WO2015155947A1 - Integrated air conditioner - Google Patents

Integrated air conditioner Download PDF

Info

Publication number
WO2015155947A1
WO2015155947A1 PCT/JP2015/001723 JP2015001723W WO2015155947A1 WO 2015155947 A1 WO2015155947 A1 WO 2015155947A1 JP 2015001723 W JP2015001723 W JP 2015001723W WO 2015155947 A1 WO2015155947 A1 WO 2015155947A1
Authority
WO
WIPO (PCT)
Prior art keywords
outside air
air
indoor air
housing
flow path
Prior art date
Application number
PCT/JP2015/001723
Other languages
French (fr)
Japanese (ja)
Inventor
杉尾 孝
博基 長谷川
米澤 勝
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580017540.3A priority Critical patent/CN106133451B/en
Publication of WO2015155947A1 publication Critical patent/WO2015155947A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/029Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by the layout or mutual arrangement of components, e.g. of compressors or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/028Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by air supply means, e.g. fan casings, internal dampers or ducts
    • F24F1/0287Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by air supply means, e.g. fan casings, internal dampers or ducts with vertically arranged fan axis

Definitions

  • the present invention relates to an outdoor air heat exchanger that exchanges heat with outside air, and an integrated air conditioner in which a heat exchanger for indoor air that exchanges heat with room air is housed in one housing.
  • the integrated air conditioner has a housing that is arranged outdoors. Inside the housing are housed an outside air heat exchanger that exchanges heat with the outside air, and an indoor air heat exchanger that is connected to the outside air heat exchanger via a refrigerant pipe and exchanges heat with the room air.
  • the casing also contains an outdoor air fan that generates a flow of outside air that passes through the heat exchanger for outdoor air, and an indoor air fan that generates a flow of room air that passes through the indoor air exchanger. Yes.
  • Such an integrated air conditioner is formed in the wall of a building such as a residence that separates the outside from the room, in the vicinity of the suction hole and the blowout hole in the shape of a through hole, that is, in the state of being close to the outer surface of the wall. Installed.
  • the integrated air conditioner sucks room air through the suction duct connected to the suction hole, and blows the room air after heat exchange with the indoor heat exchanger to the blowout hole. It blows out indoors through.
  • an outside air intake port for taking outside air into the housing via an outside air fan, and outside air for discharging outside air after heat exchange with the outside air heat exchanger
  • at least one of the discharge ports is formed.
  • the integrated air conditioner and the wall of the building such as a residence do not harmonize in design due to at least one of the outside air intake port and the outside air discharge port, and the design of the building may be impaired.
  • the circular outside air intake port causes the building to There is a possibility that the design of the.
  • the design of the building may be impaired by the two ducts that connect the integrated air conditioner to the suction holes and the blowout holes of the wall.
  • This invention provides the integrated air conditioner which suppresses that the design of a building is impaired.
  • An integrated air conditioner that is arranged in a state of being close to and spaced from a wall having a suction hole and a blowout hole that communicate between the room and the outside, Has a housing. Further, An outside air intake port that is formed in the housing and takes in outside air; An outside air heat exchanger that is housed in a housing and exchanges heat with outside air; It has an outside air discharge port that is formed in the housing and discharges outside air after heat exchange with the outside air heat exchanger.
  • a cross flow fan that rotates about a rotation center line extending in the vertical direction, and generates a flow through which the outside air flows in the order of the outside air intake port, the outside air heat exchanger, and the outside air discharge port;
  • An indoor air suction port is formed in the housing and sucks indoor air through a suction hole in the wall.
  • An indoor air heat exchanger housed in a housing, connected to an outdoor air heat exchanger via a refrigerant pipe and exchanging heat with indoor air;
  • An indoor air outlet is formed in the housing and blows out the indoor air after heat exchange with the indoor air heat exchanger into the room through a blowout hole in the wall.
  • An indoor air fan that generates a flow of indoor air in the order of an indoor air inlet, an indoor air heat exchanger, and an indoor air outlet;
  • An internal flow passage for suction that connects the suction hole of the wall and the indoor air suction port of the housing, and a connecting portion that has a blowout internal flow channel that connects the blowout hole of the wall and the indoor air discharge port of the housing;
  • An outside air intake port, an outside air discharge port, an indoor air inlet port, and an indoor air outlet port are formed on the rear side of the case when the case and the wall are viewed in a direction in which the case and the wall face each other.
  • An integrated air conditioner is provided.
  • FIG. 1 is a schematic perspective view of an integrated air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a view of the integrated air conditioner as viewed from the front side, and is a cross-sectional view schematically showing an internal configuration of the integrated air conditioner.
  • FIG. 3 is a view of the integrated air conditioner as viewed from the side, and is a cross-sectional view schematically illustrating an internal configuration of the integrated air conditioner.
  • 4 is a cross-sectional view taken along line 4-4 shown in FIG.
  • FIG. 5 is a cross-sectional view of the connecting portion.
  • FIG. 6 is a graph showing the relationship between the aspect ratio of the connecting portion and the pressure loss.
  • FIG. 7 is a graph showing the relationship between the aspect ratio of the connecting portion and the volume of the heat insulating material.
  • FIG. 8 is a graph showing the relationship between the aspect ratio of the connecting portion and the volume of the connecting portion.
  • FIG. 9 is a perspective view of the flow channel structure.
  • FIG. 10 is a cross-sectional view schematically showing a configuration of a ventilation portion of the integrated air conditioner.
  • FIG. 11 is a partial cross-sectional view showing a state where the housing of the integrated air conditioner is divided.
  • FIG. 12 is a partial perspective view showing a state where the housing of the integrated air conditioner is divided.
  • FIG. 13 is a view of the integrated air conditioner according to Embodiment 2 of the present invention as viewed from the front side, and is a cross-sectional view schematically showing an internal configuration of the integrated air conditioner.
  • FIG. 14 is a view of the integrated air conditioner according to Embodiment 2 of the present invention as viewed from the side, and is a cross-sectional view schematically showing an internal configuration of the integrated air conditioner.
  • FIG. 15 is a cross-sectional view along the horizontal plane of the outside air heat exchange unit of the integrated air conditioner according to Embodiment 3 of the present invention.
  • FIG. 16 is a cross-sectional view along the horizontal plane of the outside air heat exchange section of the integrated air conditioner according to Embodiment 4 of the present invention.
  • FIG. 17 is a cross-sectional view showing a part of a modification of the integrated air conditioner according to Embodiment 2 of the present invention.
  • One aspect of the present invention is an integrated air conditioner that is disposed in a state of being close to a wall provided with a suction hole and a blowout hole that communicate between the room and the outdoors,
  • a housing An outside air intake port that is formed in the housing and takes in outside air;
  • An outside air heat exchanger that is housed in a housing and exchanges heat with outside air;
  • An outside air outlet that is formed in the housing and exhausts outside air after heat exchange with the outside air heat exchanger;
  • a cross flow fan that rotates about a rotation center line extending in the vertical direction, and generates a flow through which the outside air flows in the order of the outside air intake port, the outside air heat exchanger, and the outside air discharge port;
  • An indoor air suction port that is formed in the housing and sucks indoor air through a suction hole in the wall;
  • An indoor air heat exchanger housed in a housing, connected to an outdoor air heat exchanger via a refrigerant pipe and exchanging heat with indoor air;
  • the case has a rectangular parallelepiped shape, and a back surface that is parallel to the wall and spaced apart, a front surface that is parallel to the back surface, a first side surface that is located between the front surface and the back surface, and a second surface
  • both the indoor air inlet and the indoor air outlet are formed on any one of the back surface, the first side surface, and the second side surface
  • the outside air intake port is at least on the back surface and the first side surface.
  • an outside air discharge port is formed on at least one of the back surface and the second side surface.
  • the outside air discharge port is formed on the back surface, whereby the opening is eliminated on at least one side surface of the housing, so that the design of the building is prevented from being impaired.
  • the outside air discharge port is configured to discharge the outside air after the heat exchange in a direction away from the outside air intake port, whereby the outside air after the heat exchange discharged from the outside air discharge port is outside air. Intake into the housing through the intake port is suppressed.
  • the housing is provided with a blocking wall portion that protrudes from the housing portion between the outside air discharge port and the outside air intake port toward the outside of the housing and blocks the flow of outside air from the outside air discharge port to the outside air intake port. preferable. Thereby, it is further suppressed that outside air after heat exchange discharged from the outside air outlet is taken into the housing through the outside air inlet.
  • the suction internal flow path and the blow-out internal flow path are aligned in the first direction and extend in parallel in the connection portion, and the connection portion extends in the first direction and the pair of sides.
  • a quadrangular cross section having a pair of sides extending in a second direction orthogonal to the direction of one.
  • the heat insulating material is filled between the outer surface of the connecting portion, the suction inner flow path, and the blowing flow path, and the ratio of the size in the first direction to the size in the second direction of the cross section of the connecting portion is The range is 1 to 2.
  • the integrated air conditioner is fitted into a wall facing the casing and has a flow channel structure that forms part of the wall, and the flow channel structure includes a suction hole and a blowout hole. Thereby, construction of an air conditioner becomes easy.
  • connection portion and the flow path structure are integrally formed. Thereby, indoor air will not leak from between a connection part and a channel structure.
  • a first linear channel extending in the vertical direction is provided between the indoor air suction port and the indoor air heat exchanger, and extends in the vertical direction between the indoor air fan and the indoor air outlet.
  • a second linear flow path is provided.
  • the housing includes an upper unit including an indoor air inlet and an indoor air outlet, and a lower side including an indoor air heat exchanger and an indoor air fan so as to divide the first and second linear flow paths. It can be divided into units. And it is selectively disposed between the upper unit and the lower unit, and each of the first and second linear flow path portions on the upper unit side and the first and second linear shapes on the lower unit side
  • the integrated air conditioner preferably has an extension unit having two extension channels that communicate with each part of the channel. Thereby, the vertical direction positions of the indoor air suction port and the indoor air outlet can be changed.
  • FIG. 1 is a perspective view of an integrated air conditioner 10 according to Embodiment 1 of the present invention.
  • the integrated air conditioner 10 is configured to air-condition the room in a state of being arranged outside the room. Although details will be described later, the integrated air conditioner 10 is installed outside in a state of being close to the outer side surface W1 of a wall W of a building such as a residence that separates the outside from the room.
  • FIG. 2 is a cross-sectional view schematically showing an internal configuration of the integrated air conditioner 10 as viewed from the front side of the integrated air conditioner 10, and FIG. 3 schematically shows an internal configuration of the integrated air conditioner 10.
  • FIG. 4 is a cross-sectional view taken along the line 4-4 in FIG. 3, which is parallel to the horizontal plane of the integrated air conditioner 10.
  • the “front side” of the integrated air conditioner 10 refers to the integrated air conditioner 10 and the wall W in the opposite direction ( ⁇ X axis direction) between the integrated air conditioner 10 and the wall W.
  • the part of the integrated air conditioner 10 (the part of the casing 12) that can be visually recognized when it is touched.
  • the “rear side” of the integrated air conditioner 10 is visually recognized when the integrated air conditioner 10 and the wall W are viewed in the opposite direction ( ⁇ X axis direction) between the integrated air conditioner 10 and the wall W.
  • the part of the integrated air conditioner 10 that cannot be performed (the part of the casing 12).
  • the integrated air conditioner 10 is omitted and referred to as an “air conditioner 10”.
  • the air conditioner 10 includes a substantially rectangular parallelepiped casing 12 that is large in the vertical direction (Z-axis direction), as shown in FIG.
  • the casing 12 includes a back surface 12a that faces the outer surface W1 of the wall W when the air conditioner 10 is installed outdoors, and a front surface 12b that is parallel to the back surface 12a.
  • the front surface 12b corresponds to the “front side” of the air conditioner 10, and the back surface 12a, the left side surface 12c, and the right side surface 12d are on the “rear side” of the air conditioner 10. Equivalent to. That is, when the air conditioner 10 and the wall W are viewed in the opposite direction ( ⁇ X axis direction) between the air conditioner 10 and the wall W, the front surface 12b of the housing 12 is visible, but the remaining back surface 12a, left side surface 12c and the right side surface 12d cannot be visually recognized.
  • the housing 12 has an outside air intake port 12e for taking in the outside air A1 into the housing 12, and an outside air outlet port 12f for discharging the outside air A1 taken into the housing 12 to the outside of the housing 12. And are formed.
  • the casing 12 has an indoor air inlet 12g for sucking the indoor air A2 into the casing 12, and an indoor air for blowing out the indoor air A2 sucked into the casing 12 to the outside of the casing 12.
  • a blowout port 12h is formed.
  • the outside air intake port 12e and the outside air discharge port 12f are configured by arranging a plurality of slot-shaped openings in the vertical direction (Z-axis direction) and the horizontal direction (X-axis direction, Y-axis direction).
  • the outside air intake port 12e is formed on each of the left side surface 12c and the back surface 12a.
  • the outside air discharge port 12f is formed at the corner between the back surface 12a and the right side surface 12d. Accordingly, when the air conditioner 10 and the wall W are viewed in the opposite direction ( ⁇ X axis direction) between the air conditioner 10 and the wall W, the outside air intake port 12e and the outside air discharge port 12f are not visually recognized.
  • the outside air discharge port 12f may be formed only on the right side surface 12d, not on the corner between the back surface 12a and the right side surface 12d. In this case, a plurality of support columns for improving the structural strength of the housing 12 can be provided at the four corners of the housing 12.
  • the indoor air inlet 12g and the indoor air outlet 12h are rectangular openings that are long in the horizontal direction (Y-axis direction), and are formed in the vertical direction on the back surface 12a of the housing 12. They are formed in a state of being aligned in the (Z-axis direction).
  • the indoor air inlet 12g is located above the indoor air outlet 12h. Therefore, when the air conditioners 10 and W are viewed in the opposite direction ( ⁇ X axis direction) between the air conditioner 10 and the wall W, the indoor air inlet 12g and the indoor air outlet 12h are not visually recognized.
  • the air conditioner 10 generally includes an outdoor air heat exchange unit 10A for exchanging heat with the outdoor air A1, an indoor air heat exchange unit 10B for exchanging heat with the indoor air A2, It is composed of a ventilation unit 10C for ventilating the room, and a housing unit 10D that houses the control board 14, the compressor 16, and the like.
  • the outside air heat exchanger 18 for exchanging heat with the outside air A1 Inside the outside air heat exchanging portion 10A of the air conditioner 10, the outside air heat exchanger 18 for exchanging heat with the outside air A1, the outside air intake port 12e, the outside air heat exchanger 18, and the outside air discharge port 12f are arranged in this order. And a cross flow fan 20 that generates a flow of air.
  • the indoor air heat exchanger 10B of the air conditioner 10 is located above the outdoor air heat exchanger 10A of the air conditioner 10.
  • the indoor air heat exchanger 22 that exchanges heat with the indoor air A2
  • the indoor air suction port 12g, the indoor air heat exchanger 22, and the indoor air outlet 12h are included in the room air in that order.
  • the outside air heat exchanger 18 is provided along the plurality of outside air intake ports 12 e.
  • the outdoor air heat exchanger 18 is thermally connected to the compressor 16 and the indoor air heat exchanger 22 via a refrigerant pipe (not shown) and a four-way valve (not shown). That is, a refrigeration cycle is configured in which the refrigerant flows through the compressor 16, the four-way valve, the outdoor air heat exchanger 18, the indoor air heat exchanger 22, and the refrigerant pipe connecting them.
  • the cross flow fan 20 is driven by a motor 26 so as to rotate around a rotation center line C1 extending in the vertical direction (Z-axis direction).
  • the motor 26 is arrange
  • the motor 26 is arrange
  • casing 12) can be made small.
  • the control board 14 being arranged on the front surface 12b side from the motor 26 reduces the size of the air conditioner 10 (housing 12) in the vertical direction (Z-axis direction) and maintains the control board 14. It is desirable in terms of improving the performance.
  • the cross flow fan 20 is disposed in the housing 12 (outside air heat exchanging portion 10A) so as to face the plurality of outside air intake ports 12e with the outside air heat exchanger 18 interposed therebetween.
  • the outside air A1 is passed through the plurality of outside air intake ports 12e formed on the back surface 12a and the left side surface 12c of the housing 12 (the outside air heat exchange unit). 10A) and passes through the heat exchanger 18 for outside air.
  • the outside air A1 exchanges heat with the outside air heat exchanger 18.
  • the outside air A1 after the heat exchange that has passed through the outside air heat exchanger 18 is taken into the cross flow fan 20 and passes through the outside air outlet 12f formed at the corner between the back surface 12a and the right side surface 12d of the housing 12. Through the casing 12.
  • the outside air discharge port 12f is configured to discharge the outside air A1 after heat exchange in a direction intersecting the side surface W1.
  • the outside air outlet 12f is configured to prevent the outside air A1 after heat exchange discharged from the outside air outlet 12f from being taken into the housing 12 again through the outside air inlet 12e.
  • the outside air A1 after heat exchange is discharged in a direction away from the outside (see FIG. 4).
  • the outside air discharge port 12f of the first embodiment as shown in FIG. 4, the outside air A1 discharged from the outside air discharge port 12f is directed to the outside surface W1 in a direction intersecting the outside surface W1 of the wall W. Flowing. Then, the outside air A1 flows along the outer surface W1 in the direction opposite to the facing region between the back surface 12a of the housing 12 and the outer surface W1 of the wall W.
  • the outside air A1 after heat exchange is directly taken into the housing 12 through the outside air intake port 12e formed on the back surface 12a of the housing 12. It is suppressed. As a result, a decrease in air conditioning efficiency (heat exchange efficiency) of the air conditioner 10 is suppressed.
  • the indoor air heat exchange unit 10B of the air conditioner 10 communicates with the indoor air suction port 12g formed on the back surface 12a of the housing 12 and the indoor air outlet 12h.
  • a flow path 28 is formed.
  • the indoor air heat exchanger 22 and the sirocco fan 24 are arranged.
  • the indoor air A2 flows from the air inlet 12g toward the indoor air outlet 12h.
  • the sirocco fan 24 rotates around a rotation center line C2 extending in the facing direction (X-axis direction) between the air conditioner 10 (housing 12) and the wall W. It is driven by the motor 30.
  • the indoor air heat exchanger 22 is disposed upstream of the sirocco fan 24 in the flow direction of the indoor air A2.
  • the rotation axis of the sirocco fan 24 is provided so as to extend in the X-axis direction, compared with the case where the rotation axis is provided so as to extend in the Y-axis direction,
  • the entire area of the indoor air heat exchanger 22 provided to face the side surface (surface perpendicular to the rotation center line C2) of the sirocco fan 24 can be increased.
  • the fan diameter of the sirocco fan 24 can be increased.
  • a water tray (not shown) for receiving dew condensation water falling from the indoor air heat exchanger 22.
  • the water collected in the water tray is drained outside the housing 12 through a drainage path (not shown).
  • the water collected in the water tray may be sprayed on the surface of the outside air heat exchanger 18 through the drainage path.
  • water can be guided to the surface of the outdoor air heat exchanger 18 by gravity.
  • the indoor air A2 flows into the internal flow path 28 of the indoor air heat exchange unit 10B through the indoor air suction port 12g.
  • the indoor air A2 that has flowed into the internal flow path 28 passes through the indoor air heat exchanger 22.
  • the indoor air A2 exchanges heat with the indoor air heat exchanger 22.
  • the room air A2 exchanged with the room air heat exchanger 22 is taken into the sirocco fan 24 and blown out into the room through the room air outlet 12h. Thereby, the room is air-conditioned by the air conditioner 10.
  • the indoor air heat exchanger 22 is disposed on the front surface 12b side of the air conditioner 10 (housing 12) from the sirocco fan 24, and therefore, as shown in FIG.
  • the linear flow path extending in the X direction constituting a part of the path 28 can be lengthened. Thereby, the flow velocity distribution of the air guided to the indoor air heat exchanger 22 can be made uniform through the linear flow path 28a extending in the Z direction constituting a part of the internal flow path 28.
  • the indoor air inlet 12g and the indoor air outlet 12h of the air conditioner 10 are in communication with the room via the connecting portion 40 and the flow path structure 42 as shown in FIG.
  • the connecting portion 40 is disposed between the back surface 12a of the casing 12 of the air conditioner 10 and the outer surface W1 of the wall W.
  • the connecting portion 40 also has a rectangular parallelepiped shape, and communicates with an indoor air suction port 12g formed on the back surface 12a of the housing 12 and a suction hole 42a penetrating the wall W from the outdoor side toward the indoor side.
  • the internal flow path 40a for suction is provided.
  • the suction internal flow path 40a has a rectangular section that is long in the horizontal direction (Y-axis direction) and is connected to the indoor air suction port 12g, and is opposed to the housing 12 and the wall W (X-axis direction). Extend to.
  • the connecting portion 40 further includes a blowout internal flow path 40b that communicates the indoor air blowout opening 12h of the housing 12 and the blowout hole 42b that penetrates the wall W from the outside toward the inside of the room.
  • the blowout internal flow path 40b has a rectangular section that is long in the horizontal direction (Y-axis direction) so as to be connected to the indoor air blowout opening 12h located below the indoor air intake opening 12g. It extends downward and parallel to 40a. That is, the suction internal flow path 40a and the blowout internal flow path 40b extend in parallel in a state of being aligned in the first direction (here, the Z-axis direction).
  • the connecting portion 40 has a quadrangular shape including a pair of sides extending in the first direction and a pair of sides extending in the second direction (here, the Y direction) orthogonal to the first direction. Has a cross section.
  • a connecting portion 40 integrally provided with a suction internal flow path 40a for sucking the indoor air A2 into the housing 12 and a blowout internal flow path 40b for blowing the indoor air A2 after heat exchange into the room. It is suppressed that the design of a building provided with the wall W is impaired. That is, as compared with the case where the duct (flow path) connecting the indoor air suction port 12g and the suction hole 42a and the duct (flow path) connecting the indoor air discharge port 12h and the blow hole 42b are configured separately. Is suppressed.
  • the connecting portion 40 is disposed between the back surface 12a of the housing 12 and the outer surface W1 of the wall W, the facing direction of the air conditioner 10 and the wall W ( ⁇ When the air conditioner 10 and the wall W are viewed in the (X-axis direction), the connecting portion 40 is not visually recognized.
  • the connecting portion 40 has a quadrangular cross section, and the suction internal flow path 40a and the blowout internal flow path 40b have the same quadrangular flow path cross section, and the vertical direction (Z When extending in parallel in the connecting portion 40 in the axial direction, the aspect ratio (vertical L / horizontal S) of the cross section (that is, the size in the Z-axis direction / the size in the Y-axis direction) is in the range of about 1-2. Is preferred. That is, it is desirable that the ratio of the size in the first direction (Z-axis direction) to the size in the second direction (Y-axis direction) of the cross section of the connecting portion 40 is in the range of 1 to 2.
  • a heat insulating material is accommodated inside the connecting portion 40, and the suction internal flow path 40 a and the blowout internal flow path 40 b extend in a state of being aligned in the vertical direction (Z-axis direction) so as to penetrate the heat insulating material. . That is, the outer surface of the connecting portion 40, the suction internal flow path 40a, and the blowout internal flow path 40b are filled with a heat insulating material.
  • FIG. 6 shows the pressure loss of the suction internal flow path 40a and the blowout internal flow path 40b with respect to the aspect ratio of the connecting portion 40 having a rectangular cross section.
  • FIG. 7 shows the volume of the heat insulating material with respect to the aspect ratio of the connecting portion 40.
  • FIG. 8 shows the volume of the connecting part 40 with respect to the aspect ratio of the connecting part 40.
  • the volume of the heat insulating material corresponds to the amount of heat insulating material used, and the volume of the connecting portion 40 corresponds to the compactness of the connecting portion 40. Therefore, the one where the volume of a heat insulating material and the volume of the connection part 40 are small is preferable.
  • the characteristics of the connecting portion 40 with respect to the aspect ratio shown in FIGS. 6 to 8 are that the length of the connecting portion 40 is 1 m, and the air passage area (the cross-sectional area of each of the suction internal flow path 40a and the blowout internal flow path 40b). ) Is 0.01 m 2 , and the wind speed of the air flowing through each of the suction internal flow path 40a and the blowout internal flow path 40b is 10 m / s.
  • the pressure loss, the volume of the heat insulating material, and the volume of the connecting portion 40 decrease until the aspect ratio of the connecting portion 40 becomes 1.
  • the aspect ratio of the connecting portion 40 is preferably in the range of about 1 to 2 in which the pressure loss, the volume of the heat insulating material, and the volume of the connecting portion 40 are reduced. According to such an aspect ratio, it is possible to obtain the connecting portion 40 that is compact in size, excellent in heat insulation efficiency, and low in pressure loss. As a result, the air conditioner 10 can obtain high air conditioning efficiency.
  • the suction hole 42a and the blowout hole 42b connected to the suction internal flow path 40a and the blowout internal flow path 40b of the connecting portion 40 are formed directly on the wall W, respectively.
  • the suction hole 42 a and the blowout hole 42 b are fitted in the wall W and are formed in the flow channel structure 42 that constitutes a part of the wall W.
  • the flow path structure 42 is formed in the wall W so as to communicate between the outside and the room, and has a through-hole shape having a rectangular cross section.
  • a rectangular parallelepiped main body portion 42c inserted through the attachment hole W3 and a decorative panel 42d attached to the inner side surface W2 of the wall W are provided.
  • the suction hole 42a and the blow-out hole 42b pass through the main body 42c and the decorative panel 42d so as to communicate between the outside and the room.
  • the main body 42c of the flow path structure 42 is box-shaped and has a heat insulating material therein.
  • the suction hole 42a and the blowing hole 42b are formed so as to penetrate the heat insulating material.
  • the cross-sectional shapes of the suction hole 42a and the blowout hole 42b change from the outdoor side toward the indoor side.
  • the indoor air inlet 12g and the indoor air outlet 12h of the housing 12 are rectangular openings that are long in the horizontal direction (Y-axis direction), and are vertically Are aligned in the direction (Z-axis direction).
  • the suction hole 42a and the blow hole 42b are connected.
  • Each outdoor opening has a rectangular shape that is long in the horizontal direction (Y-axis direction).
  • the openings on the indoor side of the suction holes 42a and the blowout holes 42b each have a rectangular shape that is long in the vertical direction (Z-axis direction) and are aligned in the vertical direction.
  • each of the suction hole 42a and the blowout hole 42b extends from the outdoor side to the indoor side while changing the aspect ratio (vertical (Z-axis direction size) / horizontal (Y-axis direction size)) of the rectangular cross section. ing.
  • the decorative panel 42d of the flow path structure 42 is attached to the inner side surface W2 of the wall W and covers the gap between the main body 42c and the attachment hole W3 of the wall W.
  • the decorative panel 42d is provided with an operation unit (not shown) such as a switch for the user to operate the air conditioner 10.
  • the decorative panel 42d is provided with a light receiving unit that receives a signal emitted from a remote controller for remotely operating the air conditioner 10, for example, an infrared signal.
  • the operation unit provided on the decorative panel 42 d is electrically connected to the control board 14 in the housing 12 via the flow channel structure 42 and the coupling unit 40.
  • Such a flow path structure 42 makes it easier to install the air conditioner 10 than when the suction holes 42a and the blowout holes 42b are directly formed in the wall W.
  • the construction of the air conditioner 10 is particularly easy.
  • the flow path structure 42 is fitted into the wall W so as to face the back surface 12a of the casing 12, so that the air conditioner 10 and the wall W are opposed to each other ( ⁇ X axis direction). ), The flow path structure 42 is not visually recognized when the air conditioner 10 and the wall W are viewed. By such a flow path structure 42, it is suppressed that the design property of buildings, such as a residence provided with the wall W, is impaired. Further, the flow path structure 42 and the connecting portion 40 may be configured integrally.
  • the ventilation part 10C is arranged at the top.
  • the ventilation unit 10C of the air conditioner 10 is configured to ventilate the room by discharging the room air A2 to the outside while supplying the room air A1 to the room.
  • the ventilating unit 10C includes an outside air suction port 50 for sucking the outside air A1, a fan 52 that generates a flow of the outside air A1 from the outside air suction port 50 toward the room, and a room for discharging the room air A2 to the outside.
  • the air discharge port 54 and a fan 56 that generates a flow of room air A2 from the room toward the room air discharge port 54 are provided.
  • the ventilation unit 10C includes a ventilation heat exchanger 58 for exchanging heat between the outside air A1 supplied to the room and the room air A2 discharged to the outside.
  • the outside air suction port 50 and the indoor air discharge port 54 of the ventilation unit 10 ⁇ / b> C are arranged in the horizontal direction (Y-axis direction) on the upper portion of the back surface 12 a of the housing 12. It is formed in a state.
  • a filter 60 such as a HEPA (High Efficiency Particulate Air) filter may be provided in the outside air suction port 50 to suppress entry of fine particles into the room.
  • HEPA High Efficiency Particulate Air
  • the outside air suction port 50 is a heat exchanger for indoor air in the internal flow path 28 of the indoor air heat exchange section 10 ⁇ / b> B via an internal flow path 62 formed in the ventilation section 10 ⁇ / b> C. 22 is connected to the upstream side.
  • a ventilation heat exchanger 58 and a fan 52 are arranged in this order from the outside air suction port 50 side.
  • the fan 52 is a sirocco fan.
  • the indoor air discharge port 54 is for indoor air in the internal flow path 28 of the indoor air heat exchange unit 10B via the internal flow path 64 formed in the ventilation unit 10C. It is connected to the upstream side of the heat exchanger 22. As shown in FIG. 3, the connection portion between the internal flow path 64 and the internal flow path 28 is connected to the indoor air suction port 12 g of the housing 12 in comparison with the connection portion between the internal flow path 62 and the internal flow path 28. Located close. Further, a ventilation heat exchanger 58 and a fan 56 are arranged in the internal flow path 64 in order from the indoor air discharge port 54. In the case of the first embodiment, the fan 56 is a sirocco fan.
  • the internal flow path 62 and the internal flow path 64 formed in the ventilation unit 10C are connected to the internal flow path 28 on the upstream side of the indoor air heat exchanger 22. For this reason, compared with the case where it is connected to the internal flow path 28 on the downstream side of the indoor air heat exchanger 22, the heat exchanged by the indoor air heat exchanger 22 may be discharged to the outside of the room. Not efficient.
  • the two fans 52 and 56 of the ventilation unit 10C are centered on a common rotation center line C3 extending in the facing direction (X-axis direction) between the housing 12 and the wall W. It rotates and is driven by a common motor 66. Since the two fans 52 and 56 are driven by one motor 66, one motor can be omitted.
  • the fan 52 for sucking outside air A ⁇ b> 1 is discharged from the room air A ⁇ b> 2 in consideration of intake resistance. It is preferable to enlarge the size of the fan 56.
  • the room can be ventilated while the room is air-conditioned.
  • the three sirocco fans 24, 52, and 56 are rotated while the compressor 16 and the cross flow fan 20 are stopped.
  • the indoor air A2 flows into the suction hole 42a of the flow channel structure 42, the suction internal flow channel 40a of the connecting portion 40, the internal flow channel 28 of the indoor air heat exchange unit 10B, and the ventilation unit.
  • 10C internal flow path 64 (fan 56 and ventilation heat exchanger 58) and indoor air outlet 54 are sequentially passed through and discharged outside the room.
  • the outside air A1 includes the outside air suction port 50, the internal flow path 62 (the ventilation heat exchanger 58 and the fan 52) of the ventilation section 10C, and the internal flow path 28 (the indoor air heat exchanger 22) of the indoor air heat exchange section 10B.
  • the sirocco fan 24), the blowout internal flow path 40b of the connecting portion 40, and the blowout hole 42b of the flow path structure 42 are sequentially supplied to the room.
  • the ventilation section 10C having the internal flow path 64 on the lower side is provided above the indoor air heat exchange section 10B having the internal flow path 28 on the upper side. Since the internal flow path 28 can be used without separately providing a flow path for guiding the air to the indoor air outlet 12h, the vertical direction (Z-axis direction) of the air conditioner 10 (housing 12) can be used. The size can be reduced.
  • the air conditioner 10 of the first embodiment is configured so that the vertical direction (Z-axis direction) positions of the indoor air inlet 12g and the indoor air outlet 12h can be changed.
  • the positions in the vertical direction of the indoor openings of the suction holes 42a and the blowout holes 42b can take various positions.
  • the casing 12 of the air conditioner 10 according to the first embodiment is configured to be vertically splittable as shown in FIGS. 11 and 12.
  • the housing 12 is configured to be divided into an upper unit 12i and a lower unit 12j.
  • the upper unit 12i includes an indoor air inlet 12g and an indoor air outlet 12h.
  • the lower unit 12j includes an indoor air heat exchanger 22 and a sirocco fan 24.
  • a first linear flow path that forms a part of the internal flow path 28 and extends in the vertical direction (Z-axis direction) between the indoor air suction port 12g and the indoor air heat exchanger 22.
  • a linear flow path 28a Between the sirocco fan 24 and the indoor air outlet 12h, there is a linear flow path 28b that constitutes a part of the internal flow path 28 and is a second linear flow path extending in the vertical direction.
  • the housing 12 is configured to be divided into an upper unit 12i and a lower unit 12j so as to divide the linear flow paths 28a and 28b.
  • An extension unit 12k for aligning the indoor air inlet 12g and the indoor air outlet 12h of the upper unit 12i in the vertical direction (Z-axis direction) is selectively provided between the upper unit 12i and the lower unit 12j. Placed in. If the extension units 12k having various heights are prepared, the indoor air inlet 12g and the indoor air outlet 12h of the upper unit 12i can be aligned at desired vertical positions.
  • the extension unit 12k may be cut and arranged in accordance with the structural restrictions of the building.
  • the indoor air inlet 12g and the indoor air outlet 12h of the upper unit 12i can be aligned at a desired vertical position. In this case, it is possible to prevent the design from being impaired by separately providing a cover that covers the extension unit 12k.
  • the extension unit 12k includes an extension channel 28a3 that communicates a portion 28a1 of the linear channel 28a on the upper unit 12i side and a portion 28a2 of the linear channel 28a on the lower unit 12j side, and a portion on the upper unit 12i side.
  • An internal flow path 28 can be configured.
  • the opening on the upper unit 12i side of the extension flow paths 28a3 and 28b3 of the extension unit 12k is enclosed so that the indoor air A2 does not leak from between the upper unit 12i and the extension unit 12k.
  • Ring-shaped seal members 70 and 72 are provided in the extension unit 12k.
  • seal members 74 and 76 surrounding the openings of the linear flow paths 28a and 28b of the lower unit 12j are provided so that the indoor air A2 does not leak from between the extension unit 12k and the lower unit 12j.
  • the seal members 70, 72, 74, and 76 are provided not on the extension unit 12k but on the upper unit 12i and the lower unit 12j. desirable. Moreover, in the case of this Embodiment 1, since it is the structure which can isolate
  • the air conditioner 10 can be harmonized in design with the wall W of a building such as a residence. As a result, the air conditioner 10 can prevent the design of the building from being impaired.
  • Air conditioner 110 according to Embodiment 2 has substantially the same configuration as that of Embodiment 1 described above. Therefore, the air conditioner according to the second embodiment will be described focusing on the different points. In addition, the same code
  • indoor air suction port 112g and indoor air outlet 112h in indoor air heat exchange section 110B of air conditioner 110 according to Embodiment 2 are opposed to outer surface W1 of wall W. It is formed not on the back surface 112a of the housing 112 to be formed but on the right side surface 112d. Therefore, the shape of the connecting portion 140 is different from the straight connecting portion 40 of the first embodiment, and is an “L” shape (that is, the “L” -shaped suction internal flow path 140a and the blowing internal flow. Path 140b). Moreover, the internal flow path 128 is formed in the indoor air heat exchange part 110B similarly to the internal flow path 28 in Embodiment 1. FIG.
  • the indoor air suction port 112 g of the air conditioner 110 can communicate with the suction hole 42a and the outlet hole 42b of the flow path structure 42.
  • the air conditioner 110 it is possible to prevent the design of the building from being damaged by the air conditioner 110. That is, since the outside air intake port 12e and the outside air discharge port 12f are formed on the back side of the housing 12, the air conditioner 110 can be harmonized in design with the wall W of a building such as a residence. As a result, the design of the building is not impaired by the air conditioner 110.
  • the indoor air inlet 112g and the indoor air outlet 112h are described as being formed on the right side 112d, but the same applies to the case where they are formed on the left side 112c.
  • the connecting part 140 can be connected to the terminal.
  • the air conditioner 210 according to the third embodiment has the same configuration as that of the above-described first embodiment except for the blocking wall portion. Therefore, the blocking wall will be described.
  • symbol is attached
  • the heat exchanged outside air A1 discharged from the outside air discharge port 12f is again taken into the housing 12 through the outside air intake port 12e.
  • a blocking wall portion 280 that blocks the flow of the outside air A1 from the outside air discharge port 12f to the outside air intake port 12e.
  • a blocking wall portion 280 protruding toward the outside of the housing 12 is provided at a portion of the housing 12 between the outside air discharge port 12f and the outside air intake port 12e on the back surface 12a of the housing 12.
  • the blocking wall portion 280 cooperates with the outer side surface W1 of the wall W, so that the outside air directly directed from the outside air discharge port 12f to the outside air intake port 12e.
  • the flow of A1 can be cut off.
  • the outside air A1 after heat exchange discharged from the outside air discharge port 12f is further suppressed from being directly taken into the housing 12 via the outside air intake port 12e (when there is no blocking wall portion 280).
  • the blocking wall 280 may be formed integrally with the housing 12 or may be configured separately from the housing 12.
  • the third embodiment it is possible to prevent the design of the building from being damaged by the air conditioner 210 as in the first embodiment.
  • the air conditioner 310 according to the fourth embodiment has the same configuration as that of the first embodiment except for the outside air outlet. Therefore, the outside air outlet will be described.
  • symbol is attached
  • the outside air discharge port 312f in the air conditioner 310 is formed on the right side surface 312d of the housing 312 (unlike the first embodiment, it is formed on the back surface 312a. It has not been).
  • the outside air discharge port 312f is configured to discharge the outside air A1 after heat exchange in a direction parallel to the outer side surface W1 of the wall W ( ⁇ Y-axis direction).
  • Such an outside air discharge port 312f also prevents the outside air A1 after heat exchange from being directly taken into the housing 12 through the outside air intake port 312e formed on the back surface 312a of the housing 312. it can.
  • the fourth embodiment it is possible to prevent the design of the building from being damaged by the air conditioner 310 as in the first embodiment.
  • Embodiment 4 demonstrated using the example in which the external air discharge port 312f was formed in the right side surface 312d of the housing
  • the left-right side surface 312c may be formed with a symmetrical configuration, that is, an outside air discharge port 312f.
  • the sirocco fan 24 that forms the flow of the indoor air A2 is not limited to this configuration.
  • a propeller fan may be used.
  • the indoor air inlet 12g (112g) of the housing 12 (112) is located above the indoor air outlet 12h (112h), but may be reversed.
  • the suction internal flow path 40a (140a) of the connecting portion 40 (140) is positioned below the blowing internal flow path 40b (140b) so as to correspond.
  • the suction hole 42a of the flow path structure 42 is positioned below the blowing hole 42b.
  • the indoor air outlet 12h (112h) is located above the indoor air inlet 12g (112g), and the indoor air heat exchanger 22 is compared with the sirocco fan 24 in the front surface 12b ( Assuming the case where it is located on the side 112b), the flow path configuration becomes complicated. That is, the flow path from the sirocco fan 24 to the indoor air outlet 12h (112h) and the flow path from the indoor air suction port 12g (112g) to the indoor air heat exchanger 22 are provided in the housing 12 (112). Intersects in side view (view in Y-axis direction). As a result, the flow path configuration in the housing 12 (112h) becomes complicated.
  • the indoor air inlet 12g (112g) is preferably located above the indoor air outlet 12h (112h).
  • An air conditioner 410 shown in FIG. 17 is a modification of the air conditioner 110 according to the second embodiment.
  • the air conditioner 410 has a room air outlet on the right side surface (the back side of the drawing) of the housing 412. 412h and an indoor air inlet 412g.
  • an internal flow path 464 is provided.
  • the indoor air heat exchanger 22 is disposed closer to the back surface 412a of the air conditioner 410 (housing 412) than the sirocco fan 24.
  • the flow path 428d from the sirocco fan 24 to the indoor air outlet 412h and the flow path 428c from the indoor air suction port 412g to the indoor air heat exchanger 22 are viewed in a side view (Y-axis direction). Will not cross).
  • a flow path 428d from the sirocco fan 24 to the indoor air outlet 412h is a flow path (from the fan 52 toward the indoor air heat exchanger 22) through which the outside air A1 flows for indoor ventilation.
  • the right side surface (the back side of the drawing) of the housing 412 extends with respect to the flow path 462.
  • the indoor air inlet 12g (112g) and the indoor air outlet 12h (112h) of the housing 12 (112) are aligned in the vertical direction (Z-axis direction). Unlike this, they may be arranged in the horizontal direction (Y-axis direction (X-axis direction)). Further, the suction internal flow path 40a (140a) and the blowout internal flow path 40b (140b) of the connection portion 40 (140) connected to these may be arranged in the horizontal direction instead of the vertical direction. Similarly, the suction holes 42a and the blowing holes 42b of the flow path structure 42 may be arranged in the horizontal direction instead of the vertical direction.
  • the air conditioner 10 (110, 210, 310) has a substantially rectangular parallelepiped shape that is large in the vertical direction (Z-axis direction), but is not limited thereto.
  • a cylindrical shape may be sufficient.
  • the air conditioner according to the embodiment of the present invention can take various forms.
  • the air conditioner 10 (110, 210, 310) includes the ventilation unit 10C for ventilating the room, but the ventilation unit 10C may not be provided.
  • the ventilation unit may be an option that is selectively attached to the air conditioner by the user.
  • the connecting portion 40 (140) and the flow path structure 42 are separate, but they may be integrated. In this case, since the indoor air A2 does not leak from between the connecting portion 40 (140) and the flow path structure 42, the air conditioning efficiency of the air conditioner 10 (110, 210, 310) is improved.
  • outside air discharge port 12f (312f) may discharge the outside air A1 after heat exchange in the horizontal direction or in the downward direction.
  • the outside air discharge port discharges outside air after heat exchange in a downward direction in which outside air after heat exchange does not hit the user's face located in the vicinity of the air conditioner.
  • the outside air intake port 12e (312e) is formed on the back surface 12a (312a) and the left side surface 12c (312c) of the housing 12 (112, 312). Not limited to. For example, it may be formed on the right side surface of the housing. However, in this case, the outside air discharge port is formed on the left side surface. This is to prevent the outside air after the heat exchange discharged from the outside air outlet from flowing into the outside air intake.
  • suction hole 42a and the blowout hole 42b are formed in the flow path structure 42.
  • each structure is simple (for example, a hole having a constant cross-sectional shape). And may be formed on the wall W.
  • the present invention can provide a special effect that the design of the building can be prevented from being damaged by the integrated air conditioner. Therefore, the present invention can be applied to an integrated air conditioner or the like in which a heat exchanger for outside air that exchanges heat with outside air and an indoor heat exchanger that exchanges heat with room air are housed in one housing. Is useful.
  • Air conditioner integrated air conditioner

Abstract

An air conditioner (10) is provided with: an outside air intake opening (12e); a heat exchanger (18) for outside air; an outside air discharge opening (12f); a cross-flow fan; an indoor air suction opening (12g); a heat exchanger for indoor air, the heat exchanger exchanging heat with indoor air; an indoor air blowing opening (12h); a fan for indoor air, the fan causing the indoor air to flow; and a connection section. The outside air intake opening (12e), the outside air discharge opening (12f), the indoor air suction opening (12g), and the indoor air blowing opening (12h) are formed on the rear side of a housing (12) when the housing (12) and a wall (W) are viewed in the direction in which the housing (12) and the wall (W) face each other.

Description

一体型空気調和機Integrated air conditioner
 本発明は、外気と熱交換する外気用熱交換器、および、室内空気と熱交換する室内空気用熱交換器が、一つの筐体に収容されている一体型空気調和機に関する。 The present invention relates to an outdoor air heat exchanger that exchanges heat with outside air, and an integrated air conditioner in which a heat exchanger for indoor air that exchanges heat with room air is housed in one housing.
 従来より、外気と熱交換する外気用熱交換器と、室内空気と熱交換する室内空気用熱交換器とが、一つの筐体に収容されている一体型空気調和機が存在する(例えば特許文献1を参照)。 Conventionally, there is an integrated air conditioner in which a heat exchanger for outside air that exchanges heat with the outside air and a heat exchanger for indoor air that exchanges heat with room air are housed in one housing (for example, a patent) Reference 1).
 特許文献1に記載された空気調和機のように、一体型空気調和機は、室外に配置される筐体を有する。その筐体内に、外気と熱交換する外気用熱交換器と、外気用熱交換器に冷媒管を介して接続され、室内空気と熱交換する室内空気用熱交換器とが収容されている。また、筐体内には、外気用熱交換器を通過する外気の流れを発生させる外気用ファンと、室内空気用交換器を通過する室内空気の流れを発生させる室内空気用ファンとが収容されている。 As with the air conditioner described in Patent Document 1, the integrated air conditioner has a housing that is arranged outdoors. Inside the housing are housed an outside air heat exchanger that exchanges heat with the outside air, and an indoor air heat exchanger that is connected to the outside air heat exchanger via a refrigerant pipe and exchanges heat with the room air. The casing also contains an outdoor air fan that generates a flow of outside air that passes through the heat exchanger for outdoor air, and an indoor air fan that generates a flow of room air that passes through the indoor air exchanger. Yes.
 このような一体型空気調和機は、室外と室内とを隔てる住居などの建物の壁に形成された、貫通穴状の吸い込み穴および吹き出し穴の近傍に、すなわち壁の外側面に接近した状態で設置される。これにより、一体型空気調和機は、吸込み穴に接続された吸い込みダクトを介して室内空気を吸い込み、室内用熱交換器と熱交換された後の室内空気を、吹き出し穴に接続された吹き出しダクトを介して室内に吹き出す。 Such an integrated air conditioner is formed in the wall of a building such as a residence that separates the outside from the room, in the vicinity of the suction hole and the blowout hole in the shape of a through hole, that is, in the state of being close to the outer surface of the wall. Installed. Thus, the integrated air conditioner sucks room air through the suction duct connected to the suction hole, and blows the room air after heat exchange with the indoor heat exchanger to the blowout hole. It blows out indoors through.
 ここで、一体型空気調和機の前側に、外気用ファンを介して筐体内に外気を取り込むための外気取り込み口、および、外気用熱交換器と熱交換した後の外気を排出するための外気排出口のうち、少なくとも一方が形成されている場合を想定する。この場合、その外気取り込み口および外気排出口の少なくともいずれかにより、一体型空気調和機と、住居などの建物の壁とがデザイン的に調和せず、建物のデザイン性が損なわれる可能性がある。 Here, on the front side of the integrated air conditioner, an outside air intake port for taking outside air into the housing via an outside air fan, and outside air for discharging outside air after heat exchange with the outside air heat exchanger Assume that at least one of the discharge ports is formed. In this case, there is a possibility that the integrated air conditioner and the wall of the building such as a residence do not harmonize in design due to at least one of the outside air intake port and the outside air discharge port, and the design of the building may be impaired. .
 特に、外気用ファンとしてプロペラファンが使用され、そのために筐体内に外気を取り込むための外気取り込み口が円形状に筐体の前側に形成されている場合、その円形状の外気取り込み口により、建物のデザイン性が損なわれる可能性がある。 In particular, when a propeller fan is used as an outside air fan, and the outside air intake port for taking outside air into the housing is formed in a circular shape on the front side of the housing, the circular outside air intake port causes the building to There is a possibility that the design of the.
 また、一体型空気調和機と、壁の吸い込み穴、および吹き出し穴それぞれとを連結する2本のダクトにより、建物のデザイン性が損なわれる可能性がある。 Also, the design of the building may be impaired by the two ducts that connect the integrated air conditioner to the suction holes and the blowout holes of the wall.
実公平07-18906号公報No. 07-18906
 本発明は、建物のデザイン性が損なわれることを抑制する一体型空気調和機を提供するものである。 This invention provides the integrated air conditioner which suppresses that the design of a building is impaired.
 上述の課題を解決するために、本発明の一態様によれば、
 室内と室外とを連絡する吸い込み穴および吹き出し穴を備える壁に対して間隔をあけて接近した状態で配置される一体型空気調和機であって、
 筐体を有する。さらに、
 筐体に形成され、外気を取り込む外気取り込み口と、
 筐体内に収容され、外気と熱交換する外気用熱交換器と、
 筐体に形成され、外気用熱交換器と熱交換した後の外気を排出する外気排出口とを有する。さらに、
 外気取り込み口、外気用熱交換器、外気排出口の順に外気が流れる流れを発生させる、鉛直方向に延在する回転中心線を中心として回転するクロスフローファンと、
 筐体に形成され、壁の吸い込み穴を介して室内空気を吸い込む室内空気吸い込み口とを有する。さらに、
 筐体内に収容され、外気用熱交換器と冷媒管を介して接続され、室内空気と熱交換する室内空気用熱交換器と、
 筐体に形成され、室内空気用熱交換器と熱交換した後の室内空気を壁の吹き出し穴を介して室内に吹き出す室内空気吹き出し口とを有する。さらに、
 室内空気吸い込み口、室内空気用熱交換器、室内空気吹き出し口の順に室内空気が流れる流れを発生させる室内空気用ファンと、
 壁の吸い込み穴と筐体の室内空気吸い込み口とを連絡する吸い込み用内部流路および壁の吹き出し穴と筐体の室内空気吹き出し口とを連絡する吹き出し用内部流路を備える連結部と、を有する。そして、
 筐体と壁とが対向する方向に筐体と壁とを見たときにおける筐体の背後側に、外気取り込み口、外気排出口、室内空気吸い込み口、および室内空気吹き出し口が形成されている、一体型空気調和機が提供される。
In order to solve the above problems, according to one aspect of the present invention,
An integrated air conditioner that is arranged in a state of being close to and spaced from a wall having a suction hole and a blowout hole that communicate between the room and the outside,
Has a housing. further,
An outside air intake port that is formed in the housing and takes in outside air;
An outside air heat exchanger that is housed in a housing and exchanges heat with outside air;
It has an outside air discharge port that is formed in the housing and discharges outside air after heat exchange with the outside air heat exchanger. further,
A cross flow fan that rotates about a rotation center line extending in the vertical direction, and generates a flow through which the outside air flows in the order of the outside air intake port, the outside air heat exchanger, and the outside air discharge port;
An indoor air suction port is formed in the housing and sucks indoor air through a suction hole in the wall. further,
An indoor air heat exchanger housed in a housing, connected to an outdoor air heat exchanger via a refrigerant pipe and exchanging heat with indoor air;
An indoor air outlet is formed in the housing and blows out the indoor air after heat exchange with the indoor air heat exchanger into the room through a blowout hole in the wall. further,
An indoor air fan that generates a flow of indoor air in the order of an indoor air inlet, an indoor air heat exchanger, and an indoor air outlet;
An internal flow passage for suction that connects the suction hole of the wall and the indoor air suction port of the housing, and a connecting portion that has a blowout internal flow channel that connects the blowout hole of the wall and the indoor air discharge port of the housing; Have. And
An outside air intake port, an outside air discharge port, an indoor air inlet port, and an indoor air outlet port are formed on the rear side of the case when the case and the wall are viewed in a direction in which the case and the wall face each other. An integrated air conditioner is provided.
 本発明によれば、一体型空気調和機によって建物のデザイン性が損なわれることを抑制することができる。 According to the present invention, it is possible to prevent the design of the building from being damaged by the integrated air conditioner.
図1は、本発明の実施の形態1に係る一体型空気調和機の概略的な斜視図である。FIG. 1 is a schematic perspective view of an integrated air conditioner according to Embodiment 1 of the present invention. 図2は、一体型空気調和機を前側から見た図であって、一体型空気調和機の内部の構成を概略的に示す断面図である。FIG. 2 is a view of the integrated air conditioner as viewed from the front side, and is a cross-sectional view schematically showing an internal configuration of the integrated air conditioner. 図3は、一体型空気調和機を横側から見た図であって、一体型空気調和機の内部の構成を概略的に示す断面図である。FIG. 3 is a view of the integrated air conditioner as viewed from the side, and is a cross-sectional view schematically illustrating an internal configuration of the integrated air conditioner. 図4は、図3に示す4-4線に沿った断面図である。4 is a cross-sectional view taken along line 4-4 shown in FIG. 図5は、連結部の断面図である。FIG. 5 is a cross-sectional view of the connecting portion. 図6は、連結部のアスペクト比と圧力損失との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the aspect ratio of the connecting portion and the pressure loss. 図7は、連結部のアスペクト比と断熱材の容積との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the aspect ratio of the connecting portion and the volume of the heat insulating material. 図8は、連結部のアスペクト比と該連結部の体積との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the aspect ratio of the connecting portion and the volume of the connecting portion. 図9は、流路構造体の斜視図である。FIG. 9 is a perspective view of the flow channel structure. 図10は、一体型空気調和機の換気部の構成を概略的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a configuration of a ventilation portion of the integrated air conditioner. 図11は、一体型空気調和機の筐体が分割された状態を示す部分断面図である。FIG. 11 is a partial cross-sectional view showing a state where the housing of the integrated air conditioner is divided. 図12は、一体型空気調和機の筐体が分割された状態を示す部分斜視図である。FIG. 12 is a partial perspective view showing a state where the housing of the integrated air conditioner is divided. 図13は、本発明の実施の形態2に係る一体型空気調和機を前側から見た図であって、一体型空気調和機の内部の構成を概略的に示す断面図である。FIG. 13 is a view of the integrated air conditioner according to Embodiment 2 of the present invention as viewed from the front side, and is a cross-sectional view schematically showing an internal configuration of the integrated air conditioner. 図14は、本発明の実施の形態2に係る一体型空気調和機を横側から見た図であって、一体型空気調和機の内部の構成を概略的に示す断面図である。FIG. 14 is a view of the integrated air conditioner according to Embodiment 2 of the present invention as viewed from the side, and is a cross-sectional view schematically showing an internal configuration of the integrated air conditioner. 図15は、本発明の実施の形態3に係る一体型空気調和機の外気熱交換部の水平面に沿った断面図である。FIG. 15 is a cross-sectional view along the horizontal plane of the outside air heat exchange unit of the integrated air conditioner according to Embodiment 3 of the present invention. 図16は、本発明の実施の形態4に係る一体型空気調和機の外気熱交換部の水平面に沿った断面図である。FIG. 16 is a cross-sectional view along the horizontal plane of the outside air heat exchange section of the integrated air conditioner according to Embodiment 4 of the present invention. 図17は、本発明の実施の形態2に係る一体型空気調和機の変形例の一部を示す断面図である。FIG. 17 is a cross-sectional view showing a part of a modification of the integrated air conditioner according to Embodiment 2 of the present invention.
 本発明の一態様は、室内と室外とを連絡する吸い込み穴および吹き出し穴を備える壁に対して間隔をあけて接近した状態で配置される一体型空気調和機であって、
 筐体と、
 筐体に形成され、外気を取り込む外気取り込み口と、
 筐体内に収容され、外気と熱交換する外気用熱交換器と、
 筐体に形成され、外気用熱交換器と熱交換した後の外気を排出する外気排出口と、
 外気取り込み口、外気用熱交換器、外気排出口の順に外気が流れる流れを発生させる、鉛直方向に延在する回転中心線を中心として回転するクロスフローファンと、
 筐体に形成され、壁の吸い込み穴を介して室内空気を吸い込む室内空気吸い込み口と、
 筐体内に収容され、外気用熱交換器と冷媒管を介して接続され、室内空気と熱交換する室内空気用熱交換器と、
 筐体にされ、室内空気用熱交換器と熱交換した後の室内空気を壁の吹き出し穴を介して室内に吹き出す室内空気吹き出し口と、
 室内空気吸い込み口、室内空気用熱交換器、室内空気吹き出し口の順に室内空気が流れる流れを発生させる室内空気用ファンと、
 壁の吸い込み穴と筐体の室内空気吸い込み口とを連絡する吸い込み用内部流路および壁の吹き出し穴と筐体の室内空気吹き出し口とを連絡する吹き出し用内部流路を備える連結部と、を有し、
 筐体と壁とが対向する方向に該筐体と壁とを見たときにおける該筐体の背後側に、外気取り込み口、外気排出口、室内空気吸い込み口、および室内空気吹き出し口が形成されている、一体型空気調和機である。
One aspect of the present invention is an integrated air conditioner that is disposed in a state of being close to a wall provided with a suction hole and a blowout hole that communicate between the room and the outdoors,
A housing,
An outside air intake port that is formed in the housing and takes in outside air;
An outside air heat exchanger that is housed in a housing and exchanges heat with outside air;
An outside air outlet that is formed in the housing and exhausts outside air after heat exchange with the outside air heat exchanger;
A cross flow fan that rotates about a rotation center line extending in the vertical direction, and generates a flow through which the outside air flows in the order of the outside air intake port, the outside air heat exchanger, and the outside air discharge port;
An indoor air suction port that is formed in the housing and sucks indoor air through a suction hole in the wall;
An indoor air heat exchanger housed in a housing, connected to an outdoor air heat exchanger via a refrigerant pipe and exchanging heat with indoor air;
An indoor air blowout port that blows indoor air after being exchanged with the heat exchanger for indoor air into the room through a blowout hole in the wall;
An indoor air fan that generates a flow of indoor air in the order of an indoor air inlet, an indoor air heat exchanger, and an indoor air outlet;
An internal flow passage for suction that connects the suction hole of the wall and the indoor air suction port of the housing, and a connecting portion that has a blowout internal flow channel that connects the blowout hole of the wall and the indoor air discharge port of the housing; Have
An outside air intake port, an outside air discharge port, an indoor air intake port, and an indoor air outlet port are formed on the rear side of the housing and the wall in a direction in which the housing and the wall face each other. It is an integrated air conditioner.
 本発明の一態様によれば、一体型空気調和機によって建物のデザイン性が損なわれることを抑制することができる。 According to one aspect of the present invention, it is possible to prevent the design of a building from being damaged by an integrated air conditioner.
 例えば、筐体が、直方体形状であって、壁と平行に且つ間隔をあけて対向する背面と、背面に平行な正面と、正面と背面との間に位置する第1の側面および第2の側面とを備え、室内空気吸い込み口および室内空気吹き出し口の両方が背面、第1の側面、および第2の側面のいずれか一つに形成され、外気取り込み口が背面および第1の側面の少なくとも一方に形成される。さらに、外気排出口が背面および第2の側面の少なくとも一方に形成されている。 For example, the case has a rectangular parallelepiped shape, and a back surface that is parallel to the wall and spaced apart, a front surface that is parallel to the back surface, a first side surface that is located between the front surface and the back surface, and a second surface And both the indoor air inlet and the indoor air outlet are formed on any one of the back surface, the first side surface, and the second side surface, and the outside air intake port is at least on the back surface and the first side surface. Formed on one side. Furthermore, an outside air discharge port is formed on at least one of the back surface and the second side surface.
 好ましくは、外気排出口が、背面に形成されている、これにより、筐体の少なくとも一方の側面に開口がなくなるため、建物のデザイン性が損なわれることが抑制される。 Preferably, the outside air discharge port is formed on the back surface, whereby the opening is eliminated on at least one side surface of the housing, so that the design of the building is prevented from being impaired.
 好ましくは、外気排出口が、外気取り込み口に対して離間する方向に熱交換後の外気を排出するように構成されている、これにより、外気排出口から排出された熱交換後の外気が外気取り込み口を介して筐体内に取り込まれることが抑制される。 Preferably, the outside air discharge port is configured to discharge the outside air after the heat exchange in a direction away from the outside air intake port, whereby the outside air after the heat exchange discharged from the outside air discharge port is outside air. Intake into the housing through the intake port is suppressed.
 外気排出口と外気取り込み口との間の筐体の部分から筐体の外部に向かって突出し、外気排出口から外気取り込み口に向かう外気の流れを遮断する遮断壁部を筐体に設けるのが好ましい。これにより、外気排出口から排出された熱交換後の外気が外気取り込み口を介して筐体内に取り込まれることがさらに抑制される。 The housing is provided with a blocking wall portion that protrudes from the housing portion between the outside air discharge port and the outside air intake port toward the outside of the housing and blocks the flow of outside air from the outside air discharge port to the outside air intake port. preferable. Thereby, it is further suppressed that outside air after heat exchange discharged from the outside air outlet is taken into the housing through the outside air inlet.
 好ましくは、連結部内において吸い込み用内部流路および吹き出し用内部流路が第1の方向に並んだ状態で平行に延在し、連結部が第1の方向に延在する一対の辺と該第1の方向に対して直交する第2の方向に延在する一対の辺を備える四角形形状の断面を備える。そして、連結部の外側表面、吸い込み用内部流路、および吹き出し流路の間に断熱材が充填され、連結部の断面の第2の方向の大きさに対する第1の方向の大きさの比が、1~2の範囲である。これにより、コンパクトで断熱効率に優れ、且つ圧力損失が小さい連結部が実現できる。 Preferably, the suction internal flow path and the blow-out internal flow path are aligned in the first direction and extend in parallel in the connection portion, and the connection portion extends in the first direction and the pair of sides. A quadrangular cross section having a pair of sides extending in a second direction orthogonal to the direction of one. And the heat insulating material is filled between the outer surface of the connecting portion, the suction inner flow path, and the blowing flow path, and the ratio of the size in the first direction to the size in the second direction of the cross section of the connecting portion is The range is 1 to 2. Thereby, the connection part which is compact, excellent in heat insulation efficiency, and has a small pressure loss is realizable.
 一体型空気調和機が筐体と対向する壁に嵌め込まれ、壁の一部を構成する流路構造体を有し、流路構造体が吸い込み穴および吹き出し穴を備えるのが好ましい。これにより、空気調和機の施工が容易になる。 It is preferable that the integrated air conditioner is fitted into a wall facing the casing and has a flow channel structure that forms part of the wall, and the flow channel structure includes a suction hole and a blowout hole. Thereby, construction of an air conditioner becomes easy.
 連結部と流路構造体とが一体的に構成されているのが好ましい。これにより、連結部と流路構造体の間から室内空気が漏れることがなくなる。 It is preferable that the connecting portion and the flow path structure are integrally formed. Thereby, indoor air will not leak from between a connection part and a channel structure.
 室内空気吸い込み口と室内空気用熱交換器との間に鉛直方向に延在する第1の直線状流路を備え、室内空気用ファンと室内空気吹き出し口との間に鉛直方向に延在する第2の直線状流路を備えている。そして、第1および第2の直線状流路を分断するように、筐体が、室内空気吸い込み口および室内空気吹き出し口を備える上側ユニットと室内空気用熱交換器および室内空気ファンを備える下側ユニットとに分割可能に構成されている。そして、上側ユニットと下側ユニットとの間に選択的に配置され、上側ユニット側の第1および第2の直線状流路の部分それぞれと、下側ユニット側の第1および第2の直線状流路の部分それぞれとを連絡する2つの延長流路を備えた延長ユニットを一体型空気調和機は有するのが好ましい。これにより、室内空気吸い込み口および室内空気吹き出し口の鉛直方向位置を変更することができる。 A first linear channel extending in the vertical direction is provided between the indoor air suction port and the indoor air heat exchanger, and extends in the vertical direction between the indoor air fan and the indoor air outlet. A second linear flow path is provided. The housing includes an upper unit including an indoor air inlet and an indoor air outlet, and a lower side including an indoor air heat exchanger and an indoor air fan so as to divide the first and second linear flow paths. It can be divided into units. And it is selectively disposed between the upper unit and the lower unit, and each of the first and second linear flow path portions on the upper unit side and the first and second linear shapes on the lower unit side The integrated air conditioner preferably has an extension unit having two extension channels that communicate with each part of the channel. Thereby, the vertical direction positions of the indoor air suction port and the indoor air outlet can be changed.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は、本発明の実施の形態1に係る一体型空気調和機10の斜視図である。
(Embodiment 1)
FIG. 1 is a perspective view of an integrated air conditioner 10 according to Embodiment 1 of the present invention.
 図1に示すように、一体型空気調和機10は、室外に配置された状態で室内を空調するように構成されている。詳細は後述するが、一体型空気調和機10は、室外と室内とを隔てる住居などの建物の壁Wの外側面W1に対して、間隔をあけて接近した状態で室外に設置される。 As shown in FIG. 1, the integrated air conditioner 10 is configured to air-condition the room in a state of being arranged outside the room. Although details will be described later, the integrated air conditioner 10 is installed outside in a state of being close to the outer side surface W1 of a wall W of a building such as a residence that separates the outside from the room.
 図2は、一体型空気調和機10の内部の構成を概略的に示す、一体型空気調和機10の前側から見た断面図、図3は一体型空気調和機10の内部の構成を概略的に示す、一体型空気調和機10の横側から見た断面図、図4は、一体型空気調和機10の水平面に平行な、図3における4-4線に沿った断面図である。 FIG. 2 is a cross-sectional view schematically showing an internal configuration of the integrated air conditioner 10 as viewed from the front side of the integrated air conditioner 10, and FIG. 3 schematically shows an internal configuration of the integrated air conditioner 10. FIG. 4 is a cross-sectional view taken along the line 4-4 in FIG. 3, which is parallel to the horizontal plane of the integrated air conditioner 10.
 なお、本明細書において、一体型空気調和機10の「前側」は、一体型空気調和機10と壁Wとの対向方向(-X軸方向)に一体型空気調和機10および壁Wを見たときに視認できる一体型空気調和機10の部分(その筐体12の部分)を言う。一方、一体型空気調和機10の「背後側」は、一体型空気調和機10と壁Wとの対向方向(-X軸方向)に一体型空気調和機10および壁Wを見たときに視認できない一体型空気調和機10の部分(その筐体12の部分)を言う。また、以下においては、一体型空気調和機10を省略して「空気調和機10」と称する。 In the present specification, the “front side” of the integrated air conditioner 10 refers to the integrated air conditioner 10 and the wall W in the opposite direction (−X axis direction) between the integrated air conditioner 10 and the wall W. The part of the integrated air conditioner 10 (the part of the casing 12) that can be visually recognized when it is touched. On the other hand, the “rear side” of the integrated air conditioner 10 is visually recognized when the integrated air conditioner 10 and the wall W are viewed in the opposite direction (−X axis direction) between the integrated air conditioner 10 and the wall W. The part of the integrated air conditioner 10 that cannot be performed (the part of the casing 12). In the following, the integrated air conditioner 10 is omitted and referred to as an “air conditioner 10”.
 本実施の形態1の空気調和機10は、図1に示すように、鉛直方向(Z軸方向)に大きい略直方体形状の筐体12を有する。 The air conditioner 10 according to the first embodiment includes a substantially rectangular parallelepiped casing 12 that is large in the vertical direction (Z-axis direction), as shown in FIG.
 筐体12は、空気調和機10が室外に設置されたときに壁Wの外側面W1に対して略平行に且つ間隔をあけて対向する背面12aと、背面12aに平行な正面12bと、正面12bと背面12aとの間に位置する左側面12c(第1の側面)および右側面12d(第2の側面)とを備える。 The casing 12 includes a back surface 12a that faces the outer surface W1 of the wall W when the air conditioner 10 is installed outdoors, and a front surface 12b that is parallel to the back surface 12a. A left side surface 12c (first side surface) and a right side surface 12d (second side surface) positioned between 12b and the back surface 12a.
 このような略直方体形状の筐体12の場合、正面12bが空気調和機10の「前側」に相当し、背面12a、左側面12c、および右側面12dが空気調和機10の「背後側」に相当する。すなわち、空気調和機10と壁Wとの対向方向(-X軸方向)に空気調和機10および壁Wを見たときには、筐体12の正面12bは視認できるが、残りの背面12a、左側面12c、および右側面12dは視認できない。 In the case of such a substantially rectangular parallelepiped housing 12, the front surface 12b corresponds to the “front side” of the air conditioner 10, and the back surface 12a, the left side surface 12c, and the right side surface 12d are on the “rear side” of the air conditioner 10. Equivalent to. That is, when the air conditioner 10 and the wall W are viewed in the opposite direction (−X axis direction) between the air conditioner 10 and the wall W, the front surface 12b of the housing 12 is visible, but the remaining back surface 12a, left side surface 12c and the right side surface 12d cannot be visually recognized.
 また、筐体12には、筐体12内に外気A1を取り込むための外気取り込み口12eと、筐体12内に取り込まれた外気A1を筐体12の外部に排出するための外気排出口12fとが形成されている。 Also, the housing 12 has an outside air intake port 12e for taking in the outside air A1 into the housing 12, and an outside air outlet port 12f for discharging the outside air A1 taken into the housing 12 to the outside of the housing 12. And are formed.
 さらに、筐体12には、室内空気A2を筐体12内に吸い込むための室内空気吸い込み口12gと、筐体12内に吸い込まれた室内空気A2を筐体12の外部に吹き出すための室内空気吹き出し口12hとが形成されている。 Further, the casing 12 has an indoor air inlet 12g for sucking the indoor air A2 into the casing 12, and an indoor air for blowing out the indoor air A2 sucked into the casing 12 to the outside of the casing 12. A blowout port 12h is formed.
 本実施の形態1の場合、外気取り込み口12eおよび外気排出口12fは、複数のスロット状の開口が鉛直方向(Z軸方向)および水平方向(X軸方向、Y軸方向)に並ぶことによって構成されている。外気取り込み口12eは、左側面12cおよび背面12aそれぞれに形成されている。一方、外気排出口12fは、背面12aと右側面12dとの間の角部に形成されている。したがって、空気調和機10と壁Wとの対向方向(-X軸方向)に空気調和機10および壁Wを見たときには、これらの外気取り込み口12eおよび外気排出口12fは視認されない。なお、外気排出口12fは、背面12aと右側面12dとの間の角部ではなく、右側面12dのみに形成されてもよい。この場合、筐体12の構造的な強度を向上させるための複数の支柱を、筐体12の四隅に設けることができる。 In the case of the first embodiment, the outside air intake port 12e and the outside air discharge port 12f are configured by arranging a plurality of slot-shaped openings in the vertical direction (Z-axis direction) and the horizontal direction (X-axis direction, Y-axis direction). Has been. The outside air intake port 12e is formed on each of the left side surface 12c and the back surface 12a. On the other hand, the outside air discharge port 12f is formed at the corner between the back surface 12a and the right side surface 12d. Accordingly, when the air conditioner 10 and the wall W are viewed in the opposite direction (−X axis direction) between the air conditioner 10 and the wall W, the outside air intake port 12e and the outside air discharge port 12f are not visually recognized. The outside air discharge port 12f may be formed only on the right side surface 12d, not on the corner between the back surface 12a and the right side surface 12d. In this case, a plurality of support columns for improving the structural strength of the housing 12 can be provided at the four corners of the housing 12.
 また、本実施の形態1の場合、室内空気吸い込み口12gおよび室内空気吹き出し口12hは、水平方向(Y軸方向)に長い長方形状の開口であって、筐体12の背面12aに、鉛直方向(Z軸方向)に並んだ状態で形成されている。また、本実施の形態1の場合、室内空気吸い込み口12gが室内空気吹き出し口12hの上側に位置する。したがって、空気調和機10と壁Wとの対向方向(-X軸方向)に空気調和機10およびWを見たときには、これらの室内空気吸い込み口12gおよび室内空気吹き出し口12hは視認されない。 In the case of the first embodiment, the indoor air inlet 12g and the indoor air outlet 12h are rectangular openings that are long in the horizontal direction (Y-axis direction), and are formed in the vertical direction on the back surface 12a of the housing 12. They are formed in a state of being aligned in the (Z-axis direction). In the case of the first embodiment, the indoor air inlet 12g is located above the indoor air outlet 12h. Therefore, when the air conditioners 10 and W are viewed in the opposite direction (−X axis direction) between the air conditioner 10 and the wall W, the indoor air inlet 12g and the indoor air outlet 12h are not visually recognized.
 図2および図3に示すように、空気調和機10は、概略、外気A1と熱交換を行うための外気熱交換部10A、室内空気A2と熱交換を行うための室内空気熱交換部10B、室内の換気を行うための換気部10C、ならびに、制御基板14、および圧縮機16などを収容する収容部10Dから構成されている。 As shown in FIG. 2 and FIG. 3, the air conditioner 10 generally includes an outdoor air heat exchange unit 10A for exchanging heat with the outdoor air A1, an indoor air heat exchange unit 10B for exchanging heat with the indoor air A2, It is composed of a ventilation unit 10C for ventilating the room, and a housing unit 10D that houses the control board 14, the compressor 16, and the like.
 空気調和機10の外気熱交換部10Aの内部には、外気A1と熱交換を行う外気用熱交換器18と、外気取り込み口12e、外気用熱交換器18、外気排出口12fの順に外気A1が流れる流れを発生させるクロスフローファン20とが配置されている。 Inside the outside air heat exchanging portion 10A of the air conditioner 10, the outside air heat exchanger 18 for exchanging heat with the outside air A1, the outside air intake port 12e, the outside air heat exchanger 18, and the outside air discharge port 12f are arranged in this order. And a cross flow fan 20 that generates a flow of air.
 空気調和機10の室内空気熱交換部10Bは、空気調和機10の外気熱交換部10Aの上方に位置する。また、その内部には、室内空気A2と熱交換を行う室内空気用熱交換器22、ならびに、室内空気吸い込み口12g、室内空気用熱交換器22、および、室内空気吹き出し口12hの順に室内空気A2が流れる流れを発生させる室内空気用ファンであるシロッコファン24が配置されている。 The indoor air heat exchanger 10B of the air conditioner 10 is located above the outdoor air heat exchanger 10A of the air conditioner 10. In addition, the indoor air heat exchanger 22 that exchanges heat with the indoor air A2, the indoor air suction port 12g, the indoor air heat exchanger 22, and the indoor air outlet 12h are included in the room air in that order. A sirocco fan 24, which is a fan for room air that generates a flow through which A2 flows, is disposed.
 外気用熱交換器18は、図4に示すように、複数の外気取り込み口12eに沿って設けられている。また、外気用熱交換器18は、冷媒配管(図示せず)および四方弁(図示せず)を介して圧縮機16および室内空気用熱交換器22に熱的に接続されている。すなわち、圧縮機16、四方弁、外気用熱交換器18、室内空気用熱交換器22、および、それらを接続する冷媒配管を冷媒が流れる冷凍サイクルが構成されている。 As shown in FIG. 4, the outside air heat exchanger 18 is provided along the plurality of outside air intake ports 12 e. The outdoor air heat exchanger 18 is thermally connected to the compressor 16 and the indoor air heat exchanger 22 via a refrigerant pipe (not shown) and a four-way valve (not shown). That is, a refrigeration cycle is configured in which the refrigerant flows through the compressor 16, the four-way valve, the outdoor air heat exchanger 18, the indoor air heat exchanger 22, and the refrigerant pipe connecting them.
 クロスフローファン20は、図4に示すように、鉛直方向(Z軸方向)に延在する回転中心線C1を中心として回転するようにモータ26によって駆動される。なお、モータ26は、図2に示すように、収容部10D内に配置されている。また、モータ26は、収容部10D内の圧縮機16に対して水平方向(X軸方向およびY軸方向)に並ぶように配置されている。これにより、モータ26が圧縮機16の上方に配置される場合に比べて、空気調和機10(筐体12)の鉛直方向(Z軸方向)のサイズを小さくすることができる。また、制御基板14は、モータ26より正面12b側に配置されることが、空気調和機10(筐体12)の鉛直方向(Z軸方向)のサイズを小さくすることと、制御基板14のメンテナンス性の向上の点で望ましい。 As shown in FIG. 4, the cross flow fan 20 is driven by a motor 26 so as to rotate around a rotation center line C1 extending in the vertical direction (Z-axis direction). In addition, the motor 26 is arrange | positioned in the accommodating part 10D, as shown in FIG. Moreover, the motor 26 is arrange | positioned so that it may rank with a horizontal direction (X-axis direction and Y-axis direction) with respect to the compressor 16 in accommodating part 10D. Thereby, compared with the case where the motor 26 is arrange | positioned above the compressor 16, the size of the vertical direction (Z-axis direction) of the air conditioner 10 (housing | casing 12) can be made small. Further, the control board 14 being arranged on the front surface 12b side from the motor 26 reduces the size of the air conditioner 10 (housing 12) in the vertical direction (Z-axis direction) and maintains the control board 14. It is desirable in terms of improving the performance.
 また、クロスフローファン20は、外気用熱交換器18を挟んで複数の外気取り込み口12eと対向するように、筐体12内(外気熱交換部10A)に配置されている。 Further, the cross flow fan 20 is disposed in the housing 12 (outside air heat exchanging portion 10A) so as to face the plurality of outside air intake ports 12e with the outside air heat exchanger 18 interposed therebetween.
 それにより、モータ26によってクロスフローファン20が回転すると、筐体12の背面12aおよび左側面12cに形成された複数の外気取り込み口12eを介して、外気A1が筐体12内(外気熱交換部10A内)に取り込まれ、外気用熱交換器18内を通過する。その結果、外気A1は外気用熱交換器18と熱交換する。 As a result, when the cross flow fan 20 is rotated by the motor 26, the outside air A1 is passed through the plurality of outside air intake ports 12e formed on the back surface 12a and the left side surface 12c of the housing 12 (the outside air heat exchange unit). 10A) and passes through the heat exchanger 18 for outside air. As a result, the outside air A1 exchanges heat with the outside air heat exchanger 18.
 外気用熱交換器18を通過した熱交換後の外気A1は、クロスフローファン20に取り込まれ、筐体12の背面12aと右側面12dとの間の角部に形成された外気排出口12fを介して筐体12の外部に排出される。 The outside air A1 after the heat exchange that has passed through the outside air heat exchanger 18 is taken into the cross flow fan 20 and passes through the outside air outlet 12f formed at the corner between the back surface 12a and the right side surface 12d of the housing 12. Through the casing 12.
 本実施の形態1の場合、筐体12の背面12aが壁Wの外側面W1に対して略平行に且つ間隔をあけて対向するように空気調和機10が設置されたとき、壁Wの外側面W1と交差する方向に熱交換後の外気A1を排出するように外気排出口12fは構成されている。 In the case of the first embodiment, when the air conditioner 10 is installed so that the back surface 12a of the housing 12 faces the outer surface W1 of the wall W substantially in parallel and at a distance, the outside of the wall W The outside air discharge port 12f is configured to discharge the outside air A1 after heat exchange in a direction intersecting the side surface W1.
 具体的には、外気排出口12fから排出された熱交換後の外気A1が、外気取り込み口12eを介して再び筐体12内に取り込まれないように、外気排出口12fは、外気取り込み口12eに対して離間する方向に熱交換後の外気A1を排出するように構成されている(図4参照)。本実施の形態1の外気排出口12fによれば、図4に示すように、外気排出口12fから排出された外気A1は、壁Wの外側面W1に交差する方向に、外側面W1に向かって流れる。そして、筐体12の背面12aと壁Wの外側面W1との対向領域とは反対方向に、外側面W1に沿って外気A1は流れる。 Specifically, the outside air outlet 12f is configured to prevent the outside air A1 after heat exchange discharged from the outside air outlet 12f from being taken into the housing 12 again through the outside air inlet 12e. The outside air A1 after heat exchange is discharged in a direction away from the outside (see FIG. 4). According to the outside air discharge port 12f of the first embodiment, as shown in FIG. 4, the outside air A1 discharged from the outside air discharge port 12f is directed to the outside surface W1 in a direction intersecting the outside surface W1 of the wall W. Flowing. Then, the outside air A1 flows along the outer surface W1 in the direction opposite to the facing region between the back surface 12a of the housing 12 and the outer surface W1 of the wall W.
 このように壁Wの外側面W1を利用することにより、熱交換後の外気A1が、筐体12の背面12aに形成された外気取り込み口12eを介して直接的に筐体12内に取り込まれることが抑制される。その結果、空気調和機10の空調効率(熱交換効率)の低下が抑制される。 By using the outer side surface W1 of the wall W in this way, the outside air A1 after heat exchange is directly taken into the housing 12 through the outside air intake port 12e formed on the back surface 12a of the housing 12. It is suppressed. As a result, a decrease in air conditioning efficiency (heat exchange efficiency) of the air conditioner 10 is suppressed.
 なお、外気を筐体12内に空気を取り込むための外気用ファンとして、鉛直方向(Z軸方向)に延在する回転中心線C1を中心として回転するクロスフローファン20を使用する理由の1つは、プロペラファンを使用する場合に比べて筐体12の設置面積を小さくすることができることである。また、別の理由は、プロペラファンを外気用ファンとして使用した場合には、円形状の外気取り込み口を設ける必要があり、その円形状の外気取り込み口が建物のデザイン性を大きく損ねるからである。 Note that one of the reasons for using the cross flow fan 20 that rotates about the rotation center line C1 extending in the vertical direction (Z-axis direction) as an outside air fan for taking outside air into the housing 12 is used. This means that the installation area of the housing 12 can be reduced as compared with the case where a propeller fan is used. Another reason is that when a propeller fan is used as an outside air fan, it is necessary to provide a circular outside air intake, and the circular outside air intake greatly impairs the design of the building. .
 図2および図3に示すように、空気調和機10の室内空気熱交換部10Bには、筐体12の背面12aに形成された室内空気吸い込み口12gと室内空気吹き出し口12hとを連絡する内部流路28が形成されている。この内部流路28内には、室内空気用熱交換器22とシロッコファン24とが配置されている。この内部流路28内を、空気吸い込み口12gから室内空気吹き出し口12hに向かって室内空気A2が流れる。 As shown in FIGS. 2 and 3, the indoor air heat exchange unit 10B of the air conditioner 10 communicates with the indoor air suction port 12g formed on the back surface 12a of the housing 12 and the indoor air outlet 12h. A flow path 28 is formed. In the internal flow path 28, the indoor air heat exchanger 22 and the sirocco fan 24 are arranged. In this internal flow path 28, the indoor air A2 flows from the air inlet 12g toward the indoor air outlet 12h.
 本実施の形態1の場合、シロッコファン24は、空気調和機10(筐体12)と壁Wとの対向方向(X軸方向)に延在する回転中心線C2を中心にして回転するようにモータ30によって駆動される。そのシロッコファン24に対して室内空気A2の流れ方向の上流側に室内空気用熱交換器22が配置される。 In the case of the first embodiment, the sirocco fan 24 rotates around a rotation center line C2 extending in the facing direction (X-axis direction) between the air conditioner 10 (housing 12) and the wall W. It is driven by the motor 30. The indoor air heat exchanger 22 is disposed upstream of the sirocco fan 24 in the flow direction of the indoor air A2.
 本実施の形態1の場合、シロッコファン24の回転軸を、X軸方向に延在するように設けているため、回転軸をY軸方向に延在するように設けた場合と比較して、シロッコファン24の側面(回転中心線C2と垂直な面)に対向して設けられる室内空気用熱交換器22の全面面積を大きくすることができる。また、シロッコファン24のファン径を大きくすることができる。 In the case of the first embodiment, since the rotation axis of the sirocco fan 24 is provided so as to extend in the X-axis direction, compared with the case where the rotation axis is provided so as to extend in the Y-axis direction, The entire area of the indoor air heat exchanger 22 provided to face the side surface (surface perpendicular to the rotation center line C2) of the sirocco fan 24 can be increased. Further, the fan diameter of the sirocco fan 24 can be increased.
 また、室内空気用熱交換器22の下方には、室内空気用熱交換器22から落下する結露水を受け水受け皿(図示せず)が設けられている。水受け皿に溜まった水は、排水経路(図示せず)を通じて、筐体12の外部に排水される。なお、水受け皿に溜まった水は、排水経路を通じて、外気用熱交換器18の表面に散布されるようにしてもよい。本実施の形態1の場合、外気用熱交換器18は、室内空気用熱交換器22より下部に設けられているため、水を重力により外気用熱交換器18の表面に導くことができる。 Also, below the indoor air heat exchanger 22, there is provided a water tray (not shown) for receiving dew condensation water falling from the indoor air heat exchanger 22. The water collected in the water tray is drained outside the housing 12 through a drainage path (not shown). The water collected in the water tray may be sprayed on the surface of the outside air heat exchanger 18 through the drainage path. In the case of the first embodiment, since the outdoor air heat exchanger 18 is provided below the indoor air heat exchanger 22, water can be guided to the surface of the outdoor air heat exchanger 18 by gravity.
 モータ30によってシロッコファン24が回転すると、室内空気A2が室内空気吸い込み口12gを介して室内空気熱交換部10Bの内部流路28内に流入する。内部流路28内に流入した室内空気A2は、室内空気用熱交換器22を通過する。その結果、室内空気A2は室内空気用熱交換器22と熱交換する。室内空気用熱交換器22と熱交換した室内空気A2はシロッコファン24に取り込まれ、室内空気吹き出し口12hを介して室内に吹き出される。これにより、室内が空気調和機10によって空調される。 When the sirocco fan 24 is rotated by the motor 30, the indoor air A2 flows into the internal flow path 28 of the indoor air heat exchange unit 10B through the indoor air suction port 12g. The indoor air A2 that has flowed into the internal flow path 28 passes through the indoor air heat exchanger 22. As a result, the indoor air A2 exchanges heat with the indoor air heat exchanger 22. The room air A2 exchanged with the room air heat exchanger 22 is taken into the sirocco fan 24 and blown out into the room through the room air outlet 12h. Thereby, the room is air-conditioned by the air conditioner 10.
 本実施の形態1の場合、室内空気用熱交換器22は、シロッコファン24より空気調和機10(筐体12)の正面12b側に配置されているので、図3に示すように、内部流路28の一部を構成するX方向に延在する直線状流路を長くすることができる。これにより、内部流路28の一部を構成するZ方向に延在する直線状流路28aを介して、室内空気用熱交換器22に導かれる空気の流速分布を均一化できる。 In the case of the first embodiment, the indoor air heat exchanger 22 is disposed on the front surface 12b side of the air conditioner 10 (housing 12) from the sirocco fan 24, and therefore, as shown in FIG. The linear flow path extending in the X direction constituting a part of the path 28 can be lengthened. Thereby, the flow velocity distribution of the air guided to the indoor air heat exchanger 22 can be made uniform through the linear flow path 28a extending in the Z direction constituting a part of the internal flow path 28.
 空気調和機10の室内空気吸い込み口12gと室内空気吹き出し口12hは、図1に示すように、連結部40および流路構造体42を介して室内に連絡される。 The indoor air inlet 12g and the indoor air outlet 12h of the air conditioner 10 are in communication with the room via the connecting portion 40 and the flow path structure 42 as shown in FIG.
 連結部40は、図1および図3に示すように、空気調和機10の筐体12の背面12aと壁Wの外側面W1との間に配置されている。 1 and 3, the connecting portion 40 is disposed between the back surface 12a of the casing 12 of the air conditioner 10 and the outer surface W1 of the wall W.
 連結部40はまた、直方体形状であって、その内部に、筐体12の背面12aに形成された室内空気吸い込み口12gと壁Wを室外から室内に向かって貫通する吸い込み穴42aとを連絡する吸い込み用内部流路40aを備える。吸い込み用内部流路40aは、室内空気吸い込み口12gと連結するために、水平方向(Y軸方向)に長い長方形形状の断面を備え、筐体12と壁Wとの対向方向(X軸方向)に延在する。 The connecting portion 40 also has a rectangular parallelepiped shape, and communicates with an indoor air suction port 12g formed on the back surface 12a of the housing 12 and a suction hole 42a penetrating the wall W from the outdoor side toward the indoor side. The internal flow path 40a for suction is provided. The suction internal flow path 40a has a rectangular section that is long in the horizontal direction (Y-axis direction) and is connected to the indoor air suction port 12g, and is opposed to the housing 12 and the wall W (X-axis direction). Extend to.
 連結部40はさらに、筐体12の室内空気吹き出し口12hと壁Wを室外から室内に向かって貫通する吹き出し穴42bとを連絡する吹き出し用内部流路40bを備える。吹き出し用内部流路40bは、室内空気吸い込み口12gの下方に位置する室内空気吹き出し口12hと連結するために、水平方向(Y軸方向)に長い長方形形状の断面を備え、吸い込み用内部流路40aに対して下方を且つ平行に延在する。つまり、吸い込み用内部流路40aと吹き出し用内部流路40bとは、第1の方向(ここではZ軸方向)に並んだ状態で平行に延在している。また、連結部40は、第1の方向に延在する一対の辺と、第1の方向に対して直交する第2の方向(ここではY方向)に延在する一対の辺を備える四角形形状の断面を有している。 The connecting portion 40 further includes a blowout internal flow path 40b that communicates the indoor air blowout opening 12h of the housing 12 and the blowout hole 42b that penetrates the wall W from the outside toward the inside of the room. The blowout internal flow path 40b has a rectangular section that is long in the horizontal direction (Y-axis direction) so as to be connected to the indoor air blowout opening 12h located below the indoor air intake opening 12g. It extends downward and parallel to 40a. That is, the suction internal flow path 40a and the blowout internal flow path 40b extend in parallel in a state of being aligned in the first direction (here, the Z-axis direction). Further, the connecting portion 40 has a quadrangular shape including a pair of sides extending in the first direction and a pair of sides extending in the second direction (here, the Y direction) orthogonal to the first direction. Has a cross section.
 室内空気A2を筐体12内に吸い込むための吸い込み用内部流路40aと、熱交換後の室内空気A2を室内に吹き出すための吹き出し用内部流路40bとを一体的に備えた連結部40により、壁Wを備える建物のデザイン性が損なわれることが抑制される。すなわち、室内空気吸い込み口12gと吸い込み穴42aとを連結するダクト(流路)、および、室内空気吹き出し口12hと吹き出し穴42bとを連結するダクト(流路)が別々に構成される場合に比べて抑制される。 By a connecting portion 40 integrally provided with a suction internal flow path 40a for sucking the indoor air A2 into the housing 12 and a blowout internal flow path 40b for blowing the indoor air A2 after heat exchange into the room. It is suppressed that the design of a building provided with the wall W is impaired. That is, as compared with the case where the duct (flow path) connecting the indoor air suction port 12g and the suction hole 42a and the duct (flow path) connecting the indoor air discharge port 12h and the blow hole 42b are configured separately. Is suppressed.
 また、本実施の形態1の場合、連結部40は筐体12の背面12aと、壁Wの外側面W1との間に配置されるため、空気調和機10と壁Wとの対向方向(-X軸方向)に空気調和機10および壁Wを見たときには、連結部40は視認されない。 Further, in the case of the first embodiment, since the connecting portion 40 is disposed between the back surface 12a of the housing 12 and the outer surface W1 of the wall W, the facing direction of the air conditioner 10 and the wall W (− When the air conditioner 10 and the wall W are viewed in the (X-axis direction), the connecting portion 40 is not visually recognized.
 このような連結部40により、壁Wと空気調和機10とがデザイン的に調和し、住居などの建物のデザイン性が損なわれることが抑制される。 </ RTI> By such a connecting portion 40, the wall W and the air conditioner 10 are harmonized in design, and the design of a building such as a residence is prevented from being damaged.
 なお、図5に示すように、連結部40が四角形形状の断面を備え、吸い込み用内部流路40aおよび吹き出し用内部流路40bが同一の四角形形状の流路断面を備えて、鉛直方向(Z軸方向)に並んで連結部40内に平行に延在する場合、その断面のアスペクト比(縦L/横S)(すなわちZ軸方向サイズ/Y軸方向サイズ)は、約1~2の範囲が好ましい。つまり、連結部40の断面の第2の方向(Y軸方向)の大きさに対する第1の方向(Z軸方向)の大きさの比が、1~2の範囲であることが望ましい。 As shown in FIG. 5, the connecting portion 40 has a quadrangular cross section, and the suction internal flow path 40a and the blowout internal flow path 40b have the same quadrangular flow path cross section, and the vertical direction (Z When extending in parallel in the connecting portion 40 in the axial direction, the aspect ratio (vertical L / horizontal S) of the cross section (that is, the size in the Z-axis direction / the size in the Y-axis direction) is in the range of about 1-2. Is preferred. That is, it is desirable that the ratio of the size in the first direction (Z-axis direction) to the size in the second direction (Y-axis direction) of the cross section of the connecting portion 40 is in the range of 1 to 2.
 連結部40の内部には断熱材が収容され、その断熱材を貫通するように吸い込み用内部流路40aおよび吹き出し用内部流路40bが鉛直方向(Z軸方向)に並んだ状態で延在する。すなわち、連結部40の外側表面、吸い込み用内部流路40a、および、吹き出し用内部流路40bの間には、断熱材が充填されている。 A heat insulating material is accommodated inside the connecting portion 40, and the suction internal flow path 40 a and the blowout internal flow path 40 b extend in a state of being aligned in the vertical direction (Z-axis direction) so as to penetrate the heat insulating material. . That is, the outer surface of the connecting portion 40, the suction internal flow path 40a, and the blowout internal flow path 40b are filled with a heat insulating material.
 図6は、四角形形状の断面を備える連結部40のアスペクト比に対する吸い込み用内部流路40aおよび吹き出し用内部流路40bの圧力損失を示している。図7は、連結部40のアスペクト比に対する断熱材の容積を示している。図8は、連結部40のアスペクト比に対する連結部40の体積を示している。なお、断熱材の容積は断熱材の使用量に相当し、連結部40の体積は連結部40のコンパクトさに相当する。したがって、断熱材の容積および連結部40の体積は小さい方が好ましい。 FIG. 6 shows the pressure loss of the suction internal flow path 40a and the blowout internal flow path 40b with respect to the aspect ratio of the connecting portion 40 having a rectangular cross section. FIG. 7 shows the volume of the heat insulating material with respect to the aspect ratio of the connecting portion 40. FIG. 8 shows the volume of the connecting part 40 with respect to the aspect ratio of the connecting part 40. The volume of the heat insulating material corresponds to the amount of heat insulating material used, and the volume of the connecting portion 40 corresponds to the compactness of the connecting portion 40. Therefore, the one where the volume of a heat insulating material and the volume of the connection part 40 are small is preferable.
 図6~図8に示すアスペクト比に対する連結部40の特性は、連結部40の長さが1mであって、風路面積(吸い込み用内部流路40aおよび吹き出し用内部流路40bそれぞれの断面積)が0.01mであって、且つ、吸い込み用内部流路40aおよび吹き出し用内部流路40bそれぞれを流れる空気の風速が10m/sである場合の特性である。 The characteristics of the connecting portion 40 with respect to the aspect ratio shown in FIGS. 6 to 8 are that the length of the connecting portion 40 is 1 m, and the air passage area (the cross-sectional area of each of the suction internal flow path 40a and the blowout internal flow path 40b). ) Is 0.01 m 2 , and the wind speed of the air flowing through each of the suction internal flow path 40a and the blowout internal flow path 40b is 10 m / s.
 図6~図8に示すように、連結部40のアスペクト比が1になるまでは、圧力損失、断熱材の容積、および、連結部40の体積は減少する。アスペクト比が2に比べて大きくなると、圧力損失、断熱材の容積、および連結部40の体積は増加する。したがって、連結部40のアスペクト比は、圧力損失、断熱材の容積、および連結部40の体積が小さくなる約1~2の範囲が好ましい。このようなアスペクト比によれば、コンパクトなサイズで断熱効率に優れ、且つ、圧力損失が小さい連結部40を得ることができ、その結果、空気調和機10は高い空調効率を得ることができる。 As shown in FIGS. 6 to 8, the pressure loss, the volume of the heat insulating material, and the volume of the connecting portion 40 decrease until the aspect ratio of the connecting portion 40 becomes 1. When the aspect ratio becomes larger than 2, the pressure loss, the volume of the heat insulating material, and the volume of the connecting portion 40 increase. Therefore, the aspect ratio of the connecting portion 40 is preferably in the range of about 1 to 2 in which the pressure loss, the volume of the heat insulating material, and the volume of the connecting portion 40 are reduced. According to such an aspect ratio, it is possible to obtain the connecting portion 40 that is compact in size, excellent in heat insulation efficiency, and low in pressure loss. As a result, the air conditioner 10 can obtain high air conditioning efficiency.
 このような連結部40の吸い込み用内部流路40aおよび吹き出し用内部流路40bそれぞれに連結される吸い込み穴42aおよび吹き出し穴42bは、本実施の形態1の場合、壁Wに直接的に形成されていない。吸い込み穴42aおよび吹き出し穴42bは、壁W内に嵌め込まれ、壁Wの一部を構成する流路構造体42に形成されている。 In the case of the first embodiment, the suction hole 42a and the blowout hole 42b connected to the suction internal flow path 40a and the blowout internal flow path 40b of the connecting portion 40 are formed directly on the wall W, respectively. Not. The suction hole 42 a and the blowout hole 42 b are fitted in the wall W and are formed in the flow channel structure 42 that constitutes a part of the wall W.
 本実施の形態1の場合、流路構造体42は、図1および図9に示すように、室外と室内とを連通するように壁Wに形成され、長方形状の断面を備える貫通穴状の取り付け穴W3に挿通される直方体形状の本体部42cと、壁Wの内側面W2に取り付けられる化粧パネル42dとを備える。 In the case of the first embodiment, as shown in FIGS. 1 and 9, the flow path structure 42 is formed in the wall W so as to communicate between the outside and the room, and has a through-hole shape having a rectangular cross section. A rectangular parallelepiped main body portion 42c inserted through the attachment hole W3 and a decorative panel 42d attached to the inner side surface W2 of the wall W are provided.
 吸い込み穴42aおよび吹き出し穴42bは、本体部42cと化粧パネル42dとを貫通することによって室外と室内とを連絡する。 The suction hole 42a and the blow-out hole 42b pass through the main body 42c and the decorative panel 42d so as to communicate between the outside and the room.
 流路構造体42の本体部42cは、箱状であって、その内部に断熱材を有する。その断熱材を貫通するように、吸い込み穴42aおよび吹き出し穴42bは形成されている。 The main body 42c of the flow path structure 42 is box-shaped and has a heat insulating material therein. The suction hole 42a and the blowing hole 42b are formed so as to penetrate the heat insulating material.
 また、流路構造体42の本体部42c内で、吸い込み穴42aおよび吹き出し穴42bの断面形状は、室外側から室内側に向かうにしたがって変化する。 Further, in the main body portion 42c of the flow path structure 42, the cross-sectional shapes of the suction hole 42a and the blowout hole 42b change from the outdoor side toward the indoor side.
 具体的に説明すると、本実施の形態1の場合、筐体12の室内空気吸い込み口12gおよび室内空気吹き出し口12hは、それぞれ水平方向(Y軸方向)に長い長方形形状の開口であって、鉛直方向(Z軸方向)に並んでいる。このような室内空気吸い込み口12gおよび室内空気吹き出し口12hと、連結部40(その吸い込み用内部流路40a,吹き出し用内部流路40b)を介して連結するために、吸い込み穴42aおよび吹き出し穴42bそれぞれの室外側の開口は、水平方向(Y軸方向)に長い長方形形状を備える。 Specifically, in the case of the first embodiment, the indoor air inlet 12g and the indoor air outlet 12h of the housing 12 are rectangular openings that are long in the horizontal direction (Y-axis direction), and are vertically Are aligned in the direction (Z-axis direction). In order to connect the indoor air inlet 12g and the indoor air outlet 12h with the connecting portion 40 (the suction inner flow path 40a and the blowout internal flow path 40b), the suction hole 42a and the blow hole 42b are connected. Each outdoor opening has a rectangular shape that is long in the horizontal direction (Y-axis direction).
 一方、吸い込み穴42aおよび吹き出し穴42bの室内側の開口(すなわち化粧パネル42dに形成された開口)は、それぞれ鉛直方向(Z軸方向)に長い長方形形状を備え、鉛直方向に並んでいる。 On the other hand, the openings on the indoor side of the suction holes 42a and the blowout holes 42b (that is, the openings formed in the decorative panel 42d) each have a rectangular shape that is long in the vertical direction (Z-axis direction) and are aligned in the vertical direction.
 すなわち、吸い込み穴42aおよび吹き出し穴42bそれぞれは、四角形形状の断面のアスペクト比(縦(Z軸方向サイズ)/横(Y軸方向サイズ))が変化しながら、室外から室内に向かって延在している。 That is, each of the suction hole 42a and the blowout hole 42b extends from the outdoor side to the indoor side while changing the aspect ratio (vertical (Z-axis direction size) / horizontal (Y-axis direction size)) of the rectangular cross section. ing.
 流路構造体42の化粧パネル42dは、壁Wの内側面W2に取り付けられ、本体部42cと壁Wの取り付け穴W3との隙間を覆う。また、化粧パネル42dには、空気調和機10をユーザが操作するためのスイッチなどの操作部(図示せず)が設けられている。または、化粧パネル42dには、空気調和機10を遠隔操作するためのリモートコントローラから出射される信号、例えば赤外線信号を受光する受光部が設けられる。化粧パネル42dに設けられた操作部は、流路構造体42および連結部40を介して、筐体12内の制御基板14に電気的に接続される。 The decorative panel 42d of the flow path structure 42 is attached to the inner side surface W2 of the wall W and covers the gap between the main body 42c and the attachment hole W3 of the wall W. The decorative panel 42d is provided with an operation unit (not shown) such as a switch for the user to operate the air conditioner 10. Alternatively, the decorative panel 42d is provided with a light receiving unit that receives a signal emitted from a remote controller for remotely operating the air conditioner 10, for example, an infrared signal. The operation unit provided on the decorative panel 42 d is electrically connected to the control board 14 in the housing 12 via the flow channel structure 42 and the coupling unit 40.
 このような流路構造体42によれば、吸い込み穴42aおよび吹き出し穴42bそれぞれを直接的に壁Wに形成する場合に比べて、空気調和機10の施工が容易になる。特に、本実施の形態1のように、吸い込み穴42aおよび吹き出し穴42bが、室外から室内に向かうにしたがってその断面形状が変化する場合、特に空気調和機10の施工が容易になる。 Such a flow path structure 42 makes it easier to install the air conditioner 10 than when the suction holes 42a and the blowout holes 42b are directly formed in the wall W. In particular, when the cross-sectional shape of the suction hole 42a and the blowout hole 42b changes from the outdoor side to the indoor side as in the first embodiment, the construction of the air conditioner 10 is particularly easy.
 また、図1に示すように、流路構造体42が筐体12の背面12aに対向するように壁Wに嵌め込まれることにより、空気調和機10と壁Wとの対向方向(-X軸方向)に空気調和機10および壁Wを見たときには、流路構造体42は視認されない。このような流路構造体42により、壁Wを備える住居などの建物のデザイン性が損なわれることが抑制される。また、流路構造体42と連結部40とは一体的に構成されていてもよい。 Further, as shown in FIG. 1, the flow path structure 42 is fitted into the wall W so as to face the back surface 12a of the casing 12, so that the air conditioner 10 and the wall W are opposed to each other (−X axis direction). ), The flow path structure 42 is not visually recognized when the air conditioner 10 and the wall W are viewed. By such a flow path structure 42, it is suppressed that the design property of buildings, such as a residence provided with the wall W, is impaired. Further, the flow path structure 42 and the connecting portion 40 may be configured integrally.
 図2および図3に示すように、本実施の形態1の場合、空気調和機10において、換気部10Cは最上部に配置されている。 As shown in FIG. 2 and FIG. 3, in the case of the first embodiment, in the air conditioner 10, the ventilation part 10C is arranged at the top.
 空気調和機10の換気部10Cは、外気A1を室内に供給しつつ、室内空気A2を室外に排出することにより、室内の換気を行うように構成されている。そのために、換気部10Cは、外気A1を吸い込むための外気吸い込み口50と、外気吸い込み口50から室内に向かう外気A1の流れを発生させるファン52と、室内空気A2を室外に排出するための室内空気排出口54と、室内から室内空気排出口54に向かう室内空気A2の流れを発生させるファン56とを有する。これに加えて、換気部10Cは、室内に供給される外気A1と室外に排出される室内空気A2との間で熱交換を行うための換気用熱交換器58を有する。 The ventilation unit 10C of the air conditioner 10 is configured to ventilate the room by discharging the room air A2 to the outside while supplying the room air A1 to the room. For this purpose, the ventilating unit 10C includes an outside air suction port 50 for sucking the outside air A1, a fan 52 that generates a flow of the outside air A1 from the outside air suction port 50 toward the room, and a room for discharging the room air A2 to the outside. The air discharge port 54 and a fan 56 that generates a flow of room air A2 from the room toward the room air discharge port 54 are provided. In addition, the ventilation unit 10C includes a ventilation heat exchanger 58 for exchanging heat between the outside air A1 supplied to the room and the room air A2 discharged to the outside.
 図2、図3、および図10に示すように、換気部10Cの外気吸い込み口50および室内空気排出口54は、筐体12の背面12aの上側部分に、水平方向(Y軸方向)に並んだ状態で形成されている。 As shown in FIGS. 2, 3, and 10, the outside air suction port 50 and the indoor air discharge port 54 of the ventilation unit 10 </ b> C are arranged in the horizontal direction (Y-axis direction) on the upper portion of the back surface 12 a of the housing 12. It is formed in a state.
 なお、図3に示すように、外気吸い込み口50にHEPA(High Efficiency Particulate Air)フィルタなどのフィルタ60を設け、微粒子などの室内への侵入を抑制してもよい。 As shown in FIG. 3, a filter 60 such as a HEPA (High Efficiency Particulate Air) filter may be provided in the outside air suction port 50 to suppress entry of fine particles into the room.
 外気吸い込み口50は、図2および図3に示すように、換気部10C内に形成された内部流路62を介して、室内空気熱交換部10Bの内部流路28における室内空気用熱交換器22の上流側に接続されている。この内部流路62内には、外気吸い込み口50側から順に、換気用熱交換器58、ファン52が配置されている。本実施の形態1の場合、ファン52はシロッコファンである。 As shown in FIGS. 2 and 3, the outside air suction port 50 is a heat exchanger for indoor air in the internal flow path 28 of the indoor air heat exchange section 10 </ b> B via an internal flow path 62 formed in the ventilation section 10 </ b> C. 22 is connected to the upstream side. In this internal flow path 62, a ventilation heat exchanger 58 and a fan 52 are arranged in this order from the outside air suction port 50 side. In the case of the first embodiment, the fan 52 is a sirocco fan.
 一方、室内空気排出口54は、図3および図10に示すように、換気部10C内に形成された内部流路64を介して、室内空気熱交換部10Bの内部流路28における室内空気用熱交換器22の上流側に接続されている。図3に示すように、この内部流路64と内部流路28との接続部は、内部流路62と内部流路28との接続部に比べて、筐体12の室内空気吸い込み口12gに近い位置に位置する。また、内部流路64内に、室内空気排出口54から順に、換気用熱交換器58、ファン56が配置されている。本実施の形態1の場合、ファン56はシロッコファンである。 On the other hand, as shown in FIG. 3 and FIG. 10, the indoor air discharge port 54 is for indoor air in the internal flow path 28 of the indoor air heat exchange unit 10B via the internal flow path 64 formed in the ventilation unit 10C. It is connected to the upstream side of the heat exchanger 22. As shown in FIG. 3, the connection portion between the internal flow path 64 and the internal flow path 28 is connected to the indoor air suction port 12 g of the housing 12 in comparison with the connection portion between the internal flow path 62 and the internal flow path 28. Located close. Further, a ventilation heat exchanger 58 and a fan 56 are arranged in the internal flow path 64 in order from the indoor air discharge port 54. In the case of the first embodiment, the fan 56 is a sirocco fan.
 本実施の形態1の場合、換気部10C内に形成された内部流路62と内部流路64は、室内空気用熱交換器22の上流側の内部流路28に接続されている。このため、室内空気用熱交換器22の下流側の内部流路28に接続される場合と比較して、室内空気用熱交換器22で熱交換された熱を室外に排出してしまうことがなく効率的である。 In the case of the first embodiment, the internal flow path 62 and the internal flow path 64 formed in the ventilation unit 10C are connected to the internal flow path 28 on the upstream side of the indoor air heat exchanger 22. For this reason, compared with the case where it is connected to the internal flow path 28 on the downstream side of the indoor air heat exchanger 22, the heat exchanged by the indoor air heat exchanger 22 may be discharged to the outside of the room. Not efficient.
 さらに、本実施の形態1の場合、換気部10Cの2つのファン52,56は、筐体12と壁Wとの対向方向(X軸方向)に延在する共通の回転中心線C3を中心として回転するとともに、共通のモータ66によって駆動される。1つのモータ66によって2つのファン52,56が駆動されることにより、1つのモータを省略することができる。 Further, in the case of the first embodiment, the two fans 52 and 56 of the ventilation unit 10C are centered on a common rotation center line C3 extending in the facing direction (X-axis direction) between the housing 12 and the wall W. It rotates and is driven by a common motor 66. Since the two fans 52 and 56 are driven by one motor 66, one motor can be omitted.
 なお、図3に示すように、外気吸い込み口50にHEPAフィルタなどのフィルタ60が設けられる場合、吸気抵抗を考慮して、外気A1を吸い込むためのファン52を、室内空気A2を排出するためのファン56に比べて大型化するのが好ましい。 As shown in FIG. 3, when a filter 60 such as a HEPA filter is provided in the outside air suction port 50, the fan 52 for sucking outside air A <b> 1 is discharged from the room air A <b> 2 in consideration of intake resistance. It is preferable to enlarge the size of the fan 56.
 このような空気調和機10の換気部10Cによれば、室内を空調しながら室内を換気することができる。なお、室内を空調せずに室内の換気のみを行う場合、圧縮機16とクロスフローファン20とが停止した状態で、3つのシロッコファン24,52,56を回転させる。これにより、図3に示すように、室内空気A2が、流路構造体42の吸い込み穴42a、連結部40の吸い込み用内部流路40a、室内空気熱交換部10Bの内部流路28、換気部10Cの内部流路64(ファン56および換気用熱交換器58)、および室内空気排出口54を順に通過して、室外に排出される。また、外気A1が、外気吸い込み口50、換気部10Cの内部流路62(換気用熱交換器58およびファン52)、室内空気熱交換部10Bの内部流路28(室内空気用熱交換器22およびシロッコファン24)、連結部40の吹き出し用内部流路40b、および流路構造体42の吹き出し穴42bを順に通過して、室内に供給される。 According to the ventilation unit 10C of the air conditioner 10 as described above, the room can be ventilated while the room is air-conditioned. In the case where only indoor ventilation is performed without air-conditioning the room, the three sirocco fans 24, 52, and 56 are rotated while the compressor 16 and the cross flow fan 20 are stopped. As a result, as shown in FIG. 3, the indoor air A2 flows into the suction hole 42a of the flow channel structure 42, the suction internal flow channel 40a of the connecting portion 40, the internal flow channel 28 of the indoor air heat exchange unit 10B, and the ventilation unit. 10C internal flow path 64 (fan 56 and ventilation heat exchanger 58) and indoor air outlet 54 are sequentially passed through and discharged outside the room. In addition, the outside air A1 includes the outside air suction port 50, the internal flow path 62 (the ventilation heat exchanger 58 and the fan 52) of the ventilation section 10C, and the internal flow path 28 (the indoor air heat exchanger 22) of the indoor air heat exchange section 10B. And the sirocco fan 24), the blowout internal flow path 40b of the connecting portion 40, and the blowout hole 42b of the flow path structure 42 are sequentially supplied to the room.
 本実施の形態1の場合、上側に内部流路28を備えた室内空気熱交換部10Bの上方に、下側に内部流路64を備えた換気部10Cを設けたため、内部流路64を出た空気を室内空気吹き出し口12hに導くための流路を別途設けることなく、内部流路28を利用することができるため、空気調和機10(筐体12)の鉛直方向(Z軸方向)のサイズを小さくすることができる。 In the case of the first embodiment, the ventilation section 10C having the internal flow path 64 on the lower side is provided above the indoor air heat exchange section 10B having the internal flow path 28 on the upper side. Since the internal flow path 28 can be used without separately providing a flow path for guiding the air to the indoor air outlet 12h, the vertical direction (Z-axis direction) of the air conditioner 10 (housing 12) can be used. The size can be reduced.
 加えて、本実施の形態1の空気調和機10は、室内空気吸い込み口12gおよび室内空気吹き出し口12hの鉛直方向(Z軸方向)位置が変更可能に構成されている。 In addition, the air conditioner 10 of the first embodiment is configured so that the vertical direction (Z-axis direction) positions of the indoor air inlet 12g and the indoor air outlet 12h can be changed.
 住居などの建物の構造上の制約、および、ユーザの好みのうち、少なくともいずれかにより、壁Wに対する流路構造体42の鉛直方向(Z軸方向)の取り付け位置、すなわち流路構造体42の吸い込み穴42aおよび吹き出し穴42bそれぞれの室内側の開口の鉛直方向の位置は、様々な位置を取りうる。 The mounting position of the flow path structure 42 in the vertical direction (Z-axis direction) with respect to the wall W, that is, the flow path structure 42, depending on at least one of the structural restrictions on the building such as a residence and the user's preference. The positions in the vertical direction of the indoor openings of the suction holes 42a and the blowout holes 42b can take various positions.
 この対処として、本実施の形態1の空気調和機10の筐体12は、図11および図12に示すように、上下方向に分割可能に構成されている。 As a countermeasure, the casing 12 of the air conditioner 10 according to the first embodiment is configured to be vertically splittable as shown in FIGS. 11 and 12.
 具体的には、本実施の形態1の場合、筐体12は、上側ユニット12iと下側ユニット12jとに分割可能に構成されている。上側ユニット12iは、室内空気吸い込み口12gおよび室内空気吹き出し口12hを備える。一方、下側ユニット12jは、室内空気用熱交換器22およびシロッコファン24を備える。 Specifically, in the case of the first embodiment, the housing 12 is configured to be divided into an upper unit 12i and a lower unit 12j. The upper unit 12i includes an indoor air inlet 12g and an indoor air outlet 12h. On the other hand, the lower unit 12j includes an indoor air heat exchanger 22 and a sirocco fan 24.
 また、室内空気吸い込み口12gと室内空気用熱交換器22との間には、内部流路28の一部を構成し、鉛直方向(Z軸方向)に延在する第1の直線状流路である直線状流路28aが存在する。シロッコファン24と室内空気吹き出し口12hとの間には、内部流路28の一部を構成し、鉛直方向に延在する第2の直線状流路である直線状流路28bが存在する。これらの直線状流路28a,28bを分断するように、筐体12は、上側ユニット12iと下側ユニット12jとに分割可能に構成されている。 In addition, a first linear flow path that forms a part of the internal flow path 28 and extends in the vertical direction (Z-axis direction) between the indoor air suction port 12g and the indoor air heat exchanger 22. There is a linear flow path 28a. Between the sirocco fan 24 and the indoor air outlet 12h, there is a linear flow path 28b that constitutes a part of the internal flow path 28 and is a second linear flow path extending in the vertical direction. The housing 12 is configured to be divided into an upper unit 12i and a lower unit 12j so as to divide the linear flow paths 28a and 28b.
 上側ユニット12iと下側ユニット12jとの間には、上側ユニット12iの室内空気吸い込み口12gおよび室内空気吹き出し口12hの鉛直方向(Z軸方向)の位置合わせを行うための延長ユニット12kが選択的に配置される。様々な高さの延長ユニット12kを用意すれば、上側ユニット12iの室内空気吸い込み口12gおよび室内空気吹き出し口12hを所望の鉛直方向位置に位置合わせすることができる。 An extension unit 12k for aligning the indoor air inlet 12g and the indoor air outlet 12h of the upper unit 12i in the vertical direction (Z-axis direction) is selectively provided between the upper unit 12i and the lower unit 12j. Placed in. If the extension units 12k having various heights are prepared, the indoor air inlet 12g and the indoor air outlet 12h of the upper unit 12i can be aligned at desired vertical positions.
 また、延長ユニット12kを発砲スチロールなどの切断容易な断熱材で構成し、空気調和機10を設置する際に、建物の構造上の制約にあわせて、延長ユニット12kを切断して配置すれば、上側ユニット12iの室内空気吸い込み口12gおよび室内空気吹き出し口12hを、所望の鉛直方向位置に位置合わせすることができる。なお、この場合には、延長ユニット12kを覆うカバーを別途、設けることで、デザイン性が損なわれることが抑制できる。 In addition, if the extension unit 12k is made of a heat-insulating material such as foamed polystyrene, and the air conditioner 10 is installed, the extension unit 12k may be cut and arranged in accordance with the structural restrictions of the building. The indoor air inlet 12g and the indoor air outlet 12h of the upper unit 12i can be aligned at a desired vertical position. In this case, it is possible to prevent the design from being impaired by separately providing a cover that covers the extension unit 12k.
 また、延長ユニット12kは、上側ユニット12i側の直線状流路28aの部分28a1と下側ユニット12j側の直線状流路28aの部分28a2とを連絡する延長流路28a3と、上側ユニット12i側の直線状流路28bの部分28b1と下側ユニット12j側の直線状流路28bの部分28b2とを連絡する延長流路28b3とを有する。 The extension unit 12k includes an extension channel 28a3 that communicates a portion 28a1 of the linear channel 28a on the upper unit 12i side and a portion 28a2 of the linear channel 28a on the lower unit 12j side, and a portion on the upper unit 12i side. There is an extended flow path 28b3 that connects the portion 28b1 of the straight flow path 28b and the portion 28b2 of the straight flow path 28b on the lower unit 12j side.
 この延長ユニット12kの延長流路28a3,28b3により、上側ユニット12iと下側ユニット12jとの間に延長ユニット12kが介在しても、室内吸い込み口12gから室内空気吹き出し口12hまで室内空気A2が流れる内部流路28を構成することができる。 Due to the extension flow paths 28a3 and 28b3 of the extension unit 12k, even if the extension unit 12k is interposed between the upper unit 12i and the lower unit 12j, the indoor air A2 flows from the indoor suction port 12g to the indoor air outlet 12h. An internal flow path 28 can be configured.
 なお、本実施の形態1の場合、上側ユニット12iと延長ユニット12kとの間から室内空気A2が漏れないように、延長ユニット12kの延長流路28a3,28b3の上側ユニット12i側の開口を囲む、リング状のシール部材70,72が延長ユニット12kに設けられている。また、延長ユニット12kと下側ユニット12jとの間から室内空気A2が漏れないように、下側ユニット12jの直線状流路28a,28bの開口を囲むシール部材74,76が設けられている。 In the case of the first embodiment, the opening on the upper unit 12i side of the extension flow paths 28a3 and 28b3 of the extension unit 12k is enclosed so that the indoor air A2 does not leak from between the upper unit 12i and the extension unit 12k. Ring-shaped seal members 70 and 72 are provided in the extension unit 12k. In addition, seal members 74 and 76 surrounding the openings of the linear flow paths 28a and 28b of the lower unit 12j are provided so that the indoor air A2 does not leak from between the extension unit 12k and the lower unit 12j.
 なお、上述のように、延長ユニット12kを切断して配置する仕様の場合には、シール部材70,72,74,76は、延長ユニット12kではなく、上側ユニット12iおよび下側ユニット12jに設けるほうが望ましい。また、本実施の形態1の場合、上側ユニット12iを下側ユニット12jから分離できる構成であるため、空気調和機10の製造時や、輸送時の取り扱いが容易となる。 As described above, when the extension unit 12k is cut and arranged, the seal members 70, 72, 74, and 76 are provided not on the extension unit 12k but on the upper unit 12i and the lower unit 12j. desirable. Moreover, in the case of this Embodiment 1, since it is the structure which can isolate | separate the upper unit 12i from the lower unit 12j, the handling at the time of manufacture of the air conditioner 10 and transportation becomes easy.
 本実施の形態1によれば、空気調和機10によって建物のデザイン性が損なわれることを抑制することができる。すなわち、外気取り込み口12eおよび外気排出口12fが筐体12の背後側に形成されているため、さらに、連結部40および流路構造体42が筐体12の背面12aに対向するため(すなわち筐体12によって隠れるため)、空気調和機10は、住居などの建物の壁Wとデザイン的に調和することができる。その結果、空気調和機10によって建物のデザイン性が損なわれることが抑制される。 According to the first embodiment, it is possible to prevent the design of the building from being damaged by the air conditioner 10. That is, since the outside air intake port 12e and the outside air discharge port 12f are formed on the rear side of the housing 12, the connecting portion 40 and the flow path structure 42 are opposed to the back surface 12a of the housing 12 (that is, the housing). The air conditioner 10 can be harmonized in design with the wall W of a building such as a residence. As a result, the air conditioner 10 can prevent the design of the building from being impaired.
 (実施の形態2)
 本実施の形態2に係る空気調和機110は、上述の実施の形態1と略同一の構成を有する。したがって、異なる点を中心に、本実施の形態2に係る空気調和機を説明する。なお、実施の形態1と同一の構成要素には同一の符号が付されている。
(Embodiment 2)
Air conditioner 110 according to Embodiment 2 has substantially the same configuration as that of Embodiment 1 described above. Therefore, the air conditioner according to the second embodiment will be described focusing on the different points. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1. FIG.
 図13および図14に示すように、本実施の形態2に係る空気調和機110の室内空気熱交換部110Bにおける室内空気吸い込み口112gおよび室内空気吹き出し口112hは、壁Wの外側面W1に対向する筐体112の背面112aではなく、右側面112dに形成されている。そのために、連結部140の形状が、直線状の実施の形態1の連結部40と異なり「L」字状である(すなわち、「L」字状の吸い込み用内部流路140aおよび吹き出し用内部流路140bとを備える)。また、実施の形態1における内部流路28と同様に、内部流路128が室内空気熱交換部110Bに形成されている。 As shown in FIGS. 13 and 14, indoor air suction port 112g and indoor air outlet 112h in indoor air heat exchange section 110B of air conditioner 110 according to Embodiment 2 are opposed to outer surface W1 of wall W. It is formed not on the back surface 112a of the housing 112 to be formed but on the right side surface 112d. Therefore, the shape of the connecting portion 140 is different from the straight connecting portion 40 of the first embodiment, and is an “L” shape (that is, the “L” -shaped suction internal flow path 140a and the blowing internal flow. Path 140b). Moreover, the internal flow path 128 is formed in the indoor air heat exchange part 110B similarly to the internal flow path 28 in Embodiment 1. FIG.
 これにより、図13に示すように、流路構造体42を空気調和機110の筐体112の背面112aに対向するように配置できない場合であっても、空気調和機110の室内空気吸い込み口112gおよび室内空気吹き出し口112hと、流路構造体42の吸い込み穴42aおよび吹き出し穴42bとを連絡することができる。 As a result, as shown in FIG. 13, even when the flow path structure 42 cannot be disposed so as to face the back surface 112 a of the casing 112 of the air conditioner 110, the indoor air suction port 112 g of the air conditioner 110. The indoor air outlet 112h can communicate with the suction hole 42a and the outlet hole 42b of the flow path structure 42.
 本実施の形態2によれば、空気調和機110によって建物のデザイン性が損なわれることを抑制することができる。すなわち、外気取り込み口12eおよび外気排出口12fが筐体12の背後側に形成されているため、空気調和機110は、住居などの建物の壁Wとデザイン的に調和することができる。その結果、空気調和機110によって建物のデザイン性が損なわれることが抑制される。 According to the second embodiment, it is possible to prevent the design of the building from being damaged by the air conditioner 110. That is, since the outside air intake port 12e and the outside air discharge port 12f are formed on the back side of the housing 12, the air conditioner 110 can be harmonized in design with the wall W of a building such as a residence. As a result, the design of the building is not impaired by the air conditioner 110.
 なお、本実施の形態2では、室内空気吸い込み口112gおよび室内空気吹き出し口112hが、右側面112dに形成されているとして説明したが、左側面112cに形成されている場合であっても、同様に連結部140を接続できる。 In the second embodiment, the indoor air inlet 112g and the indoor air outlet 112h are described as being formed on the right side 112d, but the same applies to the case where they are formed on the left side 112c. The connecting part 140 can be connected to the terminal.
 (実施の形態3)
 本実施の形態3に係る空気調和機210は、遮断壁部以外は上述の実施の形態1と同一の構成を有する。したがって、遮断壁部について説明する。なお、実施の形態1と同一の構成要素には同一の符号が付されている。
(Embodiment 3)
The air conditioner 210 according to the third embodiment has the same configuration as that of the above-described first embodiment except for the blocking wall portion. Therefore, the blocking wall will be described. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1. FIG.
 図15に示すように、本実施の形態3に係る空気調和機210は、外気排出口12fから排出された熱交換後の外気A1が、再び外気取り込み口12eを介して筐体12内に取り込まれないように、外気排出口12fから外気取り込み口12eへの外気A1の流れを遮断する遮断壁部280を有する。 As shown in FIG. 15, in the air conditioner 210 according to the third embodiment, the heat exchanged outside air A1 discharged from the outside air discharge port 12f is again taken into the housing 12 through the outside air intake port 12e. In order to prevent this, there is a blocking wall portion 280 that blocks the flow of the outside air A1 from the outside air discharge port 12f to the outside air intake port 12e.
 例えば、筐体12の背面12aにおける外気排出口12fと外気取り込み口12eとの間の筐体12の部分に、筐体12の外部に向かって突出する遮断壁部280が設けられる。この遮断壁部280は、空気調和機210が壁Wに沿って設置されたとき、壁Wの外側面W1と協働することにより、外気排出口12fから直接的に外気取り込み口12eに向かう外気A1の流れを遮断することができる。それにより、外気排出口12fから排出された熱交換後の外気A1が、外気取り込み口12eを介して直接的に筐体12内に取り込まれることがさらに抑制される(遮断壁部280がない場合に比べて)。その結果、空気調和機210の空調効率の低下をさらに抑制することができる。なお、この遮断壁部280は、筐体12に一体的に形成されてもよいし、筐体12とは別体に構成されてもよい。 For example, a blocking wall portion 280 protruding toward the outside of the housing 12 is provided at a portion of the housing 12 between the outside air discharge port 12f and the outside air intake port 12e on the back surface 12a of the housing 12. When the air conditioner 210 is installed along the wall W, the blocking wall portion 280 cooperates with the outer side surface W1 of the wall W, so that the outside air directly directed from the outside air discharge port 12f to the outside air intake port 12e. The flow of A1 can be cut off. Thereby, the outside air A1 after heat exchange discharged from the outside air discharge port 12f is further suppressed from being directly taken into the housing 12 via the outside air intake port 12e (when there is no blocking wall portion 280). Compared to). As a result, a decrease in the air conditioning efficiency of the air conditioner 210 can be further suppressed. The blocking wall 280 may be formed integrally with the housing 12 or may be configured separately from the housing 12.
 本実施の形態3によれば、上述の実施の形態1と同様に、空気調和機210によって建物のデザイン性が損なわれることを抑制することができる。 According to the third embodiment, it is possible to prevent the design of the building from being damaged by the air conditioner 210 as in the first embodiment.
 (実施の形態4)
 本実施の形態4に係る空気調和機310は、外気排出口以外は上述の実施の形態1と同一の構成を有する。したがって、外気排出口について説明する。なお、実施の形態1と同一の構成要素には同一の符号が付されている。
(Embodiment 4)
The air conditioner 310 according to the fourth embodiment has the same configuration as that of the first embodiment except for the outside air outlet. Therefore, the outside air outlet will be described. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1. FIG.
 図16に示すように、本実施の形態4に係る空気調和機310における外気排出口312fは、筐体312の右側面312dに形成されている(実施の形態1と異なり、背面312aには形成されていない)。また、外気排出口312fは、壁Wの外側面W1に平行な方向(-Y軸方向)に熱交換後の外気A1を排出するように構成されている。このような外気排出口312fによっても、熱交換後の外気A1が筐体312の背面312aに形成された外気取り込み口312eを介して直接的に筐体12内に取り込まれることを抑制することができる。 As shown in FIG. 16, the outside air discharge port 312f in the air conditioner 310 according to the fourth embodiment is formed on the right side surface 312d of the housing 312 (unlike the first embodiment, it is formed on the back surface 312a. It has not been). The outside air discharge port 312f is configured to discharge the outside air A1 after heat exchange in a direction parallel to the outer side surface W1 of the wall W (−Y-axis direction). Such an outside air discharge port 312f also prevents the outside air A1 after heat exchange from being directly taken into the housing 12 through the outside air intake port 312e formed on the back surface 312a of the housing 312. it can.
 本実施の形態4によれば、上述の実施の形態1と同様に、空気調和機310によって建物のデザイン性が損なわれることを抑制することができる。 According to the fourth embodiment, it is possible to prevent the design of the building from being damaged by the air conditioner 310 as in the first embodiment.
 なお、本実施の形態4は、外気排出口312fが、筐体312の右側面312dに形成されている例を用いて説明したが、本発明はこれに限定されず、正面312bから見て、左右対称となる構成、すなわち、外気排出口312fが、左側面312cに形成されていてもよい。 In addition, although this Embodiment 4 demonstrated using the example in which the external air discharge port 312f was formed in the right side surface 312d of the housing | casing 312, this invention is not limited to this, seeing from the front 312b, The left-right side surface 312c may be formed with a symmetrical configuration, that is, an outside air discharge port 312f.
 以上、上述の4つの実施の形態を挙げて本発明を説明したが、本発明は上述の実施の形態に限定されない。 As mentioned above, although the above-mentioned four embodiments were mentioned and the present invention was explained, the present invention is not limited to the above-mentioned embodiments.
 例えば、上述の実施の形態の場合、室内空気A2の流れを形成するシロッコファン24は、この構成に限らない。例えば、プロペラファンであってもよい。 For example, in the case of the above-described embodiment, the sirocco fan 24 that forms the flow of the indoor air A2 is not limited to this configuration. For example, a propeller fan may be used.
 例えば、上述の実施の形態の場合、筐体12(112)の室内空気吸い込み口12g(112g)が室内空気吹き出し口12h(112h)対して上方に位置するが、逆であってもよい。この場合、対応するように、連結部40(140)の吸い込み用内部流路40a(140a)が吹き出し用内部流路40b(140b)に対して下方に位置する。また同様に、流路構造体42の吸い込み穴42aが吹き出し穴42bに対して下方に位置する。 For example, in the case of the above-described embodiment, the indoor air inlet 12g (112g) of the housing 12 (112) is located above the indoor air outlet 12h (112h), but may be reversed. In this case, the suction internal flow path 40a (140a) of the connecting portion 40 (140) is positioned below the blowing internal flow path 40b (140b) so as to correspond. Similarly, the suction hole 42a of the flow path structure 42 is positioned below the blowing hole 42b.
 ただし、室内空気吹き出し口12h(112h)が室内空気吸い込み口12g(112g)の上側に位置するとともに、室内空気用熱交換器22がシロッコファン24に比べて筐体12(112)の正面12b(112b)側に位置する場合を想定すると、流路構成が複雑となる。すなわち、シロッコファン24から室内空気吹き出し口12h(112h)までの流路と、室内空気吸い込み口12g(112g)から室内空気用熱交換器22までの流路とが、筐体12(112)の側面視(Y軸方向視)で交差する。その結果、筐体12(112h)内における流路構成が複雑になる。そのため、実施の形態2で説明したように、筐体112の右側面112dと左側面12cのいずれにも連結部140を接続できるようにするためには、上述の実施の形態で説明したように、室内空気吸い込み口12g(112g)が室内空気吹き出し口12h(112h)の上側に位置するほうが望ましい。 However, the indoor air outlet 12h (112h) is located above the indoor air inlet 12g (112g), and the indoor air heat exchanger 22 is compared with the sirocco fan 24 in the front surface 12b ( Assuming the case where it is located on the side 112b), the flow path configuration becomes complicated. That is, the flow path from the sirocco fan 24 to the indoor air outlet 12h (112h) and the flow path from the indoor air suction port 12g (112g) to the indoor air heat exchanger 22 are provided in the housing 12 (112). Intersects in side view (view in Y-axis direction). As a result, the flow path configuration in the housing 12 (112h) becomes complicated. Therefore, as described in the second embodiment, in order to connect the connecting portion 140 to either the right side surface 112d or the left side surface 12c of the housing 112, as described in the above embodiment mode. The indoor air inlet 12g (112g) is preferably located above the indoor air outlet 12h (112h).
 なお、室内空気吹き出し口12h(112h)が室内空気吸い込み口12g(112g)の上側に位置する場合、例えば図17に示す空気調和機410の構成が考えられる。 When the indoor air outlet 12h (112h) is positioned above the indoor air inlet 12g (112g), for example, a configuration of an air conditioner 410 shown in FIG. 17 is conceivable.
 図17に示す空気調和機410は、実施の形態2の空気調和機110の変形例であって、実施の形態2と同様に、筐体412の右側面(図面奥側)に室内空気吹き出し口412hと室内空気吸い込み口412gとを有する。また、内部流路64と同様に、内部流路464が設けられている。 An air conditioner 410 shown in FIG. 17 is a modification of the air conditioner 110 according to the second embodiment. Like the second embodiment, the air conditioner 410 has a room air outlet on the right side surface (the back side of the drawing) of the housing 412. 412h and an indoor air inlet 412g. Similarly to the internal flow path 64, an internal flow path 464 is provided.
 また、図17に示すように、室内空気用熱交換器22は、シロッコファン24よりも空気調和機410(筐体412)の背面412a側に配置される。これにより、シロッコファン24から室内空気吹き出し口412hまでの流路428dと、室内空気吸い込み口412gから室内空気用熱交換器22までの流路428cとが、筐体412の側面視(Y軸方向視)で交差することがなくなる。なお、図17に示すように、シロッコファン24から室内空気吹き出し口412hまでの流路428dは、室内の換気のために外気A1が流れる流路(ファン52から室内空気用熱交換器22に向かう流路462に対して、筐体412の右側面側(図面奥側)を延在する。 Also, as shown in FIG. 17, the indoor air heat exchanger 22 is disposed closer to the back surface 412a of the air conditioner 410 (housing 412) than the sirocco fan 24. As a result, the flow path 428d from the sirocco fan 24 to the indoor air outlet 412h and the flow path 428c from the indoor air suction port 412g to the indoor air heat exchanger 22 are viewed in a side view (Y-axis direction). Will not cross). As shown in FIG. 17, a flow path 428d from the sirocco fan 24 to the indoor air outlet 412h is a flow path (from the fan 52 toward the indoor air heat exchanger 22) through which the outside air A1 flows for indoor ventilation. The right side surface (the back side of the drawing) of the housing 412 extends with respect to the flow path 462.
 また例えば、上述の実施の形態の場合、筐体12(112)の室内空気吸い込み口12g(112g)と室内空気吹き出し口12h(112h)は、鉛直方向(Z軸方向)に並んでいるが、これと異なり水平方向(Y軸方向(X軸方向))に並んでいてもよい。また、これらに連結する連結部40(140)の吸い込み用内部流路40a(140a)と吹き出し用内部流路40b(140b)も、鉛直方向ではなく水平方向に並んでいてもよい。同様に、流路構造体42の吸い込み穴42aと吹き出し穴42bも、鉛直方向ではなく、水平方向に並んでいてもよい。 Further, for example, in the case of the above-described embodiment, the indoor air inlet 12g (112g) and the indoor air outlet 12h (112h) of the housing 12 (112) are aligned in the vertical direction (Z-axis direction). Unlike this, they may be arranged in the horizontal direction (Y-axis direction (X-axis direction)). Further, the suction internal flow path 40a (140a) and the blowout internal flow path 40b (140b) of the connection portion 40 (140) connected to these may be arranged in the horizontal direction instead of the vertical direction. Similarly, the suction holes 42a and the blowing holes 42b of the flow path structure 42 may be arranged in the horizontal direction instead of the vertical direction.
 さらに例えば、上述の実施の形態の場合、空気調和機10(110,210,310)は、鉛直方向(Z軸方向)に大きい略直方体形状であるが、これに限らない。例えば、円柱形状であってもよい。 Further, for example, in the case of the above-described embodiment, the air conditioner 10 (110, 210, 310) has a substantially rectangular parallelepiped shape that is large in the vertical direction (Z-axis direction), but is not limited thereto. For example, a cylindrical shape may be sufficient.
 このように、本発明の実施の形態に係る空気調和機は様々な形態をとることが可能である。 Thus, the air conditioner according to the embodiment of the present invention can take various forms.
 さらにまた、上述の実施の形態の場合、空気調和機10(110、210、310)は、室内を換気する換気部10Cを備えるが、換気部10Cはなくてもよい。すなわち、換気部は、ユーザによって選択的に空気調和機に取り付けられるオプションであってもよい。 Furthermore, in the case of the above-described embodiment, the air conditioner 10 (110, 210, 310) includes the ventilation unit 10C for ventilating the room, but the ventilation unit 10C may not be provided. In other words, the ventilation unit may be an option that is selectively attached to the air conditioner by the user.
 加えて、上述の実施の形態の場合、連結部40(140)と流路構造体42は別体であるが、これらは一体であってもよい。この場合、連結部40(140)と流路構造体42との間から室内空気A2が漏れることがないため、空気調和機10(110、210、310)の空調効率が向上する。 In addition, in the case of the above-described embodiment, the connecting portion 40 (140) and the flow path structure 42 are separate, but they may be integrated. In this case, since the indoor air A2 does not leak from between the connecting portion 40 (140) and the flow path structure 42, the air conditioning efficiency of the air conditioner 10 (110, 210, 310) is improved.
 加えてまた、外気排出口12f(312f)は、熱交換後の外気A1を水平方向に排出してもよいし、また下方向に排出してもよい。好ましくは、空気調和機近傍に位置するユーザの顔に熱交換後の外気が当たらない下方向に、外気排出口は熱交換後の外気を排出するのが好ましい。 In addition, the outside air discharge port 12f (312f) may discharge the outside air A1 after heat exchange in the horizontal direction or in the downward direction. Preferably, the outside air discharge port discharges outside air after heat exchange in a downward direction in which outside air after heat exchange does not hit the user's face located in the vicinity of the air conditioner.
 さらに加えて、上述の実施の形態の場合、外気取り込み口12e(312e)は、筐体12(112、312)の背面12a(312a)および左側面12c(312c)に形成されているが、これに限らない。例えば、筐体の右側面に形成されてもよい。ただし、この場合、外気排出口は左側面に形成される。これは、外気排出口から排出された熱交換後の外気が外気取り込み口に流入することを抑制するためである。 In addition, in the above-described embodiment, the outside air intake port 12e (312e) is formed on the back surface 12a (312a) and the left side surface 12c (312c) of the housing 12 (112, 312). Not limited to. For example, it may be formed on the right side surface of the housing. However, in this case, the outside air discharge port is formed on the left side surface. This is to prevent the outside air after the heat exchange discharged from the outside air outlet from flowing into the outside air intake.
 さらに加えて、上述の実施の形態の場合、吸い込み穴42aおよび吹き出し穴42bは流路構造体42に形成されているが、それぞれの構造が単純であれば(例えば断面形状が一定の穴であれば)、壁Wに形成されてもよい。 In addition, in the case of the above-described embodiment, the suction hole 42a and the blowout hole 42b are formed in the flow path structure 42. However, if each structure is simple (for example, a hole having a constant cross-sectional shape). And may be formed on the wall W.
 以上述べたように、本発明は、一体型空気調和機によって建物のデザイン性が損なわれることを抑制することができる、という格別な効果を奏することができる。よって、本発明は、外気と熱交換する外気用熱交換器と室内空気と熱交換する室内熱交換器とが1つの筐体に収容されている一体型の空気調和機等に適用可能であり、有用である。 As described above, the present invention can provide a special effect that the design of the building can be prevented from being damaged by the integrated air conditioner. Therefore, the present invention can be applied to an integrated air conditioner or the like in which a heat exchanger for outside air that exchanges heat with outside air and an indoor heat exchanger that exchanges heat with room air are housed in one housing. Is useful.
 10,110,210,310,410  空気調和機(一体型空気調和機)
 10A  外気熱交換部
 10B,110B  室内空気熱交換部
 10C  換気部
 10D  収容部
 12,112,312,412  筐体
 12a,112a,312a,412a  背面
 12b,112b,312b  正面
 12c,112c,312c  左側面
 12d,112d,312d  右側面
 12e,312e  外気取り込み口
 12f,312f  外気排出口
 12g,112g,412g  室内空気吸い込み口
 12h,112h,412h  室内空気吹き出し口
 12i  上側ユニット
 12j  下側ユニット
 12k  延長ユニット
 14  制御基板
 16  圧縮機
 18  外気用熱交換器
 20  クロスフローファン
 22  室内空気用熱交換器
 24  シロッコファン
 26  モータ
 28,128  内部流路
 28a  直線状流路
 28a1  部分
 28a2  部分
 28a3  延長流路
 28b  直線状流路
 28b1  部分
 28b2  部分
 28b3  延長流路
 30  モータ
 40,140  連結部
 40a,140a  吸い込み用内部流路
 40b,140b  吹き出し用内部流路
 42  流路構造体
 42a  吸い込み穴
 42b  吹き出し穴
 42c  本体部
 42d  化粧パネル
 50  外気吸い込み口
 52  ファン
 54  室内空気排出口
 56  ファン
 58  換気用熱交換器
 60  フィルタ
 62  内部流路
 64,464  内部流路
 66  モータ
 70,72,74,76  シール部材
 280  遮断壁部
 428c,428d,462  流路
 W  壁
 W1  外側面
 W2  内側面
 W3  取り付け穴
 A1  外気
 A2  室内空気
 C1  回転中心線
 C2  回転中心線
 C3  回転中心線
10, 110, 210, 310, 410 Air conditioner (integrated air conditioner)
10A Outdoor air heat exchange unit 10B, 110B Indoor air heat exchange unit 10C Ventilation unit 10D Housing unit 12, 112, 312, 412 Case 12a, 112a, 312a, 412a Rear surface 12b, 112b, 312b Front surface 12c, 112c, 312c Left side surface 12d 112d, 312d Right side surface 12e, 312e Outside air intake port 12f, 312f Outside air outlet port 12g, 112g, 412g Indoor air inlet port 12h, 112h, 412h Indoor air outlet port 12i Upper unit 12j Lower unit 12k Extension unit 14 Control board 16 Compressor 18 Heat exchanger for outside air 20 Cross flow fan 22 Heat exchanger for indoor air 24 Sirocco fan 26 Motor 28, 128 Internal flow path 28a Linear flow path 28a1 portion 28a2 portion 2 a3 extended flow path 28b linear flow path 28b1 part 28b2 part 28b3 extended flow path 30 motor 40, 140 connecting part 40a, 140a suction internal flow path 40b, 140b blowout internal flow path 42 flow path structure 42a suction hole 42b blowout Hole 42c Body portion 42d Decorative panel 50 Outside air suction port 52 Fan 54 Indoor air outlet 56 Fan 58 Ventilation heat exchanger 60 Filter 62 Internal flow path 64, 464 Internal flow path 66 Motor 70, 72, 74, 76 Seal member 280 Blocking wall 428c, 428d, 462 Flow path W Wall W1 Outer side surface W2 Inner side surface W3 Mounting hole A1 Outside air A2 Indoor air C1 Rotation center line C2 Rotation center line C3 Rotation center line

Claims (9)

  1. 室内と室外とを連絡する吸い込み穴および吹き出し穴を備える壁に対して間隔をあけて接近した状態で配置される一体型空気調和機であって、
    筐体と、
    前記筐体に形成され、外気を取り込む外気取り込み口と、
    前記筐体内に収容され、前記外気と熱交換する外気用熱交換器と、
    前記筐体に形成され、前記外気用熱交換器と熱交換した後の前記外気を排出する外気排出口と、
    前記外気取り込み口、前記外気用熱交換器、前記外気排出口の順に外気が流れる流れを発生させる、鉛直方向に延在する回転中心線を中心として回転するクロスフローファンと、
    前記筐体に形成され、前記壁の前記吸い込み穴を介して室内空気を吸い込む室内空気吸い込み口と、
    前記筐体内に収容され、前記外気用熱交換器と冷媒管を介して接続され、前記室内空気と熱交換する室内空気用熱交換器と、
    前記筐体に形成され、前記室内空気用熱交換器と熱交換した後の前記室内空気を前記壁の前記吹き出し穴を介して室内に吹き出す室内空気吹き出し口と、
    前記室内空気吸い込み口、前記室内空気用熱交換器、前記室内空気吹き出し口の順に前記室内空気が流れる流れを発生させる室内空気用ファンと、
    前記壁の前記吸い込み穴と前記筐体の前記室内空気吸い込み口とを連絡する吸い込み用内部流路および前記壁の前記吹き出し穴と、前記筐体の前記室内空気吹き出し口とを連絡する吹き出し用内部流路を備える連結部と、を有し、
    前記筐体と前記壁とが対向する方向に前記筐体と前記壁とを見たときにおける前記筐体の背後側に、前記外気取り込み口、前記外気排出口、前記室内空気吸い込み口、および前記室内空気吹き出し口が形成されている、
    一体型空気調和機。
    An integrated air conditioner that is arranged in a state of being close to and spaced from a wall having a suction hole and a blowout hole that communicate between the room and the outside,
    A housing,
    An outside air intake port formed in the housing for taking in outside air;
    An outside air heat exchanger that is housed in the housing and exchanges heat with the outside air;
    An outside air outlet that is formed in the housing and discharges the outside air after heat exchange with the outside air heat exchanger;
    A cross flow fan that rotates around a rotation center line extending in a vertical direction, generating a flow through which the outside air flows in the order of the outside air intake port, the outside air heat exchanger, and the outside air discharge port;
    An indoor air suction port that is formed in the housing and sucks indoor air through the suction hole of the wall;
    An indoor air heat exchanger housed in the housing, connected to the outside air heat exchanger via a refrigerant pipe, and for exchanging heat with the indoor air;
    An indoor air outlet that is formed in the housing and blows out the indoor air after exchanging heat with the indoor air heat exchanger into the room through the outlet hole of the wall;
    An indoor air fan for generating a flow through which the room air flows in the order of the room air inlet, the room air heat exchanger, and the room air outlet;
    A suction internal passage for connecting the suction hole of the wall and the indoor air suction port of the housing, and a blowout interior for connecting the blow hole of the wall and the indoor air discharge port of the housing A connecting portion having a flow path,
    The outside air intake port, the outside air discharge port, the indoor air intake port, and the rear side of the case when the case and the wall are viewed in a direction in which the case and the wall face each other, and An indoor air outlet is formed,
    Integrated air conditioner.
  2. 前記筐体が、直方体形状であって、前記壁と平行に且つ間隔をあけて対向する背面と、前記背面に平行な正面と、前記正面と前記背面との間に位置する第1の側面および第2の側面とを備え、
    前記室内空気吸い込み口および前記室内空気吹き出し口の両方が、前記背面、前記第1の側面、および前記第2の側面のいずれか一つに形成され、
    前記外気取り込み口が前記背面および前記第1の側面の少なくとも一方に形成され、
    前記外気排出口が前記背面および前記第2の側面の少なくとも一方に形成されている、
    請求項1に記載の一体型空気調和機。
    The housing has a rectangular parallelepiped shape, a back surface that is parallel to and spaced from the wall, a front surface that is parallel to the back surface, a first side surface that is located between the front surface and the back surface, and A second side;
    Both the indoor air inlet and the indoor air outlet are formed on any one of the back surface, the first side surface, and the second side surface,
    The outside air intake port is formed on at least one of the back surface and the first side surface;
    The outside air outlet is formed in at least one of the back surface and the second side surface;
    The integrated air conditioner according to claim 1.
  3. 前記外気排出口が、前記背面に形成されている、
    請求項2に記載の一体型空気調和機。
    The outside air outlet is formed in the back surface;
    The integrated air conditioner according to claim 2.
  4. 前記外気排出口が、前記外気取り込み口に対して離間する方向に熱交換後の前記外気を排出するように構成されている、
    請求項1または請求項2に記載の一体型空気調和機。
    The outside air discharge port is configured to discharge the outside air after heat exchange in a direction away from the outside air intake port.
    The integrated air conditioner according to claim 1 or 2.
  5. 前記外気排出口と前記外気取り込み口との間の前記筐体の部分から前記筐体の外部に向かって突出し、前記外気排出口から前記外気取り込み口に向かう前記外気の流れを遮断する遮断壁部が前記筐体に設けられている、
    請求項1から請求項4までのいずれか一項に記載の一体型空気調和機。
    A blocking wall portion that protrudes from the portion of the housing between the outside air discharge port and the outside air intake port toward the outside of the housing and blocks the flow of the outside air from the outside air discharge port toward the outside air intake port. Is provided in the housing,
    The integrated air conditioner according to any one of claims 1 to 4.
  6. 前記連結部内において前記吸い込み用内部流路および前記吹き出し用内部流路が第1の方向に並んだ状態で平行に延在し、
    前記連結部が前記第1の方向に延在する一対の辺と前記第1の方向に対して直交する第2の方向に延在する一対の辺を備える四角形形状の断面を備え、
    前記連結部の外側表面、前記吸い込み用内部流路、および前記吹き出し流路の間に断熱材が充填され、
    前記連結部の断面の前記第2の方向の大きさに対する前記第1の方向の大きさの比が、1~2の範囲である、
    請求項1から請求項5までのいずれか一項に記載の一体型空気調和機。
    In the connecting portion, the suction internal flow path and the blowout internal flow path extend in parallel in a state aligned in the first direction,
    The connecting portion includes a quadrangular cross section including a pair of sides extending in the first direction and a pair of sides extending in a second direction orthogonal to the first direction;
    A heat insulating material is filled between the outer surface of the connecting portion, the suction internal flow path, and the blowout flow path.
    The ratio of the size in the first direction to the size in the second direction of the cross section of the connecting portion is in the range of 1 to 2.
    The integrated air conditioner according to any one of claims 1 to 5.
  7. 前記筐体と対向する前記壁に嵌め込まれ、前記壁の一部を構成する流路構造体を有し、
    前記流路構造体が、吸い込み穴および吹き出し穴を備える、
    請求項1から請求項6までのいずれか一項に記載の一体型空気調和機。
    A flow path structure that is fitted into the wall facing the housing and forms a part of the wall;
    The flow path structure includes a suction hole and a blowout hole.
    The integrated air conditioner according to any one of claims 1 to 6.
  8. 前記連結部と前記流路構造体とが一体的に構成されている、
    請求項7に記載の一体型空気調和機。
    The connecting portion and the flow path structure are configured integrally.
    The integrated air conditioner according to claim 7.
  9. 前記室内空気吸い込み口と前記室内空気用熱交換器との間に鉛直方向に延在する第1の直線状流路を備え、
    前記室内空気用ファンと前記室内空気吹き出し口との間に鉛直方向に延在する第2の直線状流路を備え、
    前記第1の直線状流路および前記第2の直線状流路を分断するように、前記筐体が、前記室内空気吸い込み口および前記室内空気吹き出し口を備える上側ユニットと、前記室内空気用熱交換器および前記室内空気ファンを備える下側ユニットとに分割可能に構成され、
    前記上側ユニットと前記下側ユニットとの間に選択的に配置され、前記上側ユニット側の前記第1の直線状流路および前記第2の直線状流路の部分それぞれと、前記下側ユニット側の前記第1の直線状流路および前記第2の直線状流路の部分それぞれとを連絡する2つの延長流路を備えた延長ユニットを有する、
    請求項1から請求項8までのいずれか一項に記載の一体型空気調和機。
    A first linear channel extending in a vertical direction between the indoor air inlet and the indoor air heat exchanger;
    A second linear channel extending in a vertical direction between the indoor air fan and the indoor air outlet;
    An upper unit in which the casing includes the indoor air suction port and the indoor air outlet, so as to divide the first linear channel and the second linear channel; It can be divided into an exchanger and a lower unit comprising the indoor air fan,
    The first linear flow path and the second linear flow path on the upper unit side are selectively disposed between the upper unit and the lower unit, respectively, and the lower unit side An extension unit having two extension channels communicating with each of the first linear channel and each of the second linear channels.
    The integrated air conditioner according to any one of claims 1 to 8.
PCT/JP2015/001723 2014-04-11 2015-03-26 Integrated air conditioner WO2015155947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580017540.3A CN106133451B (en) 2014-04-11 2015-03-26 One-piece type air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014082127A JP6358534B2 (en) 2014-04-11 2014-04-11 Integrated air conditioner
JP2014-082127 2014-04-11

Publications (1)

Publication Number Publication Date
WO2015155947A1 true WO2015155947A1 (en) 2015-10-15

Family

ID=54287536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001723 WO2015155947A1 (en) 2014-04-11 2015-03-26 Integrated air conditioner

Country Status (3)

Country Link
JP (1) JP6358534B2 (en)
CN (1) CN106133451B (en)
WO (1) WO2015155947A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477646A (en) * 2016-08-03 2019-03-15 伸和控制工业股份有限公司 Conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407466B1 (en) * 2018-04-19 2018-10-17 株式会社 エコファクトリー Outside air conditioner and ventilation system
JP6765144B1 (en) * 2019-07-18 2020-10-07 株式会社 エコファクトリー Ventilation air conditioning structure

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134054U (en) * 1973-03-09 1974-11-18
JPS52115548A (en) * 1976-03-24 1977-09-28 Matsushita Electric Ind Co Ltd Heat pump type air conditioning system
JPS5736523U (en) * 1980-08-11 1982-02-26
JPH02169938A (en) * 1988-09-22 1990-06-29 Mitsubishi Electric Corp Air conditioner
JPH0367928U (en) * 1989-11-02 1991-07-03
JPH04344037A (en) * 1991-05-20 1992-11-30 Hitachi Ltd Air conditioner and outdoor and indoor units for its application
JPH05306831A (en) * 1991-05-08 1993-11-19 Isamu Tanabe Duct for air conditioning
JPH062028U (en) * 1992-06-04 1994-01-14 株式会社コロナ Outdoor air conditioner
JPH08189665A (en) * 1995-01-12 1996-07-23 Tokyo Gas Co Ltd Cooling-heating device
JP2000055449A (en) * 1998-08-17 2000-02-25 Mitsubishi Estate Co Ltd Double path duct
JP2007232276A (en) * 2006-03-01 2007-09-13 Matsushita Electric Ind Co Ltd Outdoor unit for air conditioner
JP2009041867A (en) * 2007-08-10 2009-02-26 Daikin Ind Ltd Integrated air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVI20020154A1 (en) * 2002-07-10 2004-01-12 Xiang Srl MONOBLOCK AIR CONDITIONER
CN101900381B (en) * 2009-05-25 2013-12-25 乐金电子(天津)电器有限公司 All-in-one air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134054U (en) * 1973-03-09 1974-11-18
JPS52115548A (en) * 1976-03-24 1977-09-28 Matsushita Electric Ind Co Ltd Heat pump type air conditioning system
JPS5736523U (en) * 1980-08-11 1982-02-26
JPH02169938A (en) * 1988-09-22 1990-06-29 Mitsubishi Electric Corp Air conditioner
JPH0367928U (en) * 1989-11-02 1991-07-03
JPH05306831A (en) * 1991-05-08 1993-11-19 Isamu Tanabe Duct for air conditioning
JPH04344037A (en) * 1991-05-20 1992-11-30 Hitachi Ltd Air conditioner and outdoor and indoor units for its application
JPH062028U (en) * 1992-06-04 1994-01-14 株式会社コロナ Outdoor air conditioner
JPH08189665A (en) * 1995-01-12 1996-07-23 Tokyo Gas Co Ltd Cooling-heating device
JP2000055449A (en) * 1998-08-17 2000-02-25 Mitsubishi Estate Co Ltd Double path duct
JP2007232276A (en) * 2006-03-01 2007-09-13 Matsushita Electric Ind Co Ltd Outdoor unit for air conditioner
JP2009041867A (en) * 2007-08-10 2009-02-26 Daikin Ind Ltd Integrated air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477646A (en) * 2016-08-03 2019-03-15 伸和控制工业股份有限公司 Conditioner

Also Published As

Publication number Publication date
CN106133451B (en) 2019-04-23
JP2015203512A (en) 2015-11-16
CN106133451A (en) 2016-11-16
JP6358534B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP2015506450A (en) Air conditioner and installation configuration of air conditioner
CN109990387B (en) Air conditioner assembly
US20200393140A1 (en) Air condtioning apparatus indoor unit including refrigerant detection sensor
WO2015155947A1 (en) Integrated air conditioner
JP2014005954A (en) Indoor equipment of air-conditioning device
JP4779554B2 (en) Duct fan
JP2008045780A (en) Indoor unit of air conditioner
JP2008267727A (en) Refrigerating air conditioner
JP6344684B2 (en) Integrated air conditioner
CN211041167U (en) Indoor unit of air conditioner
KR20080019357A (en) Air conditioner
JP2008082681A (en) Suction grille for air conditioner
JP5743685B2 (en) Refrigeration air conditioning system
JP4670273B2 (en) Duct fan
JP2014092333A (en) Heat exchange ventilation device
KR20170035824A (en) By-pass apparatus for ventilation system
JP6142284B2 (en) Ventilation equipment
JPH07190415A (en) Air conditioner
JP5247610B2 (en) Heat exchange ventilator
KR100517598B1 (en) An air-conditioner
JP4552945B2 (en) Air conditioner
JP2018165589A (en) Indoor unit of ceiling embedded type air conditioner
JP6960182B2 (en) Air conditioning unit
KR20170095785A (en) By-pass apparatus for ventilation system
JP6867201B2 (en) Air conditioner room structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777491

Country of ref document: EP

Kind code of ref document: A1