WO2015156005A1 - サーメット、および切削工具 - Google Patents

サーメット、および切削工具 Download PDF

Info

Publication number
WO2015156005A1
WO2015156005A1 PCT/JP2015/050303 JP2015050303W WO2015156005A1 WO 2015156005 A1 WO2015156005 A1 WO 2015156005A1 JP 2015050303 W JP2015050303 W JP 2015050303W WO 2015156005 A1 WO2015156005 A1 WO 2015156005A1
Authority
WO
WIPO (PCT)
Prior art keywords
cermet
hard phase
phase particles
average particle
hard
Prior art date
Application number
PCT/JP2015/050303
Other languages
English (en)
French (fr)
Inventor
貴翔 山西
津田 圭一
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020157034893A priority Critical patent/KR101743862B1/ko
Priority to EP15776517.3A priority patent/EP3130686B1/en
Priority to CN201580000991.6A priority patent/CN105283570B/zh
Priority to US14/897,206 priority patent/US9850557B2/en
Publication of WO2015156005A1 publication Critical patent/WO2015156005A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/15Carbonitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides

Definitions

  • the present invention relates to a cermet comprising hard phase particles containing at least Ti and a binder phase containing at least one of Ni and Co, and a cutting tool using the cermet.
  • cermet has been used for the main body (base material) of a cutting tool.
  • the cermet is a sintered body in which hard phase particles are bonded with a binding phase of an iron group metal, and Ti compound such as TiC (titanium carbide), TiN (titanium nitride), TiCN (titanium carbonitride) is used as the hard phase particles.
  • TiC titanium carbide
  • TiN titanium nitride
  • TiCN titanium carbonitride
  • It is a hard material using The cermet is [1] can reduce the amount of W used as a rare resource, [2] has excellent wear resistance, and [3] compared to a cemented carbide with tungsten carbide (WC) as the main hard phase particles. It has the advantage that the finished surface in steel cutting is beautiful and [4] lightweight.
  • cermet is inferior in strength and toughness as compared with cemented carbide, and has a problem that its processing application is limited because it is weak against thermal shock.
  • some hard phase particles contained in the cermet have a cored structure composed of a core part and a peripheral part formed on the outer periphery thereof.
  • the core contains abundant TiC and TiCN, and the periphery contains abundant Ti composite compounds containing Ti and other metals (typically Group IV, V, and VI elements). It is.
  • the peripheral portion contributes to improving the strength and toughness of the cermet by improving the wettability between the hard phase particles and the binder phase and improving the sinterability of the cermet. Attempts have been made to further improve the strength and toughness of the cermet by controlling the composition of such a cored structure (see, for example, Patent Documents 1 to 4).
  • This invention is made
  • the present inventors examined the cause of the defect in the conventional cermet.
  • heat tends to be trapped in the blade edge and the vicinity thereof, so that rake face wear (crater wear), thermal cracks, etc. are likely to occur, and defects due to these occur. It turns out that it is easy to occur.
  • heat tends to be trapped in and around the cutting edge during cutting because the heat of the cutting edge cannot be radiated through the inside of the cutting tool.
  • the thermal conductivity of the said peripheral part is TiC and TiN. It was found to be lower than the thermal conductivity of the constructed core. That is, the peripheral part contributes to improving the sinterability of the cermet.
  • the heat conductivity of a cermet fell significantly, and the heat resistance of the cermet fell and the knowledge that a heat
  • the present inventors have also found that the average particle diameter of the hard phase particles contained in the cermet affects the fracture resistance during the above examination. Specifically, it has been found that if the average particle diameter of the hard phase particles is too small, the toughness of the cermet is lowered, and as a result, the cermet's fracture resistance is lowered. Based on these findings, the cermet according to one embodiment of the present invention is defined below.
  • the cermet according to one aspect of the present invention is a cermet comprising hard phase particles containing Ti and a binder phase containing at least one of Ni and Co, and 70% or more (number) of all hard phase particles
  • a cored structure having a core part and a peripheral part formed on the outer periphery thereof is provided.
  • the core portion of the hard phase particle having the core structure has at least one of Ti carbide, Ti nitride, and Ti carbonitride as a main component.
  • the peripheral part of the hard-phase particles having a core structure has a Ti composite compound containing at least one selected from W, Mo, Ta, Nb, and Cr and Ti as a main component.
  • 1.1 ⁇ ⁇ / ⁇ ⁇ 1.7 is satisfied, where ⁇ is the average particle size of the core and ⁇ is the average particle size of the peripheral portion.
  • grains contained in a cermet is more than 1.0 micrometer.
  • the cermet of the invention is excellent in fracture resistance.
  • a cermet according to an aspect of the present invention is a cermet including hard phase particles containing Ti and a binder phase containing at least one of Ni and Co, and is 70% or more (number of hard phase particles) ) Includes a cored structure having a core part and a peripheral part formed on the outer periphery thereof.
  • the core of the hard phase particle having a core structure has at least one of Ti carbide, Ti nitride, and Ti carbonitride as a main component.
  • the peripheral portion of the cored structure hard phase particle is mainly composed of a Ti composite compound containing at least one selected from W, Mo, Ta, Nb, and Cr and Ti.
  • is the average particle size of the core and ⁇ is the average particle size of the peripheral portion (that is, the average particle size of the hard phase particles having a core structure).
  • grains contained in a cermet is more than 1.0 micrometer.
  • the hard-phase particles having a core structure satisfying the above formula have a thin peripheral portion with poor thermal conductivity and excellent thermal conductivity. Therefore, a cermet comprising such cored hard phase particles is superior in thermal conductivity to conventional cermets, is less likely to trap heat inside, and is less prone to fracture because it is less likely to cause thermal damage.
  • 70% or more of the hard phase particles of the cermet are formed from hard phase particles having a core structure satisfying the above formula
  • the average particle size of the entire hard phase particles exceeds 1.0 ⁇ m
  • the average particle size is The toughness is larger than that in the case of 1 ⁇ m or less, and the fracture resistance is particularly excellent. This is thought to be because the propagation of the cermet is suppressed even when a crack occurs in the cermet because the average particle size is a certain size or more.
  • the inventors of the present invention have a tendency that the hardness that does not satisfy the above formula tends to be inferior compared with that that satisfies the above formula.
  • the knowledge of was also obtained. This is presumably because the peripheral part has a lower hardness than the core part. In other words, it is considered that those not satisfying the above formula tend to be inferior in hardness because the peripheral portion having low hardness is thick.
  • the cermet satisfying the above formula has a thin peripheral part in the hard phase particles, and a ratio of the core part having higher hardness than the peripheral part is large. Therefore, when the average particle diameters of the hard phase particles are approximately the same, those satisfying the above formula are expected to have higher hardness than those not satisfying the above formula, and as a result, the cermet is excellent in wear resistance.
  • the ratio of hard phase particles having a cored structure among all hard phase particles is 70% or more.
  • the hard phase particles having no core structure are hard phase particles having almost no peripheral portion, that is, Ti carbide particles, Ti nitride particles, Ti carbonitride particles, and the like.
  • the ratio of the hard phase particles having a cored structure to the whole hard phase particles is preferably 90% or more in order to maintain the sinterability of the cermet.
  • the core portion of the hard phase particle having a cocoon core structure has at least one of Ti carbide, Ti nitride, and Ti carbonitride as a main component. That is, the core is substantially composed of these Ti compounds. Therefore, the Ti content in the core is 50% by mass or more.
  • the average particle diameter ⁇ ( ⁇ m) of the core part and the average particle diameter ⁇ ( ⁇ m) of the peripheral part in this specification are obtained by performing image analysis on the cross section of the cermet and perpendicular to the horizontal feret diameter in the cross section image.
  • the average value of the direction feret diameters is used. Specifically, the ferret diameter in the horizontal direction and the ferret diameter in the vertical direction are measured for each of the hard phase particles having at least 200 cored structures in the cross-sectional image. Then, the average value of both ferret diameters of each hard phase particle is added up and divided by the number of measured particles.
  • the thickness of the peripheral portion is thick enough to improve the wettability between the hard phase particles and the binder phase, It can be said that it is not thick enough to significantly reduce the thermal conductivity of the phase particles.
  • a preferable range of ⁇ / ⁇ is 1.3 or more and 1.5 or less. Note that the average particle size ⁇ of the peripheral portion is equal to the average particle size of the hard phase particles having a cored structure.
  • the average particle size of the entire hard phase particles including the hard phase particles having the core-structure is more than 1.0 ⁇ m, the toughness can be increased, and as a result, a cermet having high fracture resistance can be obtained.
  • a preferable value of the average particle diameter is 1.1 ⁇ m or more, more preferably 1.4 ⁇ m or more.
  • the average particle diameter of the entire hard phase particles can be obtained from a cross-sectional image including 200 or more of all hard phase particles.
  • the total number of hard phase particles is the sum of the number of hard phase particles having a cored structure in the cross-sectional image and the number of hard phase particles not having a cored structure in the cross-sectional image.
  • the particle diameters of both hard phase particles are the average values of the ferret diameter in the horizontal direction and the ferret diameter in the vertical direction.
  • the average particle diameter of the hard phase particles can be determined by adding the particle diameters of all the hard phase particles and dividing by the number of measured particles.
  • the binder phase contains at least one of Ni and Co, and binds the hard phase particles.
  • the binder phase is substantially composed of at least one of Ni and Co, but may contain hard phase particle components (Ti, W, Mo, Cr, C, N) and inevitable components.
  • Thermal conductivity of cermet In the cermet according to an aspect of the present invention, the thermal conductivity of the hard phase particles is improved, so that the thermal conductivity of the cermet is improved as compared with the conventional cermet.
  • the preferable thermal conductivity of the cermet is 20 W / m ⁇ K or more.
  • the average particle size of the hard phase particles as a whole including the hard phase particles having a core structure is 5.0 ⁇ m or less, it is possible to provide a cermet having high fracture resistance and at the same time suppressing the progress of wear due to insufficient hardness. Be expected.
  • the average particle size of the entire hard phase particles is preferably 3.0 ⁇ m or less, and more preferably 2.0 ⁇ m or less. This is because it is expected that the progress of wear due to insufficient hardness can be further suppressed while maintaining good fracture resistance.
  • the Ti content in the entire cermet is 50% by mass or more and 70% by mass or less, and the total content of W, Mo, Ta, Nb, and Cr is 15% by mass or more,
  • the form which is 30 mass% or less and the total content of Co and Ni is 15 mass% or more and 20 mass% or less can be mentioned.
  • a cermet containing a predetermined amount of the above elements has a good balance between the core and peripheral parts of the hard phase particles having a cored structure and a binder phase, and is excellent in toughness and adhesion resistance.
  • the total content of W, Mo, Ta, Nb and Cr contained in the Ti composite compound constituting the peripheral portion is 15% by mass or more, the absolute amount of the peripheral portion in the cermet is sufficient, so Sinterability is improved. As a result, the cermet toughness tends to be improved.
  • the total content of W, Mo, Ta, Nb and Cr is 30% by mass or less, an increase in non-core structure hard phase particles (for example, WC) containing these elements is suppressed in the cermet.
  • the fall of the adhesion resistance of a cermet can be suppressed.
  • the cutting tool according to one aspect of the present invention is a cutting tool using the cermet according to one aspect of the present invention as a base material.
  • the cermet according to one embodiment of the present invention is particularly excellent in fracture resistance. Therefore, it is suitable as a base material for a cutting tool used for cutting that particularly requires fracture resistance such as high-speed cutting and intermittent cutting. Moreover, the cermet which concerns on 1 aspect of this invention is suitable as a base material of a cutting tool, since it is excellent in abrasion resistance while having high fracture resistance.
  • the form of the cutting tool is not particularly limited, and examples thereof include a cutting edge exchange type cutting tip, a drill, and a reamer.
  • the cutting tool according to one aspect of the present invention may include a form including a hard film coated on at least a part of the surface of the base material.
  • the hard film is coated on a portion of the base material which is a cutting edge and its vicinity, and may be coated on the entire surface of the base material.
  • the wear resistance can be improved while maintaining the toughness of the base material.
  • the hard film may be a single layer or multiple layers, and the total thickness is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the composition of the hard film includes carbides, nitrides, oxides, borides of one or more elements selected from metals of Groups IV, V, and VI of the periodic table, aluminum (Al), and silicon (Si). And solid solutions thereof.
  • Ti (C, N), Al 2 O 3 , (Ti, Al) N, TiN, TiC, (Al, Cr) N, and the like can be given.
  • cubic boron nitride (cBN), diamond-like carbon, and the like are also suitable as the composition of the hard film.
  • Such a hard film can be formed by a vapor phase method such as chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • the cermet which concerns on embodiment of this invention can be manufactured by the manufacturing method provided with the preparation process shown below, a mixing process, a formation process, and a sintering process, for example.
  • Preparation step a first hard phase raw material powder containing at least one of Ti carbide, Ti nitride, and Ti carbonitride, and a second containing at least one selected from W, Mo, Ta, Nb, and Cr And a binder phase raw material powder containing at least one of Co and Ni.
  • the average particle size of the first hard phase raw material powder is more than 1.0 ⁇ m.
  • the first hard phase raw material powder, the second hard phase raw material powder, and the binder phase raw material powder are mixed by an attritor.
  • the peripheral speed of the attritor in this mixing step is 100 m / min or more and 400 m / min or less, and the mixing time is 0.1 hours or more and 5 hours or less.
  • -Molding step The mixed raw material obtained through the mixing step is molded.
  • Sintering step Sinter the molded body obtained in the molding step.
  • One of the characteristics of the above production method is that an attritor is used for mixing the raw material powder and mixing is performed at a predetermined peripheral speed for a short time, and the average particle size of the first hard phase raw material powder is It is more than 1.0 ⁇ m.
  • the formation state of the peripheral portion formed on the outer periphery of the core portion can be set to an appropriate state, and the average particle size of the entire hard phase particles is 1.0 ⁇ m.
  • the particle size of the entire hard phase particle can be made excellent in toughness (over 1.0 ⁇ m).
  • a first hard phase raw material powder, a second hard phase raw material powder, and a binder phase raw material powder are prepared.
  • the mixing ratio of each raw material powder can be appropriately selected according to the characteristics of the target cermet.
  • the first hard phase raw material powder: the second hard phase raw material powder has a mass ratio of 50:30 or more and 70:20 or less, and these hard phase raw material: binder phase raw material powder is 80:20 or more. 90:10 or less.
  • the average particle diameter of the first hard phase raw material powder can be more than 1.0 ⁇ m and 5.0 ⁇ m or less, and can be 1.2 ⁇ m or more, 1.8 ⁇ m or less, 1.4 ⁇ m or more, and 1.6 ⁇ m or less.
  • the average particle size of the second hard phase raw material powder is preferably 0.5 ⁇ m or more and 3.0 ⁇ m or less, may be 2.0 ⁇ m or less, and may be 1.0 ⁇ m or less.
  • the average particle size of the binder phase raw material powder is preferably 0.5 ⁇ m or more and 3.0 ⁇ m or less, may be 2.0 ⁇ m or less, and may be 1.0 ⁇ m or less.
  • the average particle diameter of the raw material powder is different from the average particle diameter of the hard phase particles in the cermet, and is a particle diameter obtained by the Fisher method.
  • Each particle constituting the raw material powder is pulverized and deformed through a mixing process and a molding process described later.
  • the first hard phase raw material powder, the second hard phase raw material powder, and the binder phase raw material powder are mixed by an attritor.
  • a molding aid for example, paraffin
  • a vertical attritor is a mixer that includes a rotating shaft and a plurality of stirring rods that protrude in the circumferential direction of the rotating shaft.
  • the proportion of phase particles can be 70% or more.
  • the peripheral speed and the mixing time are less than or equal to the upper limit value of the specified range, it is possible to avoid the peripheral portion from becoming too thick in the hard phase particles having a cermet core structure.
  • mixing by an attritor may be performed using a ball-shaped medium made of cemented carbide, or may be performed without a medium.
  • the mixed powder (first hard phase raw material powder + second hard phase raw material powder + bonding phase raw material powder + molding aid if necessary) is filled in the mold, and mixed powder In a mold.
  • the pressing pressure is preferably appropriately changed depending on the composition of the raw material powder, but is preferably about 50 MPa or more and 250 MPa or less. A more preferable pressing pressure is 90 MPa or more and 110 MPa or less.
  • sintering step in the above manufacturing method it is preferable to perform stepwise sintering.
  • sintering having a molding auxiliary agent removal period, a first heating period, a second heating period, a holding period, and a cooling period can be mentioned.
  • the removal period of the molding aid is a period in which the temperature is raised to the volatilization temperature of the molding aid, and is heated to, for example, 350 ° C. or more and 500 ° C. or less.
  • the compact is heated to about 1200 ° C. or higher and about 1300 ° C. or lower in a vacuum atmosphere.
  • the molded body is heated to about 1300 ° C.
  • the molded body is held for 1 hour or more and 2 hours or less at the final temperature of the second heating period.
  • the cooling period the compact is cooled to room temperature in a nitrogen atmosphere.
  • TiCN powder and TiC powder are prepared as the first hard phase raw material powder, and WC powder, Mo 2 C powder, NbC powder, TaC powder and Cr 3 C 2 powder are prepared as the second hard phase raw material powder. Then, Co powder and Ni powder were prepared as binder phase raw material powder. And the 1st hard phase raw material powder, the 2nd hard phase raw material powder, and the binder phase raw material powder were mixed by the mass ratio shown in Table 1.
  • the average particle diameter of each prepared powder is as follows: TiCN: 1.2 ⁇ m, TiC: 1.2 ⁇ m, WC: 1.2 ⁇ m, Mo 2 C: 1.2 ⁇ m, NbC: 1.0 ⁇ m, TaC: 1.0 ⁇ m, Cr 3 C 2 : 1.4 ⁇ m, Co: 1.4 ⁇ m, Ni: 2.6 ⁇ m.
  • the average particle diameter here is a particle diameter measured by the Fisher method.
  • the prepared mixed powder was filled in a mold and press-molded at a pressure of 98 MPa.
  • the shape of the molded body was an ISO standard SNG432 shape.
  • Samples 21 to 29 The procedure for preparing Samples 21 to 28 is the same as Samples 1 to 7 except for the following points.
  • the average particle diameter of TiCN prepared as the first hard phase raw material powder is 0.7 ⁇ m.
  • -Ratio of raw material powder (the ratio is shown in Table 1).
  • sample 29 The preparation procedure of the sample 29 is the same as that of the samples 1 to 7 except for the following points.
  • the average particle diameter of TiCN prepared as the first hard phase raw material powder is 1.0 ⁇ m.
  • the particle size distribution width of the above TiCN is wider than that of TiCN used for other samples ⁇
  • the black part is the core part of the hard phase particle having a cored structure
  • the gray part is the peripheral part of the hard phase particle having the cored structure
  • the white part is the binder phase.
  • the core of the hard phase particle having a cored structure is substantially composed of Ti carbonitride (including TiC in samples 5 and 25), and the Ti content in the core is It was 50 mass% or more.
  • the peripheral portion of the hard phase particle having a cored structure is composed of a carbonitride solid solution (Ti composite compound) containing Ti, and W, Mo, Ta, Nb, and Cr in the peripheral portion thereof. The total content of was 50% by mass or more.
  • the content of each element in the entire cermet is equal to the content of each element in the mixed raw material. Therefore, the Ti content in each sample is in the range of 50 mass% to 70 mass%, and the total content of W, Mo, Ta, Nb, and Cr is in the range of 15 mass% to 35 mass%. The total content of Co and Ni is in the range of 15% by mass or more and 20% by mass or less.
  • the average particle diameter ⁇ ( ⁇ m) of the core part of each sample and the average particle diameter ⁇ of the peripheral part ( ⁇ m) was determined (the average particle size of the peripheral portion is equal to the average particle size of the hard phase particles having a cored structure).
  • the average particle diameter of the hard phase particles having a cored structure is the average of the respective ferret diameters in the horizontal direction and vertical feret diameters of the hard phase particles having a core structure of 200 or more in each sample.
  • grains provided with a cored structure were distinguished by the low-cut process which set the automatic analysis conditions of image analysis software as follows.
  • the numerical value in the low-cut color gamut indicates whether the target color is close to white or black, and the smaller the value, the closer to black. A portion smaller than the low cut specified value (that is, a portion closer to black) is recognized as a particle.
  • Detection mode color difference, tolerance: 32, scanning density: 7, detection accuracy: 0.7 ⁇
  • the difference between the low cut designation values of the core part and the peripheral part of the hard phase particles having a cored structure is fixed at 100.
  • the average particle size of hard phase particles (indicated in each table as the hard phase particle size) is determined from the number of all hard phase particles (200 or more) in the SEM image and the particle size of each hard phase particle. It was. The particle size of each hard phase particle was determined using an image analyzer under the same conditions as described above.
  • Samples 1 to 7, 21, 22, and Samples 24 to 28 tend to be superior in toughness compared to Sample 29 is that TiCN used for Sample 29 has a large particle size distribution width although the average particle size itself is large. This is probably because the structure of the cermet became non-uniform due to the wide area. Samples 23 and 24 having an average particle size of 1/3 or less of sample 29 also have toughness equivalent to that of sample 29.
  • the reason why the samples 1 to 28 are superior in hardness compared to the sample 29 is that the samples 1 to 28 have a higher proportion of the core portion than [1] the peripheral portion compared to the sample 29, [2] This is considered to be due to the fact that the average particle size of the hard phase particles is small.
  • the toughness of Sample 1 is higher than the toughness of Sample 21 in which the average particle diameter of the TiCN powder used is different and the other raw material powders and compositions and manufacturing methods are common. .
  • the same can be said by comparing the samples 2 to 7 and the samples 22 to 27 having the corresponding relationship as the sample 1 and the sample 21, respectively. Accordingly, it is expected that a cermet having excellent fracture resistance can be obtained when the particle size of the hard phase particles exceeds 1.0 ⁇ m.
  • the hardness of samples 21 to 28 tended to be higher than the hardness of samples 1 to 7. This is presumably because Samples 21 to 28 have a small particle size of hard phase particles (1.0 ⁇ m or less).
  • the cutting test is a fatigue toughness test. This is an evaluation related to the number of collisions until the chip edge of the chip is damaged, that is, the life of the chip.
  • the reason why the cutting tools using Samples 1, 6, and 21 had excellent fracture resistance compared to Sample 29 is that there are few peripheral parts with low thermal conductivity and the thermal conductivity of hard phase particles is high. It is thought that.
  • the thermal conductivity of the hard phase particles is high, it is presumed that the heat of the cutting edge generated at the time of cutting is easily released to the outside, and it is possible to suppress heat from being generated in the cutting edge and the vicinity thereof.
  • Samples 1 and 6 in which the average particle size of the hard phase particles is more than 1.0 ⁇ m have excellent fracture resistance compared to Sample 21 in which the average particle size of the hard phase particles is 1.0 ⁇ m or less. This is presumably because the hard phase particles have a large average particle size, so that cracks hardly propagate between the binder phase and the hard phase, and therefore the toughness is high. From sample 29, it can be seen that even if the average particle size of the hard phase particles is as large as more than 2.0 ⁇ m, if ⁇ / ⁇ exceeds 2.0, the chipping resistance is poor. As described above, this is considered to be caused by the fact that the toughness is low due to the thick peripheral portion and the thermal conductivity is low.
  • Test Example 2 In Test Example 2, the influence of the mixing process on the cermet structure and cutting performance was examined.
  • a cutting tool (samples 8 to 10) made of cermet under exactly the same conditions as the sample 1 of the test example 1 (the mixing ratio of the raw materials is also the same as the sample 1) , 30).
  • the ⁇ / ⁇ value tends to increase by increasing the peripheral speed of the attritor or increasing the mixing time.
  • the toughness is excellent by setting the peripheral speed of the attritor to around 100 m / min to 250 m / min and the mixing time to around 0.1 to 5 hours, especially around 0.1 to 1.5 hours.
  • a cutting tool (cermet) having excellent fracture resistance can be obtained because of its high thermal conductivity that contributes to the improvement of welding resistance.
  • the cutting tool (cermet) obtained in this way has a certain hardness even though the average particle size of the hard phase particles is large. The reason why the hardness of the sample 30 is comparable to that of the other samples is considered to be that the average particle diameter of the hard phase particles is the smallest among the samples.
  • the cermet of the present invention can be suitably used as a base material for a cutting tool.
  • it can be suitably used as a base material for cutting tools that require fracture resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

Tiを含む硬質相粒子と、NiおよびCoの少なくとも一方を含む結合相と、を備えるサーメットであって、全硬質相粒子のうちの70%以上の硬質相粒子が、芯部とその外周に形成される周辺部とを有する有芯構造を備え、前記芯部は、Ti炭化物、Ti窒化物、およびTi炭窒化物の少なくとも一つを主成分とし、前記周辺部は、W,Mo,Ta,Nb,およびCrから選択される少なくとも一種と、Tiと、を含むTi複合化合物を主成分とし、前記芯部の平均粒径をα、前記周辺部の平均粒径をβとしたとき、1.1≦β/α≦1.7を満たし、サーメットに含まれる前記硬質相粒子の平均粒径が1.0μm超であるサーメット。

Description

サーメット、および切削工具
  本発明は、少なくともTiを含む硬質相粒子と、NiおよびCoの少なくとも一方を含む結合相と、を備えるサーメット、および、そのサーメットを用いた切削工具に関するものである。
  従来、切削工具の本体(基材)にサーメットと呼ばれる硬質材料が利用されている。サーメットは、硬質相粒子を鉄族金属の結合相で結合した焼結体であって、硬質相粒子として、TiC(炭化チタン)や、TiN(窒化チタン)、TiCN(炭窒化チタン)といったTi化合物を利用した硬質材料である。サーメットは、炭化タングステン(WC)を主たる硬質相粒子とする超硬合金と比較して、[1]希少資源であるWの使用量を低減できる、[2]耐摩耗性に優れる、[3]鋼の切削加工における仕上げ面が美麗である、[4]軽量である、といった利点を有する。反面、サーメットには、超硬合金に比べて強度や靱性に劣り、熱衝撃に弱いため、その加工用途が限定されるという問題がある。
  ここで、サーメットに含まれる硬質相粒子には、芯部とその外周に形成される周辺部とで構成される有芯構造を取るものがある。芯部にはTiCやTiCNが豊富に含まれ、周辺部には、Tiと他の金属(代表的には周期律表第IV、V、VI族元素)とを含むTi複合化合物が豊富に含まれる。周辺部は、硬質相粒子と結合相との濡れ性を向上させ、サーメットの焼結性を良好にすることで、サーメットの強度と靱性とを向上させることに寄与する。このような有芯構造の組成などを制御することで、サーメットの強度と靱性をさらに改善する試みがなされている(例えば、特許文献1~4などを参照)。
特開平06-172913号公報 特開2007-111786号公報 特開2009-19276号公報 特開2010-31308号公報
  従来のサーメットでも、強度と靱性の改善効果は認められるものの、なお十分とは言い難かった。例えば、切削速度が100m/min以上の高速での断続切削や、高速で送り量の大きい断続切削といった過酷な条件の切削加工を行なう場合には、従来のサーメットを用いた切削工具では耐欠損性が不足する場合があった。よって、十分な耐欠損性を備えるサーメットが求められていた。
  本発明は上記事情に鑑みてなされたものであり、本発明の目的の一つは、耐欠損性に優れる切削工具を構築することができるサーメットとその製造方法を提供することにある。
また、本発明の別の目的は、耐欠損性に優れる切削工具を提供することにある。
  本発明者らは、従来のサーメットにおいて欠損が生じる原因を検討した。この結果、欠損の原因の一つとして、従来のサーメットでは、刃先とその近傍に熱が籠もり易いことで、すくい面摩耗(クレーター摩耗)や熱亀裂などが生じやすく、これらに起因する欠損が生じ易いことが判った。従来のサーメットにおいて切削時に刃先とその近傍に熱が籠もり易いのは、刃先の熱を、切削工具の内部を経て放熱できないからであると推察される。そこで、本発明者らがサーメットの熱特性を調べたところ、硬質相粒子の周辺部を構成するTi複合化合物が固溶体構造となっているため、当該周辺部の熱伝導率が、TiCやTiNで構成される芯部の熱伝導率よりも低いことが判った。つまり、周辺部は、サーメットの焼結性を向上させることに寄与する。その一方で、サーメットにおける周辺部が多すぎると、サーメットの熱伝導率が大きく低下することでサーメットの耐熱性が低下し、刃先とその近傍に熱が籠りやすいとの知見を得た。
  また、本発明者らは、上記の検討の際に、サーメットに含まれる硬質相粒子の平均粒径が耐欠損性に影響することも見出した。具体的には、硬質相粒子の平均粒径が小さすぎるとサーメットの靱性が低下し、ひいてはサーメットの耐欠損性が低下する原因の一つとなるとの知見を得た。これらの知見に基づいて、本発明の一態様に係るサーメットを以下に規定する。
  本発明の一態様に係るサーメットは、Tiを含む硬質相粒子と、NiおよびCoの少なくとも一方を含む結合相と、を備えるサーメットであって、全硬質相粒子の70%以上(個数)が、芯部とその外周に形成される周辺部とを有する有芯構造を備える。その有芯構造の硬質相粒子の芯部は、Ti炭化物、Ti窒化物、およびTi炭窒化物の少なくとも一つを主成分とする。一方、有芯構造の硬質相粒子の周辺部は、W,Mo,Ta,Nb,およびCrから選択される少なくとも一種と、Tiと、を含むTi複合化合物を主成分とする。本発明の一態様に係るサーメットでは、芯部の平均粒径をα、周辺部の平均粒径をβとしたとき、1.1≦β/α≦1.7を満たす。そして、サーメットに含まれる硬質相粒子の平均粒径が1.0μm超である。
  上記発明のサーメットは、耐欠損性に優れる。
本発明の一態様に係るサーメットの走査型電子顕微鏡写真を示す図である。
[本発明の実施形態の説明]
  最初に本発明の実施態様の内容を列記して説明する。
  <1>本発明の一態様に係るサーメットは、Tiを含む硬質相粒子と、NiおよびCoの少なくとも一方を含む結合相と、を備えるサーメットであって、全硬質相粒子の70%以上(個数)が、芯部とその外周に形成される周辺部とを有する有芯構造を備える。有芯構造の硬質相粒子の芯部は、Ti炭化物、Ti窒化物、およびTi炭窒化物の少なくとも一つを主成分とする。一方、有芯構造硬質相粒子の周辺部は、W,Mo,Ta,Nb,およびCrから選択される少なくとも一種と、Tiと、を含むTi複合化合物を主成分とする。芯部の平均粒径をα、周辺部の平均粒径(即ち、有芯構造の硬質相粒子の平均粒径)をβとしたとき、1.1≦β/α≦1.7を満たす。そして、サーメットに含まれる硬質相粒子の平均粒径が1.0μm超である。
  上記式を満たす有芯構造の硬質相粒子は、熱伝導率が芳しくない周辺部が薄く、熱伝導率に優れる。そのため、このような有芯構造の硬質相粒子を備えるサーメットは、従来のサーメットよりも熱伝導率に優れ、内部に熱が籠もり難く、熱的損傷が生じ難いので耐欠損性に優れる。特に、サーメットの硬質相粒子の70%以上が上記式を満たす有芯構造の硬質相粒子から形成される場合において、硬質相粒子全体の平均粒径が1.0μm超の場合、平均粒径が1μm以下の場合よりも靱性が大きく、ひいては耐欠損性に特に優れる。
これは、平均粒径が一定以上の大きさであることで、サーメットに亀裂が生じた場合でもその伝播が抑制されるためと考えられる。
  また、本発明者らは、上記の検討の際に、硬質相粒子の平均粒径が同程度の場合、上記式を満たさないものは上記式を満たすものと比べて硬度が劣る傾向にあるとの知見も得た。これは、周辺部は芯部よりも低硬度であるからと考えられる。つまり、上記式を満たさないものは硬度の低い周辺部が厚いことで、硬度が劣る傾向にあると考えられる。一方、上述したように、上記式を満たすサーメットは硬質相粒子における周辺部が薄く、周辺部よりも硬度の高い芯部が占める割合が大きい。したがって、硬質相粒子の平均粒径が同程度の場合、上記式を満たすものは上記式を満たさないものよりも硬度が高くなり、ひいては耐摩耗性にも優れたサーメットとなると期待される。
    ≪硬質相粒子≫
  全硬質相粒子のうち、有芯構造を有する硬質相粒子の割合は70%以上である。有芯構造ではない硬質相粒子は、周辺部を殆ど有さない硬質相粒子、即ちTi炭化物粒子や、Ti窒化物粒子、Ti炭窒化物粒子などである。硬質相粒子全体に占める有芯構造を有する硬質相粒子の割合は90%以上であることが、サーメットの焼結性を維持する上で好ましい。
  有芯構造を有する硬質相粒子の芯部は、Ti炭化物、Ti窒化物、およびTi炭窒化物の少なくとも一つを主成分とする。即ち、芯部は実質的にこれらTi化合物で構成される。その故、芯部におけるTiの含有量は50質量%以上となる。
  一方、有芯構造を有する硬質相粒子の周辺部は、Ti複合化合物(=W,Mo,Ta,Nb,およびCrから選択される少なくとも一種と、Tiと、を含む化合物)を主成分とする。即ち、周辺部は実質的にTi複合化合物で構成される。その故、周辺部におけるW,Mo,Ta,Nb,Crの合計含有量は50質量%以上となる。
  ここで、本明細書における芯部の平均粒径α(μm)と、周辺部の平均粒径β(μm)は、サーメットの断面を画像解析し、断面画像中の水平方向のferet径と垂直方向のferet径の平均値とする。具体的には、断面画像中の少なくとも200個以上の有芯構造を有する硬質相粒子のそれぞれについて水平方向のferet径と垂直方向のferet径を測定する。そして、各硬質相粒子の両feret径の平均値を合算して、測定粒子数で除する。このようにして求めたβ/αが1.1以上、1.7以下であると、周辺部の厚さが、硬質相粒子と結合相との濡れ性を向上させる程度には厚いが、硬質相粒子の熱伝導率を大幅に低下させるほどには厚くない状態にあると言える。このβ/αの好ましい範囲は、1.3以上、1.5以下である。なお、周辺部の平均粒径βは、有芯構造を備える硬質相粒子の平均粒径に等しい。
  有芯構造の硬質相粒子を含む硬質相粒子全体の平均粒径が1.0μm超であることで、靱性を大きくすることができ、ひいては耐欠損性の高いサーメットとできる。平均粒径の好ましい値は1.1μm以上、さらに好ましくは1.4μm以上である。硬質相粒子全体の平均粒径は、全硬質相粒子の数が200個以上含まれる断面画像より求めることができる。全硬質相粒子の数は、上記断面画像中の有芯構造を備える硬質相粒子の粒子数と断面画像中の有芯構造ではない硬質相粒子の粒子数との合計である。両硬質相粒子の粒径は、それぞれ水平方向のferet径と垂直方向のferet径との平均値とする。すべての硬質相粒子の粒径を合算して、測定粒子数で除することで硬質相粒子の平均粒径を求めることができる。
    ≪結合相≫
  結合相は、NiおよびCoの少なくとも一方を含み、上記硬質相粒子を結合させる。結合相は実質的にNiおよびCoの少なくとも一方で構成されているが、硬質相粒子の成分(Ti,W,Mo,Cr,C,N)や、不可避的な成分を含んでいても良い。
    ≪サーメットの熱伝導率≫
  本発明の一態様に係るサーメットでは、硬質相粒子の熱伝導率が改善されたことによって、サーメットの熱伝導率が従来よりも改善されている。サーメットの好ましい熱伝導率は20W/m・K以上である。
  <2>本発明の一態様に係るサーメットとして、サーメットに含まれる硬質相粒子の平均粒径が5.0μm以下である形態を挙げることができる。
  有芯構造の硬質相粒子を含む硬質相粒子全体の平均粒径が5.0μm以下であることで、高い耐欠損性を備えると同時に、硬度不足による摩耗の進行が抑制されたサーメットとできると期待される。硬質相粒子全体の平均粒径は、3.0μm以下が好ましく、2.0μm以下がさらに好ましい。良好な耐欠損性を維持しつつ、硬度不足による摩耗の進行をさらに抑制できると期待されるからである。
  <3>本発明の一態様に係るサーメットとして、サーメット全体におけるTiの含有量が50質量%以上、70質量%以下、W,Mo,Ta,Nb,Crの合計含有量が15質量%以上、30質量%以下、Co,Niの合計含有量が15質量%以上、20質量%以下である形態を挙げることができる。
  上記元素を所定量含有したサーメットは、有芯構造を備える硬質相粒子の芯部と周辺部、および結合相のバランスが良く、靱性や耐凝着性に優れる。例えば、周辺部を構成するTi複合化合物に含まれるW,Mo,Ta,Nb,Crの合計含有量が15質量%以上であれば、サーメットにおける周辺部の絶対量が十分となるため、サーメットの焼結性が向上する。その結果、サーメットの靱性が向上する傾向にある。また、W,Mo,Ta,Nb,Crの合計含有量が30質量%以下であると、サーメットにおいて、これらの元素を含む非有芯構造の硬質相粒子(例えば、WC)の増加が抑制され、サーメットの耐凝着性の低下を抑制できる。
  <4>本発明の一態様に係る切削工具は、本発明の一態様に係るサーメットを基材として用いた切削工具である。
  本発明の一態様に係るサーメットは、耐欠損性に特に優れる。よって、高速切削や断続切削等の耐欠損性が特に要求される切削に用いられる切削工具の基材として好適である。
また、本発明の一態様に係るサーメットは、高い耐欠損性を備えると同時に耐摩耗性にも優れるので、切削工具の基材として好適である。切削工具の形態は特に限定されず、例えば刃先交換型の切削チップや、ドリル、リーマなどを挙げることができる。
  <5>本発明の一態様に係る切削工具として、基材の表面の少なくとも一部に被覆された硬質膜を備える形態を挙げることができる。
  硬質膜は、基材における刃先となる部分とその近傍に被覆されていることが好ましく、基材の表面全体に被覆されていても良い。基材に硬質膜を形成することで、基材の靱性を維持したまま、耐摩耗性を向上させることができる。また、基材に硬質膜を形成することで、基材の刃先にチッピングが生じ難くなることから、被削材の仕上げ面の状態を良好にすることができる。
  上記硬質膜は1層でも多層でも良く、合計厚さは1μm以上、20μm以下であることが好ましい。
  硬質膜の組成は、周期律表第IV,V,VI族の金属、アルミニウム(Al)、およびシリコン(Si)から選択される1種以上の元素の炭化物、窒化物、酸化物、ホウ化物、およびこれらの固溶体を挙げることができる。例えば、Ti(C,N)、Al、(Ti,Al)N、TiN、TiC、(Al,Cr)Nなどをあげることができる。その他、立方晶窒化ホウ素(cBN)や、ダイヤモンドライクカーボンなども、硬質膜の組成として好適である。このような硬質膜は、化学的蒸着法(CVD)や物理的蒸着法(PVD)などの気相法により形成することができる。
[本発明の実施形態の詳細]
  本発明の実施形態に係るサーメットについて説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
<サーメットの製造方法>
  本発明の実施形態に係るサーメットは、例えば、以下に示す準備工程と、混合工程と、成形工程と、焼結工程と、を備える製造方法により製造することができる。
・準備工程…Ti炭化物、Ti窒化物、およびTi炭窒化物の少なくとも一種を含む第一の硬質相原料粉末と、W,Mo,Ta,Nb,およびCrから選択される少なくとも一種を含む第二の硬質相原料粉末と、CoおよびNiの少なくとも一方を含む結合相原料粉末と、を用意する。第一の硬質相原料粉末の平均粒径は1.0μm超である。
・混合工程…第一の硬質相原料粉末と、第二の硬質相原料粉末と、結合相原料粉末と、をアトライターによって混合する。ここで、この混合工程におけるアトライターの周速は100m/min以上、400m/min以下で、混合時間は0.1時間以上、5時間以下である。
・成形工程…混合工程を経て得られた混合原料を成形する。
・焼結工程…成形工程で得られた成形体を焼結する。
  上記の製造方法の特徴の一つは、原料粉末の混合にアトライターを使用し、かつ所定の周速で短時間の混合を行なうこと、および、第一の硬質相原料粉末の平均粒径が1.0μm超であることである。そうすることで、有芯構造の硬質相粒子において、芯部の外周に形成される周辺部の形成状態を適度な状態とすることができると共に、硬質相粒子全体の平均粒径を1.0μm超とすることができる。即ち、〔1〕周辺部の厚さを、硬質相粒子と結合相との濡れ性を向上させる程度には厚いが、有芯構造の硬質相粒子の熱伝導率を大幅に低下させるほどには厚くない状態とすることができる、〔2〕硬質相粒子全体の粒径を靱性に優れた大きさ(1.0μm超)とすることができる。
  《準備工程》
  上記製造方法における準備工程では、第一の硬質相原料粉末と、第二の硬質相原料粉末と、結合相原料粉末と、を用意する。各原料粉末の配合割合は、目的とするサーメットの特性に応じて適宜選択することができる。代表的には、第一の硬質相原料粉末:第二の硬質相原料粉末は、質量比で50:30以上、70:20以下、これら硬質相原料:結合相原料粉末は、80:20以上、90:10以下とすると良い。
  第一の硬質相原料粉末の平均粒径は、1.0μm超、5.0μm以下とでき、1.2μm以上、1.8μm以下、1.4μm以上、1.6μm以下とすることもできる。第二の硬質相原料粉末の平均粒径は、0.5μm以上、3.0μm以下が好ましく、2.0μm以下、さらには1.0μm以下としてもよい。結合相原料粉末の平均粒径は、0.5μm以上、3.0μm以下が好ましく、2.0μm以下、さらには1.0μm以下としてもよい。ここで、原料粉末の平均粒径は、サーメットにおける硬質相粒子の平均粒径と異なり、フィッシャー法により求めた粒径である。原料粉末を構成する各粒子は、後述する混合工程、成形工程を経て粉砕され、変形する。
  《混合工程》
  上記製造方法における混合工程では、第一の硬質相原料粉末と、第二の硬質相原料粉末と、結合相原料粉末と、をアトライターで混合する。この混合時には必要に応じて成形助剤(例えば、パラフィン)を添加しても良い。
  アトライターは、回転軸と、その回転軸の周方向に突出する複数の撹拌棒と、を備える混合機である。そのアトライターの周速(回転速度)は100m/min以上、400m/min以下、混合時間は0.1時間(=6分)以上、5時間以下とする。周速および混合時間が共に規定範囲の下限値以上であれば、原料粉末の混合が十分となって、サーメット中に結合相溜まりや凝集相の形成を抑制でき、またサーメットにおける有芯構造の硬質相粒子の割合を70%以上とすることができる。一方、周速および混合時間が規定範囲の上限値以下であれば、サーメットの有芯構造の硬質相粒子において周辺部の厚みが厚くなり過ぎることを回避できる。混合条件の好ましい値は、アトライターの周速=100m/min以上、250m/min以下、混合時間=0.1時間以上、1.5時間以下である。この理由は、〔1〕原料粉末が過度に粉砕されず、硬質相粒子の平均粒径が1.0μm超のサーメットを製造しやすいと期待される、〔2〕熱伝導率、および靱性のそれぞれをより高めることができるからである。なお、アトライターによる混合は、超硬合金製のボール状メディアを利用して行なっても良いし、メディアレスで行なっても良い。
  《成形工程》
  上記製造方法における成形工程では、金型内に混合粉末(第一の硬質相原料粉末+第二の硬質相原料粉末+結合相原料粉末+必要に応じて成形助剤)を充填し、混合粉末を金型内でプレスする。そのプレス圧力は、原料粉末の組成によって適宜変更することが好ましいが、概ね50MPa以上、250MPa以下とすると良い。より好ましいプレス圧力は90MPa以上、110MPa以下である。
  《焼結工程》
  上記製造方法における焼結工程では、段階的な焼結を行なうことが好ましい。例えば、成形助剤の除去期間、第一加熱期間、第二加熱期間、保持期間、および冷却期間を有する焼結を行なうことが挙げられる。成形助剤の除去期間は、成形助剤の揮発温度まで昇温する期間のことで、例えば350℃以上、500℃以下まで加熱する。次の第一加熱期間では真空雰囲気にて1200℃以上、1300℃以下程度まで成形体を加熱する。続く第二加熱期間では、0.4kPa以上、3.3kPa以下の窒素雰囲気にて1300℃以上、1600℃以下程度まで成形体を加熱する。保持期間では、第二加熱期間の最終温度で1時間以上、2時間以下、成形体を保持する。冷却期間では、窒素雰囲気にて室温まで成形体を冷却する。
[試験例]
<試験例1>
  サーメットでできた切削工具を実際に作製し、サーメットの組成、組織および切削工具の切削性能を調べた。
  《試料1~7の作製》
  試料の作製は、準備工程→混合工程→成形工程→焼結工程の順に行なった。以下、各工程を詳細に説明する。なお、これらの工程のうち、準備工程と混合工程が特徴の一つである。
    〔準備工程〕
  第一の硬質相原料粉末として、TiCN粉末とTiC粉末とを用意し、第二の硬質相原料粉末として、WC粉末とMoC粉末とNbC粉末とTaC粉末とCr粉末とを用意し、結合相原料粉末として、Co粉末とNi粉末とを用意した。そして、表1に示す質量割合で第一の硬質相原料粉末と、第二の硬質相原料粉末と、結合相原料粉末と、を混合した。用意した各粉末の平均粒径は、TiCN:1.2μm、TiC:1.2μm、WC:1.2μm、MoC:1.2μm、NbC:1.0μm、TaC:1.0μm、Cr:1.4μm、Co:1.4μm、Ni:2.6μmである。ここでの平均粒径は、フィッシャー法によって測定した粒径である。
    〔混合工程〕
  表1に示す質量割合となるように配合した原料粉末と、溶媒であるエタノールと、成形助剤であるパラフィンと、をアトライターによって混合し、スラリー状の混合原料を作製した。パラフィンの配合量は、全体の2質量%とした。また、アトライターによる混合条件は、周速250m/minで1.5時間とした。原料粉末のスラリーから溶媒を揮発させて、混合粉末を得た。
    〔成形工程〕
  作製した混合粉末を金型内に充填し、98MPaの圧力でプレス成形した。成形体の形状は、ISO規格のSNG432形状であった。
    〔焼結工程〕
  SNG432形状の成形体を焼結した。具体的には、まず成形体を370℃まで加熱し、成形助剤であるパラフィンを除去した。次いで、真空雰囲気にて1200℃まで成形体を昇温した。そして、3.3kPaの窒素雰囲気にて1520℃まで成形体を昇温した後、1520℃で1時間、成形体を保持した。その後、真空雰囲気で1150℃まで冷却し、その後、窒素雰囲気にて室温まで加圧冷却を行ない、焼結体(サーメット)を得た。
  《試料21~29の作製》
  (試料21~28)
  試料21~28の作製手順は、以下の点を除いて試料1~7と同一である。
・第一の硬質相原料粉末として用意したTiCNの平均粒径が0.7μmである。
・原料粉末の割合(その割合については表1に示す)。
  (試料29)
  試料29の作製手順も、以下の点を除いて試料1~7と同一である。
・第一の硬質相原料粉末として用意したTiCNの平均粒径が1.0μmである。
・上記のTiCNの粒度分布幅が他の試料に用いたTiCNのそれよりも広い
・原料粉末の割合(その割合については表1に示す)
・周速=200m/min、混合時間=15時間の条件で、アトライターを用いて原料粉末の混合を行なった。
  《試料の特性の測定》
  作製した試料1~7,21~29のサーメットについて、構造・組成・熱伝導率・靱性・硬度を測定した。構造にかかるβ/α(定義については後述する)、硬質相粒子の平均粒径、熱伝導率、靱性、および硬度については、原料粉末の割合と共に表1に示す。
  ≪硬質相粒子の構造・組成の測定≫
  各試料のサーメットの断面をSEM-EDX装置を用いて調べた(SEM…Scanning  Electron  Microscope、EDX…Energy-dispersive  X-ray  Spectroscopy)。SEM-EDX装置によって得られたSEM写真を観察した結果、全ての試料において、視野内の硬質相粒子の70%以上が、芯部とその外周に形成される周辺部とを備える有芯構造となっていた。代表して、試料1のサーメットのSEM写真を図1に示す。図中の黒色部分は有芯構造を備える硬質相粒子の芯部、灰色部分は有芯構造を備える硬質相粒子の周辺部、白色部分は結合相である。有芯構造でない硬質相粒子として、黒色部分または灰色部分だけで一つの粒子として表されるものもある。
  また、EDX測定の結果、有芯構造を備える硬質相粒子の芯部は、実質的にTi炭窒化物(試料5,25ではTiCも含む)で構成され、当該芯部におけるTiの含有量は50質量%以上であった。さらに、EDX測定の結果、有芯構造を備える硬質相粒子の周辺部はTiを含む炭窒化物の固溶体(Ti複合化合物)で構成され、その周辺部におけるW,Mo,Ta,Nb,およびCrの合計含有量は50質量%以上であった。
  なお、サーメット全体における各元素の含有量は、混合原料における各元素の含有量に等しい。そのため、各試料におけるTiの含有量は50質量%以上、70質量%以下の範囲内にあり、W,Mo,Ta,Nb,Crの合計含有量は15質量%以上、35質量%以下の範囲内にあり、Co,Niの合計含有量は15質量%以上、20質量%以下の範囲内にある。
  また、SEM像(10000倍)と、画像解析装置:Mac-VIEW(株式会社マウンテック製)とを用いて、各試料の芯部の平均粒径α(μm)と、周辺部の平均粒径β(μm)とを求めた(周辺部の平均粒径は、有芯構造を備える硬質相粒子の平均粒径に等しい)。有芯構造を備える硬質相粒子の平均粒径は、各試料における200個以上の有芯構造を有する硬質相粒子について、それぞれの水平方向のferet径と垂直方向のferet径とを測定して平均値を算出し、各有芯構造を備える硬質相粒子の平均値を合算して、測定粒子数で除することで求めた。次いで、硬質相粒子における周辺部の薄さの指標であるβ/αを計算により求めた。β/αが大きいということは、相対的に周辺部が厚いということであり、β/αが小さいということは、相対的に周辺部が薄いということである。
  なお、有芯構造を備える硬質相粒子の芯部と周辺部とは、画像解析ソフトの自動解析条件を以下のように設定したローカット処理によって区別した。ローカット色域における数値は、対象とする色が白と黒のどちらに近いかを示しており、値が小さい方が黒に近い。
ローカット指定値よりも小さい部分(即ち、より黒に近い部分)を粒子として認識する。
・検出モード:色差、許容誤差:32、走査密度:7、検出確度:0.7
・芯部測定時のローカット指定値:50~100
・周辺部測定時のローカット指定値:150~200
  但し、有芯構造を備える硬質相粒子の芯部と周辺部のローカット指定値の差は100で固定する。
  硬質相粒子の平均粒径(各表中では、硬質相粒径として示す)は、上記SEM像中の全硬質相粒子の粒子数(200個以上)と各硬質相粒子の粒径とから求めた。各硬質相粒子の粒径は、上記同様の条件の画像解析装置を用いて求めた。
  ≪熱伝導率の測定≫
  各試料の熱伝導率(W/m・K)は、比熱×熱拡散率×密度によって算出した。比熱および熱拡散率は、アルバック理工株式会社製TC-7000を用いたレーザーフラッシュ法にて測定した。また、密度は、アルキメデス法によって求めた。なお、市販のサーマルマイクロスコープにて熱浸透率を測定し、示差走査熱量測定(DSC)を用いて比熱を測定することで、熱浸透率=(熱伝導率×密度×比熱)1/2の式から、熱伝導率を算出することができる。
  ≪靱性および硬度の測定≫
  靱性(MPa・m1/2)、および硬度(GPa)はそれぞれ、JIS  R1607、およびJIS  Z2244に従って求めた。
  ≪測定結果のまとめ≫
  表1の結果から、原料粉末の混合時間が5時間以下である試料1~28は、原料粉末の混合時間が10時間を超える試料29に比べて、熱伝導率、靱性、および硬度の点で優れる傾向にあることがわかった。熱伝導率の点で優れている理由は、試料1~28における硬質相粒子のβ/αが1.1以上、1.7以下の範囲にあり、試料29における硬質相粒子のβ/αが2.0超である(即ち、試料1~7の硬質相粒子の周辺部の厚さが、試料29のそれに比べて薄い)からであると考えられる。試料1~7、21、22、および試料24~28が試料29に比べて靱性の点で優れる傾向にある理由は、試料29に使用したTiCNは、平均粒径自体は大きいものの粒度分布幅が広いことで、サーメットの組織が不均一になったためと考えられる。また、平均粒径が試料29の1/3以下である試料23、24も、試料29と同等の靱性を備えている。試料1~28が試料29に比べて硬度の点で優れている理由は、試料1~28は試料29に比べて、〔1〕周辺部よりも硬度の高い芯部が占める割合が大きいこと、〔2〕硬質相粒子の平均粒径が小さいこと、に起因していると考えられる。
  表1の結果から、試料1の靱性は、用いたTiCN粉末の平均粒径が異なり、それ以外の原料粉末や組成、および製造方法が共通する試料21の靱性に比べて高い値となっている。同様のことが、上記の試料1と試料21とのようにそれぞれ対応する関係にある試料2~7と試料22~27とを比較することからいえる。これより、硬質相粒子の粒径が1.0μm超であると耐欠損性に優れたサーメットとできると期待される。一方、試料21~28の硬度は、試料1~7の硬度に比べて高い傾向にあった。それは、試料21~28は硬質相粒子の粒径が小さい(1.0μm以下)ためであると考えられる。
Figure JPOXMLDOC01-appb-T000001
  《切削試験》
  次に、一部の試料を用いて切削工具を作製し、作製した切削工具で実際に切削試験を行なった。切削試験は、疲労靱性試験である。これは、チップの刃先に欠損が生じるまでの衝突回数、即ちチップの寿命に関連する評価である。
  試料1,6,21,29のサーメットに研削加工(平面研磨)を施した後、刃先処理加工を施してチップを得た。そして、そのチップをバイトの先端に固定し、切削工具を得た。得られた切削工具を用いて表2に示す条件で旋削加工を行ない、切削性能を調べた。その結果および表1に記載した各試料の条件を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
  表3に示すように、試料29に比べて硬質相粒子の周辺部が薄い試料1,6,21を用いた切削工具は、刃先が高温となる断続切削(切削速度=100m/min以上)を行なった場合でも、耐欠損性に優れることが判った。試料1,6,21を用いた切削工具が試料29に比べて優れた耐欠損性を有していた理由は、熱伝導率が低い周辺部が少なく、硬質相粒子の熱伝導率が高いからであると考えられる。硬質相粒子の熱伝導率が高いと、切削時に生じた刃先の熱を外部に逃がし易く、刃先およびその近傍に熱が籠ることを抑制できると推察される。
  硬質相粒子の平均粒径が1.0μm超である試料1,6は、硬質相粒子の平均粒径が1.0μm以下である試料21に比べて優れた耐欠損性を備えることが判る。これは、硬質相粒子の平均粒径が大きいことで、結合相と硬質相との間で亀裂が進展し難く、そのために靱性が高いためと推察される。試料29より、硬質相粒子の平均粒径が2.0μm超と大きくとも、β/αが2.0を超えてしまうと、耐欠損性に劣ることが判る。これは、上述したように、周辺部が厚いことにより靱性が低いこと、および熱伝導率が低いことに起因していると考えられる。
<試験例2>
  試験例2では、サーメットの組織や切削性能に及ぼす混合工程の影響を調べた。
  まず、混合工程のアトライターの周速および混合時間以外は、試験例1の試料1と全く同じ条件(原料の混合割合も試料1と同じ)で、サーメットでできた切削工具(試料8~10、30)を作製した。試料8~10、30の混合条件は以下の通りであった。
・試料8…アトライターの周速=100m/min、混合時間=0.1時間
・試料9…アトライターの周速=250m/min、混合時間=5.0時間
・試料10…アトライターの周速=400m/min、混合時間=5.0時間
・試料30…アトライターの周速=250m/min、混合時間=15.0時間
  次いで、試験例1と同様の手法により、各試料の『硬質相粒子の平均粒径』、『β/α』、『熱伝導率』、『靱性』、および『硬度』を測定した。その結果を表4に示す。なお、試験例1の試料1の結果も表4に合わせて示す。
Figure JPOXMLDOC01-appb-T000004
  表4に示すように、アトライターの周速を大きくしたり、混合時間を長くしたりすることで、β/αの値が大きくなる傾向があることが明らかになった。特に、アトライターの周速を100m/min~250m/min前後とし、かつ混合時間を0.1時間~5時間前後、特に0.1時間~1.5時間前後とすることで、靱性に優れ、かつ耐溶着性の向上に寄与する熱伝導率が高いことで耐欠損性に優れる切削工具(サーメット)を得られることが判った。また、このようにして得られた切削工具(サーメット)は、硬質相粒子の平均粒径が大きいにもかかわらず、一定の硬度をも備えることが判った。試料30の硬度が他の試料と同程度であるのは、硬質相粒子の平均粒径が各試料の中で最も小さいためであると考えられる。
  本発明のサーメットは、切削工具の基材として好適に利用することができる。特に、耐欠損性が要求される切削工具の基材として好適に利用することができる。

Claims (5)

  1.   Tiを含む硬質相粒子と、NiおよびCoの少なくとも一方を含む結合相と、を備えるサーメットであって、
      全硬質相粒子のうちの70%以上の硬質相粒子が、芯部とその外周に形成される周辺部とを有する有芯構造を備え、
      前記芯部は、Ti炭化物、Ti窒化物、およびTi炭窒化物の少なくとも一つを主成分とし、
      前記周辺部は、W,Mo,Ta,Nb,およびCrから選択される少なくとも一種と、Tiと、を含むTi複合化合物を主成分とし、
      前記芯部の平均粒径をα、前記周辺部の平均粒径をβとしたとき、1.1≦β/α≦1.7を満たし、
      サーメットに含まれる前記硬質相粒子の平均粒径が1.0μm超であるサーメット。
  2.   サーメットに含まれる前記硬質相粒子の平均粒径が5.0μm以下である請求項1に記載のサーメット。
  3.   サーメット全体において、
        Tiの含有量が50質量%以上、70質量%以下、
        W,Mo,Ta,Nb,Crの合計含有量が15質量%以上、30質量%以下、
        Co,Niの合計含有量が15質量%以上、20質量%以下である請求項1または請求項2に記載のサーメット。
  4.   請求項1~請求項3のいずれか1項に記載のサーメットを基材として用いた切削工具。
  5.   前記基材の表面の少なくとも一部に被覆された硬質膜を備える請求項4に記載の切削工具。
PCT/JP2015/050303 2014-04-10 2015-01-08 サーメット、および切削工具 WO2015156005A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157034893A KR101743862B1 (ko) 2014-04-10 2015-01-08 서멧 및 절삭 공구
EP15776517.3A EP3130686B1 (en) 2014-04-10 2015-01-08 Cermet and cutting tool
CN201580000991.6A CN105283570B (zh) 2014-04-10 2015-01-08 金属陶瓷和切削工具
US14/897,206 US9850557B2 (en) 2014-04-10 2015-01-08 Cermet and cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-081459 2014-04-10
JP2014081459A JP5807851B1 (ja) 2014-04-10 2014-04-10 サーメット、および切削工具

Publications (1)

Publication Number Publication Date
WO2015156005A1 true WO2015156005A1 (ja) 2015-10-15

Family

ID=54287587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050303 WO2015156005A1 (ja) 2014-04-10 2015-01-08 サーメット、および切削工具

Country Status (6)

Country Link
US (1) US9850557B2 (ja)
EP (1) EP3130686B1 (ja)
JP (1) JP5807851B1 (ja)
KR (1) KR101743862B1 (ja)
CN (1) CN105283570B (ja)
WO (1) WO2015156005A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024096134A1 (ja) * 2022-11-03 2024-05-10 冨士ダイス株式会社 軽量硬質合金及び軽量硬質合金部材

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007224A2 (en) 2014-05-16 2016-01-14 Powdermet, Inc. Heterogeneous composite bodies with isolated cermet regions formed by high temperature, rapid consolidation
JP6439975B2 (ja) * 2015-01-16 2018-12-19 住友電気工業株式会社 サーメットの製造方法
JP6812984B2 (ja) * 2015-11-02 2021-01-13 住友電気工業株式会社 硬質合金および切削工具
EP3453776B1 (en) * 2016-05-02 2020-06-24 Sumitomo Electric Industries, Ltd. Cemented carbide and cutting tool
US11214853B2 (en) 2016-08-22 2022-01-04 Sumitomo Electric Industries, Ltd. Hard material and cutting tool
KR101963655B1 (ko) 2017-06-12 2019-04-01 주식회사 웨어솔루션 써멧 분말조성물 및 이를 이용한 써멧 및 써멧 라이닝 플레이트
JP7020477B2 (ja) * 2018-05-15 2022-02-16 住友電気工業株式会社 サーメット、それを含む切削工具およびサーメットの製造方法
CN109457162B (zh) 2018-12-29 2020-03-06 重庆文理学院 一种Ti(C,N)基超硬金属复合材料及其制备方法
CN115298337A (zh) * 2020-03-25 2022-11-04 京瓷株式会社 刀片和具备它的切削刀具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254131A (ja) * 1989-03-28 1990-10-12 Toshiba Tungaloy Co Ltd 窒素含有サーメット及びその製造方法並びに被覆窒素含有サーメット
JP2001525888A (ja) * 1997-05-13 2001-12-11 トス、リチャード・エドモンド タフコートされた硬い粉末およびその焼結製品
JP2004292842A (ja) * 2003-03-25 2004-10-21 Tungaloy Corp サーメット
JP2006131975A (ja) * 2004-11-08 2006-05-25 Sumitomo Electric Hardmetal Corp 鋸刃用サーメット
JP2011200972A (ja) * 2010-03-25 2011-10-13 Kyocera Corp 切削工具

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE329799B (ja) * 1969-02-07 1970-10-19 Nordstjernan Rederi Ab
SE467257B (sv) * 1989-06-26 1992-06-22 Sandvik Ab Sintrad titanbaserad karbonitridlegering med duplexa strukturer
JPH06172913A (ja) 1991-03-27 1994-06-21 Hitachi Metals Ltd 炭化チタン基サーメット合金
SE470481B (sv) 1992-09-30 1994-05-24 Sandvik Ab Sintrad titanbaserad karbonitridlegering med hårdämnen med kärna-bård-struktur och sätt att tillverka denna
ES2157383T3 (es) * 1996-07-18 2001-08-16 Mitsubishi Materials Corp Hoja de corte de cerametal de carbonitruro de titanio y hoja de corte de cerametal revestida.
ATE441737T1 (de) * 2000-12-28 2009-09-15 Kobe Steel Ltd Target zur bildung einer hartschicht
KR100528046B1 (ko) * 2003-08-26 2005-11-15 한국과학기술연구원 균일한 고용체 입자구조를 갖는 초미세 결정립 서메트제조 방법
JP5127110B2 (ja) * 2004-01-29 2013-01-23 京セラ株式会社 TiCN基サーメットおよびその製造方法
US7736582B2 (en) 2004-06-10 2010-06-15 Allomet Corporation Method for consolidating tough coated hard powders
JP4695960B2 (ja) 2005-10-18 2011-06-08 日本特殊陶業株式会社 サーメット製インサート及び切削工具
JP4569767B2 (ja) * 2005-06-14 2010-10-27 三菱マテリアル株式会社 高熱発生を伴なう高速切削加工ですぐれた耐摩耗性を発揮する炭窒化チタン基サーメット製スローアウエイチップ
WO2006134936A1 (ja) * 2005-06-14 2006-12-21 Ngk Spark Plug Co., Ltd. サーメット製インサート及び切削工具
JP2010031308A (ja) 2008-07-25 2010-02-12 Sumitomo Electric Ind Ltd サーメット
JP4974980B2 (ja) 2008-08-25 2012-07-11 京セラ株式会社 TiCN基サーメット
WO2011136197A1 (ja) * 2010-04-26 2011-11-03 株式会社タンガロイ サーメットおよび被覆サーメット
WO2012086839A1 (ja) 2010-12-25 2012-06-28 京セラ株式会社 切削工具
JP5807850B2 (ja) 2013-06-10 2015-11-10 住友電気工業株式会社 サーメット、サーメットの製造方法、および切削工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254131A (ja) * 1989-03-28 1990-10-12 Toshiba Tungaloy Co Ltd 窒素含有サーメット及びその製造方法並びに被覆窒素含有サーメット
JP2001525888A (ja) * 1997-05-13 2001-12-11 トス、リチャード・エドモンド タフコートされた硬い粉末およびその焼結製品
JP2004292842A (ja) * 2003-03-25 2004-10-21 Tungaloy Corp サーメット
JP2006131975A (ja) * 2004-11-08 2006-05-25 Sumitomo Electric Hardmetal Corp 鋸刃用サーメット
JP2011200972A (ja) * 2010-03-25 2011-10-13 Kyocera Corp 切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3130686A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024096134A1 (ja) * 2022-11-03 2024-05-10 冨士ダイス株式会社 軽量硬質合金及び軽量硬質合金部材
JP7508155B1 (ja) 2022-11-03 2024-07-01 冨士ダイス株式会社 軽量硬質合金の製造方法

Also Published As

Publication number Publication date
EP3130686A4 (en) 2017-05-31
JP5807851B1 (ja) 2015-11-10
EP3130686B1 (en) 2019-08-21
US9850557B2 (en) 2017-12-26
KR20160006213A (ko) 2016-01-18
KR101743862B1 (ko) 2017-06-05
CN105283570B (zh) 2017-05-03
EP3130686A1 (en) 2017-02-15
CN105283570A (zh) 2016-01-27
JP2015203118A (ja) 2015-11-16
US20160130687A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP5807851B1 (ja) サーメット、および切削工具
JP5807850B2 (ja) サーメット、サーメットの製造方法、および切削工具
JP6703757B2 (ja) サーメット、及び切削工具
JP4690475B2 (ja) サーメット及び被覆サーメット工具
KR102452868B1 (ko) 초경합금 및 절삭 공구
WO2017191744A1 (ja) 超硬合金、及び切削工具
WO2019116614A1 (ja) 超硬合金及び切削工具
JP7388431B2 (ja) 超硬合金及びそれを基材として含む切削工具
JP2010234519A (ja) サーメットおよび被覆サーメット
JP7392423B2 (ja) 超硬合金及びそれを基材として含む切削工具
JP5534567B2 (ja) 硬質材料、及び切削工具
JP2012041595A (ja) サーメット
JP7517483B2 (ja) 超硬合金及びそれを基材として含む切削工具
WO2022172729A1 (ja) 超硬合金及びそれを基材として含む切削工具
JP7473871B2 (ja) 耐摩耗性および耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP6459106B1 (ja) 超硬合金及び切削工具
WO2016114190A1 (ja) サーメット、切削工具、及びサーメットの製造方法
JP6278232B2 (ja) サーメット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000991.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776517

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015776517

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015776517

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157034893

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE