and raise the water temperature in the heat storage tank 4a.

【0016】従って、夏期など集熱量が多い場合には蓄
熱槽内の温度を発電セルの発電効率を下げず発電セル自
体を痛める危険性もない予め設定された限界温度に維持
し、かつ冬期など集熱量の少ない場合にはある程度の蓄
熱槽内の温度を維持できる。すなわち、夏期には、複数
の蓄熱槽を順次適正な温度で使用することにより、発電
セルへの障害をなくし、また、冬期には、1つの蓄熱槽
を使用して必要な最低限の温度を維持しようとするもの
である。
Accordingly, when the amount of heat collection is large, such as in the summer, the temperature in the heat storage tank is maintained at a preset limit temperature without lowering the power generation efficiency of the power generation cell and there is no danger of damaging the power generation cell itself, and in the winter. When the amount of collected heat is small, the temperature in the heat storage tank can be maintained to some extent. That is, in the summer, by using a plurality of heat storage tanks at an appropriate temperature in sequence, obstacles to the power generation cells are eliminated, and in the winter, one heat storage tank is used to reduce the required minimum temperature. It's something to keep.

【0017】実施の形態2.図2は、この発明の実施の
形態2であるハイブリッド式太陽エネルギ利用装置の回
路図である。図において、1〜5、8、11、12は図
1に示す実施の形態1と同一の構成である。6c、6d
は配管3d、3eにそれぞれ設けた電磁弁、9は外界温
度センサである。なお、蓄熱槽の数を3つ以上の並列と
し、その容量を蓄熱槽4aが最も大きく、蓄熱槽4bと
その次の蓄熱槽の容量を小さくしてもよい。
Embodiment 2 FIG. Second Embodiment FIG. 2 is a circuit diagram of a hybrid solar energy utilizing apparatus according to a second embodiment of the present invention. In the figure, 1 to 5, 8, 11, and 12 have the same configuration as that of the first embodiment shown in FIG. 6c, 6d
Is an electromagnetic valve provided in each of the pipes 3d and 3e, and 9 is an ambient temperature sensor. The number of heat storage tanks may be three or more in parallel, and the capacity of the heat storage tank 4a may be the largest, and the capacity of the heat storage tank 4b and the next heat storage tank may be reduced.

【0018】次に、実施の形態2の動作を説明する。基
本的には、実施の形態1で説明した動作とほぼ同一であ
り、屋根などに設けた外界温度センサ9の検知する外界
温度が予めマイコン等の判定器8で設定しておいた温度
以上である場合、電磁弁6c、6dが開き、液体熱媒体
は配管3a、3b、3dを通って2つの蓄熱槽4a、4
bに流れていく。その中で液体熱媒体は各々の蓄熱槽内
にある熱交換器5a、5bを通ることで蓄熱槽4a、4
b内の水温を上昇させる。その後液体熱媒体は配管3
c、3e、3aを通って太陽熱集熱モジュール2に戻っ
ていく。この循環を繰り返すことで蓄熱槽4a、4b内
の水の温度を上げていく。
Next, the operation of the second embodiment will be described. Basically, the operation is almost the same as the operation described in the first embodiment. When the external temperature detected by the external temperature sensor 9 provided on the roof or the like is equal to or higher than the temperature set in advance by the determiner 8 such as a microcomputer. In some cases, the solenoid valves 6c, 6d are opened, and the liquid heat medium passes through the pipes 3a, 3b, 3d and the two heat storage tanks 4a, 4
It flows to b. Among them, the liquid heat medium passes through the heat exchangers 5a and 5b in the respective heat storage tanks, thereby forming the heat storage tanks 4a and 4b.
Increase the water temperature in b. After that, the liquid heat medium is pipe 3
It returns to the solar heat collection module 2 through c, 3e, and 3a. By repeating this circulation, the temperature of the water in the heat storage tanks 4a and 4b is raised.

【0019】また、外界温度センサ9の検知する外界温
度が予めマイコン等の判定器8で設定しておいた温度未
満である場合、電磁弁6c、6dが閉じ、液体熱媒体は
配管3a、3bを通って蓄熱槽4aのみに流れていく。
その中で蓄熱槽4a内にある熱交換器5aを通ることで
蓄熱槽4a内の水温を上昇させる。その後液体熱媒体は
配管3c、3aを通って太陽熱集熱モジュール2に戻っ
ていく。この循環を繰り返すことで蓄熱槽4a内の水の
温度を上げていく。
When the outside temperature detected by the outside temperature sensor 9 is lower than the temperature set in advance by the judging device 8 such as a microcomputer, the solenoid valves 6c and 6d are closed, and the liquid heat medium is supplied to the pipes 3a and 3b. And flows only to the heat storage tank 4a.
The water temperature in the heat storage tank 4a is increased by passing through the heat exchanger 5a in the heat storage tank 4a. After that, the liquid heat medium returns to the solar heat collecting module 2 through the pipes 3c and 3a. By repeating this circulation, the temperature of the water in the heat storage tank 4a is raised.

【0020】なお、電磁弁6c、6dを配管3d、3e
でなく配管3b、3cの方に設ければ、蓄熱槽4b内の
水の温度を上げることができる。
The solenoid valves 6c and 6d are connected to the pipes 3d and 3e.
However, if provided in the pipes 3b and 3c, the temperature of the water in the heat storage tank 4b can be increased.

【0021】なお、蓄熱槽が3つ以上の並列である場合
は、外界温度の検知により動作する判定器8の設定温度
を複数用意しておき、外界温度が各設定温度に到達した
り、あるいは下回ったりした時、小容量の蓄熱槽4bと
次段の蓄熱槽の電磁弁を順次開、閉制御するようにして
もよい。
When three or more heat storage tanks are connected in parallel, a plurality of set temperatures of the determiner 8 which operates by detecting the ambient temperature are prepared so that the ambient temperature reaches each set temperature, or When the temperature is lower than the lower limit, the small-capacity heat storage tank 4b and the electromagnetic valve of the next-stage heat storage tank may be controlled to be sequentially opened and closed.

【0022】従って、夏期など集熱量が多い場合には蓄
熱槽内の温度を発電セルの発電効率を下げず発電セル自
体を痛める危険性もない温度に維持し、かつ冬期など集
熱量の少ない場合にはある程度の蓄熱槽内温度を維持で
きる。すなわち、夏期には、複数の蓄熱槽を順次適正な
温度で使用することにより、発電セルへの障害をなく
し、また、冬期には、1つの蓄熱槽を使用して必要な最
低限の温度を維持しようとするものである。
Therefore, when the amount of heat collection is large such as in summer, the temperature in the heat storage tank is maintained at a temperature at which there is no danger of damaging the power generation cell itself without lowering the power generation efficiency of the power generation cell, and when the amount of heat collection is small such as in winter. Can maintain a certain temperature in the heat storage tank. In other words, in summer, a plurality of heat storage tanks are sequentially used at an appropriate temperature to eliminate the obstacle to the power generation cell, and in winter, one heat storage tank is used to reduce the required minimum temperature. We are trying to keep it.

【0023】実施の形態3.図3は、この発明の実施の
形態3であるハイブリッド式太陽エネルギ利用装置の回
路図である。図において、1〜5、8、12は図1に示
す実施の形態1と同一の構成である。6c、6dは配管
3d、3eにそれぞれ設けた電磁弁、10は日射量セン
サである。なお、蓄熱槽の数を3つ以上の並列とし、そ
の容量を蓄熱槽4aが最も大きく、蓄熱槽4bとその次
の蓄熱槽の容量を小さくしてもよい。
Embodiment 3. FIG. 3 is a circuit diagram of a hybrid solar energy utilization device according to a third embodiment of the present invention. In the figure, 1 to 5, 8, and 12 have the same configuration as the first embodiment shown in FIG. Reference numerals 6c and 6d are electromagnetic valves provided in the pipes 3d and 3e, respectively, and 10 is a solar radiation amount sensor. The number of heat storage tanks may be three or more in parallel, the capacity of the heat storage tank 4a is the largest, and the capacity of the heat storage tank 4b and the heat storage tank subsequent thereto may be small.

【0024】次に、実施の形態3の動作を説明する。基
本的には、実施の形態1で説明した動作と同様であり、
屋根などに設けた日射量センサ10の検知する日射量が
予めマイコン等の判定器8で設定しておいた日射量以上
である場合、電磁弁6c、6dが開き、液体熱媒体は配
管3a、3b、3dを通って2つの蓄熱槽4a、4bに
流れていく。その中で液体熱媒体は各々の蓄熱槽内にあ
る熱交換器5a、5bを通ることで蓄熱槽4a、4b内
の水温を上昇させる。その後液体熱媒体は配管3c、3
e、3aを通って太陽熱集熱モジュール2に戻ってい
く。この循環を繰り返すことで蓄熱槽4a、4b内の水
の温度を上げていく。
Next, the operation of the third embodiment will be described. Basically, the operation is the same as that described in the first embodiment,
When the solar radiation detected by the solar radiation sensor 10 provided on the roof or the like is equal to or greater than the solar radiation previously set by the determiner 8 such as a microcomputer, the solenoid valves 6c and 6d are opened, and the liquid heat medium is supplied to the pipe 3a, It flows to two heat storage tanks 4a and 4b through 3b and 3d. Among them, the liquid heat medium passes through the heat exchangers 5a and 5b in the respective heat storage tanks to raise the water temperature in the heat storage tanks 4a and 4b. After that, the liquid heat medium is pipes 3c, 3
e, return to the solar heat collecting module 2 through 3a. By repeating this circulation, the temperature of the water in the heat storage tanks 4a and 4b is raised.

【0025】また、日射量センサ10の検知する日射量
が予めマイコン等の判定器8で設定しておいた日射量未
満である場合、電磁弁6c、6dが閉じ、液体熱媒体は
配管3a、3bを通って蓄熱槽4aのみに流れていく。
その中で蓄熱槽4a内にある熱交換器5aを通ることで
蓄熱槽4a内の水温を上昇させる。その後液体熱媒体は
配管3c、3aを通って太陽熱集熱モジュール2に戻っ
ていく。この循環を繰り返すことで蓄熱槽4a内の水の
温度を上げていく。
When the solar radiation detected by the solar radiation sensor 10 is smaller than the solar radiation set in advance by the determiner 8 such as a microcomputer, the solenoid valves 6c and 6d are closed, and the liquid heat medium is supplied to the pipe 3a. It flows only to the heat storage tank 4a through 3b.
The water temperature in the heat storage tank 4a is increased by passing through the heat exchanger 5a in the heat storage tank 4a. Thereafter, the liquid heat medium returns to the solar heat collecting module 2 through the pipes 3c and 3a. By repeating this circulation, the temperature of the water in the heat storage tank 4a is raised.

【0026】なお、電磁弁6c、6dを配管3d、3e
でなく、配管3b、3cに設ければ、蓄熱槽4b内の水
の温度を上げることができる。
The solenoid valves 6c and 6d are connected to pipes 3d and 3e.
Instead, if the pipes 3b and 3c are provided, the temperature of the water in the heat storage tank 4b can be raised.

【0027】なお、蓄熱槽が3つ以上の並列である場合
は、日射量の検知により動作する判定器8の設定日射量
を複数用意しておき、日射量が各設定日射量に到達した
り、あるいは下回ったりした時、小容量の蓄熱槽4bと
次段の蓄熱槽の電磁弁を順次開、閉制御するようにして
もよい。
In the case where three or more heat storage tanks are arranged in parallel, a plurality of set insolation amounts of the determiner 8 which operate by detecting the amount of insolation are prepared, and the amount of insolation reaches each set amount of insolation. Alternatively, when the temperature falls below the threshold, the small-capacity heat storage tank 4b and the electromagnetic valve of the next-stage heat storage tank may be sequentially controlled to be opened and closed.

【0028】従って、夏期など集熱量が多い場合には蓄
熱槽内の温度を発電セルの発電効率を下げず発電セル自
体を痛める危険性もない温度に維持し、かつ冬期など集
熱量の少ない場合にはある程度の蓄熱槽内温度を維持で
きる。すなわち、夏期には、複数の蓄熱槽を順次適正な
温度で使用することにより、発電セルへの障害をなく
し、また、冬期には1つの蓄熱槽を使用して必要な最低
限の温度を維持しようとするものである。
Therefore, when the amount of heat collection is large such as in summer, the temperature in the heat storage tank is maintained at a temperature at which there is no danger of damaging the power generation cell itself without lowering the power generation efficiency of the power generation cell, and when the amount of heat collection is small such as in winter. The temperature inside the heat storage tank can be maintained to some extent. In other words, in summer, a plurality of heat storage tanks are sequentially used at an appropriate temperature, thereby eliminating an obstacle to a power generation cell. In winter, one heat storage tank is used to maintain a required minimum temperature. Is what you are trying to do.

【0029】実施の形態4.図4は、この発明の実施の
形態4であるハイブリッド式太陽エネルギ利用装置の回
路図である。図において、1〜5、8、11、12は図
1に示す実施の形態1と同一の構成である。6c、6d
は配管3d、3eにそれぞれ設けた電磁弁、9は外界温
度センサ、10は日射量センサである。なお、蓄熱槽の
数を3つ以上の並列とし、その容量を蓄熱槽4aが最も
大きく、蓄熱槽4bとその次の蓄熱槽の容量を小さくし
てもよい。
Embodiment 4 FIG. 4 is a circuit diagram of a hybrid solar energy utilization device according to a fourth embodiment of the present invention. In the figure, 1 to 5, 8, 11, and 12 have the same configuration as that of the first embodiment shown in FIG. 6c, 6d
Is an electromagnetic valve provided in each of the pipes 3d and 3e, 9 is an external temperature sensor, and 10 is a solar radiation sensor. The number of heat storage tanks may be three or more in parallel, the capacity of the heat storage tank 4a is the largest, and the capacity of the heat storage tank 4b and the heat storage tank subsequent thereto may be small.

【0030】次に、実施の形態4の動作を説明する。基
本的には、実施の形態1で説明した動作とほぼ同一であ
り、屋根などに設けた外界温度センサ9および日射量セ
ンサ10の検知する外界温度および日射量が予めマイコ
ン等の判定器8で設定しておいた外界温度および日射量
以上である場合、電磁弁6c、6dが開き、液体熱媒体
は配管3a、3b、3dを通って2つの蓄熱槽4a、4
bに流れていく。その中で液体熱媒体は各々の蓄熱槽内
にある熱交換器5a、5bを通ることで蓄熱槽4a、4
b内の水温を上昇させる。その後液体熱媒体は配管3
c、3e、3aを通って太陽熱集熱モジュール2に戻っ
ていく。この循環を繰り返すことで蓄熱槽4a、4b内
の水の温度を上げていく。
Next, the operation of the fourth embodiment will be described. Basically, the operation is almost the same as that described in the first embodiment, and the external temperature and the amount of solar radiation detected by the external temperature sensor 9 and the solar radiation sensor 10 provided on the roof or the like are previously determined by the determiner 8 such as a microcomputer. When the temperature is equal to or higher than the set ambient temperature and solar radiation, the solenoid valves 6c and 6d are opened, and the liquid heat medium passes through the pipes 3a, 3b and 3d and passes through the two heat storage tanks 4a and 4d.
It flows to b. The liquid heat medium therein passes through the heat exchangers 5a and 5b in the respective heat storage tanks, whereby the heat storage tanks 4a and 4b
Increase the water temperature in b. After that, the liquid heat medium is pipe 3
Return to the solar heat collecting module 2 through c, 3e and 3a. By repeating this circulation, the temperature of the water in the heat storage tanks 4a and 4b is raised.

【0031】また、外界温度センサ9および日射量セン
サ10の検知する外界温度および日射量が予めマイコン
等の判定器8で設定しておいた外界温度および日射量未
満である場合、電磁弁6c、6dが閉じ、液体熱媒体は
配管3a、3bを通って蓄熱槽4aのみに流れていく。
その中で蓄熱槽4a内にある熱交換器5aを通ることで
蓄熱槽4a内の水温を上昇させる。その後液体媒体は配
管3c、3aを通って太陽熱集熱モジュール2に戻って
いく。この循環を繰り返すことで蓄熱槽4a内の水の温
度を上げていく。
Further, when the ambient temperature and the amount of solar radiation detected by the ambient temperature sensor 9 and the solar radiation amount sensor 10 are less than the ambient temperature and the amount of solar radiation set in advance by the determination device 8 such as a microcomputer, the solenoid valve 6c, 6d is closed, and the liquid heat medium flows only to the heat storage tank 4a through the pipes 3a and 3b.
The water temperature in the heat storage tank 4a is raised by passing through the heat exchanger 5a in the heat storage tank 4a. After that, the liquid medium returns to the solar heat collecting module 2 through the pipes 3c and 3a. By repeating this circulation, the temperature of the water in the heat storage tank 4a is increased.

【0032】なお、外界温度センサ9と日射量センサ1
0は、そのいずれか一方の検知結果により、判定器8を
動作させるので、即応性が改善されることになる。
The ambient temperature sensor 9 and the solar radiation sensor 1
A value of 0 causes the determiner 8 to operate based on either one of the detection results, thereby improving the responsiveness.

【0033】なお、蓄熱槽が3つ以上の並列である場合
は、外界温度および日射量の検知により動作する判定器
8の設定温度および設定日射量をそれぞれ複数用意して
おき、外界温度および日射量が各設定温度および各設定
日射量に到達したり、あるいは下回ったりした時、小容
量の蓄熱槽4bと次段の蓄熱槽の電磁弁を順次開、閉制
御するようにしてもよい。
When three or more heat storage tanks are connected in parallel, a plurality of set temperatures and set solar radiation amounts of the determining device 8 which operates by detecting the ambient temperature and the solar radiation amount are prepared respectively. When the amount reaches or falls below each set temperature and each set solar radiation amount, the electromagnetic valves of the small-capacity heat storage tank 4b and the next-stage heat storage tank may be sequentially controlled to be opened and closed.

【0034】従って、夏期など集熱量が多い場合には蓄
熱槽内の温度を発電セルの発電効率を下げず発電セル自
体を痛める危険性もない温度に維持し、かつ冬期など集
熱量の少ない場合にはある程度の蓄熱槽内温度を維持で
きる。すなわち、夏期には、複数の蓄熱槽を順次適正な
温度で使用することにより、発電セルへの障害をなく
し、また、冬期には1つの蓄熱槽を使用して必要な最低
限の温度を維持しようとするものである。
Therefore, when there is a large amount of heat collection, such as during the summer, the temperature inside the heat storage tank is maintained at a temperature that does not lower the power generation efficiency of the power generation cell and does not damage the power generation cell itself, and when the amount of heat collection is small such as during the winter. Can maintain a certain temperature in the heat storage tank. In other words, in summer, a plurality of heat storage tanks are sequentially used at an appropriate temperature, thereby eliminating an obstacle to a power generation cell. In winter, one heat storage tank is used to maintain a required minimum temperature. Is what you are trying to do.

【0035】このことは、図5、図6に示す集熱時間と
集熱温度との関係図においてさらに詳しく説明する。す
なわち、図5、図6はいずれもHBモジュール面積6
[m2]、流体熱媒体流量1[リットル/min]のシ
ステムを標準的な屋根勾配角度(22度)で真南に向け
て設置しており、蓄熱槽は1つにつき150リットルの
水を蓄熱材として蓄熱できるものを2槽設置した場合で
あり、図5は東京の真夏の快晴日に集熱した場合を、図
6は東京の真冬の快晴日に集熱した場合を示す。両図と
も、実線が蓄熱槽1つのみで集熱した場合、破線が蓄熱
槽2つで集熱した場合である。なお、点線で示したのが
それぞれの季節における蓄熱槽温度の限界温度である。
図からもわかるように、夏期は蓄熱槽1つでは温度が9
0℃ぐらいになり、当然そこを流れる液体熱媒体も高温
になるから発電セルの発電効率の低下や劣化の促進など
が心配される。また、冬期では蓄熱槽が2つになると蓄
熱温度がなかなか上がらず、給湯できる温度がとれるか
どうか、といったところで温度上昇が止まってしまう。
ところがこれを夏期は蓄熱槽を2つ、冬期は蓄熱槽を1
つにすると両者はほぼ給湯できる温度に達し、かつ発電
にも極端な低下を生じないシステムになることが理解さ
れる。
This will be described in more detail with reference to the relationship diagrams between the heat collection time and the heat collection temperature shown in FIGS. 5 and 6 show that the HB module area 6
[M 2 ], a fluid heat medium flow rate of 1 [liter / min] is installed at a standard roof slope angle (22 degrees) toward the south, and each heat storage tank holds 150 liters of water. When two tanks capable of storing heat are installed as heat storage materials, FIG. 5 shows the case where heat is collected on a fine summer day in Tokyo, and FIG. 6 shows the case where heat is collected on a fine winter day in Tokyo. In both figures, the solid line shows the case where heat is collected by only one heat storage tank, and the broken line shows the case where heat is collected by two heat storage tanks. In addition, what was shown by the dotted line is the limit temperature of the heat storage tank temperature in each season.
As can be seen from the figure, the temperature in one heat storage tank is 9 in summer.
Since the temperature becomes about 0 ° C. and the temperature of the liquid heat medium flowing through the medium also becomes high, there is a concern that the power generation efficiency of the power generation cell may be reduced or accelerated. In winter, when the number of heat storage tanks becomes two, the heat storage temperature does not easily rise, and the temperature rise stops at a point where a temperature at which hot water can be supplied can be obtained.
However, this has two heat storage tanks in the summer and one heat storage tank in the winter.
It is understood that both systems reach a temperature at which hot water can be supplied, and the power generation does not cause an extreme decrease.

【0036】なお、この発明は、何れも発電・集熱モジ
ュールの構成部材、液体熱媒体の分配方法、液体熱媒体
の種類、蓄熱槽の大きさや保温性能、設置位置などを限
定するものではない。
The present invention does not limit the components of the power generation / heat collecting module, the method of distributing the liquid heat medium, the type of the liquid heat medium, the size and heat insulation performance of the heat storage tank, the installation position, and the like. .

【0037】[0037]

【発明の効果】以上のように、請求項1の発明は、太陽
光発電および太陽熱集熱を行うハイブリッド式モジュー
ルと並列に設けられた複数の蓄熱槽からなり、冬期など
集熱量が少ないときは、1つの蓄熱槽を利用することに
より、ある程度の蓄熱槽内温度を維持し、一方、夏期な
ど集熱量が多いときは、複数の蓄熱槽を利用することに
より、蓄熱槽内温度を発電セルの発電効率を下げず発電
セル自体を痛める危険性のない温度に維持することがで
きる効果がある。
As described above, the invention of claim 1 comprises a plurality of heat storage tanks provided in parallel with a hybrid module for performing solar power generation and solar heat collection, and when the amount of heat collection is small such as in winter. By using a single heat storage tank, the temperature inside the heat storage tank is maintained to a certain degree. On the other hand, when the amount of heat collection is large, such as in summer, the temperature inside the heat storage tank is controlled by using a plurality of heat storage tanks. There is an effect that it is possible to maintain the temperature at which there is no danger of damaging the power generation cell itself without lowering the power generation efficiency.

【0038】また、請求項2の発明は、太陽光発電およ
び太陽熱集熱を行うハイブリッド式モジュールと温度検
知手段の入った複数の蓄熱槽とからなり、夏期など集熱
量が多い場合には、複数の蓄熱槽を利用することにより
蓄熱槽内温度を発電セルの発電効率を下げず発電セル自
体を痛める危険性もない温度に維持し、かつ冬期など集
熱量の少ない場合には1つの蓄熱槽を利用することによ
りある程度の蓄熱槽内温度を維持できる。
Further, the invention according to claim 2 comprises a hybrid module for performing solar power generation and solar heat collection and a plurality of heat storage tanks containing temperature detecting means. By using the heat storage tank, the temperature inside the heat storage tank is maintained at a temperature that does not lower the power generation efficiency of the power generation cell and there is no danger of damaging the power generation cell itself. By using it, it is possible to maintain a certain temperature inside the heat storage tank.

【0039】また、請求項3の発明は、太陽光発電およ
び太陽熱集熱を行うハイブリッド式モジュールと複数の
蓄熱槽および外界温度検知手段からなり、夏期など外界
温度が高く集熱量の多いときと冬期など外界温度が低く
集熱量の小さいときとで蓄熱槽数を変えて集熱すること
ができるので、夏期など外界温度が高く集熱量が多い場
合には複数の蓄熱槽を利用することにより蓄熱槽内温度
を発電セルの発電効率を下げず発電セル自体を痛める危
険性もない温度に維持し、かつ冬期など外界温度が低く
集熱量の少ない場合には夏期など集熱量の多い場合に比
べ少数の蓄熱槽を利用することによりある程度の蓄熱槽
内温度を維持できる。
Further, the invention of claim 3 comprises a hybrid type module for performing solar power generation and solar heat collection, a plurality of heat storage tanks and an ambient temperature detection means, and when the ambient temperature is high such as summer and the amount of heat collected is large and the winter. It is possible to collect heat by changing the number of heat storage tanks when the ambient temperature is low and the heat collection amount is small, so if the ambient temperature is high and the heat collection amount is large, such as during summer, use multiple heat storage tanks. The internal temperature is maintained at a temperature that does not lower the power generation efficiency of the power generation cell and does not damage the power generation cell itself, and when the external temperature is low and the heat collection amount is small, such as in winter, it is smaller than that when the heat collection amount is large, such as in summer. By using the heat storage tank, it is possible to maintain a certain temperature in the heat storage tank.

【0040】また、請求項4の発明は、太陽光発電およ
び太陽熱集熱を行うハイブリッド式モジュールと複数の
蓄熱槽および日射量検知手段からなり、夏期など日射量
が多く集熱量の多いときと冬期など日射量が少なく集熱
量の小さいときとで蓄熱槽数を変えて集熱することがで
きるので、夏期など日射量が多く集熱量が多い場合には
複数の蓄熱槽を利用することにより蓄熱槽内温度を発電
セルの発電効率を下げず発電セル自体を痛める危険性も
ない温度に維持し、かつ冬期など日射量が少なく集熱量
の少ない場合には夏期など集熱量の多い場合に比べ少数
の蓄熱槽を利用することによりある程度の蓄熱槽内温度
を維持できる。
The invention according to claim 4 comprises a hybrid module for performing photovoltaic power generation and solar heat collection, a plurality of heat storage tanks and an amount of solar radiation detection means. It is possible to collect heat by changing the number of heat storage tanks when the amount of solar radiation is small and the amount of heat collection is small.Therefore, when the amount of solar radiation is large and the amount of heat is large, such as during summer, use multiple heat storage tanks to store the heat. The internal temperature is maintained at a temperature that does not reduce the power generation efficiency of the power generation cell and does not damage the power generation cell itself, and when the amount of solar radiation is small and the amount of heat collection is small during the winter, it is smaller than when the amount of heat collection is large during the summer. By using the heat storage tank, the temperature inside the heat storage tank can be maintained to some extent.

【0041】また、請求項5の発明は、太陽光発電およ
び太陽熱集熱を行うハイブリッド式モジュールと複数の
蓄熱槽および外界温度検知手段、日射量検知手段からな
り、夏期など集熱量の多いときと冬期など集熱量の小さ
いときとで蓄熱槽数を変えて集熱することができるの
で、夏期など集熱量が多い場合には複数の蓄熱槽を利用
することにより蓄熱槽内温度を発電セルの発電効率を下
げず発電セル自体を痛める危険性もない温度に維持し、
かつ冬期など集熱量の少ない場合には夏期など集熱量の
多い場合に比べ少数の蓄熱槽を利用することによりある
程度の蓄熱槽内温度を維持できる。
The invention of claim 5 comprises a hybrid type module for performing solar power generation and solar heat collection, a plurality of heat storage tanks, an ambient temperature detecting means, and a solar radiation amount detecting means. It is possible to collect heat by changing the number of heat storage tanks when the amount of heat collection is small, such as in winter, so when there is a large amount of heat collection such as in the summer, use multiple heat storage tanks to control the temperature inside the heat storage tank Keeping the temperature at which there is no danger of damaging the power generation cell itself without decreasing efficiency,
In addition, when the heat collection amount is small, such as in the winter season, the temperature inside the heat storage tank can be maintained to a certain extent by using a smaller number of heat storage tanks than when the heat collection amount is large such as the summer season.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示すハイブリッド
式太陽エネルギ利用装置の回路図である。
FIG. 1 is a circuit diagram of a hybrid solar energy utilization device according to a first embodiment of the present invention.

【図2】 この発明の実施の形態2を示すハイブリッド
式太陽エネルギ利用装置の回路図である。
FIG. 2 is a circuit diagram of a hybrid solar energy utilization apparatus showing Embodiment 2 of the present invention.

【図3】 この発明の実施の形態3を示すハイブリッド
式太陽エネルギ利用装置の回路図である。
FIG. 3 is a circuit diagram of a hybrid solar energy utilization device showing a third embodiment of the present invention.

【図4】 この発明の実施の形態4を示すハイブリッド
式太陽エネルギ利用装置の回路図である。
[Fig. 4] Fig. 4 is a circuit diagram of a hybrid solar energy utilization device showing a fourth embodiment of the present invention.

【図5】 この発明によるハイブリッド式太陽エネルギ
利用装置の夏期の性能を示す特性図である。
FIG. 5 is a characteristic diagram showing the performance of the hybrid solar energy utilizing apparatus according to the present invention in summer.

【図6】 この発明によるハイブリッド式太陽エネルギ
利用装置の冬期の性能を示す特性図である。
FIG. 6 is a characteristic diagram showing winter performance of the hybrid solar energy utilization device according to the present invention.

【図7】 従来のハイブリッド式太陽エネルギ利用装置
の発電・集熱パネルの断面図である。
FIG. 7 is a cross-sectional view of a power generation and heat collection panel of a conventional hybrid solar energy utilization device.

【図8】 従来のハイブリッド式太陽エネルギ利用装置
の系統図である。
FIG. 8 is a system diagram of a conventional hybrid solar energy utilization device.

【符号の説明】[Explanation of symbols]

1 発電モジュール、2 集熱モジュール、3a,3
b,3c,3d,3e配管、4a,4b 蓄熱槽、5
a,5b 熱交換器、6a,6b 三方弁、6c,6d
電磁弁、7 蓄熱槽内温度センサ、8 マイコン等の
判定器、9 外界温度センサ、10 日射量センサ。な
お、図中の同一符号は同一または相当部分を示す。
1 power generation module, 2 heat collection module, 3a, 3
b, 3c, 3d, 3e piping, 4a, 4b heat storage tank, 5
a, 5b heat exchanger, 6a, 6b three-way valve, 6c, 6d
Solenoid valve, 7 Temperature sensor inside heat storage tank, 8 Judgment device such as microcomputer, 9 Ambient temperature sensor, 10 Solar radiation sensor. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 太陽光発電モジュールと太陽熱集熱モジ
ュールを一体化し、太陽光発電モジュールが太陽熱集熱
モジュール内を流通する液体熱媒体の熱影響を受けるよ
うに構成されたハイブリッド式太陽エネルギ利用装置に
おいて、上記太陽熱集熱モジュールで集熱した液体熱媒
体を流通循環させる配管と、この配管の途中に並列に設
けられた複数の蓄熱槽とを備え、集熱量が少ないとき
は、それを検知して上記液体熱媒体を1つの蓄熱槽に流
通循環させ、一方、集熱量が多いときは、それを検知し
て上記液体熱媒体を複数の蓄熱槽に流通循環させること
を特徴とするハイブリッド式太陽エネルギ利用装置。
1. A hybrid solar energy utilization device in which a photovoltaic module and a solar heat collecting module are integrated, and the photovoltaic module is affected by the heat of a liquid heat medium flowing in the solar heat collecting module. In the above, a pipe for flowing and circulating the liquid heat medium collected by the solar heat collecting module, and a plurality of heat storage tanks provided in parallel in the middle of the pipe, when the amount of heat collection is small, it is detected A hybrid solar system characterized in that the liquid heat medium is circulated and circulated in one heat storage tank, and when the heat collection amount is large, the liquid heat medium is detected and circulated and circulated in the plurality of heat storage tanks. Energy utilization device.
【請求項2】 太陽光発電モジュールと太陽熱集熱モジ
ュールを一体化し、太陽光発電モジュールが太陽熱集熱
モジュール内を流通する液体熱媒体の熱影響を受けるよ
うに構成されたハイブリッド式太陽エネルギ利用装置に
おいて、上記太陽熱集熱モジュールで集熱した液体熱媒
体を流通循環させる配管と、この配管の途中に並列に設
けられた複数の蓄熱槽と、この蓄熱槽内温度を検知する
槽内温度検知手段とを備え、まず上記液体熱媒体を1つ
の蓄熱槽に流通循環させ、次にその1つの蓄熱槽内温度
が設定温度以上になったとき、それを検知して上記液体
熱媒体を他の1つの蓄熱槽に流通循環させるように切り
替え、これを所定の蓄熱槽数に達するまで繰り返すこと
を特徴とするハイブリッド式太陽エネルギ利用装置。
2. A hybrid solar energy utilization device in which a photovoltaic module and a solar heat collecting module are integrated, and the photovoltaic module is affected by the heat of a liquid heat medium flowing in the solar heat collecting module. In, a pipe for circulating and circulating the liquid heat medium that has collected heat in the solar heat collecting module, a plurality of heat storage tanks provided in parallel in the middle of the pipe, and a tank temperature detection means for detecting the temperature in the heat storage tank First, the liquid heat medium is circulated and circulated in one heat storage tank, and when the temperature in the one heat storage tank exceeds a set temperature, the liquid heat medium is detected and the other liquid heat medium is A hybrid solar energy utilization device, characterized in that it is switched so as to circulate and circulate in one heat storage tank, and this is repeated until a predetermined number of heat storage tanks is reached.
【請求項3】 太陽光発電モジュールと太陽熱集熱モジ
ュールを一体化し、太陽光発電モジュールが太陽熱集熱
モジュール内を流通する液体熱媒体の熱影響を受けるよ
うに構成されたハイブリッド式太陽エネルギ利用装置に
おいて、上記太陽熱集熱モジュールで集熱した液体熱媒
体を流通循環させる配管と、この配管の途中に並列に設
けられた複数の蓄熱槽と、外界温度を検知する外界温度
検知手段とを備え、外界温度を検知して予め設定温度に
合わせて設定してある任意の数の蓄熱槽に上記液体熱媒
体を流通循環させるように切り替えることを特徴とする
ハイブリッド式太陽エネルギ利用装置。
3. A hybrid solar energy utilizing apparatus configured by integrating a solar power generation module and a solar heat collection module, and the solar power generation module being configured to be affected by the heat of a liquid heat medium flowing in the solar heat collection module. In, a pipe for circulating and circulating the liquid heat medium that has collected heat in the solar heat collecting module, a plurality of heat storage tanks provided in parallel in the middle of the pipe, and an ambient temperature detecting means for detecting the ambient temperature, A hybrid solar energy utilizing apparatus, characterized in that the liquid heat medium is switched so as to circulate and circulate through an arbitrary number of heat storage tanks that have been detected in accordance with the ambient temperature and have been preset in accordance with the set temperature.
【請求項4】 太陽光発電モジュールと太陽熱集熱モジ
ュールを一体化し、太陽光発電モジュールが太陽熱集熱
モジュール内を流通する液体熱媒体の熱影響を受けるよ
うに構成されたハイブリッド式太陽エネルギ利用装置に
おいて、上記太陽熱集熱モジュールで集熱した液体熱媒
体を流通循環させる配管と、この配管の途中に並列に設
けられた複数の蓄熱槽と、日射量を検知する日射量検知
手段とを備え、日射量を検知して予め設定日射量に合わ
せて設定してある任意の数の蓄熱槽に上記液体熱媒体を
流通循環させるように切り替えることを特徴とするハイ
ブリッド式太陽エネルギ利用装置。
4. A hybrid-type solar energy utilizing apparatus configured to integrate a photovoltaic power generation module and a solar heat collecting module, and the photovoltaic power generation module is configured to be affected by the heat of a liquid heat medium flowing in the solar heat collecting module. In, a pipe that circulates and circulates the liquid heat medium that collects heat in the solar heat collecting module, a plurality of heat storage tanks that are provided in parallel in the middle of the pipe, and a solar radiation amount detection unit that detects the solar radiation amount, A hybrid solar energy utilization device wherein the amount of heat is detected and switched so as to circulate and circulate the liquid heat medium to an arbitrary number of heat storage tanks set in advance according to a set amount of solar radiation.
【請求項5】 太陽光発電モジュールと太陽熱集熱モジ
ュールを一体化し、太陽光発電モジュールが太陽熱集熱
モジュール内を流通する液体熱媒体の熱影響を受けるよ
うに構成されたハイブリッド式太陽エネルギ利用装置に
おいて、上記太陽熱集熱モジュールで集熱した液体熱媒
体を流通循環させる配管と、この配管の途中に並列に設
けられた複数の蓄熱槽と、外界温度を検知する外界温度
検知手段と、日射量を検知する日射量検知手段とを備
え、外界温度および日射量を検知して予め設定温度およ
び設定日射量に合わせて設定してある任意の数の蓄熱槽
に上記液体熱媒体を流通循環させるように切り替えるこ
とを特徴とするハイブリッド式太陽エネルギ利用装置。
5. A hybrid solar energy utilization apparatus in which a photovoltaic module and a solar heat collecting module are integrated, and the photovoltaic module is affected by the heat of a liquid heat medium flowing in the solar heat collecting module. A pipe for flowing and circulating the liquid heat medium collected by the solar heat collecting module, a plurality of heat storage tanks provided in parallel along the pipe, an external temperature detecting means for detecting an external temperature, And a solar radiation amount detecting means for detecting the ambient temperature and the amount of solar radiation to detect the ambient temperature and to circulate the liquid heat medium through an arbitrary number of heat storage tanks set in advance according to the set temperature and the set solar radiation amount. A hybrid type solar energy utilization device characterized by switching to.
JP8350304A 1996-12-27 1996-12-27 Hybrid solar energy utilization device Pending JPH10197075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8350304A JPH10197075A (en) 1996-12-27 1996-12-27 Hybrid solar energy utilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8350304A JPH10197075A (en) 1996-12-27 1996-12-27 Hybrid solar energy utilization device

Publications (1)

Publication Number Publication Date
JPH10197075A true JPH10197075A (en) 1998-07-31

Family

ID=18409588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8350304A Pending JPH10197075A (en) 1996-12-27 1996-12-27 Hybrid solar energy utilization device

Country Status (1)

Country Link
JP (1) JPH10197075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062726A (en) * 2012-06-29 2014-04-10 Panasonic Corp Tank system and control method of the same
WO2015156402A1 (en) * 2014-04-11 2015-10-15 イビデン株式会社 Solar heat storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062726A (en) * 2012-06-29 2014-04-10 Panasonic Corp Tank system and control method of the same
WO2015156402A1 (en) * 2014-04-11 2015-10-15 イビデン株式会社 Solar heat storage system

Similar Documents

Publication Publication Date Title
Garg et al. Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells
KR101568606B1 (en) Photovoltaic/thermal(PVT) module and Geo-PVT system with the PVT module
US11885509B2 (en) Thermal solar assisted water heating system
US8101850B2 (en) Asymmetric parabolic compound concentrator with photovoltaic cells
KR102362508B1 (en) Control system for a solar assisted heat pump system with hybrid solar collectors
JP2002081763A (en) Solar heat and underground heat utilizing system
KR20170094847A (en) A hybrid heat exchanger system using geothermal and solar thermal and Control method for this
JP2011033275A (en) Solar heat collector for hot water supply and hot water supply system using the same
KR20110026394A (en) Sunlight electric heat utilization system
KR20180086692A (en) air circulation preventing structure by using complex use of air heat and solar thermal and hybrid system using the same
KR102364683B1 (en) Building integrated air type photohvoltaic-thermal collector
KR100956063B1 (en) Hot-water supply system using solar heat
KR20220055623A (en) Building integrated air type photohvoltaic-thermal collector
KR101154698B1 (en) Solar collecting apparatus
CN112377976A (en) Heating system and method
JPH10197075A (en) Hybrid solar energy utilization device
CN213686998U (en) Heating system
CN210425596U (en) Solar photovoltaic photo-thermal heat collection device and cogeneration system
CN106533358A (en) Photovoltaic-thermal comprehensive utilization device capable of automatically adjusting driving power of circulating pump and control method
JPH1137570A (en) Hybrid solar energy utilization device
JPH07234020A (en) Hybrid type solar system
KR101081857B1 (en) Solar collecting apparatus
JPH10325618A (en) Hot water feeder
CN105737303B (en) Automatic temperature-control selective cold storage self-circulation cooling system
JPH11201559A (en) Hot water supply apparatus utilizing solar heat