WO2015151847A1 - Coal blend - Google Patents

Coal blend Download PDF

Info

Publication number
WO2015151847A1
WO2015151847A1 PCT/JP2015/058387 JP2015058387W WO2015151847A1 WO 2015151847 A1 WO2015151847 A1 WO 2015151847A1 JP 2015058387 W JP2015058387 W JP 2015058387W WO 2015151847 A1 WO2015151847 A1 WO 2015151847A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
ashless
coke
steam
caking
Prior art date
Application number
PCT/JP2015/058387
Other languages
French (fr)
Japanese (ja)
Inventor
貴洋 宍戸
濱口 眞基
菊池 直樹
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CA2938960A priority Critical patent/CA2938960A1/en
Priority to CN201580012261.8A priority patent/CN106062138B/en
Priority to US15/127,900 priority patent/US20170096603A1/en
Priority to AU2015241616A priority patent/AU2015241616B2/en
Priority to KR1020167026654A priority patent/KR20160127096A/en
Publication of WO2015151847A1 publication Critical patent/WO2015151847A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/28Cutting, disintegrating, shredding or grinding

Definitions

  • the present invention relates to a coal mixture formed by mixing ashless coal, which is a solvent extract of coal, and steam coal.
  • Patent Document 1 discloses that coking coal for coke production is heated by heating a mixed coal composed of inferior coal and ashless coal (hyper coal) substantially free of ash to a softening temperature of ashless coal or higher. A method of manufacturing is disclosed. If this raw coke for coke production is used as a coke raw material, the amount of strongly caking coal used in coke production can be suppressed.
  • the petroleum-based caking additive that has been put into practical use has a high caking-compensating effect, the production amount is limited, and the sulfur content is high and remains in the coke.
  • the sulfur content contained in iron ore or coke increases, the sulfur content remaining in the hot metal also increases, and there is a problem that the load on the desulfurization treatment process increases.
  • an upper limit is set for the sulfur content input to the blast furnace. Sulfur is known to deteriorate the properties of iron.
  • the amount of petroleum-based caking additive in coke coal is limited to a few percent.
  • An object of the present invention is to provide a coal mixture capable of reducing the cost of coke raw materials.
  • the coal mixture in the present invention is a mixture of ashless coal, which is a solvent extract of coal, and general coal, in a weight ratio of 1: 1 to 1: 5, without heating, and mixed after mixing.
  • Charcoal has a Gieseler fluidity of 1.0 (Log ddpm) or more and an average maximum reflectance of 0.75 (%) or more.
  • the coal mixture according to the embodiment of the present invention is obtained by mixing ashless coal using coal as a raw material and steam coal in a weight ratio of 1: 1 to 1: 5 without heating.
  • Ashless coal is a solvent extract of coal, and is obtained by extracting coal components soluble in a solvent from a slurry obtained by mixing and heating coal and a solvent.
  • the general coals used for the coal mixture of the present embodiment are bituminous coal, subbituminous coal, and lignite, which belong to the C to F2 coal classification in Table 1. That is, the general coal of this embodiment is coal with a calorific value (anhydrous ashless standard) (kcal / kg) of 5800 or more and less than 8400.
  • the calorific value (anhydrous ashless standard) (kcal / kg) defined by Japanese Industrial Standard (JIS M 1002: 1978) is calculated based on the following equation.
  • the fuel ratio is a value obtained by dividing fixed carbon by volatile matter.
  • an inert gas such as nitrogen
  • the side chain portion and / or the bridge portion of the polymer matrix constituting the steaming coal is cut by thermal decomposition, and low molecular weight hydrocarbons or the like are reduced.
  • Boiling components, CO, H 2 and the like are generated and released to the outside of the general coal particles in a gas form.
  • These low-boiling components such as low molecular weight hydrocarbons, CO, H 2, etc., released to the outside of the general coal particles in gas form are called volatile matter (VM) of general coal, and are based on dry weight (dry-base) ).
  • VM volatile matter
  • fixed carbon is a non-volatile component of the carbon contained in steam coal.
  • Coal coal with calorific value (anhydrous ashless basis) (kcal / kg) of 5800 or more and less than 8400 is coking coal, sub-bituminous coal, and lignite coal, etc.
  • the ashless coal used in the coal mixture of this embodiment is obtained by extracting a coal component soluble in a solvent from a slurry obtained by mixing and heating coal and a solvent, and has an ash content of 5 It refers to those not more than wt%, preferably not more than 3 wt%.
  • ash means a residual inorganic substance when coal is incinerated by heating at 815 ° C., and the inorganic substance is silicic acid, alumina, iron oxide, lime, magnesia, alkali metal, and the like. Also, ashless coal has no moisture.
  • Ashless charcoal is excellent in fluidity and expansibility and shows a high effect as a binder.
  • Suitable ashless coal has a maximum fluidity (log MF) of 4.78 (Log ddpm) or higher, which is confirmed by a Gieseler fluidity test by the Gieseler plastometer method specified in JIS M8801. A solidification temperature exceeding 450 ° C. is also suitable as ashless coal.
  • the coal that is the raw material of ashless coal is not particularly limited, and bituminous coal with a high extraction rate may be used, or cheaper inferior quality coal (subbituminous coal, lignite) may be used. Therefore, in this embodiment, steam coal is used as a raw material for ashless coal.
  • steam coal is used as a raw material for ashless coal.
  • the production of ashless coal using steam coal as a raw material expands the use of steam coal in the manufacture of coal blends.
  • steaming coal as a raw material for ashless coal
  • ashless coal is produced in the production area of steaming coal, and a coal mixture is produced from this ashless coal and steaming coal. It is possible to perform consistently from production to the production of coal blends.
  • the manufacturing method of ashless coal is demonstrated.
  • the ashless coal production facility 100 used in the method for producing ashless coal includes, in order from the upstream side of the production process, a coal hopper 1, a solvent tank 2, a slurry preparation tank 3, a transfer pump 4, and a preheating. 5, an extraction tank 6, a gravity sedimentation tank 7, and solvent separators 8 and 9.
  • the method for producing ashless coal has an extraction step, a separation step, and an ashless coal acquisition step. Hereinafter, each step will be described.
  • steam coal is used as a raw material for ashless coal.
  • the extraction step is a step of heating a slurry obtained by mixing coal and a solvent to extract a coal component soluble in the solvent (dissolving in the solvent). This extraction step is performed in the slurry preparation tank 3, the preheater 5, and the extraction tank 6 in FIG.
  • Coal which is a raw material is charged into the slurry preparation tank 3 from the coal hopper 1 and a solvent is charged into the slurry preparation tank 3 from the solvent tank 2.
  • the coal and solvent charged into the slurry preparation tank 3 are mixed by the stirrer 3a to become a slurry composed of coal and solvent.
  • the slurry prepared in the slurry preparation tank 3 is supplied to the preheater 5 by the transfer pump 4 and heated to a predetermined temperature, then supplied to the extraction tank 6, and held at the predetermined temperature while being stirred by the stirrer 6a. Extraction is performed.
  • an aromatic solvent hydrohalogen donating or non-hydrogen donating solvent
  • the separation step the slurry obtained in the extraction step is solidified by, for example, gravity precipitation, a solution in which a coal component soluble in a solvent is dissolved, and a coal component (solvent insoluble component such as ash) insoluble in the solvent.
  • This is a step of separating into a concentrated solution (solvent-insoluble component concentrated solution).
  • This separation step is performed in the gravity settling tank 7 in FIG.
  • the slurry obtained in the extraction step is separated into a supernatant liquid as a solution and a solid content concentrated liquid by gravity in the gravity settling tank 7.
  • the supernatant liquid in the upper part of the gravity settling tank 7 is sent to the solvent separator 8, and the solid content liquid settled in the lower part of the gravity settling tank 7 is sent to the solvent separator 9.
  • the ashless coal acquisition step is a step of obtaining ashless coal (HPC) by evaporating and separating the solvent from the solution (supernatant liquid) separated in the separation step.
  • This ashless coal acquisition step is performed by the solvent separator 8 in FIG.
  • the solution separated in the gravity sedimentation tank 7 is supplied to the solvent separator 8, and the solvent is evaporated and separated from the supernatant in the solvent separator 8.
  • a general distillation method, evaporation method or the like can be used as a method for separating the solvent from the solution (supernatant liquid).
  • a general distillation method, evaporation method or the like can be used as a method for separating the solvent from the solution (supernatant liquid).
  • HPC ashless charcoal
  • Ashless coal contains almost no ash, has no moisture, and shows a higher calorific value than raw coal. Furthermore, softening meltability (fluidity), which is a particularly important quality as a raw material for coke for iron making, has been greatly improved, and the obtained ashless coal (HPC) is good even if the raw coal does not have softening meltability Soft meltability.
  • softening meltability fluidity
  • HPC ashless coal
  • by-product charcoal also referred to as RC or residual charcoal
  • solvent-insoluble components including ash and the like are concentrated by separating the solvent from the solid concentrate separated in the gravity sedimentation tank 7.
  • the above-mentioned inferior raw materials containing non-caking coal, non-caking coal, slightly caking coal, and steaming coal are inferior in caking property to strong caking coal and quasi-strong caking coal that are coking coal. Therefore, when using an inferior raw material as a coke raw material, by increasing the blending ratio of strong caking coal in the coke blending coal, typical properties required for coke blending coal (volatile matter, average maximum reflectance) , Gieseller fluidity) must be within the proper range. That is, as the amount of the inferior raw material used in the coal for coke is increased, the amount of expensive strong caking coal needs to be increased, so the cost of the coke raw material cannot be reduced.
  • the coal mixture of this embodiment is a mixture of ashless coal and steam coal in a weight ratio of 1: 1 to 1: 5, more preferably in a weight ratio of 1: 3 to 1: 5, without heating. Do it.
  • the mixed cellar has a Gieseller fluidity of 1.0 (Log ddpm) or more, more preferably 1.5. (Log ddpm) or higher.
  • the average maximum reflectance of mixed coal shall be 0.75 (%) or more.
  • the Gieseller fluidity and average maximum reflectance of the mixed coal mean values obtained by weighted averaging of the values of ashless coal and steam coal contained in the mixed coal, respectively.
  • the mixed coal has a Gieseler fluidity of preferably less than 4.0 (Log ddpm), and more preferably less than 3.8 (Log ddpm). Further, the average maximum reflectance of the mixed coal is preferably less than 1.2 (%), and more preferably less than 1.0 (%). As a result, the properties of the resulting coal mixture are equivalent to those of general strong caking coal (general strong viscosity) or semi-strong caking coal belonging to the categories BD in Table 2.
  • the properties of general strong caking coal (general strong caking) or semi-hard caking coal are volatile matter 20-33 (mass%), average maximum reflectance 0.8-1.3 (% ), And the Gieseller fluidity is 1.5 to 4.0 (Log ddpm).
  • the average maximum reflectance (%) is calculated based on a formula defined by Japanese Industrial Standard (JIS M 8816: 1992).
  • ashless coal is excellent in fluidity and expansibility, and exhibits a high effect as a binder. Therefore, by mixing ashless coal and steam coal without heating, it is possible to obtain mixed coal having caking properties similar to those of high-quality strong caking coal. And, by mixing ashless coal and steamed coal in a weight ratio of 1: 1 to 1: 5 without heating, the mixed coal has a Gieseller fluidity of 1.0 (Log ddpm) or more. The average maximum reflectance is 0.75 (%) or more. Thereby, the coal mixed material which has the property equivalent to a general strong caking coal (general strong caking) or a semi-strong caking coal can be obtained.
  • the amount of strong caking coal in coke production can be reduced, and the amount of steam coal contained in the coke blending coal can be reduced. Can be increased.
  • the amount of ashless coal added to the coke blended coal is not limited by the sulfur content. Therefore, the quantity of the inferior quality raw material which can be mix
  • Mixing of ashless coal and steam coal is performed without applying heat from the outside by a heating means.
  • blended may have a heat
  • ashless coal and steam coal are coarsely pulverized during or before mixing.
  • the coarse pulverization means pulverization so that the particle diameter becomes 20 mm or less.
  • Ashless coal and steam coal may be mixed in the pulverizer without being heated while being coarsely pulverized, or mixed separately after being separately input into the pulverizer and coarsely pulverized. They may be mixed without being heated by being put into a coal blender so as to have a ratio.
  • ashless coal and steaming coal are simultaneously fed into a pulverizer and mixed while coarsely pulverizing, they mix more uniformly, making it easier for ashless coal to adhere to the surroundings of steaming coal particles. .
  • regulated to JISA1102 is used, for example.
  • Ashless coal tends to be pulverized more easily than steam coal. Generally, finely pulverized coal tends to generate dust. In general, finely pulverized coal easily undergoes low-temperature oxidation, so there is a concern that spontaneous combustion may occur due to oxidation heat generation. Thus, coarsely pulverizing ashless coal and steam coal allows them to mix evenly during mixing, and the ashless coal comes into close contact with the particles of steam coal. Thereby, since dust generation and low-temperature oxidation are suppressed, a coal mixed material can be stably stored or transported. Moreover, since the caking effect by ashless coal is enhanced by the close adhesion of ashless coal with high caking properties around the particles of steaming coal with low caking properties, the caking property of coal mixture is increased. Can do.
  • the pulverizer associated with the coke oven causes the particle size of the general coke blended coal (particle size of 3 mm or less to occupy the entire proportion). (About 80% by weight).
  • coal that is a raw material for ashless coal is steam coal. Since the amount of steam coal contained in the coal for coke is further increased by using as a coke raw material a coal mixture obtained by mixing steam coal without heating ashless coal and steam coal as raw materials, The cost of the coke raw material can be further reduced. Also, from the production of ashless coal to the production of coal blends, such as producing ashless coal in the production area of steam coal and producing a coal blend with this ashless coal and steam coal. As a result, transportation costs and the like can be suppressed, and thus manufacturing costs can be reduced.
  • by-product coal obtained as a by-product in the production of ashless coal is used as fuel for local power plants. It is preferably used as a fuel in the ash coal production process.
  • the produced ashless coal and steam coal are transported from a coal storage or silo, and simultaneously charged into a pulverizer, and heated at room temperature (25 without coarsely pulverizing so that the particle size is 20 mm or less.
  • the mixture was mixed in the state of about °C.
  • ashless charcoal and steamed charcoal are charged separately into the pulverizer, coarsely pulverized so that the particle size is 20 mm or less, and then each is charged into the coal pulverizer so as to obtain an appropriate mixing ratio.
  • Table 3 shows the properties of ashless coal and four types of steaming coals A, B, C, and D, respectively.
  • the mixing ratio of ashless coal and general coal having the same properties as general strong caking coal (general strong caking) or semi-strong caking coal is 1: 1 to 1: 5 by weight, More preferably, the weight ratio was from 1: 3 to 1: 5.
  • ashless coal and steam coal are mixed at a weight ratio of 1: 1 to 1: 5 without heating to obtain a coal mixture.
  • Ashless coal is excellent in fluidity and expansibility, and shows a high effect as a binder. Therefore, by mixing ashless coal and steam coal without heating, it is possible to obtain mixed coal having caking properties similar to those of high-quality strong caking coal.
  • the mixed coal coal has a Gieseller fluidity of 1.0 (Log ddpm) or more. The average maximum reflectance is 0.75 (%) or more.
  • the coal mixed material which has the property equivalent to a general strong caking coal or a semi-strong caking coal can be obtained.
  • this coal mixture as a coke raw material instead of strong caking coal, the amount of strong caking coal in coke production can be reduced, and the amount of steam coal contained in the coke blending coal can be reduced.
  • the blending amount of the coal mixture in the coke blending coal is preferably 10% by mass to 50% by mass, and preferably 20% by mass to 30% by mass based on the total coke blending coal.
  • ashless coal alone it was necessary to adjust the appropriate amount according to the properties of the blended coal, but the coal mixture of the present invention is pre-blended with appropriate amounts of coal and ashless coal.
  • the amount of ashless coal added to the coke blended coal is not limited by the sulfur content. Therefore, the quantity of the inferior quality raw material which can be mix
  • ashless coal and steaming coal are coarsely pulverized. Ashless coal tends to be pulverized more easily than steam coal. Generally, finely pulverized coal tends to generate dust. In general, finely pulverized coal easily undergoes low-temperature oxidation, so there is a concern that spontaneous combustion may occur due to oxidation heat generation. Thus, coarsely pulverizing ashless coal and steam coal allows them to mix evenly during mixing, and the ashless coal comes into close contact with the particles of steam coal. Thereby, since dust generation and low-temperature oxidation are suppressed, a coal mixed material can be stably stored or transported. Moreover, since the caking effect by ashless coal is enhanced by the close adhesion of ashless coal with high caking properties around the particles of steaming coal with low caking properties, the caking property of coal mixture is increased. Can do.
  • coal the raw material for ashless coal
  • steam coal Since the amount of steam coal contained in the coal for coke is further increased by using as a coke raw material a coal mixture obtained by mixing steam coal without heating ashless coal and steam coal as raw materials, The cost of the coke raw material can be further reduced. Also, from the production of ashless coal to the production of coal blends, such as producing ashless coal in the production area of steam coal and producing a coal blend with this ashless coal and steam coal. As a result, transportation costs and the like can be suppressed, and thus manufacturing costs can be reduced.
  • the coal mixed material of the present invention is useful as a raw coal for producing coke and can be produced at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 In order to reduce the cost of coke raw materials, the present invention involves mixing ashless coal, which is a solvent extract of coal, and steam coal in a weight ratio of 1:1 to 1:5 without heating, and producing a coal blend having a Gieseler fluidity of 1.0 (log ddpm) or higher and an average maximum reflectance of 0.75 (%) or higher.

Description

石炭混合材Coal mixture
 本発明は、石炭の溶剤抽出物である無灰炭と、一般炭とを混合してなる石炭混合材に関する。 The present invention relates to a coal mixture formed by mixing ashless coal, which is a solvent extract of coal, and steam coal.
 高炉を用いた鉄鋼の生産においては、原料炭を加熱乾留したコークスが還元剤として用いられる。ここで、品質の高いコークスを製造するためには、粘結性の高い強粘結炭を主原料としたコークス用配合炭が必要である。しかし、強粘結炭は、将来的に、入手が困難となり、価格が高騰する恐れがある。 In the production of steel using a blast furnace, coke obtained by heating and carbonizing raw coal is used as a reducing agent. Here, in order to produce high-quality coke, blended coal for coke whose main raw material is highly caking coal with high caking properties is required. However, strong caking coal may become difficult to obtain in the future and the price may rise.
 そこで、劣質原料(非粘結炭、微粘結炭、一般炭)をコークス原料として使用することで、強粘結炭の使用量を抑え、コークス原料のコストを低減させることが求められている。 Therefore, it is required to reduce the cost of coke raw materials by using inferior raw materials (non-caking coal, slightly caking coal, steaming coal) as coke raw materials, thereby reducing the amount of strong caking coal used. .
 特許文献1には、劣質炭と、実質的に灰分を含まない無灰炭(ハイパーコール)とからなる混合炭を、無灰炭の軟化温度以上に加熱することで、コークス製造用原料炭を製造する方法が開示されている。このコークス製造用原料炭をコークス原料として使用すれば、コークス製造における強粘結炭の使用量を抑えることができる。 Patent Document 1 discloses that coking coal for coke production is heated by heating a mixed coal composed of inferior coal and ashless coal (hyper coal) substantially free of ash to a softening temperature of ashless coal or higher. A method of manufacturing is disclosed. If this raw coke for coke production is used as a coke raw material, the amount of strongly caking coal used in coke production can be suppressed.
日本国特開2009-215454号公報Japanese Unexamined Patent Publication No. 2009-215454
 ところで、粘結性が低い劣質原料を単純にコークス用配合炭に配合したのでは、コークス用配合炭の粘結性が低下し、コークス強度も低下してしまう。そこで、通常操業では、劣質原料の配合による負の影響を良質原料炭の増配により調整し、コークス用配合炭に求められる代表的な性状(揮発分、平均最大反射率、ギーセラー流動度)が適正な範囲に収まるように管理している。しかし、この方法では、劣質原料の使用量の増加に伴って、高価な強粘結炭の使用量も増加させる必要があり、コークス原料のコストを低減させることができない。 By the way, if an inferior raw material having low caking properties is simply blended with the coal for coke, the caking property of the coal for coke is lowered, and the coke strength is also lowered. Therefore, in normal operation, the negative effects due to the blending of inferior raw materials are adjusted by increasing the distribution of high quality coking coal, and the typical properties (volatile content, average maximum reflectance, Gieseller fluidity) required for coking coal are appropriate. It is managed so that it is within the range. However, in this method, it is necessary to increase the amount of expensive strong caking coal as the amount of inferior raw material used increases, and the cost of the coke raw material cannot be reduced.
 また、実用化されている石油系粘結材は、高い粘結性補填効果を有するものの、生産量に制約があり、また、硫黄分が高く、コークス中に残留する。ここで、鉄鋼石やコークスに含まれる硫黄分が増加すると、溶銑中に残存する硫黄分も増加し、脱硫処理工程への負荷が増大するという問題がある。そこで、これを回避するために、高炉にインプットされる硫黄分には上限が設けられている。また、硫黄は鉄の性状を悪化させることが知られている。このようなことから、コークス用配合炭への石油系粘結材の配合量は数%が限度とされている。このように、粘結性の補填には限界があるため、コークス用配合炭に配合する劣質原料の量を増加させるのは容易ではない。 In addition, although the petroleum-based caking additive that has been put into practical use has a high caking-compensating effect, the production amount is limited, and the sulfur content is high and remains in the coke. Here, when the sulfur content contained in iron ore or coke increases, the sulfur content remaining in the hot metal also increases, and there is a problem that the load on the desulfurization treatment process increases. In order to avoid this, an upper limit is set for the sulfur content input to the blast furnace. Sulfur is known to deteriorate the properties of iron. For this reason, the amount of petroleum-based caking additive in coke coal is limited to a few percent. As described above, since there is a limit to the caking supplement, it is not easy to increase the amount of the inferior raw material blended in the coke blending coal.
 本発明の目的は、コークス原料のコストを低減させることが可能な石炭混合材を提供することである。 An object of the present invention is to provide a coal mixture capable of reducing the cost of coke raw materials.
 本発明における石炭混合材は、石炭の溶剤抽出物である無灰炭と、一般炭と、を1:1~1:5の重量比で、加熱することなく混合してなり、混合後の混合炭のギーセラー流動度が1.0(Log ddpm)以上であり、平均最大反射率が0.75(%)以上であることを特徴とする。 The coal mixture in the present invention is a mixture of ashless coal, which is a solvent extract of coal, and general coal, in a weight ratio of 1: 1 to 1: 5, without heating, and mixed after mixing. Charcoal has a Gieseler fluidity of 1.0 (Log ddpm) or more and an average maximum reflectance of 0.75 (%) or more.
 本発明の石炭混合材によると、コークス原料のコストを低減させることができる。 ¡According to the coal mixture of the present invention, the cost of coke raw materials can be reduced.
無灰炭製造設備の模式図である。It is a schematic diagram of an ashless coal manufacturing facility.
 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(石炭混合材の構成)
 本発明の実施形態による石炭混合材は、石炭を原料とする無灰炭と、一般炭と、を1:1~1:5の重量比で、加熱することなく混合してなる。無灰炭とは、石炭の溶剤抽出物であり、石炭と溶剤とを混合および加熱して得られるスラリーから溶剤に可溶な石炭成分を抽出して得られるものである。
(Composition of coal mixture)
The coal mixture according to the embodiment of the present invention is obtained by mixing ashless coal using coal as a raw material and steam coal in a weight ratio of 1: 1 to 1: 5 without heating. Ashless coal is a solvent extract of coal, and is obtained by extracting coal components soluble in a solvent from a slurry obtained by mixing and heating coal and a solvent.
(一般炭)
 本実施形態の石炭混合材に用いられる一般炭は、表1において、C~F2の石炭区分に属する瀝青炭、亜瀝青炭および褐炭である。即ち、本実施形態の一般炭は、発熱量(無水無灰基準)(kcal/kg)が5800以上8400未満の石炭である。
(Steam coal)
The general coals used for the coal mixture of the present embodiment are bituminous coal, subbituminous coal, and lignite, which belong to the C to F2 coal classification in Table 1. That is, the general coal of this embodiment is coal with a calorific value (anhydrous ashless standard) (kcal / kg) of 5800 or more and less than 8400.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、日本工業規格(JIS M 1002:1978)で規定される発熱量(無水無灰基準)(kcal/kg)は、以下の式に基づいて算出される。 
 発熱量(補正無水無灰ベース)=発熱量/(100-1.08×灰分-水分)×100 
Here, the calorific value (anhydrous ashless standard) (kcal / kg) defined by Japanese Industrial Standard (JIS M 1002: 1978) is calculated based on the following equation.
Calorific value (corrected anhydrous ashless base) = calorific value / (100-1.08 x ash-moisture) x 100
 また、燃料比は、固定炭素を揮発分で除した値である。ここで、一般炭を窒素などの不活性ガス中で高温まで加熱すると、一般炭を構成する高分子マトリックスの側鎖部分および/またはブリッジ部分が熱分解により切断され、低分子量炭化水素などの低沸点成分、CO、Hなどが発生し、ガス形態で一般炭粒子の外部へ放出される。ガス形態で一般炭粒子の外部へ放出されるこれら低分子量炭化水素などの低沸点成分、CO、Hなどのことを、一般炭の揮発分(VM)といい、乾量基準(dry-base)で表される。また、固定炭素とは、一般炭に含まれる炭素のうちの不揮発成分のことである。 The fuel ratio is a value obtained by dividing fixed carbon by volatile matter. Here, when steaming coal is heated to a high temperature in an inert gas such as nitrogen, the side chain portion and / or the bridge portion of the polymer matrix constituting the steaming coal is cut by thermal decomposition, and low molecular weight hydrocarbons or the like are reduced. Boiling components, CO, H 2 and the like are generated and released to the outside of the general coal particles in a gas form. These low-boiling components such as low molecular weight hydrocarbons, CO, H 2, etc., released to the outside of the general coal particles in gas form are called volatile matter (VM) of general coal, and are based on dry weight (dry-base) ). Moreover, fixed carbon is a non-volatile component of the carbon contained in steam coal.
 発熱量(無水無灰基準)(kcal/kg)が5800以上8400未満の瀝青炭、亜瀝青炭および褐炭である一般炭は、コークス・PCI(高炉への微粉炭吹込)用の原料炭などであって、ボイラ・電力用の石炭であり、表1において、B1,B2の石炭区分に属する瀝青炭、即ち、コークス用原料炭である強粘結炭や準強粘結炭よりも粘結性が劣っている。 Coal coal with calorific value (anhydrous ashless basis) (kcal / kg) of 5800 or more and less than 8400 is coking coal, sub-bituminous coal, and lignite coal, etc. In Table 1, bituminous coal belonging to the B1 and B2 coal categories, that is, cohesive coal and coking coal, which is a coking raw coal, is inferior in caking property. Yes.
(無灰炭)
 本実施形態の石炭混合材に用いられる無灰炭は、石炭と溶剤とを混合および加熱して得られるスラリーから溶剤に可溶な石炭成分を抽出して得られるものであって、灰分が5重量%以下、好ましくは3重量%以下のもののことをいう。ここで「灰分」とは、石炭を815℃で加熱して灰化したときの残留無機物を意味し、その無機物は、ケイ酸、アルミナ、酸化鉄、石灰、マグネシア、アルカリ金属などである。また、無灰炭は、水分が皆無である。
(Ashless coal)
The ashless coal used in the coal mixture of this embodiment is obtained by extracting a coal component soluble in a solvent from a slurry obtained by mixing and heating coal and a solvent, and has an ash content of 5 It refers to those not more than wt%, preferably not more than 3 wt%. Here, “ash” means a residual inorganic substance when coal is incinerated by heating at 815 ° C., and the inorganic substance is silicic acid, alumina, iron oxide, lime, magnesia, alkali metal, and the like. Also, ashless coal has no moisture.
 無灰炭は、流動性、膨張性に優れており、粘結材として高い効果を示す。好適な無灰炭は、JIS M8801に規定されたギーセラープラストメータ法によるギーセラー流動性試験で確認される最高流動度(log MF)が4.78(Log ddpm)以上のものである。また、固化温度が450℃を超えるものも無灰炭として好適である。 Ashless charcoal is excellent in fluidity and expansibility and shows a high effect as a binder. Suitable ashless coal has a maximum fluidity (log MF) of 4.78 (Log ddpm) or higher, which is confirmed by a Gieseler fluidity test by the Gieseler plastometer method specified in JIS M8801. A solidification temperature exceeding 450 ° C. is also suitable as ashless coal.
 無灰炭の原料である石炭としては、特に制限はなく、抽出率の高い瀝青炭を用いてもよいし、より安価な劣質炭(亜瀝青炭、褐炭)を用いてもよい。そこで、本実施形態においては、無灰炭の原料として一般炭を用いている。一般炭を原料にして無灰炭を製造することで、石炭混合材の製造における一般炭の利用が拡大する。また、無灰炭の原料として一般炭を用いることで、一般炭の産地で無灰炭を製造し、この無灰炭と一般炭とで石炭混合材を製造するといったように、無灰炭の製造から石炭混合材の製造までを一貫して行うことが可能となる。 The coal that is the raw material of ashless coal is not particularly limited, and bituminous coal with a high extraction rate may be used, or cheaper inferior quality coal (subbituminous coal, lignite) may be used. Therefore, in this embodiment, steam coal is used as a raw material for ashless coal. The production of ashless coal using steam coal as a raw material expands the use of steam coal in the manufacture of coal blends. In addition, by using steaming coal as a raw material for ashless coal, ashless coal is produced in the production area of steaming coal, and a coal mixture is produced from this ashless coal and steaming coal. It is possible to perform consistently from production to the production of coal blends.
(無灰炭の製造方法)
 ここで、無灰炭の製造方法について説明する。無灰炭の製造方法に用いられる無灰炭製造設備100は、図1に示すように、製造工程の上流側から順に、石炭ホッパ1・溶剤タンク2、スラリー調製槽3、移送ポンプ4、予熱器5、抽出槽6、重力沈降槽7、および、溶剤分離器8・9を備えている。
(Method for producing ashless coal)
Here, the manufacturing method of ashless coal is demonstrated. As shown in FIG. 1, the ashless coal production facility 100 used in the method for producing ashless coal includes, in order from the upstream side of the production process, a coal hopper 1, a solvent tank 2, a slurry preparation tank 3, a transfer pump 4, and a preheating. 5, an extraction tank 6, a gravity sedimentation tank 7, and solvent separators 8 and 9.
 無灰炭の製造方法は、抽出工程、分離工程、および、無灰炭取得工程を有する。以下、各工程について説明する。なお、本実施形態においては、無灰炭の原料として一般炭を用いている。 The method for producing ashless coal has an extraction step, a separation step, and an ashless coal acquisition step. Hereinafter, each step will be described. In the present embodiment, steam coal is used as a raw material for ashless coal.
(抽出工程)
 抽出工程は、石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出する(溶剤に溶解させる)工程である。この抽出工程は、図1中、スラリー調製槽3、予熱器5、および、抽出槽6で実施される。
(Extraction process)
The extraction step is a step of heating a slurry obtained by mixing coal and a solvent to extract a coal component soluble in the solvent (dissolving in the solvent). This extraction step is performed in the slurry preparation tank 3, the preheater 5, and the extraction tank 6 in FIG.
 原料である石炭が石炭ホッパ1からスラリー調製槽3に投入されるとともに、溶剤タンク2からスラリー調製槽3に溶剤が投入される。スラリー調製槽3に投入された石炭および溶剤は、攪拌機3aで混合されて石炭と溶剤とからなるスラリーとなる。スラリー調製槽3にて調製されたスラリーは、移送ポンプ4によって、予熱器5に供給されて所定温度まで加熱された後、抽出槽6に供給され、攪拌機6aで攪拌されながら所定温度で保持されて抽出が行われる。溶剤に可溶な石炭成分を抽出するための溶剤として、芳香族溶剤(水素供与性あるいは非水素供与性の溶剤)を好適に使用することができる。 Coal which is a raw material is charged into the slurry preparation tank 3 from the coal hopper 1 and a solvent is charged into the slurry preparation tank 3 from the solvent tank 2. The coal and solvent charged into the slurry preparation tank 3 are mixed by the stirrer 3a to become a slurry composed of coal and solvent. The slurry prepared in the slurry preparation tank 3 is supplied to the preheater 5 by the transfer pump 4 and heated to a predetermined temperature, then supplied to the extraction tank 6, and held at the predetermined temperature while being stirred by the stirrer 6a. Extraction is performed. As a solvent for extracting a coal component soluble in the solvent, an aromatic solvent (hydrogen donating or non-hydrogen donating solvent) can be suitably used.
(分離工程)
 分離工程は、抽出工程で得られたスラリーを、例えば重力沈降法により、溶剤に可溶な石炭成分が溶解した溶液と、溶剤に不溶な石炭成分(溶剤不溶成分、例えば灰分)が濃縮した固形分濃縮液(溶剤不溶成分濃縮液)とに分離する工程である。この分離工程は、図1中、重力沈降槽7で実施される。抽出工程で得られたスラリーは、重力沈降槽7内で、重力にて、溶液としての上澄み液と、固形分濃縮液とに分離される。重力沈降槽7の上部の上澄み液は、溶剤分離器8へ送られるとともに、重力沈降槽7の下部に沈降した固形分濃縮液は溶剤分離器9へ送られる。
(Separation process)
In the separation step, the slurry obtained in the extraction step is solidified by, for example, gravity precipitation, a solution in which a coal component soluble in a solvent is dissolved, and a coal component (solvent insoluble component such as ash) insoluble in the solvent. This is a step of separating into a concentrated solution (solvent-insoluble component concentrated solution). This separation step is performed in the gravity settling tank 7 in FIG. The slurry obtained in the extraction step is separated into a supernatant liquid as a solution and a solid content concentrated liquid by gravity in the gravity settling tank 7. The supernatant liquid in the upper part of the gravity settling tank 7 is sent to the solvent separator 8, and the solid content liquid settled in the lower part of the gravity settling tank 7 is sent to the solvent separator 9.
(無灰炭取得工程)
 無灰炭取得工程は、分離工程で分離された溶液(上澄み液)から溶剤を蒸発分離して無灰炭(HPC)を得る工程である。この無灰炭取得工程は、図1中、溶剤分離器8で実施される。重力沈降槽7で分離された溶液は、溶剤分離器8に供給され、溶剤分離器8内で上澄み液から溶剤が蒸発分離される。
(Ashless coal acquisition process)
The ashless coal acquisition step is a step of obtaining ashless coal (HPC) by evaporating and separating the solvent from the solution (supernatant liquid) separated in the separation step. This ashless coal acquisition step is performed by the solvent separator 8 in FIG. The solution separated in the gravity sedimentation tank 7 is supplied to the solvent separator 8, and the solvent is evaporated and separated from the supernatant in the solvent separator 8.
 溶液(上澄み液)から溶剤を分離する方法は、一般的な蒸留法、蒸発法などを用いることができる。上澄み液から溶剤を分離することで、実質的に灰分を含まない無灰炭(HPC)を得ることができる。 As a method for separating the solvent from the solution (supernatant liquid), a general distillation method, evaporation method or the like can be used. By separating the solvent from the supernatant, ashless charcoal (HPC) substantially free of ash can be obtained.
 無灰炭は、灰分をほとんど含まず、水分は皆無であり、原料石炭よりも高い発熱量を示す。さらに、製鉄用コークスの原料として特に重要な品質である軟化溶融性(流動性)が大幅に改善され、原料石炭が軟化溶融性を有しなくとも、得られた無灰炭(HPC)は良好な軟化溶融性を有する。 Ashless coal contains almost no ash, has no moisture, and shows a higher calorific value than raw coal. Furthermore, softening meltability (fluidity), which is a particularly important quality as a raw material for coke for iron making, has been greatly improved, and the obtained ashless coal (HPC) is good even if the raw coal does not have softening meltability Soft meltability.
 なお、溶剤分離器9において、重力沈降槽7で分離された固形分濃縮液から溶剤を分離することで、灰分などを含む溶剤不溶成分が濃縮された副生炭(RC、残渣炭ともいう)を得ることができる。 In the solvent separator 9, by-product charcoal (also referred to as RC or residual charcoal) in which solvent-insoluble components including ash and the like are concentrated by separating the solvent from the solid concentrate separated in the gravity sedimentation tank 7. Can be obtained.
(石炭混合材)
 次に、本実施形態の石炭混合材について説明する。上述した一般炭を含む劣質原料(非粘結炭、微粘結炭、一般炭)は、コークス用原料炭である強粘結炭や準強粘結炭よりも粘結性が劣っている。そのため、劣質原料をコークス原料として使用する場合には、コークス用配合炭における強粘結炭の配合割合を高めることで、コークス用配合炭に求められる代表的な性状(揮発分、平均最大反射率、ギーセラー流動度)が適正な範囲に収まるようにする必要がある。つまり、コークス用配合炭における劣質原料の使用量を増やすのに伴って、高価な強粘結炭の使用量も増やす必要があるので、コークス原料のコストを低減させることができない。
(Coal mixture)
Next, the coal mixed material of this embodiment is demonstrated. The above-mentioned inferior raw materials containing non-caking coal, non-caking coal, slightly caking coal, and steaming coal are inferior in caking property to strong caking coal and quasi-strong caking coal that are coking coal. Therefore, when using an inferior raw material as a coke raw material, by increasing the blending ratio of strong caking coal in the coke blending coal, typical properties required for coke blending coal (volatile matter, average maximum reflectance) , Gieseller fluidity) must be within the proper range. That is, as the amount of the inferior raw material used in the coal for coke is increased, the amount of expensive strong caking coal needs to be increased, so the cost of the coke raw material cannot be reduced.
 また、コークス製造においては、実用化されている石油系粘結材を用いて粘結性を補填することが行われている。しかし、石油系粘結材は硫黄分が高く、コークス中に残留し、コークスに含まれる硫黄分を増加させる。一方、高炉にインプットされる硫黄分は制限されている。よって、コークス用配合炭への石油系粘結材の配合量は数%が限度とされている。そのため、コークス用配合炭に配合する劣質原料の量を増加させるのは容易ではない。 Further, in coke production, caking properties are compensated by using a petroleum-based caking material that has been put to practical use. However, petroleum-based binders have a high sulfur content and remain in the coke, increasing the sulfur content contained in the coke. On the other hand, the sulfur content input to the blast furnace is limited. Therefore, the blending amount of the petroleum-based binder into the coal for coal coke is limited to a few percent. For this reason, it is not easy to increase the amount of the inferior raw material blended into the coal for coke.
 そこで、本実施形態の石炭混合材は、無灰炭と一般炭とを1:1~1:5の重量比、より好ましくは1:3~1:5の重量比で、加熱することなく混合してなる。このような重量比で、無灰炭と一般炭とを加熱することなく混合することで、混合後の混合炭のギーセラー流動度を、1.0(Log ddpm)以上、より好ましくは1.5(Log ddpm)以上とする。また、混合炭の平均最大反射率を0.75(%)以上とする。なお、混合炭のギーセラー流動度や平均最大反射率は、それぞれ、混合炭に含まれる無灰炭及び一般炭の数値を加重平均した値を意味する。なお、混合炭のギーセラー流動度は4.0(Log ddpm)未満が好ましく、さらには3.8(Log ddpm)未満が好ましい。また、混合炭の平均最大反射率は1.2(%)未満が好ましく、さらには1.0(%)未満が好ましい。これにより、得られる石炭混合材の性状は、表2においてB~Dの区分に属する、一般的な強粘結炭(一般強粘)または準強粘結炭の性状と同等となる。 Therefore, the coal mixture of this embodiment is a mixture of ashless coal and steam coal in a weight ratio of 1: 1 to 1: 5, more preferably in a weight ratio of 1: 3 to 1: 5, without heating. Do it. By mixing ashless coal and steam coal without heating at such a weight ratio, the mixed cellar has a Gieseller fluidity of 1.0 (Log ddpm) or more, more preferably 1.5. (Log ddpm) or higher. Moreover, the average maximum reflectance of mixed coal shall be 0.75 (%) or more. The Gieseller fluidity and average maximum reflectance of the mixed coal mean values obtained by weighted averaging of the values of ashless coal and steam coal contained in the mixed coal, respectively. The mixed coal has a Gieseler fluidity of preferably less than 4.0 (Log ddpm), and more preferably less than 3.8 (Log ddpm). Further, the average maximum reflectance of the mixed coal is preferably less than 1.2 (%), and more preferably less than 1.0 (%). As a result, the properties of the resulting coal mixture are equivalent to those of general strong caking coal (general strong viscosity) or semi-strong caking coal belonging to the categories BD in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ここで、一般的な強粘結炭(一般強粘)または準強粘結炭の性状は、揮発分が20~33(質量%)、平均最大反射率が0.8~1.3(%)、ギーセラー流動度が1.5~4.0(Log ddpm)である。なお、平均最大反射率(%)は、日本工業規格(JIS M 8816:1992)で規定される式に基づいて算出される。 Here, the properties of general strong caking coal (general strong caking) or semi-hard caking coal are volatile matter 20-33 (mass%), average maximum reflectance 0.8-1.3 (% ), And the Gieseller fluidity is 1.5 to 4.0 (Log ddpm). The average maximum reflectance (%) is calculated based on a formula defined by Japanese Industrial Standard (JIS M 8816: 1992).
 上述したように、無灰炭は流動性、膨張性に優れており、粘結材として高い効果を示す。そのため、無灰炭と一般炭とを加熱することなく混合することで、良質な強粘結炭並みの粘結性を持った混合炭を得ることができる。そして、無灰炭と一般炭とを1:1~1:5の重量比で、加熱することなく混合することで、混合後の混合炭のギーセラー流動度が1.0(Log ddpm)以上となり、平均最大反射率が0.75(%)以上となる。これにより、一般的な強粘結炭(一般強粘)や準強粘結炭と同等の性状を持った石炭混合材を得ることができる。この石炭混合材を強粘結炭の代わりにコークス原料として使用することで、コークス製造における強粘結炭の使用量を低減させることができるとともに、コークス用配合炭に含まれる一般炭の量を増加させることができる。また、無灰炭は硫黄分が一般炭並みであるので、コークス用配合炭への無灰炭の配合量には硫黄分による制限がない。よって、無灰炭と一般炭とを加熱することなく混合してなる石炭混合材をコークス原料として使用することで、コークス用配合炭に配合可能な劣質原料の量を増加させることができる。これにより、コークス原料のコストを低減させることができる。無灰炭と一般炭との混合は、加熱手段により外部から熱を加えずに行なわれる。また、配合される石炭自体が熱を持っている場合もあり、混合時の温度は、おおよそ100℃未満、60℃未満等にすることができる。 As described above, ashless coal is excellent in fluidity and expansibility, and exhibits a high effect as a binder. Therefore, by mixing ashless coal and steam coal without heating, it is possible to obtain mixed coal having caking properties similar to those of high-quality strong caking coal. And, by mixing ashless coal and steamed coal in a weight ratio of 1: 1 to 1: 5 without heating, the mixed coal has a Gieseller fluidity of 1.0 (Log ddpm) or more. The average maximum reflectance is 0.75 (%) or more. Thereby, the coal mixed material which has the property equivalent to a general strong caking coal (general strong caking) or a semi-strong caking coal can be obtained. By using this coal mixture as a coke raw material instead of strong caking coal, the amount of strong caking coal in coke production can be reduced, and the amount of steam coal contained in the coke blending coal can be reduced. Can be increased. In addition, since the ashless coal has a sulfur content similar to that of steam coal, the amount of ashless coal added to the coke blended coal is not limited by the sulfur content. Therefore, the quantity of the inferior quality raw material which can be mix | blended with the coal mixture for cokes can be increased by using the coal mixed material formed by mixing ashless coal and steam coal without heating as a coke raw material. Thereby, the cost of a coke raw material can be reduced. Mixing of ashless coal and steam coal is performed without applying heat from the outside by a heating means. Moreover, the coal itself mix | blended may have a heat | fever, and the temperature at the time of mixing can be about less than 100 degreeC, less than 60 degreeC, etc.
 また、無灰炭と一般炭とは、混合時または混合前において、粗粉砕されている。ここで、粗粉砕とは、粒径が20mm以下となるように粉砕することをいう。無灰炭と一般炭とは、粉砕機に同時に投入されて粗粉砕されながら加熱されることなく混合されてもよいし、別々に粉砕機に投入されてそれぞれ粗粉砕された後に、適正な混合比となるように混炭機に投入されて加熱されることなく混合されてもよい。なお、無灰炭と一般炭とを粉砕機に同時に投入して粗粉砕しながら混合した方が、両者がより均一に混ざり合うので、無灰炭が一般炭の粒子の周囲に密着しやすくなる。なお、石炭の粒径が20mm以下であるか否かなど石炭の粒径を検証する場合には、例えば、JIS A 1102に規定されたふるい分け試験を用いる。 In addition, ashless coal and steam coal are coarsely pulverized during or before mixing. Here, the coarse pulverization means pulverization so that the particle diameter becomes 20 mm or less. Ashless coal and steam coal may be mixed in the pulverizer without being heated while being coarsely pulverized, or mixed separately after being separately input into the pulverizer and coarsely pulverized. They may be mixed without being heated by being put into a coal blender so as to have a ratio. In addition, when ashless coal and steaming coal are simultaneously fed into a pulverizer and mixed while coarsely pulverizing, they mix more uniformly, making it easier for ashless coal to adhere to the surroundings of steaming coal particles. . In addition, when verifying the particle size of coal, such as whether the particle size of coal is 20 mm or less, the screening test prescribed | regulated to JISA1102 is used, for example.
 無灰炭は一般炭よりも粉砕されやすい傾向がある。一般的に、微粉砕された石炭は発塵しやすくなる。また、一般的に、微粉砕された石炭は、低温酸化が進行しやすくなるので、酸化発熱により自然発火することが懸念される。そこで、無灰炭と一般炭とを粗粉砕することで、混合時に両者が均一に混ざり合い、無灰炭が一般炭の粒子の周囲に密着するようになる。これにより、発塵や低温酸化が抑制されるので、石炭混合材を安定的に保管したり輸送したりすることができる。また、粘結性が低い一般炭の粒子の周囲に、粘結性が高い無灰炭が密着することで、無灰炭による粘結効果が高まるので、石炭混合材の粘結性を高めることができる。 Ashless coal tends to be pulverized more easily than steam coal. Generally, finely pulverized coal tends to generate dust. In general, finely pulverized coal easily undergoes low-temperature oxidation, so there is a concern that spontaneous combustion may occur due to oxidation heat generation. Thus, coarsely pulverizing ashless coal and steam coal allows them to mix evenly during mixing, and the ashless coal comes into close contact with the particles of steam coal. Thereby, since dust generation and low-temperature oxidation are suppressed, a coal mixed material can be stably stored or transported. Moreover, since the caking effect by ashless coal is enhanced by the close adhesion of ashless coal with high caking properties around the particles of steaming coal with low caking properties, the caking property of coal mixture is increased. Can do.
 なお、石炭混合材は、コークス用原料炭として使用される際に、コークス炉に付随する粉砕機により、一般的なコークス用配合炭の粒度(粒径が3mm以下のものが占める割合が全体の80重量%程度)に粉砕されることとなる。 Note that when the coal mixture is used as coking coal, the pulverizer associated with the coke oven causes the particle size of the general coke blended coal (particle size of 3 mm or less to occupy the entire proportion). (About 80% by weight).
 また、上述したように、無灰炭の原料である石炭は、一般炭である。一般炭が原料の無灰炭と一般炭とを加熱することなく混合してなる石炭混合材をコークス原料として使用することで、コークス用配合炭に含まれる一般炭の量がさらに増加するので、コークス原料のコストをさらに低減させることができる。また、一般炭の産地で無灰炭を製造し、この無灰炭と一般炭とで石炭混合材を製造するといったように、無灰炭の製造から石炭混合材の製造までを一貫して行うことで、輸送コストなどを抑えることができるので、製造コストを低減させることができる。 Also, as described above, coal that is a raw material for ashless coal is steam coal. Since the amount of steam coal contained in the coal for coke is further increased by using as a coke raw material a coal mixture obtained by mixing steam coal without heating ashless coal and steam coal as raw materials, The cost of the coke raw material can be further reduced. Also, from the production of ashless coal to the production of coal blends, such as producing ashless coal in the production area of steam coal and producing a coal blend with this ashless coal and steam coal. As a result, transportation costs and the like can be suppressed, and thus manufacturing costs can be reduced.
 なお、無灰炭の製造から石炭混合材の製造までを、一般炭の産地において一貫して行う場合、無灰炭の製造において副産物として得られる副生炭を、現地の発電所の燃料や無灰炭製造プロセスにおける燃料として使用することが好ましい。副産物である副生炭を燃料として有効利用することで、無灰炭の製造コスト、ひいては石炭混合材の製造コストを下げることができる。 In addition, when the production of ashless coal to the production of coal mixture is performed consistently in the production area of steam coal, by-product coal obtained as a by-product in the production of ashless coal is used as fuel for local power plants. It is preferably used as a fuel in the ash coal production process. By effectively using by-product coal, which is a by-product, as a fuel, the production cost of ashless coal, and thus the production cost of a coal mixture can be reduced.
(混合比評価)
 次に、代表的な4種類の一般炭A,B,C,Dのうちの1種と、無灰炭とを加熱することなく混合した場合に予想される石炭混合材の性状から、無灰炭と一般炭との混合比(重量比)について評価した。石炭混合材の性状は、表2の強粘結炭(一般強粘)または準強粘結炭の性状(区分B~Dの性状)を目標とし、ギーセラー流動度が1.0(Log ddpm)以上で、平均最大反射率が0.75(%)以上となるようにした。
(Mixing ratio evaluation)
Next, from the properties of the coal mixture expected when one of the four typical coals A, B, C, D and ashless coal are mixed without heating, the ashless It evaluated about the mixing ratio (weight ratio) of charcoal and steam coal. The properties of the coal mixture are targeted for the properties of strong caking coal (general strong viscosity) or semi-strong caking coal (characteristics of categories B to D) in Table 2, with a Gieseller fluidity of 1.0 (Log ddpm). As described above, the average maximum reflectance was set to 0.75 (%) or more.
 まず、製造した無灰炭と一般炭とを、貯炭場もしくはサイロから搬送し、粉砕機に同時に投入して、粒径が20mm以下となるように粗粉砕しながら加熱することなく、常温(25℃程度)状態で混合した。または、無灰炭と一般炭とを別々に粉砕機に投入して、粒径が20mm以下となるように粗粉砕した後に、適正な混合比となるようにそれぞれを混炭機に投入して加熱することなく混合した。そして、代表的な4種類の一般炭A,B,C,Dのうちの1種と、無灰炭とを加熱することなく混合した場合に予想される、コークス用原料炭としての代表的な分析値(揮発分、平均最大反射率、ギーセラー流動度)を算出することで、目標とする性状を満たす混合比について評価した。無灰炭および4種類の一般炭A,B,C,Dの性状を表3にそれぞれ示す。 First, the produced ashless coal and steam coal are transported from a coal storage or silo, and simultaneously charged into a pulverizer, and heated at room temperature (25 without coarsely pulverizing so that the particle size is 20 mm or less. The mixture was mixed in the state of about ℃. Alternatively, ashless charcoal and steamed charcoal are charged separately into the pulverizer, coarsely pulverized so that the particle size is 20 mm or less, and then each is charged into the coal pulverizer so as to obtain an appropriate mixing ratio. Mixed without. And it is typical as coking coking coal expected when one of four typical steaming coals A, B, C, D and ashless coal are mixed without heating. By calculating the analysis values (volatile content, average maximum reflectance, Gieseller fluidity), the mixing ratio satisfying the target property was evaluated. Table 3 shows the properties of ashless coal and four types of steaming coals A, B, C, and D, respectively.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 まず、混合比(重量比)を1:1~1:20の間で6段階に変えて、無灰炭と一般炭Aとを加熱することなく混合し、性状を評価した。その結果を表4に示す。  First, the mixing ratio (weight ratio) was changed in 6 steps between 1: 1 and 1:20, ashless coal and steaming coal A were mixed without heating, and the properties were evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 混合比(重量比)が1:1では、平均最大反射率およびギーセラー流動度は目標範囲内となったが、揮発分は目標範囲の上限値である33%を上回った。混合比(重量比)が1:3~1:5では、ギーセラー流動度は目標範囲内となったが、揮発分は目標範囲の上限値である33%を上回り、平均最大反射率は目標範囲の下限値である0.8%を下回った。混合比(重量比)が1:8では、揮発分は目標範囲の上限値である33%を上回り、平均最大反射率およびギーセラー流動度は目標範囲の下限値を下回った。混合比(重量比)が1:10~1:20では、揮発分は目標範囲内であったが、平均最大反射率およびギーセラー流動度は目標範囲の下限値を下回った。以上から、1:1の混合比(重量比)が良好であると判断した。  When the mixing ratio (weight ratio) was 1: 1, the average maximum reflectance and the Gieseller fluidity were within the target range, but the volatile content exceeded the upper limit of 33% of the target range. When the mixing ratio (weight ratio) was 1: 3 to 1: 5, the Gieseller fluidity was within the target range, but the volatile content exceeded the upper limit of 33%, and the average maximum reflectance was the target range. It was below the lower limit of 0.8%. When the mixing ratio (weight ratio) was 1: 8, the volatile component exceeded the upper limit of 33%, which was the upper limit of the target range, and the average maximum reflectance and the Gieseller flow rate were lower than the lower limit of the target range. When the mixing ratio (weight ratio) was 1:10 to 1:20, the volatile content was within the target range, but the average maximum reflectance and the Gieseller flow rate were below the lower limit of the target range. From the above, it was judged that the mixing ratio (weight ratio) of 1: 1 was good.
 次に、混合比(重量比)を1:1~1:20の間で6段階に変えて、無灰炭と一般炭Bとを加熱することなく混合し、性状を評価した。その結果を表5に示す。  Next, the mixing ratio (weight ratio) was changed in 6 steps between 1: 1 and 1:20, and ashless coal and steaming coal B were mixed without heating, and the properties were evaluated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 混合比(重量比)が1:1では、平均最大反射率およびギーセラー流動度は目標範囲内となったが、揮発分は目標範囲の上限値である33%を上回った。混合比(重量比)が1:3では、揮発分、平均最大反射率、ギーセラー流動度のすべてが目標範囲内の値となった。混合比(重量比)が1:5~1:20では、揮発分および平均最大反射率は目標範囲内の値となったが、ギーセラー流動度は目標範囲の下限値である1.5(Log ddpm)を下回った。ただし、混合比(重量比)が1:5では、ギーセラー流動度は1.0(Log ddpm)以上であった。以上から、1:3の混合比(重量比)が最適であり、1:1と1:5の混合比(重量比)が良好であると判断した。  When the mixing ratio (weight ratio) was 1: 1, the average maximum reflectance and the Gieseller fluidity were within the target range, but the volatile content exceeded the upper limit of 33% of the target range. When the mixing ratio (weight ratio) was 1: 3, all of the volatile matter, the average maximum reflectance, and the Gieseller fluidity were values within the target range. When the mixing ratio (weight ratio) was 1: 5 to 1:20, the volatile content and the average maximum reflectance were values within the target range, but the Gieseller fluidity was 1.5 (Log), which is the lower limit value of the target range. ddpm). However, when the mixing ratio (weight ratio) was 1: 5, the Gieseller fluidity was 1.0 (Log ddpm) or more. From the above, it was judged that the mixing ratio (weight ratio) of 1: 3 was optimal, and the mixing ratio (weight ratio) of 1: 1 and 1: 5 was good.
 次に、混合比(重量比)を1:1~1:20の間で6段階に変えて、無灰炭と一般炭Cとを加熱することなく混合し、性状を評価した。その結果を表6に示す。  Next, the mixing ratio (weight ratio) was changed from 1: 1 to 1:20 in 6 stages, and ashless coal and steaming coal C were mixed without heating, and the properties were evaluated. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 混合比(重量比)が1:1では、平均最大反射率およびギーセラー流動度は目標範囲内となったが、揮発分は目標範囲の上限値である33%を上回った。混合比(重量比)が1:3~1:20では、ギーセラー流動度は目標範囲内となったが、揮発分は目標範囲の上限値である33%を上回り、平均最大反射率は目標範囲の下限値である0.8%を下回った。ただし、混合比(重量比)が1:3と1:5とでは、平均最大反射率は0.75(%)以上であった。以上から、1:1~1:5の混合比(重量比)が良好であると判断した。 When the mixing ratio (weight ratio) was 1: 1, the average maximum reflectance and the Gieseller fluidity were within the target range, but the volatile content exceeded the upper limit of 33% of the target range. When the mixing ratio (weight ratio) was 1: 3 to 1:20, the Gieseller fluidity was within the target range, but the volatile content exceeded the upper limit of 33%, and the average maximum reflectance was the target range. It was below the lower limit of 0.8%. However, when the mixing ratio (weight ratio) was 1: 3 and 1: 5, the average maximum reflectance was 0.75 (%) or more. From the above, it was judged that the mixing ratio (weight ratio) of 1: 1 to 1: 5 was good.
 次に、混合比(重量比)を1:1~1:20の間で6段階に変えて、無灰炭と一般炭Dとを加熱することなく混合し、性状を評価した。その結果を表7に示す。  Next, the mixing ratio (weight ratio) was changed from 1: 1 to 1:20 in six stages, and ashless coal and steaming coal D were mixed without heating, and the properties were evaluated. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 混合比(重量比)が1:1では、平均最大反射率およびギーセラー流動度は目標範囲内となったが、揮発分は目標範囲の上限値である33%を上回った。混合比(重量比)が1:3~1:5では、揮発分、平均最大反射率、ギーセラー流動度のすべてが目標範囲内の値となった。混合比(重量比)が1:8~1:20では、揮発分および平均最大反射率は目標範囲内となったが、ギーセラー流動度は目標範囲の下限値である1.5(Log ddpm)を下回った。ただし、混合比(重量比)が1:8と1:10では、ギーセラー流動度は1.0(Log ddpm)以上であった。以上から、1:1~1:5の混合比(重量比)が最適であり、1:8と1:10の混合比(重量比)が良好であると判断した。 When the mixing ratio (weight ratio) was 1: 1, the average maximum reflectance and the Gieseller fluidity were within the target range, but the volatile content exceeded the upper limit of 33% of the target range. When the mixing ratio (weight ratio) was 1: 3 to 1: 5, all of the volatile matter, the average maximum reflectance, and the Gieseller fluidity were within the target range. When the mixing ratio (weight ratio) was 1: 8 to 1:20, the volatile content and the average maximum reflectance were within the target range, but the Gieseller fluidity was 1.5 (Log ddpm), which is the lower limit of the target range. Below. However, when the mixing ratio (weight ratio) was 1: 8 and 1:10, the Gieseller fluidity was 1.0 (Log ddpm) or more. From the above, it was judged that the mixing ratio (weight ratio) of 1: 1 to 1: 5 was optimum, and the mixing ratio (weight ratio) of 1: 8 and 1:10 was good.
 以上から、一般的な強粘結炭(一般強粘)または準強粘結炭と性状が同等となる無灰炭と一般炭との混合比は、1:1~1:5の重量比、より好ましくは1:3~1:5の重量比であると判断した。 From the above, the mixing ratio of ashless coal and general coal having the same properties as general strong caking coal (general strong caking) or semi-strong caking coal is 1: 1 to 1: 5 by weight, More preferably, the weight ratio was from 1: 3 to 1: 5.
 なお、上記の評価は、無灰炭よりも一般炭の重量を多くして行っているが、一般炭よりも無灰炭の重量を多くした場合には、ギーセラー流動度および揮発分が増加、過剰になり、目標の性状を大きく逸脱するため、石炭混合材としての効果は期待できない。 In addition, the above evaluation is performed by increasing the weight of steam coal than ashless coal, but when the weight of ashless coal is increased than steam coal, the Gieseller fluidity and volatile matter increase, Since it becomes excessive and greatly deviates from the target property, the effect as a coal mixture cannot be expected.
(効果)
 以上に述べたように、本実施形態では、無灰炭と一般炭とを1:1~1:5の重量比で、加熱することなく混合して石炭混合材とする。無灰炭は流動性、膨張性に優れており、粘結材として高い効果を示す。そのため、無灰炭と一般炭とを加熱することなく混合することで、良質な強粘結炭並みの粘結性を持った混合炭を得ることができる。そして、無灰炭と一般炭とを1:1~1:5の重量比で、加熱することなく混合することで、混合後の混合炭のギーセラー流動度が1.0(Log ddpm)以上となり、平均最大反射率が0.75(%)以上となる。これにより、一般的な強粘結炭や準強粘結炭と同等の性状を持った石炭混合材を得ることができる。この石炭混合材を強粘結炭の代わりにコークス原料として使用することで、コークス製造における強粘結炭の使用量を低減させることができるとともに、コークス用配合炭に含まれる一般炭の量を増加させることができる。具体的には、コークス用配合炭への石炭混合材の配合量は、コークス用配合炭全体の10質量%~50質量%が良く、好ましくは20質量%~30質量%が良い。無灰炭を単独で添加材として用いる場合、配合炭の性状に応じて適正量を調整する必要があったが、本発明の石炭混合材は、石炭と無灰炭の適当量が予め配合されたものであるため、コークス用配合炭に対して容易に適当量を添加配合することができる。また、無灰炭は硫黄分が一般炭並みであるので、コークス用配合炭への無灰炭の配合量には硫黄分による制限がない。よって、無灰炭と一般炭とを加熱することなく混合してなる石炭混合材をコークス原料として使用することで、コークス用配合炭に配合可能な劣質原料の量を増加させることができる。これにより、コークス原料のコストを低減させることができる。 
(effect)
As described above, in this embodiment, ashless coal and steam coal are mixed at a weight ratio of 1: 1 to 1: 5 without heating to obtain a coal mixture. Ashless coal is excellent in fluidity and expansibility, and shows a high effect as a binder. Therefore, by mixing ashless coal and steam coal without heating, it is possible to obtain mixed coal having caking properties similar to those of high-quality strong caking coal. And, by mixing ashless coal and steam coal at a weight ratio of 1: 1 to 1: 5 without heating, the mixed coal coal has a Gieseller fluidity of 1.0 (Log ddpm) or more. The average maximum reflectance is 0.75 (%) or more. Thereby, the coal mixed material which has the property equivalent to a general strong caking coal or a semi-strong caking coal can be obtained. By using this coal mixture as a coke raw material instead of strong caking coal, the amount of strong caking coal in coke production can be reduced, and the amount of steam coal contained in the coke blending coal can be reduced. Can be increased. Specifically, the blending amount of the coal mixture in the coke blending coal is preferably 10% by mass to 50% by mass, and preferably 20% by mass to 30% by mass based on the total coke blending coal. When using ashless coal alone as an additive, it was necessary to adjust the appropriate amount according to the properties of the blended coal, but the coal mixture of the present invention is pre-blended with appropriate amounts of coal and ashless coal. Therefore, an appropriate amount can be easily added and blended with the coal for coke. In addition, since the ashless coal has a sulfur content similar to that of steam coal, the amount of ashless coal added to the coke blended coal is not limited by the sulfur content. Therefore, the quantity of the inferior quality raw material which can be mix | blended with the coal mixture for cokes can be increased by using the coal mixed material formed by mixing ashless coal and steam coal without heating as a coke raw material. Thereby, the cost of a coke raw material can be reduced.
 また、無灰炭と一般炭とが粗粉砕されている。無灰炭は一般炭よりも粉砕されやすい傾向がある。一般的に、微粉砕された石炭は発塵しやすくなる。また、一般的に、微粉砕された石炭は、低温酸化が進行しやすくなるので、酸化発熱により自然発火することが懸念される。そこで、無灰炭と一般炭とを粗粉砕することで、混合時に両者が均一に混ざり合い、無灰炭が一般炭の粒子の周囲に密着するようになる。これにより、発塵や低温酸化が抑制されるので、石炭混合材を安定的に保管したり輸送したりすることができる。また、粘結性が低い一般炭の粒子の周囲に、粘結性が高い無灰炭が密着することで、無灰炭による粘結効果が高まるので、石炭混合材の粘結性を高めることができる。 Also, ashless coal and steaming coal are coarsely pulverized. Ashless coal tends to be pulverized more easily than steam coal. Generally, finely pulverized coal tends to generate dust. In general, finely pulverized coal easily undergoes low-temperature oxidation, so there is a concern that spontaneous combustion may occur due to oxidation heat generation. Thus, coarsely pulverizing ashless coal and steam coal allows them to mix evenly during mixing, and the ashless coal comes into close contact with the particles of steam coal. Thereby, since dust generation and low-temperature oxidation are suppressed, a coal mixed material can be stably stored or transported. Moreover, since the caking effect by ashless coal is enhanced by the close adhesion of ashless coal with high caking properties around the particles of steaming coal with low caking properties, the caking property of coal mixture is increased. Can do.
 また、無灰炭の原料である石炭が一般炭である。一般炭が原料の無灰炭と一般炭とを加熱することなく混合してなる石炭混合材をコークス原料として使用することで、コークス用配合炭に含まれる一般炭の量がさらに増加するので、コークス原料のコストをさらに低減させることができる。また、一般炭の産地で無灰炭を製造し、この無灰炭と一般炭とで石炭混合材を製造するといったように、無灰炭の製造から石炭混合材の製造までを一貫して行うことで、輸送コストなどを抑えることができるので、製造コストを低減させることができる。 Also, coal, the raw material for ashless coal, is steam coal. Since the amount of steam coal contained in the coal for coke is further increased by using as a coke raw material a coal mixture obtained by mixing steam coal without heating ashless coal and steam coal as raw materials, The cost of the coke raw material can be further reduced. Also, from the production of ashless coal to the production of coal blends, such as producing ashless coal in the production area of steam coal and producing a coal blend with this ashless coal and steam coal. As a result, transportation costs and the like can be suppressed, and thus manufacturing costs can be reduced.
(本実施形態の変形例)
 以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
(Modification of this embodiment)
The embodiment of the present invention has been described above, but only specific examples are illustrated, and the present invention is not particularly limited, and the specific configuration and the like can be appropriately changed in design. Further, the actions and effects described in the embodiments of the invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to what was done.
 本出願は、2014年3月31日出願の日本特許出願(特願2014-072439)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on March 31, 2014 (Japanese Patent Application No. 2014-072439), the contents of which are incorporated herein by reference.
 本発明の石炭混合材は、コークス製造用の原料炭として有用であり、安価に製造することができる。 The coal mixed material of the present invention is useful as a raw coal for producing coke and can be produced at low cost.
1 石炭ホッパ 
2 溶剤タンク 
3 スラリー調製槽 
3a 攪拌機 
4 移送ポンプ 
5 予熱器 
6 抽出槽 
6a 攪拌機 
7 重力沈降槽 
8,9 溶剤分離器
100 無灰炭製造設備
1 Coal hopper
2 Solvent tank
3 slurry preparation tank
3a Stirrer
4 Transfer pump
5 Preheater
6 Extraction tank
6a Stirrer
7 Gravity sedimentation tank
8,9 Solvent separator 100 Ashless coal production equipment

Claims (3)

  1.  石炭の溶剤抽出物である無灰炭と、一般炭と、を1:1~1:5の重量比で、加熱することなく混合してなり、混合後の混合炭のギーセラー流動度が1.0(Log ddpm)以上であり、平均最大反射率が0.75(%)以上であることを特徴とする石炭混合材。 Ashless coal, which is a solvent extract of coal, and steam coal are mixed at a weight ratio of 1: 1 to 1: 5 without heating, and the mixed coal has a Gieseller fluidity of 1. A coal mixture characterized by being 0 (Log ddpm) or more and an average maximum reflectance of 0.75 (%) or more.
  2.  前記無灰炭と前記一般炭とが粗粉砕されたものであることを特徴とする請求項1に記載の石炭混合材。 The coal mixture according to claim 1, wherein the ashless coal and the steam coal are coarsely pulverized.
  3.  前記無灰炭の原料である前記石炭が一般炭であることを特徴とする請求項1又は2に記載の石炭混合材。 The coal mixture according to claim 1 or 2, wherein the coal that is a raw material of the ashless coal is steam coal.
PCT/JP2015/058387 2014-03-31 2015-03-19 Coal blend WO2015151847A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2938960A CA2938960A1 (en) 2014-03-31 2015-03-19 Coal blend
CN201580012261.8A CN106062138B (en) 2014-03-31 2015-03-19 Coal mixing material
US15/127,900 US20170096603A1 (en) 2014-03-31 2015-03-19 Coal blend
AU2015241616A AU2015241616B2 (en) 2014-03-31 2015-03-19 Coal blend
KR1020167026654A KR20160127096A (en) 2014-03-31 2015-03-19 Coal blend

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-072439 2014-03-31
JP2014072439A JP6266409B2 (en) 2014-03-31 2014-03-31 Coal mixture

Publications (1)

Publication Number Publication Date
WO2015151847A1 true WO2015151847A1 (en) 2015-10-08

Family

ID=54240178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058387 WO2015151847A1 (en) 2014-03-31 2015-03-19 Coal blend

Country Status (7)

Country Link
US (1) US20170096603A1 (en)
JP (1) JP6266409B2 (en)
KR (1) KR20160127096A (en)
CN (1) CN106062138B (en)
AU (1) AU2015241616B2 (en)
CA (1) CA2938960A1 (en)
WO (1) WO2015151847A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484288B (en) * 2019-08-23 2020-07-03 山西沁新能源集团股份有限公司 Coking and coal blending method
JP7316993B2 (en) 2020-12-10 2023-07-28 株式会社神戸製鋼所 Method for producing ashless coal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215421A (en) * 2008-03-10 2009-09-24 Kobe Steel Ltd Method for producing coke
JP2009221361A (en) * 2008-03-17 2009-10-01 Kobe Steel Ltd Method for producing coke, and method for producing pig iron
JP2010150335A (en) * 2008-12-24 2010-07-08 Nippon Steel Corp Method for producing coke for blast furnace
WO2014007184A1 (en) * 2012-07-06 2014-01-09 株式会社神戸製鋼所 Coke and method for producing same
JP2014218583A (en) * 2013-05-08 2014-11-20 独立行政法人産業技術総合研究所 Method of producing high-strength, high-reactivity coke from non-caking and/or slightly caking coal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461627A (en) * 1981-12-18 1984-07-24 Hitachi, Ltd. Upgrading method of low-rank coal
JP4109686B2 (en) * 2005-07-19 2008-07-02 株式会社神戸製鋼所 Coke manufacturing method and pig iron manufacturing method
JP5241105B2 (en) * 2007-01-16 2013-07-17 株式会社神戸製鋼所 Coke manufacturing method and pig iron manufacturing method
JP5438277B2 (en) 2008-03-11 2014-03-12 株式会社神戸製鋼所 Coke manufacturing method and pig iron manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215421A (en) * 2008-03-10 2009-09-24 Kobe Steel Ltd Method for producing coke
JP2009221361A (en) * 2008-03-17 2009-10-01 Kobe Steel Ltd Method for producing coke, and method for producing pig iron
JP2010150335A (en) * 2008-12-24 2010-07-08 Nippon Steel Corp Method for producing coke for blast furnace
WO2014007184A1 (en) * 2012-07-06 2014-01-09 株式会社神戸製鋼所 Coke and method for producing same
JP2014218583A (en) * 2013-05-08 2014-11-20 独立行政法人産業技術総合研究所 Method of producing high-strength, high-reactivity coke from non-caking and/or slightly caking coal

Also Published As

Publication number Publication date
US20170096603A1 (en) 2017-04-06
CA2938960A1 (en) 2015-10-08
KR20160127096A (en) 2016-11-02
CN106062138A (en) 2016-10-26
AU2015241616B2 (en) 2017-06-08
JP2015193740A (en) 2015-11-05
JP6266409B2 (en) 2018-01-24
CN106062138B (en) 2019-05-14
AU2015241616A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
WO2013129607A1 (en) Coal blend briquette and process for producing same, and coke and process for producing same
JP2008174592A (en) Method for producing coke and method for producing pig iron
JP4757956B2 (en) Method for producing blast furnace coke
JP6266409B2 (en) Coal mixture
WO2014007184A1 (en) Coke and method for producing same
JP6241336B2 (en) Method for producing blast furnace coke
JP5636356B2 (en) Method for producing ashless coal molding
US9714394B2 (en) Method for producing ashless coal
KR20140009629A (en) Modification method for low rank coal
JP2014019746A (en) Production method of by-product coal molded product
JP2011032370A (en) Iron ore-containing coke and method for producing the iron ore-containing coke
JP2013095828A (en) Method for producing residual charcoal molding
JP2018131549A (en) Method for producing coke
JP2009249596A (en) Method of manufacturing coke
KR20160145805A (en) Method for manufacturing blast furnace coke, and blast furnace coke
WO2011065303A1 (en) Process for producing high-strength coke
JP2016166265A (en) Method for producing coke, and coke
JP2001323281A (en) Method for producing coke
JP2018203901A (en) A method for producing coke
JP2020002273A (en) Manufacturing method of coke

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2938960

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15127900

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201606470

Country of ref document: ID

Ref document number: 1020167026654

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2015241616

Country of ref document: AU

Date of ref document: 20150319

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15773033

Country of ref document: EP

Kind code of ref document: A1