WO2015154313A1 - Dispositif de détection de vibrations et de déformation à plusieurs dimensions et grande vitesse et procédé - Google Patents

Dispositif de détection de vibrations et de déformation à plusieurs dimensions et grande vitesse et procédé Download PDF

Info

Publication number
WO2015154313A1
WO2015154313A1 PCT/CN2014/075347 CN2014075347W WO2015154313A1 WO 2015154313 A1 WO2015154313 A1 WO 2015154313A1 CN 2014075347 W CN2014075347 W CN 2014075347W WO 2015154313 A1 WO2015154313 A1 WO 2015154313A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
vibration
lens
deformation
focused
Prior art date
Application number
PCT/CN2014/075347
Other languages
English (en)
Chinese (zh)
Inventor
钟舜聪
钟剑锋
张秋坤
姚立纲
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2015154313A1 publication Critical patent/WO2015154313A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02035Shaping the focal point, e.g. elongated focus
    • G01B9/02037Shaping the focal point, e.g. elongated focus by generating a transverse line focus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Definitions

  • the present invention relates to a high-speed multi-scale vibration and deformation detecting apparatus and method, and more particularly to a non-contact apparatus and method for high-speed and precise detection of structural deformation and vibration of nanometer, micrometer and millimeter-scale amplitude , belongs to the field of photometric mechanics and optical measurement vibration technology. Background technique
  • Deformation and vibration measurement are currently a hot research area.
  • Traditional deformation and vibration measurement mostly use contact measurement, such as acceleration sensor, piezoelectric ceramic, and resistance strain gauge. These measurement methods have certain advantages and measurement accuracy, but may not allow contact measurement or measurement in some situations where high precision measurement is required.
  • contact measurement such as acceleration sensor, piezoelectric ceramic, and resistance strain gauge.
  • These measurement methods have certain advantages and measurement accuracy, but may not allow contact measurement or measurement in some situations where high precision measurement is required.
  • the acceleration sensor itself has a certain mass, and a moving mass placed at different positions of the structure has a certain degree of influence on the mode, which ultimately affects the modal parameters of such structures, thereby affecting the structural defects. Accuracy and reliability of inspection.
  • non-contact optical methods for measuring deformation and vibration have also emerged, such as laser Doppler measurement, laser interferometry, and speckle measurement. These non-contact measurement methods do not have any effect on the measurement structure itself, and the measurement accuracy is improved to some extent.
  • the existing vibration measurement patents are searched for, and the measurement methods are as follows: a.—a laser homodyne vibration measuring optical system and a signal processing method thereof (invention patent number 201010129624.5); b. all-fiber laser Doppler Three-dimensional vibrometer (invention patent number 201110385923.X); c. - a kind of long-distance non-contact measuring vibration device (invention patent number 201110424027.X); d. all-fiber vibration measuring device (utility model patent number is 03229729.7) .
  • Patent a uses a two-image detector, which is difficult to adjust the interference fringes, and the least squares method in the signal processing process cannot directly obtain the orthogonal signal to generate additional error, and the device can only measure the vibration of one point.
  • Patent b uses laser Doppler
  • the method of measuring the three-dimensional vibration of an object has many system modules, and the patent C and the patent d-sample can only measure the vibration of one point at the same time, and cannot perform one-time measurement in the range of the surface or the line. Summary of the invention
  • an object of the present invention is to provide a high-speed multi-scale vibration and deformation detecting device and method, which can measure the linear deformation of an object and simultaneously monitor the line vibration of a minute structure in real time. Obtain the vibration mode of the structure to be tested and perform modal analysis. No point scanning is required, and the speed is fast and the measurement accuracy is high.
  • a first aspect of the present invention is: a high-speed multi-scale vibration and deformation detecting device, comprising a light source, wherein light output by the light source is introduced into a first lens through a coarse fiber and then focused on a fine fiber input.
  • the light outputted from the output end of the thin optical fiber is collimated into parallel light by the second lens; the parallel light is reflected into the cylindrical lens through the first mirror and then focused into a line focus, and the focused light is split into two paths by the beam splitter: One path is the reference light, and the other is the detection light; the light reflected by the two paths through the reference mirror and the sample to be measured is again collimated into parallel light in the width dimension through the third lens, and the collimated light passes through the second mirror.
  • the reflection enters the reflective grating, and the reflective grating separates the light of different wavelengths and focuses on the array CCD through the fourth lens to form interference fringes.
  • the light source is infrared or visible light.
  • the light outputted by the output end of the thin optical fiber is an approximate point light source.
  • the second technical solution of the present invention is: a high-speed multi-scale vibration and deformation detecting method, which adopts the high-speed multi-scale vibration and deformation detecting device as described above, and the deformation of the sample structure to be tested. And vibration, the interference fringes that produce positional changes on the area CCD. By performing Fourier transform and spectral correction of the displacement of each frame of interference fringes, the time curve of deformation and vibration of each point at the focus of the sample line is obtained, that is, restored Shape variables and vibration signals.
  • the present invention has the following beneficial effects: (1) It is possible to simultaneously measure the deformation and vibration of the line focus range, that is, to obtain deformation of all points on one line at the same time without scanning. Vibration measurement; (2) Sub-nanometer precision measurement of multi-scale (nanoscale, micrometer and millimeter deformation or vibration amplitude), which can be used to analyze the displacement data at any position of the line focus, which can be measured at one time.
  • the modal analysis of the object provides advantages in speed, accuracy and stability for other measuring devices that can only detect one point.
  • the detection range of the present invention can be on the order of nanometers, micrometers or millimeters. For large-scale deformation and vibration measurement, it is not necessary to further expand the detection range by using other methods of phase modulation.
  • 1 is a system diagram of an embodiment of the present invention.
  • 2 is a line vibration time surface diagram of a cantilever beam structure according to the present invention.
  • a high-speed multi-scale vibration and deformation detecting device includes a light source 1, lenses (2, 4, 7, and 10), optical fibers (3 and 15), mirrors (5 and 8), The cylindrical lens 6, the area CCD 9, the reflective grating 11, the beam splitter 12, the sample 13 to be tested, and the reference mirror 14, the light output from the light source 1 is introduced into the first lens 2 through the thick fiber 15, and then focused on the thin fiber 3 input.
  • the light outputted from the output end of the thin optical fiber 3 is collimated into parallel light by the second lens 4; the parallel light is reflected by the first mirror 5 into the cylindrical lens 6 and then focused into a line focus, and the focused light is split by the beam splitter 12 Divided into two paths: one is the reference light, the other is the detection light; the light reflected by the two paths of light through the reference mirror 14 and the sample 13 to be tested is again collimated into parallel light in the width dimension by the third lens 7, collimating
  • the rear light is reflected by the second mirror 8 into the reflective grating 11, and the reflective grating 11 separates the light of different wavelengths and then focuses on the array CCD 9 via the fourth lens 10 to form interference fringes.
  • the light source 1 may be infrared or visible light; the light outputted from the output end of the thin optical fiber 3 may be approximated as a point light source; the line focus of the two paths of light is respectively focused on the reference mirror 14 and The sample 13 to be tested was reflected.
  • the high-speed multi-scale vibration and deformation detecting device can realize high-precision detection and monitoring of local deformation sub-nano-scale of the object structure in real time, and can realize non-contact real-time monitoring of line vibration of one dimension of the micro structure; By monitoring the object for one-dimensional line scanning, the vibration of the entire surface can be obtained, and the modal analysis of the whole field can be performed.
  • the high-speed multi-scale vibration and deformation detecting device performs time domain acquisition and storage on the interference fringe pattern by a computer, and then performs corresponding processing on the interference image to obtain a focus point of the sample line to be tested. Deformation and vibration.
  • the high-speed multi-scale vibration and deformation detecting device is suitable for simultaneous detection of one dimension of an object, and is therefore suitable for detection and modal analysis of multi-scale (nanoscale, micron and millimeter amplitude) vibration structures.
  • a high-speed multi-scale vibration and deformation detecting method adopts the high-speed multi-scale vibration and deformation detecting device as described above, and the deformation and vibration of the sample to be tested are in the area array.
  • the interference fringes of the position change are generated on the CCD.
  • FIG. 2 is a time-displacement curved surface at a line focus recorded by a high-speed multi-scale vibration and deformation detecting device under a pulse excitation of a cantilever beam structure.
  • the detection precision of the vibration of the invention is extremely high, and the white light source is taken as an example, and the detection precision can reach sub-nanometer level.
  • Non-contact measurement can also be achieved in vibration measurement, which avoids the influence of the sensor on the measurement result under the traditional measurement vibration method or the case that the vibration is too small to be detected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un dispositif de détection de vibrations et de déformation à plusieurs dimensions et grande vitesse. Une entrée de lumière en provenance d'une source de lumière (1) est introduite au niveau d'une première lentille (2) au travers d'une fibre optique à cœur large (15) et est ensuite focalisée sur un port d'entrée d'une fibre optique à petit cœur (3), la lumière émise par la fibre optique à petit cœur (3) est collimatée de manière à être de la lumière parallèle au travers d'une deuxième lentille (4); la lumière parallèle est réfléchie dans une lentille cylindrique (6) au travers d'un premier miroir de réflexion (5) et est ensuite focalisée dans un foyer linéaire, et la lumière, une fois focalisée, est divisée en deux trajets de lumière par l'intermédiaire d'un diviseur de faisceau (12); la lumière des deux trajets de lumière après avoir été réfléchie par un miroir de référence (14) et un échantillon en cours de détection (13) est collimatée de manière à être à nouveau la lumière parallèle au niveau d'une dimension de largeur au travers d'une troisième lentille (7), le rayon de lumière après avoir été collimaté, est réfléchi dans un réseau optique réfléchissant (11) au travers d'une deuxième lentille réfléchissante (8), et les rayons de lumière ayant des longueurs d'onde différentes sont divisés par le réseau optique réfléchissant (11) et sont ensuite focalisés sur un réseau de surface CCD (9) au travers d'une quatrième lentille (10) pour former une frange d'interférence. Le dispositif peut mesurer la déformation linéaire d'un objet, et surveiller les vibrations linéaires d'une microstructure en temps réel de manière simultanée, le mode de vibration de la structure en cours de détection peut être obtenu immédiatement et une analyse modale est effectuée sur celle-ci, qui n'a pas besoin d'effectuer un balayage ponctuel, est rapide en termes de vitesse et a une grande précision en termes de mesure, et peut obtenir une mesure précise multidimensionnelle à un niveau sous-nanométrique. L'invention concerne aussi un procédé de détection de vibrations et de déformation à plusieurs dimensions et grande vitesse.
PCT/CN2014/075347 2014-04-09 2014-04-15 Dispositif de détection de vibrations et de déformation à plusieurs dimensions et grande vitesse et procédé WO2015154313A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410139589.3A CN103900639A (zh) 2014-04-09 2014-04-09 高速多尺度振动和形变检测装置及方法
CN201410139589.3 2014-04-09

Publications (1)

Publication Number Publication Date
WO2015154313A1 true WO2015154313A1 (fr) 2015-10-15

Family

ID=50992106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075347 WO2015154313A1 (fr) 2014-04-09 2014-04-15 Dispositif de détection de vibrations et de déformation à plusieurs dimensions et grande vitesse et procédé

Country Status (2)

Country Link
CN (1) CN103900639A (fr)
WO (1) WO2015154313A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949916A (zh) * 2016-11-02 2017-07-14 北京信息科技大学 一种采用光纤端面腐蚀的温度和应变测试方法
US10788309B2 (en) 2016-04-01 2020-09-29 The University Of Liverpool Frequency-domain optical interferometry imaging apparatus and method for astigmatistic bi-focal illumination imaging of an eye

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203199A (zh) * 2015-06-30 2015-12-30 庄重 基于微纳尺度材料光机电系统的超高灵敏度振动传感器
CN107036534B (zh) * 2016-02-03 2020-09-08 北京振兴计量测试研究所 基于激光散斑测量振动目标位移的方法及系统
CN106443046B (zh) * 2016-11-23 2023-04-07 福州大学 一种基于变密度正弦条纹的转轴转速测量装置及方法
CN109000781B (zh) * 2018-09-21 2023-08-25 福州大学 一种结构微振动线域测量装置及方法
CN110617890A (zh) * 2019-10-30 2019-12-27 福州大学 一种具有强抗干扰能力的频域f-p型测速系统及其测速方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272216A (ja) * 2000-03-23 2001-10-05 Japan Science & Technology Corp 角分散光ヘテロダインプロフィロメトリー装置
US20060098206A1 (en) * 2004-11-10 2006-05-11 Kim Seung W Apparatus and method for measuring thickness and profile of transparent thin film using white-light interferometer
US20070064239A1 (en) * 2005-09-22 2007-03-22 Fujinon Corporation Optical tomographic imaging apparatus
CN101032390A (zh) * 2007-03-29 2007-09-12 浙江大学 用于在体光学活检的谱域oct内窥成像系统
CN101907485A (zh) * 2010-08-25 2010-12-08 福州大学 非接触结构微振动监测装置
CN101923028A (zh) * 2010-08-25 2010-12-22 福州大学 高温涂层结构蠕变/热变形和内部裂纹检测装置
KR20130126151A (ko) * 2012-05-11 2013-11-20 주식회사 피피아이 빗살무늬 스펙트럼의 광원을 이용한 광 간섭성 단층 촬영 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404134B2 (ja) * 1994-06-21 2003-05-06 株式会社ニュークリエイション 検査装置
CN101799318B (zh) * 2010-03-22 2011-11-09 电子科技大学 一种激光零差测振光学系统
CN102401691B (zh) * 2011-11-29 2013-01-23 中国工程物理研究院流体物理研究所 全光纤激光多普勒三维测振仪
CN102519573B (zh) * 2011-12-16 2013-06-12 电子科技大学 一种远距离非接触振动测量装置及振动参数的计算方法
CN103148785B (zh) * 2013-01-10 2016-08-17 广东工业大学 一种光学干涉谱域相位对照b扫描仪及其测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272216A (ja) * 2000-03-23 2001-10-05 Japan Science & Technology Corp 角分散光ヘテロダインプロフィロメトリー装置
US20060098206A1 (en) * 2004-11-10 2006-05-11 Kim Seung W Apparatus and method for measuring thickness and profile of transparent thin film using white-light interferometer
US20070064239A1 (en) * 2005-09-22 2007-03-22 Fujinon Corporation Optical tomographic imaging apparatus
CN101032390A (zh) * 2007-03-29 2007-09-12 浙江大学 用于在体光学活检的谱域oct内窥成像系统
CN101907485A (zh) * 2010-08-25 2010-12-08 福州大学 非接触结构微振动监测装置
CN101923028A (zh) * 2010-08-25 2010-12-22 福州大学 高温涂层结构蠕变/热变形和内部裂纹检测装置
KR20130126151A (ko) * 2012-05-11 2013-11-20 주식회사 피피아이 빗살무늬 스펙트럼의 광원을 이용한 광 간섭성 단층 촬영 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, DANYANG ET AL.: "Enhanced optical coherence tomography for vibration and thermal deformation measurement based on spectrum correction technique.", JOURNAL OF NANJING UNIVERSITY ( NATURAL SCIENCES, vol. 5, no. 2, 31 March 2014 (2014-03-31), ISSN: 0469-5097 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788309B2 (en) 2016-04-01 2020-09-29 The University Of Liverpool Frequency-domain optical interferometry imaging apparatus and method for astigmatistic bi-focal illumination imaging of an eye
US11415407B2 (en) 2016-04-01 2022-08-16 The University Of Liverpool Frequency-domain optical interferometry imaging apparatus and method for astigmatistic bi-focal illumination imaging of an eye
CN106949916A (zh) * 2016-11-02 2017-07-14 北京信息科技大学 一种采用光纤端面腐蚀的温度和应变测试方法

Also Published As

Publication number Publication date
CN103900639A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2015154313A1 (fr) Dispositif de détection de vibrations et de déformation à plusieurs dimensions et grande vitesse et procédé
JP5669182B2 (ja) 白色干渉法による振動測定装置及び振動測定方法
CN112097645B (zh) 高深宽比微结构反射式干涉显微无损测量装置
CN104296698A (zh) 一种超高精度的光学表面平整度测量方法
JP2011513703A (ja) 物体の表面トポグラフィを測定するための装置および方法
CN104165582A (zh) 一种基于反射光栅的相移点衍射干涉检测装置及检测方法
CN109000781B (zh) 一种结构微振动线域测量装置及方法
CN105571517B (zh) 一种适用于光纤端面检测的改进型相干峰解调方法
WO2013091584A1 (fr) Procédé et un dispositif de détection de défauts au sein d'une matrice
CN103123251B (zh) 差动共焦内调焦法透镜光轴及厚度测量方法
CN102865810B (zh) 基于正交双光栅的同步相移共光路干涉检测装置及检测方法
US20150077759A1 (en) Compact, Slope Sensitive Optical Probe
CN205538736U (zh) 透射双波长合成孔径全息术的光学元件表面疵病检测装置
CN106338259A (zh) 杆的弯曲度测量装置及测量方法
CN102927923B (zh) 一种高精度纳米间距检测装置及检测方法
WO2020135891A1 (fr) Détecteur de parallélisme laser
JP5704150B2 (ja) 白色干渉装置及び白色干渉装置の位置及び変位測定方法
EP2259009B1 (fr) Agencement et procédé de mesure de mouvement relatif
CN112013972B (zh) 横向剪切干涉波前传感器的剪切量标定装置及方法
CN102519405A (zh) 平面镜反射面平整度的检测装置及其使用方法
CN208833364U (zh) 一种结构微振动线域测量装置
CN205642308U (zh) 基于双波长干涉的微表面形貌测量装置
CN205581024U (zh) 透射型合成孔径数字全息术的光学元件表面疵病检测装置
TWI403687B (zh) Displacement measuring device and its measuring method
CN102840823B (zh) 基于分光同步相移的共光路干涉检测装置及检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888684

Country of ref document: EP

Kind code of ref document: A1