WO2015154750A1 - Lesegerät für ein rfid-prüfsystem - Google Patents

Lesegerät für ein rfid-prüfsystem Download PDF

Info

Publication number
WO2015154750A1
WO2015154750A1 PCT/DE2015/100134 DE2015100134W WO2015154750A1 WO 2015154750 A1 WO2015154750 A1 WO 2015154750A1 DE 2015100134 W DE2015100134 W DE 2015100134W WO 2015154750 A1 WO2015154750 A1 WO 2015154750A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
transponder
switch
reading device
resonant circuit
Prior art date
Application number
PCT/DE2015/100134
Other languages
English (en)
French (fr)
Inventor
Giovanni Quinzio
Original Assignee
Giovanni Quinzio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giovanni Quinzio filed Critical Giovanni Quinzio
Publication of WO2015154750A1 publication Critical patent/WO2015154750A1/de

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer

Definitions

  • the invention relates to a reading device with the features of the preamble of the award. 1
  • a reader of this type is known for example from DE 38 13 779 AI.
  • the reader is installed in a playing field, the transponders in the game pieces whose presence is to be checked on the possible positions of the playing field.
  • a resonant circuit is provided whose potential is tapped between coil and capacitor.
  • the resonant frequency is determined, which is individual for each game character and each position of the playing field.
  • the invention is based on the object to improve a reader of the type mentioned. This object is achieved by a reader with the features of claim 1.
  • Advantageous embodiments are the subject of the dependent claims.
  • the measurement of the current in the resonant circuit instead of the voltage (potential) requires the measurement resistance to be incorporated into the resonant circuit, the advantage is that the measured variable is more stable.
  • the same measuring resistor can be used together for several resonant circuits.
  • the resonance frequency is the same for all positions, since the identifier of the transponder is contained in an amplitude modulation of the signal.
  • the control of the resonant circuit is done by means of diode circuits, which specifically target the selected resonant circuits with a stimulate a series of pulses.
  • the selection of the resonant circuits is preferably carried out by multiplexers.
  • Fig. 10 is a use for the monitoring of a closed state.
  • An electronic test system 1 serves to check the presence of objects 3 at different positions.
  • the test system 1 works with the RFID method, ie, contactless and using radio waves for energy and information transmission.
  • the test system 1 For each object 3 whose presence is to be checked, the test system 1 has a transponder 5 which is associated with the object 3, in particular or in this is appropriate.
  • the test system 1 has a reading device 10, which interacts with the transponder 5 and can interrogate the presence of the transponder 5 in order to conclude that the object 3 is present.
  • the counterpart to the transponder 5 is in the reader 10, a resonant circuit 12 with a coil L and a capacitor C, as shown together with its control in Fig. 1. The order of coil L and capacitor C may be changed.
  • a first voltage divider between a supply voltage V + and the ground GND consists of a first switch A and a first resistor 13 (for example, about 2 to 3 kQ). Between the first switch A and the first resistor 13, a first diode 14 is connected with its anode, wherein the cathode of the first diode 14 is connected to the resonant circuit 12.
  • a second voltage divider between the supply voltage V + and the ground GND consists of a second resistor 15 (which preferably equals the first resistor 13) and a switch B.
  • the resonant circuit 12 still has a measuring resistor 18 (for example, about 50 to 100 ⁇ ), which is on the one hand with coil L and capacitor C in series and on the other hand connected to the ground GND.
  • the switch A is closed for a short time, this corresponds to a positive pulse to the resonant circuit 12.
  • the current flows from the supply voltage V + by the closed first switch A, the first diode 14, the coil L, the capacitor C and the measurement resist 18 Ground GND. At this time, the capacitor C is charged.
  • the resonant circuit 12 is closed.
  • the current in the resonant circuit 12 can be tapped as a voltage at the measuring resistor 18. If the switch B is closed for a short time, this corresponds to a negative pulse on the resonant circuit 12.
  • the current in the resonant circuit 12 can be tapped as a voltage on the measuring resistor 18.
  • the switches A and B are preferably formed in a conventional manner as a transistor circuit. Preferably, the switches A and B are alternately closed with a series of positive and negative pulses, respectively, as shown in FIG.
  • the positive pulses for the first switch A and the negative pulses for the second switch B must be offset in time by a sufficiently large time interval ⁇ (for example 100 ns) (because otherwise via the two switches A and B and the two diodes 14 and 16 a short circuit occurs).
  • for example 100 ns
  • the transponder 5 is passive. With a (direct) spatial proximity of the transponder 5 to the resonant circuit 12, more precisely to the coil L, the resonant circuit 12 and the transponder 5 resonate in a manner known per se. An oscillation is excited in the transponder 5, that is, energy is transmitted from the oscillating circuit 12 to the transponder 5, so that then the information of the transponder 5 can be read out and transmitted to the oscillating circuit 12.
  • Components of the transponder 5 are a coil and a chip connected to both ends of the coil.
  • a capacitor for forming a transponder resonant circuit together with the coil is integrated into the chip or formed separately and connected in parallel to the chip.
  • the chip contains the information that is transferable to the resonant circuit 12.
  • the information is preferably an identifier from a predetermined value table, which uniquely identifies the transponder 5.
  • another assembly with a resistor and a switch in series, either integrated into the chip or separately formed and connected in parallel to the chip.
  • the module is intended for load modula- tion.
  • the chip actuates the switch (the module for the load modulation) by opening (0) and closing (1) corresponding to the digital information in the chip, that is in the present case the identification of the transponder 5.
  • the vibration excited in the transponder 5 is thereby attenuated or not in time with the actuation of the switch in accordance with the said identifier by means of the resistor (the module for the load modulation), so that the oscillation excited in the transponder 5 is amplitude modulated. If the described resonance occurs between the oscillating circuit 12 and the transponder 5, the current at the measuring resistor 18 undergoes a clear amplitude modulation which is unique to the identification of the transponder 5 and which is measured as described in more detail below.
  • the above-described resonant circuit 12 is present in a plurality. For each position to which an object 3 may be present is such
  • a plurality of first diodes 14 may be connected to a common first voltage divider comprising a first switch A and a first resistor 13, as well as a plurality of second diodes 16 to a second voltage divider comprising a second switch B and a second resistor 15.
  • the measuring resistor 18 can be used for all oscillating circuits 12 be together.
  • a plurality of oscillating circuits 12 by way of example in a checkerboard-like arrangement 20 and shown schematically.
  • the rows of the checkered arrangement 20 is associated with a first multiplexer 21, the columns a second multiplexer 22.
  • the first multiplexer 21 supplies eight first voltage divider from the first switch A and first resistor 13.
  • Eight first diodes 14 are with their anodes to a first diodes Assembly 25 joined together (Fig. 4), which one of the first voltage divider assigned and between see first switch A and first resistor 13 is connected.
  • the first diode assembly 25 is assigned to one row of the checkered arrangement 20. net.
  • Each of the first diodes 14 of the first diode package is associated with a cell of the checkered arrangement 20.
  • the second multiplexer 22 supplies eight second voltage dividers of second resistor 15 and second switch B.
  • Eight second diodes 16 are connected with their cathodes to form a second diode module 26 (FIG. 5) which is assigned to one of the second voltage dividers and between second resistor 15 and second switch B is connected.
  • the second diode assembly 26 is associated with a column of the checkerboard-like arrangement 20.
  • Each of the second diodes 16 of the second diode assembly 26 is associated with a cell of the checkerboard-like arrangement 20.
  • the voltage drop across the measuring resistor 18 is picked up by means of an evaluation device 28.
  • FIG. 6 A block diagram of the reader 10 is shown in FIG. 6, again by way of example in the checkerboard arrangement 20.
  • a carrier frequency fo preferably in the long wave range, for example the normalized frequency of 125 kHz
  • the first multiplexer 21 generates the series of positive pulses (positive half wave).
  • the second multiplexer 22 the series of negative pulses (negative half-wave).
  • the time interval ⁇ between the pulse edges is generated by suitable RC elements.
  • a counter 31 With a predetermined clock signal, preferably with a clock frequency fD in the range of about 2 kHz, a counter 31 counts up the possible identifiers for the transponder 5 and outputs them to the first multiplexer 21.
  • the ratio between carrier frequency fo and clock frequency fD corresponds to the number of possible identifiers for the transponder 5, so in the present example, 64th
  • the first multiplexer 21 queries its associated lines of the checkerboard-like arrangement 20 with the predetermined by the counter 31 possible identifiers for the transponder 5, ie he speaks individually the first diode modules 25 (which are each associated with a row) to.
  • the second multiplexer 22 queries its associated columns of the checkerboard-like arrangement 20 from, that is, it individually speaks the second diode assemblies 26 (which are each associated with a column) at.
  • This type of query is energy-saving, since at most the respectively addressed by the first multiplexer 21 line is energized, in the present case only eight capacitors C are loaded, unless they are still loaded from the last query, and there in the second multiplexer 22 queried column is discharged at most at the intersection of line and column, in this case only one capacitor C and only if the transponder 5 is located at the requested position.
  • the evaluation device 28 has, for example, a demodulator 28a, an analog-to-digital converter 28b and a microprocessor 28c, wherein several components can be combined in uniform circuits, for example the demodulator 28a and the analog-to-digital converter 28b in one (RFID). day reader (base station).
  • the mode of operation of the evaluation device 28 is shown schematically in FIG. 7.
  • the demodulator 28a forms from the tapped at the measuring resistor 18 voltage signal, the spectrum and filters this spectrum in the resonant frequency, ie the carrier frequency fo.
  • the analog-to-digital converter 28b From the filtered-out signal, which corresponds to the amplitude modulation of the voltage signal, the analog-to-digital converter 28b generates a digital signal which corresponds to the identification of the transponder 5 (or a zero).
  • the microprocessor 28c connected to the counter 31 can recognize this identifier of the transponder 5 and make a corresponding output of the reader 10.
  • test system 1 with a reader 10 with a checkerboard-like arrangement 20 would be a game, such as chess or queen.
  • the objects 3 are the game pieces, which each have a built-in transponder 5.
  • the reader 10 recognizes the position which character is standing. For example, a chess program may suggest the next move.
  • the Le- Seeger 10 can also be used for other game, especially board games, in which a computer plays along and therefore the position of game characters must be recognized.
  • Another possible use of the test system 1 would be a storage system, for example in the pharmaceutical sector.
  • Each resonant circuit 12 is integrated, for example, in a measuring head, which is connected by means of a measuring line with a central part of the reader 10.
  • Such a measuring head queries, for example, a specific position in a drawer for medicine boxes, for example the penultimate position to which a transponder 5 is attached.
  • the reader 10 may trigger a warning or reorder.
  • test system 1 Yet another possible use of the test system 1 would be the monitoring of a closed state, for example of switches on a machine.
  • each resonant circuit 12 may be integrated into a measuring head, which is connected by means of a measuring line with a central part of the reader 10.
  • the switches treated as object 3 carry a transponder 5.
  • the measuring head queries, for example, whether the switch is open (transponder 5 spaced from the measuring head) or closed (transponder 5 on the measuring head).
  • the first multiplexer 21 has polled all possible identifiers in succession. But it is also possible to query a specific identifier. Accordingly, the reader 10 searches for this (given to the first multiplexer 21) identifier. The result is faster then. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Bei einem Lesegerät (10) für ein Prüfsystem (1) zur Prüfung der Präsenz von wenigstens einem Objekt (3) mittels RFID, zum Zusammenwirken mit einem dem Objekt (3) zugeordneten Transponder (5), mit wenigstens einem Schwingkreis (12), welcher mit dem Transponder (5) bei räumlicher Nähe in Resonanz kommt, und einer Auswerteeinrichtung (28), welche die Kennung des Transponders (5) erkennt, weist der Schwingkreis (12) einen Messwiderstand (18) zur Messung des Stromes im Schwingkreis (12) auf, wobei die Auswerteeimichtung (28) ein Signal am Messwiderstand (18) abgreift, und zur Ansteuerung eine erste Diode (14), welche mit ihrer Anode unter Zwischenschaltung eines ersten Schalters (A) an eine Versorgungsspannung (V+) angeschlossen ist, und eine zweite Diode (16), welche mit ihrer Kathode unter Zwischenschaltung eines zweiten Schalters (B) an Masse (GND) angeschlossen ist.

Description

Lesegerät für ein RFID-Prüfsystem
Die Erfindung betrifft ein Lesegerät mit den Merkmalen des Oberbegriffs des An- Spruches 1.
Ein Lesegerät dieser Art ist beispielsweise aus der DE 38 13 779 AI bekannt. Das Lesegerät ist in einem Spielfeld eingebaut, die Transponder in den Spielfiguren, deren Präsenz auf den möglichen Positionen des Spielfeldes zu prüfen ist. An jeder Position des Spielfeldes ist ein Schwingkreis vorgesehen, dessen Potential zwischen Spule und Kondensator abgegriffen. Mittels eines spektralen Vergleichs mit einem Referenz-Schwingkreis wird die Resonanzfrequenz ermittelt, welche für jede Spielfigur und jede Position des Spielfeldes individuell ist. Der Erfindung liegt die Aufgabe zu Grunde, ein Lesegerät der eingangs genannten Art zu verbessern. Diese Aufgabe wird erfindungsgemäß durch ein Lesegerät mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche. Die Messung des Stromes im Schwingkreis anstelle der Spannung (Potential) erfordert zwar, den Mess wider stand in den Schwingkreis einzubauen, hat den Vorteil, dass die Messgröße stabiler ist. Zudem kann derselbe Mess widerstand gemeinsam für mehrere Schwingkreise verwendet werden. Die Resonanzfrequenz ist für alle Positionen die gleiche, da die Kennung des Transponders in einer Amplitudenmo- dulation des Signales enthalten ist. Die Ansteuerung des Schwingkreises erfolgt mittels Diodenschaltungen, welche die ausgewählten Schwingkreise gezielt mit ei- ner Serie von Pulsen anregen. Die Auswahl der Schwingkreise erfolgt vorzugsweise durch Multiplexer.
Im Folgenden ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
Fig. 1 einen Schwingkreis als Kernstück des Lesegeräts,
Fig. 2 eine Serie von Pulsen an den Schaltern,
Fig. 3 eine Mehrzahl von Schwingkreisen,
Fig. 4 eine erste Dioden-Baugruppe,
Fig. 5 eine zweite Dioden-Baugruppe,
Fig. 6 ein Blockschaltbild des Lesegeräts,
Fig. 7 eine schematische Darstellung der Funktionsweise der Auswerteeinrichtung,
Fig. 8 eine Verwendung als Spiel,
Fig. 9 eine Verwendung in einem Lagersystem, und
Fig. 10 eine Verwendung für die Überwachung eines Schließzustandes.
Ein elektronisches Prüfsystem 1 dient der Prüfung der Präsenz von Objekten 3 an verschiedenen Positionen. Das Prüfsystem 1 arbeitet mit dem RFID-Verfahren, d.h. berührungslos und unter Nutzung von Radiowellen zur Energie- und Informationsübertragung. Für jedes Objekt 3, dessen Präsenz zu prüfen ist, weist das Prüfsystem 1 einen Transponder 5 auf, welcher dem Objekt 3 zugeordnet bist, insbesondere an oder in diesem angebracht ist. Ferner weist das Prüfsystem 1 ein Lesegerät 10 auf, welches mit dem Transponder 5 zusammenwirkt und die Präsenz der Transponder 5 abfragen kann, um damit auf die Präsenz des Objektes 3 zu schließen. Das Gegenstück zum Transponder 5 ist im Lesegerät 10 ein Schwingkreis 12 mit einer Spule L und einem Kondensator C, wie er samt seiner Ansteuerung in Fig. 1 dargestellt ist. Die Reihenfolge von Spule L und Kondensator C kann getauscht sein. Ein erster Spannungsteiler zwischen einer Versorgungsspannung V+ und der Masse GND besteht aus einem ersten Schalter A und einem ersten Widerstand 13 (beispielsweise ca. 2 bis 3 kQ). Zwischen dem ersten Schalter A und dem ersten Widerstand 13 ist eine erste Diode 14 mit ihrer Anode angeschlossen, wobei die Kathode der ersten Diode 14 am Schwingkreis 12 angeschlossen ist. Ein zweiter Spannungsteiler zwischen der Versorgungsspannung V+ und der Masse GND besteht aus einem zweiten Widerstand 15 (welcher vorzugsweise dem ersten Wider - stand 13 gleicht) und einem Schalter B. Zwischen dem zweiten Widerstand 15 und dem zweiten Schalter B ist eine zweite Diode 16 mit ihrer Kathode angeschlossen, wobei die Anode der zweiten Diode 16 am Schwingkreis 12 angeschlossen ist, und zwar auf gleichem Potential wie die Kathode der ersten Diode 14. Die Anode der zweiten Diode 16 und die Kathode der ersten Diode 14 sind also aneinander ange- schlössen. Schließlich weist der Schwingkreis 12 noch einen Messwiderstand 18 (beispielsweise ca. 50 bis 100 Ω) auf, welcher einerseits mit Spule L und Kondensator C in Serie liegt und andererseits an der Masse GND angeschlossen ist.
Wird der Schalter A kurzzeitig geschlossen, entspricht dies einem positiven Puls auf den Schwingkreis 12. Der Strom fließt von der Versorgungsspannung V+ durch den geschlossenen ersten Schalter A, die erste Diode 14, die Spule L, den Kondensator C und den Mess wider stand 18 zur Masse GND. Dabei wird der Kondensator C geladen. Mittels des ersten Widerstands 13 ist der Schwingkreis 12 geschlossen. Der Strom im Schwingkreis 12 kann als Spannung am Mess wider stand 18 abgegriffen werden. Wird der Schalter B kurzzeitig geschlossen, entspricht dies einem negativen Puls auf den Schwingkreis 12. Der Strom fließt (in umgekehrter Richtung wie zuvor) durch die zweite Diode 16, den geschlossenen zweiten Schalter B, die Masse GND, den Mess wider stand 18, den Kondensator C und die Spule L zurück zur zweiten Diode 16. Dabei wird der Kondensator C entladen. Der Strom im Schwingkreis 12 kann als Spannung am Mess widerstand 18 abgegriffen werden. Die Schalter A und B sind vorzugsweise in an sich bekannter Weise als Transistorschaltung ausgebildet sind. Vorzugsweise werden die Schalter A und B abwechselnd mit einer Serie von positiven beziehungsweise negativen Pulsen geschlossen, wie in Fig. 2 dargestellt. Die positiven Pulse für den ersten Schalter A und die negativen Pulse für den zweiten Schalter B müssen um ein ausreichend großes Zeitinter- vall ΔΡ (beispielsweise 100 ns) zeitlich versetzt sein (weil sonst über die beiden Schalter A und B und die beiden Dioden 14 und 16 ein Kurzschluss erfolgt).
Der Transponder 5 ist passiv ausgebildet. Bei einer (unmittelbaren) räumlichen Nähe des Transponders 5 zum Schwingkreis 12, genauer gesagt zur Spule L, kom- men der Schwingkreis 12 und der Transponder 5 in an sich bekannter Weise in Resonanz. Es wird eine Schwingung im Transponder 5 erregt, also Energie vom Schwingkreis 12 auf den Transponder 5 übertragen, so dass dann die Information des Transponders 5 ausgelesen und auf den Schwingkreis 12 übertragen werden kann.
Bestandteile des Transponders 5 sind eine Spule und ein an die beiden Enden der Spule angeschlossener Chip. Ein Kondensator zur Bildung eines Transpon- der-Schwingkreises zusammen mit der Spule ist in den Chip integriert oder separat ausgebildet und parallel zum Chip geschaltet. Der Chip enthält die Information, die auf den Schwingkreis 12 übertragbar ist. Die Information ist vorzugsweise eine Kennung aus einer vorgegebenen Wertetabelle, welche den Transponder 5 eindeutig identifiziert. Vorzugsweise ist noch eine Baugruppe, mit einem Widerstand und einem Schalter in Serie, entweder in den Chip integriert oder separat ausgebildet und parallel zum Chip angeschlossen. Die Baugruppe ist für eine Belastungsmodu- lation vorgesehen. Wenn der Transponder 5 genügend (d.h. über einen Schwellwert hinaus) Energie vom Schwingkreis 12 erhalten hat, betätigt der Chip den Schalter (der Baugruppe für die Belastungsmodulation) durch Öffnen (0) und Schließen (1) entsprechend der digitalen Information im Chip, also vorliegend der Kennung des Transponders 5. Die im Transponder 5 erregte Schwingung wird dadurch im Takt der Betätigung des Schalters entsprechend der besagten Kennung mittels des Widerstandes (der Baugruppe für die Belastungsmodulation) gedämpft oder nicht, so dass die im Transponder 5 erregte Schwingung amlitudenmoduliert wird. Tritt die beschriebene Resonanz zwischen Schwingkreis 12 und Transponder 5 auf, so erfährt der Strom am Me ss widerstand 18 eine deutliche und für die Kennung des Transponders 5 eindeutige Amplitudenmodulation, die - wie später genauer beschrieben - gemessen wird.
Im Lesegerät 10 ist der vorbeschriebene Schwingkreis 12 in einer Mehrzahl vorhan- den. Für jede Position, an welche ein Objekt 3 präsent sein kann, ist ein solcher
Schwingkreis 12 mit Kondensator C, Spule L sowie erster Diode 14 und zweiter Diode 16 vorhanden. Mehrere erste Dioden 14 können an einen gemeinsamen ersten Spannungsteiler aus erstem Schalter A und erstem Widerstand 13 angeschlossen sein, ebenso mehrere zweite Dioden 16 an einen zweiten Spannungsteiler aus zwei- tem Schalter B und zweitem Widerstand 15. Der Mess wider stand 18 kann für alle Schwingkreise 12 gemeinsam sein.
In Fig. 3 ist eine solche Mehrzahl von Schwingkreisen 12 beispielhaft in einer schachbrettartigen Anordnung 20 und schematisch dargestellt. Den Zeilen der schachbrettartigen Anordnung 20 ist ein erster Multiplexer 21 zugeordnet, den Spalten eine zweiter Multiplexer 22. Der erster Multiplexer 21 versorgt acht erste Spannungsteiler aus erstem Schalter A und erstem Widerstand 13. Je acht erste Dioden 14 sind mit ihren Anoden zu einer ersten Dioden-Baugruppe 25 zusammengeschlossen (Fig. 4), welche einem der ersten Spannungsteiler zugeordnet und zwi- sehen erstem Schalter A und erstem Widerstand 13 angeschlossen ist. Die erste Dioden-Baugruppe 25 ist einer Zeile der schachbrettartigen Anordnung 20 zugeord- net. Jede der ersten Dioden 14 der ersten Dioden-Baugruppe ist einer Zelle der schachbrettartigen Anordnung 20 zugeordnet.
Der zweiter Multiplexer 22 versorgt acht zweite Spannungsteiler aus zweitem Wi- derstand 15 und zweitem Schalter B. Je acht zweite Dioden 16 sind mit ihren Kathoden zu einer zweiten Dioden-Baugruppe 26 zusammengeschlossen (Fig. 5), welche einem der zweiten Spannungsteiler zugeordnet und zwischen zweitem Widerstand 15 und zweitem Schalter B angeschlossen ist. Die zweite Dioden-Baugruppe 26 ist einer Spalte der schachbrettartigen Anordnung 20 zugeordnet. Jede der zwei- ten Dioden 16 der zweiten Dioden-Baugruppe 26 ist einer Zelle der schachbrettartigen Anordnung 20 zugeordnet. Zur Messung des Stromes durch den gemeinsamen Mess wider stand 18 wird die am Mess widerstand 18 abfallende Spannung mittels einer Auswerteeinrichtung 28 abgegriffen.
Ein Blockschaltbild des Lesegeräts 10 ist in Fig. 6 dargestellt, wieder beispielhaft in der schachbrettartigen Anordnung 20. Aus einer Trägerfrequenz fo, vorzugsweise im Langwellenbereich, beispielsweise die normierte Frequenz von 125kHz, erzeugt der erste Multiplexer 21 die Serie von positiven Pulsen (positive Halbwelle), der zweite Multiplexer 22 die Serie von negativen Pulsen (negative Halbwelle). Das Zeitintervall ΔΡ zwischen den Pulsflanken wird durch geeignete RC-Glieder erzeugt. Mit einem vorgegebenen Taktsignal, vorzugsweise mit einer Taktfrequenz fD im Bereich von etwa 2 kHz, zählt ein Zähler 31 die möglichen Kennungen für den Transponder 5 hoch und gibt sie auf den ersten Multiplexer 21. Das Verhältnis zwischen Trägerfrequenz fo und Taktfrequenz fD entspricht der Anzahl der möglichen Kennungen für den Transponder 5, also vorliegend beispielsweise 64.
Der erste Multiplexer 21 fragt die ihm zugeordneten Zeilen der schachbrettartigen Anordnung 20 mit den vom Zähler 31 vorgegebene möglichen Kennungen für den Transponder 5 ab, d.h. er spricht einzeln die ersten Dioden-Baugruppen 25 (welche jeweils einer Zeile zugeordnet sind) an. Der zweite Multiplexer 22 fragt die ihm zugeordneten Spalten der schachbrettartigen Anordnung 20 ab, d.h. er spricht einzeln die zweiten Dioden-Baugruppen 26 (welche jeweils einer Spalte zugeordnet sind) an. Wenn sich das Objekt 3 mit dem Transponder 5 an der abgefragten Position der schachbrettartigen Anordnung 20 befindet (also an der Kreuzung s stelle von Zeile und Spalte), zeigt das am Mess widerstand 18 abgegriffenen Spannungssignal den Resonanzfall.
Diese Art der Abfrage ist energiesparend, da höchstens die jeweils vom erste Multi- plexer 21 angesprochene Zeile bestromt wird, vorliegend also nur acht Kondensatoren C geladen werden, sofern sie nicht von der letzten Abfrage noch geladen sind, und da in der vom zweiten Multiplexer 22 abgefragten Spalte höchstens an der Kreuzungsstelle von Zeile und Spalte entladen wird, vorliegend also nur ein Kondensator C und auch nur, sofern sich der Transponder 5 an der abgefragten Position befindet.
Die Auswerteeinrichtung 28 weist beispielsweise einen Demodulator 28a, einen Analog-Digital- Wandler 28b und einen Mikroprozessor 28c auf, wobei mehrere Bestandteile in einheitlichen Schaltungen zusammengefasst sein können, beispielsweise der Demodulator 28a und der Analog-Digital- Wandler 28b in einem (RFID-) tag reader (base Station). Die Funktionsweise der Auswerteeinrichtung 28 ist schematisch in Fig. 7 dargestellt. Der Demodulator 28a bildet aus dem am Messwiderstand 18 abgegriffenen Spannungssignal das Spektrum und filtert dieses Spektrum im Bereich der Resonanzfrequenz, also der Trägerfrequenz fo. Aus dem herausgefilterten Signal, welches der Amplitudenmodulation des Spannungssignals entspricht, erzeugt der Analog-Digital-Wandler 28b ein digitales Signal, welches der Kennung des Transponders 5 entspricht (oder einer Null). Der mit dem Zähler 31 verbundene Mikroprozessor 28c kann diese Kennung des Transponders 5 erkennen und eine entsprechende Ausgabe des Lesegeräts 10 tätigen.
Eine mögliche Verwendung des Prüfsystems 1 mit einem Lesegerät 10 mit schachbrettartiger Anordnung 20 wäre ein Spiel, beispielsweise Schach oder Dame. Die Objekte 3 sind die Spielfiguren, welche jeweils einen eingebauten Transponder 5 aufweisen. Das Lesegerät 10 erkennt, auf welcher Position welche Spielfigur steht. Ein Schachprogramm kann beispielsweise den nächsten Zug vorschlagen. Das Le- segerät 10 kann auch für sonstige Spiel, insbesondere Brettspiele, verwendet werden, bei denen ein Computer mitspielt und deshalb die Position von Spielfiguren erkannt werden muss. Eine weitere mögliche Verwendung des Prüfsystems 1 wäre ein Lagersystem, beispielsweise im Pharmaziebereich. Jeder Schwingkreis 12 ist beispielsweise in einen Messkopf integriert, welcher mittels einer Messleitung mit einem zentralen Teil des Lesegeräts 10 verbunden ist. Ein derartiger Messkopf fragt beispielsweise eine bestimmte Position in einer Schublade für Medikamentenschachteln ab, beispielswei- se die vorletzte Position, an welcher ein Transponder 5 angebracht ist. Wenn die vorletzte Medikamentenschachtel (welche dem Objekt 3 entspricht) entnommen wird, kann das Lesegerät 10 eine Warnung oder eine Nachbestellung auslösen.
Noch eine weitere mögliche Verwendung des Prüfsystems 1 wäre die Überwachung eines Schließzustandes, beispielsweise von Schaltern an einer Maschine. Wiederum kann jeder Schwingkreis 12 in einen Messkopf integriert sein, welcher mittels einer Messleitung mit einem zentralen Teil des Lesegeräts 10 verbunden ist. Die als Objekt 3 behandelten Schalter tragen einen Transponder 5. Der Messkopf fragt beispielsweise ab, ob der Schalter geöffnet (Transponder 5 vom Messkopf beabstan- det) oder geschlossen (Transponder 5 am Messkopf) ist.
Im Ausführungsbeispiel hat der erste Multiplexer 21 alle möglichen Kennungen nacheinander abgefragt. Es ist aber auch möglich, eine bestimmte Kennung abzufragen. Entsprechend sucht das Lesegerät 10 nach dieser (auf den ersten Multiplexer 21 gegebene) Kennung. Das Ergebnis liegt dann schneller vor. Bezugszeichenliste
1 Abfragesystem
3 Objekt
5 Transponder
10 Lesegerät
12 Schwingkreis
13 erster Widerstand
14 erste Diode
15 zweiter Widerstand
16 zweite Diode
18 Me ss widerstand
20 schachbrettartige Anordnung
21 erster Multiplexer
22 zweiter Multiplexer
25 erste Dioden-Baugruppe
26 zweite Dioden-Baugruppe
28 Auswerteeinrichtung
28a Demodulator
28b Analog-Digital-Wandler
28c Mikroprozessor
31 Zähler
A erster Schalter
B zweiter Schalter
C Kondensator
fo Trägerfrequenz
fD Taktfrequenz
GND Masse
L Spule
ΔΡ Zeitintervall
V+ Versorgungsspannung

Claims

Ansprüche
Lesegerät (10) für ein Prüfsystem (1) zur Prüfung der Präsenz von wenigstens einem Objekt (3) mittels RFID, zum Zusammenwirken mit einem dem Objekt
(3) zugeordneten Transponder (5), mit wenigstens einem Schwingkreis (12), welcher mit dem Transponder (5) bei räumlicher Nähe in Resonanz kommt, und einer Auswerteeinrichtung (28), welche die Kennung des Transponders (5) erkennt, dadurch gekennzeichnet, dass der Schwingkreis (12) einen Messwiderstand (18) zur Messung des Stromes im Schwingkreis (12) aufweist, wobei die Auswerteeinrichtung (28) ein Signal am Mess wider stand (18) abgreift, und dass der Schwingkreis (12) zur Ansteuerung eine erste Diode (14), welche mit ihrer Anode unter Zwischenschaltung eines ersten Schalters (A) an eine Versorgungsspannung (V+) angeschlossen ist, und eine zweite Diode (16) aufweist, welche mit ihrer Kathode unter Zwischenschaltung eines zweiten Schalters (B) an Masse (GND) angeschlossen ist.
Lesegerät nach Anspruch 1, dadurch gekennzeichnet, dass die Kathode der ersten Diode (14) und die Anode der zweiten Diode (16) auf gleichem Potential an den Schwingkreis 12 angeschlossen sind.
Lesegerät nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen ersten Widerstand (13), welcher ebenfalls an die Anode der ersten Diode (14) angeschlossen ist und mit dem ersten Schalter (A) einen ersten Spannungsteiler zwischen Versorgungsspannung (V+) und Masse (GND) bildet, und durch einen zweiten Widerstand (15), welcher ebenfalls an die Kathode der zweiten Diode (16) angeschlossen ist und mit dem zweiten Schalter (B) einen zweiten Spannungsteiler zwischen Versorgungsspannung (V+) und Masse (GND) bildet.
4. Lesegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Schalter (A) mit einer Serie von positiven Pulsen und der zweite Schalter (B) mit einer Serie von negativen Pulsen abwechselnd mit einer Trägerfrequenz (fo) geschlossen wird, wobei die Pulse um ein Zeitintervall (ΔΡ) zeitlich versetzt sind.
5. Lesegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Schwingkreise (12) vorgesehen sind, deren erste Dioden (14) mit ihren Anoden zu einer ersten Dioden-Baugruppe (25) zusammengeschlossen und an einen gemeinsamen ersten Schalter (A) angeschlossen sind.
6. Lesegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Schwingkreise (12) vorgesehen sind, deren zweite Dioden (16) mit ihren Kathoden zu einer zweiten Dioden-Baugruppe (26) zusammengeschlossen und an einen gemeinsamen zweiten Schalter (B) angeschlossen sind.
7. Lesegerät nach Anspruch 5 und 6, dadurch gekennzeichnet, dass ein erster Multiplexer (21) die ersten Schalter (A) und ein zweiter Multiplexer (22) die zweiten Schalter (B) schließt.
8. Lesegerät nach Anspruch 7, dadurch gekennzeichnet, dass ein Zähler (31) die möglichen Kennungen für den Transponder (5) mit einer Taktfrequenz (fü) hochzählt und sie nacheinander auf den ersten Multiplexer (21) gibt, oder dass das Lesegerät (10) eine vorgegebene Kennung abfragt.
9. Lesegerät nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der erste Multiplexer (21) die ersten Dioden-Baugruppen (25) einzeln anspricht, und dass der zweite Multiplexer (22) die zweiten Dioden-Baugruppen (26) einzeln anspricht, so dass höchstens die angesprochenen Schwingkreise (12) geladen oder entladen werden.
Lesegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeich net, dass die Auswerteeinrichtung (28) zur Auswertung des am Messwider- stand (18) abgegriffenen Signals einen Demodulator (28a) zum Demodulieren, einen Analog-Digital- Wandler (28b) zum Digitalisieren und einen Mikroprozessor (28c) zum Erkennen der Kennung des Transponders (5) aufweist. 11. Prüfsystem (1) mit wenigstens einem Transponder (5) und wenigstens einem Lesegerät (10) nach einem der vorhergehenden Ansprüche.
PCT/DE2015/100134 2014-04-11 2015-03-30 Lesegerät für ein rfid-prüfsystem WO2015154750A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014105239.0A DE102014105239B4 (de) 2014-04-11 2014-04-11 Lesegerät für ein RFID-Prüfsystem
DE102014105239.0 2014-04-11

Publications (1)

Publication Number Publication Date
WO2015154750A1 true WO2015154750A1 (de) 2015-10-15

Family

ID=52991397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2015/100134 WO2015154750A1 (de) 2014-04-11 2015-03-30 Lesegerät für ein rfid-prüfsystem

Country Status (2)

Country Link
DE (1) DE102014105239B4 (de)
WO (1) WO2015154750A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813779A1 (de) 1988-04-23 1989-11-02 Hegener & Glaser Ag Figurenerkennung fuer ein spiel
US7539465B2 (en) * 2006-10-16 2009-05-26 Assa Abloy Ab Tuning an RFID reader with electronic switches
US20110279232A1 (en) * 2008-06-03 2011-11-17 Keystone Technology Solutions, Llc Systems and methods to selectively connect antennas to receive and backscatter radio frequency signals
US20130174618A1 (en) * 2012-01-10 2013-07-11 Pet Mate Ltd. Pet door systems and methods of operation thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4207534A1 (de) * 1992-03-01 1993-09-16 Hegener & Glaser Ag Spiel mit einer figurenidentifizierungsschaltung
EP0775001A4 (de) * 1994-07-28 1999-09-01 Super Dimension Inc Computererisiertes spielbrett
DE10331059B4 (de) * 2003-07-09 2005-08-04 Siemens Ag Transceiver
FR2860985B1 (fr) * 2003-10-20 2005-12-30 Numicom Ensemble ludo-educatif electronique avec des elements communicants a etiquette radiofrequence
JP2005163453A (ja) * 2003-12-04 2005-06-23 Alps Electric Co Ltd パッシブキーレスエントリー装置
DE102006009451A1 (de) * 2006-03-01 2007-09-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Interaktionsvorrichtung und Verfahren zum Lokalisieren und Identifizieren von Spielfiguren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813779A1 (de) 1988-04-23 1989-11-02 Hegener & Glaser Ag Figurenerkennung fuer ein spiel
US7539465B2 (en) * 2006-10-16 2009-05-26 Assa Abloy Ab Tuning an RFID reader with electronic switches
US20110279232A1 (en) * 2008-06-03 2011-11-17 Keystone Technology Solutions, Llc Systems and methods to selectively connect antennas to receive and backscatter radio frequency signals
US20130174618A1 (en) * 2012-01-10 2013-07-11 Pet Mate Ltd. Pet door systems and methods of operation thereof

Also Published As

Publication number Publication date
DE102014105239A1 (de) 2015-10-15
DE102014105239B4 (de) 2016-11-10

Similar Documents

Publication Publication Date Title
EP0289519B1 (de) Verfahren und vorrichtung zum feststellen der identität und stellung von gegenständen
EP0625832B1 (de) Lesegerät für ein Detektierplättchen
EP2754086B1 (de) Verfahren zum prüfen einer antennenspule
EP2954338B1 (de) Verfahren und vorrichtung zum prüfen eines schaltkreises
DE3813779C2 (de)
DE102006052708B3 (de) Anordnung und Verfahren zur Datenerfassung
EP2530440B1 (de) Verfahren, Vorrichtung und Laborgerät zum Prüfen einer kapazitiv arbeitenden Messvorrichtung für die Detektion von Phasengrenzen
DE102010049488A1 (de) Verfahren zum Testen eines Laborgeräts und entsprechend ausgestattetes Laborgerät
WO2007071354A1 (de) Vorrichtung und verfahren zur prüfung und drahtlosen übermittlung des zustands eines signalgebers
EP0090766B1 (de) Elektronische Abfrageschaltung zur Überwachung einer Vielzahl von Fadenlaufstellen an einer Textilmaschine
DE19646153A1 (de) Warenkorbabtaster
EP0898368B1 (de) Sensoreinrichtung
WO2015154750A1 (de) Lesegerät für ein rfid-prüfsystem
DE10015484C2 (de) Verfahren zum kontaktlosen Test von Chips sowie Vorrichtung zur Durchführung dieses Verfahrens
DE212009000026U1 (de) Verbindungssensor zur Identifikation einer Anschlussstelle in einer Schalttafel
EP2722794A2 (de) Prüfen eines Schaltkreises
DE4306950C2 (de) Elektronisches Zweidrahtschaltgerät
DE10238405B4 (de) Auswerteschaltung für Schwingkreissensoren
EP3376430B1 (de) Verfahren zur zuordnung von adressen bei modulen eines systems bestehend aus wenigstens zwei rfid-antennen sowie gate-antennenanordnung bestehend aus wenigstens zwei rfid-antennen
DE102009042145B4 (de) Produktmarker, Kommissionierautomat und Kommissionierverfahren
EP2660607B1 (de) Identifikation und Lokalisation von Probenbehältern mit RFID-Tags
DE102005052900A1 (de) Vorrichtung und Verfahren zur Eigenschafts- oder Zustandsüberprüfung von Prüfstücken
DE102013002139A1 (de) Verfahren und Vorrichtung zum Prüfen eines Schaltkreises
DE102019125514A1 (de) Funkschlüssel für Fahrzeuge mit Touchpad
EP2765432A2 (de) Verfahren und Vorrichtung zum Prüfen eines Schaltkreises eines Endgeräts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15717405

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15717405

Country of ref document: EP

Kind code of ref document: A1