WO2015154264A1 - 开关端电压可控的装置 - Google Patents

开关端电压可控的装置 Download PDF

Info

Publication number
WO2015154264A1
WO2015154264A1 PCT/CN2014/075014 CN2014075014W WO2015154264A1 WO 2015154264 A1 WO2015154264 A1 WO 2015154264A1 CN 2014075014 W CN2014075014 W CN 2014075014W WO 2015154264 A1 WO2015154264 A1 WO 2015154264A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
transistor
voltage
coupled
series
Prior art date
Application number
PCT/CN2014/075014
Other languages
English (en)
French (fr)
Inventor
戴晓国
徐振武
Original Assignee
上海携福电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海携福电器有限公司 filed Critical 上海携福电器有限公司
Priority to ES14888932T priority Critical patent/ES2729074T3/es
Priority to PCT/CN2014/075014 priority patent/WO2015154264A1/zh
Priority to EP14888932.2A priority patent/EP3131203B9/en
Priority to US15/302,250 priority patent/US10792137B2/en
Publication of WO2015154264A1 publication Critical patent/WO2015154264A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/221Control arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/24Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like rotating continuously
    • A61C17/26Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like rotating continuously driven by electric motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal fluid pressure, liquid level or liquid displacement, e.g. Buchholz relays
    • H02H5/083Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal fluid pressure, liquid level or liquid displacement, e.g. Buchholz relays responsive to the entry or leakage of a liquid into an electrical appliance
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B15/00Other brushes; Brushes with additional arrangements
    • A46B15/0002Arrangements for enhancing monitoring or controlling the brushing process
    • A46B15/0004Arrangements for enhancing monitoring or controlling the brushing process with a controlling means

Definitions

  • the present invention relates generally to the field of household circuits, and more particularly to a device capable of effectively reducing the voltage at the switching terminal in a humid environment. Background technique
  • the switch is usually used to start or shut down the appliance.
  • the switch can also be used to select different operating modes of the appliance.
  • the switch is used to realize the connection between the person and the appliance.
  • electrical appliances including rechargeable batteries or dry batteries, so the electrical appliances contain power supplies with output voltages greater than IV, and the terminal voltages of switches commonly used in the market are about equal to the output voltage of the power supply or higher than the output voltage of the power supply.
  • aqueous solution is usually electrically conductive.
  • a conductive aqueous solution or a conductive aqueous solution vapor between the contacts having a potential difference inside the switch, or a mixture of the conductive aqueous solution and the aqueous solution vapor.
  • An electrically conductive liquid or gas or mixture of liquids and gases under the action of the above-mentioned switching terminal voltage, produces an electrochemical reaction that will erode the switch and disable the switch.
  • the present invention provides a device with controllable switching terminal voltage that can operate stably in a humid environment and has high safety.
  • An aspect of the present invention provides a device for controlling a terminal voltage of a switch, comprising: a switch signal unit, configured to output a corresponding switch signal according to a state of the switch, wherein the switch is coupled to the switch signal unit and the power source a biasing unit coupled to the switching signal unit for outputting a bias voltage to the switching signal unit;
  • the biasing unit cooperates with the switching signal unit to control a terminal voltage of the switch and flow through the switch when the switch is turned off and there is a vapor of a conductive liquid and/or a conductive liquid therein. The current of the switch.
  • the switch signal unit includes a first transistor, and the switch is coupled between the first transistor and a power source for controlling on and off of a current path between the first transistor and the power source.
  • the first transistor is a bipolar transistor, and one end of the switch is coupled to an emitter of the first transistor, wherein the switch is between an emitter and a base of the first transistor
  • the PN junctions are connected in series to form a first series circuit, the first series circuit and the upper bias portion of the bias unit are connected in parallel; or the NP junction between the switch and the emitter and base of the first transistor
  • a second series circuit is formed in series, the second series circuit and the lower bias portion of the bias unit being connected in parallel.
  • the first and second series circuits further comprise at least one resistor.
  • the switch when the switch is turned off, if there is steam of conductive liquid and/or conductive liquid inside the switch, the first transistor is in an on state; if the switch is internally dry, the first A transistor is in an off state.
  • the device further includes: an electric motor coupled to an output end of the switching signal unit.
  • the device further includes: an output module, comprising: a second transistor and an electric motor connected in series with the second transistor; wherein the output module is coupled to an output end of the switch signal unit, and based on the An output signal of the switching signal unit configures an operating state of the motor.
  • an output module comprising: a second transistor and an electric motor connected in series with the second transistor; wherein the output module is coupled to an output end of the switch signal unit, and based on the An output signal of the switching signal unit configures an operating state of the motor.
  • At least one pull-up resistor is connected in series between the output end of the switching signal unit and the low level.
  • the circuit further includes a signal analysis module, and the signal analysis module is coupled between the output module and an output end of the switch signal unit to output an output signal of the switch signal unit for control The control signal of the output module.
  • the second transistor is a field effect transistor, wherein the motor is connected in series to a drain of the second transistor.
  • the second transistor is a bipolar transistor, wherein the motor is connected in series to a collector of the second transistor.
  • the first transistor is a field effect transistor, and one end of the switch is coupled to a source of the first transistor, wherein the switch is between a gate and a source of the first transistor
  • the NP junction forms a first series circuit, the first series circuit and the upper bias portion of the bias unit are connected in parallel; the switch is formed in series with a PN junction between a gate and a source of the first transistor
  • a second series circuit, the second series circuit and the lower bias portion of the bias unit are connected in parallel.
  • Another aspect of the invention provides an electric toothbrush comprising a brush head coupled to an electric motor, the motor determining whether to drive the brush head to operate in accordance with control of the switch.
  • the voltage of the switch terminal when the switch is turned off can be made smaller than IV, the electrochemical reaction of the switch is greatly suppressed, thereby prolonging the life of the switch and eliminating the possibility of hydrogen-oxygen explosion.
  • FIG. 1 is a schematic diagram of an application circuit of a trigger switch in the prior art
  • Figure 2 is an equivalent circuit diagram of the inside of the switch of Figure 1 with an aqueous solution
  • FIG. 3 is a schematic diagram of a typical power switch circuit in the prior art
  • Figure 4 is an equivalent circuit diagram when there is an aqueous solution inside the switch of Figure 3;
  • FIG. 5 is a circuit diagram of reducing a voltage at a switch terminal according to an embodiment of the present invention
  • FIG. 6 is an equivalent circuit diagram of an aqueous solution inside the switch of FIG. 5;
  • FIG. 7 is a schematic circuit diagram of another circuit for reducing voltage at a switch terminal according to an embodiment of the present invention.
  • Figure 8 is an equivalent circuit diagram when the inside of the switch of Figure 7 has an aqueous solution
  • FIG. 9 is a schematic diagram of another circuit for reducing voltage at a switch terminal according to an embodiment of the invention.
  • FIG. 10 is a circuit diagram showing another circuit for reducing voltage at a switch terminal according to an embodiment of the present invention.
  • Figure 11 is an equivalent circuit diagram when there is an aqueous solution inside the switch of Figure 9;
  • Fig. 12 is an equivalent circuit diagram when an aqueous solution is inside the switch of Fig. 10. detailed description
  • the present embodiment analyzes and analyzes the conductive aqueous solution inside the switch.
  • the switch has an electrically conductive aqueous solution vapor or a mixture of a conductive aqueous solution and an aqueous solution vapor.
  • an object having an equivalent resistance of less than 1 ⁇ ⁇ is defined as an electrically conductive object.
  • FIG. 1 is a schematic diagram of an application circuit of a trigger switch in the prior art. It can be understood by those skilled in the art that when the switch K11 is turned off, the voltage on the switch K11 is equal to VDD11, which is equal to the output voltage U11 of the power supply, and in most electrical appliances, the output voltage U11 of the power supply is usually greater than IV. In this embodiment, U11 is equal to 3 V.
  • the switch is in dry air
  • the switch K u When the switch K u is disconnected, the port I/O 11 of the signal processing module IC1 is not connected to the low level (ground), so the port I/O 11 is at a high level, and the port I/O 12 outputs a low level.
  • the motor M n does not work.
  • the switch Ku pulls the port I/O 11 directly to the low level, that is, the port I/O 11 drops from the high level to the low level.
  • IC1 detects the I / O level of the mutated 11, identified as the switch has been triggered, so that the port I / O output 12 is high, the drive MOSFET Q u work, which in turn drives The motor M n works.
  • V DD Supply voltage V DD is provided of IC1, in the present embodiment, the high level is defined as greater than or equal to 0.7 times V DD, a low level is defined as 0.3 times or less of V DD. Obviously, when the level at the port is between 0.3V DD and 0.7V DD , IC1 will not be able to determine whether this level is high or low. Usually, IC1 internally connects a pull-up resistor R 12 of about 100 ⁇ between I/O 11 and V DD (as shown in Figure 1), that is, I/O 11 and V DD are connected through a pull-up resistor.
  • Fig. 2 is an equivalent circuit diagram when an aqueous solution is inside the switch of Fig. 1.
  • the conductive aqueous solution corresponds to the electrolyte, and the positive and negative electrodes of the switch with terminal voltage and the electrolyte form an electrolysis system.
  • the theoretical decomposition voltage of water is 1.23V, that is, when the voltage at the switching terminal is greater than 1.23V, water may release hydrogen in the negative electrode and release oxygen in the positive electrode.
  • the mixing of hydrogen and oxygen in a relatively closed space is dangerous when the volume of hydrogen mixed in the air is 4% to 74.2°/ of the total volume. At this time, the spark generated when the motor is working can detonate the hydrogen, thereby damaging the appliance or causing a more serious safety accident.
  • the electrolysis phenomenon still exists because the aqueous solution has conductivity.
  • the electrolysis process will cause the metal of the positive electrode to be oxidized and passivated, which will deteriorate the conductivity of the positive electrode, which will cause contact failure when the positive and negative electrodes of the switch are contacted, thereby causing the switch to fail and shortening the life of the switch.
  • the electrolysis phenomenon increases and the speed at which the switch fails will become faster and faster.
  • the power supply voltage of the appliance is greater than 1.0V.
  • the power supply voltage is 1.2V, 1.5V, 2.4V, and 3V. Therefore, typical circuits on the market today are at risk of the above analysis.
  • the equivalent resistance R 7 2 is related to the degree of electrolysis of the aqueous solution, that is, when the aqueous solution has just started to electrolyze, since the ions in the aqueous solution are less, the conductivity is poor, so the equivalent resistance R water 2 is relatively large.
  • R water 2 is approximately equal to 100 ⁇ ⁇ at this time.
  • the electrolysis is carried out for a certain period of time, the ions in the aqueous solution increase, the conductivity is enhanced, and the equivalent resistance P 2 is relatively small. It is experimentally determined that I 2 is approximately equal to 40 ⁇ ⁇ .
  • the equivalent effect of the aqueous solution at both ends of the switch directly affects the function of the switch, which may also cause the switch to fail.
  • a large amount of free electrical conductors are generated inside the switch. Since the gap between the positive and negative terminals of the switch is usually small, at some point, these free conductors may short-circuit the positive and negative terminals of the switch, causing the switch to be short-circuited, thereby causing the switch to fail.
  • FIG. 4 is an equivalent circuit diagram when there is an aqueous solution inside the switch of FIG.
  • switch ⁇ 31 When switch ⁇ 31 is in a humid environment, switch ⁇ 31 is equivalent to an ideal switch! CH and equivalent resistance R, 4 are connected in parallel.
  • the present invention serializes at least one ⁇ or ⁇ junction of the transistor in the current path of the switch to the power supply, specifically as shown in FIGS. 5, 7, and 9, the switch is coupled to the emitter of the first transistor, the switch and the first transistor.
  • the base junction between the base and the emitter is connected in series to form a first series circuit, and the first series circuit is connected in parallel with the upper bias portion of the first transistor bias circuit.
  • the first series circuit may also comprise a suitable resistor, i.e., the junction between the switch and the base and emitter of the first transistor and the appropriate resistor constitute the first series circuit.
  • the upper biasing portion of the bias circuit described above is a bias circuit portion electrically connecting the base of the first transistor to the anode of the power supply.
  • the switch when the type of the first transistor is changed, for example, as shown in FIG. 10, one end of the switch is coupled to the emitter of the first transistor, and the switch is connected in series with the base of the first transistor and the emitter.
  • a second series circuit, and the second series circuit is coupled in parallel with a lower bias portion of the first transistor bias circuit.
  • the second series circuit can also include a suitable resistor, that is, the junction between the switch and the base and emitter of the first transistor and the appropriate resistor constitute a second series circuit.
  • the lower bias portion of the bias circuit described above is a bias circuit portion electrically connecting the base of the first transistor and the negative terminal of the power supply.
  • the voltage of the upper (or lower) bias circuit in parallel with the first (or second) series circuit described above must be less than the supply voltage.
  • the switching terminal voltage plus the first transistor emitter The voltage between the base and the base is equal to the voltage of the corresponding upper (or lower) bias circuit. Therefore, the terminal voltage of the switch is the difference between the voltage of the corresponding upper (or lower) bias circuit and the voltage between the emitter and the base of the first transistor, thereby properly arranging the bias circuit of the first transistor and the first transistor Model, can set the switch terminal voltage when there is a conductive aqueous solution in the switch when the switch is off, and make it less than IV and greater than ov.
  • the switch When the switch is turned off, since one end of the switch having the conductive aqueous solution is coupled to the emitter of the first transistor, if the first transistor is not turned on, no current passes through the emitter of the first transistor, that is, no current passes through the ideal switch and switch. Equivalent resistance, so the terminal voltage of the switch is zero. Obviously, the voltage of the corresponding upper (or lower) bias circuit is less than or equal to the threshold voltage of the PN (or NP) junction between the emitter and the base of the first transistor, that is, even if the switch is closed, the first transistor It is also not possible to conduct effectively, and the motor does not work, so the bias of this bias circuit is not acceptable.
  • the corresponding upper (or lower) bias circuit voltage can be set to be greater than the threshold voltage of the PN (or NP) junction between the emitter and base of the transistor.
  • the terminal voltage of the switch is the voltage of the corresponding upper (or lower) bias circuit The difference between the voltage between the emitter and the base of the first transistor, and the terminal voltage of the switch is greater than 0V.
  • the first transistor whose emitter is coupled to one end of the switch is in an on state, and since the terminal voltage of the switch is the voltage of the corresponding upper (or lower) bias circuit
  • the difference between the voltage between the emitter and the base of the first transistor, that is, the voltage of the corresponding upper (or lower) bias circuit and the voltage between the emitter and the base of the first transistor determine the magnitude of the terminal voltage of the switch.
  • the voltage between the emitter and the base does not change much, so the voltage of the corresponding upper (or lower) bias circuit controls the voltage of the terminal of the switch.
  • a bias circuit is formed by using two resistors to form a transistor.
  • any electronic component combination of a bias circuit capable of realizing voltage division can be applied to the embodiment. Medium. For example, multiple resistor combinations, resistor and diode combinations, resistors and Zener diode combinations, and more.
  • the conduction characteristics of the transistor can be used to reduce the terminal voltage at both ends when the switch is turned off.
  • the switch is turned off and there is a conductive aqueous solution or aqueous solution vapor, or a mixture of a conductive aqueous solution and an aqueous solution vapor
  • the pass characteristic effectively reduces the voltage at the switch terminal and the current inside. It is known from electrochemical theory that a sufficiently low voltage and a sufficiently low current will inhibit the electrochemical reaction of the electrolyte and the switch.
  • FIG. 5 is a schematic diagram of a circuit for reducing a voltage at a switch terminal according to an embodiment of the invention.
  • the circuit includes:
  • switching signal means comprising a first transistor Q 51, K 51 according to the state of the switch, the switch signal is output, wherein the switching ⁇ 51 coupled between the output terminal of the first transistor Q 51 of the power supply U 5I, with Controlling the on and off of the current path between the first transistor Q 51 and the output of the power source U 51 ;
  • the biasing unit is composed of resistors ⁇ and R 52 connected in series, and is respectively coupled to the output end of the power source U 51 and the switching signal unit for outputting a bias voltage to the switching signal unit, that is, the resistor! and 1 52 a node coupled to the base of transistor Q 51 ;
  • IC5 signal analysis module coupled to the collector of the first transistor Q 51, and for outputting a corresponding switching control signal according to the output signal Q 51 of the collector of the first transistor;
  • the output module includes a second transistor Q 52 and a motor M 51.
  • the output module determines whether to start the motor according to a control signal output by the signal analysis module IC5. VI 5 i.
  • the voltage across the switch K 51 is determined by the type of the transistor Q 51 (ie, the first transistor) and the bias unit, as shown in equation (2):
  • the switch K 51 can be disconnected and the conductive solution and/or steam is present inside, and the voltage across the two ends is less than IV and greater than ov.
  • the output voltage of the bias cell is configured to be greater than V EB such that voltage 11 ⁇ 2 51 can be greater than 0V. It will be understood by those skilled in the art that for the same type of transistor, the value of V EB changes little, and therefore, the output voltage of the bias unit determines the value of the voltage U K51 .
  • transistor Q 5 i is serially coupled to the current path of power supply U 51 from switch K 51 in Figure 5 .
  • I s is the reverse saturation current of the NP junction between the base and emitter of the transistor
  • U d is the turn-on threshold voltage of the P junction.
  • 51 is much smaller than i 51 , so the effect of 51 is ignored during the operation, and the silicon transistor U d is usually about 0.5V.
  • 2 120 ⁇ ⁇ , U 5 corpse 3V, then ⁇ ⁇ 24 ⁇ ⁇ .
  • Fig. 6 is an equivalent circuit diagram when the inside of the switch of Fig. 5 has an aqueous solution.
  • I C51 R 53 must be less than 0.3 U 5I .
  • ⁇ 51 ⁇ is the DC amplification factor of the transistor
  • ⁇ 51 is the instantaneous DC amplification factor of the transistor when U ec ⁇ 0.7V.
  • the value of the resistor R is:
  • the transistor Q 5 i is of the 9014 type, and the corresponding range of R 53 is: 11.07 ⁇ ⁇ ⁇ ⁇ 53 ⁇ 24 ⁇ ⁇
  • A is a preset multiple of the current i 5 i 9 flowing through the resistor R 5 i and the base current i b 5i9 under this condition, and usually takes A to be 100. It can be seen from the characteristics of the bipolar transistor that when i b519 « 10i s , approximately the following relationship can be obtained:
  • the total resistance of the bias circuit ranges from:
  • the value range of R 5 i at the maximum value U 518 of the output voltage of the power supply can be determined by combining the formula (16) and the value of the resistor R 51 as: Further, the range of the resistor R 53 can be determined:
  • FIG. 7 is a circuit diagram showing another circuit for reducing the voltage at the switch terminal according to an embodiment of the invention.
  • the resistor R 7 p R 72 constitutes a bias circuit for supplying a bias voltage to the base of the transistor Q 71 .
  • FIG. 7 is a circuit diagram of an improved circuit in accordance with the present invention for the circuit of Figure 3, the switch of Figure 7 being in dry air.
  • switch K 71 is coupled to transistor Q 7 i to the current path of the power supply.
  • switch K 71 is closed, a portion of the current flowing from the power source flows through a portion of ⁇ 71 through the junction between the emitter and the base of the transistor through resistor R 72 into the power supply, and another portion of the current flowing through K 71 through the transistor The junction and the junction between the emitter and the collector flow through the motor ⁇ 71 into the power source.
  • the current flowing out of the power supply in Figure 3 passes the switch!
  • the motor ⁇ 31 flows directly back to the power supply, and there is no enthalpy or entanglement of the transistor in the current path from the switch ⁇ 31 to the power supply.
  • 1 71 and 1 72 in FIG. 7 constitute a bias circuit of the transistor Q 71.
  • the bias portion near the positive pole of the power source is an upper bias circuit
  • the bias portion near the negative pole of the power source is a lower bias portion, that is, R 7 i is Offset portion
  • R 72 is the lower bias portion.
  • one end of the switch K 7 i is electrically connected to the emitter of the transistor Q 7 i , and the switch ⁇ 7 ⁇ and the ⁇ junction between the emitter and the base of the transistor Q 7 i are connected in series to form a first series circuit, and The series circuit and the upper biasing portion (R 71 ) of the transistor Q 71 bias circuit are connected in parallel.
  • Switch K 71 in dry air when the switch is turned off ⁇ 71, Q 71 is not turned on, the motor does not work ⁇ 7 ⁇ .
  • the switch 71 is closed, Q 7 i is turned on, the motor M 71 is operated, and the electric appliance is operated.
  • the switch K 71 is turned off again, the transistor Q 71 is turned off again, and the motor M 71 is stopped.
  • Fig. 8 is an equivalent circuit diagram when an aqueous solution is inside the switch of Fig. 7. At this time, the switch ⁇ 7 ⁇ is equivalent to the ideal switch K 81 and the equivalent resistance ls in parallel. When the switch K 81 is turned off, the following voltage relationship can be obtained:
  • the voltage across switch K 81 can be made smaller than IV and greater than 0V, and correspondingly U M7 i is at least less than 0.1V, motor M 71 will not work.
  • the transistor Q 71 is turned on, and the Uec 71 is small, so that a high voltage is obtained on the motor M 71 and the motor starts to operate.
  • the switch is turned off again, since the switch terminal voltage is less than IV greater than 0V and far greater than UM 71 , 3 ⁇ 44 71 is at least less than 0.1V and the motor cannot be started.
  • Figure 9 is a schematic diagram of another circuit for reducing the voltage at the switch terminal in accordance with an embodiment of the present invention.
  • the switch in series with the transistor Q 91 K (i.e., the first transistor) on the current path to the power source 91, resistor R 92 R 9 i and the bias circuit composed of the transistor Q 91.
  • the collector of the transistor Q 91 is coupled to the gate of the FET Q 92 (ie, the second transistor) to provide a switching signal of the MOS transistor Q 92 , thereby controlling the operating state of the motor M91.
  • FIG 11 is a switch 91 K equivalent circuit diagram of the internal aqueous solution.
  • the field effect transistor Q 92 cannot be turned on, and the motor M 91 does not operate.
  • the voltage at the switch terminal is less than IV, the current flowing through the switch is greatly reduced, so that the lower switch terminal voltage and the small current greatly suppress the electrochemical reaction of the switch, thereby improving the life of the switch.
  • the switch having a conductive aqueous solution inside can be made to have a terminal voltage less than IV and greater than 0 V when the switch is turned off, and keep the motor inoperative.
  • the motor can be started normally. Since the voltage at the switch terminal when the switch is turned off is less than IV, the electrochemical reaction of the switch is greatly suppressed, thereby greatly prolonging the life of the switch and eliminating the possibility of hydrogen-oxygen explosion.
  • Fig. 10 is a circuit diagram showing another circuit for reducing the voltage at the switch terminal according to the embodiment of the present invention
  • Fig. 12 is an equivalent circuit diagram for the case where the inside of the switch of Fig. 10 has an aqueous solution.
  • switch K 1 () 1 is in dry air.
  • the switch ⁇ 101 The transistor Qun (ie, the first transistor) is serially connected to the current path of the power supply.
  • the switch K 101 is closed, a part of the current flowing from the power source flows through the PN junction between the base and the emitter of the pass transistor, flows through K 1 () 1 into the power supply; and flows through the current of ⁇ 1 () 1
  • the other part comes from the current flowing through the resistor R I() 3 and the NP junction and PN junction between the emitter and collector of the transistor back to the supply.
  • the PN junction and the NP junction and the PN junction between the base and the emitter of the transistor Qi are serially coupled to the current path of the switch K1 ()1 to the power supply.
  • the Rioi and Rio 2 in Fig. 10 constitute the bias circuit of the transistor Qun.
  • the bias portion near the positive pole of the power supply is an upper bias circuit
  • the bias portion near the negative pole of the power supply is a lower bias portion, that is, R 1G1 is an upper bias portion.
  • R 1G2 is the lower bias portion.
  • the switch Ki and the NP junction between the emitter eioi of the transistor Qioi (ie, the first transistor) and the base bioi are connected in series to form a second series circuit, and the series circuit and the transistor Q I (the lower bias portion of the M bias circuit)
  • the resistors R 121 -R 123 are arranged.
  • the switch K 1()1 When the switch K 1()1 is in the dry air and is turned off, the transistor Qun is not turned on, and its collector potential U C1 ()1 is equal to the power supply voltage U. 1()1 , therefore, transistor Q 1() 2 (ie, the second transistor) is not conducting, and the motor cannot operate.
  • the switch K 1 ⁇ hail is closed, the transistor Q101 is turned on, U CH)I becomes small, so that the transistor Qi 02 is turned on, and the motor M 101 operates.
  • the switch KIQI When there is a conductive aqueous solution inside the electrical switch, the switch KIQI is equivalent to The ideal switch K 121 and the equivalent resistor R 7M2 are connected in parallel.
  • a switch with a conductive aqueous solution inside can be made.
  • the terminal voltage of the switch is less than IV, and the motor is kept inoperative.
  • the motor can be started normally.
  • the voltage at the switch terminal when the switch is turned off is less than IV, the electrochemical reaction of the switch is greatly suppressed, thereby greatly prolonging the life of the switch and eliminating the possibility of hydrogen-oxygen explosion.
  • the invention also discloses an electric appliance, such as an electric toothbrush, which comprises: (1) a power source, usually a rechargeable battery or a dry battery, for supplying a working voltage to the electric appliance; (2) a switch module coupled to The power source is used to control the on and off of the current path between the power source and the subsequent circuit; (3) the motor is coupled to the switch module and the power source for determining whether to drive the brush head according to the control of the switch.
  • a power source usually a rechargeable battery or a dry battery
  • the electric appliance can ensure the effectiveness of the switch in a humid environment and prolong the life of the switch.
  • a switch can be connected in series to the emitter of a transistor through a resistor to reduce the voltage that the switch can distribute;
  • the bias unit can be made up of a linear regulator, a switching power supply, or other circuit capable of outputting a specified bias voltage.
  • the first transistor in the above embodiment can also be a field effect transistor.
  • one end of the switch is coupled to the source of the first transistor, and the NP junction between the switch and the gate and the source of the first transistor forms a first series circuit, the first series circuit and the bias unit The upper biasing portion is connected in parallel; or the PN junction between the switch and the gate and source of the first transistor is connected in series to form a second series circuit, and the second series circuit and the lower biasing portion of the biasing unit are connected in parallel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electronic Switches (AREA)

Abstract

一种开关端电压可控的装置,包括:开关信号单元,用于根据开关的状态,输出相应的开关信号,开关耦接在开关信号单元与电源的输出端之间;偏置单元,耦接至开关信号单元,用于向开关信号单元输出偏置电压;其中,当开关断开且其内部存在导电液体和/或导电液体的蒸汽时,偏置单元与开关信号单元相配合,以控制开关的端电压和流经开关的电流。通过采用本技术方案,可以使得开关断开时的开关端电压小于1V,大大地抑制了开关的电化学反应,从而延长了开关的寿命,同时杜绝了氢氧爆炸的可能性。

Description

开关端电压可控的装置 技术领域
本发明概括而言涉及家用电路领域, 更具体而言, 涉及一种在 潮湿环境下, 能够有效降低开关端电压的装置。 背景技术
开关通常用来启动或关闭用电器,开关也可以用来选择用电器 的不同工作模式, 开关是用来实现人和用电器之间联系的器件。 当 前有很多用电器包含充电电池或干电池等电源, 所以用电器含有输 出电压大于 IV的电源,而市场上普遍的用电器的开关的端电压约等 于电源输出电压或高于电源输出电压。
众所周知, 如电动牙刷、 剃须装置或毛发去除装置之类的用电 器, 往往放置于潮湿的卫生间及其使用过程或清洗过程中有机会接 触到各种水溶液。 水溶液通常是导电的, 这种水溶液在用电器的水 密封出问题时, 会使开关内部的有电位差的触点之间存在导电水溶 液或导电水溶液蒸汽, 或导电水溶液和水溶液蒸汽混合物, 而这种 导电的液体或气体或液体和气体混合物在上述开关端电压的作用 下, 会产生电化学反应, 此类电化学反应将腐蚀开关, 使开关失效。
因此, 亟需一种能够使得开关适用于潮湿环境下, 且具有较高 的稳定性与安全性的电路。 发明内容
针对以上问题,本发明提供了一种能在潮湿环境下能够稳定工 作且安全性高的开关端电压可控的装置。
本发明一方面提出了一种开关的端电压可控的装置, 包括: 开 关信号单元, 用于根据开关的状态, 输出相应的开关信号, 所述开 关耦接在所述开关信号单元与电源的输出端之间; 偏置单元, 耦接 至所述开关信号单元, 用于向所述开关信号单元输出偏置电压; 其 中,当所述开关断开且其内部存在导电液体和 /或导电液体的蒸汽时, 所述偏置单元与所述开关信号单元相配合, 以控制所述开关的端电 压和流经所述开关的电流。
优选的, 所述开关信号单元包括第一晶体管, 所述开关耦接在 所述第一晶体管与电源之间, 用于控制所述第一晶体管与所述电源 之间的电流通路的通断。
优选的, 所述第一晶体管为双极型晶体管, 所述开关的一端耦 接至所述第一晶体管的发射极, 其中, 所述开关与所述第一晶体管 的发射极和基极之间的 PN结串联形成第一串联电路,所述第一串联 电路和所述偏置单元的上偏置部分并联; 或所述开关与所述第一晶 体管的发射极和基极之间的 NP结串联形成第二串联电路,所述第二 串联电路和所述偏置单元的下偏置部分并联。
优选的, 所述第一、 二串联电路还包括至少一个电阻。
优选的, 当所述开关断开时, 若所述开关内部存在导电液体和 /或导电液体的蒸汽, 则所述第一晶体管处于导通的状态; 若所述开 关内部干燥, 则所述第一晶体管处于截止的状态。
优选的, 所述装置还包括: 电动机, 所述电动机耦接至所述开 关信号单元的输出端。
优选的, 所述装置还包括: 输出模块, 包括第二晶体管和与所 述第二晶体管相串联的电动机; 其中, 所述输出模块耦接至所述开 关信号单元的输出端, 并基于所述开关信号单元的输出信号配置所 述电动机的工作状态。
优选的,所述开关信号单元的输出端与低电平之间串联至少一 个上拉电阻。
优选的, 所述电路还包括信号分析模块, 所述信号分析模块耦 合在所述输出模块与所述开关信号单元的输出端之间, 以根椐所述 开关信号单元的输出信号输出用于控制所述输出模块的控制信号。
优选的, 所述第二晶体管为场效应晶体管, 其中, 所述电动机 串联至所述第二晶体管的漏极。 优选的, 所述第二晶体管为双极型晶体管, 其中, 所述电动机 串联至所述第二晶体管的集电极。
优选的, 所述第一晶体管为场效应管, 所述开关的一端耦接至 所述第一晶体管的源极, 其中, 所述开关与所述第一晶体管的栅极 和源极之间的 NP结联形成第一串联电路,所述第一串联电路和所述 偏置单元的上偏置部分并联; 所述开关与所述第一晶体管的栅极和 源极之间的 PN结串联形成第二串联电路,所述第二串联电路和所述 偏置单元的下偏置部分并联。
本发明另一方面提出了一种电动牙刷, 包含耦接至电动机的刷 头, 所述电动机根据所述开关的控制来决定是否驱动刷头工作。
通过采用本发明的技术方案,可以使得开关断开时的开关端电 压小于 IV,大大地抑制了开关的电化学反应,从而延长了开关的寿命, 同时杜绝了氢氧爆炸的可能性。 附图说明
通过参考下列附图所给出的本发明的具体实施方式的描述之 后, 将更好地理解本发明, 并且本发明的其他目的、 细节、 特点和 优点将变得更加显而易见。 在附图中:
图 1为现有技术中的触发开关的应用电路示意图;
图 2为图 1的开关内部有水溶液时的等效电路图;
图 3为现有技术中典型的电源开关电路示意图;
图 4为图 3中开关内部有水溶液时的等效电路图;
图 5为依据本发明实施例的降低开关端电压的电路示意图; 图 6为图 5的开关内部有水溶液时的等效电路图;
图 7 为依据本发明实施例另一种降低开关端电压的电路示意 图;
图 8为图 7的开关内部有水溶液时的等效电路图;
图 9 为依据本发明实施例另一种降低开关端电压的电路示意 图; 图 10为依据本发明实施例另一种降低开关端电压的电路示意 图;
图 11为图 9的开关内部有水溶液时的等效电路图;
图 12为图 10的开关内部有水溶液时的等效电路图。 具体实施方式
下面将参照附图更详细地描述本公开的优选实施方式。虽然附 图中显示了本公开的优选实施方式, 然而应谅理解, 可以以各种形 式实现本公开而不应被这里阐述的实施方式所限制。 相反, 提供这 些实施方式是为了使本公开更加透彻和完整, 并且能够将本公开的 范围完整的传达给本领域的技术人员。
本领域技术人员能够理解的是, 由于开关内部有导电水溶液、 水溶液蒸汽或两者的混合物所发生的电化学反应及等效电路类似, 因此本实施例对开关内部有导电水溶液进行分析, 分析的结果同样 适用于开关内部有导电的水溶液蒸汽或导电水溶液和水溶液蒸汽混 合物的情况。 本实施例中, 将等效电阻小于 1ΜΩ的物体定义为可导 电的物体。
图 1为现有技术中的触发开关的应用电路示意图。本领域技术 人员可以理解的是, 当开关 K11 断开时, 开关 K11 上的电压等于 VDD11 , 进而等于电源的输出电压 U11 , 而在大部分用电器中, 电 源的输出电压 U11通常大于 IV, 在本实施例中, U11等于 3 V。
对图 1中电路的工作原理进行分析:
( 1 ) 开关处于干燥空气中
当开关 Ku断开时, 信号处理模块 IC1 的端口 I/O11和低电平 (地) 没有连接, 所以端口 I/O11处于高电平, 且端口 I/O12输出低电 平, 电机 Mn无法工作。 当用户按下开关 Ku且按下的时间大于 100ms 时, 开关 Ku把端口 I/O11直接短接到低电平, 即端口 I/O11从高电平突 降到低电平, IC1侦测到 I/O11的电平产生突变, 则认定为开关已被触 发, 从而在端口 I/O12输出高电平, 驱动场效应管 Qu工作, 进而驱动 电机 Mn工作。
当电机工作后, 用户释放开关时, 端口 I/O11的电平从低电平恢 复至高电平, IC1将该过程认定为开关被释放的过程,故不改变现有的 电机工作状态, 维持电机的工作。 当开关 Ku再次被按下超过 100ms 时, 即 I/O11电平再次从高突变到低时, IC1认定开关再次被触发, 从 而在端口 I/O12输出低电平, 进而关闭场效应管 Qu , 使得电机 Mu关 闭。 如此循环, 以重复工作。
设 VDD为 IC1 的供电电压, 在本实施例中, 将高电平定义为大 于等于 0.7倍的 VDD, 低电平定义为小于等于 0.3倍的 VDD。 显然, 当 端口处的电平处于 0.3VDD至 0.7VDD之间时, IC1将无法判断此电平为 高或是低。 通常, IC1的内部在 I/O11和 VDD之间串入一个约 100ΚΩ左 右的上拉电阻 R12 (如图 1所示) , 即 I/O11和 VDD通过上拉电阻连通。
当用电器开关内部由于用电器密封不好而存在导电的水溶液 时, 开关 Kn等效为理想开关 K21和等效电阻 R水 2并联。 图 2为图 1的 开关内部有水溶液时的等效电路图。
导电水溶液相当于电解液, 带端电压的开关正负极和电解液构 成了一个电解系统。依电化学理论, 水的理论分解电压为 1.23V, 即开 关端电压大于 1.23V时, 水就有可能在负极释出氢气, 而在正极释出 氧气。 氢气和氧气在一相对封闭的空间的混合是危险的, 当空气中混 入氢气的体积为总体积的 4%至 74.2°/。时, 电机工作时产生的火花可以 引爆氢气, 从而损坏用电器或是引起更严重的安全事故。
另外, 即使开关端电压小于 1.23V, 但由于水溶液具有导电性, 电解现象依然存在。 电解过程将使正极的金属被氧化和钝化, 使正极 的导电性变差, 将致使开关的正负极接触时产生接触不良, 进而使得 开关失效, 减短了开关的寿命。 显然, 随着开关端电压的增大, 电解 现象加剧, 开关失效的速度将越来越快。
通常用电器的电源电压大于 1.0V, 在电池电源的典型应用中, 电源电压为 1.2V、 1.5V、 2.4V和 3V。 因此, 目前市场上的典型电路 具备上述分析的风险。 依电化学理论可知, 等效电阻 R7 2与水溶液的电解程度相关, 即 当水溶液刚刚开始电解时, 由于水溶液中的离子较少, 导电性能较差, 因此等效电阻 R水 2相对较大, 在本实施例中, 经实验测得此时 R水 2约等 于 100ΚΩ。 当电解进行一定时间后, 水溶液中的离子增多, 导电性能 增强, 等效电阻 P 2相对变小, 经实验测得此时 I 2约等于 40 ΚΩ。
由图 2中的 Uu-Ru-K 支路的电压分配, 可以得到如式 ( 1 ) 所示的电压关系: ( 1 )
Figure imgf000007_0001
其中, R12为预设的 100ΚΩ, Uu为电源电压, 该电压为电阻 R12和开关 K21上的电压之和, Ural为开关 Κ2ι两端的电压, UR12为 IC 内部上拉电阻 R12上的电压, i21为流经电阻 R12和 I 2上的电流。
由式 ( 1 ) 可知, 当 R12= R水 2时, 开关两端的电压 U 2I=0.5UU « 0.5VDDU。 因此, IC1难以判定 I/O1 1上的电平为高或低。 当用户按压 开关,Ι/Ο1 1上电平自 0.5VDDI I突变至低电平时,由于 IC1可以认定 I/O11 的初始电平为低, 所以 IC1认为此次开关按压为无效按压, IC1不能启 动电机工作。 此时, 用户可认定开关失效。
当 R12=100KQ, R水 f 40 ΚΩ时,代入式( 1 )可知, UK2尸 0.286UU « 0.286 VDDI N 此时 I/O1 1上电平为 0.286 VDD11 , IC1确定! /0"上的电 平为低。 同理, 此时即使用户按压开关, 也不能启动电机工作。
综上所述, 由于开关端电压高于 1.0V, , 开关两端的水溶液等 效电阻直接影响开关的功能, 也可以导致开关失效。 另外, 在长时 间的电解过程中, 开关内部将产生大量游离的导电体。 由于开关的正 负极的间隙通常很小, 在某些时候, 这些游离的导电体会短接开关的 正负极致使开关短路, 从而使得开关失效。
由上可知, 当开关在断开状态下, 直接承受大于 IV的电源电 压, 一旦开关内部存在导电的水溶液和 /或水溶液蒸汽,将具有氢氧混 合爆炸的风险, 以及各种开关失效问题。 图 3为现有技术中典型的电源开关电路, 图 4为图 3 中开关内 部有水溶液时的等效电路图。
显然, 在开关 K31断开时, 开关 Κ31上的电压等于电源电压 U31, 而 U31往往大于 IV, 在本实施例中, U3i等于 3 V。
对图 3中电路的工作原理进行简要地分析:
( 1 )开关 K31处于干燥的空气中时, 开关 Κ31处等效电阻为无 穷大, 因此, 电路的工作状态取决于开关 Κ31的状态。
( 2 ) 开关 Κ31处于潮湿的环境下时, 开关 Κ31等效于一个理想 开关! CH和等效电阻 R, 4并联。
同理, 当开关 K31两端的电压较大时, 一旦开关内部存在导电 的水溶液和 /或水溶液蒸汽, 将具有氢氧混合爆炸的风险, 以及各种 开关失效问题。
本发明在开关到电源的电流路径上串入晶体管的至少一个 ΡΝ 或 Ρ结, 具体地如图 5、 7、 9所示, 开关一端耦接至第一晶体管的 发射极, 开关与第一晶体管的基极和发射极之间的 ΝΡ结串联, 构成 第一串联电路, 且该第一串联电路和第一晶体管偏置电路的上偏置 部分并联。 可以理解的是, 第一串联电路还可以包含适当的电阻, 也就是说开关与第一晶体管的基极和发射极之间的 ΝΡ 结及适当的 电阻构成第一串联电路。 上述的偏置电路的上偏置部分为电连接第 一晶体管基极和电源正极的偏置电路部分。
相应地, 当第一晶体管的类型改变后, 譬如, 如图 10所示, 开关一端耦接至第一晶体管的发射极, 开关与第一晶体管的基极和 发射极之间的 ΡΝ结串联构成第二串联电路,且该第二串联电路和第 一晶体管偏置电路的下偏置部分并联。 同理, 第二串联电路也可以 包含适当的电阻, 也就是说开关与第一晶体管的基极和发射极之间 的 ΡΝ结及适当的电阻构成第二串联电路。上述的偏置电路的下偏置 部分为电连接第一晶体管基极和电源负极的偏置电路部分。
上述的第一(或第二) 串联电路并联的上(或下)偏置电路的 电压必然小于电源电压。 显然, 开关端电压加上第一晶体管发射极 和基极之间电压和相应的上 (或下) 偏置电路的电压相等。 因此, 开关的端电压为相应的上 (或下) 偏置电路的电压和第一晶体管发 射极和基极之间电压之差, 从而通过合理配置第一晶体管的偏置电 路和第一晶体管的型号, 可以设定在开关断开时, 开关内有导电水 溶液时的开关端电压, 并使它小于 IV且大于 ov。
更详细的分析如下:
在开关断开时,由于有导电水溶液的开关一端耦接至第一晶体 管的发射极, 若第一晶体管没有导通, 则没有电流通过第一晶体管 的发射极, 即没有电流通过理想开关和开关等效电阻, 所以开关的 端电压为零。 显然, 此时相应的上 (或下) 偏置电路的电压小于或 等于第一晶体管发射极和基极之间 PN (或 NP ) 结的门槛电压, 也 就是说, 即使开关闭合, 第一晶体管也不可以有效导通, 而电机不 能工作, 所以, 此偏置电路的偏置不可取。
为了在开关闭合时,晶体管能有效导通,可以设置相应的上(或 下) 偏置电路的电压大于晶体管发射极和基极之间 PN (或 NP ) 结 的门槛电压。 当相应的上 (或下) 偏置电路的电压大于晶体管发射 极和基极之间 PN (或 NP ) 结的门槛电压时, 开关的端电压为相应 的上 (或下) 偏置电路的电压和第一晶体管发射极和基极之间电压 之差, 且开关的端电压大于 0V。 当开关断开时, 开关中有导电的水 溶液时, 其发射极和开关一端耦接的第一晶体管处于导通状态, 而 且由于开关的端电压为相应的上 (或下) 偏置电路的电压和第一晶 体管发射极和基极之间电压之差, 即相应的上 (或下) 偏置电路的 电压和第一晶体管发射极和基极之间电压决定了开关的端电压的大 小。 通常发射极和基极之间电压变化不大, 所以相应的上 (或下) 偏置电路的电压控制了开关的端电压的大小。 因此, 在本实施例中, 通过合理配置偏置电路和第一晶体管的型号, 可以设定在开关断开 时, 开关内有导电水溶液时的开关端电压, 并使它小于 IV 且大于 0V。 本实施例中, 采用两个电阻组成晶体管的偏置电路, 显然, 任 何能实现分压的偏置电路的电子元件组合均可以应用于本实施例 中。 例如, 多个电阻组合, 电阻和二极管组合, 电阻和稳压二极管 组合等等。
以上分析证明可以利用晶体管的导通特性降低了开关断开时 两端的端电压, 尤其是, 当开关断开且内部有导电水溶液或水溶液 蒸汽, 或导电水溶液和水溶液蒸汽混合物时, 利用晶体管的导通特 性有效降低开关端电压和内部的电流。 由电化学理论知, 足够低的 电压和足够低的电流会抑制电解液和开关的电化学反应。
图 5为依据本发明实施例的降低开关端电压的电路示意图。该 电路包括:
(1) 电源 U5i, 用于向电路提供工作电压;
(2)开关信号单元, 包含第一晶体管 Q51, 用于根据开关 K51 的状态, 输出开关信号, 其中, 开关 Κ51耦合在第一晶体管 Q51与电 源 U5I的输出端之间, 用于控制第一晶体管 Q51与电源 U51输出端之 间的电流通路的通断;
(3)偏置单元, 由串联的电阻 ι和 R52组成, 分别耦接至电 源 U51 的输出端与开关信号单元, 用于向开关信号单元输出偏置电 压, 也就是电阻 !和152的节点耦接至晶体管 Q51的基极;
(4)信号分析模块 IC5, 耦接至第一晶体管 Q51的集电极, 用 于根据第一晶体管 Q51集电极的输出的开关信号而输出相应的控制 信号;
(5)输出模块, 包括第二晶体管 Q52、 电动机 M51, 输出模块 根据信号分析模块 IC5输出的控制信号决定是否启动电动机] VI5 i。
由图 5可知, 开关 K51两端的电压由晶体管 Q51 (即第一晶体 管) 的类型与偏置单元决定, 如式 (2) 所示:
υΚ5,=-^—·υίΕΒ (2) 其中, UK5i为开关 Κ51的两端电压, VEB为晶体管 Q51发射极 与基极之间的 PN结的电压绝对值。
因此, 通过对偏置单元与晶体管 Q51进行合理配置, 可以使得 开关 K51断开且内部存在导电溶液和 /或蒸汽时, 其两端的电压小于 IV且大于 ov。
为了让开关 K51闭合时晶体管 Q51能够导通, 将偏置单元的输 出电压配置为大于 VEB, 从而使得电压 1½51能够大于 0V。 本领域技 术人员可以理解的是, 对于相同类型的晶体管, VEB的值变化很小, 因此, 偏置单元的输出电压决定了电压 UK51的值。
相较于图 1, 图 5中的开关 K51到电源 U51的电流通路上串入了 晶体管 Q5i。当开关 K51闭合时,流经开关 Κ51的发射极电流 IE=IEB+IEC, 其中, IEC=IR53+IIC, 即集电极电流将分别通过电阻 R53和 IC5内部流入 电源 U5i。
对图 5电路的工作原理进行阐述:
( 1 )当 K51断开时, Q51没有导通, I/O51上的电平为 R53的电压, 此时, I/O51上的电平为低电平。
( 2 ) 当 Κ5ι闭合超过 100ms时, Q51有效导通, 电阻 R53将上拉 集电极电位, 直至大于 0.7U51, 即 I/05i上的电平能够被识别为高, IC5 检测到 I/O51上的电平从低到高的突变, IC5认定开关被用户有效触发, 则将在 I/O52输出高电平, 以驱动场效应管 Q52, 从而启动电机 M51。 当 用户断开开关 K51时, Q51被切断, I/O51从高电平恢复为低电平, I/O51 电平从高到低时, IC5认定开关 Κ5ι被幹放, IC5维持电机的工作。 当 开关 Κ51再次被闭合超过 100ms时, I/O51的电平又从低突变到高, IC5 认定开关再次被用户触发, IC5将 I/O52的输出自高电平改为低电平, 从而关闭场效应管 Q52和电机 M51。 如此循环, 以重复工作。
下面对如何配置偏置电路和负载电阻 R53进行详细阐述: 当 K51在干燥空气中断开时, 由于 Q51未导通, 电阻 R53上的电 压为 0V, 当 Κ5ι在干燥空气中闭合时, Κ51被短接, 开关 Κ两端电阻 为 0Ω。 根据偏置单元、 晶体管的导通特性可以得出如式(3 ) 所示的 电压关系:
Figure imgf000012_0001
( d ) 、
lb5l
J (3)
其中, Is为晶体管基极与发射极之间的 NP结的反向饱和电流, Ud为该 P结的导通门槛电压。 通常, 51远远小于 i51, 故在运算过程 中忽略 51的影响, 硅管晶体管 Ud通常约为 0.5V。
由式( o
3)可以得到 R51、 R52的阻值满足以下关系:
0.5
( 4 )
U51 - .5
在本实施例中, 取 2=120ΚΩ, U5尸 3V, 则 ι≥24ΚΩ。
图 6为图 5的开关内部有水溶液时的等效电路图。
当开关 Κ51内部存在导电的水溶液时, 其等效于理想开关 Κ61和 等效电阻 I 6并联。 为了保证开关的有效工作, 避免含有导电水溶液 的开关给 IC5错误的开关信号, 则要求: 在开关断开时, IC5和开关信 号连接的 I/O端口上的电平为低电平, 在开关有效闭合时, IC和开关 信号连接的 I/O端口上的电平为高电平。
当开关 Κ51内有水溶液且开关 Κ51断开时, 根据电阻 F 6、 晶体 管 Q51以及电阻 R53构成的支路可以得到以下电压关系:
^51 = ^ 6 +^ +^53
UK(A二 ^水 6
Figure imgf000012_0002
■R53 <0·3ί/51
可以理解的是,通过将负载电阻 R53设置为小于等效电阻 R 当(ib5i÷ Ic5i) *6< 0.3 U5i时, IC51 R53必小于 0.3 U5I
因此, 可以得出电阻 R53的范围:
^53 <
U K6X
为了使得该电路在电源电压为 2-3V时, 1½!能够小于 IV, 则取 Uk61的最大值 Uk6lmax为 IV, 取 U51最小值 U51min为 2V, 取 I 6最小值 R*6min为 40ΚΩ, 则电阻 R53的范
凡 〈二 0 _ 3U1min Rx6mm = 24ΚΩ
u
当开关 K61闭合时, R水 6被短路, 有以下电压关系:
「i u/ Λ53 = R Λ53 -i leS\ { Q 显然, 此时电阻 R53将上拉晶体管 Q51集电极的电位, 依晶体管 导通特性, 通常当 Uec5i<0.7V时, ib5i和 IC5i接近于线性关系, 如式 (9) 所示:
Figure imgf000013_0001
0.7 β5ί0 在 Uec51〉0.7V后,
Figure imgf000013_0002
其中, β51ο为晶体管的直流放大 倍数, β51为 Uec<0.7V时, 晶体管的瞬时直流放大倍数。
根据前述对高电平的定义, 需要 UR53>0.7U51, 所以 UEC51 < 0.3U51; 为了保证开关信号的灵敏性, 通常要求 Uee5I<0.6 V。
一般来说, 在电源的输出电压大于其输出终止电压 u519时, 需 要保持电动机仍能正常工作, 此时第一晶体管的 Uec51<0.3U519
优选的, 为了使得电路更加安全, 可以取 Uec51≤0.24 U519。 因此 可以得出以下关系:
β ^0υ5Ι9 ( 10)
51 35
Λ53>- ( 11) 显然,电源输出终止电压 U519时,晶体管基极电流为最小值(即, ib5l9) , 则 R53的取值范围可以调整为:
R52> 33 ( 12)
综上所述, 电阻 R 的取值范围为:
Figure imgf000013_0003
在本实施例中, 晶体管 Q5i取 9014型号,则相应的 R53的取值范 围为: 11.07ΚΩ<Ι53<24ΚΩ
进一步, 为了电路的稳定工作, 还需要对电路工作在电源终止 电压 U519时的基极电流 519做进一步限定。 A为预设的在此条件下, 流过电阻 R5i上的电流 i5i9比基极电流 ib5i9的倍数, 通常取 A为 100。 由双极型晶体管特性可知, 当 ib519« 10is时, 近似地, 可以得到以下关 系:
^51 = ¾19¾1 + 52)+ ^51 -^52 > 0*519 + U · (^51 + ^52 lb5\9 ¾ lS e 0.026 为了使得开关端的电压小于 IV, 则需满足式 ( 15) 所示的关
( 15) 由式 ( 14) 和 ( 15) 可确定 】的范围
/?52(^+0.0261nll)
( 16)
(U519一 1 ΟζΆ—Ud— 0.026 In 11) 并且, 偏置电路的总电阻的范围为:
Figure imgf000014_0001
当电源输出电压的最大值 U518时, 要求开关内部有水溶液且其 断开时的端电压小于 nV, 则可以得出以下关系:
Figure imgf000014_0002
由式 (18)可知, R5i在电源可输出电压的最大值 U518时下的取值 范围, 结合式 (16) , 电阻 R51的取值范围可以确定为: 进一步, 可以确定电阻 R53的范围:
在本实施
Figure imgf000015_0001
; =0.0001mA, R52=120 Ω, n=lV, A=100, 则 51的范围如下所示:
Figure imgf000015_0002
因此, 根据式 (20 ) 、 (21 ) 和 (22 ) , 可以取 R5尸 56 ΚΩ, R52=120 ΚΩ, R53=18 KQ。
上述的计算过程证明图 5 中的电路可以匹配到合适的晶体管 Q51、 电阻 R51- R53。 基于上述配置, IC5与开关信号连接的 I/O口上的 电平变化能够正确反映开关的断开或闭合动作, 同时, 使得开关在断 开状态时的开关端电压小于 IV,从而大大地抑制了开关内的电化学反 应, 延长了开关的寿命。
图 7为依据本发明实施例的另一种降低开关端电压的电路示意 图。 相较于图 3 , 开关 Κ7ι到电源的电流路径上串入晶体管 Q71 (即第 一晶体管) 。 电阻 R7 p R72组成偏置电路, 用于给晶体管 Q71的基极 提供偏置电压。
图 7为针对图 3的电路结合本发明改良的电路图, 图 7中的开 关处于干燥空气中。 相较于图 3 , 开关 K71到电源的电流路径上串入晶 体管 Q7i。 开关 K71闭合时, 电源流出的电流的一部分流经 Κ71的一部 分通过晶体管的发射极与基极之间的 ΡΝ结经过电阻 R72流入电源, 流 经 K71的电流的另一部分通过晶体管的发射极与集电极之间的 ΡΝ结和 ΝΡ结经过电机 Μ71流入电源。 显然在图 3中电源流出的电流经过开关 !和电机 Μ31直接流回电源, 在开关 Κ31到电源的电流路径上没有串 入晶体管的 ΡΝ结或 ΝΡ结。 图 7中的 1 71和1 72组成晶体管 Q71的偏 置电路, 靠近电源正极的偏置部分为上偏置电路, 靠近电源负极的偏 置部分为下偏置部分, 即 R7i为上偏置部分, R72为下偏置部分。 在图 7中, 开关 K7i的一端电连接到晶体管 Q7i的发射极, 开关 Κ7ι和晶体 管 Q7i的发射极和基极之间的 ΡΝ结串联, 构成第一串联电路, 且该串 联电路和晶体管 Q71偏置电路的上偏置部分(R71 ) 并联。
图 7中电路的工作原理如下:
开关 K71处在干燥的空气中, 当开关 Κ71断开时, Q71未导通, 电机 Μ7ι无法工作。 当开关 71闭合时, Q7i导通, 电机 M71工作, 用 电器工作。 当开关 K71再次断开时, 晶体管 Q71 再次截止, 电机 M71 停止工作。
图 8为图 7的开关内部有水溶液时的等效电路图。 此时, 开关 Κ7ι等效于理想开关 K81和等效电阻 l s并联。 当开关 K81断开时, 可 以得到如下电压关系:
UR1、 = + Ueb = UR + Ueb71 ( 23 ) 7i = UR + UR72 = UM + Uecl、 + (ib7l + ic )RM ( 24 ) 通常, R, 8为几万欧姆, 而电机 M71的等效电阻为几欧姆到十几 欧姆, 所以, 当开关 K8 I断开时, 1½81远远大于 !。 通过前述方法合 理配置 R71和 R72, 可以使得开关 K81两端的电压小于 IV且大于 0V, 相应地 UM7i至少小于 0.1V, 电机 M71不会工作。 当开关 si内有导电 水溶液, 且开关闭合时, 晶体管 Q71导通工作, Uec71很小, 因此电机 M71上得到高电压, 电机开始工作。 当开关再次被切断时, 由于开关端 电压小于 IV大于 0V并且远远地大于 UM71, 所以 ¾471至少小于 0.1V, 电机不能启动。
图 9为依据本发明实施例另一种降低开关端电压的电路示意 图。
相较于图 3 , 开关 K91到电源的电流路径上串入晶体管 Q91 (即 第一晶体管) , 电阻 R9i和 R92组成晶体管 Q91的偏置电路。 晶体管 Q91的集电极耦接至场效应管 Q92 (即第二晶体管) 的栅极, 以提供 MOS管 Q92的开关信号, 从而控制电动机 M91的工作状态。
当开关 K91处在千燥的空气中, 开关 Κ91断开时, 晶体管 Q91未 导通, 场效应管 Q92的栅极为 0V, 场效应管 Q92截止, 电机无法工作。 当开关 K91闭合时, 晶体管 Q91导通, 电阻 R93将把晶体管 Q91的集电 极电位上拉近电源电压, 从而场效应管 Q92的导通, 电机 M91工作。 当 开关 K91再次断开时, 晶体管 Q9| 再次截止, 电机 M91停止工作。
当开关内部存在导电的水溶液时,开关 K91等效于理想开关 KU 1 和等效电阻 并联。 图 11为图 9的开关 K91内部有水溶液时的等效 电路图。
当开关 Κ9ι内有水溶液时,开关 Κ9ι断开时的电压关系如式(25 ) 和 (26 ) 所示:
Ujm = υκ , I + Ueb9l = ^水! i + Ueb9l ( 25 ) u9i = U + UR91 = UR9, + Uec9i + 691 + z'c91)i^ l l ( 26 ) 同样, 根据前述的方法, 对电阻 R91-R93进行配置, 可以使得 开关断开时, 开关端电压小于 IV且大于 0V, 相应地, 电阻 R93上的 电压小于 IV。 一般来说, 场效应管 Q92的导通门槛电压 VgS>1.5V, 因此, 场效应管 Q92不能导通, 电机 M91不工作。 同时, 由于开关端 电压小于 IV, 流过开关的电流大大地减少, 从而较低的开关端电压和 小的电流大大抑制了开关的电化学反应, 从而提高开关的寿命。
当开关内有导电水溶液且闭合时, Q9i有效导通, 此时电源电压 等于晶体管 Q91和电阻 R93上的电压之和。 通过对电阻 R91-R93进行配 置, 可以使 1½接近电源电压, 从而使得场效应管导通, 以驱动电机 M91
综上所述, 图 9、 11中, 通过适当配置 R9i- R93, 可以使内部有 导电水溶液的开关在断开时, 其端电压小于 IV且大于 0V, 且保持电 机不工作。 在开关闭合时, 能正常启动电机。 由于开关断开时的开关 端电压小于 IV,大大地抑制了开关的电化学反应,从而大大延长了开关 的寿命, 同时杜绝了氢氧爆炸的可能性。
图 10为依据本发明实施例另一种降低开关端电压的电路示意 图, 图 12为图 10的开关内部有水溶液时的等效电路图。
如图 10所示,开关 K1()1处于干燥空气中。相较于图 3 ,开关 Κ101 到电源的电流路径上串入晶体管 Qun (即第一晶体管) 。 当开关 K101 闭合时, 电源流出的电流的一部分经过 流经通过晶体管的基极 与发射极之间的 PN结, 流经 K1()1流入电源; 流经 Κ1()1的电流的另一 部分来自流经电阻 RI()3和晶体管的发射极与集电极之间的 NP结和 PN 结流回电源的电流。 因此, 在开关 K1()1到电源的电流路径上串入了晶 体管 Q i的基极与发射极之间的 PN结和集电极与发射极之间的 NP结 和 PN结。 图 10中的 Rioi和 Rio2组成晶体管 Qun的偏置电路, 靠近电 源正极的偏置部分为上偏置电路, 靠近电源负极的偏置部分为下偏置 部分, 即 R1G1为上偏置部分, R1G2为下偏置部分。 开关 Ki 和晶体管 Qioi (即第一晶体管) 的发射极 eioi和基极 bioi之间的 NP结串联, 构 成第二串联电路, 且该串联电路和晶体管 QI(M偏置电路的下偏置部分
( Rl02 ) 并联。
依照前述的方法, 配置电阻 R121 -R123 , 当开关 K1()1处在干燥的 空气中且断开时, 晶体管 Qun未导通, 其集电极电位 UC1 ()1等于电源电 压 U1()1 , 因此, 晶体管 Q1()2 (即第二晶体管)不导通, 电机无法工作。 当开关 K1{„闭合时, 晶体管 Q101导通, UCH)I变小, 从而使得晶体管 Qi02导通, 电机 M101工作。 当用电器开关内部存在导电的水溶液时, 开关 KIQI等效于理想开关 K121和等效电阻 R7M2并联。
当开关 Κιοι内有水溶液时, 开关 K101断开时,
U謹 = UK 2] + UbeX2X = URj + Ubel2l ( 27 )
^101 = + Ucem + {ibm + ^1。!^?水 |2 ( 28 ) 通过前述的方法配置电阻 R1Q1- R1Q3 , 例如, 设 U1QImax=3V, 取 Rio尸 120 ΚΩ、
Figure imgf000018_0001
KQ, 从而可以使开关两端的电压 小于 IV, 相应地 UR1Q3至少小于 0.5V, 所以, 晶体管 Q1()2不能导通, 电机 M1C)1无法工作。 由于 UK121小于 IV, 流过开关的电流大大地减少, 从而低的开关端电压和小的电流大大抑制了开关的电化学反庄, 提高 了开关的寿命。
当开关 κ121内有导电水溶液时, 且开关闭合时, m=ov, 艮据 上述对电阻 R1()1-RI()3的配置, 当开关闭合时, 晶体管 Q1()1有效导通, 并且可以使 1½B >0.7V, 从而晶体管 Q102有效导通, 电机 M1( 1上得到高 电压, 电机开始工作。
综上所述,通过适当配置 R101-R103, 可以使内部有导电水溶液的 开关, 在开关断开时, 开关的端电压小于 IV, 且保持电机不工作。 在 开关闭合时, 能正常启动电动机。 同理, 由于开关断开时的开关端电 压小于 IV,大大地抑制了开关的电化学反应,从而大大延长了开关的寿 命, 同时杜绝了氢氧爆炸的可能性。
本发明还公开一种用电器, 譬如电动牙刷, i亥用电器包括: ( 1 ) 电源, 通常为充电电池或干电池, 用于向该用电器提供工作电压; ( 2 )开关模块, 耦接至电源, 用于控制电源与后续电路之间的电流 通路的通断; (3 ) 电动机, 耦接至开关模块和电源, 用于根据开关 的控制来决定是否驱动刷头工作。
基于上述配置,该用电器能够在潮湿的环境下保证开关的有效 性, 延长了开关的寿命。
本领域技术人员能够理解的是,上述实施例仅仅用于阐述本发 明的构思与示例电路, 并不能用于限制本发明的保护范围。 譬如, 开关可以通过电阻串联连接至晶体管的发射极, 从而降低开关能够 分配到的电压; 偏置单元可以由线性稳压器、 开关电源或其它能够 输出指定偏置电压的电路构成。
本领域技术人员还能够理解的是, 上述实施例中的第一晶体 管, 譬如 Q51也可以是场效应晶体管。 在此情况下, 开关的一端耦接 至第一晶体管的源极,开关与第一晶体管的栅极和源极之间的 NP结 联形成第一串联电路, 第一串联电路和偏置单元的上偏置部分并联; 或开关与第一晶体管的栅极和源极之间的 PN结串联形成第二串联 电路, 第二串联电路和偏置单元的下偏置部分并联。
本公开的以上描述用于使本领域的任何普通技术人员能够实 现或使用本发明。 对于本领域普通技术人员来说, 本公开的各种修 改都是显而易见的, 并且本文定义的一般性原理也可以在不脱离本 发明的精神和保护范围的情况下应用于其它变形。 因此, 本发明并 不限于本文所述的实例和设计, 而是与本文公开的原理和新颖性特 性的最广范围相一致。

Claims

权 利 要 求 书
1. 一种开关端电压可控的装置, 包括:
开关信号单元, 用于根据开关的状态, 输出相应的开关信号, 所 述开关耦接在所述开关信号单元与电源的输出端之间;
偏置单元,耦接至所述开关信号单元, 用于向所述开关信号单元 输出偏置电压;
其中, 当所述开关断开且其内部存在导电液体和 /或导电液体的 蒸汽时, 所述偏置单元与所述开关信号单元相配合, 以控制所述开 关的端电压和流经所述开关的电流。
2. 如权利要求 1所述的装置, 其特征在于, 所述开关信号单元 包括第一晶体管, 所述开关耦接在所述第一晶体管与电源之间, 用 于控制所述第一晶体管与所述电源之间的电流通路的通断。
3. 如权利要求 2所述的装置, 其特征在于, 所述第一晶体管为 双极型晶体管, 所述开关的一端耦接至所述第一晶体管的发射极, 其中, 所述开关与所述第一晶体管的发射极和基极之间的 PN结 串联形成第一串联电路, 所述第一串联电路和所述偏置单元的上偏 置部分并联; 或
所述开关与所述第一晶体管的发射极和基极之间的 NP结串联形 成第二串联电路, 所述第二串联电路和所述偏置单元的下偏置部分 并联。
4. 如权利要求 3所述的装置, 其特征在于, 所述第一、 二串联 电路还包括至少一个电阻。
5. 如权利要求 2所述的装置, 其特征在于, 当所述开关断开时, 若所述开关内部存在导电液体和 /或导电液体的蒸汽, 则所述第 一晶体管处于导通的状态;
若所述开关内部干燥, 则所述第一晶体管处于截止的状态。
6. 如权利要求 1所述的装置, 其特征在于, 所述装置还包括电 动机, 所述电动机耦接至所述开关信号单元的输出端。
7. 如权利要求 1所述的装置, 其特征在于, 所述装置还包括: 输出模块, 包括第二晶体管和与所述第二晶体管相串联的电动 机;
其中, 所述输出模块耦接至所述开关信号单元的输出端, 并基于 所述开关信号单元的输出信号配置所述电动机的工作状态。
8. 如权利要求 1所述的装置, 其特征在于, 所述开关信号单元 的输出端与低电平之间串联至少一个上拉电阻。
9. 如权利要求 1所述的装置, 其特征在于, 所述装置还包括信 号分析模块, 所述信号分析模块耦合在所述输出模块与所述开关信 号单元的输出端之间, 以根据所述开关信号单元的输出信号输出用 于控制所述输出模块的控制信号。
10. 如权利要求 7所述的装置, 其特征在于, 所述第二晶体管为 场效应晶体管, 其中, 所述电动机串联至所述第二晶体管的漏极。
11. 如权利要求 7所述的装置, 其特征在于, 所述第二晶体管为 双极型晶体管,其中,所述电动机串联至所述第二晶体管的集电极。
12. 如权利要求 2所述的装置, 其特征在于, 所述第一晶体管为 场效应管, 所述开关的一端耦接至所述第一晶体管的源极,
其中, 所述开关与所述第一晶体管的栅极和源极之间的 NP结联 形成第一串联电路, 所述第一串联电路和所述偏置单元的上偏置部 分并联; 或
所述开关与所述第一晶体管的柵极和源极之间的 PN结串联形成 第二串联电路, 所述第二串联电路和所述偏置单元的下偏置部分并 联。
13.一种采用如权利要求 1至 12任一项所述的装置的电动牙刷, 包含:
耦接至电动机的刷头,所述电动机根据所述开关的控制来决定是 否驱动刷头工作。
PCT/CN2014/075014 2014-04-09 2014-04-09 开关端电压可控的装置 WO2015154264A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES14888932T ES2729074T3 (es) 2014-04-09 2014-04-09 Dispositivo con voltaje de extremo de interruptor controlable
PCT/CN2014/075014 WO2015154264A1 (zh) 2014-04-09 2014-04-09 开关端电压可控的装置
EP14888932.2A EP3131203B9 (en) 2014-04-09 2014-04-09 Device with controllable switch end voltage
US15/302,250 US10792137B2 (en) 2014-04-09 2014-04-09 Device with controllable switch terminal voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075014 WO2015154264A1 (zh) 2014-04-09 2014-04-09 开关端电压可控的装置

Publications (1)

Publication Number Publication Date
WO2015154264A1 true WO2015154264A1 (zh) 2015-10-15

Family

ID=54287108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075014 WO2015154264A1 (zh) 2014-04-09 2014-04-09 开关端电压可控的装置

Country Status (4)

Country Link
US (1) US10792137B2 (zh)
EP (1) EP3131203B9 (zh)
ES (1) ES2729074T3 (zh)
WO (1) WO2015154264A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10792137B2 (en) 2014-04-09 2020-10-06 Shanghai Shift Electrics Co., Ltd. Device with controllable switch terminal voltage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100333986B1 (ko) * 2000-06-13 2002-04-26 윤종용 킥백 전압 보상을 위한 박막 트랜지스터 액정 표시 장치구동 회로
CN201063594Y (zh) * 2007-05-28 2008-05-21 福建师范大学 一种新型的低功耗触发型常闭开关电路
CN201234158Y (zh) * 2008-05-27 2009-05-06 胡建坤 一种开关电路及电动剃须刀
CN103066978A (zh) * 2011-10-21 2013-04-24 歌尔声学股份有限公司 一种开关电路
CN202917966U (zh) * 2012-11-27 2013-05-01 青岛海信电器股份有限公司 Mos管降压电路、变压电路以及液晶电视
CN103199835A (zh) * 2013-03-06 2013-07-10 深圳市共进电子股份有限公司 一种轻触式电源开关电路
CN103929164A (zh) * 2014-04-09 2014-07-16 上海携福电器有限公司 开关端电压可控的装置
CN203859734U (zh) * 2014-04-09 2014-10-01 上海携福电器有限公司 开关端电压可控的装置以及电动牙刷

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683535B1 (en) * 2000-08-09 2004-01-27 Alderon Industries, Llc Water detection system and method
TW547871U (en) * 2002-05-24 2003-08-11 Delta Electronics Inc Control circuitry for controlling rotation speed of a DC motor
CN2667831Y (zh) * 2003-11-11 2004-12-29 黄寿 电子防水手机
US7319282B2 (en) * 2004-09-21 2008-01-15 Creative Technology Ltd Switch circuit
US7205900B2 (en) * 2005-03-09 2007-04-17 Benq Corporation Water detecting system and related method of portable electric device
CN101471559B (zh) * 2007-12-27 2010-12-29 深圳富泰宏精密工业有限公司 保护电路
EP2117095B1 (en) * 2008-05-06 2014-07-16 Continental Automotive GmbH Moisture protection circuit
ATE539700T1 (de) * 2008-06-20 2012-01-15 Braun Gmbh Elektrische zahnbürste
US8107209B2 (en) * 2008-08-05 2012-01-31 Sony Ericsson Mobile Communications Ab Protection circuit
JP5799646B2 (ja) * 2011-08-08 2015-10-28 オムロンヘルスケア株式会社 電動歯ブラシ
CN102904211B (zh) * 2012-10-26 2016-02-03 小米科技有限责任公司 器件保护装置和一种安全电路
US10792137B2 (en) 2014-04-09 2020-10-06 Shanghai Shift Electrics Co., Ltd. Device with controllable switch terminal voltage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100333986B1 (ko) * 2000-06-13 2002-04-26 윤종용 킥백 전압 보상을 위한 박막 트랜지스터 액정 표시 장치구동 회로
CN201063594Y (zh) * 2007-05-28 2008-05-21 福建师范大学 一种新型的低功耗触发型常闭开关电路
CN201234158Y (zh) * 2008-05-27 2009-05-06 胡建坤 一种开关电路及电动剃须刀
CN103066978A (zh) * 2011-10-21 2013-04-24 歌尔声学股份有限公司 一种开关电路
CN202917966U (zh) * 2012-11-27 2013-05-01 青岛海信电器股份有限公司 Mos管降压电路、变压电路以及液晶电视
CN103199835A (zh) * 2013-03-06 2013-07-10 深圳市共进电子股份有限公司 一种轻触式电源开关电路
CN103929164A (zh) * 2014-04-09 2014-07-16 上海携福电器有限公司 开关端电压可控的装置
CN203859734U (zh) * 2014-04-09 2014-10-01 上海携福电器有限公司 开关端电压可控的装置以及电动牙刷

Also Published As

Publication number Publication date
US10792137B2 (en) 2020-10-06
US20170135791A1 (en) 2017-05-18
EP3131203B9 (en) 2019-07-17
EP3131203A1 (en) 2017-02-15
EP3131203A4 (en) 2017-11-22
ES2729074T3 (es) 2019-10-30
EP3131203B1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2018126790A1 (zh) 一种线路保护电路、方法及供电线缆
CN104660248B (zh) 上拉电阻电路
CN209514375U (zh) 电子烟的控制电路及电子烟
CN105720960B (zh) 开关机电路
CN106771517A (zh) 一种移动终端及其显示屏过流检测方法及系统
CN207010642U (zh) 按键开关电路
JP2003203721A (ja) 直流コンセント
CN113890131A (zh) 低成本电池充电接口防水保护方法
WO2015154264A1 (zh) 开关端电压可控的装置
CN108336715A (zh) 一种过流保护电路
CN203859734U (zh) 开关端电压可控的装置以及电动牙刷
WO2015180511A1 (zh) 接触器驱动电路
CN103929164B (zh) 开关端电压可控的装置
CN107317480B (zh) 一种能量回馈型本质安全Buck电路
CN109391162A (zh) 低功耗ac-dc转换开关电路
CN114156996A (zh) 点火夹、启动电源及启动装置
CN106711989A (zh) 一种直流电源输入防反接电路
CN110518543A (zh) 一种短路保护电路和供电系统
CN208094277U (zh) 一种主备用电池供电自动切换输出电路
CN207968454U (zh) 一种开关电路和水下设备
CN208589767U (zh) 一种电源或电池输出自恢复短路保护电路
CN207691412U (zh) 一种led驱动电源的过温保护电路
CN105977921B (zh) 一种隔离电源过流关断延迟保护电路
CN218482661U (zh) 一种防电源反接保护电路及电器设备
CN214798951U (zh) 反接保护电路、充电装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888932

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014888932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014888932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15302250

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE