WO2015156101A1 - High frequency module - Google Patents

High frequency module Download PDF

Info

Publication number
WO2015156101A1
WO2015156101A1 PCT/JP2015/058447 JP2015058447W WO2015156101A1 WO 2015156101 A1 WO2015156101 A1 WO 2015156101A1 JP 2015058447 W JP2015058447 W JP 2015058447W WO 2015156101 A1 WO2015156101 A1 WO 2015156101A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
inductor
frequency module
helical
inductors
Prior art date
Application number
PCT/JP2015/058447
Other languages
French (fr)
Japanese (ja)
Inventor
武 小暮
孝紀 上嶋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016512647A priority Critical patent/JP6308293B2/en
Priority to CN201580017775.2A priority patent/CN106134090B/en
Priority to KR1020167022584A priority patent/KR101848721B1/en
Publication of WO2015156101A1 publication Critical patent/WO2015156101A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0073Printed inductances with a special conductive pattern, e.g. flat spiral

Definitions

  • This invention relates to a high frequency module.
  • Patent Document 1 a composite high-frequency component is disclosed (Patent Document 1).
  • the composite high-frequency component disclosed in Patent Document 1 includes a plurality of helical inductors that are inserted in a multilayer board and are arranged in one direction when the multilayer board is viewed in plan.
  • a composite high-frequency component used as an antenna switch module or the like of a mobile communication device is known.
  • this composite high frequency component there is a demand for shortening the overall length of the multilayer substrate in order to reduce the size of the device.
  • adjacent inductors may be electromagnetically coupled, and there is a possibility that sufficient insulation (Isolation) cannot be obtained.
  • an object of the present invention is to solve the above-described problem, and to provide a high-frequency module capable of obtaining sufficient insulation between adjacent inductors while shortening the overall length of the substrate.
  • a high-frequency module includes a substrate having a main surface, and an annular portion extending in a ring shape when the main surface of the substrate is viewed in plan, and the annular portion is along a predetermined direction. And a plurality of inductors provided on the substrate so as to be arranged in a staggered pattern.
  • the plurality of inductors include a first inductor and a second inductor disposed adjacent to the first inductor.
  • the annular portion of the first inductor includes a first straight portion that extends linearly.
  • the annular portion of the second inductor extends linearly in a direction parallel to the first linear portion, and is a second linear portion that faces the first linear portion in an oblique direction with respect to a predetermined direction when the main surface of the substrate is viewed in plan. including.
  • the first straight line portion and the second straight line portion face each other in an oblique direction with respect to the predetermined direction. Even if it is, it becomes easy to ensure the insulation between annular parts. For this reason, it is possible to realize a high-frequency module capable of obtaining sufficient insulation between adjacent inductors while shortening the overall length of the substrate.
  • the substrate has a rectangular shape having a first side and a second side intersecting the first side when the main surface of the substrate is viewed in plan.
  • the predetermined direction is a direction in which the first side extends. According to the high-frequency module configured in this manner, it is possible to ensure sufficient insulation between adjacent inductors while shortening the total length of the substrate in the direction in which the first side extends.
  • the length of the first side is longer than the length of the second side. According to the high-frequency module configured as described above, sufficient insulation can be ensured between adjacent inductors while shortening the total length of the substrate in the direction in which the first side that is the long side extends.
  • a high-frequency module includes a substrate having a main surface, and a plurality of inductors provided on the substrate, each having an annular portion extending in a ring shape when the main surface of the substrate is viewed in plan view. Is provided.
  • the plurality of inductors include a first inductor and a second inductor disposed adjacent to the first inductor.
  • the annular portion of the first inductor includes a first straight portion that extends linearly.
  • the annular portion of the second inductor includes a second linear portion that extends linearly in a direction non-parallel to the first linear portion and faces the first linear portion.
  • the first straight line portion and the second straight line portion are provided so as to be non-parallel to each other. Therefore, the first inductor and the second inductor are disposed close to each other. However, it becomes easy to ensure the insulation between the annular portions. For this reason, it is possible to realize a high-frequency module capable of obtaining sufficient insulation between adjacent inductors while shortening the overall length of the substrate.
  • the first straight portion and the second straight portion form an angle of 45 °. According to the high-frequency module configured in this way, it becomes easier to ensure insulation between the annular portions.
  • the plurality of inductors are provided so that the annular portions are arranged in one direction when the main surface of the substrate is viewed in plan.
  • the high-frequency module configured in this way, it is possible to ensure sufficient insulation between adjacent inductors while shortening the overall length of the substrate in the arrangement direction of the plurality of inductors.
  • the plurality of inductors are provided such that the annular portions are arranged in a staggered manner along a predetermined direction when the main surface of the substrate is viewed in plan.
  • the high-frequency module configured in this way, it is possible to ensure sufficient insulation between adjacent inductors while shortening the overall length of the substrate in the direction in which the annular portions are arranged in a staggered manner.
  • the high-frequency module further includes a wiring provided on the substrate so as to be positioned between the first inductor and the second inductor and connected to a ground potential. According to the high frequency module configured as described above, it is easy to ensure insulation between the first inductor and the second inductor.
  • the high-frequency module further includes a switching element having a plurality of contacts.
  • Each of the first inductor and the second inductor is connected to the plurality of contacts as a matching element that cancels the capacitance generated between the plurality of contacts.
  • the high-frequency module configured as described above, sufficient insulation can be obtained between the inductors provided as matching elements.
  • the substrate has a laminated structure in which a plurality of insulating layers are laminated.
  • the annular portion has a shape extending annularly when the substrate is viewed from the stacking direction of the plurality of insulating layers.
  • a high-frequency module capable of obtaining sufficient insulation between adjacent inductors while shortening the overall length of a substrate having a laminated structure in which a plurality of insulating layers are laminated. Can be realized.
  • FIG. 6 is a perspective view showing a first modification of the high-frequency module in FIG. 5.
  • FIG. 6 is a perspective view showing a second modification of the high-frequency module in FIG. 5.
  • FIG. 7 is a perspective view showing a third modification of the high frequency module in FIG. 5.
  • FIG. 10 is a perspective view showing a high-frequency module in a range surrounded by a two-dot chain line X in FIG. 9.
  • FIG. 1 is a cross-sectional view showing a high-frequency module according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of the high-frequency module viewed from the direction indicated by the arrow II in FIG.
  • FIG. 1 shows a cross section of the high-frequency module along the line II in FIG.
  • high-frequency module 10 in the present embodiment includes substrate 12 and a plurality of helical inductors 31 provided on substrate 12.
  • the substrate 12 is made of an insulating material.
  • the substrate 12 has a main surface 12a.
  • the main surface 12a has the largest area among the plurality of side surfaces of the substrate 12.
  • the substrate 12 when the main surface 12a of the substrate 12 is viewed from the front, the substrate 12 has a rectangular plan view (hereinafter, the case where the main surface 12a of the substrate 12 is viewed from the front is simply referred to as “substrate Also referred to as “12 plan view”).
  • the substrate 12 has a long side 13 and a short side 14 that intersects the long side 13 in a plan view.
  • the long side 13 extends in the direction indicated by the first arrow 102 (hereinafter also referred to as the long side direction of the substrate 12), and the short side 14 is a second direction perpendicular to the direction indicated by the first arrow 102. Extending in the direction indicated by arrow 103.
  • the long side 13 and the short side 14 have a length W and a length L, respectively.
  • the length L of the short side 14 is shorter than the length W of the long side 13 (L ⁇ W).
  • the substrate 12 is a multilayer circuit board having a laminated structure in which a plurality of insulating layers 21A, 21B, 21C, 21D, and 21E (hereinafter referred to as the insulating layer 21 unless otherwise specified) are laminated.
  • the insulating layer 21 is made of an insulating material made of ceramics or resin.
  • the material of the insulating layer 21 made of resin is made of, for example, polyimide, LCP (liquid crystal polymer), PEEK (polyether ether ketone), or PPS (polyphenylene sulfide).
  • the substrate 12 is made of a ceramic substrate using a ceramic material.
  • an LTCC (Low Temperature Co-fired Ceramics) substrate or an HTCC (High Temperature Co-fired Ceramics) substrate can be used.
  • Wirings made of a conductive material are provided on the surface and inside of the multilayer circuit board.
  • the plurality of insulating layers 21 are stacked in one direction indicated by the third arrow 101.
  • the insulating layer 21A, insulating layer 21B, insulating layer 21C, insulating layer 21D, and insulating layer 21E are arranged from top to bottom in the order listed.
  • the substrate 12 has a rectangular plan view when viewed from the stacking direction of the insulating layer 21.
  • the length (thickness) of the substrate 12 in the stacking direction of the insulating layer 21 is smaller than the lengths of the long side 13 and the short side 14.
  • substrate 12 may have a square planar view, and is not restricted to a rectangular shape, You may have a planar view of arbitrary shapes other than a rectangle.
  • the substrate 12 does not necessarily have a stacked structure.
  • the helical inductor 31 is made of a conductive material.
  • the helical inductor 31 is made of a metal such as copper, silver, aluminum, stainless steel, nickel or gold, an alloy containing these metals, or the like.
  • the helical inductor 31 has an annular portion 32 as a constituent part thereof.
  • the annular portion 32 has a shape that extends in an annular shape in plan view of the substrate 12.
  • the annular portion 32 has a shape (rectangular circular shape) that circulates along four sides of a rectangle (more specifically, a square).
  • the annular portion 32 is provided inside the substrate 12. More specifically, the annular portion 32 is formed between adjacent insulating layers 21 (an insulating layer 21A and an insulating layer 21B, an insulating layer 21B and an insulating layer 21C, an insulating layer 21C and an insulating layer 21D, Provided between the layer 21D and the insulating layer 21E).
  • the annular portions 32 provided between the respective layers are connected to each other by an internal via conductor (not shown) extending in the stacking direction of the insulating layer 21.
  • the helical inductor 31 as a whole has a shape extending in a helical (spiral) shape along the stacking direction of the insulating layer 21.
  • FIG. 3 is a perspective view showing the high-frequency module in FIG. 2 partially enlarged. 1 to 3, the plurality of helical inductors 31 are provided such that the annular portions 32 are arranged in a staggered manner along the direction indicated by the first arrow 102 (hereinafter, the annular portions 32 are referred to as the annular portions 32).
  • the direction of staggered arrangement is also referred to as the staggered arrangement direction of the annular portion 32).
  • the annular portions 32 are aligned along the direction indicated by the first arrow 102 as a whole while alternately shifting in one direction and the opposite direction along the direction indicated by the second arrow 103.
  • the staggered direction of the annular portions 32 and the long side direction of the substrate 12 coincide.
  • some of the plurality of helical inductors 31 are arranged at a pitch P1 in a predetermined direction (long side direction (staggered direction) of the substrate 12) along the main surface 12a of the substrate 12. ing. Further, the remaining of the plurality of helical inductors 31 is the interval between the plurality of helical inductors 31 in the direction perpendicular to the predetermined direction at intervals of the pitch P1 in the predetermined direction along the main surface 12a of the substrate 12. They are arranged at a position separated by a predetermined distance B from the center of some pitches P1.
  • the annular part 32 of the helical inductor 31P has a straight part 32m as a constituent part thereof.
  • the annular portion 32 of the helical inductor 31Q has a straight portion 32n as its constituent part.
  • the straight part 32m and the straight part 32n are provided to face each other between the helical inductor 31P and the helical inductor 31Q.
  • the straight part 32m and the straight part 32n extend linearly.
  • the straight line portion 32m and the straight line portion 32n correspond to one side of the rectangular circular shape formed by the annular portion 32.
  • the straight part 32m and the straight part 32n extend in parallel to each other.
  • the straight part 32m and the straight part 32n extend in an oblique direction with respect to the staggered arrangement direction of the annular part 32.
  • the direction in which the linear portion 32 m and the linear portion 32 n face each other as indicated by the fourth arrow 106 is an oblique direction with respect to the staggered arrangement direction of the annular portions 32, as indicated by the first arrow 102. . That is, the direction in which the straight portion 32 m and the straight portion 32 n face each other is not parallel to the staggered arrangement direction of the annular portion 32 and is not orthogonal to the staggered arrangement direction of the annular portion 32.
  • the annular portion 32 having a rectangular circumferential shape is provided with an inclination of 45 ° with respect to the long side 13 and the short side 14 of the substrate 12.
  • the direction in which the straight portion 32m and the straight portion 32n face each other is a direction inclined by 45 ° with respect to the staggered arrangement direction of the annular portions 32.
  • the annular portion 32 is not limited to a rectangular circumferential shape.
  • the annular portion 32 is a pair of straight portions facing each other parallel to each other when viewed from the stacking direction of the substrate 12 and another pair of straight portions connected to the pair of straight portions and facing each other in parallel. It may have a round shape of a parallelogram including a rectangle, a square having a portion, or a rhombus.
  • the annular portion 32 may have a polygonal shape other than a rectangle.
  • the straight portions 32 m and 32 n are respectively provided in the portions where the two annular portions 32 are closest to each other. Is provided.
  • the plurality of helical inductors 31 are arranged so that adjacent annular portions 32 do not overlap each other in the staggered arrangement direction of the annular portions 32, but the present invention is not limited to such a configuration. You may arrange
  • FIG. 4 is a perspective view showing a high-frequency module for comparison.
  • FIG. 4 is a view corresponding to FIG. 2 showing the high-frequency module 10 in the present embodiment.
  • a plurality of helical inductors 31 are provided such that annular portions 32 are arranged in a line in the long side direction of substrate 12.
  • the annular portions 32 approach each other between the adjacent helical inductors 31, so It is difficult to obtain sufficient insulation.
  • the straight portion 32 m and the straight portion 32 n are arranged in the staggered direction of the annular portion 32 between the adjacent helical inductors 31. On the other hand, they face each other in an oblique direction. With such a configuration, even when the plurality of helical inductors 31 are provided at a narrow pitch N, the opposing linear portions 32m and 32n can be arranged away from each other. Thus, sufficient insulation is provided between adjacent helical inductors 31 while shortening the length of the substrate 12 in the staggered arrangement direction of the annular portions 32 (in this embodiment, the length in the long side direction of the substrate 12). Can be obtained.
  • the staggered arrangement direction of the annular portions 32 coincides with the long side direction of the substrate 12 has been described, but the present invention is not limited to such a configuration.
  • the staggered arrangement direction of the annular portion 32 may coincide with the short side direction of the substrate 12 or may be oblique with respect to the long side direction and the short side direction of the substrate 12.
  • the inductor in this invention was the helical inductor 31 which has a shape extended helically (helical) along the lamination direction of the insulating layer 21, such a structure was demonstrated.
  • the annular portion 32 in the present embodiment may be provided on the surface layer of the substrate 12 or may be provided on a different layer of the substrate 12. As an example of the latter configuration, it is assumed that the annular portions 32 are alternately provided between the insulating layers 21A and 21B and the insulating layers 21B and 21C in FIG. Even in this case, the present invention is applied if the annular portions 32 are arranged in a staggered pattern when the substrate 12 is seen through in plan view.
  • the high-frequency module 10 further includes a ground via conductor 41 provided on the substrate 12.
  • the ground via conductor 41 is made of a conductive material.
  • the ground via conductor 41 is provided so as to extend in the stacking direction of the insulating layer 21.
  • the ground via conductor 41 is provided on the substrate 12 as a wiring connected to the ground potential.
  • the ground via conductor 41 is provided between the helical inductor 31P and the helical inductor 31Q that are adjacent to each other.
  • the helical inductor 31 further has an extension part 33 as a constituent part thereof.
  • the extending portion 33 is provided so as to extend from the annular portion 32 in a plan view of the substrate 12. In the present embodiment, the extending portion 33 is provided so as to extend in one direction from the corner portion of the annular portion 32 having a rectangular circumferential shape.
  • the extension part 33 of the helical inductor 31P and the extension part 33 of the helical inductor 31Q are arranged with a space therebetween.
  • the extending portion 33 of the helical inductor 31P and the extending portion 33 of the helical inductor 31Q are arranged at a distance in the staggered direction of the annular portion 32.
  • the ground via conductor 41 which is a via conductor connected to the ground potential, is positioned between the annular portion 32 of the helical inductor 31P and the annular portion 32 of the helical inductor 31Q that are adjacent to each other. Is provided.
  • the ground via conductor 41 is provided so as to be positioned between the extension portion 33 of the helical inductor 31P adjacent to each other and the extension portion 33 of the helical inductor 31Q.
  • the high-frequency module 10 according to Embodiment 1 of the present invention includes a substrate 12 having a main surface 12a and a main surface 12a of the substrate 12. When viewed in a plan view, it includes an annular portion 32 having an annularly extending shape, and includes helical inductors 31 as a plurality of inductors provided on the substrate 12 so that the annular portions 32 are arranged in a staggered manner along a predetermined direction. .
  • the plurality of helical inductors 31 includes a helical inductor 31P as a first inductor, and a helical inductor 31Q as a second inductor disposed adjacent to the helical inductor 31P.
  • the annular portion 32 of the helical inductor 31P includes a straight portion 32m as a first straight portion extending linearly.
  • the annular portion 32 of the helical inductor 31Q extends linearly in a direction parallel to the straight portion 32m, and faces the straight portion 32m in an oblique direction with respect to a predetermined direction when the main surface 12a of the substrate 12 is viewed in plan view. It includes a straight portion 32n as a straight portion.
  • the high frequency module 10 According to the high frequency module 10 according to the first embodiment of the present invention configured as described above, sufficient insulation is obtained between the helical inductors 31 adjacent to each other while shortening the overall length of the substrate 12. Can do.
  • FIG. 5 is a perspective view showing the high-frequency module according to Embodiment 2 of the present invention.
  • FIG. 5 and FIGS. 6 to 8 described later correspond to FIG. 3 in the first embodiment.
  • the high frequency module in the present embodiment is mainly different from the high frequency module 10 in the first embodiment in the arrangement (arrangement) of the annular portions 32.
  • the description of the same structure as that of the high-frequency module 10 in Embodiment 1 will not be repeated.
  • the plurality of helical inductors 31 are provided so that the annular portions 32 are arranged in one direction.
  • the arrangement direction of the annular portions 32 and the direction in which the long side 13 of the substrate 12 extends as indicated by the first arrow 102 coincide.
  • arrangement direction of the annular portions 32 is not limited to the long side direction of the substrate 12, as in the description of the staggered arrangement direction of the annular portions 32 in the first embodiment.
  • a helical inductor 31P arbitrarily selected from among the plurality of helical inductors 31 and a helical inductor 31Q arranged adjacent to the helical inductor 31P.
  • the annular part 32 of the helical inductor 31P has a straight part 32m as a constituent part thereof.
  • the annular portion 32 of the helical inductor 31Q has a straight portion 32n as its constituent part.
  • the straight part 32m and the straight part 32n are provided to face each other between the helical inductor 31P and the helical inductor 31Q.
  • the straight part 32m and the straight part 32n extend linearly.
  • the straight line portion 32m and the straight line portion 32n correspond to one side of the rectangular circular shape formed by the annular portion 32 and facing each other in proximity to each other.
  • the straight portion 32m and the straight portion 32n extend non-parallel to each other.
  • the helical portion 31P of the helical inductor 31P having a rectangular loop shape is provided in parallel to the long side 13 and the short side 14 of the substrate 12, while the helical inductor having a rectangular loop shape is provided.
  • An annular portion 32 of 31Q is provided inclined with respect to the long side 13 and the short side 14 of the substrate 12.
  • the plurality of helical inductors 31 includes a helical inductor 31P having an annular portion 32 that cannot be tilted with respect to the long side 13 and the short side 14 of the substrate 12, and an oblique direction with respect to the long side 13 and the short side 14 of the substrate 12.
  • Helical inductors 31Q having inclined annular portions 32 are provided alternately.
  • the linear portion 32m and the linear portion 32n are provided non-parallel between the adjacent helical inductors 31.
  • the portions where the straight portion 32m and the straight portion 32n are close to each other are reduced as compared with the comparative example shown in FIG. be able to.
  • sufficient insulation is provided between the adjacent helical inductors 31 while shortening the length of the substrate 12 in the arrangement direction of the annular portions 32 (in this embodiment, the length in the long side direction of the substrate 12).
  • At least one set of helical inductor 31P and helical inductor 31Q each having a non-parallel straight portion 32m and a straight portion 32n may be present.
  • FIG. 6 is a perspective view showing a first modification of the high-frequency module in FIG. Referring to FIG. 6, in the present modification, the straight portion 32m and the straight portion 32n form an angle of 45 °.
  • An annular portion 32 of a helical inductor 31Q having a rectangular circumferential shape is provided in parallel to the long side 13 and the short side 14 of the substrate 12, while an annular portion 32 of a helical inductor 31P having a rectangular circumferential shape is provided.
  • the substrate 12 is provided with an inclination of 45 ° with respect to the long side 13 and the short side 14 of the substrate 12.
  • the plurality of helical inductors 31 includes a helical inductor 31Q having an annular portion 32 that cannot be inclined with respect to the long side 13 and the short side 14 of the substrate 12, and 45 ° with respect to the long side 13 and the short side 14 of the substrate 12.
  • Helical inductors 31P having inclined annular portions 32 are provided alternately.
  • the straight part 32m extends from the closest part with respect to the straight part 32n as an apex, and away from the straight part 32n on both sides thereof.
  • the adjacent helical shapes are reduced by minimizing the portions where the straight portions 32m and the straight portions 32n are close to each other. Electromagnetic field coupling between the inductors 31 can be more effectively prevented.
  • FIG. 7 is a perspective view showing a second modification of the high-frequency module in FIG.
  • the high-frequency module in the present modification further includes a ground via conductor 41 connected to the ground potential.
  • the ground via conductor 41 is provided between the helical inductor 31P and the helical inductor 31Q that are adjacent to each other.
  • the ground via conductor 41 is provided so as to be positioned between the annular portion 32 of the helical inductor 31P and the annular portion 32 of the helical inductor 31Q which are adjacent to each other.
  • the ground via conductor 41 is provided so as to be positioned between the extension portion 33 of the helical inductor 31P adjacent to each other and the extension portion 33 of the helical inductor 31Q.
  • FIG. 8 is a perspective view showing a third modification of the high-frequency module in FIG. Referring to FIG. 8, in this modification, a plurality of helical inductors 31 are provided such that annular portions 32 are arranged in a staggered manner along the direction indicated by first arrow 102. The straight part 32m and the straight part 32n form an angle of 45 °.
  • An annular portion 32 of a helical inductor 31Q having a rectangular circumferential shape is provided in parallel to the long side 13 and the short side 14 of the substrate 12, while an annular portion 32 of a helical inductor 31P having a rectangular circumferential shape is provided.
  • the substrate 12 is provided with an inclination of 45 ° with respect to the long side 13 and the short side 14 of the substrate 12.
  • the plurality of helical inductors 31 includes a helical inductor 31Q having an annular portion 32 that cannot be inclined with respect to the long side 13 and the short side 14 of the substrate 12, and 45 ° with respect to the long side 13 and the short side 14 of the substrate 12.
  • Helical inductors 31P having inclined annular portions 32 are alternately arranged in a staggered manner.
  • the high-frequency module in this modification further has a ground via conductor 41 connected to the ground potential.
  • the ground via conductor 41 is provided between the helical inductor 31P and the helical inductor 31Q that are adjacent to each other.
  • the ground via conductor 41 is provided so as to be positioned between the extending portion 33 of the helical inductor 31P adjacent to each other and the extending portion 33 of the helical inductor 31Q.
  • a new high-frequency module may be configured by appropriately combining various arrangements and arrangements of the annular portion 32 of the helical inductor 31 described in FIGS. 5 to 8. Further, as the shape of the annular portion 32, a circle or ellipse other than the rectangle may be used, and these may be combined with the rectangle.
  • the substrate 12 having the main surface 12a and the main surface 12a of the substrate 12 are viewed in plan view.
  • a plurality of helical inductors 31 provided on the substrate 12 are provided.
  • the plurality of helical inductors 31 includes a helical inductor 31P as a first inductor, and a helical inductor 31Q as a second inductor disposed adjacent to the helical inductor 31P.
  • the annular portion 32 of the helical inductor 31 includes a straight portion 32m as a first straight portion extending linearly.
  • the annular portion 32 of the helical inductor 31Q includes a straight portion 32n as a second straight portion that extends linearly in a direction non-parallel to the straight portion 32m and faces the straight portion 32m.
  • FIG. 9 is a circuit diagram showing a high-frequency module according to Embodiment 3 of the present invention.
  • FIG. 10 is a perspective view showing the high-frequency module in a range surrounded by a two-dot chain line X in FIG.
  • the high-frequency module according to the present embodiment further includes a switching element 51 in addition to the plurality of helical inductors 31.
  • the switching element 51 has a plurality of contacts 56 arranged in one direction.
  • a plurality of helical inductors 31 are connected to a plurality of contacts 56, respectively.
  • the helical inductor 31 is provided as an inductive matching element that cancels the capacitance generated between the plurality of contacts 56.
  • the plurality of helical inductors 31 are provided so as to include the annular portion 32 in the staggered arrangement described in the first embodiment.
  • the impedance on the output terminal 52 side becomes capacitive.
  • the helical inductor 31 described in the first embodiment as a matching element on the substrate 12, a plurality of elements arranged along the long side of the main surface of the substrate 12 as shown in FIG. It is possible to cancel the capacitance of the output terminal 52 and to achieve matching while preventing the deterioration of the insulation between the output terminals 52.
  • the helical inductor 31 does not necessarily have to be provided at all of the plurality of contacts 56.
  • the structure of the high-frequency module described in the first embodiment is described when applied to a switching element having a multi-port structure.
  • the structures of the various high-frequency modules described in the second embodiment are used. You may apply similarly.
  • the present invention is used for an antenna module or the like built in a mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Transceivers (AREA)

Abstract

A high frequency module includes a substrate (12) with a principal surface, and a ring-shaped portion (32) with a shape extending in a ring shape when the principal surface of the substrate (12) is viewed in plan, the ring-shaped portion (32) being provided with a plurality of helical inductors (31) mounted to the substrate (12) and arranged along a predetermined direction in a staggered manner. The plurality of helical inductors (31) includes a helical inductor (31P) and a helical inductor (31Q) disposed adjacent to the helical inductor (31P). The ring-shaped portion (32) of the helical inductor (31P) includes a linearly extending linear portion (32m). The ring-shaped portion (32) of the helical inductor (31Q) includes a linear portion (32n) linearly extending in a direction parallel with the linear portion (32m) and facing, when the principal surface of the substrate (12) is viewed in plan, the linear portion (32m) in a diagonal direction with respect to the predetermined direction. The configuration provides a high frequency module providing sufficient insulating property between the adjacent inductors while achieving a decrease in the substrate length.

Description

高周波モジュールHigh frequency module
 この発明は、高周波モジュールに関する。 This invention relates to a high frequency module.
 従来の高周波モジュールに関して、たとえば、国際公開第2007/088732号には、部品点数の削減、移動体通信装置の小型軽量化、移動体通信装置の高周波回路部の回路設計の簡略化を可能とすることを目的とした、複合高周波部品が開示されている(特許文献1)。特許文献1に開示された複合高周波部品は、多層基板に内挿され、多層基板を平面視した場合に一方向に並ぶように設けられる複数のヘリカル状インダクタを備える。 Regarding conventional high-frequency modules, for example, International Publication No. 2007/088732 makes it possible to reduce the number of parts, reduce the size and weight of mobile communication devices, and simplify the circuit design of high-frequency circuit units of mobile communication devices. For this purpose, a composite high-frequency component is disclosed (Patent Document 1). The composite high-frequency component disclosed in Patent Document 1 includes a plurality of helical inductors that are inserted in a multilayer board and are arranged in one direction when the multilayer board is viewed in plan.
国際公開第2007/088732号International Publication No. 2007/088732
 上述の特許文献1に開示されるように、移動体通信装置のアンテナスイッチモジュール等として利用される複合高周波部品が知られている。この複合高周波部品においては、装置の小型化を図るために、多層基板の全長を短くする要求がある。一方、このような要求に応えるために複数のヘリカル状インダクタを狭ピッチで配列すると、互いに隣り合うインダクタ間が電磁界結合し、十分な絶縁性(Isolation)が得られないおそれが生じる。 As disclosed in the above-mentioned Patent Document 1, a composite high-frequency component used as an antenna switch module or the like of a mobile communication device is known. In this composite high frequency component, there is a demand for shortening the overall length of the multilayer substrate in order to reduce the size of the device. On the other hand, if a plurality of helical inductors are arranged at a narrow pitch in order to meet such a requirement, adjacent inductors may be electromagnetically coupled, and there is a possibility that sufficient insulation (Isolation) cannot be obtained.
 そこでこの発明の目的は、上記の課題を解決することであり、基板の全長の短縮化を図りつつ、隣り合うインダクタ間で十分な絶縁性が得られる高周波モジュールを提供することである。 Therefore, an object of the present invention is to solve the above-described problem, and to provide a high-frequency module capable of obtaining sufficient insulation between adjacent inductors while shortening the overall length of the substrate.
 この発明の1つの局面に従った高周波モジュールは、主面を有する基板と、基板の主面を平面視した場合に、環状に延びる形状の環状部を有し、環状部が所定方向に沿って千鳥状に並ぶように基板に設けられる複数のインダクタとを備える。複数のインダクタは、第1インダクタと、第1インダクタと隣り合って配置される第2インダクタとを含む。第1インダクタの環状部は、直線状に延びる第1直線部を含む。第2インダクタの環状部は、第1直線部と平行な方向に直線状に延び、基板の主面を平面視した場合に、所定方向に対する斜め方向において第1直線部と対向する第2直線部を含む。 A high-frequency module according to one aspect of the present invention includes a substrate having a main surface, and an annular portion extending in a ring shape when the main surface of the substrate is viewed in plan, and the annular portion is along a predetermined direction. And a plurality of inductors provided on the substrate so as to be arranged in a staggered pattern. The plurality of inductors include a first inductor and a second inductor disposed adjacent to the first inductor. The annular portion of the first inductor includes a first straight portion that extends linearly. The annular portion of the second inductor extends linearly in a direction parallel to the first linear portion, and is a second linear portion that faces the first linear portion in an oblique direction with respect to a predetermined direction when the main surface of the substrate is viewed in plan. including.
 このように構成された高周波モジュールによれば、第1直線部および第2直線部が、所定方向に対する斜め方向において対向するため、所定方向に沿って千鳥状に並ぶ複数のインダクタ間を狭ピッチとした場合であっても、環状部間の絶縁性を確保し易くなる。このため、基板の全長の短縮化を図りつつ、隣り合うインダクタ間で十分な絶縁性が得られる高周波モジュールを実現することができる。 According to the high-frequency module configured in this manner, the first straight line portion and the second straight line portion face each other in an oblique direction with respect to the predetermined direction. Even if it is, it becomes easy to ensure the insulation between annular parts. For this reason, it is possible to realize a high-frequency module capable of obtaining sufficient insulation between adjacent inductors while shortening the overall length of the substrate.
 また好ましくは、基板は、基板の主面を平面視した場合に、第1辺と、第1辺に交わる第2辺とを有する矩形形状を有する。所定方向は、第1辺が延びる方向である。このように構成された高周波モジュールによれば、第1辺が延びる方向における基板の全長を短くしつつ、隣り合うインダクタ間で十分な絶縁性を確保することができる。 Also preferably, the substrate has a rectangular shape having a first side and a second side intersecting the first side when the main surface of the substrate is viewed in plan. The predetermined direction is a direction in which the first side extends. According to the high-frequency module configured in this manner, it is possible to ensure sufficient insulation between adjacent inductors while shortening the total length of the substrate in the direction in which the first side extends.
 また好ましくは、第1辺の長さは、第2辺の長さよりも長い。このように構成された高周波モジュールによれば、長辺となる第1辺が延びる方向における基板の全長を短くしつつ、隣り合うインダクタ間で十分な絶縁性を確保することができる。 Also preferably, the length of the first side is longer than the length of the second side. According to the high-frequency module configured as described above, sufficient insulation can be ensured between adjacent inductors while shortening the total length of the substrate in the direction in which the first side that is the long side extends.
 この発明の別の局面に従った高周波モジュールは、主面を有する基板と、基板の主面を平面視した場合に、環状に延びる形状の環状部を有し、基板に設けられる複数のインダクタとを備える。複数のインダクタは、第1インダクタと、第1インダクタと隣り合って配置される第2インダクタとを含む。第1インダクタの環状部は、直線状に延びる第1直線部を含む。第2インダクタの環状部は、第1直線部と非平行な方向に直線状に延び、第1直線部と対向する第2直線部を含む。 A high-frequency module according to another aspect of the present invention includes a substrate having a main surface, and a plurality of inductors provided on the substrate, each having an annular portion extending in a ring shape when the main surface of the substrate is viewed in plan view. Is provided. The plurality of inductors include a first inductor and a second inductor disposed adjacent to the first inductor. The annular portion of the first inductor includes a first straight portion that extends linearly. The annular portion of the second inductor includes a second linear portion that extends linearly in a direction non-parallel to the first linear portion and faces the first linear portion.
 このように構成された高周波モジュールによれば、第1直線部および第2直線部が互いに非平行となるように設けられるため、第1インダクタと第2インダクタとを近接して配置した場合であっても、環状部間の絶縁性を確保し易くなる。このため、基板の全長の短縮化を図りつつ、隣り合うインダクタ間で十分な絶縁性が得られる高周波モジュールを実現することができる。 According to the high-frequency module configured in this way, the first straight line portion and the second straight line portion are provided so as to be non-parallel to each other. Therefore, the first inductor and the second inductor are disposed close to each other. However, it becomes easy to ensure the insulation between the annular portions. For this reason, it is possible to realize a high-frequency module capable of obtaining sufficient insulation between adjacent inductors while shortening the overall length of the substrate.
 また好ましくは、第1直線部と第2直線部とが、45°の角度をなす。このように構成された高周波モジュールによれば、環状部間の絶縁性をさらに確保し易くなる。 Also preferably, the first straight portion and the second straight portion form an angle of 45 °. According to the high-frequency module configured in this way, it becomes easier to ensure insulation between the annular portions.
 また好ましくは、複数のインダクタは、基板の主面を平面視した場合に、環状部が一方向に並ぶように設けられる。このように構成された高周波モジュールによれば、複数のインダクタの並び方向における基板の全長を短くしつつ、隣り合うインダクタ間で十分な絶縁性を確保することができる。 Preferably, the plurality of inductors are provided so that the annular portions are arranged in one direction when the main surface of the substrate is viewed in plan. According to the high-frequency module configured in this way, it is possible to ensure sufficient insulation between adjacent inductors while shortening the overall length of the substrate in the arrangement direction of the plurality of inductors.
 また好ましくは、複数のインダクタは、基板の主面を平面視した場合に、環状部が所定方向に沿って千鳥状に並ぶように設けられる。このように構成された高周波モジュールによれば、環状部が千鳥状に並ぶ方向における基板の全長を短くしつつ、隣り合うインダクタ間で十分な絶縁性を確保することができる。 Preferably, the plurality of inductors are provided such that the annular portions are arranged in a staggered manner along a predetermined direction when the main surface of the substrate is viewed in plan. According to the high-frequency module configured in this way, it is possible to ensure sufficient insulation between adjacent inductors while shortening the overall length of the substrate in the direction in which the annular portions are arranged in a staggered manner.
 また好ましくは、高周波モジュールは、第1インダクタと第2インダクタとの間に位置するように基板に設けられ、接地電位に接続される配線をさらに備える。このように構成された高周波モジュールによれば、第1インダクタおよび第2インダクタ間の絶縁性を確保し易くなる。 Preferably, the high-frequency module further includes a wiring provided on the substrate so as to be positioned between the first inductor and the second inductor and connected to a ground potential. According to the high frequency module configured as described above, it is easy to ensure insulation between the first inductor and the second inductor.
 また好ましくは、高周波モジュールは、複数の接点を有するスイッチング素子をさらに備える。第1インダクタおよび第2インダクタは、それぞれ、複数の接点間に生じる容量性をキャンセルする整合素子として、複数の接点に接続される。 Also preferably, the high-frequency module further includes a switching element having a plurality of contacts. Each of the first inductor and the second inductor is connected to the plurality of contacts as a matching element that cancels the capacitance generated between the plurality of contacts.
 このように構成された高周波モジュールによれば、整合素子として設けられたインダクタ間において十分な絶縁性を得ることができる。 According to the high-frequency module configured as described above, sufficient insulation can be obtained between the inductors provided as matching elements.
 また好ましくは、基板は、複数の絶縁層が積層されてなる積層構造を有する。環状部は、基板を複数の絶縁層の積層方向から見た場合に、環状に延びる形状を有する。 Also preferably, the substrate has a laminated structure in which a plurality of insulating layers are laminated. The annular portion has a shape extending annularly when the substrate is viewed from the stacking direction of the plurality of insulating layers.
 このように構成された高周波モジュールによれば、複数の絶縁層が積層されてなる積層構造を有する基板の全長の短縮化を図りつつ、隣り合うインダクタ間で十分な絶縁性が得られる高周波モジュールを実現することができる。 According to the high-frequency module configured as described above, a high-frequency module capable of obtaining sufficient insulation between adjacent inductors while shortening the overall length of a substrate having a laminated structure in which a plurality of insulating layers are laminated. Can be realized.
 以上に説明したように、この発明に従えば、基板の全長の短縮化を図りつつ、隣り合うインダクタ間で十分な絶縁性が得られる高周波モジュールを提供することができる。 As described above, according to the present invention, it is possible to provide a high-frequency module that can obtain sufficient insulation between adjacent inductors while shortening the overall length of the substrate.
この発明の実施の形態1における高周波モジュールを示す断面図である。It is sectional drawing which shows the high frequency module in Embodiment 1 of this invention. 図1中の矢印IIに示す方向から見た高周波モジュールの透視図である。It is the perspective view of the high frequency module seen from the direction shown by arrow II in FIG. 図2中の高周波モジュールを部分的に拡大して示す透視図である。It is a perspective view which expands and shows the high frequency module in FIG. 2 partially. 比較のための高周波モジュールを示す透視図である。It is a perspective view which shows the high frequency module for a comparison. この発明の実施の形態2における高周波モジュールを示す透視図である。It is a perspective view which shows the high frequency module in Embodiment 2 of this invention. 図5中の高周波モジュールの第1変形例を示す透視図である。FIG. 6 is a perspective view showing a first modification of the high-frequency module in FIG. 5. 図5中の高周波モジュールの第2変形例を示す透視図である。FIG. 6 is a perspective view showing a second modification of the high-frequency module in FIG. 5. 図5中の高周波モジュールの第3変形例を示す透視図である。FIG. 7 is a perspective view showing a third modification of the high frequency module in FIG. 5. この発明の実施の形態3における高周波モジュールを示す回路図である。It is a circuit diagram which shows the high frequency module in Embodiment 3 of this invention. 図9中の2点鎖線Xで囲まれた範囲の高周波モジュールを示す透視図である。FIG. 10 is a perspective view showing a high-frequency module in a range surrounded by a two-dot chain line X in FIG. 9.
 この発明の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。 Embodiments of the present invention will be described with reference to the drawings. In the drawings referred to below, the same or corresponding members are denoted by the same reference numerals.
 (実施の形態1)
 図1は、この発明の実施の形態1における高周波モジュールを示す断面図である。図2は、図1中の矢印IIに示す方向から見た高周波モジュールの透視図である。図1中には、図2中のI-I線上に沿った高周波モジュールの断面が示されている。
(Embodiment 1)
1 is a cross-sectional view showing a high-frequency module according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of the high-frequency module viewed from the direction indicated by the arrow II in FIG. FIG. 1 shows a cross section of the high-frequency module along the line II in FIG.
 図1および図2を参照して、本実施の形態における高周波モジュール10は、基板12と、基板12に設けられる複数のヘリカル状インダクタ31とを有する。 Referring to FIGS. 1 and 2, high-frequency module 10 in the present embodiment includes substrate 12 and a plurality of helical inductors 31 provided on substrate 12.
 基板12は、絶縁性材料から形成されている。基板12は、主面12aを有する。主面12aは、基板12が有する複数の側面のうちで最も大きい面積を有する。本実施の形態では、基板12の主面12aを正面から見た場合に、基板12が矩形形状の平面視を有する(以下、基板12の主面12aを正面から見た場合を、単に「基板12の平面視」ともいう)。基板12は、その平面視において、長辺13と、長辺13に交わる短辺14とを有する。長辺13は、第1の矢印102に示す方向に延び(以下、基板12の長辺方向ともいう)、短辺14は、第1の矢印102に示す方向に対して直角方向である第2の矢印103に示す方向に延びている。長辺13および短辺14は、それぞれ、長さWおよび長さLを有する。短辺14の長さLは、長辺13の長さWよりも短い(L<W)。 The substrate 12 is made of an insulating material. The substrate 12 has a main surface 12a. The main surface 12a has the largest area among the plurality of side surfaces of the substrate 12. In the present embodiment, when the main surface 12a of the substrate 12 is viewed from the front, the substrate 12 has a rectangular plan view (hereinafter, the case where the main surface 12a of the substrate 12 is viewed from the front is simply referred to as “substrate Also referred to as “12 plan view”). The substrate 12 has a long side 13 and a short side 14 that intersects the long side 13 in a plan view. The long side 13 extends in the direction indicated by the first arrow 102 (hereinafter also referred to as the long side direction of the substrate 12), and the short side 14 is a second direction perpendicular to the direction indicated by the first arrow 102. Extending in the direction indicated by arrow 103. The long side 13 and the short side 14 have a length W and a length L, respectively. The length L of the short side 14 is shorter than the length W of the long side 13 (L <W).
 基板12は、複数の絶縁層21A,21B,21C,21D,21E(以下、特に区別しない場合には、絶縁層21という)が積層されてなる積層構造を有する多層回路基板である。絶縁層21は、セラミックスまたは樹脂からなる絶縁性の材料により形成されている。樹脂からなる絶縁層21の材料は、たとえば、ポリイミド、LCP(液晶ポリマ)、PEEK(ポリエーテルエーテルケトン)、PPS(ポリフェニレンサルファイド)から形成されている。特に本実施の形態においては、基板12が、セラミックス材料を用いたセラミックス基板からなる。セラミックス基板としては、LTCC(Low Temperature Co-fired Ceramics)基板またはHTCC(High Temperature Co-fired Ceramics)基板を用いることができる。多層回路基板の表面および内部には、導電性材料から形成された配線が設けられている。 The substrate 12 is a multilayer circuit board having a laminated structure in which a plurality of insulating layers 21A, 21B, 21C, 21D, and 21E (hereinafter referred to as the insulating layer 21 unless otherwise specified) are laminated. The insulating layer 21 is made of an insulating material made of ceramics or resin. The material of the insulating layer 21 made of resin is made of, for example, polyimide, LCP (liquid crystal polymer), PEEK (polyether ether ketone), or PPS (polyphenylene sulfide). In particular, in the present embodiment, the substrate 12 is made of a ceramic substrate using a ceramic material. As the ceramic substrate, an LTCC (Low Temperature Co-fired Ceramics) substrate or an HTCC (High Temperature Co-fired Ceramics) substrate can be used. Wirings made of a conductive material are provided on the surface and inside of the multilayer circuit board.
 複数の絶縁層21は、第3の矢印101に示す一方向に積層されている。絶縁層21A、絶縁層21B、絶縁層21C、絶縁層21Dおよび絶縁層21Eは、挙げた順に上から下に並んでいる。基板12は、その絶縁層21の積層方向から見た場合に矩形形状の平面視を有する。絶縁層21の積層方向における基板12の長さ(厚み)は、長辺13および短辺14の長さよりも小さい。 The plurality of insulating layers 21 are stacked in one direction indicated by the third arrow 101. The insulating layer 21A, insulating layer 21B, insulating layer 21C, insulating layer 21D, and insulating layer 21E are arranged from top to bottom in the order listed. The substrate 12 has a rectangular plan view when viewed from the stacking direction of the insulating layer 21. The length (thickness) of the substrate 12 in the stacking direction of the insulating layer 21 is smaller than the lengths of the long side 13 and the short side 14.
 なお、基板12は、正方形の平面視を有してもよいし、矩形形状に限られず、矩形以外の任意の形状の平面視を有してもよい。基板12は、必ずしも積層構造を有しなくてもよい。 In addition, the board | substrate 12 may have a square planar view, and is not restricted to a rectangular shape, You may have a planar view of arbitrary shapes other than a rectangle. The substrate 12 does not necessarily have a stacked structure.
 ヘリカル状インダクタ31は、導電性材料から形成されている。ヘリカル状インダクタ31は、銅、銀、アルミニウム、ステンレス、ニッケルまたは金などの金属や、これらの金属を含む合金などから形成されている。 The helical inductor 31 is made of a conductive material. The helical inductor 31 is made of a metal such as copper, silver, aluminum, stainless steel, nickel or gold, an alloy containing these metals, or the like.
 ヘリカル状インダクタ31は、その構成部位として、環状部32を有する。環状部32は、基板12の平面視において、環状に延びる形状を有する。本実施の形態では、環状部32が、矩形(より具体的にいえば、正方形)の四辺に沿って周回する形状(矩形の周回形状)を有する。 The helical inductor 31 has an annular portion 32 as a constituent part thereof. The annular portion 32 has a shape that extends in an annular shape in plan view of the substrate 12. In the present embodiment, the annular portion 32 has a shape (rectangular circular shape) that circulates along four sides of a rectangle (more specifically, a square).
 環状部32は、基板12の内部に設けられている。より具体的には、環状部32は、隣接する絶縁層21の層間(絶縁層21Aおよび絶縁層21Bの層間,絶縁層21Bおよび絶縁層21Cの層間,絶縁層21Cおよび絶縁層21Dの層間,絶縁層21Dおよび絶縁層21Eの層間)にそれぞれ設けられている。各層間に設けられた環状部32同士は、絶縁層21の積層方向に延びる図示しない内部ビア導電体によって、互いに接続されている。このような構成により、ヘリカル状インダクタ31は、全体として、絶縁層21の積層方向に沿ってヘリカル(螺旋)状に延びる形状を有する。 The annular portion 32 is provided inside the substrate 12. More specifically, the annular portion 32 is formed between adjacent insulating layers 21 (an insulating layer 21A and an insulating layer 21B, an insulating layer 21B and an insulating layer 21C, an insulating layer 21C and an insulating layer 21D, Provided between the layer 21D and the insulating layer 21E). The annular portions 32 provided between the respective layers are connected to each other by an internal via conductor (not shown) extending in the stacking direction of the insulating layer 21. With such a configuration, the helical inductor 31 as a whole has a shape extending in a helical (spiral) shape along the stacking direction of the insulating layer 21.
 図3は、図2中の高周波モジュールを部分的に拡大して示す透視図である。図1から図3を参照して、複数のヘリカル状インダクタ31は、環状部32が第1の矢印102に示す方向に沿って千鳥状に並ぶように設けられている(以下、環状部32が千鳥状に並ぶ方向を、環状部32の千鳥並び方向ともいう)。環状部32は、第2の矢印103に示す方向に沿った一方向と逆方向とに交互にずれながら、全体として第1の矢印102に示す方向に沿って並んでいる。本実施の形態では、環状部32の千鳥並び方向と、基板12の長辺方向とが一致する。より詳細には、複数のヘリカル状インダクタ31のうちの一部が、基板12の主面12aに沿って所定方向(基板12の長辺方向(千鳥並び方向))にピッチP1の間隔で並べられている。さらに、複数のヘリカル状インダクタ31のうちの残りが、基板12の主面12aに沿って上記所定方向にピッチP1の間隔で、かつ、所定方向に直交する方向に上記複数のヘリカル状インダクタ31の一部のピッチP1の中央から所定距離Bだけ離れた位置に、並べられている。 FIG. 3 is a perspective view showing the high-frequency module in FIG. 2 partially enlarged. 1 to 3, the plurality of helical inductors 31 are provided such that the annular portions 32 are arranged in a staggered manner along the direction indicated by the first arrow 102 (hereinafter, the annular portions 32 are referred to as the annular portions 32). The direction of staggered arrangement is also referred to as the staggered arrangement direction of the annular portion 32). The annular portions 32 are aligned along the direction indicated by the first arrow 102 as a whole while alternately shifting in one direction and the opposite direction along the direction indicated by the second arrow 103. In the present embodiment, the staggered direction of the annular portions 32 and the long side direction of the substrate 12 coincide. More specifically, some of the plurality of helical inductors 31 are arranged at a pitch P1 in a predetermined direction (long side direction (staggered direction) of the substrate 12) along the main surface 12a of the substrate 12. ing. Further, the remaining of the plurality of helical inductors 31 is the interval between the plurality of helical inductors 31 in the direction perpendicular to the predetermined direction at intervals of the pitch P1 in the predetermined direction along the main surface 12a of the substrate 12. They are arranged at a position separated by a predetermined distance B from the center of some pitches P1.
 複数のヘリカル状インダクタ31のうち、第1インダクタとしての、任意に選択したヘリカル状インダクタ31Pと、第2インダクタとしての、上記ヘリカル状インダクタ31Pと隣り合って配置されたヘリカル状インダクタ31Qとに注目する。ヘリカル状インダクタ31Pの環状部32は、その構成部位として、直線部32mを有する。ヘリカル状インダクタ31Qの環状部32は、その構成部位として、直線部32nを有する。 Of the plurality of helical inductors 31, attention is paid to an arbitrarily selected helical inductor 31P as a first inductor, and a helical inductor 31Q arranged adjacent to the helical inductor 31P as a second inductor. To do. The annular part 32 of the helical inductor 31P has a straight part 32m as a constituent part thereof. The annular portion 32 of the helical inductor 31Q has a straight portion 32n as its constituent part.
 直線部32mおよび直線部32nは、ヘリカル状インダクタ31Pおよびヘリカル状インダクタ31Qの間で互いに対向して設けられている。 The straight part 32m and the straight part 32n are provided to face each other between the helical inductor 31P and the helical inductor 31Q.
 直線部32mおよび直線部32nは、直線状に延びている。直線部32mおよび直線部32nは、環状部32がなす矩形の周回形状のうちの一辺に対応する。直線部32mおよび直線部32nは、互いに平行に延びている。直線部32mおよび直線部32nは、環状部32の千鳥並び方向に対して斜め方向に延びている。 The straight part 32m and the straight part 32n extend linearly. The straight line portion 32m and the straight line portion 32n correspond to one side of the rectangular circular shape formed by the annular portion 32. The straight part 32m and the straight part 32n extend in parallel to each other. The straight part 32m and the straight part 32n extend in an oblique direction with respect to the staggered arrangement direction of the annular part 32.
 基板12の平面視において、第4の矢印106に示す、直線部32mおよび直線部32nが対向する方向は、第1の矢印102に示す、環状部32の千鳥並び方向に対して斜め方向となる。すなわち、直線部32mおよび直線部32nが対向する方向は、環状部32の千鳥並び方向と非平行であり、かつ環状部32の千鳥並び方向と直交しない。 In a plan view of the substrate 12, the direction in which the linear portion 32 m and the linear portion 32 n face each other as indicated by the fourth arrow 106 is an oblique direction with respect to the staggered arrangement direction of the annular portions 32, as indicated by the first arrow 102. . That is, the direction in which the straight portion 32 m and the straight portion 32 n face each other is not parallel to the staggered arrangement direction of the annular portion 32 and is not orthogonal to the staggered arrangement direction of the annular portion 32.
 特に本実施の形態では、矩形の周回形状を有する環状部32が、基板12の長辺13および短辺14を基準にして45°傾いて設けられている。直線部32mおよび直線部32nが対向する方向は、環状部32の千鳥並び方向に対して45°傾いた方向である。 In particular, in the present embodiment, the annular portion 32 having a rectangular circumferential shape is provided with an inclination of 45 ° with respect to the long side 13 and the short side 14 of the substrate 12. The direction in which the straight portion 32m and the straight portion 32n face each other is a direction inclined by 45 ° with respect to the staggered arrangement direction of the annular portions 32.
 なお、環状部32は、矩形の周回形状に限らない。たとえば、環状部32は、基板12の積層方向からヘリカル状インダクタを見て、互いに平行に対向する一対の直線部と、上記一対の直線部に接続され、互いに平行に対向する別の一対の直線部とを有する長方形、正方形、または、ひし形を含む平行四辺形の周回形状を有してもよい。さらに、環状部32は、矩形以外の多角形の周回形状を有してもよい。なお、基板12の同じ絶縁層上に設けられている互いに隣接する2つの環状部32において、2つの環状部32の互いの距離が最も近い部分に、それぞれ、直線部32mと直線部32nとが設けられている。 Note that the annular portion 32 is not limited to a rectangular circumferential shape. For example, the annular portion 32 is a pair of straight portions facing each other parallel to each other when viewed from the stacking direction of the substrate 12 and another pair of straight portions connected to the pair of straight portions and facing each other in parallel. It may have a round shape of a parallelogram including a rectangle, a square having a portion, or a rhombus. Furthermore, the annular portion 32 may have a polygonal shape other than a rectangle. In the two annular portions 32 adjacent to each other provided on the same insulating layer of the substrate 12, the straight portions 32 m and 32 n are respectively provided in the portions where the two annular portions 32 are closest to each other. Is provided.
 本実施の形態では、複数のヘリカル状インダクタ31が、隣接する環状部32同士に環状部32の千鳥並び方向において重なる部分が生じないように配置されているが、このような構成に限られず、重なる部分が生じるように配置されてもよい。また、図2および図3においては、環状部32の角部を直線が交わる形状により表しているが、本発明では、環状部の少なくとも一部に直線部が存在すればよく、環状部の角部をテーパ形状や曲線形状としてもよい。 In the present embodiment, the plurality of helical inductors 31 are arranged so that adjacent annular portions 32 do not overlap each other in the staggered arrangement direction of the annular portions 32, but the present invention is not limited to such a configuration. You may arrange | position so that an overlap part may arise. 2 and 3, the corner of the annular portion 32 is represented by a shape where straight lines intersect. However, in the present invention, it suffices that the straight portion exists in at least a part of the annular portion. The portion may be tapered or curved.
 図4は、比較のための高周波モジュールを示す透視図である。図4は、本実施の形態における高周波モジュール10を示した図2に対応する図である。 FIG. 4 is a perspective view showing a high-frequency module for comparison. FIG. 4 is a view corresponding to FIG. 2 showing the high-frequency module 10 in the present embodiment.
 図4を参照して、本比較例では、複数のヘリカル状インダクタ31が、環状部32が基板12の長辺方向に一列に並ぶように設けられている。このような構成において、高周波モジュールの小型化を図るべく、複数のヘリカル状インダクタ31を狭ピッチで設けようとすると、隣接するヘリカル状インダクタ31間で環状部32同士が接近して、両者の間で十分な絶縁性を得ることが難しい。 Referring to FIG. 4, in this comparative example, a plurality of helical inductors 31 are provided such that annular portions 32 are arranged in a line in the long side direction of substrate 12. In such a configuration, when a plurality of helical inductors 31 are provided at a narrow pitch in order to reduce the size of the high-frequency module, the annular portions 32 approach each other between the adjacent helical inductors 31, so It is difficult to obtain sufficient insulation.
 図1から図3を参照して、これに対して、本実施の形態における高周波モジュール10では、隣接するヘリカル状インダクタ31間で直線部32mおよび直線部32nが、環状部32の千鳥並び方向に対して斜め方向において対向する。このような構成により、複数のヘリカル状インダクタ31を狭ピッチNで設けた場合であっても、対向する直線部32mと直線部32nとを互いに遠ざけて配置することができる。これにより、環状部32の千鳥並び方向における基板12の長さ(本実施の形態では、基板12の長辺方向の長さ)を短縮化しつつ、隣接するヘリカル状インダクタ31間で十分な絶縁性を得ることができる。 With reference to FIGS. 1 to 3, on the other hand, in the high-frequency module 10 according to the present embodiment, the straight portion 32 m and the straight portion 32 n are arranged in the staggered direction of the annular portion 32 between the adjacent helical inductors 31. On the other hand, they face each other in an oblique direction. With such a configuration, even when the plurality of helical inductors 31 are provided at a narrow pitch N, the opposing linear portions 32m and 32n can be arranged away from each other. Thus, sufficient insulation is provided between adjacent helical inductors 31 while shortening the length of the substrate 12 in the staggered arrangement direction of the annular portions 32 (in this embodiment, the length in the long side direction of the substrate 12). Can be obtained.
 なお、本実施の形態では、環状部32の千鳥並び方向が、基板12の長辺方向に一致する場合について説明したが、本発明は、このような構成に限られない。たとえば、環状部32の千鳥並び方向が、基板12の短辺方向に一致してもよいし、基板12の長辺方向および短辺方向に対して斜め方向であってもよい。 In the present embodiment, the case where the staggered arrangement direction of the annular portions 32 coincides with the long side direction of the substrate 12 has been described, but the present invention is not limited to such a configuration. For example, the staggered arrangement direction of the annular portion 32 may coincide with the short side direction of the substrate 12 or may be oblique with respect to the long side direction and the short side direction of the substrate 12.
 また、本実施の形態では、本発明におけるインダクタが、絶縁層21の積層方向に沿ってヘリカル状(螺旋状)に延びる形状を有するヘリカル状インダクタ31である場合について説明したが、このような構成に限られない。たとえば、本実施の形態における環状部32が、基板12の表層に設けられてもよいし、基板12の異なる層に設けられてもよい。後者の構成の一例として、環状部32が、図1中の絶縁層21Aおよび絶縁層21Bの層間と、絶縁層21Bおよび絶縁層21Cの層間とに交互に設けられる場合が想定される。この場合であっても、基板12をその平面視において透視した場合に環状部32が千鳥状に並んでいれば、本発明が適用される。 Moreover, although this embodiment demonstrated the case where the inductor in this invention was the helical inductor 31 which has a shape extended helically (helical) along the lamination direction of the insulating layer 21, such a structure was demonstrated. Not limited to. For example, the annular portion 32 in the present embodiment may be provided on the surface layer of the substrate 12 or may be provided on a different layer of the substrate 12. As an example of the latter configuration, it is assumed that the annular portions 32 are alternately provided between the insulating layers 21A and 21B and the insulating layers 21B and 21C in FIG. Even in this case, the present invention is applied if the annular portions 32 are arranged in a staggered pattern when the substrate 12 is seen through in plan view.
 本実施の形態における高周波モジュール10の構造についてさらに説明を進めると、高周波モジュール10は、基板12に設けられるグラウンドビア導体41をさらに有する。グラウンドビア導体41は、導電性材料から形成されている。グラウンドビア導体41は、絶縁層21の積層方向に延びるように貫通して設けられている。グラウンドビア導体41は、接地電位に接続される配線として基板12に設けられている。グラウンドビア導体41は、互いに隣り合うヘリカル状インダクタ31Pとヘリカル状インダクタ31Qとの間に設けられている。 Describing further the structure of the high-frequency module 10 in the present embodiment, the high-frequency module 10 further includes a ground via conductor 41 provided on the substrate 12. The ground via conductor 41 is made of a conductive material. The ground via conductor 41 is provided so as to extend in the stacking direction of the insulating layer 21. The ground via conductor 41 is provided on the substrate 12 as a wiring connected to the ground potential. The ground via conductor 41 is provided between the helical inductor 31P and the helical inductor 31Q that are adjacent to each other.
 ヘリカル状インダクタ31は、その構成部位として、延出部33をさらに有する。延出部33は、基板12の平面視において、環状部32から延出するように設けられている。本実施の形態では、延出部33が、矩形の周回形状を有する環状部32の角部から一方向に延出するように設けられている。 The helical inductor 31 further has an extension part 33 as a constituent part thereof. The extending portion 33 is provided so as to extend from the annular portion 32 in a plan view of the substrate 12. In the present embodiment, the extending portion 33 is provided so as to extend in one direction from the corner portion of the annular portion 32 having a rectangular circumferential shape.
 ヘリカル状インダクタ31Pの延出部33と、ヘリカル状インダクタ31Qの延出部33とは、互いに間隔を設けて配置されている。ヘリカル状インダクタ31Pの延出部33と、ヘリカル状インダクタ31Qの延出部33とは、環状部32の千鳥並び方向に距離を設けて並んでいる。 The extension part 33 of the helical inductor 31P and the extension part 33 of the helical inductor 31Q are arranged with a space therebetween. The extending portion 33 of the helical inductor 31P and the extending portion 33 of the helical inductor 31Q are arranged at a distance in the staggered direction of the annular portion 32.
 本実施の形態では、接地電位に接続されたビア導体であるグラウンドビア導体41が、互いに隣り合うヘリカル状インダクタ31Pの環状部32と、ヘリカル状インダクタ31Qの環状部32との間に位置するように設けられている。グラウンドビア導体41は、互いに隣り合うヘリカル状インダクタ31Pの延出部33と、ヘリカル状インダクタ31Qの延出部33との間に位置するように設けられている。 In the present embodiment, the ground via conductor 41, which is a via conductor connected to the ground potential, is positioned between the annular portion 32 of the helical inductor 31P and the annular portion 32 of the helical inductor 31Q that are adjacent to each other. Is provided. The ground via conductor 41 is provided so as to be positioned between the extension portion 33 of the helical inductor 31P adjacent to each other and the extension portion 33 of the helical inductor 31Q.
 このような構成によれば、互いに隣り合うヘリカル状インダクタ31の間に接地電位に接続されたグラウンドビア導体41が設けられるため、環状部32を狭ピッチで設けた場合においても、隣接するヘリカル状インダクタ31間の電磁界結合をより効果的に防ぐことができる。 According to such a configuration, since the ground via conductor 41 connected to the ground potential is provided between the helical inductors 31 adjacent to each other, even when the annular portion 32 is provided at a narrow pitch, the adjacent helical shape is provided. Electromagnetic field coupling between the inductors 31 can be more effectively prevented.
 以上に説明した、この発明の実施の形態1における高周波モジュール10の構造についてまとめて説明すると、本実施の形態における高周波モジュール10は、主面12aを有する基板12と、基板12の主面12aを平面視した場合に、環状に延びる形状の環状部32を有し、環状部32が所定方向に沿って千鳥状に並ぶように基板12に設けられる複数のインダクタとしてのヘリカル状インダクタ31とを備える。複数のヘリカル状インダクタ31は、第1インダクタとしてのヘリカル状インダクタ31Pと、ヘリカル状インダクタ31Pと隣り合って配置される第2インダクタとしてのヘリカル状インダクタ31Qとを含む。ヘリカル状インダクタ31Pの環状部32は、直線状に延びる第1直線部としての直線部32mを含む。ヘリカル状インダクタ31Qの環状部32は、直線部32mと平行な方向に直線状に延び、基板12の主面12aを平面視した場合に、所定方向に対する斜め方向において直線部32mと対向する第2直線部としての直線部32nを含む。 The structure of the high-frequency module 10 according to Embodiment 1 of the present invention described above will be described together. The high-frequency module 10 according to the present embodiment includes a substrate 12 having a main surface 12a and a main surface 12a of the substrate 12. When viewed in a plan view, it includes an annular portion 32 having an annularly extending shape, and includes helical inductors 31 as a plurality of inductors provided on the substrate 12 so that the annular portions 32 are arranged in a staggered manner along a predetermined direction. . The plurality of helical inductors 31 includes a helical inductor 31P as a first inductor, and a helical inductor 31Q as a second inductor disposed adjacent to the helical inductor 31P. The annular portion 32 of the helical inductor 31P includes a straight portion 32m as a first straight portion extending linearly. The annular portion 32 of the helical inductor 31Q extends linearly in a direction parallel to the straight portion 32m, and faces the straight portion 32m in an oblique direction with respect to a predetermined direction when the main surface 12a of the substrate 12 is viewed in plan view. It includes a straight portion 32n as a straight portion.
 このように構成された、この発明の実施の形態1における高周波モジュール10によれば、基板12の全長の短縮化を図りつつ、互いに隣り合うヘリカル状インダクタ31の間で十分な絶縁性を得ることができる。 According to the high frequency module 10 according to the first embodiment of the present invention configured as described above, sufficient insulation is obtained between the helical inductors 31 adjacent to each other while shortening the overall length of the substrate 12. Can do.
 (実施の形態2)
 図5は、この発明の実施の形態2における高周波モジュールを示す透視図である。図5と、後で説明する図6から図8とは、実施の形態1における図3に対応する図である。本実施の形態における高周波モジュールは、実施の形態1における高周波モジュール10と比較して、主に環状部32の配置(配列)が異なる。以下、実施の形態1における高周波モジュール10と重複する構造については、その説明を繰り返さない。
(Embodiment 2)
FIG. 5 is a perspective view showing the high-frequency module according to Embodiment 2 of the present invention. FIG. 5 and FIGS. 6 to 8 described later correspond to FIG. 3 in the first embodiment. The high frequency module in the present embodiment is mainly different from the high frequency module 10 in the first embodiment in the arrangement (arrangement) of the annular portions 32. Hereinafter, the description of the same structure as that of the high-frequency module 10 in Embodiment 1 will not be repeated.
 図5を参照して、複数のヘリカル状インダクタ31は、環状部32が一方向に並ぶように設けられている。本実施の形態では、環状部32の並び方向と、第1の矢印102に示す基板12の長辺13が延びる方向とが一致する。 Referring to FIG. 5, the plurality of helical inductors 31 are provided so that the annular portions 32 are arranged in one direction. In the present embodiment, the arrangement direction of the annular portions 32 and the direction in which the long side 13 of the substrate 12 extends as indicated by the first arrow 102 coincide.
 なお、環状部32の並び方向が基板12の長辺方向に限られないことは、実施の形態1において環状部32の千鳥並び方向の説明と同様である。 Note that the arrangement direction of the annular portions 32 is not limited to the long side direction of the substrate 12, as in the description of the staggered arrangement direction of the annular portions 32 in the first embodiment.
 複数のヘリカル状インダクタ31のうち、任意に選択したヘリカル状インダクタ31Pと、そのヘリカル状インダクタ31Pと隣り合って配置されたヘリカル状インダクタ31Qとに注目する。ヘリカル状インダクタ31Pの環状部32は、その構成部位として、直線部32mを有する。ヘリカル状インダクタ31Qの環状部32は、その構成部位として、直線部32nを有する。 Attention is paid to a helical inductor 31P arbitrarily selected from among the plurality of helical inductors 31 and a helical inductor 31Q arranged adjacent to the helical inductor 31P. The annular part 32 of the helical inductor 31P has a straight part 32m as a constituent part thereof. The annular portion 32 of the helical inductor 31Q has a straight portion 32n as its constituent part.
 直線部32mおよび直線部32nは、ヘリカル状インダクタ31Pおよびヘリカル状インダクタ31Qの間で互いに対向して設けられている。 The straight part 32m and the straight part 32n are provided to face each other between the helical inductor 31P and the helical inductor 31Q.
 直線部32mおよび直線部32nは、直線状に延びている。直線部32mおよび直線部32nは、環状部32がなす矩形の周回形状のうちの互いに近接して対向している一辺に対応する。直線部32mおよび直線部32nは、互いに非平行に延びている。 The straight part 32m and the straight part 32n extend linearly. The straight line portion 32m and the straight line portion 32n correspond to one side of the rectangular circular shape formed by the annular portion 32 and facing each other in proximity to each other. The straight portion 32m and the straight portion 32n extend non-parallel to each other.
 本実施の形態では、矩形の周回形状を有するヘリカル状インダクタ31Pの環状部32が、基板12の長辺13および短辺14に対して平行に設けられる一方、矩形の周回形状を有するヘリカル状インダクタ31Qの環状部32が、基板12の長辺13および短辺14を基準にして傾いて設けられている。複数のヘリカル状インダクタ31は、基板12の長辺13および短辺14を基準に傾けられない環状部32を有するヘリカル状インダクタ31Pと、基板12の長辺13および短辺14を基準に斜めに傾けられた環状部32を有するヘリカル状インダクタ31Qとが交互に並ぶように設けられている。 In the present embodiment, the helical portion 31P of the helical inductor 31P having a rectangular loop shape is provided in parallel to the long side 13 and the short side 14 of the substrate 12, while the helical inductor having a rectangular loop shape is provided. An annular portion 32 of 31Q is provided inclined with respect to the long side 13 and the short side 14 of the substrate 12. The plurality of helical inductors 31 includes a helical inductor 31P having an annular portion 32 that cannot be tilted with respect to the long side 13 and the short side 14 of the substrate 12, and an oblique direction with respect to the long side 13 and the short side 14 of the substrate 12. Helical inductors 31Q having inclined annular portions 32 are provided alternately.
 このように、本実施の形態における高周波モジュールでは、隣接するヘリカル状インダクタ31間で直線部32mおよび直線部32nが、非平行に設けられている。このような構成により、複数のヘリカル状インダクタ31を狭ピッチで設けた場合であっても、図4中に示す比較例と比較して、直線部32mおよび直線部32nが互いに近接する部位を減らすことができる。これにより、環状部32の並び方向における基板12の長さ(本実施の形態では、基板12の長辺方向の長さ)を短縮化しつつ、隣接するヘリカル状インダクタ31間で十分な絶縁性を得ることができる。 As described above, in the high-frequency module according to the present embodiment, the linear portion 32m and the linear portion 32n are provided non-parallel between the adjacent helical inductors 31. With such a configuration, even when a plurality of helical inductors 31 are provided at a narrow pitch, the portions where the straight portion 32m and the straight portion 32n are close to each other are reduced as compared with the comparative example shown in FIG. be able to. Thereby, sufficient insulation is provided between the adjacent helical inductors 31 while shortening the length of the substrate 12 in the arrangement direction of the annular portions 32 (in this embodiment, the length in the long side direction of the substrate 12). Obtainable.
 なお、複数のヘリカル状インダクタ31のうち、互いに非平行な直線部32mおよび直線部32nをそれぞれ有するヘリカル状インダクタ31Pおよびヘリカル状インダクタ31Qが、少なくとも1組存在すればよい。 Of the plurality of helical inductors 31, at least one set of helical inductor 31P and helical inductor 31Q each having a non-parallel straight portion 32m and a straight portion 32n may be present.
 図6は、図5中の高周波モジュールの第1変形例を示す透視図である。図6を参照して、本変形例では、直線部32mと直線部32nとが、45°の角度をなす。 FIG. 6 is a perspective view showing a first modification of the high-frequency module in FIG. Referring to FIG. 6, in the present modification, the straight portion 32m and the straight portion 32n form an angle of 45 °.
 矩形の周回形状を有するヘリカル状インダクタ31Qの環状部32が、基板12の長辺13および短辺14に対して平行に設けられる一方、矩形の周回形状を有するヘリカル状インダクタ31Pの環状部32が、基板12の長辺13および短辺14を基準にして45°傾いて設けられている。複数のヘリカル状インダクタ31は、基板12の長辺13および短辺14を基準に傾けられない環状部32を有するヘリカル状インダクタ31Qと、基板12の長辺13および短辺14を基準に45°傾けられた環状部32を有するヘリカル状インダクタ31Pとが交互に並ぶように設けられている。 An annular portion 32 of a helical inductor 31Q having a rectangular circumferential shape is provided in parallel to the long side 13 and the short side 14 of the substrate 12, while an annular portion 32 of a helical inductor 31P having a rectangular circumferential shape is provided. The substrate 12 is provided with an inclination of 45 ° with respect to the long side 13 and the short side 14 of the substrate 12. The plurality of helical inductors 31 includes a helical inductor 31Q having an annular portion 32 that cannot be inclined with respect to the long side 13 and the short side 14 of the substrate 12, and 45 ° with respect to the long side 13 and the short side 14 of the substrate 12. Helical inductors 31P having inclined annular portions 32 are provided alternately.
 直線部32mは、直線部32nに対する最近接部位を頂点にして、その両側に直線部32nから遠ざかるように延びている。 The straight part 32m extends from the closest part with respect to the straight part 32n as an apex, and away from the straight part 32n on both sides thereof.
 このような構成によれば、複数のヘリカル状インダクタ31を狭ピッチで設けた場合であっても、直線部32mおよび直線部32nが互いに近接する部位を最小限に減らすことで、隣接するヘリカル状インダクタ31間の電磁界結合をより効果的に防ぐことができる。 According to such a configuration, even when the plurality of helical inductors 31 are provided at a narrow pitch, the adjacent helical shapes are reduced by minimizing the portions where the straight portions 32m and the straight portions 32n are close to each other. Electromagnetic field coupling between the inductors 31 can be more effectively prevented.
 図7は、図5中の高周波モジュールの第2変形例を示す透視図である。図7を参照して、本変形例における高周波モジュールは、接地電位に接続されるグラウンドビア導体41をさらに有する。グラウンドビア導体41は、互いに隣り合うヘリカル状インダクタ31Pとヘリカル状インダクタ31Qとの間に設けられている。 FIG. 7 is a perspective view showing a second modification of the high-frequency module in FIG. Referring to FIG. 7, the high-frequency module in the present modification further includes a ground via conductor 41 connected to the ground potential. The ground via conductor 41 is provided between the helical inductor 31P and the helical inductor 31Q that are adjacent to each other.
 グラウンドビア導体41は、互いに隣り合うヘリカル状インダクタ31Pの環状部32と、ヘリカル状インダクタ31Qの環状部32との間に位置するように設けられている。グラウンドビア導体41は、互いに隣り合うヘリカル状インダクタ31Pの延出部33と、ヘリカル状インダクタ31Qの延出部33との間に位置するように設けられている。 The ground via conductor 41 is provided so as to be positioned between the annular portion 32 of the helical inductor 31P and the annular portion 32 of the helical inductor 31Q which are adjacent to each other. The ground via conductor 41 is provided so as to be positioned between the extension portion 33 of the helical inductor 31P adjacent to each other and the extension portion 33 of the helical inductor 31Q.
 このような構成によれば、互いに隣り合うヘリカル状インダクタ31の間に接地電位に接続されたグラウンドビア導体41が設けられるため、環状部32を狭ピッチで設けた場合において、隣接するヘリカル状インダクタ31間の電磁界結合をより効果的に防ぐことができる。 According to such a configuration, since the ground via conductor 41 connected to the ground potential is provided between the helical inductors 31 adjacent to each other, when the annular portions 32 are provided at a narrow pitch, the adjacent helical inductors are provided. The electromagnetic coupling between 31 can be prevented more effectively.
 図8は、図5中の高周波モジュールの第3変形例を示す透視図である。図8を参照して、本変形例では、複数のヘリカル状インダクタ31が、環状部32が第1の矢印102に示す方向に沿って千鳥状に並ぶように設けられている。直線部32mと直線部32nとが、45°の角度をなす。 FIG. 8 is a perspective view showing a third modification of the high-frequency module in FIG. Referring to FIG. 8, in this modification, a plurality of helical inductors 31 are provided such that annular portions 32 are arranged in a staggered manner along the direction indicated by first arrow 102. The straight part 32m and the straight part 32n form an angle of 45 °.
 矩形の周回形状を有するヘリカル状インダクタ31Qの環状部32が、基板12の長辺13および短辺14に対して平行に設けられる一方、矩形の周回形状を有するヘリカル状インダクタ31Pの環状部32が、基板12の長辺13および短辺14を基準にして45°傾いて設けられている。複数のヘリカル状インダクタ31は、基板12の長辺13および短辺14を基準に傾けられない環状部32を有するヘリカル状インダクタ31Qと、基板12の長辺13および短辺14を基準に45°傾けられた環状部32を有するヘリカル状インダクタ31Pとが交互に千鳥状に並ぶように設けられている。 An annular portion 32 of a helical inductor 31Q having a rectangular circumferential shape is provided in parallel to the long side 13 and the short side 14 of the substrate 12, while an annular portion 32 of a helical inductor 31P having a rectangular circumferential shape is provided. The substrate 12 is provided with an inclination of 45 ° with respect to the long side 13 and the short side 14 of the substrate 12. The plurality of helical inductors 31 includes a helical inductor 31Q having an annular portion 32 that cannot be inclined with respect to the long side 13 and the short side 14 of the substrate 12, and 45 ° with respect to the long side 13 and the short side 14 of the substrate 12. Helical inductors 31P having inclined annular portions 32 are alternately arranged in a staggered manner.
 本変形例における高周波モジュールは、接地電位に接続されるグラウンドビア導体41をさらに有する。グラウンドビア導体41は、互いに隣り合うヘリカル状インダクタ31Pとヘリカル状インダクタ31Qとの間に設けられている。 The high-frequency module in this modification further has a ground via conductor 41 connected to the ground potential. The ground via conductor 41 is provided between the helical inductor 31P and the helical inductor 31Q that are adjacent to each other.
 グラウンドビア導体41は、互いに隣り合うヘリカル状インダクタ31Pの延出部33と、ヘリカル状インダクタ31Qの延出部33との間に位置するように設けられている。 The ground via conductor 41 is provided so as to be positioned between the extending portion 33 of the helical inductor 31P adjacent to each other and the extending portion 33 of the helical inductor 31Q.
 このような構成によれば、隣接するヘリカル状インダクタ31間の電磁界結合を防ぎつつ、環状部32の狭ピッチでの配置が可能となる。 According to such a configuration, it is possible to arrange the annular portions 32 at a narrow pitch while preventing electromagnetic coupling between the adjacent helical inductors 31.
 なお、図5から図8において説明したヘリカル状インダクタ31の環状部32の各種の配置や配列を適宜組みわせて、新たな高周波モジュールを構成してもよい。また、環状部32の形状として、矩形以外の円形や楕円などを用い、これらを矩形と組み合わせてもよい。 Note that a new high-frequency module may be configured by appropriately combining various arrangements and arrangements of the annular portion 32 of the helical inductor 31 described in FIGS. 5 to 8. Further, as the shape of the annular portion 32, a circle or ellipse other than the rectangle may be used, and these may be combined with the rectangle.
 以上に説明した、この発明の実施の形態2における高周波モジュールの構造についてまとめて説明すると、本実施の形態における高周波モジュールは、主面12aを有する基板12と、基板12の主面12aを平面視した場合に、環状に延びる形状の環状部32を有し、基板12に設けられる複数のヘリカル状インダクタ31とを備える。複数のヘリカル状インダクタ31は、第1インダクタとしてのヘリカル状インダクタ31Pと、ヘリカル状インダクタ31Pと隣り合って配置される第2インダクタとしてのヘリカル状インダクタ31Qとを含む。ヘリカル状インダクタ31の環状部32は、直線状に延びる第1直線部としての直線部32mを含む。ヘリカル状インダクタ31Qの環状部32は、直線部32mと非平行な方向に直線状に延び、直線部32mと対向する第2直線部としての直線部32nを含む。 The structure of the high-frequency module according to Embodiment 2 of the present invention described above will be described together. In the high-frequency module according to the present embodiment, the substrate 12 having the main surface 12a and the main surface 12a of the substrate 12 are viewed in plan view. In this case, a plurality of helical inductors 31 provided on the substrate 12 are provided. The plurality of helical inductors 31 includes a helical inductor 31P as a first inductor, and a helical inductor 31Q as a second inductor disposed adjacent to the helical inductor 31P. The annular portion 32 of the helical inductor 31 includes a straight portion 32m as a first straight portion extending linearly. The annular portion 32 of the helical inductor 31Q includes a straight portion 32n as a second straight portion that extends linearly in a direction non-parallel to the straight portion 32m and faces the straight portion 32m.
 このように構成された、この発明の実施の形態2における高周波モジュールによれば、基板12の全長の短縮化を図りつつ、互いに隣り合うヘリカル状インダクタ31の間で十分な絶縁性を得ることができる。 According to the high-frequency module according to Embodiment 2 of the present invention configured as described above, sufficient insulation can be obtained between the helical inductors 31 adjacent to each other while shortening the overall length of the substrate 12. it can.
 (実施の形態3)
 図9は、この発明の実施の形態3における高周波モジュールを示す回路図である。図10は、図9中の2点鎖線Xで囲まれた範囲の高周波モジュールを示す透視図である。
(Embodiment 3)
FIG. 9 is a circuit diagram showing a high-frequency module according to Embodiment 3 of the present invention. FIG. 10 is a perspective view showing the high-frequency module in a range surrounded by a two-dot chain line X in FIG.
 図9および図10を参照して、本実施の形態における高周波モジュールは、複数のヘリカル状インダクタ31に加えて、スイッチング素子51をさらに有する。スイッチング素子51は、一方向に配列された複数の接点56を有する。 9 and 10, the high-frequency module according to the present embodiment further includes a switching element 51 in addition to the plurality of helical inductors 31. The switching element 51 has a plurality of contacts 56 arranged in one direction.
 本実施の形態では、複数のヘリカル状インダクタ31が、それぞれ、複数の接点56に接続されている。ヘリカル状インダクタ31は、複数の接点56間で生じる容量性をキャンセルする誘導性を有する整合素子として設けられている。複数のヘリカル状インダクタ31は、実施の形態1で説明した千鳥状配置の環状部32を備えるように設けられている。 In the present embodiment, a plurality of helical inductors 31 are connected to a plurality of contacts 56, respectively. The helical inductor 31 is provided as an inductive matching element that cancels the capacitance generated between the plurality of contacts 56. The plurality of helical inductors 31 are provided so as to include the annular portion 32 in the staggered arrangement described in the first embodiment.
 スイッチング素子51の多ポート化に伴って、出力端子52側のインピーダンスが容量性となる。本実施の形態では、実施の形態1で説明したヘリカル状インダクタ31を整合素子として基板12に設けることにより、図10中に示すように基板12の主面の長辺に沿って並べられた複数の出力端子52間の絶縁性の劣化を防ぎつつ、出力端子52の容量性をキャンセルして、整合をとることができる。 As the switching element 51 is multi-ported, the impedance on the output terminal 52 side becomes capacitive. In the present embodiment, by providing the helical inductor 31 described in the first embodiment as a matching element on the substrate 12, a plurality of elements arranged along the long side of the main surface of the substrate 12 as shown in FIG. It is possible to cancel the capacitance of the output terminal 52 and to achieve matching while preventing the deterioration of the insulation between the output terminals 52.
 なお、本発明においては、必ずしも複数の接点56の全てにヘリカル状インダクタ31が設けられなくてもよい。また、本実施の形態では、実施の形態1で説明した高周波モジュールの構造を、多ポート構造のスイッチング素子に適用した場合に説明したが、実施の形態2で説明した各種の高周波モジュールの構造を同様に適用してもよい。 In the present invention, the helical inductor 31 does not necessarily have to be provided at all of the plurality of contacts 56. In the present embodiment, the structure of the high-frequency module described in the first embodiment is described when applied to a switching element having a multi-port structure. However, the structures of the various high-frequency modules described in the second embodiment are used. You may apply similarly.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 この発明は、携帯電話機に内蔵されるアンテナモジュール等に利用される。 The present invention is used for an antenna module or the like built in a mobile phone.
 10 高周波モジュール、12 基板、13 長辺、14 短辺、21,21A,21B,21C,21D,21E 絶縁層、31,31P,31Q ヘリカル状インダクタ、32 環状部、32m,32n 直線部、33 延出部、41 グラウンドビア導体、51 スイッチング素子、52 出力端子、56 接点。 10 high frequency module, 12 substrate, 13 long side, 14 short side, 21, 21A, 21B, 21C, 21D, 21E insulating layer, 31, 31P, 31Q helical inductor, 32 annular part, 32m, 32n linear part, 33 extension Outlet, 41 ground via conductor, 51 switching element, 52 output terminal, 56 contacts.

Claims (10)

  1.  主面を有する基板と、
     前記基板の主面を平面視した場合に、環状に延びる形状の環状部を有し、前記環状部が所定方向に沿って千鳥状に並ぶように前記基板に設けられる複数のインダクタとを備え、
     前記複数のインダクタは、第1インダクタと、前記第1インダクタと隣り合って配置される第2インダクタとを含み、
     前記第1インダクタの前記環状部は、直線状に延びる第1直線部を含み、
     前記第2インダクタの前記環状部は、前記第1直線部と平行な方向に直線状に延び、前記基板の主面を平面視した場合に、前記所定方向に対する斜め方向において前記第1直線部と対向する第2直線部を含む、高周波モジュール。
    A substrate having a main surface;
    When the main surface of the substrate is viewed in plan, it has an annular portion extending in an annular shape, and includes a plurality of inductors provided on the substrate so that the annular portion is arranged in a staggered manner along a predetermined direction,
    The plurality of inductors include a first inductor and a second inductor disposed adjacent to the first inductor,
    The annular portion of the first inductor includes a first straight portion extending linearly,
    The annular portion of the second inductor extends linearly in a direction parallel to the first linear portion, and the first linear portion in an oblique direction with respect to the predetermined direction when the main surface of the substrate is viewed in plan view. A high-frequency module including second opposing linear portions.
  2.  前記基板は、前記基板の主面を平面視した場合に、第1辺と、前記第1辺に交わる第2辺とを有する矩形形状を有し、
     前記所定方向は、前記第1辺が延びる方向である、請求項1に記載の高周波モジュール。
    The substrate has a rectangular shape having a first side and a second side intersecting the first side when the main surface of the substrate is viewed in plan view;
    The high-frequency module according to claim 1, wherein the predetermined direction is a direction in which the first side extends.
  3.  前記第1辺の長さは、前記第2辺の長さよりも長い、請求項2に記載の高周波モジュール。 The high frequency module according to claim 2, wherein the length of the first side is longer than the length of the second side.
  4.  主面を有する基板と、
     前記基板の主面を平面視した場合に、環状に延びる形状の環状部を有し、前記基板に設けられる複数のインダクタとを備え、
     前記複数のインダクタは、第1インダクタと、前記第1インダクタと隣り合って配置される第2インダクタとを含み、
     前記第1インダクタの前記環状部は、直線状に延びる第1直線部を含み、
     前記第2インダクタの前記環状部は、前記第1直線部と非平行な方向に直線状に延び、前記第1直線部と対向する第2直線部を含む、高周波モジュール。
    A substrate having a main surface;
    When the main surface of the substrate is viewed in plan, it has an annular portion having an annularly extending shape, and includes a plurality of inductors provided on the substrate,
    The plurality of inductors include a first inductor and a second inductor disposed adjacent to the first inductor,
    The annular portion of the first inductor includes a first straight portion extending linearly,
    The annular portion of the second inductor includes a second linear portion that extends linearly in a direction non-parallel to the first linear portion and faces the first linear portion.
  5.  前記第1直線部と前記第2直線部とが、45°の角度をなす、請求項4に記載の高周波モジュール。 The high-frequency module according to claim 4, wherein the first straight part and the second straight part form an angle of 45 °.
  6.  前記複数のインダクタは、前記基板の主面を平面視した場合に、前記環状部が一方向に並ぶように設けられる、請求項4または5に記載の高周波モジュール。 The high frequency module according to claim 4 or 5, wherein the plurality of inductors are provided so that the annular portions are arranged in one direction when the main surface of the substrate is viewed in plan.
  7.  前記複数のインダクタは、前記絶縁の主面を平面視した場合に、前記環状部が所定方向に沿って千鳥状に並ぶように設けられる、請求項4または5に記載の高周波モジュール。 The high frequency module according to claim 4 or 5, wherein the plurality of inductors are provided so that the annular portions are arranged in a staggered manner along a predetermined direction when the main surface of the insulation is viewed in plan.
  8.  前記第1インダクタと前記第2インダクタとの間に位置するように前記基板に設けられ、接地電位に接続される配線をさらに備える、請求項1から7のいずれか1項に記載の高周波モジュール。 The high frequency module according to any one of claims 1 to 7, further comprising a wiring provided on the substrate so as to be positioned between the first inductor and the second inductor and connected to a ground potential.
  9.  複数の接点を有するスイッチング素子をさらに備え、
     前記第1インダクタおよび前記第2インダクタは、それぞれ、前記複数の接点間に生じる容量性をキャンセルする整合素子として、前記複数の接点に接続される、請求項1から8のいずれか1項に記載の高周波モジュール。
    A switching element having a plurality of contacts;
    The first inductor and the second inductor are each connected to the plurality of contacts as a matching element that cancels the capacitance generated between the plurality of contacts. High frequency module.
  10.  前記基板は、複数の絶縁層が積層されてなる積層構造を有し、
     前記環状部は、前記基板を前記複数の絶縁層の積層方向から見た場合に、環状に延びる形状を有する、請求項1から9のいずれか1項に記載の高周波モジュール。
    The substrate has a laminated structure in which a plurality of insulating layers are laminated,
    10. The high-frequency module according to claim 1, wherein the annular portion has a shape extending annularly when the substrate is viewed from a stacking direction of the plurality of insulating layers.
PCT/JP2015/058447 2014-04-08 2015-03-20 High frequency module WO2015156101A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016512647A JP6308293B2 (en) 2014-04-08 2015-03-20 High frequency module
CN201580017775.2A CN106134090B (en) 2014-04-08 2015-03-20 High-frequency model
KR1020167022584A KR101848721B1 (en) 2014-04-08 2015-03-20 High frequency module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-079402 2014-04-08
JP2014079402 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015156101A1 true WO2015156101A1 (en) 2015-10-15

Family

ID=54287681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058447 WO2015156101A1 (en) 2014-04-08 2015-03-20 High frequency module

Country Status (4)

Country Link
JP (1) JP6308293B2 (en)
KR (1) KR101848721B1 (en)
CN (1) CN106134090B (en)
WO (1) WO2015156101A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251417U (en) * 1988-10-05 1990-04-11
JPH05326270A (en) * 1992-05-25 1993-12-10 Murata Mfg Co Ltd Composite inductor part
JP2002110422A (en) * 2000-09-28 2002-04-12 Murata Mfg Co Ltd Chip coil parts
JP2010269215A (en) * 2009-05-19 2010-12-02 Shibaura Mechatronics Corp Apparatus for driving piezoelectric element, and coating apparatus
JP2012095257A (en) * 2010-09-30 2012-05-17 Nippon Dempa Kogyo Co Ltd Variable attenuator and variable attenuation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1981173A4 (en) 2006-01-31 2010-11-10 Murata Manufacturing Co Composite high-frequency components and mobile communication apparatus
JP5408166B2 (en) * 2011-03-23 2014-02-05 株式会社村田製作所 Antenna device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251417U (en) * 1988-10-05 1990-04-11
JPH05326270A (en) * 1992-05-25 1993-12-10 Murata Mfg Co Ltd Composite inductor part
JP2002110422A (en) * 2000-09-28 2002-04-12 Murata Mfg Co Ltd Chip coil parts
JP2010269215A (en) * 2009-05-19 2010-12-02 Shibaura Mechatronics Corp Apparatus for driving piezoelectric element, and coating apparatus
JP2012095257A (en) * 2010-09-30 2012-05-17 Nippon Dempa Kogyo Co Ltd Variable attenuator and variable attenuation device

Also Published As

Publication number Publication date
KR101848721B1 (en) 2018-04-13
KR20160110991A (en) 2016-09-23
JPWO2015156101A1 (en) 2017-04-13
JP6308293B2 (en) 2018-04-11
CN106134090A (en) 2016-11-16
CN106134090B (en) 2019-01-22

Similar Documents

Publication Publication Date Title
US8354975B2 (en) Electromagnetic band gap element, and antenna and filter using the same
JP5962754B2 (en) Electronic components
JP3800555B2 (en) High frequency circuit
WO2010100932A1 (en) Resonator antenna and communication apparatus
JP5975198B1 (en) High frequency module
JP2012256757A (en) Lc composite component and mounting structure of lc composite component
WO2013108862A1 (en) Coil component
JP6204747B2 (en) Electromagnetic band gap device and electronic circuit
JP6125274B2 (en) Electronic circuits and electronic equipment
TWI659522B (en) Electronic parts
US9041493B2 (en) Coupling structure for multi-layered chip filter, and multi-layered chip filter with the structure
KR101565705B1 (en) Inductor
CN112740343B (en) Balanced symmetric coil
JP6308293B2 (en) High frequency module
JP5136131B2 (en) Structure, printed circuit board
US10020107B1 (en) Hybrid inductor
JP7115117B2 (en) LC filter
JP2012257084A (en) Ebg structure and printed board
JP2007189396A (en) Balun
JP2018098701A (en) Balance-unbalance converter
KR102667536B1 (en) Hybrid inductor
JP2022147904A (en) Electronic circuit and circuit board
JP2000323600A (en) Multilayer wiring board
JP2009049242A (en) Substrate with built-in electronic component
JP2006032769A (en) Multi-layered substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512647

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167022584

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776349

Country of ref document: EP

Kind code of ref document: A1