WO2017155188A1 - Solid oxide fuel cell and method for manufacturing same - Google Patents

Solid oxide fuel cell and method for manufacturing same Download PDF

Info

Publication number
WO2017155188A1
WO2017155188A1 PCT/KR2016/014686 KR2016014686W WO2017155188A1 WO 2017155188 A1 WO2017155188 A1 WO 2017155188A1 KR 2016014686 W KR2016014686 W KR 2016014686W WO 2017155188 A1 WO2017155188 A1 WO 2017155188A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrolyte
fuel cell
reaction prevention
prevention layer
Prior art date
Application number
PCT/KR2016/014686
Other languages
French (fr)
Korean (ko)
Inventor
배홍열
안진수
박영민
배원수
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Publication of WO2017155188A1 publication Critical patent/WO2017155188A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell (SOFC), and more particularly, to a solid oxide fuel cell including a reaction preventing layer between an electrolyte and a fuel electrode.
  • SOFC solid oxide fuel cell
  • a fuel cell is a device that generates electricity by reacting fuel such as hydrogen or natural gas with oxygen, and is recognized as one of the main energy technologies of the future because of its high efficiency, pollution-free, and noise-free characteristics.
  • Solid Oxide Fuel Cells use solid oxides as electrolytes to pass oxygen ions.
  • the electrolyte materials include zirconia (ZrO 2 ) oxides, ceria (CeO 2 ) oxides, and lanthanum-strontium-gadolinium.
  • Magnesium oxide (LSGM) or the like is used.
  • the electrolyte is yttria (Y 2 O 3 ), ceria (CeO 2 ), scandia (Sc 2 O 3 ), gadolinium oxide (Gd 2 O 3 ) and the like for the purpose of improving thermal stability and ionic conductivity at high temperature. Contains some stabilizer.
  • the unit cell of a solid oxide fuel cell has the solid electrolyte described above, and is formed in such a manner that an air electrode is attached to one side and a fuel electrode is attached to the other side.
  • SOFC solid oxide fuel cell
  • a conventional anode a mixture of nickel oxide (NiO) and yttrium stabilized zirconia (YSZ) is used.
  • NiO nickel oxide
  • YSZ yttrium stabilized zirconia
  • LSC Lanthanum-strontium-cobalt oxide
  • LSM lanthanum-strontium-manganese oxide
  • LSCF lanthanum-strontium- Cobalt-iron oxide
  • BSCF barium-strontium-cobalt-iron oxide
  • LSCF lanthanum-strontium-cobalt-iron oxide
  • BSCF barium-strontium-cobalt-iron oxide
  • Air cathodes are used a lot.
  • the lanthanum-strontium-cobalt-iron oxide (LSCF) -based or barium-strontium-cobalt-iron oxide (BSCF) -based cathode material has a property of reacting with a zirconia (ZrO 2 ) -based electrolyte, thereby sintering the cathode.
  • ZrO 2 zirconia
  • complex ions with low ion conductivity such as lanthanum zirconate (La 2 Zr 2 O 7 ) or strontium zirconate (SrZrO 3 ), are formed at the interface between the cathode and the electrolyte .
  • reaction compound as described above decreases the rate at which oxygen ions formed in the cathode diffuse through the electrolyte and react with hydrogen in the anode, thereby degrading the overall performance of the fuel cell and causing thermal and mechanical stability by causing a difference in thermal expansion coefficient. This causes a decrease.
  • a reaction preventing layer is introduced between the two.
  • a ceria-based oxide doped with gadolinium (Gd), samarium (Sm), or yttrium (Y) is typically used.
  • the method for producing the reaction prevention layer can be largely divided into a high temperature process method and a low temperature process method.
  • the high temperature process method there is a method such as applying a sintered ceria doped with Gd or the like by screen printing method or the like and sintering as in Patent Document 1. Since the ceria-based material is poor in sintering property, if the sintering is not performed at a high temperature, the density of the ceria-based material may not be able to act as a reaction prevention layer, and the bonding strength may be reduced to peel off from the electrolyte.
  • the low temperature process method does not go through the high temperature process in the cell manufacturing process of the reaction prevention layer formation and the cathode formation. Specifically, the whole process of manufacturing a cell is performed at 1100 degrees C or less.
  • the reaction prevention layer is formed by a low temperature process
  • a chemical reaction between the ceria-based reaction prevention layer and the Zirkorea electrolyte layer generated at a high temperature can be prevented, and thus phase generation can be suppressed. Therefore, since the cell produced by the low temperature process method has a small activation energy of the electric conductivity according to the temperature, the cell produced by the low temperature process exhibits excellent performance in the medium and low temperature regions because the decrease in the electric conductivity according to the temperature is alleviated.
  • said low temperature process method there exist methods, such as a pulse laser, aerosol vapor deposition (patent document 2), sputtering, an electron beam vapor deposition.
  • the interface portion between the zirconia-based electrolyte and the ceria-based reaction prevention layer is very sensitive to various process conditions.
  • thermal, mechanical, and electrical inconsistencies at the interface between two materials increase the electrical resistance of the cell, weaken the bonding strength, and cause delamination of the intercalation, or the loose strontium (Sr) contained in the cathode layer.
  • diffusion causes a problem such as generation of a high resistance strontium zirconia (SrZrO 3 ) phase, causing variation in cell performance, thereby making it difficult to secure stable cell performance.
  • Patent Document 1 Korean Unexamined Patent Publication No. 10-2015-0123527
  • Patent Document 2 Korean Unexamined Patent Publication No. 10-2013-0065221
  • One aspect of the present invention is to provide a solid oxide fuel cell and a method of manufacturing the same, which has excellent performance even in the mid- and low temperature range and can secure stable cell performance by minimizing deviation.
  • the present invention includes a fuel electrode, an electrolyte and an air electrode,
  • reaction prevention layer formed between the electrolyte and the air electrode
  • It provides a solid oxide fuel cell comprising a relaxation layer formed between the electrolyte and the reaction prevention layer.
  • the present invention comprises the steps of preparing a half cell formed with the anode and the electrolyte;
  • It provides a method for producing a solid oxide fuel cell comprising the step of forming an air electrode on the reaction prevention layer.
  • the reaction prevention layer is formed between the electrolyte and the cathode by using a low temperature process, the chemical reaction between the ceria-based reaction prevention layer and the zirconia-based electrolyte layer generated at a high temperature can be prevented. Through this, not only excellent output performance can be secured, but also reduction of electrical conductivity can be alleviated, thereby ensuring excellent electrical performance in the mid- and low temperature regions.
  • 1 is a graph evaluating the performance of a fuel cell in which a reaction prevention layer is manufactured by a high temperature process method and a low temperature process method.
  • FIG. 2 is a photograph of observing and analyzing a phase formed at an interface between the reaction prevention layer and the electrolyte layer in a fuel cell in which the reaction prevention layer is manufactured by a low temperature process method.
  • FIG. 3 is a graph evaluating the performance of a fuel cell in which a reaction prevention layer is manufactured by a low temperature process method.
  • FIG. 4 is a schematic view showing a fuel cell of the present invention.
  • FIG. 6 is a graph evaluating the performance of a fuel cell in which a relaxed layer of the present invention is formed.
  • the solid oxide fuel cell of the present invention includes a fuel electrode 10, an electrolyte 20, and an air electrode 30, and a reaction preventing layer 40 is formed between the electrolyte 20 and the air electrode 30.
  • a relaxation layer 50 is formed between the electrolyte 20 and the reaction prevention layer 40.
  • a solid oxide fuel cell generally has an electrolyte 20 in the center, and a fuel electrode 10 and an air electrode 30 on both sides of the electrolyte.
  • oxygen receives electrons and becomes oxygen ions and passes through the electrolyte 20.
  • oxygen ions release electrons and react with hydrogen gas. Water vapor is formed.
  • the electrolyte 20 of the solid oxide fuel cell should not be permeable due to its compactness, and should not have electron conductivity but high oxygen ion conductivity, and the electrode should be porous to allow gas to diffuse well and have high electron conductivity. .
  • the anode 10 may be divided into an anode support layer 11 and an anode functional layer 12.
  • the anode support layer 11 and the anode functional layer 12 may be formed of a composite of nickel and stabilized zirconia. It is preferable to have a porous structure for smooth fuel gas flow.
  • the electrolyte uses an ion conductive solid oxide, and specifically, zirconia (ZrO 2 ) -based oxide, ceria (CeO 2 ) -based oxide, lanthanum-strontium-gadolinium-magnesium oxide (LSGM), and the like may be used.
  • zirconia-based oxides are preferable, and as an example, yttrium stabilized zirconia (YSZ), scandium stabilized zirconia (ScSZ) and the like can be used.
  • YSZ yttrium stabilized zirconia
  • ScSZ scandium stabilized zirconia
  • at least one of yttrium (Y) and scandium (Sc) is zirconia included in the range of 1 at.% To 40 at.%.
  • the concentration of oxygen vacancies is too low, leading to a decrease in the oxygen ion conductivity and the electrical conductivity of the electrolyte material.
  • it exceeds 40at.% The oxygen ion mobility may be lowered due to the incorporation of oxygen vacancies, which may cause a decrease in oxygen ion conductivity and electrical conductivity of the electrolyte material.
  • the cathode may be lanthanum-strontium-manganese oxide (LSM), lanthanum-strontium-cobalt oxide (LSC), lanthanum-strontium-cobalt-iron oxide (LSCF), barium-strontium-cobalt-iron oxide (BSCF), or the like.
  • Lanthanum-strontium-cobalt-iron oxide (LSCF) may be preferably used.
  • the lanthanum-stromium-cobalt-iron oxide (LSCF) used as the cathode material may be used alone, or may be mixed with zirconia or ceria-based oxide.
  • the reaction prevention layer serves to prevent the material constituting the cathode (eg, LSCF) from reacting with zirconium (Zr) constituting the electrolyte.
  • the reaction layer is a sintered cathode to produce a solid oxide fuel cell, or the zirconium of the electrolyte reacts with the material constituting the cathode while the battery is operating at a high temperature, lanthanum zirconia (La 2 Zr 2 O 7 ) or strontium zirconia (SrZrO 3 ) to inhibit high resistance phase generation.
  • the high resistance phase such as lanthanum zirconia (La 2 Zr 2 O 7 ) or strontium zirconia (SrZrO 3 ), reduces the rate at which oxygen ions generated in the anode diffuse through the electrolyte and react with hydrogen in the cathode. By lowering, it becomes a cause of reducing overall fuel cell performance.
  • the material used for the reaction prevention layer is preferably ceria-based oxide, and more preferably doped ceria (GDC) doped with gadolinium (Gd), ceria (SDC) doped with samarium (Sm), or yttrium (Y) doped.
  • GDC doped ceria
  • SDC ceria
  • Y ceria
  • La lanthanum
  • LDC lanthanum doped ceria
  • at least one of the gadolinium (Gd), samarium (Sm), yttrium (Y), and lanthanum (La) is included in the range of 1at.% To 40at.%.
  • the concentration of oxygen vacancies is too low to reduce the oxygen ion conductivity and the electrical conductivity of the reaction prevention layer material.
  • the oxygen ion mobility may be lowered due to the incorporation of oxygen vacancies, which may cause a decrease in oxygen ion conductivity and electrical conductivity of the reaction prevention layer material.
  • the reaction prevention layer is preferably formed in a pore-free structure, the pores may be locally formed according to the process conditions, in this case it is preferable that the pore size has a size of 0.1 ⁇ m or less.
  • the thickness of the reaction prevention layer is preferably 0.1 ⁇ 2.0 ⁇ m.
  • the thickness of the reaction prevention layer is less than 0.1 ⁇ m, not only the formation of the film quality is difficult, but also the thickness of the film may be uneven during film formation, so that the reaction between the cathode and the electrolyte may occur locally.
  • the thickness is more than 2 ⁇ m can effectively prevent the reaction between the electrolyte and the cathode, in this case, since the reaction prevention layer itself acts as a resistance, it is preferable not to exceed 2 ⁇ m.
  • the mitigating layer 50 constituting the fuel cell of the present invention is positioned between the two layers to resolve structural inconsistency between the electrolyte and the reaction preventing layer, inconsistency of the thermal expansion coefficient, and the like. That is, the relaxation layer serves to alleviate the sudden change in the lattice constant and crystal structure of the electrolyte and the reaction prevention layer, not only improves the bonding strength between the two layers, but also serves to reduce the difference in the coefficient of thermal expansion thermally, It has structural robustness against mechanical change. As a result, there is a technical significance to secure stable battery performance.
  • the alleviation layer may be composed of a composite of an electrolyte material (M) and a reaction prevention layer material (N).
  • the relaxation layer preferably has an electrolyte material and a reaction prevention layer in an atomic ratio (atomic%, M: N) of 1: 9-9: 1. If the atomic ratio between the materials is out of the above range, the amount of one of the two materials is so insufficient that it is difficult to form a composite, whereby the structural mismatch using the composite and the relaxation of the mismatch of the thermal expansion coefficient cannot be secured.
  • the electrolyte material (M) is a zirconia-based oxide electrolyte material, it may be represented by A x Zr 1-x O 2- ⁇ , wherein A is at least one of yttrium (Y), scandium (Sc) And x may range from 0.01 to 0.4.
  • the reaction layer material (N) is a ceria-based oxide, may be represented by B y Ce 1-y O 2- ⁇ , wherein B is gadolinium (Gd), samarium (Sm), yttrium (Y), lanthanum (La) may be one or more, and y may have a range of 0.01 to 0.4.
  • means the concentration of oxygen vacancies (site where oxygen is missing in the lattice). For example, when Z is added to ZrO 2 , the corresponding oxygen is released (if two Y are added, one oxygen is released to create an empty spot. However, the concentration of the vacancies also depends on other factors such as oxygen partial pressure. It is not represented by x / 2 because it is affected, and is usually expressed mainly by 2- ⁇ ).
  • the thickness of the relaxation layer is about 10 to 30% of the thickness of the reaction prevention layer. That is, since the thickness of the reaction prevention layer has a range of 0.1 ⁇ 2.0 ⁇ m, it is preferable that the thickness of the relaxation layer is 0.01 ⁇ 0.6 ⁇ m.
  • the thickness of the alleviation layer is too thin, it is difficult to secure the structural mismatch, the thermal expansion coefficient mismatch relaxation effect, while if too thick, the electrical resistance of the alleviation layer itself increases, causing a decrease in cell performance.
  • the alleviation layer and the reaction prevention layer is preferably manufactured using a low temperature process method.
  • a low temperature process method there are pulse laser deposition, aerosol deposition, sputtering deposition, electron beam deposition, and the like.
  • the heat treatment may be performed to manufacture a fuel cell after heating or deposition during the deposition process, but the temperature does not exceed 1100 ° C. is referred to as a low temperature process method.
  • the high temperature process method over 1100 ° C.
  • zirconium (Zr) in the electrolyte and the cerium (Ce) of the relaxation layer or the reaction prevention layer react with each other at a high temperature, and thus high resistance cerium Phases of zirconia (Ce 2 Zr a O 7 + x ) are formed, resulting in increased battery resistance due to increased resistance.
  • the low temperature process method for forming the alleviation layer and the reaction prevention layer may use different methods, but it is advantageous to perform the same method in terms of simplifying the process and reducing the cost.
  • the electron beam deposition method which has a fast deposition rate even at low temperature in the low temperature process method, and can also deposit on a large range of large area substrate using a small target.
  • Preferred manufacturing method in the present invention comprises the steps of preparing a half cell formed with the anode and the electrolyte; Forming a relaxation layer on the electrolyte of the half cell using a low temperature process method; Forming a reaction prevention layer on the alleviation layer by using a low temperature process method; And forming an air electrode on the reaction prevention layer.
  • the method for forming the anode and the electrolyte is not particularly limited in the present invention, and a half cell is manufactured by a conventional method performed in the technical field to which the present invention belongs. As a preferable example, a tape casting method or the like can be used.
  • a mixture of nickel oxide (NiO) and zirconia (ZrO 2 ) may be formed by a tape casting method, and the electrolyte layer may be formed by casting a material such as yttria stabilized zirconia (YSZ). It can form using a method.
  • NiO nickel oxide
  • ZrO 2 zirconia
  • YSZ yttria stabilized zirconia
  • a sintering heat treatment may be performed to manufacture a half cell.
  • a relaxation layer is formed on the prepared electrolyte of the half cell, and a reaction prevention layer is formed on the relaxation layer.
  • the low temperature process includes pulse laser deposition, aerosol deposition, sputtering deposition, electron beam deposition, and the like.
  • the electron beam deposition method which has a fast deposition rate even at low temperature, and can also deposit on a large range of large area substrate using a small target.
  • the relaxation layer and the reaction prevention layer are sequentially formed by an electron beam deposition method, but no additional heat treatment is performed. This is because the heat treatment is included in the formation of the air electrode in the future.
  • heat treatment may be performed during the relaxation layer formation process or the reaction prevention layer formation process.
  • the heat treatment at this time is preferably not more than 1100 °C. If the heat treatment temperature exceeds 1100 °C, as mentioned earlier, the formation of a high-resistance phase of cerium zirconia (Ce 2 Zr a O 7 + x ) to increase the resistance causes the battery performance degradation .
  • the cathode material may be LSCF, or the like, and may be used in combination with zirconia or ceria oxide as well as single use.
  • the method for forming the air electrode is not particularly limited in the present invention, and is based on a conventional method performed in the technical field to which the present invention belongs.
  • the cathode material is coated by screen printing, and heat treatment is performed at a temperature in the range of 800 to 1100 ° C.
  • the reference example is a result of analyzing the performance for each operation temperature between the cell formed the reaction layer in the high temperature process and the cell formed the reaction layer in the low temperature process in forming the reaction layer between the electrolyte and the cathode.
  • anode fuel electrode support and anode functional layer
  • NiO nickel oxide
  • ZrO 2 zirconia
  • the electrolyte was formed by yttria stabilized zirconia (YSZ) by tape casting, followed by sintering to prepare a half cell.
  • Gd-doped ceria (GDC) oxide was coated by screen printing, which is a high temperature process, and sintered by heat treatment at 1250 ° C.
  • the low temperature process was deposited at 100 ° C. by an electron beam deposition method, and no additional heat treatment was performed.
  • the cathode material mixed with LSCF and GDC is coated by screen printing, and sintered and heat treated at 1000 ° C. to finally manufacture the fuel cell manufactured by the high temperature process method and the fuel cell manufactured by the low temperature process method, respectively. It was.
  • the comparative example is a result of analyzing the reaction prevention layer and the electrolyte of the fuel cell in which the reaction prevention layer is manufactured by the low temperature process method based on the reference example, and manufacturing a plurality of fuel cells and evaluating the same.
  • a reaction prevention layer was formed on the half cell formed by the same method as the reference example by using an electron beam deposition method at 100 ° C. using a target made of GDC oxide on the electrolyte of the half cell. Thereafter, the cathode material in which the LSCF and GDC were mixed was applied by screen printing, and the fuel cell was manufactured by sintering heat treatment at 1000 ° C. Six fuel cells were fabricated in the same manner six times.
  • the GDC oxide was a material containing 20 at.% Of GD, and the deposition thickness was about 0.3 to 0.4 ⁇ m.
  • FIG. 2 With the fuel cell sample fabricated for the third time in the sixth manufacturing process, the cross section was observed and the result is shown in FIG. 2. As shown in Figure 2 (a), it was confirmed that a high resistance strontium zirconia phase was formed along the interface between the reaction prevention layer and the electrolyte. In particular, when the component is analyzed in FIG. 2 (b), it can be seen that the components of the reaction prevention layer and the electrolyte layer interface are mainly oxides of Sr and Zr.
  • a half cell was prepared in the same manner as the reference example and the comparative example. Subsequently, on the electrolyte of the half cell, the target was formed of a composite of GDC and YSZ, and was deposited at 100 ° C. by electron beam deposition to form a relaxed layer. At this time, the GDC oxide was a material containing 20at.% Of Gd, and YSZ was a material containing 16at.% Of Y. Meanwhile, the atomic ratio between the GDC and YSZ was maintained at 5: 5, and the relaxed layer formed had a thickness of about 0.05 ⁇ m. No additional heat treatment was performed during the relaxation layer formation.
  • the relaxation layer was formed, it was deposited at 100 ° C. by an electron beam deposition method using a target made of GDC oxide to form a reaction prevention layer.
  • the GDC oxide was a material containing 20at.% Gd. No additional heat treatment was performed during the reaction prevention layer formation process.
  • the thickness of the reaction prevention layer was formed to a thickness of about 0.3 ⁇ 0.4 ⁇ m.
  • the cathode material in which the LSCF and GDC were mixed was applied by screen printing, and the fuel cell was manufactured by sintering heat treatment at 1000 ° C. Six fuel cells were fabricated in the same manner six times.
  • FIG. 5 After manufacturing six fuel cells having the form of FIG. 4 by the above method, the reaction between the reaction layer and the electrolyte of the first fuel cell was analyzed and the results are shown in FIG. 5.
  • FIG. 5 (a) it can be seen that a relaxation layer is formed between the reaction prevention layer and the electrolyte.
  • FIG. 5 (b) Ce and Zr are observed as main materials of the relaxation layer.
  • FIG. 6 the performance deviation of the six fuel cells is analyzed and the results are shown in FIG. 6.
  • the result of FIG. 6 is the same as that of FIG. 3.
  • a fuel cell in which a mitigating layer and a reaction prevention layer are formed shows very stable cell performance regardless of manufacturing order. That is, it can be seen that the performance of the battery is very robust against the micro fluctuation factor of the process.

Abstract

The present invention relates to a solid oxide fuel cell (SOFC) and, more specifically, to an SOFC comprising a reaction preventing layer between an electrolyte and an anode.

Description

고체산화물 연료전지 및 그 제조방법Solid oxide fuel cell and manufacturing method thereof
본 발명은 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)에 관한 것으로서, 보다 상세하게는 전해질과 연료극 사이에 반응방지층(reaction preventing layer)을 포함하는 고체산화물 연료전지에 관한 것이다. The present invention relates to a solid oxide fuel cell (SOFC), and more particularly, to a solid oxide fuel cell including a reaction preventing layer between an electrolyte and a fuel electrode.
연료전지는 수소나 천연가스 등의 연료를 산소와 반응시켜 전기를 생산하는 장치로서 높은 효율과 무공해, 무소음 등의 특성을 인하여 미래의 주요한 에너지 기술의 하나로 인식되고 있다.A fuel cell is a device that generates electricity by reacting fuel such as hydrogen or natural gas with oxygen, and is recognized as one of the main energy technologies of the future because of its high efficiency, pollution-free, and noise-free characteristics.
고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)는 산소 이온을 통과시키는 전해질로서 고체산화물을 사용하며 전해질 물질로는 지르코니아(ZrO2)계 산화물, 세리아(CeO2)계 산화물, 란타늄-스트론튬-가돌리늄-마그네슘 산화물(LSGM) 등이 사용되고 있다.Solid Oxide Fuel Cells (SOFCs) use solid oxides as electrolytes to pass oxygen ions.The electrolyte materials include zirconia (ZrO 2 ) oxides, ceria (CeO 2 ) oxides, and lanthanum-strontium-gadolinium. Magnesium oxide (LSGM) or the like is used.
상기의 전해질은 고온에서의 열적 안정성과 이온 전도성을 향상시키기 위한 목적으로 이트리아(Y2O3), 세리아(CeO2), 스칸디아(Sc2O3), 산화가돌리늄(Gd2O3) 등의 안정화제를 일부 함유한다.The electrolyte is yttria (Y 2 O 3 ), ceria (CeO 2 ), scandia (Sc 2 O 3 ), gadolinium oxide (Gd 2 O 3 ) and the like for the purpose of improving thermal stability and ionic conductivity at high temperature. Contains some stabilizer.
고체산화물 연료전지(SOFC)의 단위 셀은 상기의 고체 전해질을 두고, 일측에는 공기극을, 다른 일측에는 연료극을 부착한 형태로 만들어진다. 통상적인 연료극으로는 산화니켈(NiO)과 이트륨 안정화 지르코니아(YSZ)의 혼합물이 사용되고 있으며, 공기극으로는 란타늄-스트론튬-코발트 산화물(LSC), 란타늄-스트론튬-망간 산화물(LSM), 란타늄-스트론튬-코발트-철 산화물(LSCF), 바륨-스트론튬-코발트-철 산화물(BSCF) 등이 사용되고 있다.The unit cell of a solid oxide fuel cell (SOFC) has the solid electrolyte described above, and is formed in such a manner that an air electrode is attached to one side and a fuel electrode is attached to the other side. As a conventional anode, a mixture of nickel oxide (NiO) and yttrium stabilized zirconia (YSZ) is used. Lanthanum-strontium-cobalt oxide (LSC), lanthanum-strontium-manganese oxide (LSM), and lanthanum-strontium- Cobalt-iron oxide (LSCF), barium-strontium-cobalt-iron oxide (BSCF), etc. are used.
최근에는 란타늄-스트론튬-망간 산화물(LSM)계의 공기극보다는 연료전지의 전기화학적 특성이 뛰어난 것으로 알려진 란타늄-스트론튬-코발트-철 산화물(LSCF)계 또는 바륨-스트론튬-코발트-철 산화물(BSCF)계 공기극이 많이 사용되고 있다. Recently, a lanthanum-strontium-cobalt-iron oxide (LSCF) system or a barium-strontium-cobalt-iron oxide (BSCF) system, which is known to have superior electrochemical properties of a fuel cell than a lanthanum-strontium-manganese oxide (LSM) -based electrode Air cathodes are used a lot.
그러나, 상기 란타늄-스트론튬-코발트-철 산화물(LSCF)계 또는 바륨-스트론튬-코발트-철 산화물(BSCF)계 공기극 물질은 지르코니아(ZrO2)계의 전해질과 반응하는 특성이 있어서, 공기극을 소결하는 과정 및 전지가 고온에서 작동하는 동안 란타니움 지르코네이트(La2Zr2O7) 또는 스트론티움 지르코네이트(SrZrO3)와 같은 이온 전도성이 낮은 복합 산화물이 공기극과 전해질 계면에 형성되게 된다.However, the lanthanum-strontium-cobalt-iron oxide (LSCF) -based or barium-strontium-cobalt-iron oxide (BSCF) -based cathode material has a property of reacting with a zirconia (ZrO 2 ) -based electrolyte, thereby sintering the cathode. During the process and operation of the cell at high temperatures, complex ions with low ion conductivity, such as lanthanum zirconate (La 2 Zr 2 O 7 ) or strontium zirconate (SrZrO 3 ), are formed at the interface between the cathode and the electrolyte .
위와 같은 반응 화합물의 형성은 공기극에서 형성된 산소 이온이 전해질을 통하여 확산하여 연료극에서 수소와 반응을 일으키는 속도를 떨어뜨림으로서 연료전지의 전체 성능을 저하시키고, 열팽창 계수의 차이를 유발하여 열적, 기계적 안정성을 저하시키는 원인이 된다.The formation of the reaction compound as described above decreases the rate at which oxygen ions formed in the cathode diffuse through the electrolyte and react with hydrogen in the anode, thereby degrading the overall performance of the fuel cell and causing thermal and mechanical stability by causing a difference in thermal expansion coefficient. This causes a decrease.
이와 같이, 전해질과 공기극 재료간의 반응을 억제하기 위하여, 둘 사이에 반응방지층(reaction preventing layer)을 도입하고 있다. 상기 반응방지층으로는 대표적으로 가돌리늄(Gd), 사마륨(Sm) 또는 이트륨(Y) 등이 도핑된 세리아 계열의 산화물을 사용한다.In this way, in order to suppress the reaction between the electrolyte and the cathode material, a reaction preventing layer is introduced between the two. As the reaction prevention layer, a ceria-based oxide doped with gadolinium (Gd), samarium (Sm), or yttrium (Y) is typically used.
상기 반응방지층을 제조하는 방법으로는 크게 고온 공정법과 저온 공정법을 나눌 수 있다.The method for producing the reaction prevention layer can be largely divided into a high temperature process method and a low temperature process method.
상기 고온 공정법으로는 특허문헌 1과 같이, 위의 Gd 등이 도핑된 세리아 계열의 산화물을 스크린 프린팅법 등으로 도포하여 소결하는 등이 방법이 있다. 상기 세리아 계열의 소재는 소결성이 좋지 않기 때문에 고온에서 소결이 이루어지지 않으면, 치밀도가 낮아 반응방지층의 역할을 할 수 없을 뿐만 아니라, 접합강도가 저하되어 전해질로부터 박리되는 문제가 있다.As the high temperature process method, there is a method such as applying a sintered ceria doped with Gd or the like by screen printing method or the like and sintering as in Patent Document 1. Since the ceria-based material is poor in sintering property, if the sintering is not performed at a high temperature, the density of the ceria-based material may not be able to act as a reaction prevention layer, and the bonding strength may be reduced to peel off from the electrolyte.
그러나, 소결성을 향상시키기 위하여 높은 온도에서 소결하게 되면, 세리아계 반응방지층과 지르코니아 전해질층 사이에 화학적 반응이 발생하여 고저항의 상(phase)을 형성하게 되고, 이에 따라, 전기적 저항이 증가하여 셀 성능이 저하된다. 예를 들어, 지르코늄이 반응하여 고저항의 세륨지르코니아(Ce2Zr2O7+x)를 형성한다. 이러한 상(phase)은 온도에 따른 전기전도도의 활성화에너지가 크기 때문에, 연료전지의 작동 온도가 낮아질수록 전기전도도의 감소가 훨씬 심화되므로, 중·저온 영역(600~700℃)으로 갈수록 셀 성능이 급격히 저하되는 문제가 있다.However, when sintering at a high temperature to improve the sintering properties, a chemical reaction occurs between the ceria-based reaction prevention layer and the zirconia electrolyte layer to form a phase of high resistance, thereby increasing the electrical resistance of the cell Performance is degraded. For example, zirconium reacts to form high resistance cerium zirconia (Ce 2 Zr 2 O 7 + x ). Since the phase has a large activation energy of electrical conductivity according to temperature, as the operating temperature of the fuel cell decreases, the electrical conductivity decreases even more, so that the cell performance increases toward the medium and low temperature region (600 to 700 ° C). There is a problem that is sharply lowered.
한편, 저온 공정법은 반응방지층 형성 및 공기극 형성의 셀 제작과정에서 고온 공정을 거치지 않는다. 구체적으로는 셀을 제작하는 전체 공정이 1100℃ 이하에서 이루어진다. 이와 같이 저온 공정으로 반응방지층을 형성하면, 고온에서 발생되는 세리아계 반응방지층과 지르코리아 전해질층 간의 화학적 반응을 막고, 이에 따른 상(phase) 생성을 억제할 수 있다. 따라서, 저온 공정법으로 제작된 셀은 온도에 따른 전기전도도의 활성화에너지가 작기 때문에, 저온 공정에서 제작된 셀은 온도에 따른 전기전도도의 감소가 완화되므로 중·저온 영역에서 우수한 성능을 보인다. 상기 저온 공정법으로는 펄스레이저, 에어로즐 증착(특허문헌 2), 스퍼터링, 일렉트론빔 증착 등의 방법이 있다.On the other hand, the low temperature process method does not go through the high temperature process in the cell manufacturing process of the reaction prevention layer formation and the cathode formation. Specifically, the whole process of manufacturing a cell is performed at 1100 degrees C or less. As such, when the reaction prevention layer is formed by a low temperature process, a chemical reaction between the ceria-based reaction prevention layer and the Zirkorea electrolyte layer generated at a high temperature can be prevented, and thus phase generation can be suppressed. Therefore, since the cell produced by the low temperature process method has a small activation energy of the electric conductivity according to the temperature, the cell produced by the low temperature process exhibits excellent performance in the medium and low temperature regions because the decrease in the electric conductivity according to the temperature is alleviated. As said low temperature process method, there exist methods, such as a pulse laser, aerosol vapor deposition (patent document 2), sputtering, an electron beam vapor deposition.
그러나, 위와 같은 저온 공정법은 원자 단위로 증착되기 때문에, 지르코니아 계열의 전해질과 세리아 계열의 반응방지층 간의 계면 부분이 다양한 공정 조건에 따라 매우 민감하게 영향을 받는다. 즉, 두 물질의 계면에서 나타나는 열적, 기계적, 전기적 불일치는 셀의 전기저항을 상승시키거나, 접합 강도를 약화시켜 충간의 박리를 유발하거나, 공기극층에 포함되는 있는 스트론튬(Sr)이 느슨한 계면을 따라 확산되어 고저항의 스트론튬지르코니아(SrZrO3) 상 생성을 유발하는 등의 문제를 발생시켜, 셀 성능의 편차를 유발하여 안정적인 셀 성능을 확보하는 것이 용이하지 않다는 문제가 있다.However, since the low-temperature process method is deposited on an atomic basis, the interface portion between the zirconia-based electrolyte and the ceria-based reaction prevention layer is very sensitive to various process conditions. In other words, thermal, mechanical, and electrical inconsistencies at the interface between two materials increase the electrical resistance of the cell, weaken the bonding strength, and cause delamination of the intercalation, or the loose strontium (Sr) contained in the cathode layer. As a result, diffusion causes a problem such as generation of a high resistance strontium zirconia (SrZrO 3 ) phase, causing variation in cell performance, thereby making it difficult to secure stable cell performance.
(특허문헌 1) 한국 공개특허공보 제10-2015-0123527호(Patent Document 1) Korean Unexamined Patent Publication No. 10-2015-0123527
(특허문헌 2) 한국 공개특허공보 제10-2013-0065221호(Patent Document 2) Korean Unexamined Patent Publication No. 10-2013-0065221
본 발명의 일측면은 중·저온 영역에서도 우수한 성능을 가지며, 편차를 최소화하여 안정적인 셀 성능을 확보할 수 있는 고체산화물 연료전지 및 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a solid oxide fuel cell and a method of manufacturing the same, which has excellent performance even in the mid- and low temperature range and can secure stable cell performance by minimizing deviation.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자가 명확하게 이해될 수 있을 것이다. The problem to be solved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 연료극, 전해질 및 공기극을 포함하고, The present invention includes a fuel electrode, an electrolyte and an air electrode,
상기 전해질과 공기극 사이에 형성된 반응방지층을 포함하며,It includes a reaction prevention layer formed between the electrolyte and the air electrode,
상기 전해질과 반응방지층 사이에 형성된 완화층을 포함하는 고체산화물 연료전지를 제공한다.It provides a solid oxide fuel cell comprising a relaxation layer formed between the electrolyte and the reaction prevention layer.
또한, 본 발명은 연료극 및 전해질이 형성된 반전지를 준비하는 단계;In addition, the present invention comprises the steps of preparing a half cell formed with the anode and the electrolyte;
상기 반전지의 전해질 상에 저온 공정법을 이용하여 완화층을 형성하는 단계;Forming a relaxation layer on the electrolyte of the half cell using a low temperature process method;
상기 완화층 상에 저온 공정법을 이용하여 반응방지층을 형성하는 단계; 및 Forming a reaction prevention layer on the alleviation layer by using a low temperature process method; And
상기 반응방지층 상에 공기극을 형성하는 단계를 포함하는 고체산화물 연료전지의 제조방법을 제공한다.It provides a method for producing a solid oxide fuel cell comprising the step of forming an air electrode on the reaction prevention layer.
본 발명에 의하면, 저온 공정을 이용하여 전해질과 공기극 사이에 반응방지층을 형성하기 때문에, 고온에서 발생되는 세리아계 반응방지층과 지르코니아계 전해질층 간의 화학적 반응을 막을 수 있다. 이를 통해, 우수한 출력 성능을 확보할 수 있을 뿐만 아니라, 전기전도도의 감소가 완화되어 중·저온 영역에서 우수한 전기적 성능을 확보할 수 있다. According to the present invention, since the reaction prevention layer is formed between the electrolyte and the cathode by using a low temperature process, the chemical reaction between the ceria-based reaction prevention layer and the zirconia-based electrolyte layer generated at a high temperature can be prevented. Through this, not only excellent output performance can be secured, but also reduction of electrical conductivity can be alleviated, thereby ensuring excellent electrical performance in the mid- and low temperature regions.
뿐만 아니라, 전해질과 반응방지층 사이에 형성된 완화층을 형성하여 전해질과 반응방지층 간의 격자상수 및 결정 구조의 급격한 변화를 완화시켜 열적, 기계적 안정성을 확보할 뿐만 아니라, 안정적인 셀 성능을 확보할 수 있는 효과가 있다. In addition, by forming a relaxation layer formed between the electrolyte and the reaction prevention layer to mitigate sudden changes in the lattice constant and crystal structure between the electrolyte and the reaction prevention layer to ensure thermal and mechanical stability, as well as to ensure stable cell performance There is.
도 1은 고온 공정법과 저온 공정법으로 반응방지층이 제조된 연료전지의 성능을 평가한 그래프이다.1 is a graph evaluating the performance of a fuel cell in which a reaction prevention layer is manufactured by a high temperature process method and a low temperature process method.
도 2는 저온 공정법으로 반응방지층이 제조된 연료전지에서 반응방지층과 전해질층의 계면에 상이 형성된 것을 관찰하고, 분석한 사진이다.FIG. 2 is a photograph of observing and analyzing a phase formed at an interface between the reaction prevention layer and the electrolyte layer in a fuel cell in which the reaction prevention layer is manufactured by a low temperature process method.
도 3은 저온 공정법으로 반응방지층이 제조된 연료전지의 성능을 평가한 그래프이다.3 is a graph evaluating the performance of a fuel cell in which a reaction prevention layer is manufactured by a low temperature process method.
도 4는 본 발명의 연료전지를 나타낸 모식도이다.4 is a schematic view showing a fuel cell of the present invention.
도 5는 본 발명에서 반응방지층과 전해질층 사이에 완화층이 형성된 것을 관찰하고 분석한 사진이다.5 is a photograph of observing and analyzing the relaxation layer formed between the reaction prevention layer and the electrolyte layer in the present invention.
도 6은 본 발명의 완화층이 형성된 연료전지의 성능을 평가한 그래프이다.6 is a graph evaluating the performance of a fuel cell in which a relaxed layer of the present invention is formed.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
도 4를 참조하여, 본 발명의 고체산화물 연료전지에 대하여 상세히 설명한다. 상기 도 4는 본 발명의 이해를 위한 것으로서, 본 발명의 일태양을 나타낸 것이다.4, the solid oxide fuel cell of the present invention will be described in detail. 4 is for understanding the present invention, and shows one embodiment of the present invention.
본 발명의 고체산화물 연료전지는 연료극(10), 전해질(20) 및 공기극(30)을 포함하고 있으며, 상기 전해질(20)과 공기극(30) 사이에 반응방지층(40)이 형성되어 있다. 또한, 상기 전해질(20)과 반응방지층(40) 사이에는 완화층(50)이 형성되어 있다. 고체산화물 연료전지는 일반적으로 중앙에 전해질(20)이 있으며, 전해질의 양쪽에 연료극(10) 및 공기극(30)이 있는 구조로 되어 있다.The solid oxide fuel cell of the present invention includes a fuel electrode 10, an electrolyte 20, and an air electrode 30, and a reaction preventing layer 40 is formed between the electrolyte 20 and the air electrode 30. In addition, a relaxation layer 50 is formed between the electrolyte 20 and the reaction prevention layer 40. A solid oxide fuel cell generally has an electrolyte 20 in the center, and a fuel electrode 10 and an air electrode 30 on both sides of the electrolyte.
연료전지의 공기극(30, 양극이라고도 함)에서는 산소가 전자를 받아 산소이온으로 되어 전해질(20)을 통과하고, 연료극(10, 음극이라고도 함)에서는 산소이온이 전자를 방출하고 수소가스와 반응하여 수증기가 형성된다.At the cathode 30 (also called anode) of the fuel cell, oxygen receives electrons and becomes oxygen ions and passes through the electrolyte 20. At the anode (10, also called cathode), oxygen ions release electrons and react with hydrogen gas. Water vapor is formed.
고체산화물 연료전지의 전해질(20)은 치밀하여 가스를 투과시키지 않아야 하며, 전자전도성은 없으나 산소이온 전도성은 높아야 하며, 전극은 가스가 잘 확산되어 들어갈 수 있는 다공질이어야 하며 높은 전자 전도성을 구비하여야 한다.The electrolyte 20 of the solid oxide fuel cell should not be permeable due to its compactness, and should not have electron conductivity but high oxygen ion conductivity, and the electrode should be porous to allow gas to diffuse well and have high electron conductivity. .
상기 연료극(10)은 연료극 지지층(11)과 연료극 기능층(12)으로 구분될 수 있으며, 상기 연료극 지지층(11)과 연료극 기능층(12)은 니켈과 안정화 지르코니아(Stabilized Zirconia)의 복합체가 사용될 수 있으며, 원활한 연료 가스의 흐름을 위해서는 다공성 구조를 갖는 것이 바람직하다.The anode 10 may be divided into an anode support layer 11 and an anode functional layer 12. The anode support layer 11 and the anode functional layer 12 may be formed of a composite of nickel and stabilized zirconia. It is preferable to have a porous structure for smooth fuel gas flow.
상기 전해질은 이온전도성 고체 산화물을 사용하며, 구체적으로는 지르코니아(ZrO2)계 산화물, 세리아(CeO2)계 산화물, 란타늄-스트론튬-가돌리늄-마그네슘 산화물(LSGM) 등이 사용될 수 있다. 이중 지르코니아계 산화물이 바람직하며, 일예로서 이트륨 안정화 지르코니아(YSZ), 스칸듐 안정화 지르코니아(ScSZ) 등이 사용될 수 있다. 바람직하게는 상기 이트륨(Y) 및 스칸듐(Sc) 중 1종 이상이 1at.% ~ 40at.%의 범위로 포함된 지르코니아이다. 후술하는 바와 같이, 상기 이트륨(Y) 및 스칸듐(Sc) 중 1종 이상이 1at.% 미만일 경우에는 산소 공공의 농도가 너무 낮아 전해질 물질의 산소 이온전도도 및 전기전도도의 저하를 유발한다. 반면, 40at.%를 초과하는 경우에는 산소 공공 간의 합체로 인한 산소 이온 모빌리티 저하로 전해질 물질의 산소 이온전도도 및 전기전도도의 저하를 유발할 수 있다.The electrolyte uses an ion conductive solid oxide, and specifically, zirconia (ZrO 2 ) -based oxide, ceria (CeO 2 ) -based oxide, lanthanum-strontium-gadolinium-magnesium oxide (LSGM), and the like may be used. Of these, zirconia-based oxides are preferable, and as an example, yttrium stabilized zirconia (YSZ), scandium stabilized zirconia (ScSZ) and the like can be used. Preferably, at least one of yttrium (Y) and scandium (Sc) is zirconia included in the range of 1 at.% To 40 at.%. As will be described later, when one or more of the yttrium (Y) and scandium (Sc) is less than 1 at.%, The concentration of oxygen vacancies is too low, leading to a decrease in the oxygen ion conductivity and the electrical conductivity of the electrolyte material. On the other hand, if it exceeds 40at.%, The oxygen ion mobility may be lowered due to the incorporation of oxygen vacancies, which may cause a decrease in oxygen ion conductivity and electrical conductivity of the electrolyte material.
상기 공기극은 란타늄-스트론튬-망간산화물(LSM), 란타늄-스트론튬-코발트산화물(LSC), 란타늄-스트로튬-코발트-철산화물(LSCF), 바륨-스트론튬-코발트-철산화물(BSCF) 등이 사용될 수 있으며, 바람직하게는 란타늄-스트로튬-코발트-철산화물(LSCF)이 사용될 수 있다. 또한, 상기 공기극 물질로 사용되는 란타늄-스트로튬-코발트-철산화물(LSCF)은 단독으로 사용될 수 있으나 지르코니아 또는 세리아계 산화물과 혼합하여 사용될 수 있다.The cathode may be lanthanum-strontium-manganese oxide (LSM), lanthanum-strontium-cobalt oxide (LSC), lanthanum-strontium-cobalt-iron oxide (LSCF), barium-strontium-cobalt-iron oxide (BSCF), or the like. Lanthanum-strontium-cobalt-iron oxide (LSCF) may be preferably used. In addition, the lanthanum-stromium-cobalt-iron oxide (LSCF) used as the cathode material may be used alone, or may be mixed with zirconia or ceria-based oxide.
상기 반응방지층은 상기 공기극을 구성하는 물질(예를 들면, LSCF)가 전해질을 구성하는 지르코늄(Zr)과 반응하는 것을 방지하는 역할을 한다. The reaction prevention layer serves to prevent the material constituting the cathode (eg, LSCF) from reacting with zirconium (Zr) constituting the electrolyte.
보다 상세하게, 상기 반응방지층은 고체산화물 연료전지를 제조하기 위하여 공기극을 소결하는 과정 또는 전지가 고온에서 작동하는 동안 상기 공기극을 구성하는 물질과 전해질의 지르코늄이 반응하여, 란타늄지르코니아(La2Zr2O7) 또는 스트론튬 지르코니아(SrZrO3)와 같은 고저항의 상(phase) 생성을 억제한다. 상기 란타늄지르코니아(La2Zr2O7) 또는 스트론튬 지르코니아(SrZrO3)와 같은 고저항의 상(phase)은 연료극에서 생성된 산소 이온이 전해질을 통해 확산하여 공기극에서 수소와 반응을 일으키는 속도를 떨어뜨림으로써, 연료 전지 전체 성능을 저하시키는 원인이 된다. More specifically, the reaction layer is a sintered cathode to produce a solid oxide fuel cell, or the zirconium of the electrolyte reacts with the material constituting the cathode while the battery is operating at a high temperature, lanthanum zirconia (La 2 Zr 2 O 7 ) or strontium zirconia (SrZrO 3 ) to inhibit high resistance phase generation. The high resistance phase, such as lanthanum zirconia (La 2 Zr 2 O 7 ) or strontium zirconia (SrZrO 3 ), reduces the rate at which oxygen ions generated in the anode diffuse through the electrolyte and react with hydrogen in the cathode. By lowering, it becomes a cause of reducing overall fuel cell performance.
상기 반응방지층에 사용되는 물질로는 세리아계 산화물이 바람직하며, 보다 바람직하게는 가돌리늄(Gd)이 도핑된 세리아(GDC), 사마륨(Sm)이 도핑된 세리아(SDC), 이트륨(Y)이 도핑된 세리아(YDC), 란타늄(La)이 도핑된 세리아(LDC) 등이 사용될 수 있다. 바람직하게는 상기 가돌리늄(Gd), 사마륨(Sm), 이트륨(Y), 란타늄(La) 중 1종 이상이 1at.% ~ 40at.%의 범위로 포함한다. 상기 가돌리늄(Gd), 사마륨(Sm), 이트륨(Y), 란타늄(La) 중 1종 이상이 1at.% 미만일 경우에는 산소 공공의 농도가 너무 낮아 반응방지층 물질의 산소 이온전도도 및 전기전도도의 저하를 유발한다. 반면 40at.% 보다 클 경우에는 산소 공공간의 합체로 인한 산소 이온 모빌리티 저하로 반응방지층 물질의 산소 이온전도도 및 전기전도도의 저하를 유발할 수 있다.The material used for the reaction prevention layer is preferably ceria-based oxide, and more preferably doped ceria (GDC) doped with gadolinium (Gd), ceria (SDC) doped with samarium (Sm), or yttrium (Y) doped. Ceria (YDC), lanthanum (La) doped ceria (LDC) and the like may be used. Preferably, at least one of the gadolinium (Gd), samarium (Sm), yttrium (Y), and lanthanum (La) is included in the range of 1at.% To 40at.%. When at least one of the gadolinium (Gd), samarium (Sm), yttrium (Y), and lanthanum (La) is less than 1 at.%, The concentration of oxygen vacancies is too low to reduce the oxygen ion conductivity and the electrical conductivity of the reaction prevention layer material. Cause. On the other hand, if it is greater than 40at.%, The oxygen ion mobility may be lowered due to the incorporation of oxygen vacancies, which may cause a decrease in oxygen ion conductivity and electrical conductivity of the reaction prevention layer material.
상기 반응방지층은 기공이 없는 구조로 형성되는 것이 바람직하나, 공정 조건에 따라 국부적으로 기공이 형성될 수 있으며, 이러한 경우에는 기공의 크기가 0.1㎛ 이하의 크기를 갖는 것이 바람직하다. The reaction prevention layer is preferably formed in a pore-free structure, the pores may be locally formed according to the process conditions, in this case it is preferable that the pore size has a size of 0.1㎛ or less.
상기 반응방지층의 두께는 0.1~2.0㎛ 인 것이 바람직하다. 상기 반응방지층의 두께가 0.1㎛ 미만일 경우, 막질의 형성이 곤란할 뿐만 아니라, 성막시 막의 두께가 불균일해질 수 있어, 국부적으로 공기극과 전해질의 반응이 일어날 수 있다. 한편, 상기 두께가 2㎛를 초과하는 경우에는 전해질과 공기극과의 반응을 효과적으로 방지할 수 있으나, 이와 같은 경우에는 반응방지층 자체가 저항으로 작용하게 되므로, 2㎛를 초과하지 않는 것이 바람직하다.The thickness of the reaction prevention layer is preferably 0.1 ~ 2.0㎛. When the thickness of the reaction prevention layer is less than 0.1 μm, not only the formation of the film quality is difficult, but also the thickness of the film may be uneven during film formation, so that the reaction between the cathode and the electrolyte may occur locally. On the other hand, if the thickness is more than 2㎛ can effectively prevent the reaction between the electrolyte and the cathode, in this case, since the reaction prevention layer itself acts as a resistance, it is preferable not to exceed 2㎛.
상기 본 발명의 연료전지를 구성하는 완화층(50)은 전해질과 반응방지층 사이의 구조적 불일치, 열팽창 계수의 불일치 등을 해소하기 위해서 상기 두층의 사이에 위치한다. 즉, 상기 완화층은 전해질과 반응방지층의 격자 상수 및 결정 구조의 급격한 변화를 완화시키는 역할을 통해서, 두 층간의 결합력을 향상시킬 뿐만 아니라, 열팽창 계수의 차이를 줄이는 역할을 하게 되어 외부로부터 열적, 기계적 변화에 대하여 구조적 강건성을 가질 수 있도록 한다. 그 결과로 안정적인 전지 성능을 확보하는 기술적 의의가 있다.The mitigating layer 50 constituting the fuel cell of the present invention is positioned between the two layers to resolve structural inconsistency between the electrolyte and the reaction preventing layer, inconsistency of the thermal expansion coefficient, and the like. That is, the relaxation layer serves to alleviate the sudden change in the lattice constant and crystal structure of the electrolyte and the reaction prevention layer, not only improves the bonding strength between the two layers, but also serves to reduce the difference in the coefficient of thermal expansion thermally, It has structural robustness against mechanical change. As a result, there is a technical significance to secure stable battery performance.
상기 완화층은 전해질 물질(M)과 반응방지층 물질(N)의 복합체로 구성될 수 있다. 상기 완화층은 전해질 물질과 반응방지층이 원자 비율(atomic%, M:N)로 1:9~9:1 인 것이 바람직하다. 상기 물질간 원자 비율이 상기 범위를 벗어나면, 둘 중 하나의 물질 양이 너무 부족하여 복합체를 형성하는 것이 곤란하고, 이에 따라 복합체를 이용한 구조적 불일치, 열팽창 계수의 불일치 완화 효과를 확보할 수 없다. The alleviation layer may be composed of a composite of an electrolyte material (M) and a reaction prevention layer material (N). The relaxation layer preferably has an electrolyte material and a reaction prevention layer in an atomic ratio (atomic%, M: N) of 1: 9-9: 1. If the atomic ratio between the materials is out of the above range, the amount of one of the two materials is so insufficient that it is difficult to form a composite, whereby the structural mismatch using the composite and the relaxation of the mismatch of the thermal expansion coefficient cannot be secured.
보다 구체적으로, 상기 전해질 물질(M)은 지르코니아계 산화물 전해질 재료로서, AxZr1-xO2-δ 로 표현될 수 있으며, 이때 A는 이트륨(Y), 스칸듐(Sc) 중 1종 이상이고, x는 0.01~0.4의 범위를 가질 수 있다. 한편, 상기 반응방지층 물질(N)은 세리아계 산화물로서, ByCe1-yO2-δ 로 표현될 수 있으며, 이때 B는 가돌리늄(Gd), 사마륨(Sm), 이트륨(Y), 란타늄(La) 중 1종 이상이고, y는 0.01~0.4의 범위를 가질 수 있다. 상기 x와 y가 0.01보다 작을 경우에는 산소 공공의 농도가 너무 낮아 전해질 물질과 반응방지층 물질의 산소 이온전도도 및 전기전도도의 저하를 유발한다. 반면 0.4보다 클 경우에는 산소 공공간의 합체로 인한 산소 이온 모빌리티 저하로 전해질 물질과 반응방지층 물질의 산소 이온전도도 및 전기전도도의 저하를 유발할 수 있다. 한편, 상기 δ는 산소 공공(격자내에서 산소가 빠진 자리)의 농도를 의미한다. 예를 들어, ZrO2에서 Y가 첨가되면 이에 상응하는 산소가 빠지게 되고(Y가 2개 첨가되면, 산소가 1개 빠져서 빈자리를 만들게 된다. 그러나, 공공의 농도는 산소 분압과 같은 기타 요인에 의해서도 영향을 받기 때문에 x/2로 표현하지 않으며, 일반적으로 2-δ로 주로 표현함) 이러한 공공에 의해 산소 이온의 전도가 이루어진다.More specifically, the electrolyte material (M) is a zirconia-based oxide electrolyte material, it may be represented by A x Zr 1-x O 2-δ , wherein A is at least one of yttrium (Y), scandium (Sc) And x may range from 0.01 to 0.4. On the other hand, the reaction layer material (N) is a ceria-based oxide, may be represented by B y Ce 1-y O 2-δ , wherein B is gadolinium (Gd), samarium (Sm), yttrium (Y), lanthanum (La) may be one or more, and y may have a range of 0.01 to 0.4. When x and y are less than 0.01, the concentration of oxygen vacancies is too low, leading to a decrease in oxygen ion conductivity and electrical conductivity of the electrolyte material and the reaction prevention layer material. On the other hand, when it is larger than 0.4, oxygen ion mobility may be reduced due to coalescing of oxygen vacancies, which may cause oxygen ion conductivity and electrical conductivity of the electrolyte material and the reaction prevention layer material to decrease. On the other hand, δ means the concentration of oxygen vacancies (site where oxygen is missing in the lattice). For example, when Z is added to ZrO 2 , the corresponding oxygen is released (if two Y are added, one oxygen is released to create an empty spot. However, the concentration of the vacancies also depends on other factors such as oxygen partial pressure. It is not represented by x / 2 because it is affected, and is usually expressed mainly by 2-δ).
상기 완화층의 두께는 반응방지층 두께의 10~30% 정도인 것이 바람직하다. 즉, 상기 반응방지층의 두께가 0.1~2.0㎛의 범위를 가지므로, 상기 완화층의 두께는 0.01~0.6㎛인 것이 바람직하다. 상기 완화층의 두께가 너무 얇을 경우에는 구조적 불일치, 열팽창 계수의 불일치 완화 효과를 확보하기 어려운 반면, 너무 두꺼울 경우에는 완화층 자체의 전기 저항이 증가하여 셀 성능의 저하를 유발한다.It is preferable that the thickness of the relaxation layer is about 10 to 30% of the thickness of the reaction prevention layer. That is, since the thickness of the reaction prevention layer has a range of 0.1 ~ 2.0㎛, it is preferable that the thickness of the relaxation layer is 0.01 ~ 0.6㎛. When the thickness of the alleviation layer is too thin, it is difficult to secure the structural mismatch, the thermal expansion coefficient mismatch relaxation effect, while if too thick, the electrical resistance of the alleviation layer itself increases, causing a decrease in cell performance.
한편, 후술하는 바와 같이, 본 발명에서 상기 완화층과 반응방지층은 저온 공정법을 이용하여 제조되는 것이 바람직하다. 상기 저온 공정법으로는 펄스 레이저 증착, 에어로졸 증착, 스퍼터링 증착, 일렉트론빔 증착 등의 방법이 있다. 증착과정 중에 가열 또는 증착 후 연료전지 제조를 위해 열처리를 할 수 있으나, 그 온도는 1100℃를 넘지 않는 경우를 저온 공정법이라 한다. 상기 완화층과 반응방지층의 제조를 위해서 1100℃를 넘는 고온 공정법을 사용하게 되면, 고온에서 전해질에서의 지르코늄(Zr)과 완화층이나 반응방지층의 세륨(Ce)이 반응하여, 고저항의 세륨지르코니아(Ce2ZraO7+x)의 상(phase)을 형성하여 저항 증가로 전지의 성능 저하를 유발하게 된다. On the other hand, as will be described later, in the present invention, the alleviation layer and the reaction prevention layer is preferably manufactured using a low temperature process method. As the low temperature process method, there are pulse laser deposition, aerosol deposition, sputtering deposition, electron beam deposition, and the like. The heat treatment may be performed to manufacture a fuel cell after heating or deposition during the deposition process, but the temperature does not exceed 1100 ° C. is referred to as a low temperature process method. When the high temperature process method over 1100 ° C. is used for the manufacture of the alleviation layer and the reaction prevention layer, zirconium (Zr) in the electrolyte and the cerium (Ce) of the relaxation layer or the reaction prevention layer react with each other at a high temperature, and thus high resistance cerium Phases of zirconia (Ce 2 Zr a O 7 + x ) are formed, resulting in increased battery resistance due to increased resistance.
상기 완화층과 반응방지층을 형성하기 위한 저온 공정법은 서로 다른 방법을 사용할 수 있겠으나, 동일한 방법으로 행하는 것이 공정의 단순화 및 비용 절감 측면에서 유리하다.The low temperature process method for forming the alleviation layer and the reaction prevention layer may use different methods, but it is advantageous to perform the same method in terms of simplifying the process and reducing the cost.
한편, 상기 저온 공정법 중에서 저온에서도 빠른 증착 속도를 갖고, 작은 타겟을 이용하여 넓은 범위의 대면적 기판 위에서도 증착이 가능한 일렉트론빔 증착법을 이용하는 것이 바람직하다.On the other hand, it is preferable to use the electron beam deposition method which has a fast deposition rate even at low temperature in the low temperature process method, and can also deposit on a large range of large area substrate using a small target.
이하, 본 발명의 고체산화물 연료전지를 제조하는 방법에 대해 상세히 설명한다. Hereinafter, a method of manufacturing the solid oxide fuel cell of the present invention will be described in detail.
본 발명에서 바람직한 제조방법은 연료극 및 전해질이 형성된 반전지를 준비하는 단계; 상기 반전지의 전해질 상에 저온 공정법을 이용하여 완화층을 형성하는 단계; 상기 완화층 상에 저온 공정법을 이용하여 반응방지층을 형성하는 단계; 및 상기 반응방지층 상에 공기극을 형성하는 단계를 포함한다.Preferred manufacturing method in the present invention comprises the steps of preparing a half cell formed with the anode and the electrolyte; Forming a relaxation layer on the electrolyte of the half cell using a low temperature process method; Forming a reaction prevention layer on the alleviation layer by using a low temperature process method; And forming an air electrode on the reaction prevention layer.
상기 연료극 및 전해질을 형성하는 방법은 본 발명에서 특별히 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 행해지는 통상의 방법으로 반전지를 제조한다. 바람직한 예로는 테이프 캐스팅법 등이 이용될 수 있다. The method for forming the anode and the electrolyte is not particularly limited in the present invention, and a half cell is manufactured by a conventional method performed in the technical field to which the present invention belongs. As a preferable example, a tape casting method or the like can be used.
일예로, 상기 연료극을 형성하기 위해 니켈 산화물(NiO)과 지르코니아(ZrO2)의 혼합물을 테이프 캐스팅 등의 방법으로 형성할 수 있으며, 전해질층은 이트리아 안정화 지르코니아(YSZ) 등의 물질을 테이프 캐스팅법 등을 이용하여 형성할 수 있다.For example, to form the fuel electrode, a mixture of nickel oxide (NiO) and zirconia (ZrO 2 ) may be formed by a tape casting method, and the electrolyte layer may be formed by casting a material such as yttria stabilized zirconia (YSZ). It can form using a method.
상기 음극층 및 전해질층을 형성한 후 소결 열처리를 실시하여, 반전지를 제조할 수 있다.After forming the cathode layer and the electrolyte layer, a sintering heat treatment may be performed to manufacture a half cell.
상기 준비된 반전지의 전해질 상에 완화층을 형성하고, 상기 완화층 상에 반응방지층을 형성한다. 상술한 바와 같이 상기 완화층과 반응방지층을 형성하는 방법은 저온 공정법으로 행하는 것이 바람직하다. 상기 저온 공정법은 펄스 레이저 증착, 에어로졸 증착, 스퍼터링 증착, 일렉트론빔 증착 등의 방법이 있다. 한편, 저온에서도 빠른 증착 속도를 갖고, 작은 타겟을 이용하여 넓은 범위의 대면적 기판 위에서도 증착이 가능한 일렉트론빔 증착법을 이용하는 것이 바람직하다.A relaxation layer is formed on the prepared electrolyte of the half cell, and a reaction prevention layer is formed on the relaxation layer. As mentioned above, it is preferable to perform the method of forming the said relaxation layer and a reaction prevention layer by a low temperature process method. The low temperature process includes pulse laser deposition, aerosol deposition, sputtering deposition, electron beam deposition, and the like. On the other hand, it is preferable to use the electron beam deposition method which has a fast deposition rate even at low temperature, and can also deposit on a large range of large area substrate using a small target.
일예로, 상기 완화층과 반응방지층을 일렉트론빔 증착법으로 순서대로 형성하되, 별도의 추가 열처리를 행하지 않는다. 이는 향후 공기극을 형성 과정에서 열처리 과정을 포함하기 때문이다. 그러나, 상기 저온 공정법을 사용하더라도, 완화층 형성과정 또는 반응방지층 형성과정에서 열처리를 할 수 있다. 다만, 이때의 열처리는 1100℃를 넘지 않는 것이 바람직하다. 열처리 온도가 1100℃를 넘게 되면, 앞서 언급한 바와 같이, 고저항의 세륨지르코니아(Ce2ZraO7+x)의 상(phase)을 형성하여 저항 증가로 전지의 성능 저하를 유발하기 때문이다.For example, the relaxation layer and the reaction prevention layer are sequentially formed by an electron beam deposition method, but no additional heat treatment is performed. This is because the heat treatment is included in the formation of the air electrode in the future. However, even when the low temperature process method is used, heat treatment may be performed during the relaxation layer formation process or the reaction prevention layer formation process. However, the heat treatment at this time is preferably not more than 1100 ℃. If the heat treatment temperature exceeds 1100 ℃, as mentioned earlier, the formation of a high-resistance phase of cerium zirconia (Ce 2 Zr a O 7 + x ) to increase the resistance causes the battery performance degradation .
한편, 상기 반응방지층까지 형성한 후, 공기극을 형성한다. 상기 공기극 물질은 전술한 바와 같이, LSCF 등이 사용될 수 있으며, 단독 사용 뿐만 아니라, 지르코니아 또는 세리아계 산화물과 혼합하여 사용될 수 있다. 상기 공기극을 형성하는 방법은 본 발명에서 특별히 한정하는 것은 아니며, 본 발명이 속하는 기술분야에서 행해지는 통상의 방법에 의한다. 일예로는 스크린 프린팅법으로 공기극 물질을 도포하고, 800~1100℃의 온도 범위에서 열처리를 행한다.On the other hand, after forming up to the reaction prevention layer, to form an air cathode. As described above, the cathode material may be LSCF, or the like, and may be used in combination with zirconia or ceria oxide as well as single use. The method for forming the air electrode is not particularly limited in the present invention, and is based on a conventional method performed in the technical field to which the present invention belongs. In one example, the cathode material is coated by screen printing, and heat treatment is performed at a temperature in the range of 800 to 1100 ° C.
이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. The following examples are only for the understanding of the present invention, but not for limiting the present invention.
(참고예)(Reference example)
참고예는 전해질과 공기극 사이에 반응방지층을 형성함에 있어서, 고온 공정으로 반응방지층을 형성한 전지와 저온 공정으로 반응방지층을 형성한 전지 간의 작동 온도별 성능을 분석한 결과이다.The reference example is a result of analyzing the performance for each operation temperature between the cell formed the reaction layer in the high temperature process and the cell formed the reaction layer in the low temperature process in forming the reaction layer between the electrolyte and the cathode.
먼저, 연료극(연료극 지지체와 연료극 기능층)을 형성하기 위해서, 니켈 산화물(NiO)과 지르코니아(ZrO2)의 혼합물을 테이프 캐스팅으로 형성하였다. 이후, 전해질은 이트리아 안정화 지르코니아(YSZ)를 테이프 캐스팅으로 형성한 후, 소결 열처리하여 반전지를 제조하였다.First, in order to form an anode (fuel electrode support and anode functional layer), a mixture of nickel oxide (NiO) and zirconia (ZrO 2 ) was formed by tape casting. Subsequently, the electrolyte was formed by yttria stabilized zirconia (YSZ) by tape casting, followed by sintering to prepare a half cell.
상기 반전지의 전해질 상에 반응방지층을 형성함에 있어서, 고온 공정법인 스크린 프린팅으로 Gd가 도핑된 세리아(GDC) 산화물을 도포하고, 1250℃에서 열처리하여 소결하였다. 저온 공정법은 일렉트론 빔 증착법으로 100℃에서 증착하였고, 별도의 열처리는 실시하지 않았다.In forming the anti-reaction layer on the electrolyte of the half cell, Gd-doped ceria (GDC) oxide was coated by screen printing, which is a high temperature process, and sintered by heat treatment at 1250 ° C. The low temperature process was deposited at 100 ° C. by an electron beam deposition method, and no additional heat treatment was performed.
이후에는 LSCF와 GDC가 혼합되어 있는 공기극 물질을 스크린 프린팅으로 도포하고, 1000℃에서 소결 열처리 함으로써, 최종적으로 반응방지층을 고온 공정법으로 제조한 연료전지 및 저온 공정법으로 제조한 연료전지를 각각 제조하였다. After that, the cathode material mixed with LSCF and GDC is coated by screen printing, and sintered and heat treated at 1000 ° C. to finally manufacture the fuel cell manufactured by the high temperature process method and the fuel cell manufactured by the low temperature process method, respectively. It was.
상기와 같이 제조된 각 연료전지에 대해, 작동온도에 따른 전류-전압-출력 특성을 평가하여 그 결과를 도 1의 (a) 및 (b)에 나타내었다.For each fuel cell manufactured as described above, the current-voltage-output characteristics were evaluated according to the operating temperature, and the results are shown in FIGS. 1A and 1B.
도 1의 (a) 및 (b)에 나타난 바와 같이, 고온 공정법으로 반응방지층이 제조된 연료전지의 경우에는 작동온도가 중·저온 영역(600~700℃)으로 갈수록 성능이 저하되는 것을 확인할 수 있다.As shown in (a) and (b) of FIG. 1, in the case of a fuel cell in which a reaction prevention layer is manufactured by a high temperature process method, it is confirmed that the performance decreases as the operating temperature reaches the mid-low temperature region (600 to 700 ° C.). Can be.
(비교예)(Comparative Example)
비교예는 상기 참고예를 바탕으로 저온 공정법으로 반응방지층이 제조된 연료 전지의 반응방지층과 전해질을 분석하고, 다수의 연료전지를 제작하고 이에 대한 평가를 행한 결과이다.The comparative example is a result of analyzing the reaction prevention layer and the electrolyte of the fuel cell in which the reaction prevention layer is manufactured by the low temperature process method based on the reference example, and manufacturing a plurality of fuel cells and evaluating the same.
상기 참고예와 동일한 방법으로 형성된 반전지를 대상으로, 상기 반전지의 전해질 상에 GDC 산화물로 된 타겟을 이용하여 일렉트론빔 증착법으로 100℃에서 증착하여 반응방지층을 형성하였다. 이후에는 LSCF와 GDC가 혼합되어 있는 공기극 물질을 스크린 프린팅으로 도포하고, 1000℃에서 소결 열처리 함으로써, 연료전지를 제조하였다. 동일한 방식으로 6차례 실시하여, 6개의 연료전지를 제조하였다. 이때, 상기 GDC 산화물은 GD가 20at.%가 포함된 물질이었으며, 상기 증착 두께는 약 0.3~0.4㎛이었다. A reaction prevention layer was formed on the half cell formed by the same method as the reference example by using an electron beam deposition method at 100 ° C. using a target made of GDC oxide on the electrolyte of the half cell. Thereafter, the cathode material in which the LSCF and GDC were mixed was applied by screen printing, and the fuel cell was manufactured by sintering heat treatment at 1000 ° C. Six fuel cells were fabricated in the same manner six times. In this case, the GDC oxide was a material containing 20 at.% Of GD, and the deposition thickness was about 0.3 to 0.4 μm.
상기 6번의 제작과정에서 3번째로 제작된 연료전지 샘플을 가지고, 단면을 관찰하여 그 결과를 도 2에 나타내었다. 도 2(a)에 나타난 바와 같이, 반응방지층과 전해질 사이에 계면을 따라 고저항의 스트론튬지르코니아 상이 형성된 것을 확인할 수 있었다. 특히, 그 성분을 분석한 도 2(b)를 보면, 반응방지층과 전해질층 계면의 성분은 주로 Sr과 Zr의 산화물인 것을 알 수 있다. With the fuel cell sample fabricated for the third time in the sixth manufacturing process, the cross section was observed and the result is shown in FIG. 2. As shown in Figure 2 (a), it was confirmed that a high resistance strontium zirconia phase was formed along the interface between the reaction prevention layer and the electrolyte. In particular, when the component is analyzed in FIG. 2 (b), it can be seen that the components of the reaction prevention layer and the electrolyte layer interface are mainly oxides of Sr and Zr.
한편, 상기와 같이 제조된 6개의 연료전지에 대해, 성능의 편차가 발생하는 것을 도 3을 통해 확인할 수 있었다. 도 3은 연료전지 주파수에 따른 저항(임피던스) 성분을 복수소를 이용하여 실수부와 허수부로 분리한 결과이다(Z=Z' + iZ"). 주파수에 따른 특정을 할 경우, 도 3과 같이 여러 개의 반원이 중첩된 형태로 나타나며, 그 크기가 작을수록 전체 저항이 크기가 작은 것을 의미한다.On the other hand, for the six fuel cells manufactured as described above, it could be confirmed through Figure 3 that the variation in performance occurs. 3 is a result of separating the resistance (impedance) component according to the fuel cell frequency into a real part and an imaginary part using a plurality of elements (Z = Z '+ iZ "). Several semicircles appear in an overlapping form, and the smaller the size, the smaller the overall resistance.
상기 도 3의 결과로부터, 저온 공정법을 이용하여 반응방지층이 형성된 연료전지의 경우에도, 미미한 공정변수에 따라서 반응방지층과 전해질의 계면이 민감하게 영향을 받아서, 전지의 성능에 급격한 편차를 유발할 수 있음을 확인할 수 있었다.From the results of FIG. 3, even in a fuel cell in which a reaction prevention layer is formed using a low temperature process method, an interface between the reaction prevention layer and the electrolyte is sensitively affected by insignificant process variables, which may cause a sudden deviation in battery performance. It could be confirmed.
(발명예)(Invention example)
상기 참고예 및 비교예와 동일한 방식으로 반전지를 제조하였다. 이후, 반전지의 전해질 상에, GDC와 YSZ의 복합체로 이루어진 타겟을 사용하여 일렉트론빔 증착법으로 100℃에서 증착하여 완화층을 형성하였다. 이때의 GDC 산화물은 Gd가 20at.% 포함된 물질이었으며, YSZ는 Y가 16at.% 포함된 물질이었다. 한편, 상기 GDC와 YSZ 간의 원자 비율은 5:5를 유지하였고, 형성된 완화층은 두께가 약 0.05㎛ 이었다. 완화층 형성과정에서 추가적인 열처리는 실시하지 않았다.A half cell was prepared in the same manner as the reference example and the comparative example. Subsequently, on the electrolyte of the half cell, the target was formed of a composite of GDC and YSZ, and was deposited at 100 ° C. by electron beam deposition to form a relaxed layer. At this time, the GDC oxide was a material containing 20at.% Of Gd, and YSZ was a material containing 16at.% Of Y. Meanwhile, the atomic ratio between the GDC and YSZ was maintained at 5: 5, and the relaxed layer formed had a thickness of about 0.05 μm. No additional heat treatment was performed during the relaxation layer formation.
상기 완화층을 형성한 다음, GDC 산화물로 된 타겟을 사용하여 일렉트론빔 증착법으로 100℃에서 증착하여, 반응방지층을 형성하였다. 이때, 상기 GDC 산화물은 Gd가 20at.% 포함된 물질이었다. 상기 반응방지층 형성과정에서 추가적인 열처리를 실시하지 않았다. 상기 반응방지층의 두께는 약 0.3~0.4㎛의 두께로 형성하였다.After the relaxation layer was formed, it was deposited at 100 ° C. by an electron beam deposition method using a target made of GDC oxide to form a reaction prevention layer. At this time, the GDC oxide was a material containing 20at.% Gd. No additional heat treatment was performed during the reaction prevention layer formation process. The thickness of the reaction prevention layer was formed to a thickness of about 0.3 ~ 0.4㎛.
이후에는 LSCF와 GDC가 혼합되어 있는 공기극 물질을 스크린 프린팅으로 도포하고, 1000℃에서 소결 열처리 함으로써, 연료전지를 제조하였다. 동일한 방식으로 6차례 실시하여, 6개의 연료전지를 제조하였다.Thereafter, the cathode material in which the LSCF and GDC were mixed was applied by screen printing, and the fuel cell was manufactured by sintering heat treatment at 1000 ° C. Six fuel cells were fabricated in the same manner six times.
상기 방법으로 도 4의 형태를 갖는 6개의 연료전지를 제조한 후, 그중 첫번째 연료전지의 반응방지층과 전해질 사이를 분석하여 그 결과를 도 5에 나타내었다. 도 5(a)에서는 반응방지층과 전해질 사이에 완화층이 형성된 것을 확인할 수 있으며, 도 5(b)에서 상기 완화층의 주재료로서, Ce와 Zr이 관찰되는 것을 알 수 있다. After manufacturing six fuel cells having the form of FIG. 4 by the above method, the reaction between the reaction layer and the electrolyte of the first fuel cell was analyzed and the results are shown in FIG. 5. In FIG. 5 (a), it can be seen that a relaxation layer is formed between the reaction prevention layer and the electrolyte. In FIG. 5 (b), Ce and Zr are observed as main materials of the relaxation layer.
한편, 상기 6개의 연료전지에 대한 성능편차를 분석하여 그 결과를 도 6에 나타내었다. 도 6의 결과는 상기 도 3과 동일한 방식의 결과이다. 상기 도 6에 나타난 바와 같이, 본 발명에 의해서 저온 공정법으로, 완화층과 반응방지층이 형성된 연료전지의 경우에는 제작 차수와 무관하여 매우 안정적인 셀 성능을 보여주고 있다. 즉, 전지의 성능이 공정의 미세 변동 요인에 대하여 매우 강건함을 확인할 수 있다.Meanwhile, the performance deviation of the six fuel cells is analyzed and the results are shown in FIG. 6. The result of FIG. 6 is the same as that of FIG. 3. As shown in FIG. 6, in the low temperature process method of the present invention, a fuel cell in which a mitigating layer and a reaction prevention layer are formed shows very stable cell performance regardless of manufacturing order. That is, it can be seen that the performance of the battery is very robust against the micro fluctuation factor of the process.

Claims (10)

  1. 연료극, 전해질 및 공기극을 포함하고, A fuel electrode, an electrolyte and an air electrode,
    상기 전해질과 공기극 사이에 형성된 반응방지층을 포함하며,It includes a reaction prevention layer formed between the electrolyte and the air electrode,
    상기 전해질과 반응방지층 사이에 형성된 완화층을 포함하는 고체산화물 연료전지.Solid oxide fuel cell comprising a relaxation layer formed between the electrolyte and the reaction prevention layer.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 전해질은 이트륨(Y) 및 스칸듐(Sc) 중 1종 이상이 1at.% ~ 40at.%의 범위로 포함된 지르코니아인 고체산화물 연료전지.The electrolyte is a zirconia solid oxide fuel cell containing at least one of yttrium (Y) and scandium (Sc) in the range of 1at.% To 40at.%.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 반응방지층은 가돌리늄(Gd), 사마륨(Sm), 이트륨(Y), 란타늄(La) 중 1종 이상이 1at.% ~ 40at.%의 범위로 포함된 세리아인 고체산화물 연료전지. The reaction prevention layer is a solid oxide fuel cell of ceria including at least one of gadolinium (Gd), samarium (Sm), yttrium (Y), and lanthanum (La) in a range of 1 at.% To 40 at.%.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 반응방지층의 두께는 0.1~2.0㎛인 고체산화물 연료전지.The thickness of the reaction prevention layer is a solid oxide fuel cell of 0.1 ~ 2.0㎛.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 완화층은 전해질 물질(M)과 반응방지층 물질(N)이 원자 비율(at.%, M:N)이 1:9~9:1인 고체산화물 연료전지.The relaxation layer is a solid oxide fuel cell in which the electrolyte material (M) and the reaction prevention layer material (N) have an atomic ratio (at.%, M: N) of 1: 9 to 9: 1.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 완화층의 두께는 반응방지층 두께의 10~30%인 고체산화물 연료전지.The thickness of the alleviation layer is a solid oxide fuel cell of 10-30% of the thickness of the reaction prevention layer.
  7. 연료극 및 전해질이 형성된 반전지를 준비하는 단계;Preparing a half cell on which an anode and an electrolyte are formed;
    상기 반전지의 전해질 상에 저온 공정법을 이용하여 완화층을 형성하는 단계;Forming a relaxation layer on the electrolyte of the half cell using a low temperature process method;
    상기 완화층 상에 저온 공정법을 이용하여 반응방지층을 형성하는 단계; 및 Forming a reaction prevention layer on the alleviation layer by using a low temperature process method; And
    상기 반응방지층 상에 공기극을 형성하는 단계Forming an air electrode on the reaction prevention layer
    를 포함하는 고체산화물 연료전지의 제조방법. Solid oxide fuel cell manufacturing method comprising a.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 저온 공정법은 펄스 레이저 증착, 에어로졸 증착, 스퍼터링 증착 및 일렉트론빔 증착 중 어느 하나인 고체 산화물 연료전지의 제조방법.The low temperature process is any one of a pulsed laser deposition, aerosol deposition, sputter deposition and electron beam deposition method of manufacturing a solid oxide fuel cell.
  9. 청구항 7에 있어서,The method according to claim 7,
    상기 완화층을 형성하는 단계와 반응방지층을 형성하는 단계는 동일한 저온 공정법을 이용하는 고체 산화물 연료전지의 제조방법.The forming of the alleviation layer and the forming of the reaction prevention layer may be performed using the same low temperature process.
  10. 청구항 7에 있어서,The method according to claim 7,
    상기 완화층과 반응방지층의 형성 중 또는 형성 후에 열처리를 행하고, 상기 열처리는 1100℃ 이하로 행하는 고체 산화물 연료전지의 제조방법.A method of manufacturing a solid oxide fuel cell, wherein the heat treatment is performed during or after the relaxation layer and the reaction prevention layer are formed, and the heat treatment is performed at 1100 ° C. or less.
PCT/KR2016/014686 2016-03-11 2016-12-15 Solid oxide fuel cell and method for manufacturing same WO2017155188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160029634A KR20170106030A (en) 2016-03-11 2016-03-11 Solid oxide fuel cell and method for manufacturing the same
KR10-2016-0029634 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017155188A1 true WO2017155188A1 (en) 2017-09-14

Family

ID=59790677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014686 WO2017155188A1 (en) 2016-03-11 2016-12-15 Solid oxide fuel cell and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20170106030A (en)
WO (1) WO2017155188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914173A (en) * 2023-09-05 2023-10-20 中石油深圳新能源研究院有限公司 Compact isolation layer, preparation method thereof and solid oxide fuel cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102229377B1 (en) * 2019-02-01 2021-03-18 한양대학교 산학협력단 Solid oxide fuel cell and method for producing same
JP7091278B2 (en) * 2019-03-29 2022-06-27 株式会社豊田中央研究所 Electrode material for solid oxide fuel cell, anode electrode for solid oxide fuel cell using it, and solid oxide fuel cell using it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2398103A1 (en) * 2010-06-15 2011-12-21 NGK Insulators, Ltd. Fuel cell
KR20120074790A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Solid oxide fuel cell and method of preparing same
US20120225368A1 (en) * 2011-03-03 2012-09-06 Ngk Insulators, Ltd. Solid oxide fuel cell
KR20120140476A (en) * 2011-06-21 2012-12-31 삼성전자주식회사 Material for solid oxide fuel cell, cathode including the material and solid oxide fuel cell including the material
KR20150123527A (en) * 2014-04-25 2015-11-04 한국과학기술연구원 high temperature solid oxide cell comprising barrier layer, manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2398103A1 (en) * 2010-06-15 2011-12-21 NGK Insulators, Ltd. Fuel cell
KR20120074790A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Solid oxide fuel cell and method of preparing same
US20120225368A1 (en) * 2011-03-03 2012-09-06 Ngk Insulators, Ltd. Solid oxide fuel cell
KR20120140476A (en) * 2011-06-21 2012-12-31 삼성전자주식회사 Material for solid oxide fuel cell, cathode including the material and solid oxide fuel cell including the material
KR20150123527A (en) * 2014-04-25 2015-11-04 한국과학기술연구원 high temperature solid oxide cell comprising barrier layer, manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914173A (en) * 2023-09-05 2023-10-20 中石油深圳新能源研究院有限公司 Compact isolation layer, preparation method thereof and solid oxide fuel cell
CN116914173B (en) * 2023-09-05 2023-11-24 中石油深圳新能源研究院有限公司 Compact isolation layer, preparation method thereof and solid oxide fuel cell

Also Published As

Publication number Publication date
KR20170106030A (en) 2017-09-20

Similar Documents

Publication Publication Date Title
US7534519B2 (en) Symmetrical, bi-electrode supported solid oxide fuel cell
Wen et al. Material research for planar SOFC stack
WO2016080681A1 (en) Method for manufacturing solid oxide fuel cell
US20060024547A1 (en) Anode supported sofc with an electrode multifunctional layer
US20090286125A1 (en) Bi-electrode supported solid oxide fuel cells having gas flow plenum channels and methods of making same
CN106058288B (en) Advanced solid electrolyte and method of manufacture
Milcarek et al. Performance variation with SDC buffer layer thickness
WO2017003109A1 (en) Method for manufacturing electrolyte membrane for solid oxide fuel cell, electrolyte membrane for solid oxide fuel cell, solid oxide fuel cell, and fuel cell module
WO2017155188A1 (en) Solid oxide fuel cell and method for manufacturing same
KR20110074528A (en) Electrolyte for an sofc battery, and method of making same
WO2018062694A1 (en) Electrolyte for solid oxide fuel cell, solid oxide fuel cell comprising same, composition for said electrolyte, and method for producing said electrolyte
WO2016200206A1 (en) Cathode composition, cathode and fuel cell including same
US8715886B1 (en) Method for making a fuel cell
WO2016190699A1 (en) Oxide particles, cathode including same, and fuel cell including same
WO2017034163A1 (en) Flat plate-shaped solid oxide fuel cell and cell module comprising same
WO2015050409A1 (en) Method for manufacturing anode support of solid oxide fuel cell, and anode support of solid oxide fuel cell
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
WO2019112115A1 (en) Method of manufacturing support-type ceramic connecting material and support-type ceramic connecting material manufactured thereby
WO2023038167A1 (en) Metal-supported solid oxide fuel cell comprising contact layer
US20170346102A1 (en) Fuel cell system including dense oxygen barrier layer
WO2020091151A1 (en) Air electrode for solid oxide fuel cell to which electrochemical method is applied and manufacturing method therefor
US10763533B1 (en) Solid oxide fuel cell interconnect having a magnesium containing corrosion barrier layer and method of making thereof
JP2009218126A (en) Manufacturing method for completely-dense electrolyte layer laminated on high-performance solid oxide type fuel-cell membrane-electrode assembly (sofc-mea)
KR20210045118A (en) Solid oxide electrolyte including thin film electrolyte layer of multiple repetitive structures, method for manufacturing the same, solid oxide fuel cell and solid oxide electrolysis cell comprising the same
WO2018062695A1 (en) Method for operating solid oxide fuel cell

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893702

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893702

Country of ref document: EP

Kind code of ref document: A1