WO2015152494A1 - Oxygen separation membrane - Google Patents

Oxygen separation membrane Download PDF

Info

Publication number
WO2015152494A1
WO2015152494A1 PCT/KR2014/012119 KR2014012119W WO2015152494A1 WO 2015152494 A1 WO2015152494 A1 WO 2015152494A1 KR 2014012119 W KR2014012119 W KR 2014012119W WO 2015152494 A1 WO2015152494 A1 WO 2015152494A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
thickness
oxide
membrane
coating layer
Prior art date
Application number
PCT/KR2014/012119
Other languages
French (fr)
Korean (ko)
Inventor
유지행
주종훈
유충열
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2015152494A1 publication Critical patent/WO2015152494A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties

Definitions

  • the present invention relates to an oxygen separation membrane, and more particularly, to an oxygen separation membrane having a mixed structure to improve the stability and durability of the separation membrane while improving oxygen permeability.
  • Oxygen is used in large quantities in petrochemical processes such as hydrogen production through partial oxidation of methane and in combustion processes such as incinerators, combustion furnaces, heating furnaces, and small cogeneration. Recently, the demand for oxygen in air conditioning systems, refrigerators, air conditioners, and air purifiers has increased, and the market for small and medium-sized oxygen generators as well as large oxygen generators is expanding.
  • the adsorption method can produce oxygen having a purity of 94% and can be applied on a small and medium scale.
  • the adsorption method has a high manufacturing cost because it requires pretreatment of carbon dioxide or moisture contained in air.
  • the membrane separation method is divided into advantages and disadvantages according to the type of separation membrane such as hollow fiber membrane, ceramic membrane.
  • Oxygen separation using polysulfone and polyimide-based polymers has low oxygen production cost, but The disadvantage is that the concentration is as low as 30-40%.
  • the polymer membrane has a low heat resistance and thus cannot be applied to oxygen separation in a high temperature gas mixture, which makes it impossible to separate oxygen from high temperature gas in an industrial process such as a glass melting furnace or a heating furnace.
  • Oxygen separation process using ion permeation ceramic membrane of the membrane separation method has an advantage that can be applied to high temperature process.
  • Ion-permeable ceramic separators for gas permeation are classified into pure gas ion conductive separators and mixed ion-electronic conducting (MIEC) separators.
  • Pure gas ion conductive membranes require an external power source and electrodes to supply current, the gas ion permeation rate is precisely controlled by the current supply, and the gas is in any direction regardless of the partial pressure of the separation gas located in both directions of the membrane. I can move it.
  • the ion-electron mixed conductive membrane permeates gas ions and electrons by a pressure difference between gases without supplying external power.
  • FIG. 1 is a conceptual diagram illustrating an oxygen permeation process in an ion-electron mixed conductive separator.
  • Oxygen gas filled in the mixed gas supply space 23 in which the mixed gas containing oxygen is introduced through the injection port 21 and maintaining a high oxygen partial pressure is adsorbed on the surface of the oxygen supply separator 25.
  • the adsorbed oxygen receives electrons conducted inside the separator and is ionized through charge transfer to be separated into oxygen ions.
  • the separated oxygen ions move to the oxygen vacancies of the crystal lattice inside the membrane and move to the surface of the opposite oxygen producing membrane.
  • the electrons generated by the charge transfer from the surface of the oxygen production membrane to the surface of the oxygen supply separator through the inside of the separator, and the electrons that reach the surface of the oxygen supply separator supply electrons to the adsorbed oxygen again.
  • the combined oxygen molecules are desorbed from the surface of the oxygen production membrane and separated from the separator, and the separated oxygen is operated at the purge gas inlet 26 or the oxygen generating part 27 in the oxygen production space 24. Oxygen is captured by the pump.
  • the mixed gas supply space 23 in which the mixed gas containing oxygen exists and the oxygen production space 24 in which the separated oxygen gas exists are divided into separation membranes 25 through which no gas other than ionized oxygen can pass. Because of this, it is possible to separate pure oxygen.
  • the driving force of oxygen separation is the oxygen partial pressure difference between two gas spaces across the membrane, that is, the mixed gas supply space 23 and the oxygen production space 24.
  • a separator is manufactured using a perovskite-based material (US Pat. Nos. 5,702,959, 5,712,220 and 5,733,435).
  • the separation membrane that allows gas ions and electrons to pass through perovskite alone is called a single phase ion-electron mixed conductive membrane.
  • the perovskite-based separator has a problem in that the oxygen permeability is decreased during the oxygen separation process, and the safety of the separator and the durability of the separator are reduced after oxygen permeation.
  • the heterostructure ion-electron mixed conductive separator includes a mixture of an electron conducting oxide material or metal phase for electron transmission and a fluorite structure or a fluorite phase for ion transmission, and a perovskite series for electron transmission.
  • Heterogeneous membranes incorporating ion permeable fluorspar series have been proposed (US Pat. No. 6,514,314).
  • the separation membrane of the heterostructure has a disadvantage in that the formation of the membrane is not easy due to the oxide having a perovskite structure having relatively low mechanical and chemical stability.
  • the secondary structure is formed by an additional reaction of the oxide having a perovskite-type structure and the oxide having a fluorite structure has a disadvantage in that the oxygen permeability of the separator produced is rather reduced.
  • the present invention is to provide an oxygen separation membrane having excellent safety and durability, and at the same time significantly improved oxygen permeability, by containing an oxide and a fluorite-based oxide having a perovskite structure, a spinel structure, or a mixture thereof. There is this.
  • the present invention is to form a coating layer on a heterostructure containing a compound having a different crystal structure, and to optimize the mixing ratio of the compound having the hetero crystal structure and the thickness of the membrane and the coating layer of the hetero structure As a result, an oxygen separation membrane with an improved oxygen permeability is significantly improved.
  • the present invention provides a separator with improved stability and durability.
  • the present invention is a separator having a heterostructure containing an oxide having a perovskite structure, a spinel structure, or a mixture thereof, and an oxide having a fluorite structure; And an oxygen separator in which a coating layer containing an oxide having a perovskite-type structure, a spinel-type structure, or a mixture thereof is formed on at least one side of the separator, wherein the hetero-type separator has a perovskite-type structure, a spinel-type structure, or a mixture thereof.
  • the oxygen separator Silver provides an oxygen separation membrane, characterized in that the oxygen permeability is 1 ml / cm 2 ⁇ min or more under conditions of 850 °C, 1 atm and oxygen partial pressure difference of 0.21 atm to 10-4 atm.
  • the thickness of the coating layer may maintain 13 to 134% with respect to the total thickness of the oxygen separator.
  • the oxygen permeability may satisfy Equation 1 below.
  • J 1 is a membrane oxygen permeability of a heterostructure having a thickness of 1 mm
  • J is an oxygen permeability of an oxygen separator having a coating layer of thickness Lc formed on a membrane of a heterostructure having a thickness of Lm
  • Lm is a Membrane thickness
  • Lc is the thickness of the coating layer, 2.54 ⁇ a ⁇ 0.94, 0.02 ⁇ b ⁇ 0.08.
  • the oxygen separation membrane may have a porosity of 30 to 60%, an electrical conductivity of 1 to 2000 S / cm (dry air and 300 to 850 ° C., measured by a four-electrode direct current method), and a grain size of 10 to 1000 nm. .
  • the oxide having the perovskite type structure is lanthanum strontium cobaltite (LSC), lanthanum strontium ferrite (LSF), lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCr), lanthanum strontium cobalt ferrite (LSCF), barium strontium It may be one or more selected from the group consisting of cobalt ferrite (BSCF) and strontium titanium ferrite (STF).
  • LSC lanthanum strontium cobaltite
  • LSM lanthanum strontium manganite
  • LSCr lanthanum strontium chromite
  • LSCF lanthanum strontium cobalt ferrite
  • barium strontium It may be one or more selected from the group consisting of cobalt ferrite (BSCF) and strontium titanium ferrite (STF).
  • the oxide having the fluorite structure may be at least one selected from the group consisting of yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium implanted ceria (SDC), gadolinium implanted ceria (GDC), and LaGaO 3 . have.
  • YSZ yttria stabilized zirconia
  • ScSZ scandia stabilized zirconia
  • SDC samarium implanted ceria
  • GDC gadolinium implanted ceria
  • LaGaO 3 LaGaO 3
  • the oxide having the spinel structure may be at least one selected from the group consisting of manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ), and cobalt ferrite (CoFe 2 O 4 ).
  • the heterostructure separator is at least one oxide selected from the group consisting of lanthanum strontium cobalt ferrite (LSCF), barium strontium cobalt ferrite (BSCF) and lanthanum strontium manganite (LSM) and gadolinium-infused ceria (GDC).
  • the coating layer may include at least one oxide selected from the group consisting of lanthanum strontium cobalt ferrite (LSC), barium strontium cobalt ferrite (BSCF), and lanthanum strontium cobalt ferrite (LSCF).
  • Oxygen separation membrane according to the present invention has the advantage of forming a coating layer on at least one side of the separation membrane of the heterostructure, and significantly improved oxygen permeability by controlling the thickness of the separation membrane and the coating layer of the heterostructure.
  • the oxygen separation membrane according to the present invention has the advantage that the durability is improved by the coating layer formed on the separation membrane of the heterostructure.
  • Example 2 is a SEM photograph of the oxygen separation membrane prepared in Example 1 according to the present invention.
  • Example 3 is a graph of oxygen permeability of the oxygen separation membranes of Example 4 and Comparative Example 17 according to the present invention, and the oxygen permeability was measured while controlling the membrane thickness ratio (Lm / Lc) of the heterostructure to the coating layer thickness, respectively.
  • the present invention relates to an oxygen separation membrane with significantly improved oxygen permeability.
  • Oxygen separator of the present invention is a separator having a heterostructure containing an oxide having a perovskite structure, a spinel structure or a mixture thereof, and an oxide having a fluorite structure; And a coating layer containing an oxide having a perovskite structure, a spinel structure, or a mixture thereof on at least one surface of the separator.
  • Oxygen separator according to the present invention is a membrane having a heterogeneous structure in which a specific amount of oxide having a perovskite structure, a spinel structure, or a mixture thereof, and an oxide having a fluorite structure that permeates ions, Use
  • the heterostructure separator contains 18 to 40% by volume oxide having a perovskite type structure, a spinel type structure or a mixture thereof, and 60 to 82% by volume oxide having a fluorite structure.
  • the content range of each crystal structure forming the oxygen separation membrane is calculated using General Effective Medium Theory (GEMT) of Equation 2 below.
  • GEMT General Effective Medium Theory
  • p eff is the percolation threshold
  • t is the penetration slope
  • ⁇ tot is the electrical conductivity of the composite
  • ⁇ 1 is the electrical conductivity of the oxide with fluorite structure
  • ⁇ 2 is the perovskite Electrical conductivity of the oxide having the structure having a structure, a spinel structure, or a mixture thereof
  • p is a volume fraction of the oxide having a perovskite structure, a spinel structure, or a mixture thereof.
  • Equation 2 it was confirmed that the percolation threshold of the conduction phenomenon of the heterostructured membrane was 17.7%, and the content of oxide having a perovskite-type structure, a spinel-type structure, or a mixture thereof was 18 vol. If it is more than% it can be confirmed that it can be used as an oxygen separation membrane.
  • the content of the oxide having a perovskite structure, a spinel structure, or a mixture thereof is less than 18% by volume, it may be difficult to play a role as an oxygen separation membrane because the electron conductivity is not sufficient, and exceeds 40% by volume. There may be a problem that the durability of the separator is degraded due to mechanical and chemical perovskite oxide.
  • the oxide having the perovskite-type structure has an ABO 3 structure, where A is an alkali, alkaline earth metal ion or rare earth cation, and B is a transition metal or rare earth cation.
  • the ideal perovskite-like structure is a cubic crystal structure sharing a corner, with 12 A cations and 6 B cations surrounded by oxygen. Since each oxygen ion is bound to four A cations and two B cations, and the A cation is large enough to be compared to the oxygen ion, the perovskite-like structure is geometrically occupied by O and A cations. Small B cations have structures that occupy octahedral lattice gaps.
  • the oxide having a perovskite type structure is not particularly limited, but specifically, lanthanum strontium cobaltite (LSC), lanthanum strontium ferrite (LSF), lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCr), and lanthanum
  • LSC lanthanum strontium cobaltite
  • LSM lanthanum strontium ferrite
  • LSM lanthanum strontium manganite
  • LSCr lanthanum strontium chromite
  • LSCF strontium cobalt ferrite
  • BSCF barium strontium cobalt ferrite
  • STF strontium titanium ferrite
  • the oxide having the spinel structure has an AB 2 O 4 structure
  • a and B are alkaline earth metals and transition metals and have a cubic crystal structure.
  • a metal is arranged at the tetrahedral 4 coordination position
  • B metal is arranged at the octahedral 6 coordination position.
  • an oxide having a spinel structure is not particularly limited, but specifically, one kind selected from the group consisting of manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ), and cobalt ferrite (CoFe 2 O 4 ). The above can be used.
  • the oxide having the fluorspar structure has an AO 2 structure, tetravalent cations occupy the face-centered cubic lattice sites, and oxygen ions are present at eight tetrahedral centers composed of four cations. Therefore, cations have 8 coordination and oxygen ions have 4 coordination.
  • bivalent and trivalent cations are substituted for tetravalent cations in the fluorspar structure oxides, oxygen vacancies are generated in the oxygen ion site to meet charge neutral conditions, and conduction of oxygen ions through the oxygen vacancies at high temperature occurs.
  • an oxide having a fluorite structure is not particularly limited, but specifically, yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium implanted ceria (SDC), gadolinium implanted ceria (GDC) and LaGaO 3 .
  • YSZ yttria stabilized zirconia
  • ScSZ scandia stabilized zirconia
  • SDC samarium implanted ceria
  • GDC gadolinium implanted ceria
  • LaGaO 3 LaGaO 3
  • the present invention in order to improve the oxygen permeability degradation of the prepared separator by the difference between the mechanical and chemical stability of the oxide and the reaction between the oxide, the perovskite-type structure, spinel on the membrane of the heterostructure of the double structure A coating layer containing an oxide having a mold structure or a mixture thereof is formed.
  • the dissociation of oxygen molecules is activated on the surface of the oxygen separation membrane by the coating layer, and the electron is conductive oxide (perovskite structure, spinel type structure) by the heterogeneous separation membrane in which two oxides are mixed in a specific amount inside the oxygen separation membrane. Or an oxide having a mixed structure thereof, and ions are conducted through the fluorite structure oxide, thereby significantly improving oxygen permeability.
  • the electron is conductive oxide (perovskite structure, spinel type structure) by the heterogeneous separation membrane in which two oxides are mixed in a specific amount inside the oxygen separation membrane.
  • an oxide having a mixed structure thereof, and ions are conducted through the fluorite structure oxide, thereby significantly improving oxygen permeability.
  • the separation membrane of the hetero structure maintains the thickness of 30 to 100 ⁇ m.
  • the membrane of the heterostructure according to the present invention may have a thickness of 30 ⁇ m or less, but preferably 30 ⁇ m or more in consideration of ease of manufacturing process and mechanical strength of the prepared oxygen separator, and 300 ⁇ m in consideration of oxygen permeability. It is preferable not to exceed it.
  • the coating layer preferably maintains 13 to 134% of the total thickness of the oxygen separator. If the thickness of the coating layer is less than 1%, a problem may occur that it is difficult to deposit the coating layer on the surface of the separator.
  • the oxygen separation membrane of the present invention satisfies the following equation 1 in which the correlation between the coating layer and the separation membrane of the heterostructure, and the oxygen permeability is modified.
  • J 1 is a membrane oxygen permeability of a heterostructure having a thickness of 1 mm
  • J is an oxygen permeability of an oxygen separator having a coating layer of thickness Lc formed on a membrane of a heterostructure having a thickness of Lm
  • Lm is a Membrane thickness
  • Lc is the thickness of the coating layer, 0.95 ⁇ a ⁇ 2.2, 0.01 ⁇ b ⁇ 0.03).
  • Equation 1 is an example of using La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3- ⁇ as the oxide having a perovskite structure and Gd 0.1 Ce 0.9 O 2- ⁇ as the oxide having a fluorite structure.
  • the present invention can adjust the degree of improvement of oxygen permeability according to the combination of components of the oxide having a perovskite structure and the oxide having a fluorite structure.
  • Such a coating layer may be prepared by using a liquid film forming method of coating and drying a coating layer forming composition containing an oxide having a perovskite type structure, and the coating may be performed by a roll coating method, a bar coating method, a dip coating method, or a spin coating method.
  • Casting method, die coating method, blade coating method, bar coating method, gravure coating method, spray coating method, doctor coating method and the like can be used.
  • a direct pattern forming method using an inkjet printing method, a gravure printing method, a screen printing method, or the like can be used.
  • the oxygen separation membrane according to the present invention has an oxygen permeability of 1 ml / cm 2 ⁇ min or more at 850 ° C., 1 atmosphere, air / helium, argon, or carbon dioxide conditions, and the porosity of the coating layer is 30 to 60%.
  • the electrical conductivity is 1 to 2000 S / cm (dry air and 300 to 850 ° C., measured by four-electrode direct current method), and the grain size is 10 to 1000 nm.
  • the mixture was ball-milled with zirconia balls at 180 rpm for 5 days.
  • the mixture was transferred to a beaker to remove zirconia balls, and then a green sheet was manufactured using a tape casting equipment (STC-14C, Hansung Machinery Co., Korea).
  • the interval between the doctor blade and the tape carrier of the equipment was fixed to 300 ⁇ m, the speed of the tape carrier was set to about 1cm / s. If the drying rate of the green sheet is too fast, cracking may occur during drying, so the heater temperature of the tape carrier is set to 40 ° C.
  • a green sheet was laminated using a heating press and a sintering process was performed to prepare a separator having a heterogeneous structure.
  • the sintering was performed at 1300 to 1350 ° C. to prepare a separator (LSCF-GDC) having a heterogeneous structure.
  • La 0.6 Sr 0.4 Co 0 O 3- ⁇ and a commercial screen printing solvent (Heraeus, V-006) was mixed in a 1.5: 1 weight ratio to prepare a coating composition.
  • the surface was cleaned using a sonicator.
  • the thickness of this coating layer is 13-134% of the total thickness of the oxygen separator.
  • FIG. 2 The SEM photograph of the oxygen separator prepared above is shown in FIG. 2.
  • Example 2-12 and Comparative Example 1-2 Example of changing the thickness of the separator
  • Example 2 In the same manner as in Example 1, but the oxygen separation membrane having a coating layer of the same thickness was prepared by varying the thickness of the separation membrane of the heterostructure as shown in Table 1.
  • Example 2 The same procedure as in Example 1, except that the oxygen separation membrane was prepared by varying the composition of the separation membrane and the components of the coating layer as shown in Table 2.
  • Comparative Example 17 is a comparative example because the ratio of oxide having a perovskite structure, a spinel structure, or a mixture thereof and an oxide having a fluorite structure is 50:50)
  • Figure 3 below is to control the membrane thickness ratio (Lm / Lc) of the heterostructure to the coating layer thickness of the oxygen separation membrane according to Example 4 and Comparative Example 17, and shows the oxygen permeability accordingly.
  • Example 3 The same procedure as in Example 1 was performed, but the oxygen separation membrane was prepared by changing the composition of the separation membrane and the components of the coating layer as shown in Table 3 below.
  • the porosity and grain size were measured by analyzing the image of the microstructure of the membrane and the coating layer obtained using a scanning electron microscope (SEM4800, Hitachi).
  • the electrical conductivity was measured at 300 to 850 ° C. while flowing dry air at a flow rate of 30 ml / min.
  • is the electrical conductivity
  • L is the thickness of the specimen
  • A is the cross-sectional area of the specimen.
  • the heterostructure membrane includes an oxide having a perovskite structure and a fluorite structure. That is, at least one oxide is selected from the group consisting of lanthanum strontium cobalt ferrite (LSCF), barium strontium cobalt ferrite (BSCF), and lanthanum strontium manganite (LSM) as a perovskite structure, and an oxide having a fluorite structure is injected with gadolinium. Select Ceria (GDC).
  • LSCF lanthanum strontium cobalt ferrite
  • BSCF barium strontium cobalt ferrite
  • LSM lanthanum strontium manganite
  • the coating layer is selected from the group consisting of lanthanum strontium cobalt ferrite (LSC), barium strontium cobalt ferrite (BSCF) and lanthanum strontium cobalt ferrite (LSCF) as an oxide having a perovskite structure.
  • LSC lanthanum strontium cobalt ferrite
  • BSCF barium strontium cobalt ferrite
  • LSCF lanthanum strontium cobalt ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to an oxygen separation membrane and, more specifically, to an oxygen separation membrane having: a heterostructured separation membrane containing an oxide having a perovskite structure and an oxide having a fluorite structure; and a coating layer containing an oxide having a perovskite structure and formed on at least one surface of the separation membrane, wherein the heterostructured separation membrane contains 18-40 vol% of an oxide having a perovskite structure and 60-82 vol% of an oxide having a fluorite structure, the thickness of the heterostructured separation membrane is 30-300 μm and the thickness of the coating layer is maintained to be 1-100 μm, and thus the porosity, the electrical conductivity and the durability of the coating layer are excellent and the oxygen permeability can be maintained to be 1 mL/cm2·min or more under the conditions of 850°C, 1 atm and a difference in oxygen partial pressure of 0.21 to 10-4 atm.

Description

산소 분리막Oxygen separator
본 발명은 산소 분리막에 관한 것으로, 특히 산소 투과도가 향상되면서도 분리막의 안정성과 내구성이 우수하도록 혼합 구조를 갖는 산소 분리막에 관한 것이다.The present invention relates to an oxygen separation membrane, and more particularly, to an oxygen separation membrane having a mixed structure to improve the stability and durability of the separation membrane while improving oxygen permeability.
산소는 메탄의 부분산화를 통한 수소생산 등의 석유화학공정과 소각로, 연소로, 가열로, 소형 열병합발전 등의 연소공정에 대용량으로 사용된다. 최근에는 공조시스템, 냉장고, 에어컨, 공기청정기 등에도 산소 수요가 증가하여 대형 산소발생기 뿐 아니라 중소형 산소 발생기도 시장이 확대되는 추세에 있다.Oxygen is used in large quantities in petrochemical processes such as hydrogen production through partial oxidation of methane and in combustion processes such as incinerators, combustion furnaces, heating furnaces, and small cogeneration. Recently, the demand for oxygen in air conditioning systems, refrigerators, air conditioners, and air purifiers has increased, and the market for small and medium-sized oxygen generators as well as large oxygen generators is expanding.
종래의 주요 산소제조 방법으로는 심냉분별증류법, 압력스윙흡착법(Pressure Swing Adsorption, PSA) 및 막 분리법 등이 있으며, 심냉법은 고순도(95∼99.99%)의 산소를 얻을 수 있으나, 50ton/day 이상의 대용량에 적합한 공정이므로 압축 냉각하는 과정에서 에너지 소비량이 많고 초기 투자비가 크다는 단점이 있다. Conventional major oxygen production methods include deep cooling fractional distillation, pressure swing adsorption (PSA), and membrane separation. The deep cooling method can obtain high purity (95-99.99%) of oxygen, but more than 50ton / day Since the process is suitable for a large capacity, there is a disadvantage in that the energy consumption is large and the initial investment is high during the compression cooling process.
이에 비해 흡착법은 순도 94%의 산소를 제조할 수 있고 중소 규모로 적용 가능 하나, 공기 중에 포함된 이산화탄소나 수분 등을 전 처리해야 하므로 제조 단가가 높은 단점이 있다. 또한, 막 분리법은 중공사막, 세라믹 막 등 분리막의 종류에 따라 장단점이 나누어진다. On the other hand, the adsorption method can produce oxygen having a purity of 94% and can be applied on a small and medium scale. However, the adsorption method has a high manufacturing cost because it requires pretreatment of carbon dioxide or moisture contained in air. In addition, the membrane separation method is divided into advantages and disadvantages according to the type of separation membrane such as hollow fiber membrane, ceramic membrane.
막 분리법 중 폴리설폰, 폴리이미드 계열의 폴리머(Journal of Membrane Science, 1, 99∼108, 1976) 중공사막(Hollow Fiber Membrane: HFM)을 이용한 산소분리공정은 산소 제조 단가가 낮으나, 제조된 산소의 농도가 30∼40% 정도로 낮다는 단점이 있다. 더구나 폴리머 분리막은 열에 대한 내구성이 낮아 고온의 가스 혼합물에서는 산소 분리에 적용할 수 없으므로 유리 용해로나 가열로 등 산업 공정의 고온 가스에서 산소의 분리가 불가능한 문제가 있다. 막 분리법 중 이온투과 세라믹 분리막을 이용한 산소분리 공정은 고온공정에도 적용 가능한 장점이 있다. Oxygen separation using polysulfone and polyimide-based polymers (Journal of Membrane Science, 1, 99-108, 1976) Hollow Fiber Membrane (HFM) has low oxygen production cost, but The disadvantage is that the concentration is as low as 30-40%. In addition, the polymer membrane has a low heat resistance and thus cannot be applied to oxygen separation in a high temperature gas mixture, which makes it impossible to separate oxygen from high temperature gas in an industrial process such as a glass melting furnace or a heating furnace. Oxygen separation process using ion permeation ceramic membrane of the membrane separation method has an advantage that can be applied to high temperature process.
기체 투과를 위한 이온 투과 세라믹 분리막은 크게 순수 기체 이온 전도성 분리막과 이온-전자 혼합 전도성(MIEC, Mixed Ionic-Electronic Conducting) 분리막으로 구별된다. 순수 기체 이온 전도성 분리막은 전류를 공급하기 위한 외부 전원과 전극이 필요하며, 기체이온의 투과량은 전류 공급에 의해 정밀하게 조절되고, 기체는 막의 양방향에 위치한 분리 기체의 분압에 무관하게 어느 방향으로도 이동할 수 있다. 이에 비해 이온-전자 혼합 전도성 분리막은 외부전력 공급없이 기체의 압력차에 의해 기체이온과 전자를 투과시킨다.Ion-permeable ceramic separators for gas permeation are classified into pure gas ion conductive separators and mixed ion-electronic conducting (MIEC) separators. Pure gas ion conductive membranes require an external power source and electrodes to supply current, the gas ion permeation rate is precisely controlled by the current supply, and the gas is in any direction regardless of the partial pressure of the separation gas located in both directions of the membrane. I can move it. In contrast, the ion-electron mixed conductive membrane permeates gas ions and electrons by a pressure difference between gases without supplying external power.
도 1은 이온-전자 혼합 전도성 분리막에서 산소 투과 과정을 도시한 개념도이다. 산소를 포함하는 혼합가스가 주입구(21)을 통해 유입되고 높은 산소분압을 유지하는 혼합가스 공급 공간(23)에 충진된 산소 가스는 산소 공급 분리막 표면(25)에 흡착된다. 흡착된 산소는 분리막 내부에서 전도된 전자를 받아 전하전달을 통해 이온화되어 산소이온으로 분리된다.1 is a conceptual diagram illustrating an oxygen permeation process in an ion-electron mixed conductive separator. Oxygen gas filled in the mixed gas supply space 23 in which the mixed gas containing oxygen is introduced through the injection port 21 and maintaining a high oxygen partial pressure is adsorbed on the surface of the oxygen supply separator 25. The adsorbed oxygen receives electrons conducted inside the separator and is ionized through charge transfer to be separated into oxygen ions.
분리된 산소이온은 분리막 내부 결정격자의 산소 빈 공간으로 이동하여 반대편 산소 생산 분리막 표면으로 이동하며, 반대편 산소 생산 분리막 표면에 도달한 산소 이온은 전하를 전달하며 이온 두개가 결합하여 산소분자를 형성한다. 전하 전달에 의해 생성된 전자는 산소 생산 분리막 표면으로부터 분리막 내부를 통해 산소 공급 분리막 표면으로 전자전도가 일어나며 산소 공급 분리막 표면에 도달한 전자는 다시 흡착된 산소에 전자를 공급하게 된다. The separated oxygen ions move to the oxygen vacancies of the crystal lattice inside the membrane and move to the surface of the opposite oxygen producing membrane. Oxygen ions that reach the surface of the opposite oxygen producing membrane transfer charges and the two ions combine to form oxygen molecules. . The electrons generated by the charge transfer from the surface of the oxygen production membrane to the surface of the oxygen supply separator through the inside of the separator, and the electrons that reach the surface of the oxygen supply separator supply electrons to the adsorbed oxygen again.
한편, 전하 전달 후 결합된 산소분자는 산소생산 분리막 표면에서 탈착되어 분리막에서 분리되며, 분리된 산소는 산소생산 공간(24)에서 퍼지가스 유입부분(26) 혹은 산소생성 부분(27)에서 가동되는 펌프에 의해 산소가 포집된다. On the other hand, after the charge transfer, the combined oxygen molecules are desorbed from the surface of the oxygen production membrane and separated from the separator, and the separated oxygen is operated at the purge gas inlet 26 or the oxygen generating part 27 in the oxygen production space 24. Oxygen is captured by the pump.
산소가 포함된 혼합가스가 존재하는 혼합가스 공급 공간(23)과 분리된 산소 가스가 존재하는 산소생산 공간(24)은 이온화된 산소를 제외한 다른 가스는 투과할 수 없는 분리막(25)으로 구분되기 때문에 순산소를 분리하는 것이 가능하다. The mixed gas supply space 23 in which the mixed gas containing oxygen exists and the oxygen production space 24 in which the separated oxygen gas exists are divided into separation membranes 25 through which no gas other than ionized oxygen can pass. Because of this, it is possible to separate pure oxygen.
이러한 산소 분리 공정에서 산소 분리의 구동력은 분리막 양단의 두 가스 공간, 즉 혼합가스 공급 공간(23)과 산소생산 공간(24) 사이의 산소 분압차이다. In this oxygen separation process, the driving force of oxygen separation is the oxygen partial pressure difference between two gas spaces across the membrane, that is, the mixed gas supply space 23 and the oxygen production space 24.
이와 같은 분리막은 페롭스카이트 계열의 소재를 이용하여 제조되는 것이 알려져 있다(미국특허 제5,702,959호, 제5,712,220호 및 제5,733,435호). 이처럼 페롭스카이트 단독으로 기체이온과 전자를 투과시키는 분리막을 단일상 이온-전자 혼합 전도성분리막이라고 한다. 그러나, 상기 페롭스카이트 계열의 분리막은 산소 분리공정 시 산소 투과도가 떨어지고, 산소 투과 후 분리막의 안전성 및 분리막의 내구성이 저하의 문제가 있다. It is known that such a separator is manufactured using a perovskite-based material (US Pat. Nos. 5,702,959, 5,712,220 and 5,733,435). As such, the separation membrane that allows gas ions and electrons to pass through perovskite alone is called a single phase ion-electron mixed conductive membrane. However, the perovskite-based separator has a problem in that the oxygen permeability is decreased during the oxygen separation process, and the safety of the separator and the durability of the separator are reduced after oxygen permeation.
이러한 페롭스카이트 단일상 이온-전자 혼합 전도성 분리막과 달리, 전자와 기체이온을 서로 다른 두개의 상에서 각각 투과시키는 이종 구조(dual phase) 이온-전자 혼합 전도성 분리막이 있다. 이종 구조 이온-전자 혼합 전도성 분리막은 전자 투과용 전자 전도성 산화물 재료 또는 금속 상(metal phase)과 이온 투과용 형석구조 내지 형석 상(fluorite phase)의 혼합물을 포함하며, 전자 투과용 페롭스카이트 계열과 이온 투과용 형석 계열을 혼합한 이종 구조의 분리막이 제시되었다(미국특허 제6,514,314호). Unlike the perovskite single phase ion-electron mixed conductive separator, there is a dual phase ion-electron mixed conductive membrane that transmits electrons and gas ions respectively in two different phases. The heterostructure ion-electron mixed conductive separator includes a mixture of an electron conducting oxide material or metal phase for electron transmission and a fluorite structure or a fluorite phase for ion transmission, and a perovskite series for electron transmission. Heterogeneous membranes incorporating ion permeable fluorspar series have been proposed (US Pat. No. 6,514,314).
그러나 상기 이종 구조의 분리막은 상대적으로 기계적 및 화학적 안정성이 낮은 페롭스카이트형 구조를 갖는 산화물로 인해 막 형성이 용이하지 않은 단점이 있다. 또한, 상기 페롭스카이트형 구조를 갖는 산화물과 형석 구조를 갖는 산화물의 부가적인 반응에 의해 2차적인 구조가 형성되어 제조된 분리막의 산소 투과도가 오히려 저하되는 단점이 있다.However, the separation membrane of the heterostructure has a disadvantage in that the formation of the membrane is not easy due to the oxide having a perovskite structure having relatively low mechanical and chemical stability. In addition, the secondary structure is formed by an additional reaction of the oxide having a perovskite-type structure and the oxide having a fluorite structure has a disadvantage in that the oxygen permeability of the separator produced is rather reduced.
본 발명은 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물과 형석 계열의 산화물을 함유하여 분리막의 안전성 및 내구성이 우수하면서, 동시에 산소 투과도가 월등히 향상된 산소 분리막을 제공하는 데 그 목적이 있다.The present invention is to provide an oxygen separation membrane having excellent safety and durability, and at the same time significantly improved oxygen permeability, by containing an oxide and a fluorite-based oxide having a perovskite structure, a spinel structure, or a mixture thereof. There is this.
상기 목적을 달성하기 위하여, 본 발명은 결정구조가 상이한 화합물을 함유하는 이종 구조의 분리막 상에 코팅층을 형성하고 상기 이종의 결정 구조를 갖는 화합물의 혼합비 및 상기 이종 구조의 분리막과 코팅층의 두께를 최적화함으로써, 종래에 비해 산소 투과도가 월등히 향상된 산소 분리막을 제공한다. 또한, 상기 본 발명은 안정성 및 내구성이 향상된 분리막을 제공한다. In order to achieve the above object, the present invention is to form a coating layer on a heterostructure containing a compound having a different crystal structure, and to optimize the mixing ratio of the compound having the hetero crystal structure and the thickness of the membrane and the coating layer of the hetero structure As a result, an oxygen separation membrane with an improved oxygen permeability is significantly improved. In addition, the present invention provides a separator with improved stability and durability.
구체적으로, 본 발명은 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물과, 형석 구조를 갖는 산화물이 함유된 이종 구조의 분리막; 및 상기 분리막의 적어도 일면에 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물이 함유된 코팅층이 형성된 산소 분리막으로, 상기 이종 구조의 분리막은 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물이 18 내지 40부피%와 형석 구조를 갖는 산화물 60 내지 82부피%가 함유되고, 상기 이종 구조의 분리막 두께는 30 내지 300㎛이고 코팅층 두께는 1 내지 50㎛이며, 상기 산소 분리막은 850℃, 1기압 및 산소분압차이가 0.21 atm 내지 10-4 atm의 조건에서, 산소 투과도가 1㎖/㎠·min 이상인 것을 특징으로 하는 산소 분리막을 제공한다.Specifically, the present invention is a separator having a heterostructure containing an oxide having a perovskite structure, a spinel structure, or a mixture thereof, and an oxide having a fluorite structure; And an oxygen separator in which a coating layer containing an oxide having a perovskite-type structure, a spinel-type structure, or a mixture thereof is formed on at least one side of the separator, wherein the hetero-type separator has a perovskite-type structure, a spinel-type structure, or a mixture thereof. 18 to 40% by volume of the oxide having a structure and 60 to 82% by volume of the oxide having a fluorite structure, the thickness of the heterostructure of the separation membrane is 30 to 300㎛ and the coating layer thickness is 1 to 50㎛, the oxygen separator Silver provides an oxygen separation membrane, characterized in that the oxygen permeability is 1 ml / cm 2 · min or more under conditions of 850 ℃, 1 atm and oxygen partial pressure difference of 0.21 atm to 10-4 atm.
상기 코팅층의 두께는 산소 분리막 총 두께에 대하여 13 내지 134%를 유지할 수 있다. The thickness of the coating layer may maintain 13 to 134% with respect to the total thickness of the oxygen separator.
상기 산소 투과도는 하기 수학식 1을 만족할 수 있다.The oxygen permeability may satisfy Equation 1 below.
[수학식 1][Equation 1]
log(J/J1) = a - b(Lm/Lc)log (J / J 1 ) = a-b (Lm / Lc)
(식 중, J1은 두께가 1㎜인 이종 구조의 분리막 산소 투과도이고, J는 두께가 Lm인 이종 구조의 분리막에 두께가 Lc인 코팅층이 형성된 산소 분리막의 산소 투과도이고, Lm은 이종 구조의 분리막 두께이고, Lc는 코팅층의 두께이고, 2.54 ≤ a ≤ 0.94이며, 0.02 ≤ b ≤ 0.08.(Wherein J 1 is a membrane oxygen permeability of a heterostructure having a thickness of 1 mm, J is an oxygen permeability of an oxygen separator having a coating layer of thickness Lc formed on a membrane of a heterostructure having a thickness of Lm, and Lm is a Membrane thickness, Lc is the thickness of the coating layer, 2.54 ≦ a ≦ 0.94, 0.02 ≦ b ≦ 0.08.
상기 산소 분리막은 코팅층의 기공률은 30 내지 60%이고, 전기전도도가 1 내지 2000S/cm(건조공기 및 300 내지 850℃하에서, 4전극 직류법으로 측정)이고, grain크기가 10 내지 1000nm일 수 있다.The oxygen separation membrane may have a porosity of 30 to 60%, an electrical conductivity of 1 to 2000 S / cm (dry air and 300 to 850 ° C., measured by a four-electrode direct current method), and a grain size of 10 to 1000 nm. .
상기 페롭스카이트형 구조를 갖는 산화물은 란타늄 스트론튬 코발타이트(LSC), 란타늄 스트론튬 페라이트(LSF), 란타늄 스트론튬 망가나이트(LSM), 란타늄 스트론튬 크로마이트(LSCr), 란타늄 스트론튬 코발트 페라이트(LSCF), 바륨 스트론튬 코발트 페라이트(BSCF) 및 스트론튬 티타늄 페라이트(STF)로 이루어진 군에서 선택된 1종 이상일 수 있다. The oxide having the perovskite type structure is lanthanum strontium cobaltite (LSC), lanthanum strontium ferrite (LSF), lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCr), lanthanum strontium cobalt ferrite (LSCF), barium strontium It may be one or more selected from the group consisting of cobalt ferrite (BSCF) and strontium titanium ferrite (STF).
상기 형석 구조를 갖는 산화물은 이트리아 안정화 지르코니아(YSZ), 스칸디아 안정화 지르코니아(ScSZ), 사마륨 주입된 세리아(SDC), 가돌리늄 주입된 세리아(GDC)) 및 LaGaO3 로 이루어진 군에서 선택된 1종 이상일 수 있다. The oxide having the fluorite structure may be at least one selected from the group consisting of yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium implanted ceria (SDC), gadolinium implanted ceria (GDC), and LaGaO 3 . have.
상기 스피넬형 구조를 갖는 산화물은 망간 페라이트(MnFe2O4), 니켈 페라이트(NiFe2O4) 및 코발트 페라이트(CoFe2O4)로 이루어진 군에서 선택된 1종 이상일 수 있다.The oxide having the spinel structure may be at least one selected from the group consisting of manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ), and cobalt ferrite (CoFe 2 O 4 ).
바람직하기로, 상기 이종 구조의 분리막은 란타늄 스트론튬 코발트 페라이트(LSCF), 바륨 스트론튬 코발트 페라이트(BSCF) 및 란타늄 스트론튬 망가나이트(LSM)로 이루어진 군에서 선택된 1종 이상의 산화물 및 가돌리늄 주입된 세리아(GDC)를 포함하고, 코팅층은 란타늄 스트론튬 코발타이트(LSC), 바륨 스트론튬 코발트 페라이트(BSCF) 및 란타늄 스트론튬 코발트 페라이트(LSCF)로 이루어진 군에서 선택된 1종 이상의 산화물을 함유할 수 있다.Preferably, the heterostructure separator is at least one oxide selected from the group consisting of lanthanum strontium cobalt ferrite (LSCF), barium strontium cobalt ferrite (BSCF) and lanthanum strontium manganite (LSM) and gadolinium-infused ceria (GDC). The coating layer may include at least one oxide selected from the group consisting of lanthanum strontium cobalt ferrite (LSC), barium strontium cobalt ferrite (BSCF), and lanthanum strontium cobalt ferrite (LSCF).
본 발명에 따른 산소 분리막은 이종 구조의 분리막의 적어도 일면에 코팅층을 형성하고, 이들 이종 구조의 분리막과 코팅층의 두께 조절에 의해 월등히 향상된 산소 투과도를 얻을 수 있는 이점이 있다. Oxygen separation membrane according to the present invention has the advantage of forming a coating layer on at least one side of the separation membrane of the heterostructure, and significantly improved oxygen permeability by controlling the thickness of the separation membrane and the coating layer of the heterostructure.
또한, 본 발명에 따른 산소 분리막은 이종 구조의 분리막에 형성된 코팅층에 의해 내구성이 향상된 이점이 있다. In addition, the oxygen separation membrane according to the present invention has the advantage that the durability is improved by the coating layer formed on the separation membrane of the heterostructure.
따라서, 본 발명의 산소 분리막을 적용하면 고효율의 산소 분리 공정을 개발할 수 있다. Therefore, by applying the oxygen separation membrane of the present invention it is possible to develop a high efficiency oxygen separation process.
도 1은 종래 이온성 분리막의 산소투과 과정을 나타낸 것이고,1 shows an oxygen permeation process of a conventional ionic separator,
도 2는 본 발명에 따라 실시예 1에서 제조된 산소 분리막의 SEM사진이고, 2 is a SEM photograph of the oxygen separation membrane prepared in Example 1 according to the present invention,
도 3은 본 발명에 따른 실시예 4 및 비교예 17의 산소 분리막의 산소 투과도 그래프로, 각각 코팅층 두께에 대한 이종 구조의 분리막 두께비(Lm/Lc)를 조절하면서 산소 투과도를 측정한 것이다.3 is a graph of oxygen permeability of the oxygen separation membranes of Example 4 and Comparative Example 17 according to the present invention, and the oxygen permeability was measured while controlling the membrane thickness ratio (Lm / Lc) of the heterostructure to the coating layer thickness, respectively.
본 발명은 산소 투과도가 월등히 향상된 산소 분리막에 관한 것이다.The present invention relates to an oxygen separation membrane with significantly improved oxygen permeability.
이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명의 산소 분리막은 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물과, 형석 구조를 갖는 산화물이 함유된 이종 구조의 분리막; 및 상기 분리막의 적어도 일면에 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물이 함유된 코팅층이 형성된다.Oxygen separator of the present invention is a separator having a heterostructure containing an oxide having a perovskite structure, a spinel structure or a mixture thereof, and an oxide having a fluorite structure; And a coating layer containing an oxide having a perovskite structure, a spinel structure, or a mixture thereof on at least one surface of the separator.
본 발명에 따른 산소 분리막은 기체 이온과 전자를 투과하는 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물과, 이온을 투과하는 형석 구조를 갖는 산화물이 특정량 혼합된 이종 구조의 분리막을 사용한다. Oxygen separator according to the present invention is a membrane having a heterogeneous structure in which a specific amount of oxide having a perovskite structure, a spinel structure, or a mixture thereof, and an oxide having a fluorite structure that permeates ions, Use
상기 이종 구조의 분리막은 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물 18 내지 40부피%와 형석 구조를 갖는 산화물 60 내지 82부피%가 함유된다. The heterostructure separator contains 18 to 40% by volume oxide having a perovskite type structure, a spinel type structure or a mixture thereof, and 60 to 82% by volume oxide having a fluorite structure.
이러한 산소 분리막을 형성하는 각 결정구조의 함량 범위는 하기 수학식 2의 General Effective Medium Theory (GEMT)을 이용하여 산출한다.The content range of each crystal structure forming the oxygen separation membrane is calculated using General Effective Medium Theory (GEMT) of Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2014012119-appb-I000001
Figure PCTKR2014012119-appb-I000001
(식 중, p eff는 관투 현상 문턱 값(percolation threshold)이고, t는 관투 기울기이고, σtot는 복합체의 전기 전도도이고, σ1는 형석 구조를 갖는 산화물의 전기 전도도이고, σ2는 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물의 전기 전도도이고, p는 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물의 부피분율임).Where p eff is the percolation threshold, t is the penetration slope, σ tot is the electrical conductivity of the composite, σ 1 is the electrical conductivity of the oxide with fluorite structure, and σ 2 is the perovskite Electrical conductivity of the oxide having the structure having a structure, a spinel structure, or a mixture thereof, and p is a volume fraction of the oxide having a perovskite structure, a spinel structure, or a mixture thereof.
상기 수학식 2을 통하여, 이종 구조의 분리막의 전자 전도 관투 현상 문턱 값(percolation threshold)이 17.7%임을 확인하였으며, 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물의 함량이 18부피% 이상인 경우 산소 분리막으로 사용 가능하다는 것을 확인할 수 있다. Through Equation 2, it was confirmed that the percolation threshold of the conduction phenomenon of the heterostructured membrane was 17.7%, and the content of oxide having a perovskite-type structure, a spinel-type structure, or a mixture thereof was 18 vol. If it is more than% it can be confirmed that it can be used as an oxygen separation membrane.
즉, 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물의 함량이 18부피% 미만이면 전자 전도도가 충분치 않기 때문에 산소 분리막으로 역할을 수행하기 어려울 수 있고, 40부피%를 초과하는 경우에는 기계적, 화학적 페롭스카이트 산화물 로 인해 분리막의 내구성이 저하되는 문제가 발생할 수 있다. That is, when the content of the oxide having a perovskite structure, a spinel structure, or a mixture thereof is less than 18% by volume, it may be difficult to play a role as an oxygen separation membrane because the electron conductivity is not sufficient, and exceeds 40% by volume. There may be a problem that the durability of the separator is degraded due to mechanical and chemical perovskite oxide.
상기 페롭스카이트형 구조를 갖는 산화물은 ABO3 구조를 가지며, A는 알칼리, 알칼리 토금속류 이온 또는 희토류 양이온이 위치하고, B는 전이금속 또는 희토류 양이온이 위치한다. The oxide having the perovskite-type structure has an ABO 3 structure, where A is an alkali, alkaline earth metal ion or rare earth cation, and B is a transition metal or rare earth cation.
이상적인 페롭스카이트형 구조는 코너를 공유하는 입방정 구조이며 A 양이온은 12개, B 양이온은 6개의 산소로 둘러싸여 있다. 각 산소이온은 4개의 A 양이온과 2개의 B 양이온에 결합되어 있고, A 양이온은 산소이온에 비교될 만큼 크기 때문에 페롭스카이트형 구조는 기하학적로 O와 A 양이온이 밀집구조를 이루고, 산소에 비해 매우 작은 B 양이온은 8면체 격자 틈에 들어가 있는 구조를 가진다. The ideal perovskite-like structure is a cubic crystal structure sharing a corner, with 12 A cations and 6 B cations surrounded by oxygen. Since each oxygen ion is bound to four A cations and two B cations, and the A cation is large enough to be compared to the oxygen ion, the perovskite-like structure is geometrically occupied by O and A cations. Small B cations have structures that occupy octahedral lattice gaps.
본 발명에서는 페롭스카이트형 구조를 갖는 산화물이면 특별히 한정하지는 않으나, 구체적으로 란타늄 스트론튬 코발타이트(LSC), 란타늄 스트론튬 페라이트(LSF), 란타늄 스트론튬 망가나이트(LSM), 란타늄 스트론튬 크로마이트(LSCr), 란타늄 스트론튬 코발트 페라이트(LSCF), 바륨 스트론튬 코발트 페라이트(BSCF) 및 스트론튬 티타늄 페라이트(STF)로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.In the present invention, the oxide having a perovskite type structure is not particularly limited, but specifically, lanthanum strontium cobaltite (LSC), lanthanum strontium ferrite (LSF), lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCr), and lanthanum One or more selected from the group consisting of strontium cobalt ferrite (LSCF), barium strontium cobalt ferrite (BSCF) and strontium titanium ferrite (STF) can be used.
상기 스피넬형 구조를 갖는 산화물은 AB2O4 구조를 가지며, A 와 B는 알칼리 토금속 및 전이 금속이며 입방 결정 구조를 갖는다. 정사면체형 4배위 위치에 A 금속, 정팔면체 6배위 위치에 B 금속이 배치되는 구조를 갖는다. 본 발명에서는 스피넬형 구조를 갖는 산화물이면 특별히 한정하지는 않으나, 구체적으로 망간 페라이트(MnFe2O4), 니켈 페라이트(NiFe2O4) 및 코발트 페라이트(CoFe2O4)로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.The oxide having the spinel structure has an AB 2 O 4 structure, A and B are alkaline earth metals and transition metals and have a cubic crystal structure. A metal is arranged at the tetrahedral 4 coordination position, and B metal is arranged at the octahedral 6 coordination position. In the present invention, an oxide having a spinel structure is not particularly limited, but specifically, one kind selected from the group consisting of manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ), and cobalt ferrite (CoFe 2 O 4 ). The above can be used.
상기 형석 구조를 갖는 산화물은 AO2 구조를 가지며, 4가의 양이온은 면심입방격자 자리를 차지하고, 산소이온은 4개의 양이온으로 이루어진 8개의 사면체 중심에 존재한다. 그러므로 양이온은 8배위, 산소이온은 4배위를 가진다. 형석구조 산화물에서 2가 및 3가의 양이온이 4가의 양이온 자리에 치환되면 전하 중성 조건을 맞추기 위해 산소이온자리에 산소 빈자리가 생성되며 고온에서 산소 빈자리를 통한 산소이온의 전도가 발생한다. The oxide having the fluorspar structure has an AO 2 structure, tetravalent cations occupy the face-centered cubic lattice sites, and oxygen ions are present at eight tetrahedral centers composed of four cations. Therefore, cations have 8 coordination and oxygen ions have 4 coordination. When bivalent and trivalent cations are substituted for tetravalent cations in the fluorspar structure oxides, oxygen vacancies are generated in the oxygen ion site to meet charge neutral conditions, and conduction of oxygen ions through the oxygen vacancies at high temperature occurs.
본 발명에서는 형석 구조를 갖는 산화물이면 특별히 한정하지는 않으나, 구체적으로 이트리아 안정화 지르코니아(YSZ), 스칸디아 안정화 지르코니아(ScSZ), 사마륨 주입된 세리아 (SDC), 가돌리늄 주입된 세리아(GDC) 및 LaGaO3 로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. In the present invention, an oxide having a fluorite structure is not particularly limited, but specifically, yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium implanted ceria (SDC), gadolinium implanted ceria (GDC) and LaGaO 3 . One or more selected from the group consisting of can be used.
또한, 본 발명은 상기 산화물의 기계적 및 화학적 안정성의 차이와 산화물 사이의 반응에 의한 제조된 분리막의 산소 투과도 저하를 개선하기 위하여, 상기 이중 구조의 상기 이종 구조의 분리막 상에 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물이 함유된 코팅층을 형성한다. In addition, the present invention, in order to improve the oxygen permeability degradation of the prepared separator by the difference between the mechanical and chemical stability of the oxide and the reaction between the oxide, the perovskite-type structure, spinel on the membrane of the heterostructure of the double structure A coating layer containing an oxide having a mold structure or a mixture thereof is formed.
즉, 산소 분리막의 표면에서는 코팅층에 의해 산소 분자의 해리를 활성화 시키고, 산소 분리막의 내부에서는 2개의 산화물이 특정량 혼합된 이종 구조의 분리막에 의해 전자는 전도성 산화물(페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물)을 통하여 전도되고, 이온은 형석 구조 산화물을 통하여 전도됨으로써, 산소 투과도를 획기적으로 향상시킬 수 있다. In other words, the dissociation of oxygen molecules is activated on the surface of the oxygen separation membrane by the coating layer, and the electron is conductive oxide (perovskite structure, spinel type structure) by the heterogeneous separation membrane in which two oxides are mixed in a specific amount inside the oxygen separation membrane. Or an oxide having a mixed structure thereof, and ions are conducted through the fluorite structure oxide, thereby significantly improving oxygen permeability.
상기 이종 구조의 분리막은 그 두께가 30 내지 100㎛를 유지한다. 본 발명에 따른 이종 구조의 분리막은 두께가 30㎛ 이하도 가능하나, 제조 공정상의 용이성 및 제조된 산소 분리막의 기계적 강도 등을 고려하면 30㎛ 이상인 것이 바람직하고, 산소 투과도 등을 고려하면 300㎛를 초과하지 않는 것이 바람직하다.The separation membrane of the hetero structure maintains the thickness of 30 to 100㎛. The membrane of the heterostructure according to the present invention may have a thickness of 30 μm or less, but preferably 30 μm or more in consideration of ease of manufacturing process and mechanical strength of the prepared oxygen separator, and 300 μm in consideration of oxygen permeability. It is preferable not to exceed it.
또한, 상기 코팅층의 두께는 산소 분리막 총 두께에 대하여 13 내지 134%를 유지하는 것이 좋다. 상기 코팅층의 두께가 1% 미만이면 분리막의 표면에 코팅층을 증착하기 어려운 문제가 발생할 수 있다. In addition, the coating layer preferably maintains 13 to 134% of the total thickness of the oxygen separator. If the thickness of the coating layer is less than 1%, a problem may occur that it is difficult to deposit the coating layer on the surface of the separator.
일례로, 본 발명의 산소 분리막은 코팅층과 이종 구조의 분리막의 두께, 및 산소 투과도의 상관관계를 수식화한 하기 수학식 1을 만족한다. For example, the oxygen separation membrane of the present invention satisfies the following equation 1 in which the correlation between the coating layer and the separation membrane of the heterostructure, and the oxygen permeability is modified.
[수학식 1] [Equation 1]
log(J/J1) = a - b(Lm/Lc)log (J / J 1 ) = a-b (Lm / Lc)
(식 중, J1은 두께가 1㎜인 이종 구조의 분리막 산소 투과도이고, J는 두께가 Lm인 이종 구조의 분리막에 두께가 Lc인 코팅층이 형성된 산소 분리막의 산소 투과도이고, Lm은 이종 구조의 분리막 두께이고, Lc는 코팅층의 두께이고, 0.95 ≤ a ≤ 2.2이며, 0.01 ≤ b ≤ 0.03임).(Wherein J 1 is a membrane oxygen permeability of a heterostructure having a thickness of 1 mm, J is an oxygen permeability of an oxygen separator having a coating layer of thickness Lc formed on a membrane of a heterostructure having a thickness of Lm, and Lm is a Membrane thickness, Lc is the thickness of the coating layer, 0.95 ≦ a ≦ 2.2, 0.01 ≦ b ≦ 0.03).
상기 수학식 1은 페롭스카이트형 구조를 갖는 산화물로 La0.6Sr0.4Co0.2Fe0.8O3-δ, 형석 구조를 갖는 산화물로 Gd0.1Ce0.9O2-δ을 사용하는 경우에 대한 일례이다. 본 발명은 페롭스카이트형 구조를 갖는 산화물과 형석 구조를 갖는 산화물의 성분 조합에 따라 산소 투과도의 향상 정도를 조절할 수 있다. Equation 1 is an example of using La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ as the oxide having a perovskite structure and Gd 0.1 Ce 0.9 O 2-δ as the oxide having a fluorite structure. The present invention can adjust the degree of improvement of oxygen permeability according to the combination of components of the oxide having a perovskite structure and the oxide having a fluorite structure.
이러한 코팅층은 페롭스카이트형 구조를 갖는 산화물을 함유하는 코팅층 형성 조성물을 도포 및 건조하는 액상 성막법을 사용하여 제조할 수 있으며, 상기 도포는 롤코팅법, 바코팅법, 딥코팅법, 스핀코팅법, 캐스팅법, 다이코팅법, 블레이드코팅법, 바코팅법, 그라비아코팅법, 스프레이코팅법, 닥터코팅법 등을 사용할 수 있다. 또한 잉크젯 인쇄법, 그라비아 인쇄법, 스크린 인쇄법 등을 이용한 직접 패턴 형성방법을 사용할 수 있다. Such a coating layer may be prepared by using a liquid film forming method of coating and drying a coating layer forming composition containing an oxide having a perovskite type structure, and the coating may be performed by a roll coating method, a bar coating method, a dip coating method, or a spin coating method. , Casting method, die coating method, blade coating method, bar coating method, gravure coating method, spray coating method, doctor coating method and the like can be used. In addition, a direct pattern forming method using an inkjet printing method, a gravure printing method, a screen printing method, or the like can be used.
이상과 같이, 본 발명에 따른 상기 산소 분리막은 850℃, 1 기압, 공기/헬륨, 아르곤, 또는 이산화탄소 조건에서, 산소 투과도가 1㎖/㎠·min 이상이고, 코팅층의 기공률은 30 내지 60%이고, 전기전도도가 1 내지 2000S/cm(건조공기 및 300 내지 850℃하에서, 4전극 직류법으로 측정)이고, grain크기가 10 내지 1000nm이다.As described above, the oxygen separation membrane according to the present invention has an oxygen permeability of 1 ml / cm 2 · min or more at 850 ° C., 1 atmosphere, air / helium, argon, or carbon dioxide conditions, and the porosity of the coating layer is 30 to 60%. The electrical conductivity is 1 to 2000 S / cm (dry air and 300 to 850 ° C., measured by four-electrode direct current method), and the grain size is 10 to 1000 nm.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
실시예 1Example 1
1)이종 구조의 분리막 제조1) Manufacture of heterogeneous membrane
상용 테이프캐스팅 용매(Kceracell, Korea) 100중량부에, Gd0.1Ce0.9O2-δ 80부피%와 La0.6Sr0.4Co0.2Fe0.8O3-δ 20부피%가 혼합된 산화물을 90중량부 혼합하여 혼합물을 제조하였다.90 parts by weight of an oxide containing 80% by volume of Gd 0.1 Ce 0.9 O 2-δ and 20% by volume of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ in 100 parts by weight of a commercial tape casting solvent (Kceracell, Korea) To prepare a mixture.
상기 혼합은 지르코니아 볼과 함께 180 rpm 으로 5일간 ball-milling 하였다. 상기 혼합물은 비커에 옮겨 담아 지르코니아 볼을 제거한 후 테이프 캐스팅 장비(STC-14C, 한성기계제작소, Korea)를 이용하여 Green sheet을 제작하였다.The mixture was ball-milled with zirconia balls at 180 rpm for 5 days. The mixture was transferred to a beaker to remove zirconia balls, and then a green sheet was manufactured using a tape casting equipment (STC-14C, Hansung Machinery Co., Korea).
이때, 상기 장비의 Doctor blade와 tape carrier와의 간격은 300㎛로 고정하였고, tape carrier의 속도는 약1cm/s로 설정하였다. Green sheet의 건조 속도가 너무 빠르면 건조 중 갈라지는 현상이 발생할 수 있으므로 tape carrier의 heater 온도는 40℃로 설정하였다. At this time, the interval between the doctor blade and the tape carrier of the equipment was fixed to 300㎛, the speed of the tape carrier was set to about 1cm / s. If the drying rate of the green sheet is too fast, cracking may occur during drying, so the heater temperature of the tape carrier is set to 40 ° C.
이후에, 히팅 프레스를 이용하여 Green sheet를 적층하고 소결 공정을 수행하여 이종 구조의 분리막을 제조하였다. 상기 소결은 1300 내지 1350℃에서 수행하여 이종 구조의 분리막(LSCF-GDC)을 제조하였다. Thereafter, a green sheet was laminated using a heating press and a sintering process was performed to prepare a separator having a heterogeneous structure. The sintering was performed at 1300 to 1350 ° C. to prepare a separator (LSCF-GDC) having a heterogeneous structure.
2)산소 분리막2) oxygen separator
La0.6Sr0.4Co0O3-δ과 상용 screen printing 용매(Heraeus,V-006)를 1.5:1중량비로 혼합하여 코팅용 조성물을 제조하였다.La 0.6 Sr 0.4 Co 0 O 3-δ and a commercial screen printing solvent (Heraeus, V-006) was mixed in a 1.5: 1 weight ratio to prepare a coating composition.
상기 1)에서 제조된 이종 구조의 분리막(LSCF-GDC)을 에탄올에 담근 후, 소니케이터를 이용하여 표면을 세척하였다. 세척된 LSCF-GDC 분리막 양쪽 표면 위에 코팅용 조성물을 직경 1cm 원모양(active area = 0.785 cm2)의 핸드프린팅(hand printing) 방법으로 코팅하여 열처리 후 코팅층의 두께가 20㎛가 되도록 하였다. 이러한 코팅층의 두께는 산소 분리막 총 두께에 대하여 13 - 134%이다. After dipping the membrane (LSCF-GDC) of the heterostructure prepared in 1) in ethanol, the surface was cleaned using a sonicator. The coating composition was coated on both surfaces of the washed LSCF-GDC membrane by a hand printing method having a diameter of 1 cm (active area = 0.785 cm 2 ) so that the thickness of the coating layer was 20 μm after the heat treatment. The thickness of this coating layer is 13-134% of the total thickness of the oxygen separator.
이때, 히팅 플레이트(heating plate)를 사용하여 80℃에서 완전히 건조 시킨 후 재 코팅하는 것을 4회 반복하였다. 이후에 양면에 코팅층이 형성된 이종 구조의 분리막을 120℃에서 1시간(온도 상승률: 1℃/min), 400℃에서 2시간(온도 상승률: 2℃/min), 1000℃에서 3시간 (온도 상승률: 2℃/min)동안 열처리하여 산소 분리막을 제조하였다. At this time, using a heating plate (heating plate) was completely dried at 80 ℃ and re-coated four times was repeated. Thereafter, the membrane having a heterogeneous structure in which the coating layers were formed on both sides was subjected to 1 hour at 120 ° C (temperature increase rate: 1 ° C / min), 2 hours at 400 ° C (temperature rise rate: 2 ° C / min), and 3 hours at 1000 ° C (temperature increase rate). : Heat treatment for 2 ℃ / min) to prepare an oxygen separation membrane.
상기에서 제조된 산소 분리막의 SEM 사진은 도 2에 나타내었다. The SEM photograph of the oxygen separator prepared above is shown in FIG. 2.
실시예 2-12 및 비교예 1-2 : 분리막의 두께를 변경시킨 예Example 2-12 and Comparative Example 1-2: Example of changing the thickness of the separator
상기 실시예 1과 동일하게 수행하되, 하기 표 1과 같이 이종 구조의 분리막의 두께를 달리하여 동일한 두께의 코팅층을 갖는 산소 분리막을 제조하였다.In the same manner as in Example 1, but the oxygen separation membrane having a coating layer of the same thickness was prepared by varying the thickness of the separation membrane of the heterostructure as shown in Table 1.
[표 1]TABLE 1
Figure PCTKR2014012119-appb-I000002
Figure PCTKR2014012119-appb-I000002
실시예 4 및 비교예 17Example 4 and Comparative Example 17
상기 실시예 1과 동일하게 실시하되, 하기 표 2와 같이 이종 구조의 분리막의 조성 및 코팅층의 성분을 달리하여 산소 분리막을 제조하였다.The same procedure as in Example 1, except that the oxygen separation membrane was prepared by varying the composition of the separation membrane and the components of the coating layer as shown in Table 2.
[표 2]TABLE 2
Figure PCTKR2014012119-appb-I000003
Figure PCTKR2014012119-appb-I000003
(비교예 17은 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물과 형석 구조를 갖는 산화물의 비가 50:50이므로 비교예에 해당됩니다)(Comparative Example 17 is a comparative example because the ratio of oxide having a perovskite structure, a spinel structure, or a mixture thereof and an oxide having a fluorite structure is 50:50)
또한, 하기 도 3은 상기 실시예 4 및 비교예 17에 따른 산소 분리막의 코팅층 두께에 대한 이종 구조의 분리막 두께비(Lm/Lc)를 조절하고, 이에 따른 산소 투과도를 나타낸 것이다.In addition, Figure 3 below is to control the membrane thickness ratio (Lm / Lc) of the heterostructure to the coating layer thickness of the oxygen separation membrane according to Example 4 and Comparative Example 17, and shows the oxygen permeability accordingly.
도 3으로부터 산소 투과도에 로그를 취한 값이 분리막 두께비율에 따라 선형 관계를 나타내고 있음을 확인할 수 있었다.It can be seen from FIG. 3 that the logarithmic value of oxygen permeability shows a linear relationship according to the membrane thickness ratio.
실시예 5 내지 6Examples 5-6
상기 실시예 1과 동일하게 실시하되, 하기 표 3과 같이 이종 구조의 분리막의 조성 및 코팅층의 성분을 달리하여 산소 분리막을 제조하였다.The same procedure as in Example 1 was performed, but the oxygen separation membrane was prepared by changing the composition of the separation membrane and the components of the coating layer as shown in Table 3 below.
[표 3]TABLE 3
Figure PCTKR2014012119-appb-I000004
Figure PCTKR2014012119-appb-I000004
실험예Experimental Example
상기 실시예 1 내지 6 및 비교예 1 내지 17의 물성을 하기와 같이 측정하여 그 결과를 하기 표 4에 나타내었다. The physical properties of Examples 1 to 6 and Comparative Examples 1 to 17 were measured as follows, and the results are shown in Table 4 below.
1.기공률 및 grain 크기1. Porosity and grain size
주사전자현미경 (scanning electron microscope, SEM4800, Hitachi)을 이용하여 얻은 분리막 및 코팅층의 미세구조의 image를 분석하여 기공률과 grain 크기를 측정하였다. The porosity and grain size were measured by analyzing the image of the microstructure of the membrane and the coating layer obtained using a scanning electron microscope (SEM4800, Hitachi).
2.전기 전도도2.electric conductivity
막대 형태로 제작된 시편에 4개의 백금 전극을 Ag paste를 이용하여 시편에 평행하게 부착하였다. 부착된 4개의 전극중 바깥쪽 2개의 전극사이에 일정 전류 전원 (Keithley 2400)을 사용하여 일정한 전류(I)를 인가해 주면서 안쪽의 두 개의 전극에서 전압(V)을 측정한다. 실험에서 얻은 선형의 전류-전압 곡선을 linear regression 하여 기울기로부터 저항(R)을 구하고, 아래식을 이용하여 전기 전도도를 계산하였다.Four platinum electrodes were attached to the specimens in the form of rods in parallel to the specimens using Ag paste. The voltage (V) is measured at the inner two electrodes while applying a constant current (I) using a constant current power supply (Keithley 2400) between the outer two electrodes of the four electrodes attached. The linear current-voltage curve obtained in the experiment was linear regression to obtain the resistance (R) from the slope, and electrical conductivity was calculated using the following equation.
상기 전기 전도도는 건조 공기(dry air)를 30ml/min의 유속으로 흘리면서 300 내지 850℃에서 측정하였다.The electrical conductivity was measured at 300 to 850 ° C. while flowing dry air at a flow rate of 30 ml / min.
[수학식 3][Equation 3]
Figure PCTKR2014012119-appb-I000005
Figure PCTKR2014012119-appb-I000005
(식 중, σ는 전기전도도이고, L은 시편의 두께이며, A는 시편의 단면적임)Where σ is the electrical conductivity, L is the thickness of the specimen, and A is the cross-sectional area of the specimen.
[표 4]TABLE 4
Figure PCTKR2014012119-appb-I000006
Figure PCTKR2014012119-appb-I000006
상기 표 4와 같이, 본 발명에 따른 실시예 1 내지 6의 산소 분리막은 비교예 1 내지 17과 동등 이상의 기공률, 전기전도도 및 grain 크기를 유지한다는 것을 확인할 수 있었다.As shown in Table 4, it was confirmed that the oxygen separation membranes of Examples 1 to 6 according to the present invention maintain porosity, electrical conductivity, and grain size equal to or greater than Comparative Examples 1 to 17.
이상의 실험결과를 종합하여 선택한 바람직한 구조의 산소분리막에서 이종 구조의 분리막은 페롭스카이트형 구조 및 형석구조를 갖는 산화물을 포함한다. 즉, 페롭스카이트형 구조로 란타늄 스트론튬 코발트 페라이트(LSCF), 바륨 스트론튬 코발트 페라이트(BSCF) 및 란타늄 스트론튬 망가나이트(LSM)로 이루어진 군에서 1종 이상의 산화물을 선택하고 형석구조를 갖는 산화물은 가돌리늄 주입된 세리아(GDC)를 선택한다.In the oxygen separation membrane of the preferred structure selected from the above experimental results, the heterostructure membrane includes an oxide having a perovskite structure and a fluorite structure. That is, at least one oxide is selected from the group consisting of lanthanum strontium cobalt ferrite (LSCF), barium strontium cobalt ferrite (BSCF), and lanthanum strontium manganite (LSM) as a perovskite structure, and an oxide having a fluorite structure is injected with gadolinium. Select Ceria (GDC).
또한 코팅층도 페롭스카이트형 구조를 갖는 산화물로 란타늄 스트론튬 코발타이트(LSC), 바륨 스트론튬 코발트 페라이트(BSCF) 및 란타늄 스트론튬 코발트 페라이트(LSCF)로 이루어진 군에서 선택된 1종 이상을 선택한다. In addition, the coating layer is selected from the group consisting of lanthanum strontium cobalt ferrite (LSC), barium strontium cobalt ferrite (BSCF) and lanthanum strontium cobalt ferrite (LSCF) as an oxide having a perovskite structure.

Claims (8)

  1. 산소분리막으로,Oxygen separator,
    상기 산소분리막은, 이종 구조의 분리막 및 상기 분리막의 적어도 일면에 코팅되는 코팅층을 포함하고,The oxygen separation membrane includes a separation layer of a heterogeneous structure and a coating layer coated on at least one surface of the separation membrane,
    상기 이종 구조의 분리막은, 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물 및 형석 구조를 갖는 산화물을 포함하고,The heterostructured separator includes an oxide having a perovskite structure, a spinel structure, or a mixture thereof, and an oxide having a fluorite structure,
    상기 코팅층은, 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물을 포함하며, The coating layer includes an oxide having a perovskite structure, a spinel structure, or a mixture thereof,
    상기 이종구조의 분리막에서 페롭스카이트형 구조, 스피넬형 구조 또는 이들이 혼합된 구조를 갖는 산화물의 부피비는 18 내지 40%이고, 형석 구조를 갖는 산화물의 부피비는 60 내지 82%이며, In the heterostructure membrane, the volume ratio of the oxide having a perovskite structure, a spinel structure, or a mixture thereof is 18 to 40%, and a volume ratio of an oxide having a fluorite structure is 60 to 82%,
    상기 이종 구조의 분리막 두께는 30 내지 300㎛이고 상기 코팅층 두께는 1 내지 50㎛이며, The membrane thickness of the heterostructure is 30 to 300㎛ and the coating layer thickness is 1 to 50㎛,
    상기 산소 분리막은 850℃, 1기압 및 산소분압차이가 0.21 atm 내지 10-4 atm의 조건에서, 산소 투과도가 1㎖/㎠·min 이상인 것을 특징으로 하는, The oxygen separation membrane has an oxygen permeability of 1 mL / cm 2 · min or more under conditions of 850 ° C., 1 atm, and oxygen partial pressure difference of 0.21 atm to 10 −4 atm,
    산소 분리막. Oxygen separator.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 코팅층의 두께는 산소 분리막 총 두께에 대하여 13 내지 133%를 유지하는 것을 특징으로 하는, The thickness of the coating layer is characterized in that to maintain 13 to 133% with respect to the total thickness of the oxygen separation membrane,
    산소 분리막. Oxygen separator.
  3. 청구항 1 또는 2에 있어서, The method according to claim 1 or 2,
    상기 산소 투과도는 하기 수학식 1을 만족하는 것을 특징으로 하는 산소 분리막:The oxygen permeability of the oxygen separation membrane, characterized in that to satisfy the following equation:
    [수학식 1][Equation 1]
    log(J/J1) = a - b(Lm/Lc)log (J / J 1 ) = a-b (Lm / Lc)
    (식 중, J1은 두께가 1㎜인 이종 구조의 분리막 산소 투과도이고, J는 두께가 Lm인 이종 구조의 분리막에 두께가 Lc인 코팅층이 형성된 산소 분리막의 산소 투과도이고, Lm은 이종 구조의 분리막 두께이고, Lc는 코팅층의 두께이고, 2.54 ≤ a ≤ 0.94이며, 0.02 ≤ b ≤ 0.08임).(Wherein J 1 is a membrane oxygen permeability of a heterostructure having a thickness of 1 mm, J is an oxygen permeability of an oxygen separator having a coating layer of thickness Lc formed on a membrane of a heterostructure having a thickness of Lm, and Lm is a Membrane thickness, Lc is the thickness of the coating layer, 2.54 ≦ a ≦ 0.94, and 0.02 ≦ b ≦ 0.08).
  4. 청구항 3에 있어서, The method according to claim 3,
    상기 산소 분리막은 코팅층의 기공률은 30 내지 60%이고, 전기전도도가 1 내지 2000S/cm(건조공기 및 300 내지 850℃하에서, 4전극 직류법으로 측정)이며, grain크기가 10 내지 1000nm인 것을 특징으로 하는, The oxygen separation membrane has a porosity of 30 to 60% of the coating layer, an electrical conductivity of 1 to 2000 S / cm (dry air and 300 to 850 ° C., measured by a four-electrode direct current method), and a grain size of 10 to 1000 nm. Made,
    산소 분리막. Oxygen separator.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 페롭스카이트형 구조를 갖는 산화물은 란타늄 스트론튬 코발타이트(LSC), 란타늄 스트론튬 페라이트(LSF), 란타늄 스트론튬 망가나이트(LSM), 란타늄 스트론튬 크로마이트(LSCr), 란타늄 스트론튬 코발트 페라이트(LSCF), 바륨 스트론튬 코발트 페라이트(BSCF) 및 스트론튬 티타늄 페라이트(STF)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, The oxide having the perovskite type structure is lanthanum strontium cobaltite (LSC), lanthanum strontium ferrite (LSF), lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCr), lanthanum strontium cobalt ferrite (LSCF), barium strontium Characterized in that at least one selected from the group consisting of cobalt ferrite (BSCF) and strontium titanium ferrite (STF),
    산소 분리막. Oxygen separator.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 형석 구조를 갖는 산화물은 이트리아 안정화 지르코니아(YSZ), 스칸디아 안정화 지르코니아(ScSZ), 사마륨 주입된 세리아 (SDC), 가돌리늄 주입된 세리아(GDC) 및 LaGaO3 로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, The oxide having the fluorite structure is at least one selected from the group consisting of yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium implanted ceria (SDC), gadolinium implanted ceria (GDC) and LaGaO 3 . Made,
    산소 분리막.Oxygen separator.
  7. 청구항 1에 있어서, The method according to claim 1,
    상기 스피넬형 구조를 갖는 산화물은 망간 페라이트(MnFe2O4), 니켈 페라이트(NiFe2O4) 및 코발트 페라이트(CoFe2O4)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, The oxide having a spinel structure is characterized in that at least one selected from the group consisting of manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and cobalt ferrite (CoFe 2 O 4 ),
    산소 분리막.Oxygen separator.
  8. 산소분리막으로,Oxygen separator,
    상기 산소분리막은, 이종 구조의 분리막 및 상기 분리막의 적어도 일면에 코팅되는 코팅층을 포함하고,The oxygen separation membrane includes a separation layer of a heterogeneous structure and a coating layer coated on at least one surface of the separation membrane,
    상기 이종 구조의 분리막 두께는 30 내지 300㎛이고 상기 코팅층 두께는 1 내지 50㎛이되, 상기 코팅층의 두께는 산소 분리막 총 두께에 대하여 13 내지 133%를 유지하며, The membrane thickness of the heterostructure is 30 to 300㎛ and the coating layer thickness is 1 to 50㎛, the thickness of the coating layer to maintain 13 to 133% relative to the total thickness of the oxygen separator,
    상기 이종 구조의 분리막은 란타늄 스트론튬 코발트 페라이트(LSCF), 바륨 스트론튬 코발트 페라이트(BSCF) 및 란타늄 스트론튬 망가나이트(LSM)로 이루어진 군에서 선택된 1종 이상의 산화물 및 가돌리늄 주입된 세리아(GDC)를 포함하고, The heterostructure separator includes lanthanum strontium cobalt ferrite (LSCF), barium strontium cobalt ferrite (BSCF) and lanthanum strontium manganite (LSM), and includes at least one oxide and gadolinium-infused ceria (GDC).
    상기 이종구조의 분리막에서 란타늄 스트론튬 코발트 페라이트(LSCF), 바륨 스트론튬 코발트 페라이트(BSCF) 및 란타늄 스트론튬 망가나이트(LSM)로 이루어진 군에서 선택된 1종 이상의 산화물의 부피비는 18 내지 40%이고, 가돌리늄 주입된 세리아(GDC)의 부피비는 60 내지 82%이며, The volume ratio of the at least one oxide selected from the group consisting of lanthanum strontium cobalt ferrite (LSCF), barium strontium cobalt ferrite (BSCF) and lanthanum strontium manganite (LSM) in the heterostructure separator is 18 to 40%, and gadolinium-implanted The volume ratio of ceria (GDC) is 60 to 82%,
    상기 코팅층은 란타늄 스트론튬 코발타이트(LSC), 바륨 스트론튬 코발트 페라이트(BSCF) 및 란타늄 스트론튬 코발트 페라이트(LSCF)로 이루어진 군에서 선택된 1종 이상의 산화물을 함유하고, The coating layer contains at least one oxide selected from the group consisting of lanthanum strontium cobaltite (LSC), barium strontium cobalt ferrite (BSCF) and lanthanum strontium cobalt ferrite (LSCF),
    상기 산소 분리막은 850℃, 1기압 및 산소분압차이가 0.21 atm 내지 10-4 atm의 조건에서, 산소 투과도가 1㎖/㎠·min 이상인 것을 특징으로 하며, The oxygen separation membrane is characterized in that the oxygen permeability is 1ml / ㎠ · min or more under conditions of 850 ℃, 1 atm and oxygen partial pressure difference of 0.21 atm to 10 -4 atm,
    상기 산소 투과도는 하기 수학식 1을 만족하는 것을 특징으로 하는, The oxygen permeability is characterized by satisfying the following equation,
    산소 분리막:Oxygen separator:
    [수학식 1][Equation 1]
    log(J/J1) = a - b(Lm/Lc)log (J / J 1 ) = a-b (Lm / Lc)
    (식 중, J1은 두께가 1㎜인 이종 구조의 분리막 산소 투과도이고, J는 두께가 Lm인 이종 구조의 분리막에 두께가 Lc인 코팅층이 형성된 산소 분리막의 산소 투과도이고, Lm은 이종 구조의 분리막 두께이고, Lc는 코팅층의 두께이고, 2.54 ≤ a ≤ 0.94이며, 0.02 ≤ b ≤ 0.08임).(Wherein J 1 is a membrane oxygen permeability of a heterostructure having a thickness of 1 mm, J is an oxygen permeability of an oxygen separator having a coating layer of thickness Lc formed on a membrane of a heterostructure having a thickness of Lm, and Lm is a Membrane thickness, Lc is the thickness of the coating layer, 2.54 ≦ a ≦ 0.94, and 0.02 ≦ b ≦ 0.08).
PCT/KR2014/012119 2014-04-02 2014-12-10 Oxygen separation membrane WO2015152494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0039220 2014-04-02
KR1020140039220A KR101588240B1 (en) 2014-04-02 2014-04-02 Membrane for oxygen separation

Publications (1)

Publication Number Publication Date
WO2015152494A1 true WO2015152494A1 (en) 2015-10-08

Family

ID=54240779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012119 WO2015152494A1 (en) 2014-04-02 2014-12-10 Oxygen separation membrane

Country Status (2)

Country Link
KR (1) KR101588240B1 (en)
WO (1) WO2015152494A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017216420A1 (en) * 2016-06-14 2017-12-21 Teknologian Tutkimuskeskus Vtt Oy A method and reactor for catalytic partial oxidation of hydrocarbons
CN109734438A (en) * 2019-02-01 2019-05-10 中国科学院青岛生物能源与过程研究所 A kind of titanium-based perovskite type ceramic oxygen-permeable membrane and its preparation method and application without cobalt and iron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905500B1 (en) * 2016-12-07 2018-10-15 한국에너지기술연구원 Method for Oxidative Coupling of Methane Using Oxygen ion Conductive Membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020106495A1 (en) * 2000-12-04 2002-08-08 Sirman John Derrick Ceramic membrane structure and oxygen separation method
KR20110125740A (en) * 2010-05-14 2011-11-22 한국에너지기술연구원 A bscf-5582 membrane coated with lstf-6437 for oxygen separation and the menufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288530B1 (en) * 2011-09-06 2013-07-26 한국에너지기술연구원 BSCF tubular Membrane coated with LSTF oxide for oxygen separation and fabricating method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020106495A1 (en) * 2000-12-04 2002-08-08 Sirman John Derrick Ceramic membrane structure and oxygen separation method
KR20110125740A (en) * 2010-05-14 2011-11-22 한국에너지기술연구원 A bscf-5582 membrane coated with lstf-6437 for oxygen separation and the menufacturing method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GEUM SOOK PARK ET AL.: "Mixed conduction and oxygen permeation in dual-phase Ce0.9Gd0.1O1.95- La0.6Sr0.4Co0.2Fe0.8O3-d membrane", ISSI-19, 2 June 2013 (2013-06-02), pages 73 *
JUNG, JAE WON: "Mixed Conductivity of La0.6Sr0.4Co0.2Fe0.8O3-delta-Gd0.1Ce0.9O2-delta Composite Membrane for Oxygen Separation", UNIVERSITY OF SCIENCE AND TECHNOLOGY MASTER'S THESIS, 31 August 2013 (2013-08-31), pages 1 - 60 *
PARK, GEUM SOOK ET AL.: "Mixed Conduction and Oxygen Permeation in Dual-Phase Ce0.9Gd0.1O1.95- La0.6Sr0.4Co0.2Fe0.8O3-d Membrane", 2013 KSEE SPRING CONFERENCE, 23 May 2013 (2013-05-23), pages 186 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017216420A1 (en) * 2016-06-14 2017-12-21 Teknologian Tutkimuskeskus Vtt Oy A method and reactor for catalytic partial oxidation of hydrocarbons
CN109734438A (en) * 2019-02-01 2019-05-10 中国科学院青岛生物能源与过程研究所 A kind of titanium-based perovskite type ceramic oxygen-permeable membrane and its preparation method and application without cobalt and iron
CN109734438B (en) * 2019-02-01 2022-03-08 中国科学院青岛生物能源与过程研究所 Cobalt-and-iron-free titanium-based perovskite ceramic oxygen permeable membrane and preparation method and application thereof

Also Published As

Publication number Publication date
KR20150114711A (en) 2015-10-13
KR101588240B1 (en) 2016-01-25

Similar Documents

Publication Publication Date Title
US6475657B1 (en) Ceramic membrane which is in an oxide ion conductor based on yttrium-stabilized zirconia
US7569304B2 (en) Fuel cells and related devices
KR101395977B1 (en) Composite oxygen ion transport membrane
US7906006B2 (en) Steam electrolysis
EP2791082A1 (en) Composite oxygen transport membrane
AU2002334198A1 (en) Improvements in fuel cells and related devices
WO2016144067A1 (en) Method for manufacturing electrode, electrode manufactured by same, electrode structure including electrode, fuel cell or metal-air secondary battery, battery module including cell or battery, and composition for manufacturing electrode
WO2015016599A1 (en) Solid oxide fuel cell and method for manufacturing same
JP2014510014A (en) Sintering additive for ceramic devices obtained in low pO2 atmosphere
KR102137062B1 (en) zirconia-based ceramic composite membrane by using Ruddlesden-Popper structure active layer
WO2015152494A1 (en) Oxygen separation membrane
AU2002225094B8 (en) Oxide ion conductive ceramic membrane stacked microstructures; use for separating oxygen from air
US20110189066A1 (en) Robust mixed conducting membrane structure
ZA200305732B (en) Oxide ion conductive ceramic membrane stacked microstructures for high-pressure oxygen production.
JP2004532499A5 (en)
KR20140038795A (en) Support coated composite layers of mixed conductor, and manufacturing method of support coated composite layers of mixed conductor
WO2017155188A1 (en) Solid oxide fuel cell and method for manufacturing same
JP2000108245A (en) Ceramic laminating material
Takamura et al. Electrode and oxygen permeation properties of (Ce, Sm) O2–MFe2O4 composite thin films (M= Co and Mn)
KR101496751B1 (en) Dual phase oxygen separation membrane and manufacturing method thereof
KR101806365B1 (en) High permeability membrane for oxygen separation and fabrication method thereof
US20170005341A1 (en) High permeability oxygen separation membrane coated with electroactive layer on both sides and fabrication method thereof
KR101496752B1 (en) Dual phase oxygen separation membrane and manufacturing method thereof
KR20220139612A (en) High permeability membrane for oxygen separation and fabrication method thereof
WO2015016565A1 (en) Electrolyte containing inorganic oxide powder and sintered bodies thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887852

Country of ref document: EP

Kind code of ref document: A1