WO2015152145A1 - Process for producing crystalline 2-o-α-d-glucosyl-l-ascorbic acid powder - Google Patents

Process for producing crystalline 2-o-α-d-glucosyl-l-ascorbic acid powder Download PDF

Info

Publication number
WO2015152145A1
WO2015152145A1 PCT/JP2015/059900 JP2015059900W WO2015152145A1 WO 2015152145 A1 WO2015152145 A1 WO 2015152145A1 JP 2015059900 W JP2015059900 W JP 2015059900W WO 2015152145 A1 WO2015152145 A1 WO 2015152145A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucosyl
ascorbic acid
powder
solution
crystal powder
Prior art date
Application number
PCT/JP2015/059900
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 長井
晃典 梅山
Original Assignee
東洋精糖株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋精糖株式会社 filed Critical 東洋精糖株式会社
Priority to JP2016511876A priority Critical patent/JPWO2015152145A1/en
Publication of WO2015152145A1 publication Critical patent/WO2015152145A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/445The saccharide radical is condensed with a heterocyclic radical, e.g. everninomycin, papulacandin

Definitions

  • the present invention can improve the recovery rate compared to the prior art, reduce the process time, and improve the workability of dissolving the resulting powder.
  • 2-O- ⁇ -D-glucosyl-L- It is an object of the present invention to provide a method for producing ascorbic acid crystal powder.
  • the “ ⁇ -glucosyl sugar compound” used as the other raw material of 2-O- ⁇ -D-glucosyl-L-ascorbic acid can be converted from L-ascorbic acid to 2-O- ⁇ by simultaneously acting on a glycosyltransferase.
  • a glycosyltransferase There is no particular limitation as long as it can generate -D-glucosyl-L-ascorbic acid.
  • ⁇ -glucosyl sugar compounds include malto-oligosaccharides such as maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, dextrin, cyclodextrin, and amylose.
  • Glucoamylase (EC 3.2.1.3) used in the second stage enzyme reaction (hereinafter referred to as “second enzyme reaction”) is a by-product produced by the action of the glycosyltransferase used in the first enzyme reaction.
  • a compound in which two or more -D-glucosyl groups are linked to a sugar residue bonded to the hydroxyl group at the 2-position of L-ascorbic acid is converted to a 2-O- with only one ⁇ -D-glucosyl group bonded
  • An enzyme for converting to ⁇ -D-glucosyl-L-ascorbic acid which has an action of hydrolyzing the sugar residue of the by-product to reduce the number of ⁇ -D-glucosyl groups to one It is.
  • the glucoamylase also has an action of hydrolyzing the unreacted ⁇ -glucosyl sugar compound remaining in the reaction solution to convert it into D-glucose, whereby the subsequent purification step (b ) Can be easily removed.
  • glucoamylase those derived from various organisms, particularly microorganisms, are known, and appropriate ones can be selected and used.
  • the purification step (b) is performed by purifying the 2-O- ⁇ -D-glucosyl-L-ascorbic acid-containing solution prepared in step (a) to obtain 2-O- ⁇ -D-glucosyl. This is a step of obtaining an aqueous solution of a purified product having a content of L-ascorbic acid of 90% by mass or more in terms of anhydride.
  • the temperature at which 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals are crystallized by mixing a supersaturated aqueous solution of 2-O- ⁇ -D-glucosyl-L-ascorbic acid and an organic solvent is particularly limited. However, since the thermal stability of 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals is poor, it is preferably 60 ° C. or lower, more preferably 50 ° C. or lower.
  • a mixed solution of 2-O- ⁇ -D-glucosyl-L-ascorbine supersaturated aqueous solution and an organic solvent is preferably heated in the range of 30 to 60 ° C., more preferably in the range of 30 to 50 ° C.
  • the 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal may be crystallized while the mixed solution is cooled.
  • the cooling method of the mixed solution of 2-O- ⁇ -D-glucosyl-L-ascorbic acid supersaturated aqueous solution and organic solvent is not particularly limited.
  • the temperature of the mixed solution is slowly lowered by natural cooling.
  • the necessary crystallization time is usually 12 hours or less, preferably 24 hours or less, more preferably 36 hours or less.
  • Such 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal powder of the present invention is similar to the conventional 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal powder in foods, cosmetics, Has applications in quasi drugs, pharmaceuticals and other fields.
  • the 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal powder of the present invention is excellent in dissolution workability when an aqueous solution is prepared and used in the manufacturing process of various products.
  • - ⁇ -D-glucosyl-L-ascorbic acid crystal powder is suitable as a raw material for products produced by adding an aqueous solution.
  • part means “part by mass” and “%” means “% by mass”.
  • ⁇ -glycosyl-L-ascorbic acid such as maltosyl-L-ascorbic acid, 2-O- ⁇ -maltotriosyl-L-ascorbic acid, 2-O- ⁇ -maltotetraosyl-L-ascorbic acid, etc. It was.
  • the enzyme reaction of the reaction solution was stopped, and a glucoamylase agent (Amano Enzyme Co., Ltd., trade name “Glucoamylase Amano for Sake Brewing” 250,000 units / g) was added to this 600 units per gram of starch hydrolyzate.
  • Glucoamylase agent Amano Enzyme Co., Ltd., trade name “Glucoamylase Amano for Sake Brewing” 250,000 units / g
  • the obtained aqueous solution was heated to 40 ° C. with stirring, and 50 parts of ethanol and 0.15 part of seed crystals were added while stirring.
  • the aqueous solution was stirred at 40 ° C. for 1 hour, at 35 ° C. for 1 hour, at 30 ° C. for 1 hour, and at 25 ° C. for 20 hours to crystallize 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals. Analyzed.
  • Example 2 A 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in the step (b) was changed from ethanol to methanol. The recovery rate of 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals was 74.7%, and the dissolution workability was good.
  • Example 3 A 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in the step (b) was changed from ethanol to acetone. The recovery rate of 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals was 72.1%, and the dissolution workability was good.
  • Example 4 A 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in the step (b) was changed from ethanol to methyl ethyl ketone. The recovery rate of 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals was 70.6%, and the dissolution workability was good.
  • step (b) 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals were obtained in the same manner as in Example 1 except that ethanol was not used as the organic solvent and crystallization was performed only from water. A powder was obtained. The recovery rate of 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals was 45.3%, and the dissolution workability was not good.
  • Example 5 In Example 1, (c) 60 parts of an aqueous solution having a 66% concentration of 2-O- ⁇ -D-glucosyl-L-ascorbic acid in the crystallization step was changed to “2-O- ⁇ -D-glucosyl- A 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the concentration was changed to 55 parts of an aqueous solution having a concentration of L-ascorbic acid of 73%. The recovery rate of 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals was 92.1%, and the dissolution workability was good.
  • Example 8 In Example 5, 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in step (b) was changed from ethanol to methyl ethyl ketone. The recovery rate of 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystals was 78.5%, and the dissolution workability was good.
  • the physical properties of the powder can be evaluated by fluidity and jetting properties. In many cases, the fluidity is evaluated from the viewpoint of the ease of powder flow and the jetability of the powder.
  • a 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal obtained by the same procedure as in Example 1 and a procedure similar to that in the comparative example were obtained.
  • the obtained 2-O- ⁇ -D-glucosyl-L-ascorbic acid crystal hereinafter referred to as “crystallizing sample”.
  • various physical property values relating to fluidity and jetting properties are analyzed by the following methods. Tests were conducted, and the measurement results were digitized by Dr. Carr's index, and the physical properties of the powder were evaluated from the total values.
  • the particle size distribution and the true specific gravity are not affected by the numerical values of the fluidity and jet property, but are important values for knowing the physical properties of the powder, and thus were measured together.
  • the central particle size obtained from the measurement of the particle size distribution was smaller than that in the case of dry measurement (reference: about 150 ⁇ m) because it was data after 10 minutes of ultrasonic crushing in acetone. This is thought to be because it was slightly dissolved in acetone and became smaller with ultrasound.
  • the difference between the ethanol crystallized sample and the crystallized sample is apparent specific gravity.
  • the dynamic apparent specific gravity is that the dynamic behavior in the actual process is "from the most coarsely packed state to a slightly compressed state (intermediate between loosening and hardening)" and "the degree of dynamic compression depends on the degree of compression” Based on the idea of “Yes”, it is calculated from the above formula.
  • the loose bulk density, solid bulk density, and dynamic apparent specific gravity are all smaller for the ethanol crystallized sample, indicating that the powder as a whole contains air. Therefore, a difference of about 9% also occurs in the degree of compression, and the ethanol crystallized sample is expected to have a gap between particles.
  • the spatula angle was smaller for the crystallized sample. Spatula angles and repose angles tend to be similar. This time, the opposite results for both samples may be due to the crystal shape (ethanol crystallized sample is slightly irregular, crystallized sample is relatively regular. ).
  • the powder containing air is easy to mix with water, although its volume increases when compared with the same weight. Furthermore, if the crystal shape is irregular, it is expected that it will be more likely to mix with water.
  • the ethanol crystallization sample Due to the difference in jetting property and specific surface area as described above, it is considered that the ethanol crystallization sample has improved dissolution workability when compared with the crystallization sample.

Abstract

The present invention provides a process for producing a crystalline 2-O-α-D-glucosyl-L-ascorbic acid (AG) powder, the process making it possible to more improve the recovery than in conventional processes, shorten the time required for the steps, and make dissolution operation of the obtained powder easier. This process for producing a crystalline AG powder comprises the following steps (a) to (d): step (a) in which a glycosyltransferase is made to act on a solution containing both L-ascorbic acid and an α-glucosyl-sugar compound and a glucoamylase is subsequently made to act thereon, thereby preparing an AG-containing solution; step (b) in which the AG-containing solution is purified to obtain an aqueous solution of a purification product having an AG content of 90 mass% or higher in terms of anhydride amount; step (c) in which the aqueous solution of a purification product is mixed with an organic solvent and thereafter the temperature of the mixed solution is lowered to cause crystals of AG to separate out; and step (d) in which the AG crystals that have separated out are recovered and the recovered crystals are dried to obtain a crystalline AG powder.

Description

2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法Method for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder
 本発明は、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法に関し、詳細には、従来に比べて2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の回収率およびその回収物の溶解作業性に優れた製造方法に関する。 The present invention relates to a method for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder, and more specifically, compared to the conventional method, 2-O-α-D-glucosyl-L-ascorbic acid crystal powder The present invention relates to a production method excellent in recovery rate and dissolution workability of the recovered product.
 L-アスコルビン酸は、その優れた生理活性や抗酸化作用の故に、従来から飲食品、化粧品などを含め種々の用途に使用されている。反面、L-アスコルビン酸は、直接還元性故に不安定であり、酸化分解を受け易く、生理活性を失い易いという大きな欠点を有している。このL-アスコルビン酸の欠点を解消すべく、L-アスコルビン酸の2位の水酸基に1分子のD-グルコースが結合した2-O-α-D-グルコシル-L-アスコルビン酸(本明細書において「アスコルビン酸2-グルコシド」と略称することがある。)が開発されている。この2-O-α-D-グルコシル-L-アスコルビン酸は、直接還元性を示さず、安定であり、かつ、生体内では、生体内にもともと存在する酵素によってL-アスコルビン酸とD-グルコースとに分解されてL-アスコルビン酸本来の生理活性を発揮するという画期的な特性を有している。また、2-O-α-D-グルコシル-L-アスコルビン酸の用途に関しても多数開発されており、食品素材、食品添加物素材、化粧品素材、医薬部外品素材、或いは医薬品素材として、従来からのL-アスコルビン酸の用途はもとより、L-アスコルビン酸が不安定であるために従来はL-アスコルビン酸を用いることができなかったその他の用途にも広く使用されるに至っている。 L-ascorbic acid has been conventionally used for various uses including foods and drinks and cosmetics because of its excellent physiological activity and antioxidant action. On the other hand, L-ascorbic acid is unstable because of its direct reduction property, and has a great disadvantage that it is susceptible to oxidative degradation and easily loses its physiological activity. In order to eliminate the disadvantages of L-ascorbic acid, 2-O-α-D-glucosyl-L-ascorbic acid in which one molecule of D-glucose is bonded to the hydroxyl group at the 2-position of L-ascorbic acid (in the present specification, "Ascorbic acid 2-glucoside" is sometimes abbreviated). This 2-O-α-D-glucosyl-L-ascorbic acid does not show direct reducing properties, is stable, and in vivo, L-ascorbic acid and D-glucose are produced by enzymes originally present in the living body. It has an epoch-making characteristic that it is decomposed into L-ascorbic acid and exhibits its original physiological activity. In addition, many uses of 2-O-α-D-glucosyl-L-ascorbic acid have been developed. Conventionally, as a food material, food additive material, cosmetic material, quasi drug material, or pharmaceutical material, In addition to the use of L-ascorbic acid, L-ascorbic acid is unstable, so that it has been widely used in other applications where L-ascorbic acid could not be used conventionally.
 2-O-α-D-グルコシル-L-アスコルビン酸は、一般的に、L-アスコルビン酸とα-グルコシル糖化合物とを含有する溶液に、シクロマルトデキストリン・グルカノトランスフェラーゼ(以下、「CGTase」と略称する。)又はα-グルコシダーゼなどの糖転移酵素、あるいはそのような糖転移酵素とグルコアミラーゼとを作用させることによって生成する(特許文献1)。また、2-O-α-D-グルコシル-L-アスコルビン酸の過飽和水溶液からは2-O-α-D-グルコシル-L-アスコルビン酸の結晶を晶析させることができ、結晶2-O-α-D-グルコシル-L-アスコルビン酸およびそれを含有する2-O-α-D-グルコシル-L-アスコルビン酸結晶含有粉末も開発されている(特許文献2)。 2-O-α-D-glucosyl-L-ascorbic acid is generally added to a solution containing L-ascorbic acid and an α-glucosyl sugar compound in a cyclomaltodextrin glucanotransferase (hereinafter referred to as “CGTase”). Or a glycosyltransferase such as α-glucosidase, or by reacting such a glycosyltransferase and glucoamylase (Patent Document 1). In addition, crystals of 2-O-α-D-glucosyl-L-ascorbic acid can be crystallized from a supersaturated aqueous solution of 2-O-α-D-glucosyl-L-ascorbic acid. α-D-glucosyl-L-ascorbic acid and a powder containing 2-O-α-D-glucosyl-L-ascorbic acid crystals containing the same have also been developed (Patent Document 2).
 さらに、アスコルビン酸2-グルコシドおよびその製造方法に関連する各種の技術が現在も開発中である。たとえば、特許文献3には、2-O-α-D-グルコシル-L-アスコルビン酸無水結晶と共存しうる、2-O-α-D-グルコシル-L-アスコルビン酸含水結晶およびその製造方法が開示されている。また、特許文献4には、2-O-α-D-グルコシル-L-アスコルビン酸を無水物換算で86質量%超含有する溶液から、特定の制御された冷却方法(制御冷却法または疑似制御冷却法)によって無水結晶を析出させることで、従来品よりも固結しにくい2-O-α-D-グルコシル-L-アスコルビン酸無水結晶含有粉末が得られる製造方法が開示されている。 Furthermore, various technologies related to ascorbic acid 2-glucoside and its production method are still under development. For example, Patent Document 3 discloses 2-O-α-D-glucosyl-L-ascorbic acid hydrous crystals that can coexist with 2-O-α-D-glucosyl-L-ascorbic anhydride crystals and a method for producing the same. It is disclosed. Patent Document 4 discloses a specific controlled cooling method (controlled cooling method or pseudo control) from a solution containing more than 86% by mass of 2-O-α-D-glucosyl-L-ascorbic acid in terms of anhydride. A manufacturing method is disclosed in which anhydrous crystals are precipitated by a cooling method) to obtain 2-O-α-D-glucosyl-L-ascorbic acid anhydrous crystal-containing powder that is harder to solidify than conventional products.
特開平3-139288号公報Japanese Patent Laid-Open No. 3-139288 特開平3-135992号公報Japanese Unexamined Patent Publication No. 3-135992 国際公開WO2012/033218号パンフレットInternational Publication WO2012 / 033218 Pamphlet 特開2013-55932号公報JP 2013-55932 A
 酵素法に基づく2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法については様々なものが開発されてきているが、回収率の向上および工程時間の短縮については改善の余地があった。また、酵素法により得られる2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の溶解作業性の向上についても改善の余地があった。 Various methods for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder based on the enzymatic method have been developed, but there is room for improvement in improving the recovery rate and shortening the process time. was there. There is also room for improvement in improving the workability of dissolving 2-O-α-D-glucosyl-L-ascorbic acid crystal powder obtained by the enzymatic method.
 本発明は、従来よりも回収率を向上させ、かつ工程時間を短縮することのでき、しかも得られる粉末の溶解作業性も向上させることができる、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法を提供することを課題とする。 The present invention can improve the recovery rate compared to the prior art, reduce the process time, and improve the workability of dissolving the resulting powder. 2-O-α-D-glucosyl-L- It is an object of the present invention to provide a method for producing ascorbic acid crystal powder.
 本発明者らは、純度が特定の値以上の2-O-α-D-グルコシル-L-アスコルビン酸精製物の水溶液を、水と相溶性を有するエタノール等の有機溶剤と混合した後、温度を下げて晶析させることにより、晶析の際に水のみを用いる従来の方法よりも、2-O-α-D-グルコシル-L-アスコルビン酸結晶を高い回収率かつ短い工程時間で得ることができることを見出した。しかも、得られた2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末は溶解作業性が従来品よりも高く、その要因として特定の物性値により規定される噴流性や比表面積が向上していることが考えられること、すなわち本発明の方法によって得られる2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末は、従来品と物質として区別できるものであることも見出した。 The inventors have mixed an aqueous solution of purified 2-O-α-D-glucosyl-L-ascorbic acid having a purity of a specific value or more with an organic solvent such as ethanol having compatibility with water, By lowering the crystallization, 2-O-α-D-glucosyl-L-ascorbic acid crystals can be obtained at a higher recovery rate and in a shorter process time than the conventional method using only water for crystallization. I found out that I can. In addition, the obtained 2-O-α-D-glucosyl-L-ascorbic acid crystal powder has a higher workability for dissolution than conventional products, and as a factor, the jet properties and specific surface area defined by specific physical properties are improved. It has also been found that 2-O-α-D-glucosyl-L-ascorbic acid crystal powder obtained by the method of the present invention can be distinguished from conventional products as substances.
 すなわち、本発明には以下の発明が包含される。 That is, the present invention includes the following inventions.
 [1]
 下記(a)~(d)の工程を含む、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法:
 (a)L-アスコルビン酸とα-グルコシル糖化合物とを含有する溶液に、糖転移酵素を作用させ、次いでグルコアミラーゼを作用させることによって得た2-O-α-D-グルコシル-L-アスコルビン酸含有溶液を準備する工程;
 (b)前記2-O-α-D-グルコシル-L-アスコルビン酸含有溶液を精製して、2-O-α-D-グルコシル-L-アスコルビン酸の含有量が無水物換算で90質量%以上である精製物の水溶液を得る工程;
 (c)前記精製物の水溶液と有機溶剤とを混合した後、溶液の温度を下げることにより、2-O-α-D-グルコシル-L-アスコルビン酸の結晶を晶析させる工程;
 (d)前記晶析した2-O-α-D-グルコシル-L-アスコルビン酸の結晶を回収し、当該回収された結晶を乾燥することにより、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得る工程。
[1]
A process for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder, comprising the following steps (a) to (d):
(A) 2-O-α-D-glucosyl-L-ascorbine obtained by allowing a glycosyltransferase to act on a solution containing L-ascorbic acid and an α-glucosyl sugar compound and then causing glucoamylase to act Preparing an acid-containing solution;
(B) The 2-O-α-D-glucosyl-L-ascorbic acid-containing solution is purified so that the content of 2-O-α-D-glucosyl-L-ascorbic acid is 90% by mass in terms of anhydride. A step of obtaining an aqueous solution of the purified product as described above;
(C) a step of crystallizing 2-O-α-D-glucosyl-L-ascorbic acid crystals by mixing an aqueous solution of the purified product and an organic solvent and then lowering the temperature of the solution;
(D) The crystallized 2-O-α-D-glucosyl-L-ascorbic acid crystal is recovered, and the recovered crystal is dried to give 2-O-α-D-glucosyl-L- A step of obtaining ascorbic acid crystal powder.
 [2]
 前記工程(c)における有機溶剤が、アルコール系溶剤またはケトン系溶剤である、[1]に記載の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法。
[2]
The method for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder according to [1], wherein the organic solvent in the step (c) is an alcohol solvent or a ketone solvent.
 [3]
 前記工程(c)において、前記精製物の水溶液に対して、10~500質量%の前記有機溶剤を混合する、[1]または[2]に記載の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法。
[3]
In the step (c), 2-O-α-D-glucosyl-L according to [1] or [2], wherein 10 to 500 mass% of the organic solvent is mixed with the aqueous solution of the purified product. -Method for producing ascorbic acid crystal powder.
 [4]
 [1]~[3]のいずれか一項に記載の製造方法により得られた2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末。
[4]
2-O-α-D-glucosyl-L-ascorbic acid crystal powder obtained by the production method according to any one of [1] to [3].
 本発明によれば、2-O-α-D-グルコシル-L-アスコルビン酸の水溶液に有機溶剤を混合してから晶析させることで、2-O-α-D-グルコシル-L-アスコルビン酸の水溶液から晶析させるよりも、2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率を高め、かつ工程時間を短縮することができ、それにより量産性に優れた製造方法を提供することができる。また、本発明によれば、噴流性および比表面積が向上し、それにより溶解作業性に優れた2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を提供することができる。 According to the present invention, 2-O-α-D-glucosyl-L-ascorbic acid is obtained by crystallization after mixing an organic solvent with an aqueous solution of 2-O-α-D-glucosyl-L-ascorbic acid. Rather than crystallizing from an aqueous solution, the recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals can be increased and the process time can be shortened, thereby producing a production method with excellent mass productivity. Can be provided. Further, according to the present invention, it is possible to provide 2-O-α-D-glucosyl-L-ascorbic acid crystal powder having improved jetting properties and specific surface area, and thereby excellent workability in dissolution.
 <2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法>
 本発明の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法は、基本的に、下記(a)~(d)の工程を含む:
 下記(a)~(d)の工程を含む、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法:
 (a)L-アスコルビン酸とα-グルコシル糖化合物とを含有する溶液に、糖転移酵素を作用させ、次いでグルコアミラーゼを作用させることによって得た2-O-α-D-グルコシル-L-アスコルビン酸含有溶液を準備する工程(酵素処理工程);
 (b)前記2-O-α-D-グルコシル-L-アスコルビン酸含有溶液を精製して、2-O-α-D-グルコシル-L-アスコルビン酸の含有量が無水物換算で90質量%以上である精製物の水溶液を得る工程(精製工程);
 (c)前記精製物の水溶液と有機溶剤とを混合した後、その溶液の温度を下げることで、2-O-α-D-グルコシル-L-アスコルビン酸の結晶を晶析させる工程(晶析工程);
 (d)前記晶析した2-O-α-D-グルコシル-L-アスコルビン酸の結晶を回収し、回収された前記結晶を乾燥することにより、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得る工程(乾燥工程)。
<Method for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder>
The method for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder of the present invention basically includes the following steps (a) to (d):
A process for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder, comprising the following steps (a) to (d):
(A) 2-O-α-D-glucosyl-L-ascorbine obtained by allowing a glycosyltransferase to act on a solution containing L-ascorbic acid and an α-glucosyl sugar compound and then causing glucoamylase to act A step of preparing an acid-containing solution (enzyme treatment step);
(B) The 2-O-α-D-glucosyl-L-ascorbic acid-containing solution is purified so that the content of 2-O-α-D-glucosyl-L-ascorbic acid is 90% by mass in terms of anhydride. A step of obtaining an aqueous solution of the purified product as described above (purification step);
(C) A step of crystallizing 2-O-α-D-glucosyl-L-ascorbic acid crystals by mixing an aqueous solution of the purified product and an organic solvent and then lowering the temperature of the solution (crystallization) Process);
(D) The crystallized 2-O-α-D-glucosyl-L-ascorbic acid crystal is recovered, and the recovered crystal is dried to give 2-O-α-D-glucosyl-L- A step of obtaining ascorbic acid crystal powder (drying step).
 ・(a)酵素処理工程
 酵素処理工程(a)は、L-アスコルビン酸とα-グルコシル糖化合物とを含有する溶液に、糖転移酵素を作用させ、次いでグルコアミラーゼを作用させることによって得た2-O-α-D-グルコシル-L-アスコルビン酸含有溶液を準備する工程である。このような2-O-α-D-グルコシル-L-アスコルビン酸含有溶液の調製方法は公知であり、上記の基本的な要件以外の好ましい要件をさらに含む改良法など、各種の製造方法を利用することができる。
(A) Enzyme treatment step The enzyme treatment step (a) was obtained by allowing a glycosyltransferase to act on a solution containing L-ascorbic acid and an α-glucosyl sugar compound, and then allowing glucoamylase to act. This is a step of preparing a solution containing —O-α-D-glucosyl-L-ascorbic acid. A method for preparing such a solution containing 2-O-α-D-glucosyl-L-ascorbic acid is known, and various manufacturing methods such as an improved method further including preferable requirements other than the above basic requirements are used. can do.
 2-O-α-D-グルコシル-L-アスコルビン酸の原料(酵素反応の基質)の一方として用いる「L-アスコルビン酸」は、ヒドロキシ酸のままの形態のものであっても、アルカリ金属塩、アルカリ土類金属塩などの金属塩の形態のものであっても、それらの混合物であってもよい。 “L-ascorbic acid” used as one of the raw materials of 2-O-α-D-glucosyl-L-ascorbic acid (substrate for enzyme reaction) may be an alkali metal salt even if it is in the form of a hydroxy acid. They may be in the form of a metal salt such as an alkaline earth metal salt or a mixture thereof.
 2-O-α-D-グルコシル-L-アスコルビン酸の原料のもう一方として用いる「α-グルコシル糖化合物」は、同時に糖転移酵素を作用させることにより、L-アスコルビン酸から2-O-α-D-グルコシル-L-アスコルビン酸を生成させることのできるものであれば特に限定されるものではない。そのようなα-グルコシル糖化合物としては、たとえば、マルトース、マルトトリオース、マルトテトラオース、マルトペンタオース、マルトヘキサオース、マルトヘプタオース、マルトオクタオースなどのマルトオリゴ糖、デキストリン、シクロデキストリン、アミロースなどの澱粉部分加水分解物、さらに液化澱粉(馬鈴薯澱粉、甘藷澱粉、タピオカ澱粉、コーンスターチ、小麦澱粉などの澱粉に耐熱性α-アミラーゼを作用させることで得られる液状の澱粉)、糊化澱粉(澱粉を水中に懸濁して加熱すると得られる、粒子が崩壊してゲル状に変化した澱粉)、可溶性澱粉(澱粉を酸処理により水に可溶化し、さらに溶液の粘度を低下させて得られる澱粉)などが挙げられる。 The “α-glucosyl sugar compound” used as the other raw material of 2-O-α-D-glucosyl-L-ascorbic acid can be converted from L-ascorbic acid to 2-O-α by simultaneously acting on a glycosyltransferase. There is no particular limitation as long as it can generate -D-glucosyl-L-ascorbic acid. Examples of such α-glucosyl sugar compounds include malto-oligosaccharides such as maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, dextrin, cyclodextrin, and amylose. Starch hydrolyzate, liquefied starch (potato starch, sweet potato starch, tapioca starch, corn starch, wheat starch and other liquid starch obtained by the action of heat-resistant α-amylase), gelatinized starch (starch) , Starch obtained by suspending particles in water and heating them, and starch that has been changed into a gel by disintegrating particles), soluble starch (starch obtained by solubilizing starch in water by acid treatment and lowering the viscosity of the solution) Etc.
 1段階目の酵素反応(以下「第1酵素反応」と称する。)で用いる「糖転移酵素」は、α-グルコシル糖化合物に由来する糖残基を、L-アスコルビン酸の2位の水酸基に転移して結合させる作用を有する酵素である。そのような糖転移酵素としては、α-グルコシダーゼ(EC 3.2.1.20)、シクロマルトデキストリングルカノトランスフェラーゼ(CGTase)(EC 2.4.1.19)、α-アミラーゼ(EC 3.2.1.1)などが挙げられる。CGTaseは、様々な生物、特に微生物に由来するものが公知であり、適切なものを選択して用いることができる。また、CGTaseは、そのような生物に由来する天然のアミノ酸配列を有するものであってもよいし、天然のアミノ酸配列に置換、付加(挿入)、欠失などの修飾を施したアミノ酸配列を有するもの(変異体)であってもよい。 “Glycosyltransferase” used in the first stage enzyme reaction (hereinafter referred to as “first enzyme reaction”) converts a sugar residue derived from an α-glucosyl sugar compound into a hydroxyl group at the 2-position of L-ascorbic acid. It is an enzyme that has the effect of transferring and binding. Examples of such glycosyltransferases include α-glucosidase (EC 3.2.1.20), cyclomaltodextrin glucanotransferase (CGTase) (EC 2.4.1.19), α-amylase (EC 3.2.1.1) and the like. As CGTase, those derived from various organisms, particularly microorganisms, are known, and appropriate ones can be selected and used. CGTase may have a natural amino acid sequence derived from such an organism, or may have an amino acid sequence obtained by modifying the natural amino acid sequence such as substitution, addition (insertion), or deletion. Thing (mutant) may be sufficient.
 糖転移酵素の種類によって、効率的に糖を転移させることとのできるα-グルコシル糖化合物の種類は相違する。糖転移酵素としてα-グルコシダーゼを用いる場合、α-グルコシル糖化合物としては、マルトース、マルトトリオース、マルトテトラオース、マルトペンタオース、マルトヘキサオース、マルトヘプタオース、マルトオクタオースなどのマルトオリゴ糖、またはDE値(Dextrose Equivalent:ブドウ糖を100とした場合の、澱粉等の糖液の持つ還元力を固形分当りにした値であり、大きいほど分解度が高く低分子化が進んでいることを表す。)約5~60のデキストリン、澱粉部分加水分解物などが好ましい。糖転移酵素としてCGTaseを用いる場合、α-グルコシル糖化合物としては、シクロデキストリンまたはDE値1未満の澱粉糊化物からDE値約60のデキストリンまでの澱粉部分加水分解物などが好ましい。糖転移酵素としてα-アミラーゼを用いる場合、α-グルコシル糖化合物としては、DE値1未満の澱粉糊化物からDE値約30のデキストリンまでの澱粉部分加水分解物などが好ましい。 Depending on the type of glycosyltransferase, the type of α-glucosyl sugar compound that can transfer sugar efficiently varies. When α-glucosidase is used as the glycosyltransferase, the α-glucosyl sugar compound includes malto-oligosaccharides such as maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, or the like. DE value (Dextrose Equivalent: A value obtained by setting the reducing power of a sugar solution such as starch per solid when the glucose is 100, and the larger the value, the higher the degree of degradation and the lower the molecular weight. ) About 5 to 60 dextrins, partial hydrolysates of starch and the like are preferred. When CGTase is used as the glycosyltransferase, the α-glucosyl sugar compound is preferably cyclodextrin or a partially hydrolyzed starch from starch gelatinized product having a DE value of less than 1 to dextrin having a DE value of about 60. When α-amylase is used as the glycosyltransferase, the α-glucosyl sugar compound is preferably a starch hydrolyzate from starch gelatinized product having a DE value of less than 1 to dextrin having a DE value of about 30.
 2段階目の酵素反応(以下「第2酵素反応」と称する。)で用いる「グルコアミラーゼ」(EC 3.2.1.3)は、第1酵素反応で用いた糖転移酵素の作用により副生する、α-D-グルコシル基が2個以上連結した糖残基がL-アスコルビン酸の2位の水酸基に結合している化合物を、α-D-グルコシル基が1つだけ結合している2-O-α-D-グルコシル-L-アスコルビン酸に変換するための酵素であって、前記副生物の糖残基を加水分解してα-D-グルコシル基の数を1個にまで減らす作用を有する酵素である。それと同時に、グルコアミラーゼは反応液中に残存している未反応のα-グルコシル糖化合物を加水分解してD-グルコースに変換する作用も有しており、それにより次に行われる精製工程(b)における除去を容易にすることができる。グルコアミラーゼは、様々な生物、特に微生物に由来するものが公知であり、適切なものを選択して用いることができる。 “Glucoamylase” (EC 3.2.1.3) used in the second stage enzyme reaction (hereinafter referred to as “second enzyme reaction”) is a by-product produced by the action of the glycosyltransferase used in the first enzyme reaction. A compound in which two or more -D-glucosyl groups are linked to a sugar residue bonded to the hydroxyl group at the 2-position of L-ascorbic acid is converted to a 2-O- with only one α-D-glucosyl group bonded An enzyme for converting to α-D-glucosyl-L-ascorbic acid, which has an action of hydrolyzing the sugar residue of the by-product to reduce the number of α-D-glucosyl groups to one It is. At the same time, the glucoamylase also has an action of hydrolyzing the unreacted α-glucosyl sugar compound remaining in the reaction solution to convert it into D-glucose, whereby the subsequent purification step (b ) Can be easily removed. As glucoamylase, those derived from various organisms, particularly microorganisms, are known, and appropriate ones can be selected and used.
 糖転移酵素としてCGTaseまたはα-アミラーゼを用いる場合、α-グルコシダーゼを用いる場合よりも、酵素の作用によってL-アスコルビン酸の2位の水酸基に結合するα-D-グルコシル基の数が多い傾向にある。たとえば、CGTaseを用いる場合、結合するα-D-グルコシル基の数は1~7程度まで分布する、つまり、目的とする2-O-α-D-グルコシル-L-アスコルビン酸(結合するα-D-グルコシル基の数は1)のみならず、2-O-α-D-マルトシル-L-アスコルビン酸(同2)、2-O-α-D-マルトトリオシル-L-アスコルビン酸(同3)、2-O-α-D-マルトテトラオシル-L-アスコルビン酸(同4)、2-O-α-D-マルトペンタオシル-L-アスコルビン酸(同5)、2-O-α-D-マルトヘキサオシル-L-アスコルビン酸(同6)、2-O-α-D-マルトヘプタオシル-L-アスコルビン酸(同7)などの副生物を含む混合物が生成する。α-アミラーゼを用いる場合も、CGTaseを用いる場合より分布はやや狭いが、同様の混合物が生成する。したがって、糖転移酵素としてそのような副生物を生じる酵素を用いる場合であっても、グルコアミラーゼを併用することで、副生物を目的とする2-O-α-D-グルコシル-L-アスコルビン酸に変換することで、2-O-α-D-グルコシル-L-アスコルビン酸の純度を向上させることができる。副生物は可能な限り2-O-α-D-グルコシル-L-アスコルビン酸に変換しておく、つまり副生物の残存量は可能な限り低くしておくことが、続く工程(b)で得られる精製物の純度を特定の値以上に高くするために好適である。 When CGTase or α-amylase is used as a glycosyltransferase, the number of α-D-glucosyl groups bound to the hydroxyl group at the 2-position of L-ascorbic acid tends to be larger than when α-glucosidase is used. is there. For example, when CGTase is used, the number of α-D-glucosyl groups to be bound is distributed to about 1 to 7, that is, the desired 2-O-α-D-glucosyl-L-ascorbic acid (bound α- The number of D-glucosyl groups is not only 1) but also 2-O-α-D-maltosyl-L-ascorbic acid (same as 2), 2-O-α-D-maltotriosyl-L-ascorbic acid (same as above) 3), 2-O-α-D-maltotetraosyl-L-ascorbic acid (same 4), 2-O-α-D-maltopentaosyl-L-ascorbic acid (same 5), 2-O A mixture containing by-products such as -α-D-maltohexaosyl-L-ascorbic acid (same as 6) and 2-O-α-D-maltoheptaosyl-L-ascorbic acid (same as 7) is produced. . When α-amylase is used, a similar mixture is produced although the distribution is somewhat narrower than when CGTase is used. Therefore, even when an enzyme that produces such a by-product is used as a glycosyltransferase, 2-O-α-D-glucosyl-L-ascorbic acid intended for the by-product can be obtained by using glucoamylase in combination. The purity of 2-O-α-D-glucosyl-L-ascorbic acid can be improved. It is obtained in the subsequent step (b) that the by-product is converted to 2-O-α-D-glucosyl-L-ascorbic acid as much as possible, that is, the residual amount of the by-product is kept as low as possible. It is suitable for increasing the purity of the purified product to a specific value or higher.
 第1酵素反応が行われる、L-アスコルビン酸とα-グルコシル糖化合物とを含有する溶液(通常は水溶液)の濃度は、基質となるL-アスコルビン酸およびα-グルコシル糖化合物の合計で、通常は1~40質量%である。また、L-アスコルビン酸とα-グルコシル糖化合物との質量比は、通常は2:8~7:3である。α-グルコシル糖化合物の量が前記比率の範囲を超えて多くなると、L-アスコルビン酸への糖転移は効率よく進行するものの、L-アスコルビン酸の始発濃度の低さによる制約を受けて、2-O-α-D-グルコシル-L-アスコルビン酸の生成率が低いものに留まる。逆に、L-アスコルビン酸の量が前記比率の範囲を超えて多くなると、未反応のL-アスコルビン酸の残存量も多くなり、工業的生産にとって非効率的である。 The concentration of a solution containing L-ascorbic acid and an α-glucosyl sugar compound (usually an aqueous solution) in which the first enzyme reaction is performed is usually the sum of L-ascorbic acid and α-glucosyl sugar compound as substrates. Is 1 to 40% by mass. The mass ratio of L-ascorbic acid and α-glucosyl sugar compound is usually from 2: 8 to 7: 3. When the amount of α-glucosyl sugar compound increases beyond the above range, sugar transfer to L-ascorbic acid proceeds efficiently, but is limited by the low initial concentration of L-ascorbic acid. The production rate of —O-α-D-glucosyl-L-ascorbic acid remains low. On the contrary, if the amount of L-ascorbic acid increases beyond the above range, the amount of unreacted L-ascorbic acid increases, which is inefficient for industrial production.
 第1酵素反応のための糖転移酵素の使用量は、基質となるL-アスコルビン酸およびα-グルコシル糖化合物の合計量1gあたり、通常1~500単位である。このような量の糖転移酵素を、L-アスコルビン酸とα-グルコシル糖化合物とを含有する溶液に添加し、通常、当該溶液のpHを3~10、温度を30~70℃に保ち、6時間以上、好ましくは12~96時間、反応を進行させることにより、第1酵素反応を行うことができる。 The amount of glycosyltransferase used for the first enzyme reaction is usually 1 to 500 units per 1 g of the total amount of L-ascorbic acid and α-glucosyl sugar compound as substrates. Such an amount of glycosyltransferase is added to a solution containing L-ascorbic acid and an α-glucosyl sugar compound. Usually, the pH of the solution is kept at 3 to 10 and the temperature is kept at 30 to 70 ° C. The first enzyme reaction can be carried out by allowing the reaction to proceed for at least hours, preferably 12 to 96 hours.
 第2酵素反応のためのグルコアミラーゼの使用量は、第1酵素反応によって生成する前述したような副生物の量に応じて調節することができるが、前述したような条件に従って第1酵素反応を行う場合、基質となるα-グルコシル糖化合物の合計量1gあたり、通常100~5000単位である。グルコアミラーゼは、第1酵素反応の反応液を加熱することで、糖転移酵素を失活させて第1酵素反応を停止させた後、その反応液に添加するようにする。加熱された酵素反応液の冷却に要するエネルギーと時間を節約することができるように、比較的高い温度、例えば40~60℃であっても実用に足る酵素活性を発揮しうるグルコアミラーゼを用いることが好ましい。通常、グルコアミラーゼを添加した反応液のpHを2.5~6.5、温度を20~75℃に保ち、2時間以上、好ましくは4~12時間、反応を進行させることにより、第2酵素反応を行うことができる。 The amount of glucoamylase used for the second enzyme reaction can be adjusted according to the amount of by-products generated by the first enzyme reaction as described above. When carried out, the amount is usually 100 to 5000 units per gram of the total amount of α-glucosyl sugar compound as a substrate. Glucoamylase is added to the reaction solution after heating the reaction solution of the first enzyme reaction to deactivate the glycosyltransferase to stop the first enzyme reaction. To save energy and time required for cooling the heated enzyme reaction solution, use a glucoamylase that can exhibit practical enzyme activity even at a relatively high temperature, for example, 40 to 60 ° C. Is preferred. Usually, the second enzyme is prepared by maintaining the pH of the reaction solution to which glucoamylase has been added at 2.5 to 6.5 and the temperature at 20 to 75 ° C., and allowing the reaction to proceed for 2 hours or more, preferably 4 to 12 hours. The reaction can be performed.
 ・(b)精製工程
 精製工程(b)は、工程(a)により準備した2-O-α-D-グルコシル-L-アスコルビン酸含有溶液を精製して、2-O-α-D-グルコシル-L-アスコルビン酸の含有量が無水物換算で90質量%以上である精製物の水溶液を得る工程である。
(B) Purification step The purification step (b) is performed by purifying the 2-O-α-D-glucosyl-L-ascorbic acid-containing solution prepared in step (a) to obtain 2-O-α-D-glucosyl. This is a step of obtaining an aqueous solution of a purified product having a content of L-ascorbic acid of 90% by mass or more in terms of anhydride.
 第1および第2酵素反応を終えた反応溶液には、生成した2-O-α-D-グルコシル-L-アスコルビン酸以外に、原料として用い、未反応のまま残存しているL-アスコルビン酸およびα-グルコシル糖化合物や、前述したような副生物などが混合している。反応溶液からそのような未反応物や副生物などを除去することにより、2-O-α-D-グルコシル-L-アスコルビン酸の含有量が無水物換算で90質量%以上である精製物の水溶液を調製することができる。 In addition to the produced 2-O-α-D-glucosyl-L-ascorbic acid, the reaction solution after the completion of the first and second enzyme reactions was used as a raw material and remained unreacted L-ascorbic acid And α-glucosyl sugar compounds and by-products as described above are mixed. By removing such unreacted products and by-products from the reaction solution, a purified product having a content of 2-O-α-D-glucosyl-L-ascorbic acid of 90% by mass or more in terms of anhydride is obtained. An aqueous solution can be prepared.
 なお、2-O-α-D-グルコシル-L-アスコルビン酸含有溶液中の、2-O-α-D-グルコシル-L-アスコルビン酸精製物の純度(つまり当該精製物中の2-O-α-D-グルコシル-L-アスコルビン酸の含有量)は、たとえば、次に述べる精製処理のためのカラムクロマトグラフィーにおいて作成される、クロマトグラムに描かれる各成分のピーク面積に基づく定量値から算出することができる。純度[%]=(2-O-α-D-グルコシル-L-アスコルビン酸の無水物のピーク面積)/(全成分のピーク面積の総和)である。この際、2-O-α-D-グルコシル-L-アスコルビン酸の水和物を表すピーク面積については、(2-O-α-D-グルコシル-L-アスコルビン酸の無水物の分子量)/(2-O-α-D-グルコシル-L-アスコルビン酸の水和物の分子量)を乗じて換算することにより、2-O-α-D-グルコシル-L-アスコルビン酸の無水物とみなして純度の計算に組み入れる。 The purity of the purified 2-O-α-D-glucosyl-L-ascorbic acid in the solution containing 2-O-α-D-glucosyl-L-ascorbic acid (that is, 2-O— in the purified product). The content of α-D-glucosyl-L-ascorbic acid is calculated from quantitative values based on the peak areas of each component drawn in the chromatogram, which is created, for example, in column chromatography for the purification process described below. can do. Purity [%] = (peak area of anhydride of 2-O-α-D-glucosyl-L-ascorbic acid) / (sum of peak areas of all components). At this time, regarding the peak area representing the hydrate of 2-O-α-D-glucosyl-L-ascorbic acid, the molecular weight of (2-O-α-D-glucosyl-L-ascorbic anhydride) / By multiplying by (molecular weight of 2-O-α-D-glucosyl-L-ascorbic acid hydrate) and converting, it is regarded as an anhydride of 2-O-α-D-glucosyl-L-ascorbic acid. Include in purity calculation.
 精製処理に用いる方法は特に限定されるものではないが、一般的には、第1および第2酵素反応を終えた反応溶液をまず活性炭などにより脱色濾過し、続いて濾液をカチオン交換樹脂により脱塩した後、前記未反応物等を除去するためのカラムクロマトグラフィーを適用する精製処理により、上記所定の純度以上の精製物の水溶液が得られる。 The method used for the purification treatment is not particularly limited, but in general, the reaction solution after the completion of the first and second enzyme reactions is first decolorized and filtered with activated carbon or the like, and then the filtrate is dehydrated with a cation exchange resin. After salting, an aqueous solution of a purified product having a predetermined purity or higher is obtained by a purification treatment using column chromatography for removing the unreacted materials and the like.
 カラムクロマトグラフィーとしては、たとえば、未反応物のうちD-グルコースなどのα-グルコシル糖化合物を除去するためのアニオン交換樹脂を用いるカラムクロマトグラフィーに続いて、未反応物のうちL-アスコルビン酸を除去するためのカチオン交換樹脂または多孔性樹脂を用いるカラムクロマトグラフィーを行うことが好ましい。この順序は逆にしてもよく、L-アスコルビン酸を除去するためのカチオン交換樹脂または多孔性樹脂を用いるカラムクロマトグラフィーに続いて、D-グルコースなどのα-グルコシル糖化合物を除去するためのアニオン交換樹脂を用いるカラムクロマトグラフィーを行うこともできる。このようなアニオン交換樹脂、カチオン交換樹脂または多孔性樹脂を用いるカラムクロマトフグラフィーによる2-O-α-D-グルコシル-L-アスコルビン酸の精製方法は公知であり、これらのカラムクロマトグラフィーに関する諸条件、たとえばカラムに負荷する反応液の濃度(固形分換算)、樹脂に対する反応液の負荷量(容積比)、溶離液として通液する精製水の線速度および量などは適宜調整することができる。 Examples of the column chromatography include column chromatography using an anion exchange resin for removing an α-glucosyl sugar compound such as D-glucose among unreacted substances, followed by L-ascorbic acid among unreacted substances. It is preferable to perform column chromatography using a cation exchange resin or a porous resin for removal. This order may be reversed, followed by column chromatography using a cation exchange resin or porous resin to remove L-ascorbic acid, followed by an anion to remove an α-glucosyl sugar compound such as D-glucose. Column chromatography using an exchange resin can also be performed. Methods for purifying 2-O-α-D-glucosyl-L-ascorbic acid by column chromatography using such anion exchange resin, cation exchange resin or porous resin are known, and various methods relating to these column chromatography are known. Conditions such as the concentration of the reaction solution loaded on the column (in terms of solid content), the loading amount of the reaction solution with respect to the resin (volume ratio), the linear velocity and amount of purified water that passes as the eluent, and the like can be adjusted as appropriate. .
 ・(c)晶析工程
 晶析工程(c)は、精製工程(b)で得られた精製物の水溶液と有機溶剤とを混合した後、その溶液の温度を下げることで、2-O-α-D-グルコシル-L-アスコルビン酸の結晶を晶析させる工程である。この工程を2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法に含めることにより、高純度の2-O-α-D-グルコシル-L-アスコルビン酸の結晶を、高い回収率で、かつ短時間で得られるが、その理由としては、有機溶剤が水よりも容易に気化するため、続く乾燥工程(d)にかかる時間が短時間で済むようになることが考えられる。
(C) Crystallization step The crystallization step (c) is a mixture of the purified aqueous solution obtained in the purification step (b) and an organic solvent, and then lowering the temperature of the solution to give 2-O- This is a step of crystallizing α-D-glucosyl-L-ascorbic acid crystals. By including this step in the method for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder, high-purity 2-O-α-D-glucosyl-L-ascorbic acid crystals are highly recovered. The reason is that the organic solvent vaporizes more easily than water, so that the time required for the subsequent drying step (d) can be shortened.
 精製工程(b)で得られた精製物の水溶液は、通常、有機溶剤と混合する前に、水分を減少させて濃縮し、2-O-α-D-グルコシル-L-アスコルビン酸が過飽和状態となるようにしておく。この濃縮処理は、常法に従って、加熱および/または減圧により行うことができる。2-O-α-D-グルコシル-L-アスコルビン酸の過飽和度は、2-O-α-D-グルコシル-L-アスコルビン酸水溶液の濃度および温度に依存するが、通常は1.05~1.50となるよう調節される。たとえば、2-O-α-D-グルコシル-L-アスコルビン酸水溶液を、温度30~45℃の範囲で、濃度65~85質量%にまで濃縮することにより、そのような過飽和度となる。 The aqueous solution of the purified product obtained in the purification step (b) is usually concentrated by reducing water before mixing with an organic solvent, and 2-O-α-D-glucosyl-L-ascorbic acid is in a supersaturated state. To be. This concentration treatment can be performed by heating and / or decompression according to a conventional method. The degree of supersaturation of 2-O-α-D-glucosyl-L-ascorbic acid depends on the concentration and temperature of the 2-O-α-D-glucosyl-L-ascorbic acid aqueous solution, but is usually 1.05-1. .50 is adjusted. For example, such supersaturation can be achieved by concentrating an aqueous solution of 2-O-α-D-glucosyl-L-ascorbic acid to a concentration of 65 to 85% by mass within a temperature range of 30 to 45 ° C.
 2-O-α-D-グルコシル-L-アスコルビン酸の過飽和水溶液と有機溶剤との混合は、前者に後者を添加して行ってもよいし、後者に前者を添加して行ってもよい。また、添加方法は一括添加および逐次添加のいずれの方法で行ってもよく、逐次添加の場合、連続的な滴下により添加しても、分割して順次添加してもよい。 The mixing of the supersaturated aqueous solution of 2-O-α-D-glucosyl-L-ascorbic acid with the organic solvent may be performed by adding the latter to the former or by adding the former to the latter. Moreover, the addition method may be performed by any method of batch addition and sequential addition. In the case of sequential addition, it may be added by continuous dripping or may be divided and sequentially added.
 精製物の水溶液と混合するための「有機溶剤」としては、2-O-α-D-グルコシル-L-アスコルビン酸の過飽和水溶液との混和性(相溶性)がよく、かつ2-O-α-D-グルコシル-L-アスコルビン酸結晶に対して難溶解性であるものが好適である。そのような性質を有する有機溶剤としては、たとえば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;エチレングリコール、プロピレングリコール、ブチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレン共重合体等のグリコール系溶剤;前記グリコール系溶剤のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノイソプロピルエーテル、モノブチルエーテル等のエーテルアルコール系溶剤;前記グリコール系溶剤のジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メチルエチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、メチルブチルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、エチルブチルエーテル等のポリエーテル系溶剤;およびアセトニトリル、プロピオニトリル等のニトリル系溶剤が挙げられる。このうち、アルコール系溶剤、ケトン系溶剤などの有機溶剤は、入手が容易であり、2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率の向上および晶析時間の短縮化などの、本発明の作用効果に優れているため好ましい。なかでもメタノールおよびエタノール、特にエタノールは、そのような本発明の作用効果に優れるという観点のみならず、本発明の製造方法により得られる2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を、食品、化粧品、医薬部外品、医薬品などの用途において使用する際の安全性の観点からも、好適な有機溶剤といえる。 As an “organic solvent” for mixing with an aqueous solution of a purified product, miscibility (compatibility) with a supersaturated aqueous solution of 2-O-α-D-glucosyl-L-ascorbic acid is good, and 2-O-α Those which are hardly soluble in -D-glucosyl-L-ascorbic acid crystals are preferred. Examples of organic solvents having such properties include alcohol solvents such as methanol, ethanol, propanol, isopropanol, and butanol; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, propylene glycol, butylene glycol, polyethylene glycol, and polypropylene. Glycol solvents such as glycol and polyoxyethylene polyoxypropylene copolymers; Ether alcohol solvents such as monomethyl ether, monoethyl ether, monopropyl ether, monoisopropyl ether and monobutyl ether of the glycol solvents; Dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, methyl ethyl ether, Le propyl ether, methyl isopropyl ether, methyl butyl ether, ethyl propyl ether, ethyl isopropyl ether, polyether solvents such as ethyl ether; and acetonitrile, and a nitrile-based solvent such as propionitrile. Among these, organic solvents such as alcohol solvents and ketone solvents are easily available, and the recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals is improved and the crystallization time is shortened. Since it is excellent in the effect of this invention, it is preferable. Of these, methanol and ethanol, particularly ethanol, are not only excellent in the action and effect of the present invention, but also 2-O-α-D-glucosyl-L-ascorbic acid crystal powder obtained by the production method of the present invention. From the viewpoint of safety when used in foods, cosmetics, quasi drugs, pharmaceuticals and the like, it can be said to be a suitable organic solvent.
 有機溶剤の使用量は、本発明の作用効果、すなわち2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率や本工程の時間、さらに最終的に得られる2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の溶解作業性を改善する作用効果が奏されるよう、有機溶剤の種類やその他の条件を考慮しながら設定することができるが、2-O-α-D-グルコシル-L-アスコルビン酸の精製物の(過飽和)水溶液に対して、好ましくは10~500質量%であり、より好ましくは50~300質量%である。 The amount of the organic solvent used depends on the effects of the present invention, that is, the recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals, the time of this step, and finally 2-O-α- It can be set in consideration of the type of organic solvent and other conditions so that the effect of improving the dissolution workability of D-glucosyl-L-ascorbic acid crystal powder can be obtained, but 2-O-α- The amount is preferably 10 to 500% by mass, more preferably 50 to 300% by mass, based on the (supersaturated) aqueous solution of a purified product of D-glucosyl-L-ascorbic acid.
 2-O-α-D-グルコシル-L-アスコルビン酸過飽和水溶液と有機溶剤とを混合して2-O-α-D-グルコシル-L-アスコルビン酸結晶を晶析させる際の温度は、特に限定されるものではないが、2-O-α-D-グルコシル-L-アスコルビン酸結晶の熱安定性が悪いため、60℃以下が好ましく、50℃以下がより好ましい。たとえば、2-O-α-D-グルコシル-L-アスコルビン過飽和水溶液と有機溶剤との混合溶液を、好ましくは30~60℃の範囲で、より好ましくは30~50℃の範囲で加熱しておき、その混合溶液を冷却しながら、2-O-α-D-グルコシル-L-アスコルビン酸結晶を晶析させるようにすればよい。 The temperature at which 2-O-α-D-glucosyl-L-ascorbic acid crystals are crystallized by mixing a supersaturated aqueous solution of 2-O-α-D-glucosyl-L-ascorbic acid and an organic solvent is particularly limited. However, since the thermal stability of 2-O-α-D-glucosyl-L-ascorbic acid crystals is poor, it is preferably 60 ° C. or lower, more preferably 50 ° C. or lower. For example, a mixed solution of 2-O-α-D-glucosyl-L-ascorbine supersaturated aqueous solution and an organic solvent is preferably heated in the range of 30 to 60 ° C., more preferably in the range of 30 to 50 ° C. The 2-O-α-D-glucosyl-L-ascorbic acid crystal may be crystallized while the mixed solution is cooled.
 2-O-α-D-グルコシル-L-アスコルビン酸過飽和水溶液と有機溶剤との混合溶液との冷却方法は特に限定されるものではないが、たとえば、自然冷却によりゆっくりと混合溶液の温度を下げるようにすればよい。必要な晶析時間は、通常12時間以下、好ましくは24時間以下、より好ましくは36時間以下である。 The cooling method of the mixed solution of 2-O-α-D-glucosyl-L-ascorbic acid supersaturated aqueous solution and organic solvent is not particularly limited. For example, the temperature of the mixed solution is slowly lowered by natural cooling. What should I do? The necessary crystallization time is usually 12 hours or less, preferably 24 hours or less, more preferably 36 hours or less.
 また、2-O-α-D-グルコシル-L-アスコルビン酸過飽和水溶液と有機溶剤とを混合する際に、2-O-α-D-グルコシル-L-アスコルビン酸の種結晶を添加してもよい。たとえば、有機溶剤と混合する前に、2-O-α-D-グルコシル-L-アスコルビン酸過飽和水溶液に種結晶を添加して一部を晶析させ、その後有機溶剤と混合するようにすればよい。 Further, when the 2-O-α-D-glucosyl-L-ascorbic acid supersaturated aqueous solution and the organic solvent are mixed, a seed crystal of 2-O-α-D-glucosyl-L-ascorbic acid may be added. Good. For example, before mixing with an organic solvent, a seed crystal is added to a supersaturated aqueous solution of 2-O-α-D-glucosyl-L-ascorbic acid to partially crystallize it, and then mixed with the organic solvent. Good.
 種結晶の添加量は特に限定されるものではないが、2-O-α-D-グルコシル-L-アスコルビン酸過飽和水溶液に対して、好ましくは0.01~5.0質量%であり、より好ましくは0.1~1.0質量%である。 The addition amount of the seed crystal is not particularly limited, but is preferably 0.01 to 5.0% by mass with respect to the 2-O-α-D-glucosyl-L-ascorbic acid supersaturated aqueous solution. The content is preferably 0.1 to 1.0% by mass.
 ・(d)乾燥工程
 乾燥工程(d)は、晶析工程(c)で得られた晶析した2-O-α-D-グルコシル-L-アスコルビン酸の結晶を回収し、当該回収された結晶を乾燥することにより、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得る工程である。
(D) Drying step In the drying step (d), the crystallized 2-O-α-D-glucosyl-L-ascorbic acid crystal obtained in the crystallization step (c) was recovered and recovered. This is a step of obtaining 2-O-α-D-glucosyl-L-ascorbic acid crystal powder by drying the crystal.
 2-O-α-D-グルコシル-L-アスコルビン酸結晶は、常法の分蜜方式に従い、晶析工程(c)で得られたマスキット(結晶と糖蜜との混合物)を遠心分離にかけて、2-O-α-D-グルコシル-L-アスコルビン酸結晶をマスキットから分離することにより回収することができる。回収された2-O-α-D-グルコシル-L-アスコルビン酸結晶は、通常、表面に付着している非晶質の糖蜜を除去するため、少量の精製水またはエタノール、たとえば回収された結晶の30質量%以下の精製水をスプレー(シャワー)して洗浄される。 The 2-O-α-D-glucosyl-L-ascorbic acid crystals are obtained by centrifuging the mass kit (mixture of crystals and molasses) obtained in the crystallization step (c) according to a conventional honeydness method. The —O-α-D-glucosyl-L-ascorbic acid crystals can be recovered by separating from the mass kit. The recovered 2-O-α-D-glucosyl-L-ascorbic acid crystals are usually used to remove a small amount of purified water or ethanol, for example, recovered crystals, in order to remove amorphous molasses adhering to the surface. It is cleaned by spraying (showering) 30% by mass or less of purified water.
 回収および洗浄された2-O-α-D-グルコシル-L-アスコルビン酸結晶を、所定の温度および湿度雰囲気中に一定時間保持し、乾燥させることで、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末が得られる。この乾燥処理のための温度、湿度および時間の条件は、用途に応じた品質(たとえば結晶化度)を有する2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末が得られるよう、また晶析工程(c)で用いた有機溶剤の種類を考慮しながら、適宜調節することができる。乾燥処理の好ましい条件としては、温度は20~55℃、湿度(相対湿度)は60~90%、時間は3~20時間とすることが挙げられる。また、乾燥処理のために、必要に応じて減圧してもよい。 The collected and washed 2-O-α-D-glucosyl-L-ascorbic acid crystals are kept in a predetermined temperature and humidity atmosphere for a certain period of time and dried to give 2-O-α-D-glucosyl- L-ascorbic acid crystal powder is obtained. The temperature, humidity and time conditions for this drying treatment are such that a 2-O-α-D-glucosyl-L-ascorbic acid crystal powder having a quality (for example, crystallinity) according to the application can be obtained. It can adjust suitably, considering the kind of organic solvent used at the crystallization process (c). Preferred conditions for the drying treatment include a temperature of 20 to 55 ° C., a humidity (relative humidity) of 60 to 90%, and a time of 3 to 20 hours. Moreover, you may reduce pressure as needed for a drying process.
 本発明の製造方法により得られた2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末中に残存する有機溶媒の濃度は、通常0.1~10,000ppm、好ましくは1~5000ppm、より好ましくは10~1000ppmである。2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末中に残存する有機溶媒の濃度は、ガスクロマトグラフィー法(測定条件は実施例に記載する)により測定することができる。 The concentration of the organic solvent remaining in the 2-O-α-D-glucosyl-L-ascorbic acid crystal powder obtained by the production method of the present invention is usually 0.1 to 10,000 ppm, preferably 1 to 5000 ppm, More preferably, it is 10 to 1000 ppm. The concentration of the organic solvent remaining in the 2-O-α-D-glucosyl-L-ascorbic acid crystal powder can be measured by a gas chromatography method (measurement conditions are described in the Examples).
 乾燥処理を経た2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末は、次いで、室温まで自然放冷されるか、室温程度の清浄な空気を吹き付けて強制的に冷却される。 The 2-O-α-D-glucosyl-L-ascorbic acid crystal powder that has undergone the drying treatment is then allowed to naturally cool to room temperature or forcedly cooled by blowing clean air at about room temperature.
 <2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末およびその用途>
 本発明の製造方法により得られる2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末(以下「本発明の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末」と称する。)は、従来の製造方法により得られる2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末(以下「従来の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末と称する。」と比較して(晶析工程において有機溶剤を添加しない以外は同等の条件とした場合)、溶解作業性に優れたものとなり、たとえば水等の溶媒に結晶粉末を添加して混合したときにより短い時間で溶解することができる。
<2-O-α-D-glucosyl-L-ascorbic acid crystal powder and its use>
2-O-α-D-glucosyl-L-ascorbic acid crystal powder obtained by the production method of the present invention (hereinafter referred to as “2-O-α-D-glucosyl-L-ascorbic acid crystal powder of the present invention”). ) Is a 2-O-α-D-glucosyl-L-ascorbic acid crystal powder obtained by a conventional production method (hereinafter referred to as “conventional 2-O-α-D-glucosyl-L-ascorbic acid crystal powder”. ”(When the conditions are the same except that the organic solvent is not added in the crystallization process), the dissolution workability is excellent. For example, when the crystal powder is added to a solvent such as water and mixed. It can be dissolved in a short time.
 また、本発明の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末は、従来の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末と物性においても差がある。たとえば、噴流性に関する物性の一つである差角(=安息角-崩壊角)は、本発明の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の方が大きくなり、それによって粉体物性(噴流性、流動性等)の評価手法として知られているDr.Carrの指数(噴流性指数)が高くなり、噴流性の評価に優れる傾向にある。なお、噴流性(および流動性)などに関係する各種の粉体物性は、「パウダテスタPT-X」(ホソカワミクロン株式会社)を用いて、パウダテスト法に従って測定することができ、その測定値を用いてDr.Carrの指数および評価を求めることができる。 Also, the 2-O-α-D-glucosyl-L-ascorbic acid crystal powder of the present invention is different in physical properties from the conventional 2-O-α-D-glucosyl-L-ascorbic acid crystal powder. For example, the difference angle (= rest angle−collapse angle), which is one of the physical properties related to jet properties, is larger in the 2-O-α-D-glucosyl-L-ascorbic acid crystal powder of the present invention, thereby Dr. is known as a method for evaluating powder physical properties (jet properties, fluidity, etc.). The Carr's index (jetability index) is high, and it tends to be excellent in the evaluation of jet characteristics. Various powder physical properties related to jet properties (and fluidity) can be measured according to the powder test method using “Powder Tester PT-X” (Hosokawa Micron Corporation), and the measured values are used. Dr. Carr's index and rating can be determined.
 さらに、本発明の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末は、従来の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末に比べて比表面積も大きくなる傾向にある。 Further, the 2-O-α-D-glucosyl-L-ascorbic acid crystal powder of the present invention tends to have a larger specific surface area than the conventional 2-O-α-D-glucosyl-L-ascorbic acid crystal powder. It is in.
 本発明の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の各物性値は次の通りである。安息角の範囲は、通常58.0°~65.0°、好ましくは59.5°~63.0°である。差角の範囲は、通常10.0°~25.0°、好ましくは12.0~20.0°である。噴流性指数の範囲は、通常41~56、好ましくは43~51である。比表面積の範囲は、通常0.50~1.00、好ましくは0.60~0.90である。 The physical properties of the 2-O-α-D-glucosyl-L-ascorbic acid crystal powder of the present invention are as follows. The range of the angle of repose is usually 58.0 ° to 65.0 °, preferably 59.5 ° to 63.0 °. The range of the difference angle is usually 10.0 ° to 25.0 °, preferably 12.0 to 20.0 °. The range of the jetability index is usually 41 to 56, preferably 43 to 51. The range of the specific surface area is usually 0.50 to 1.00, preferably 0.60 to 0.90.
 このような本発明の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末は、従来の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末と同様の、食品、化粧品、医薬部外品、医薬品およびその他の分野における用途を有する。特に、本発明の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末は、水溶液を調製して各種の製品の製造工程で用いる際の溶解作業性に優れているので、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の水溶液を添加して製造される製品の原料として好適である。 Such 2-O-α-D-glucosyl-L-ascorbic acid crystal powder of the present invention is similar to the conventional 2-O-α-D-glucosyl-L-ascorbic acid crystal powder in foods, cosmetics, Has applications in quasi drugs, pharmaceuticals and other fields. In particular, the 2-O-α-D-glucosyl-L-ascorbic acid crystal powder of the present invention is excellent in dissolution workability when an aqueous solution is prepared and used in the manufacturing process of various products. -Α-D-glucosyl-L-ascorbic acid crystal powder is suitable as a raw material for products produced by adding an aqueous solution.
 以下の実施例の記載において、「部」は「質量部」を、「%」は「質量%」を意味する。 In the description of the following examples, “part” means “part by mass” and “%” means “% by mass”.
 [実施例1]
 (a)酵素処理工程
 澱粉加水分解物2.5部を水6部に加えて加熱溶解し、さらにL-アスコルビン酸1.5部を加え、pHを5に調整し、基質溶液とした。これに、CGTase酵素液(NOVOZYMES)を澱粉加水分解物1g当り150単位加え、50℃で40時間反応させ、2-O-α-D-グルコシル-L-アスコルビン酸とともに、2-O-α-マルトシル-L-アスコルビン酸、2-O-α-マルトトリオシル-L-アスコルビン酸、2-O-α-マルトテトラオシル-L-アスコルビン酸などのα-グリコシル-L-アスコルビン酸を生成させた。本反応液の酵素反応を停止し、これにグルコアミラーゼ剤(天野エンザイム株式会社販売、商品名「酒造用グルコアミラーゼアマノ」250,000単位/g)を澱粉加水分解物1g当り600単位加え、60℃で4時間処理し、α-グリコシル-L-アスコルビン酸を、2-O-α-D-グルコシル-L-アスコルビン酸にまで、また、混在する糖質をD-グルコースまで分解した。
[Example 1]
(A) Enzyme treatment step 2.5 parts of starch hydrolyzate was added to 6 parts of water and dissolved by heating. Further, 1.5 parts of L-ascorbic acid was added to adjust the pH to 5 to obtain a substrate solution. To this was added 150 units of CGTase enzyme solution (NOVOZYMES) per gram of starch hydrolyzate, reacted at 50 ° C. for 40 hours, and 2-O-α-D together with 2-O-α-D-glucosyl-L-ascorbic acid. Producing α-glycosyl-L-ascorbic acid such as maltosyl-L-ascorbic acid, 2-O-α-maltotriosyl-L-ascorbic acid, 2-O-α-maltotetraosyl-L-ascorbic acid, etc. It was. The enzyme reaction of the reaction solution was stopped, and a glucoamylase agent (Amano Enzyme Co., Ltd., trade name “Glucoamylase Amano for Sake Brewing” 250,000 units / g) was added to this 600 units per gram of starch hydrolyzate. After treatment at 4 ° C. for 4 hours, α-glycosyl-L-ascorbic acid was decomposed to 2-O-α-D-glucosyl-L-ascorbic acid, and the mixed carbohydrate was decomposed to D-glucose.
 (b)精製工程
 上記工程(a)で得られた、酵素反応停止後の反応液を、活性炭で脱色濾過した。得られた脱色後の2-O-α-D-グルコシル-L-アスコルビン酸含有水溶液の濃度は46.5%であった。濾液をカチオン交換樹脂(H+型)にて脱塩し、次いでアニオン交換樹脂(OH-型)にL-アスコルビン酸を優先的に吸着させることで除去し、次いで2-O-α-D-グルコシル-L-アスコルビン酸をアニオン交換樹脂(OH-型)に吸着させ、水洗してD-グルコースを除いた後、0.1N水酸化ナトリウム水溶液で溶出した。さらにこの溶出液を固形分約20%にまで濃縮し、カチオン交換樹脂(H+型)にて脱塩した。上記工程で得られた2-O-α-D-グルコシル-L-アスコルビン酸の純度は無水物換算で91%であった。
(B) Purification step The reaction solution obtained in the above step (a) after stopping the enzyme reaction was decolorized and filtered with activated carbon. The concentration of the obtained 2-O-α-D-glucosyl-L-ascorbic acid-containing aqueous solution after decolorization was 46.5%. The filtrate was desalted by cation exchange resin (H + form), then anion exchange resins - a L- ascorbic acid (OH-type) was removed thereby preferentially adsorbed, and then 2-O-α-D- glucosyl -L- ascorbate anion exchange resin - is adsorbed on (OH type), after removing the washing to D- glucose, and eluted with 0.1N aqueous sodium hydroxide solution. Further, the eluate was concentrated to a solid content of about 20% and desalted with a cation exchange resin (H + type). The purity of 2-O-α-D-glucosyl-L-ascorbic acid obtained in the above step was 91% in terms of anhydride.
 (c)晶析工程
 上記工程(b)で得られた2-O-α-D-グルコシル-L-アスコルビン酸含有水溶液85部(内、2-O-α-D-グルコシル-L-アスコルビン酸は無水物換算で39.5部)を加熱減圧濃縮し、水分を留去することで、2-O-α-D-グルコシル-L-アスコルビン酸の濃度が66%である水溶液60部を得た。
(C) Crystallization step 85 parts of an aqueous solution containing 2-O-α-D-glucosyl-L-ascorbic acid obtained in the above step (b) (including 2-O-α-D-glucosyl-L-ascorbic acid) 39.5 parts in terms of anhydride) was heated and concentrated under reduced pressure, and the water was distilled off to obtain 60 parts of an aqueous solution having a 2-O-α-D-glucosyl-L-ascorbic acid concentration of 66%. It was.
 得られた水溶液を攪拌下、40℃に加熱した後、攪拌しながらエタノールを50部、種結晶を0.15部添加した。この水溶液を、40℃で1時間、35℃で1時間、30℃で1時間、25℃で20時間攪拌することで、2-O-α-D-グルコシル-L-アスコルビン酸の結晶を晶析させた。 The obtained aqueous solution was heated to 40 ° C. with stirring, and 50 parts of ethanol and 0.15 part of seed crystals were added while stirring. The aqueous solution was stirred at 40 ° C. for 1 hour, at 35 ° C. for 1 hour, at 30 ° C. for 1 hour, and at 25 ° C. for 20 hours to crystallize 2-O-α-D-glucosyl-L-ascorbic acid crystals. Analyzed.
 (d)乾燥工程
 上記工程(c)で得られたマスキットを遠心分離機にかけて固液分離を行った。分離した2-O-α-D-グルコシル-L-アスコルビン酸の結晶をエタノールで洗浄した後、35℃で減圧乾燥し、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末30部を得た。以上の製造方法による2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は75.9%であった。
(D) Drying step The mass kit obtained in the above step (c) was subjected to solid-liquid separation using a centrifuge. The separated 2-O-α-D-glucosyl-L-ascorbic acid crystals were washed with ethanol and dried under reduced pressure at 35 ° C. to give 30 parts of 2-O-α-D-glucosyl-L-ascorbic acid crystal powder. Got. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals by the above production method was 75.9%.
 <エタノール濃度の測定>
 2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末に残存するエタノール濃度は、下記のような条件に従ったガスクロマトグラフィー法により測定することができる。
(ガスクロマトグラフィーの測定条件)
 装置:ガスクロマトグラフィー(アジレントテクノロジー社製、6890N)
 カラム:アジレントテクノロジー社製 HP50+
 インジェクター:260℃
 ディテクター:300℃
 昇温条件:50℃3分保持し、毎分50℃で260℃まで昇温させ、260℃で10分保持した。
<Measurement of ethanol concentration>
The ethanol concentration remaining in the 2-O-α-D-glucosyl-L-ascorbic acid crystal powder can be measured by a gas chromatography method according to the following conditions.
(Measurement conditions for gas chromatography)
Apparatus: Gas chromatography (manufactured by Agilent Technologies, 6890N)
Column: HP50 + manufactured by Agilent Technologies
Injector: 260 ° C
Detector: 300 ° C
Temperature raising condition: held at 50 ° C. for 3 minutes, heated to 50 ° C. at 260 ° C. per minute, and held at 260 ° C. for 10 minutes.
 水2mlに2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末0.5部を加え溶解させて、2-O-α-D-グルコシル-L-アスコルビン酸の水溶液を得た。この水溶液を用いて、エタノール濃度を上記測定条件により測定した。実施例1により得られた2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末中に残存するエタノールの濃度は、500ppmであった。 0.5 parts of 2-O-α-D-glucosyl-L-ascorbic acid crystal powder was added to 2 ml of water and dissolved to obtain an aqueous solution of 2-O-α-D-glucosyl-L-ascorbic acid. Using this aqueous solution, the ethanol concentration was measured under the above measurement conditions. The concentration of ethanol remaining in the 2-O-α-D-glucosyl-L-ascorbic acid crystal powder obtained in Example 1 was 500 ppm.
 <溶解作業性試験>
 2-O-α-D-グルコシル-L-アスコルビン酸結晶1部を、25℃の条件下で水10部に投入し、撹拌して溶解作業性を評価した。5分未満で溶解した場合は良好、溶解するのに5分以上かかった場合は良好でないとした。実施例1により得られた2-O-α-D-グルコシル-L-アスコルビン酸結晶の溶解作業性は良好であった。
<Dissolution workability test>
One part of 2-O-α-D-glucosyl-L-ascorbic acid crystal was added to 10 parts of water at 25 ° C. and stirred to evaluate the dissolution workability. It was considered good when dissolved in less than 5 minutes, and unsatisfactory when it took more than 5 minutes to dissolve. The dissolution workability of the 2-O-α-D-glucosyl-L-ascorbic acid crystals obtained in Example 1 was good.
 [実施例2]
 上述した工程(b)における有機溶剤をエタノールからメタノールに変更した以外は、実施例1と同様にして2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得た。2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は74.7%、溶解作業性は良好であった。
[Example 2]
A 2-O-α-D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in the step (b) was changed from ethanol to methanol. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals was 74.7%, and the dissolution workability was good.
 [実施例3]
 上述した工程(b)における有機溶剤をエタノールからアセトンに変更した以外は、実施例1と同様にして2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得た。2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は72.1%、溶解作業性は良好であった。
[Example 3]
A 2-O-α-D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in the step (b) was changed from ethanol to acetone. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals was 72.1%, and the dissolution workability was good.
 [実施例4]
 上述した工程(b)における有機溶剤をエタノールからメチルエチルケトンに変更した以外は、実施例1と同様にして2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得た。2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は70.6%、溶解作業性は良好であった。
[Example 4]
A 2-O-α-D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in the step (b) was changed from ethanol to methyl ethyl ketone. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals was 70.6%, and the dissolution workability was good.
 [比較例1]
 上述した工程(b)において、有機溶剤としてのエタノールを用いず、水のみから晶析させたこと以外は、実施例1と同様にして2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得た。2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は45.3%、溶解作業性は良好でなかった。
[Comparative Example 1]
In the step (b), 2-O-α-D-glucosyl-L-ascorbic acid crystals were obtained in the same manner as in Example 1 except that ethanol was not used as the organic solvent and crystallization was performed only from water. A powder was obtained. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals was 45.3%, and the dissolution workability was not good.
 [実施例5]
 実施例1において、(c)晶析工程の「2-O-α-D-グルコシル-L-アスコルビン酸の濃度が66%である水溶液60部」を「2-O-α-D-グルコシル-L-アスコルビン酸の濃度が73%である水溶液55部」に変更した以外は実施例1と同様にして2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得た。2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は92.1%、溶解作業性は良好であった。
[Example 5]
In Example 1, (c) 60 parts of an aqueous solution having a 66% concentration of 2-O-α-D-glucosyl-L-ascorbic acid in the crystallization step was changed to “2-O-α-D-glucosyl- A 2-O-α-D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the concentration was changed to 55 parts of an aqueous solution having a concentration of L-ascorbic acid of 73%. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals was 92.1%, and the dissolution workability was good.
 [実施例6]
 実施例5において、工程(b)における有機溶剤をエタノールからメタノールに変更した以外は実施例1と同様にして2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得た。2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は89.5%、溶解作業性は良好であった。
[Example 6]
In Example 5, 2-O-α-D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in step (b) was changed from ethanol to methanol. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals was 89.5%, and the dissolution workability was good.
 [実施例7]
 実施例5において、工程(b)における有機溶剤をエタノールからアセトンに変更した以外は実施例1と同様にして2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得た。2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は80.1%、溶解作業性は良好であった。
[Example 7]
In Example 5, 2-O-α-D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in step (b) was changed from ethanol to acetone. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals was 80.1%, and the dissolution workability was good.
 [実施例8]
 実施例5において、工程(b)における有機溶剤をエタノールからメチルエチルケトンに変更した以外は実施例1と同様にして2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得た。2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は78.5%、溶解作業性は良好であった。
[Example 8]
In Example 5, 2-O-α-D-glucosyl-L-ascorbic acid crystal powder was obtained in the same manner as in Example 1 except that the organic solvent in step (b) was changed from ethanol to methyl ethyl ketone. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals was 78.5%, and the dissolution workability was good.
 [比較例2]
 実施例5において、工程(b)において、有機溶剤としてのエタノールを用いず、水のみから晶析させたこと以外は実施例5と同様にして2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得た。2-O-α-D-グルコシル-L-アスコルビン酸結晶の回収率は49.5%、溶解作業性は良好ではなかった。
[Comparative Example 2]
In Example 5, 2-O-α-D-glucosyl-L-ascorbine was obtained in the same manner as in Example 5 except that in step (b), ethanol was not used as the organic solvent and crystallized from water alone. An acid crystal powder was obtained. The recovery rate of 2-O-α-D-glucosyl-L-ascorbic acid crystals was 49.5%, and the dissolution workability was not good.
 以上の実施例および比較例の結果を下記表1、2にまとめて示す。比較例に比べて、実施例1~4、5~8は回収率が大きく、溶解作業性に優れていることがわかる。特に実施例1、2、5、6のアルコール系溶剤を用いたものでは回収率が高いことがわかる。 The results of the above examples and comparative examples are summarized in Tables 1 and 2 below. Compared with the comparative example, Examples 1 to 4, 5 to 8 have a large recovery rate and are excellent in dissolution workability. In particular, it can be seen that those using the alcohol solvents of Examples 1, 2, 5, and 6 have a high recovery rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <粉体物性測定>
 粉体の物性は、流動性と噴流性で評価できる。流動性は粉体の流れやすさ、噴流性は飛散の起こりやすさ、という観点で評価されることが多い。前記実施例1と同様の手順により得られた2-O-α-D-グルコシル-L-アスコルビン酸結晶(以下「エタノール晶析サンプル」と称する。)と、前記比較例と同様の手順により得られた2-O-α-D-グルコシル-L-アスコルビン酸結晶(以下「水晶析サンプル」と称する。)について、以下のような手法により、流動性および噴流性に関する各種の物性値の分析、試験を行い、その測定結果をDr. Carrの指数により数値化し、合計値から粉体の物性を評価した。なお、粒度分布および真比重は、上記流動性と噴流性の数値には影響されないが、粉体の物性を知る上での重要な数値となるため、合わせて測定した。
Figure JPOXMLDOC01-appb-T000002
<Measurement of powder properties>
The physical properties of the powder can be evaluated by fluidity and jetting properties. In many cases, the fluidity is evaluated from the viewpoint of the ease of powder flow and the jetability of the powder. A 2-O-α-D-glucosyl-L-ascorbic acid crystal (hereinafter referred to as “ethanol crystallization sample”) obtained by the same procedure as in Example 1 and a procedure similar to that in the comparative example were obtained. With respect to the obtained 2-O-α-D-glucosyl-L-ascorbic acid crystal (hereinafter referred to as “crystallizing sample”), various physical property values relating to fluidity and jetting properties are analyzed by the following methods. Tests were conducted, and the measurement results were digitized by Dr. Carr's index, and the physical properties of the powder were evaluated from the total values. The particle size distribution and the true specific gravity are not affected by the numerical values of the fluidity and jet property, but are important values for knowing the physical properties of the powder, and thus were measured together.
 (1)分析・試験方法
 (1-1)粒度分布(中心粒径等):マイクロトラック粒度分布系「MT-3300EX II」(日機装株式会社)を用いて、湿式レーザー回折法に従い、試料をアセトンにいれ、超音波分散(10分間)した後に測定した。
(1) Analysis and test method (1-1) Particle size distribution (center particle size, etc.): A sample was acetone according to a wet laser diffraction method using a microtrack particle size distribution system “MT-3300EX II” (Nikkiso Co., Ltd.). The measurement was performed after ultrasonic dispersion (10 minutes).
 (1-2)真比重:乾式自動密度計「AccuPyc II 1340」(マクロメリティックスジャパン)を用いて、気体容積法に従い、試料を常温で15時間真空乾燥した後、Heガス置換法で測定した。 (1-2) True specific gravity: Using a dry automatic densimeter “AccuPyc II 1340” (Macromericix Japan), according to the gas volume method, the sample was vacuum-dried at room temperature for 15 hours, and then measured by the He gas replacement method. did.
 (1-3)流動性および噴流性に関する各種の物性:下記の項目について、「パウダテスタPT-X」(ホソカワミクロン株式会社)を用いて、パウダテスト法に従い、試料乾燥なしで測定した。均一度は粒度分布結果から算出した。 (1-3) Various physical properties relating to fluidity and jetting properties: The following items were measured using “Powder Tester PT-X” (Hosokawa Micron Corporation) according to the powder test method without drying the sample. The uniformity was calculated from the particle size distribution result.
 (1-3-1)流動性に関する項目
  ・ゆるめかさ密度:粉体を測定容器に自然落下状態で充填したときの密度
  ・固めかさ密度:粉体を測定容器に自然落下状態で充填した後、タッピングを180回行ったときのかさ密度
  ・動的見かけ比重:ゆるめかさ密度(a)、固めかさ密度(b)および圧縮度(c)から、式[(b-a)×c/100+a]から算出される値
  ・圧縮度:ゆるめかさ密度(a)と固めかさ密度(b)の差から得られるかさべり度((b-a)/b×100)
  ・安息角:粉体を自然落下させた状態で形成される粉体の山の角度(仰角)
  ・スパチュラ角:静止状態の粉体がその状態を維持できる限界の角度
  ・均一度:凝集性が小さく、粒度の揃った粉体の場合に計算から求める流動性評価の値(粒径分布の狭さ度合いを表す指標) 均一度=(60%篩下粒子径)/(10%篩下粒子径)
 (1-3-2)噴流性に関する項目
  ・崩潰角:安息角を形成させた後、衝撃を与える事で崩潰させた粉体の山の角度
  ・差角:安息角から崩潰角を引いた角度で、噴流性(フラッシング性)を推測するための簡便な測定値
  ・分散度:自然落下させた時の広がり度を評価する指標(粒度分布の幅が広いほど大きくなり、粒度分布が広いほど流動性が悪くなることを数値化したもの) 分散度=(1-ウォッチグラス上残量/サンプル投入量)×100
 (1-4)比表面積:流動式比表面積自動測定装置「フローソーブIII2310」(株式会社島津製作所製)を用いて、BET法に従い、測定セルに試料0.5gを入れ、120℃で20分間脱ガスした後、吸着ガスとして窒素を用いて測定した。
(1-3-1) Items relating to fluidity ・ Loose bulk density: density when powder is filled in a measurement container in a natural fall state ・ Mass bulk density: After filling powder in a measurement container in a natural fall state, Bulk density when tapping 180 times ・ Dynamic apparent specific gravity: Calculated from the formula [(ba) × c / 100 + a] from loose bulk density (a), hard bulk density (b) and compressibility (c)・ Compression degree: Degree of bulkiness obtained from the difference between loose bulk density (a) and firm bulk density (b) ((ba) / b × 100)
・ Repose angle: Angle of the mountain of powder (elevation angle) formed with the powder falling naturally
-Spatula angle: The limit angle at which a stationary powder can maintain its state.-Uniformity: A fluidity evaluation value obtained by calculation in the case of a powder with small cohesiveness and uniform particle size (narrow particle size distribution) Index indicating the degree of uniformity) Uniformity = (60% under-sieving particle size) / (10% under-sieving particle size)
(1-3-2) Items related to jet properties-Collapse angle: Angle of repose after forming an angle of repose, and collapsing by applying an impact-Difference angle: angle obtained by subtracting the collapse angle from the angle of repose Simple measurement values for estimating jetting properties (flushing properties) ・ Dispersity: An index for evaluating the degree of spread when naturally dropped (the wider the particle size distribution, the larger the particle size distribution, the more fluid the particle size distribution) Dispersity = (1-remaining amount on watch glass / sample input) x 100
(1-4) Specific surface area: Using a flow-type specific surface area automatic measuring apparatus “Flowsorb III 2310” (manufactured by Shimadzu Corporation), according to the BET method, 0.5 g of a sample is placed in a measurement cell and removed at 120 ° C. for 20 minutes. After gassing, measurement was performed using nitrogen as an adsorbed gas.
 (2)結果
 上記の各項目の測定結果を表3に示す。
(2) Results Table 3 shows the measurement results of the above items.
Figure JPOXMLDOC01-appb-T000003
 粒度分布の測定から求められた中心粒径は、アセトン中で超音波破砕10分後のデータであるためか、乾式測定した場合(参考:約150μm)よりも小さな値となった。これは、アセトンにわずかに溶けた上、超音波でより小さくなったためだと考えられる。中心粒径は、エタノール晶析サンプルの方が水晶析サンプルよりやや小さな値となっているものの、均一度(=60%径/10%径)は、双方ほぼ同じ値となっているため、粒子自体を真球と仮定した場合には、結晶に大きな差はないと予想される。
Figure JPOXMLDOC01-appb-T000003
The central particle size obtained from the measurement of the particle size distribution was smaller than that in the case of dry measurement (reference: about 150 μm) because it was data after 10 minutes of ultrasonic crushing in acetone. This is thought to be because it was slightly dissolved in acetone and became smaller with ultrasound. The center particle size of the ethanol crystallized sample is slightly smaller than that of the crystallized sample, but the uniformity (= 60% diameter / 10% diameter) is almost the same value for both. Assuming that it is a true sphere, it is expected that there will be no significant difference in crystals.
 エタノール晶析サンプルと水晶析サンプルで差が見られたのは、見かけ比重のところである。動的見かけ比重は、実工程での動的挙動が「最も粗に充填した状態から若干圧縮された状態(ゆるめと固めの中間)」にあり、「その動的圧縮の程度が圧縮度に依存する」という考えのもと、前記式から算出されている。ゆるめかさ密度、固めかさ密度、動的見かけ比重、いずれもエタノール晶析サンプルの方が小さい結果となっており、粉体全体として空気を含んでいることが分かる。そのため、圧縮度にも約9%の違いが生じており、エタノール晶析サンプルは粒子間に隙間があることが予想される。 The difference between the ethanol crystallized sample and the crystallized sample is apparent specific gravity. The dynamic apparent specific gravity is that the dynamic behavior in the actual process is "from the most coarsely packed state to a slightly compressed state (intermediate between loosening and hardening)" and "the degree of dynamic compression depends on the degree of compression" Based on the idea of “Yes”, it is calculated from the above formula. The loose bulk density, solid bulk density, and dynamic apparent specific gravity are all smaller for the ethanol crystallized sample, indicating that the powder as a whole contains air. Therefore, a difference of about 9% also occurs in the degree of compression, and the ethanol crystallized sample is expected to have a gap between particles.
 安息角もエタノール晶析サンプルの方がやや大きな値となったが、崩壊角はエタノール晶析サンプルの方が小さくなり、これにより差角(=安息角-崩壊角)に大きな違いが見られた。これは、見かけ比重の差が示すように、エタノール晶析サンプルでは結晶同士が離れており、そのため山が崩れやすかったからだと予想される。 The angle of repose was slightly larger in the ethanol crystallized sample, but the decay angle was smaller in the ethanol crystallized sample, which showed a large difference in the difference angle (= angle of repose−decay angle). . As the difference in apparent specific gravity shows, this is presumably because the crystals were separated from each other in the ethanol crystallized sample, so that the mountain was easy to collapse.
 スパチュラ角は水晶析サンプルの方が小さくなった。スパチュラ角と安息角は概ね似た傾向を示す。今回、両サンプルで逆の結果になったのは、結晶の形が影響している可能性がある(エタノール晶析サンプルはやや結晶が不規則な形、水晶析サンプルは比較的規則的な形)。 The spatula angle was smaller for the crystallized sample. Spatula angles and repose angles tend to be similar. This time, the opposite results for both samples may be due to the crystal shape (ethanol crystallized sample is slightly irregular, crystallized sample is relatively regular. ).
 上記のように、安息角とスパチュラ角に逆の傾向が見られたため、流動性の数値は両サンプルとも39.5となり、「低い」という評価になった。しかし、噴流性は差角の差が影響したため、エタノール晶析サンプルが「高い」、水晶析サンプルは「普通」となった。噴流性が高いということは、一般的に空気輸送に適しており、空気に乗りやすいということである。そのため、空気に乗せる気流乾燥にも適しており(パウダテスタ測定値の応用参照)、エタノールが含まれていることも加味すると、エタノールサンプルは気流乾燥を用いた場合は、水サンプルよりもより乾燥しやすいと言える。しかし、量的制御は難しいため、正確な量を求める場合には、空気輸送以外の方法を取った方が好ましい。 As described above, since the repose angle and the spatula angle showed opposite tendencies, the numerical value of fluidity was 39.5 for both samples, which was evaluated as “low”. However, the jet properties were affected by the difference in angle of difference, so the ethanol crystallized sample was “high” and the crystallized sample was “normal”. High jetting properties are generally suitable for pneumatic transportation and are easy to ride on air. Therefore, it is also suitable for airflow drying on air (see the application of powder tester measurement values), and taking into account that ethanol is included, ethanol samples are more dry than air samples when using airflow drying. It can be said that it is easy. However, since quantitative control is difficult, it is preferable to take a method other than pneumatic transportation when obtaining an accurate amount.
 また、空気を含んでいる粉体は、同じ重量で比較した時に体積が大きくなるものの、水と混ざりやすい。さらに、結晶の形が不規則ということになると、より水と混じりやすくなることが予想される。 Also, the powder containing air is easy to mix with water, although its volume increases when compared with the same weight. Furthermore, if the crystal shape is irregular, it is expected that it will be more likely to mix with water.
 最後に、比表面積もエタノール晶析サンプルの方が水晶析サンプルより大きいことが示された。 Finally, it was shown that the specific surface area of the ethanol crystallized sample was larger than that of the crystallized sample.
 以上のような噴流性および比表面積の違いにより、エタノール晶析サンプルでは、水晶析サンプルと比較した場合に溶解作業性が高くなったと考えられる。 Due to the difference in jetting property and specific surface area as described above, it is considered that the ethanol crystallization sample has improved dissolution workability when compared with the crystallization sample.

Claims (4)

  1.  下記(a)~(d)の工程を含む、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法:
     (a)L-アスコルビン酸とα-グルコシル糖化合物とを含有する溶液に、糖転移酵素を作用させ、次いでグルコアミラーゼを作用させることによって得た2-O-α-D-グルコシル-L-アスコルビン酸含有溶液を準備する工程;
     (b)前記2-O-α-D-グルコシル-L-アスコルビン酸含有溶液を精製して、2-O-α-D-グルコシル-L-アスコルビン酸の含有量が無水物換算で90質量%以上である精製物の水溶液を得る工程;
     (c)前記精製物の水溶液と有機溶剤とを混合した後、溶液の温度を下げることにより、2-O-α-D-グルコシル-L-アスコルビン酸の結晶を晶析させる工程;
     (d)前記晶析した2-O-α-D-グルコシル-L-アスコルビン酸の結晶を回収し、当該回収された結晶を乾燥することにより、2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末を得る工程。
    A process for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder, comprising the following steps (a) to (d):
    (A) 2-O-α-D-glucosyl-L-ascorbine obtained by allowing a glycosyltransferase to act on a solution containing L-ascorbic acid and an α-glucosyl sugar compound and then causing glucoamylase to act Preparing an acid-containing solution;
    (B) The 2-O-α-D-glucosyl-L-ascorbic acid-containing solution is purified so that the content of 2-O-α-D-glucosyl-L-ascorbic acid is 90% by mass in terms of anhydride. A step of obtaining an aqueous solution of the purified product as described above;
    (C) a step of crystallizing 2-O-α-D-glucosyl-L-ascorbic acid crystals by mixing an aqueous solution of the purified product and an organic solvent and then lowering the temperature of the solution;
    (D) The crystallized 2-O-α-D-glucosyl-L-ascorbic acid crystal is recovered, and the recovered crystal is dried to give 2-O-α-D-glucosyl-L- A step of obtaining ascorbic acid crystal powder.
  2.  前記工程(c)における有機溶剤が、アルコール系溶剤またはケトン系溶剤である、請求項1に記載の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法。 The method for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder according to claim 1, wherein the organic solvent in the step (c) is an alcohol solvent or a ketone solvent.
  3.  前記工程(c)において、前記精製物の水溶液に対して、10~500質量%の前記有機溶剤を混合する、請求項1または2に記載の2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法。 The 2-O-α-D-glucosyl-L-ascorbine according to claim 1 or 2, wherein in the step (c), 10 to 500% by mass of the organic solvent is mixed with the aqueous solution of the purified product. Method for producing acid crystal powder.
  4.  請求項1~3のいずれか一項に記載の製造方法により得られた2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末。 A 2-O-α-D-glucosyl-L-ascorbic acid crystal powder obtained by the production method according to any one of claims 1 to 3.
PCT/JP2015/059900 2014-03-31 2015-03-30 Process for producing crystalline 2-o-α-d-glucosyl-l-ascorbic acid powder WO2015152145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016511876A JPWO2015152145A1 (en) 2014-03-31 2015-03-30 Method for producing 2-O-α-D-glucosyl-L-ascorbic acid crystal powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-072628 2014-03-31
JP2014072628 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152145A1 true WO2015152145A1 (en) 2015-10-08

Family

ID=54240468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059900 WO2015152145A1 (en) 2014-03-31 2015-03-30 Process for producing crystalline 2-o-α-d-glucosyl-l-ascorbic acid powder

Country Status (3)

Country Link
JP (1) JPWO2015152145A1 (en)
TW (1) TW201620922A (en)
WO (1) WO2015152145A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3638212A4 (en) * 2017-06-15 2021-04-28 Savior Lifetec Corporation Methods for producing particles of an active ingredient

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111073924A (en) * 2020-01-10 2020-04-28 福州三合元生物科技有限公司 Micro-channel continuous synthesis method of vitamin C glucoside

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135992A (en) * 1989-10-21 1991-06-10 Hayashibara Biochem Lab Inc Crystal2-o-alpha-d-glucopyranosyl-l-ascorbic acid, production and use thereof
WO2007074763A1 (en) * 2005-12-26 2007-07-05 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Porous crystalline glucide, process for producing the same, and use
WO2012033218A1 (en) * 2010-09-07 2012-03-15 株式会社林原生物化学研究所 HYDROUS CRYSTALS OF 2-O-α-D-GLUCOSYL-L-ASCORBIC ACID, POWDER CONTAINING HYDROUS CRYSTALS OF 2-O-α-D-GLUCOSYL-L-ASCORBIC ACID, METHOD FOR PRODUCING THE HYDROUS CRYSTALS, METHOD FOR PRODUCING THE POWDER, USE OF THE HYDROUS CRYSTALS, AND USE OF THE POWDER
WO2012121297A1 (en) * 2011-03-07 2012-09-13 株式会社林原 METHOD FOR PRODUCING 2-O-α-D-GLUCOSYL-L-ASCORBIC ACID ANHYDROUS CRYSTAL-CONTAINING POWDER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135992A (en) * 1989-10-21 1991-06-10 Hayashibara Biochem Lab Inc Crystal2-o-alpha-d-glucopyranosyl-l-ascorbic acid, production and use thereof
WO2007074763A1 (en) * 2005-12-26 2007-07-05 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Porous crystalline glucide, process for producing the same, and use
WO2012033218A1 (en) * 2010-09-07 2012-03-15 株式会社林原生物化学研究所 HYDROUS CRYSTALS OF 2-O-α-D-GLUCOSYL-L-ASCORBIC ACID, POWDER CONTAINING HYDROUS CRYSTALS OF 2-O-α-D-GLUCOSYL-L-ASCORBIC ACID, METHOD FOR PRODUCING THE HYDROUS CRYSTALS, METHOD FOR PRODUCING THE POWDER, USE OF THE HYDROUS CRYSTALS, AND USE OF THE POWDER
WO2012121297A1 (en) * 2011-03-07 2012-09-13 株式会社林原 METHOD FOR PRODUCING 2-O-α-D-GLUCOSYL-L-ASCORBIC ACID ANHYDROUS CRYSTAL-CONTAINING POWDER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, B. ET AL.: "Current research situation and development prospect of ascorbyl glucoside.", CHINESE JOURNAL OF BIOPROCESS ENGINEERING, vol. 6, no. 4, 2008, pages 1 - 6, XP055228993 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3638212A4 (en) * 2017-06-15 2021-04-28 Savior Lifetec Corporation Methods for producing particles of an active ingredient

Also Published As

Publication number Publication date
JPWO2015152145A1 (en) 2017-04-13
TW201620922A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
AU2011213809B2 (en) Production of isomaltooligosaccharides and uses therefor
JP5828589B2 (en) Industrial production method of branched glucan having cyclic structure
JP4893980B2 (en) Branched starch, production method and use thereof
EP1390520B1 (en) Production method and preparation method of glucans
TWI541346B (en) Process for producing a particulate composition comprising crystalline α, α-trehalose di-hydrate
JPS6192592A (en) Production of branched cyclodextrin
JPH0140041B2 (en)
WO2015152145A1 (en) Process for producing crystalline 2-o-α-d-glucosyl-l-ascorbic acid powder
JP7082066B2 (en) High molecular weight glucan with slow digestion rate
JP4043312B2 (en) Process for producing 2-O-α-D-glucopyranosyl-L-ascorbic acid
JP3072433B2 (en) Method for producing high-purity maltose
JP4403140B2 (en) Remineralization accelerator
JP2011057610A (en) Method for producing glycosidated polyhydric alcohol
JP2022024332A (en) Method for producing isomaltose
JPS59148794A (en) Production of high-purity glucooligosaccharide
JP5726499B2 (en) Method for producing branched glucan having a cyclic structure
JPH0292296A (en) Production of high-purity maltose and reduced material thereof
JP4011102B2 (en) Glucan production method and preparation method thereof
JPH11235193A (en) Production of maltotriose solution
JP2696530C (en)
KR20050061007A (en) Enzymatic transglycosylation of l-ascorbic acid in a heterogeneous enzyme reaction system using insoluble starch as the glycosyl donor
JP2005263770A (en) Method for producing powdery 1,5-d-anhydrofructose
JP2696537C (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773017

Country of ref document: EP

Kind code of ref document: A1