JP4109686B2 - Coke manufacturing method and pig iron manufacturing method - Google Patents

Coke manufacturing method and pig iron manufacturing method Download PDF

Info

Publication number
JP4109686B2
JP4109686B2 JP2005209042A JP2005209042A JP4109686B2 JP 4109686 B2 JP4109686 B2 JP 4109686B2 JP 2005209042 A JP2005209042 A JP 2005209042A JP 2005209042 A JP2005209042 A JP 2005209042A JP 4109686 B2 JP4109686 B2 JP 4109686B2
Authority
JP
Japan
Prior art keywords
coal
coke
less
daf
carbon content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005209042A
Other languages
Japanese (ja)
Other versions
JP2007023190A (en
Inventor
憲幸 奥山
敦志 古谷
信行 小松
寛司 松平
裕子 西端
勝 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2005209042A priority Critical patent/JP4109686B2/en
Priority to KR1020087003871A priority patent/KR101129061B1/en
Priority to PCT/JP2006/310578 priority patent/WO2007010674A1/en
Priority to CN200680026729XA priority patent/CN101233211B/en
Priority to TW095120460A priority patent/TW200710212A/en
Publication of JP2007023190A publication Critical patent/JP2007023190A/en
Application granted granted Critical
Publication of JP4109686B2 publication Critical patent/JP4109686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

本発明は、改質された原料炭を使用するコークス製造技術、及び、該技術を利用する銑鉄の製造技術に関するものである。   The present invention relates to a coke production technique using modified raw coal, and a pig iron production technique using the technique.

高炉用コークスを製造する原料炭としては、高品位の強粘結炭と、低品位の弱粘結炭または非粘結炭などとの配合炭が使用されている。高品位の強粘結炭を配合することによって、得られるコークスの強度が向上し、さらに高炉における操業時のガス通気性を確保できるからである。しかしながら、高品位の強粘結炭は次第に枯渇しつつあり、その原料コストが高騰しつつあり、多量に存在する低品位の弱粘結炭、及び、非粘結炭などを改質する技術が検討されている(特許文献1〜4、非特許文献1)。   As coking coal for producing blast furnace coke, blended coal of high grade strongly caking coal and low grade weak caking coal or non-caking coal is used. It is because the strength of coke obtained is improved by blending high-grade strong caking coal, and further, gas permeability during operation in a blast furnace can be secured. However, high-grade strong caking coal is gradually being depleted, and its raw material costs are rising, and there is a technology for reforming low-grade weakly caking coal and non-caking coal that exist in large quantities. It has been studied (Patent Documents 1 to 4, Non-Patent Document 1).

例えば、特許文献1及び2には、微粉炭と溶剤とを混合して、常圧または加圧下で、場合によっては水素雰囲気中で加熱して得られる石炭改質物を処理して60〜25%の揮発分を有し、かつ90%以上の粘結力指数を示す粘結性補填剤を弱粘結炭または非粘結炭に配合することが開示されている。特許文献3及び4には、褐炭などを水素供与性溶媒に混ぜてスラリーとし、これを高温・高圧下で触媒を用いて水添、液化を行い、最終的に精製されるSRC(溶剤精製炭)を分離抽出してこれをコークス用原料炭に利用する方法が開示されている。
特開昭51−107301号公報 特開昭51−107302号公報 特開平7−53965号公報 特開平8−269459号公報 西 徹ら、「SRCのコークス原料としての利用について」、第72回コークス特別会予稿集、p.46−p.49(1982)
For example, in Patent Documents 1 and 2, a coal reformed product obtained by mixing pulverized coal and a solvent and heating in an atmosphere of hydrogen under normal pressure or increased pressure is treated to 60 to 25%. It has been disclosed that a caking filler having a volatile content of 90% or more and having a caking strength index of 90% or more is blended with weakly caking coal or non-caking coal. In Patent Documents 3 and 4, brown coal or the like is mixed with a hydrogen donating solvent to form a slurry, which is hydrogenated and liquefied using a catalyst at high temperature and high pressure, and finally refined SRC (solvent refined coal ) Is extracted and used as coking coal.
Japanese Patent Laid-Open No. 51-107301 JP 51-107302 A JP-A-7-53965 JP-A-8-269459 Toru Nishi et al., “About using SRC as a raw material for coke”, Proceedings of the 72nd Coke Special Meeting, p. 46-p. 49 (1982)

本発明は、上記事情に鑑みてなされたものであり、得られるコークスの強度を向上する技術、及び、コークス強度が同程度の場合には、コークス製造原料である貴重な強粘結炭の使用量を減らし、弱粘結炭又は非粘結炭などの使用量を増加させる技術を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the technology for improving the strength of the obtained coke, and the use of valuable strong caking coal that is a coke production raw material when the coke strength is comparable. It aims at providing the technique which reduces the quantity and increases the usage-amount of weak caking coal or non caking coal.

本発明のコークスの製造方法は、炭素含有率(d.a.f.)が85%以上91%以下の石炭と、炭素含有率(d.a.f.)が60%以上85%未満の石炭とを含有する配合炭100質量部に対して、灰分を実質的に含有しない石炭を1質量部以下含有する原料炭を使用するところに要旨がある。石炭は、一般に無煙炭、強粘結炭、粘結炭、弱粘結炭、非粘結炭、褐炭、泥炭などに分類されているが、その定義は必ずしも明確ではない。粘結炭の一部を粘着炭という場合もある。そこで、本発明では、無煙炭、強粘結炭、粘結炭、弱粘結炭、非粘結炭などを炭素含有率(d.a.f)で分類するものとし、無煙炭を炭素含有率(d.a.f.)91%超の石炭、強粘結炭を炭素含有率(d.a.f.)が85%以上91%以下の石炭、粘結炭を炭素含有率(d.a.f.)が83%以上85%未満の石炭、弱粘結炭を炭素含有率(d.a.f.)が80%以上83%未満の石炭、非粘結炭を炭素含有率(d.a.f.)が78%以上80%未満の石炭とし、褐炭を炭素含有率(d.a.f.)が70%以上78%未満の石炭とし、及び、泥炭を炭素含有率(d.a.f.)が70%未満の石炭とする。ここで、炭素含有率(d.a.f.=dry ash free)は、石炭の水分と灰分を除いた有機質(C、H、O、S、N)の炭素の含有率(質量%)をいい、JIS M8819に準じて測定することができる。以下、炭素含有率(d.a.f.)が85%以上91%以下の石炭を単に「強粘結炭」と称し、炭素含有率(d.a.f.)が60%以上85%未満の石炭を単に「非粘結炭等」と称する場合がある。   The method for producing coke according to the present invention includes a coal having a carbon content (daf) of 85% to 91% and a carbon content (daf) of 60% to less than 85%. There exists a summary in the place which uses raw coal containing 1 mass part or less of coal which does not contain ash substantially with respect to 100 mass parts of coal blend containing containing coal. Coal is generally classified into anthracite, strong caking coal, caking coal, weak caking coal, non-caking coal, lignite, peat, etc., but the definition is not necessarily clear. A part of caking coal may be called adhesive charcoal. Therefore, in the present invention, anthracite coal, strong caking coal, caking coal, weak caking coal, non-caking coal, etc. are classified by carbon content (daf), and anthracite coal is carbon content ( d.af) More than 91% coal, strong caking coal with a carbon content (daf) of 85% or more and 91% or less, caking coal with carbon content (d.a.f.) F.) Is 83% or more and less than 85% coal, weakly caking coal is carbon content (daf) is 80% or more and less than 83% coal, non-caking coal is carbon content (d A.f.) is 78% or more and less than 80% coal, lignite is carbon content (daf) is 70% or more and less than 78% coal, and peat is carbon content (d Af)) less than 70% coal. Here, the carbon content (daf = dry ash free) is the carbon content (% by mass) of organic matter (C, H, O, S, N) excluding moisture and ash content of coal. It can be measured according to JIS M8819. Hereinafter, coal having a carbon content (daf) of 85% or more and 91% or less is simply referred to as “strongly caking coal”, and the carbon content (daf) is 60% or more and 85%. Less than coal may be simply called "non-caking coal etc.".

本発明では、前記配合炭に対して、灰分を実質的に含有しない石炭を上記所定範囲の量含有させた原料炭を使用すれば、得られるコークス強度が向上する。前記灰分を実質的に含有しない石炭としては、例えば、炭素含有率(d.a.f.)が60%以上95%未満の石炭から有機溶媒を用いて抽出(水素添加することを除く。)して得られる可溶成分を用いることが好ましい。前記有機溶媒としては、例えば、2環芳香族化合物を主成分とする有機溶媒を挙げることができる。本発明には、上記コークスの製造方法により得られるコークスを用いる銑鉄の製造方法が含まれる。   In the present invention, the coke strength obtained can be improved by using raw coal in which the coal containing substantially no ash is contained in the above predetermined range. As coal which does not contain the ash content substantially, for example, the carbon content (daf) is extracted from coal having a carbon content (daf) of 60% or more and less than 95% using an organic solvent (excluding hydrogenation). It is preferable to use the soluble component obtained in this way. As said organic solvent, the organic solvent which has a bicyclic aromatic compound as a main component can be mentioned, for example. The present invention includes a method for producing pig iron using coke obtained by the above-described method for producing coke.

本発明によれば、コークス製造原料である強粘結炭の一部を代替するものとして、炭素含有率(d.a.f.)が60%以上95%未満の弱粘結炭または非粘結炭などを改質した石炭を用いることができ、強粘結炭の枯渇や原料コストの高騰問題に対応できる。また、得られるコークスは強度に優れるという特徴も有しており、高炉における銑鉄の製造に好適に利用できる。   According to the present invention, as a substitute for a part of strongly caking coal that is a raw material for producing coke, a low caking coal or non-caking coal having a carbon content (daf) of 60% or more and less than 95% is used. Coal modified from coal or the like can be used, and can cope with the problem of depletion of strong caking coal and rising raw material costs. Moreover, the obtained coke also has the characteristic that it is excellent in intensity | strength, and can be utilized suitably for manufacture of pig iron in a blast furnace.

本発明のコークスの製造方法は、炭素含有率(d.a.f.)が85%以上91%以下の石炭と、炭素含有率(d.a.f.)が60%以上85%未満の石炭とを含有する配合炭100質量部に対して、灰分を実質的に含有しない石炭を1質量部以下含有する原料炭を乾留することを特徴とする。   The method for producing coke according to the present invention includes a coal having a carbon content (daf) of 85% to 91% and a carbon content (daf) of 60% to less than 85%. It is characterized by dry-distilling the raw coal containing 1 mass part or less of coal which does not contain ash substantially with respect to 100 mass parts of blended coal containing coal.

まず、本発明で使用する灰分を実質的に含有しない石炭(以下、「無灰炭」と称する場合がある)について説明する。前記無灰炭は、灰分を実質的に含まない石炭であればよいが、微量の灰分を含有してもよい。斯かる場合の灰分の含有率は、5,000ppm以下であることが好ましく、2,000ppm以下であることがより好ましい。尚、灰分は、石炭を815℃で加熱して灰化したときの残留無機物であり、例えば、ケイ酸、アルミナ、酸化鉄、石灰、マグネシア、アルカリ金属などから成る。   First, coal that does not substantially contain ash used in the present invention (hereinafter sometimes referred to as “ashless coal”) will be described. The ashless coal may be coal that does not substantially contain ash, but may contain a small amount of ash. In such a case, the ash content is preferably 5,000 ppm or less, and more preferably 2,000 ppm or less. In addition, ash is a residual inorganic substance when coal is ashed at 815 ° C. and is made of, for example, silicic acid, alumina, iron oxide, lime, magnesia, alkali metal, or the like.

本発明では、前記無灰炭として、炭素含有率(d.a.f.)が60%以上95%未満(より好ましくは60%以上85%未満)の石炭から有機溶媒で抽出して得られる可溶成分を用いることが好ましい。非粘結炭等を出発原料とすれば、強粘結炭の枯渇の問題に左右されないからである。特に本発明では、有機溶媒で抽出する石炭としては、炭素含有率(d.a.f.)が70%以上83%未満の弱粘結炭、非粘結炭、及び、褐炭、又は、これらの混合物を使用することが好ましい態様である。   In the present invention, the ashless coal is obtained by extracting with an organic solvent from coal having a carbon content (daf) of 60% or more and less than 95% (more preferably 60% or more and less than 85%). It is preferable to use a soluble component. This is because if non-caking coal or the like is used as a starting material, it is not affected by the problem of exhausting strong caking coal. In particular, in the present invention, the coal extracted with the organic solvent is a weakly caking coal, a non-caking coal having a carbon content (daf) of 70% or more and less than 83%, and lignite, or these It is a preferred embodiment to use a mixture of

具体的には、前記無灰炭は、炭素含有率(d.a.f.)が60%以上95%未満(より好ましくは60%以上85%未満)の石炭と有機溶媒とを混合してスラリーを調製し、前記スラリーを加熱し熟成して前記有機溶媒中に可溶成分を抽出させ、得られたスラリーを上澄み液と固相成分が濃縮された濃縮液とに分離し、前記上澄み液を濾過して有機溶媒を蒸発除去することにより無灰炭を得ることができる。図1は、無灰炭を製造する装置およびプロセスを例示する説明図である。タンク1において、炭素含有率(d.a.f.)が60%以上95%未満の石炭と有機溶媒とを混合し、スラリーを生成する。得られたスラリーは、ポンプ2によって抽出処理を行う抽出槽4に供給される。その際、スラリーは、予熱器3によって所定の温度に加温される。抽出槽4において、スラリーを撹拌機10を用いて撹拌しながら可溶成分を有機溶媒中に抽出させた後、得られたスラリーは、重力沈降槽5に供給される。重力沈降槽5では、重力沈降を行って固相成分を沈降させて(矢印11)、スラリーを上澄み液と固相成分が濃縮された液とに分離する。得られた上澄み液は、フィルターユニット8に供給され、重力沈降槽5内で沈降した固相成分濃縮液は、固相成分濃縮液受け器6に回収される。上澄み液は、フィルターユニット8のフィルター部材7で濾過され、得られた濾液は、上澄み液を回収する上澄み液受け器9に回収される。次いで、回収された上澄み液から有機溶媒を蒸発除去することによって無灰炭を得ることができる。上澄み液から有機溶媒を蒸発除去する方法としては、例えば、スプレードライ法、蒸留法、真空乾燥法など、一般的な乾燥方法を適用できる。   Specifically, the ashless coal is obtained by mixing coal with an organic solvent having a carbon content (daf) of 60% or more and less than 95% (more preferably 60% or more and less than 85%). A slurry is prepared, the slurry is heated and aged to extract a soluble component in the organic solvent, and the obtained slurry is separated into a supernatant and a concentrated solution in which solid phase components are concentrated, and the supernatant The ashless coal can be obtained by filtering and removing the organic solvent by evaporation. FIG. 1 is an explanatory view illustrating an apparatus and a process for producing ashless coal. In the tank 1, coal having a carbon content (daf) of 60% or more and less than 95% is mixed with an organic solvent to produce a slurry. The obtained slurry is supplied to an extraction tank 4 where an extraction process is performed by a pump 2. At that time, the slurry is heated to a predetermined temperature by the preheater 3. In the extraction tank 4, after the soluble component is extracted into the organic solvent while stirring the slurry using the stirrer 10, the obtained slurry is supplied to the gravity settling tank 5. In the gravity settling tank 5, gravity settling is performed to settle the solid phase component (arrow 11), and the slurry is separated into a supernatant liquid and a liquid in which the solid phase component is concentrated. The obtained supernatant is supplied to the filter unit 8, and the solid phase component concentrate settled in the gravity sedimentation tank 5 is collected in the solid phase component concentrate receiver 6. The supernatant liquid is filtered by the filter member 7 of the filter unit 8, and the obtained filtrate is recovered in a supernatant liquid receiver 9 that recovers the supernatant liquid. Next, ashless coal can be obtained by evaporating and removing the organic solvent from the collected supernatant. As a method for evaporating and removing the organic solvent from the supernatant, a general drying method such as a spray drying method, a distillation method, or a vacuum drying method can be applied.

前記スラリー中の石炭濃度は、10〜35質量%とすることが適切であり、前記スラリーを加熱し熟成して有機溶媒中に可溶成分を抽出させる条件としては、例えば、前記スラリーを300℃〜420℃で5〜120分間保持し、石炭中の可溶成分を可溶化させる。300℃より低い温度では、石炭を構成する分子間の結合を弱めるには不十分であり、石炭から抽出できる可溶成分の割合が低下するからである。一方、420℃より高い温度では、石炭の熱分解反応が活発になり、生成した熱分解ラジカルの再結合が起こるため、やはり抽出される可溶成分の割合が低下する。一方、300〜420℃の温度では、石炭を構成する分子間の結合が緩み、穏和な熱分解が起こり石炭から抽出される可溶成分の割合が高くなる。この際、石炭の穏和な熱分解により、主に平均沸点(Tb50:50%留出温度)が200〜300℃にある芳香族が豊富な成分が生成し、有機溶媒の一部として有効に利用できる。   The coal concentration in the slurry is suitably 10 to 35% by mass. The conditions for heating and aging the slurry to extract soluble components in the organic solvent include, for example, the slurry at 300 ° C. Hold at ˜420 ° C. for 5 to 120 minutes to solubilize soluble components in the coal. This is because a temperature lower than 300 ° C. is insufficient to weaken the bonds between the molecules constituting the coal, and the proportion of soluble components that can be extracted from the coal decreases. On the other hand, at a temperature higher than 420 ° C., the pyrolysis reaction of coal becomes active, and recombination of the generated pyrolysis radicals occurs, so that the ratio of soluble components that are extracted also decreases. On the other hand, at a temperature of 300 to 420 ° C., bonds between the molecules constituting the coal are loosened, mild pyrolysis occurs, and the proportion of soluble components extracted from the coal increases. At this time, the mild pyrolysis of coal produces an aromatic-rich component mainly having an average boiling point (Tb50: 50% distillation temperature) of 200 to 300 ° C., which is effectively used as a part of the organic solvent. it can.

得られたスラリーを重力沈降により上澄み液と固相成分濃縮液とに分離する温度は、300℃以上420℃以下が好ましい。300℃未満では、液相成分に溶解している成分の一部が析出し、無灰炭の収率が低下する場合があるからである。   The temperature at which the obtained slurry is separated into a supernatant and a solid phase component concentrate by gravity sedimentation is preferably 300 ° C. or higher and 420 ° C. or lower. This is because if it is lower than 300 ° C., a part of the component dissolved in the liquid phase component may be precipitated, and the yield of ashless coal may be reduced.

前記有機溶媒としては、石炭の溶解力が高い溶媒が好ましく、石炭構造単位に近似した2環芳香族化合物を主成分とする有機溶媒が好ましい。また、前記有機溶媒としては、その沸点が180℃〜330℃のものが好適である。沸点が180℃より低い場合には、上澄み液から蒸発除去させた有機溶媒の回収率が低下する場合がある。一方、沸点が330℃を超えると、石炭と有機溶媒との分離が困難となり、やはり有機溶媒の回収率が低下する場合がある。前記2環芳香族化合物の具体例としては、例えば、ナフタレン(沸点:218℃);メチルナフタレン(沸点:241〜242℃)、ジメチルナフタレン(沸点:261〜272℃)、トリメチルナフタレンなどの脂肪族側鎖をもつナフタレン類;ビフェニル;脂肪族側鎖若しくは芳香族置換基を有するビフェニル類、或いは、これらの混合物などを挙げることができる。   As the organic solvent, a solvent having high coal dissolving power is preferable, and an organic solvent containing a bicyclic aromatic compound approximate to a coal structural unit as a main component is preferable. The organic solvent preferably has a boiling point of 180 ° C to 330 ° C. When the boiling point is lower than 180 ° C., the recovery rate of the organic solvent evaporated and removed from the supernatant may be lowered. On the other hand, when the boiling point exceeds 330 ° C., it is difficult to separate the coal and the organic solvent, and the recovery rate of the organic solvent may be lowered. Specific examples of the bicyclic aromatic compound include aliphatics such as naphthalene (boiling point: 218 ° C); methylnaphthalene (boiling point: 241 to 242 ° C), dimethylnaphthalene (boiling point: 261 to 272 ° C), and trimethylnaphthalene. Examples thereof include naphthalene having a side chain; biphenyl; biphenyl having an aliphatic side chain or an aromatic substituent, or a mixture thereof.

無灰炭を作製するために出発原料として使用する炭素含有率(d.a.f.)が60%以上95%未満の石炭(非粘結炭等)としては、例えば、以下の特性を有するものを使用するのが好ましい。前記非粘結炭等の揮発分は、好ましくは30%以上、より好ましくは32%以上であり、好ましくは40%以下、より好ましくは36%以下である。前記非粘結炭等の平均反射率は、好ましくは0.6以上、より好ましくは0.8以上であり、好ましくは1.0以下、より好ましくは0.9以下である。前記非粘結炭等のトータルイナートは、好ましくは5%以上、より好ましくは15%以上であり、好ましくは35%以下、より好ましくは20%以下である。前記非粘結炭等のギーセラー最高流動度(logMFD)は、好ましくは3.0(logddpm)以上、より好ましくは3.3(logddpm)以上であり、好ましくは4.5(logddpm)以下、より好ましくは3.6(logddpm)以下である。揮発分は、JIS M8812に規定された方法、平均反射率は、JIS M8816に規定された方法、ギーセラー最高流動度(logMFD)は、JIS M8801に規定されたギーセラープラストメータ法によって測定できる。また、トータルイナート(TI)は、JIS M8816の石炭微細組織成分(マセラル)の分析値のうち、セミフジニットの割合および微細組織成分群(マセラル・グループ)の割合を用いて、下記式にて算出することができる。   Examples of coal having a carbon content (daf) of 60% or more and less than 95% used as a starting material for producing ashless coal have the following characteristics, for example. It is preferable to use one. The volatile content of the non-caking coal or the like is preferably 30% or more, more preferably 32% or more, preferably 40% or less, more preferably 36% or less. The average reflectance of the non-caking coal or the like is preferably 0.6 or more, more preferably 0.8 or more, preferably 1.0 or less, more preferably 0.9 or less. The total inert such as non-caking coal is preferably 5% or more, more preferably 15% or more, preferably 35% or less, more preferably 20% or less. The Gieseler maximum fluidity (logMFD) such as the non-coking coal is preferably 3.0 (logddpm) or more, more preferably 3.3 (logddpm) or more, preferably 4.5 (logddpm) or less. It is preferably 3.6 (logddpm) or less. The volatile content can be measured by the method specified in JIS M8812, the average reflectance can be measured by the method specified by JIS M8816, and the Gieseler maximum fluidity (logMFD) can be measured by the Gieseler plastometer method specified by JIS M8801. Further, the total inert (TI) is calculated by the following formula using the ratio of semi-fujinite and the ratio of the microstructure component group (maceral group) in the analysis value of the coal microstructure component (maceral) of JIS M8816. be able to.

Figure 0004109686
Figure 0004109686

式中、MM(ミネラルマター)は鉱物質を、Aは灰分(無水ベース、JIS M8812にて測定)を、Sは全硫黄分(無水ベース、JIS M8813にて測定)を意味する。   In the formula, MM (mineral matter) means mineral, A means ash (anhydrous base, measured according to JIS M8812), and S means total sulfur content (anhydrous base, measured according to JIS M8813).

本発明のコークス製造方法では、後述する配合炭100質量部に対して、1質量部以下、より好ましくは0.7質量部以下、さらに好ましくは0.5質量部以下の無灰炭を含有する原料炭を使用することが好ましい。無灰炭の含有量の下限は、特に限定されるものではないが、0.2質量部以上であることが好ましい。   In the coke manufacturing method of this invention, 1 mass part or less, More preferably, 0.7 mass part or less, More preferably, 0.5 mass part or less is contained with respect to 100 mass parts of coal blends mentioned later. It is preferable to use raw coal. Although the minimum of content of ashless coal is not specifically limited, It is preferable that it is 0.2 mass part or more.

無灰炭を0.2質量部以上含有させることによって、得られるコークスの強度について実質的に有意な向上が認められる。特に、無灰炭の含有量が0.5質量部の場合には、得られるコークスの強度が最高値を有する。一方、無灰炭の含有量が0.5質量部を超えて1質量部以下の場合、無灰炭を無添加の場合に比べてコークス強度は優れているが、無灰炭の含有量を増加するにつれて、得られるコークス強度が低下する傾向がある。そして、1質量部を超えると、無灰炭を無添加の場合に比べて、コークス強度が却って低下する。   By containing 0.2 parts by mass or more of ashless coal, a substantially significant improvement in the strength of the obtained coke is recognized. In particular, when the content of ashless coal is 0.5 parts by mass, the strength of the obtained coke has the highest value. On the other hand, when the content of ashless coal exceeds 0.5 parts by mass and is 1 part by mass or less, the coke strength is superior to the case where ashless coal is not added. As it increases, the resulting coke strength tends to decrease. And when it exceeds 1 mass part, compared with the case where ashless coal is not added, coke strength will decline on the contrary.

次に、本発明において使用する炭素含有率(d.a.f.)が85%以上91%以下の石炭と、炭素含有率(d.a.f.)が60%以上85%未満の石炭とを含有する配合炭について説明する。   Next, coal having a carbon content (daf) of 85% or more and 91% or less used in the present invention, and coal having a carbon content (daf) of 60% or more and less than 85%. The blended coal containing and will be described.

前記配合炭は、炭素含有率(d.a.f.)が85%以上91%以下の石炭と、炭素含有率(d.a.f.)が60%以上85%未満の石炭とを含有するものであれば特に限定されない。前記炭素含有率(d.a.f.)が60%以上85%未満の石炭として、より好ましいものとしては、炭素含有率(d.a.f.)が78%以上83%未満の弱粘結炭、非粘結炭、又は、これらの混合物を挙げることができる。炭素含有率(d.a.f.)が85%以上91%以下の石炭と、炭素含有率(d.a.f.)が60%以上85%未満の石炭との組合せとしては、例えば、強粘結炭と弱粘結炭とからなる態様、強粘結炭と非粘結炭とからなる態様、強粘結炭と弱粘結炭と非粘結炭とからなる態様などを挙げることができる。   The blended coal contains coal having a carbon content (daf) of 85% to 91% and coal having a carbon content (daf) of 60% to less than 85%. If it does, it will not specifically limit. More preferably, the coal having a carbon content (daf) of 60% or more and less than 85% is a low viscosity having a carbon content (daf) of 78% or more and less than 83%. There may be mentioned carbonized, non-caking coal, or a mixture thereof. As a combination of coal having a carbon content (daf) of 85% to 91% and coal having a carbon content (daf) of 60% to less than 85%, for example, The aspect which consists of a strong caking coal and a weak caking coal, the aspect which consists of a strong caking coal and a non-caking coal, the aspect which consists of a strong caking coal, a weak caking coal, and a non-caking coal, etc. are mentioned. Can do.

配合炭中の前記炭素含有率(d.a.f.)が85%以上91%以下の石炭(強粘結炭)は、得られるコークス強度を高めるために配合されるものであり、その配合量は、配合炭全体を100質量部としたときに、10質量部以上が好ましく、40質量部以上がより好ましい。強粘結炭の配合量が10質量部未満であると、粘結性成分が不足しすぎるために、配合炭100質量部に対して無灰炭を1質量部以下添加したとしても、所望のコークス強度が得られない場合がある。一方、強粘結炭の配合量の上限は、特に限定されるものではないが、100質量部が好ましく、90質量部がより好ましく、60質量部がさらに好ましい。強粘結炭の配合量が多くなり過ぎると、コークス製造時の原料コストが上昇するからである。一方、炭素含有率(d.a.f.)が60%以上85%未満の石炭(非粘結炭等)は、強粘結炭との合計配合量が100質量部になるように配合されることが好ましい。   Coal having a carbon content (daf) of 85% or more and 91% or less in blended coal is blended in order to increase the strength of the obtained coke. The amount is preferably 10 parts by mass or more, and more preferably 40 parts by mass or more when the entire blended coal is 100 parts by mass. Even if 1 mass part or less of ashless coal is added to 100 mass parts of blended coal because the caking component is too short when the blending amount of strong caking coal is less than 10 mass parts, the desired Coke strength may not be obtained. On the other hand, although the upper limit of the compounding quantity of strong caking coal is not specifically limited, 100 mass parts is preferable, 90 mass parts is more preferable, and 60 mass parts is further more preferable. It is because the raw material cost at the time of coke manufacture will rise when the compounding quantity of strong caking coal increases too much. On the other hand, coal (non-caking coal, etc.) having a carbon content (daf) of 60% or more and less than 85% is blended so that the total blending amount with the strongly caking coal becomes 100 parts by mass. It is preferable.

本発明において、強粘結炭と、非粘結炭等とを配合して得られる配合炭は、以下の特性を有することが好ましい。前記配合炭の揮発分は、好ましくは15%以上、より好ましくは26%以上であり、好ましくは35%以下、より好ましくは29%以下である。前記配合炭の平均反射率は、好ましくは0.65以上、より好ましくは1.00以上であり、好ましくは1.60以下、より好ましくは1.10以下である。前記配合炭のトータルイナートは、好ましくは15%以上、より好ましくは20%以上であり、好ましくは35%以下、より好ましくは23%以下である。前記配合炭のギーセラー最高流動度(logMFD)は、好ましくは0.7(logddpm)以上、より好ましくは2.0(logddpm)以上であり、好ましくは3.5(logddpm)以下、より好ましくは2.3(logddpm)以下である。前記配合炭の粒度構成は、3mm以下のものが、好ましくは50%以上、より好ましくは75%以上であり、好ましくは90%以下、より好ましくは85%以下である。前記各特性の広い数値範囲は、高炉用コークスの原料として使用し得る好適な範囲であり、前記各特性をより狭い数値範囲内とすることによって、実質的に強度に問題のない程度のコークスが得られる。   In the present invention, the blended coal obtained by blending strongly caking coal and non-caking coal or the like preferably has the following characteristics. The volatile content of the blended coal is preferably 15% or more, more preferably 26% or more, preferably 35% or less, more preferably 29% or less. The average reflectance of the blended charcoal is preferably 0.65 or more, more preferably 1.00 or more, preferably 1.60 or less, more preferably 1.10 or less. The total inert of the blended coal is preferably 15% or more, more preferably 20% or more, preferably 35% or less, more preferably 23% or less. The Gieseler maximum fluidity (logMFD) of the blended coal is preferably 0.7 (logddpm) or more, more preferably 2.0 (logddpm) or more, preferably 3.5 (logddpm) or less, more preferably 2 .3 (logddpm) or less. The particle size constitution of the blended coal is preferably 3 mm or less, preferably 50% or more, more preferably 75% or more, preferably 90% or less, more preferably 85% or less. The wide numerical range of each characteristic is a suitable range that can be used as a raw material for blast furnace coke, and by making each characteristic within a narrower numerical range, there is a coke that is substantially insignificant in strength. can get.

本発明のコークスの製造方法は、炭素含有率(d.a.f.)が85%以上91%以下の石炭と、炭素含有率(d.a.f.)が60%以上85%未満の石炭とを含有する配合炭100質量部に対して、灰分を実質的に含有しない石炭を1質量部以下含有する原料炭を乾留することを特徴とする。   The method for producing coke according to the present invention includes a coal having a carbon content (daf) of 85% to 91% and a carbon content (daf) of 60% to less than 85%. It is characterized by dry-distilling the raw coal containing 1 mass part or less of coal which does not contain ash substantially with respect to 100 mass parts of blended coal containing coal.

前記乾留の条件は、特に限定されるものではなく、コークス炉を使用するコークス製造における通常の乾留条件を採用でき、例えば、950℃以上、より好ましくは1000℃以上であって、1200℃以下、より好ましくは1050℃以下の温度で、8時間以上、より好ましくは10時間以上、より好ましくは24時間以下、より好ましくは20時間以下乾留することが好ましい。   The conditions of the carbonization are not particularly limited, and normal carbonization conditions in coke production using a coke oven can be adopted, for example, 950 ° C or higher, more preferably 1000 ° C or higher, 1200 ° C or lower, More preferably, it is preferably carbonized at a temperature of 1050 ° C. or less for 8 hours or longer, more preferably 10 hours or longer, more preferably 24 hours or shorter, more preferably 20 hours or shorter.

本発明には、本発明のコークスの製造方法により得られるコークスを用いることを特徴とする銑鉄の製造方法が含まれる。本発明の製造方法により得られるコークスは、強度に優れるので、高炉における銑鉄の製造に好適に使用できる。すなわち、本発明の製造方法により得られるコークスを使用すれば、高炉における銑鉄製造時のガス通気性が向上する。尚、高炉における銑鉄の製造方法は、公知の方法を採用すればよく、例えば、高炉に鉄鉱石とコークスとをそれぞれ層状に交互に積層させて、高炉の下部より熱風、必要に応じて微粉炭を吹き込む方法を挙げることができる。   The present invention includes a pig iron manufacturing method characterized by using coke obtained by the coke manufacturing method of the present invention. Since the coke obtained by the production method of the present invention is excellent in strength, it can be suitably used for producing pig iron in a blast furnace. That is, if coke obtained by the production method of the present invention is used, gas permeability at the time of pig iron production in a blast furnace is improved. The pig iron production method in the blast furnace may be a known method. For example, iron ore and coke are alternately layered in the blast furnace, and hot air from the bottom of the blast furnace, and if necessary, pulverized coal. Can be mentioned.

以下、本発明を実施例によって詳細に説明するが、本発明は、下記実施例によって限定されるものではなく、本発明の趣旨を逸脱しない範囲の変更、実施の態様は、いずれも本発明の範囲内に含まれる。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples, and all modifications and embodiments without departing from the gist of the present invention are not limited thereto. Included in range.

表1に示すように、配合炭に無灰炭を添加して原料炭を調製した。無灰炭としては、オーストラリア産粘結炭(炭素含有率(d.a.f.)84%)から1−メチルナフタレンを用いて抽出した可溶成分(灰分600ppm)を用いた。尚、無灰炭は、図1の装置を用いて、以下の方法により調製した。オーストラリア産粘結炭(炭素含有率(d.a.f)84%)と1−メチルナフタレンをタンク1内で混合して(オーストラリア産粘結炭:1−メチルタフタレン=20質量%:80質量%)スラリーを調製した。得られたスラリーを予熱器3で370℃に加温して、抽出槽4内でオーストラリア産粘結炭から可溶成分を抽出した。抽出処理後のスラリーを流量15kg/hで重力沈降槽5に供給し、重力沈降を行って、上澄み液と固相成分濃縮液とに分離し、上澄み液を3kg/hの流量でフィルターユニット8に供給し、固相成分濃縮液を、12kg/hの流量で重力沈降槽5の底部から固相成分濃縮液受け器6に排出した。上澄み液をフィルターユニット8で濾過した後、上澄み液受け器9に回収し、スプレードライ法により回収液から有機溶媒を蒸発除去して、無灰炭(灰分600ppm)を得た。   As shown in Table 1, ashless coal was added to the blended coal to prepare raw coal. As ashless coal, a soluble component (ash content: 600 ppm) extracted from Australian caking coal (carbon content (daf) 84%) using 1-methylnaphthalene was used. In addition, the ashless charcoal was prepared with the following method using the apparatus of FIG. Australian caking coal (carbon content (daf) 84%) and 1-methylnaphthalene were mixed in tank 1 (Australian caking coal: 1-methyltaphthalene = 20% by mass: 80 (Mass%) slurry was prepared. The obtained slurry was heated to 370 ° C. by the preheater 3, and soluble components were extracted from the caking coal produced in Australia in the extraction tank 4. The slurry after the extraction treatment is supplied to the gravity sedimentation tank 5 at a flow rate of 15 kg / h, gravity sedimentation is performed, and the supernatant liquid and the solid phase component concentrate are separated. The supernatant liquid is filtered at a flow rate of 3 kg / h. The solid phase component concentrate was discharged from the bottom of the gravity sedimentation tank 5 to the solid phase component concentrate receiver 6 at a flow rate of 12 kg / h. The supernatant liquid was filtered by the filter unit 8 and then collected in the supernatant liquid receiver 9, and the organic solvent was removed by evaporation from the collected liquid by spray drying to obtain ashless charcoal (ash content: 600 ppm).

前記原料炭を、幅378mm×長さ121mm×高さ114mmの大きさの缶容器に、所望の密度(720kg/m及び780kg/m)となるように充填した。この缶容器4個をさらに鋼製のレトルト(大きさ:幅380mm×長さ430mm×高さ350mm)に並べて入れて、この缶容器を幅方向に加熱できる両面加熱式電気炉に前記レトルトを入れて、原料炭を乾留した。乾留は、1000℃で10時間の条件で行い、その後、レトルトを電気炉から取り出して約16時間かけて自然放冷した。 The coking coal, the can container of the size of width 378 mm × length 121mm × height 114 mm, were filled to a desired density (720 kg / m 3 and 780kg / m 3). Four of these cans are placed in a steel retort (size: width 380 mm × length 430 mm × height 350 mm), and the retort is placed in a double-sided heating electric furnace that can heat the cans in the width direction. The coking coal was carbonized. The dry distillation was performed at 1000 ° C. for 10 hours, and then the retort was taken out of the electric furnace and allowed to cool naturally over about 16 hours.

冷却したレトルトから4個の缶容器を取り出し、幅方向の半分に相当する189mm部分のコークスを切り出した。両面加熱を行った場合、幅方向の真中に当たる場所は、炭芯と呼ばれ、加熱面から炭芯までの焼成されたコークスは加熱面に近い所からヘッド、ボディー、テールと呼ばれており、ヘッド、ボディー、テールの加熱時の昇温速度の差で強度に差が生じることが知られている。そのため、幅方向の半分に相当する189mm部分のコークスのヘッド、ボディー、テールの部分に相当する約60mmに分割したそれぞれの部位から、ほぼ直方体(一辺:約20mm±1mm)に切り出し、整粒されたコークスを得た。この整粒されたコークスを、蒸留水で洗浄して、整粒時(切り出し時に)に付着したコークスの微粉を取り除き、150℃±2℃の乾燥機で乾燥した。乾燥後の整粒されたコークスを、合計が200gになるように、原料炭の充填密度が780kg/mの場合、ヘッド、ボディー、テールから順に12個、12個、11個選択し、原料炭の充填密度が720kg/mの場合、ヘッド、ボディー、テールから順に12個、13個、11個選択して、強度測定用のサンプルとした。 Four can containers were taken out from the cooled retort, and a 189 mm portion of coke corresponding to half in the width direction was cut out. When performing double-sided heating, the place that hits the middle in the width direction is called a charcoal core, and the calcined coke from the heating surface to the charcoal core is called the head, body, tail from the place close to the heating surface, It is known that a difference in strength occurs due to a difference in heating rate during heating of the head, body, and tail. For this reason, the coke head, body, and tail of the 189mm portion corresponding to half of the width direction are cut into approximately cuboids (one side: approximately 20mm ± 1mm) from each part divided into approximately 60mm and sized. Got coke. The sized coke was washed with distilled water to remove fine coke powder adhering during sizing (at the time of cutting), and dried with a dryer at 150 ° C. ± 2 ° C. If the packing density of coking coal is 780 kg / m 3 so that the total size of coke after drying is 200 g, select 12, 12, and 11 in order from the head, body, and tail. When the packing density of charcoal was 720 kg / m 3 , 12 pieces, 13 pieces, and 11 pieces were selected in this order from the head, body, and tail to obtain samples for strength measurement.

得られた強度測定用サンプルを用いて、I型強度を測定した。I型強度試験に用いる装置として、SUS材で作られた円筒状の容器(長さ720mm、円の底面直径132mm)を用い、この容器に前記サンプル200gを入れて、1分間に20回の回転速度で30分間回転させて、合計600回の回転運動による衝撃を加えた。この円筒の回転は、円筒の長さ720mmの真中に当たる360mmのところに回転軸を設け、この回転軸を中心に円筒を回転させて、円筒の底面が直径720mmの円を描くように行った。規定の600回転の回転による衝撃を加えた後、この円筒状の容器からサンプルを取り出し、9.5mmの篩目の篩で分けて篩上の質量を測った。この際、篩に引っかかったものも篩上として質量を測定した。I型強度指数は、以下のようにして算出し、算出した結果を表1に示した。
I型強度指数I600 9.5=100×9.5mm篩上質量(単位:g)/200g
Using the obtained strength measurement sample, the I-type strength was measured. As a device used for the type I strength test, a cylindrical container made of SUS material (length: 720 mm, circular bottom diameter: 132 mm) is used, and 200 g of the sample is put in this container, and rotated 20 times per minute. It was rotated at a speed for 30 minutes, and an impact due to a total of 600 rotational motions was applied. The rotation of the cylinder was performed such that a rotation axis was provided at a position of 360 mm corresponding to the middle of the cylinder length of 720 mm, and the cylinder was rotated around the rotation axis so that the bottom surface of the cylinder drawn a circle with a diameter of 720 mm. After applying an impact by the specified 600 rotations, a sample was taken out from the cylindrical container, and divided by a 9.5 mm sieve to measure the mass on the sieve. At this time, the mass caught on the sieve was also measured on the sieve and the mass was measured. The type I strength index was calculated as follows, and the calculated results are shown in Table 1.
Type I strength index I 600 9.5 = 100 × 9.5 mm Mass on sieve (unit: g) / 200 g

尚、一般にコークスの回転強度は、コークス塊が大きな塊として割れていく体積破壊を評価するものと、表面の摩耗による表面破壊を評価するものとに区別されるが、本発明で用いたI型強度指数I600 9.5は、表面破壊を評価するのに用いる指標として解釈される。 In general, the rotational strength of coke is divided into one that evaluates volume fracture in which a coke lump is broken as a large lump and one that evaluates surface breakage due to surface wear, but is the type I used in the present invention. The strength index I 600 9.5 is interpreted as an index used to evaluate surface fracture.

Figure 0004109686
Figure 0004109686

表1の結果より、コークスNo.1からNo.5、及び、No.8〜No.10を比較すると、配合炭100質量部に対して無灰炭を1質量部以下添加することによって、得られるコークス強度が向上することが分かる。特に、配合炭100質量部に対して、無灰炭を0.5質量部添加したときに得られるコークス強度が最も大きくなった。また、コークスNo.6及びNo.7の結果から、無灰炭の添加量が配合炭100質量部に対して1質量部を超えるとコークス強度が却って低下することが分かった。   From the results in Table 1, coke no. 1 to No. 5 and No. 8-No. 10 is compared, it turns out that the coke intensity | strength obtained improves by adding 1 mass part or less of ashless coal with respect to 100 mass parts of blended coal. In particular, the coke strength obtained when 0.5 parts by mass of ashless coal was added to 100 parts by mass of blended coal was the largest. In addition, coke No. 6 and no. From the result of No. 7, it was found that when the added amount of ashless coal exceeds 1 part by mass with respect to 100 parts by mass of the blended coal, the coke strength is decreased.

原料炭の充填密度が780kg/m(コークスNo.1とNo.3)の場合と720kg/m(コークスNo.8とNo.9)の場合とを比較すると、原料炭の充填密度が720kg/mの場合の方が、コークス強度の向上効果が大きくなることが分かった。 When the packing density of the raw coal is 780 kg / m 3 (Coke No. 1 and No. 3) and the case of 720 kg / m 3 (Coke No. 8 and No. 9), the packing density of the raw coal is It was found that the effect of improving the coke strength is greater in the case of 720 kg / m 3 .

コークスNo.12は、コークスNo.8と比べて、強粘結炭の割合が低い場合であり、得られるコークス強度が低下していることが分かる。しかしながら、無灰炭を0.5質量部添加することによって、コークス強度が向上した(コークスNo.13)。   Coke No. 12 is coke no. Compared with 8, it is a case where the ratio of strong caking coal is low, and it turns out that the coke intensity | strength obtained is falling. However, the coke strength was improved by adding 0.5 parts by mass of ashless coal (Coke No. 13).

また、コークスNo.9とコークスNo.11とを比較すると、本発明で使用する無灰炭の強度向上効果が、アスファルト系ピッチの強度向上効果より大きいことが分かる。   In addition, coke No. 9 and coke no. 11 shows that the strength improvement effect of the ashless coal used in the present invention is larger than the strength improvement effect of the asphalt pitch.

本発明は、コークスの製造、さらには、高炉における銑鉄の製造に好適に適用できる。   The present invention can be suitably applied to the production of coke and further to the production of pig iron in a blast furnace.

本発明で使用する無灰炭を製造する装置およびプロセスを例示する説明図。Explanatory drawing which illustrates the apparatus and process which manufacture ashless coal used by this invention.

符号の説明Explanation of symbols

1:タンク、2:ポンプ、3:予熱器、4:抽出槽、5:重力沈降槽、6:固相成分濃縮液受け器、7:フィルター部材、8:フィルターユニット、9:上澄み液受け器、10:撹拌機、13:撹拌機 1: tank, 2: pump, 3: preheater, 4: extraction tank, 5: gravity sedimentation tank, 6: solid phase component concentrate receiver, 7: filter member, 8: filter unit, 9: supernatant receiver 10: Stirrer, 13: Stirrer

Claims (3)

炭素含有率(d.a.f.)が85%以上91%以下の石炭と、炭素含有率(d.a.f.)が60%以上85%未満の石炭とを含有する配合炭100質量部に対して、灰分を実質的に含有しない石炭を1質量部以下含有する原料炭を乾留することとし、その際前記灰分を実質的に含有しない石炭として、炭素含有率(d.a.f.)が60%以上95%未満の石炭から有機溶媒を用いて抽出(水素添加することを除く。)して得られる可溶成分を用いることを特徴とするコークスの製造方法。 100 mass of blended coal containing a coal having a carbon content (daf) of 85% to 91% and a coal having a carbon content (daf) of 60% to less than 85% The raw material coal containing 1 part by mass or less of coal containing substantially no ash is dry-distilled with respect to part, and the carbon content (daf) .) Using a soluble component obtained by extraction (excluding hydrogenation) from 60% or more and less than 95% of coal using an organic solvent . 前記有機溶媒は、2環芳香族化合物を主成分とする有機溶媒である請求項1に記載のコークスの製造方法。 The method for producing coke according to claim 1 , wherein the organic solvent is an organic solvent containing a bicyclic aromatic compound as a main component. 請求項1または2に記載のコークスの製造方法により得られるコークスを用いることを特徴とする銑鉄の製造方法。 A method for producing pig iron, wherein coke obtained by the method for producing coke according to claim 1 or 2 is used.
JP2005209042A 2005-07-19 2005-07-19 Coke manufacturing method and pig iron manufacturing method Active JP4109686B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005209042A JP4109686B2 (en) 2005-07-19 2005-07-19 Coke manufacturing method and pig iron manufacturing method
KR1020087003871A KR101129061B1 (en) 2005-07-19 2006-05-26 Process for Production of Coke and Process for Production of Pig Iron
PCT/JP2006/310578 WO2007010674A1 (en) 2005-07-19 2006-05-26 Process for production of coke and process for production of pig iron
CN200680026729XA CN101233211B (en) 2005-07-19 2006-05-26 Process for production of coke and process for production of pig iron
TW095120460A TW200710212A (en) 2005-07-19 2006-06-08 Process for production of coke and process for production of pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209042A JP4109686B2 (en) 2005-07-19 2005-07-19 Coke manufacturing method and pig iron manufacturing method

Publications (2)

Publication Number Publication Date
JP2007023190A JP2007023190A (en) 2007-02-01
JP4109686B2 true JP4109686B2 (en) 2008-07-02

Family

ID=37668561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209042A Active JP4109686B2 (en) 2005-07-19 2005-07-19 Coke manufacturing method and pig iron manufacturing method

Country Status (5)

Country Link
JP (1) JP4109686B2 (en)
KR (1) KR101129061B1 (en)
CN (1) CN101233211B (en)
TW (1) TW200710212A (en)
WO (1) WO2007010674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246674A (en) * 2006-03-15 2007-09-27 Kobe Steel Ltd Method for producing coke, and method for producing pig iron

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143433B2 (en) * 2007-01-17 2013-02-13 株式会社神戸製鋼所 Coke manufacturing method and pig iron manufacturing method
JP5118388B2 (en) * 2007-05-23 2013-01-16 株式会社神戸製鋼所 Production method of carbon black
JP5280072B2 (en) * 2008-03-10 2013-09-04 株式会社神戸製鋼所 Coke production method
JP5438277B2 (en) * 2008-03-11 2014-03-12 株式会社神戸製鋼所 Coke manufacturing method and pig iron manufacturing method
JP5247193B2 (en) * 2008-03-17 2013-07-24 株式会社神戸製鋼所 Coke manufacturing method and pig iron manufacturing method
KR101032276B1 (en) * 2009-08-28 2011-05-06 한국에너지기술연구원 Preparation of ash-free coal including Desulfurization
CN102241992A (en) * 2010-05-14 2011-11-16 湖南省醴陵市马恋耐火泥有限公司 Reconstruction method of 7.63 meter coke oven
JP5530292B2 (en) * 2010-07-28 2014-06-25 株式会社神戸製鋼所 Manufacturing method of coke for steel making
CN102453490B (en) * 2010-10-22 2013-09-25 宝山钢铁股份有限公司 Coal blending method for preparing high-activity high-strength coke
JP5722208B2 (en) * 2011-12-28 2015-05-20 株式会社神戸製鋼所 Production method of ashless coal
KR101624816B1 (en) 2011-12-28 2016-05-26 가부시키가이샤 고베 세이코쇼 Production method for ashless coal
WO2014129337A1 (en) * 2013-02-21 2014-08-28 Jfeスチール株式会社 Method for producing metallurgical coke
JP6266409B2 (en) * 2014-03-31 2018-01-24 株式会社神戸製鋼所 Coal mixture
JP6297412B2 (en) * 2014-05-27 2018-03-20 株式会社神戸製鋼所 Ashless coal manufacturing apparatus and ashless coal manufacturing method
JP6590155B2 (en) * 2014-08-15 2019-10-16 Jfeスチール株式会社 Coke for metallurgy and method for producing the same
JP6424152B2 (en) * 2015-11-24 2018-11-14 株式会社神戸製鋼所 Production method of raw material pitch for carbon fiber production
CN107903971B (en) * 2017-11-28 2021-03-05 北京科技大学 Molded coal manufacturing method based on HPC

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575485A (en) * 1978-12-05 1980-06-06 Mitsui Cokes Kogyo Kk Coke production and coke composition
CN1049372A (en) * 1990-09-29 1991-02-20 北京市燃气煤化工研究所 A kind of blending method of coking
JP4295544B2 (en) * 2003-04-09 2009-07-15 株式会社神戸製鋼所 Method for producing reformed coal for metallurgy, and method for producing slag containing reduced metal and non-ferrous metal oxide using reformed coal for metallurgy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246674A (en) * 2006-03-15 2007-09-27 Kobe Steel Ltd Method for producing coke, and method for producing pig iron

Also Published As

Publication number Publication date
CN101233211B (en) 2011-07-06
WO2007010674A1 (en) 2007-01-25
KR20080041653A (en) 2008-05-13
TW200710212A (en) 2007-03-16
KR101129061B1 (en) 2012-03-26
JP2007023190A (en) 2007-02-01
TWI324633B (en) 2010-05-11
CN101233211A (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4109686B2 (en) Coke manufacturing method and pig iron manufacturing method
JP5241105B2 (en) Coke manufacturing method and pig iron manufacturing method
JP5280072B2 (en) Coke production method
JP5334433B2 (en) Production method of ashless coal
JP5342794B2 (en) Carbon material manufacturing method
JP2011157606A (en) Method for producing carbon anode
JP5438277B2 (en) Coke manufacturing method and pig iron manufacturing method
CN117916204A (en) Method for producing biochar pellets with high fixed carbon content and optimized reactivity and biochar pellets obtained therefrom
CN1019585B (en) Hydrocracking of heaving oils in presence of iron-coal slurry
CN102803136A (en) Method For Producing Carbon Materials
WO2015119269A1 (en) Production method for activated carbon, and activated carbon
JP4950527B2 (en) Coke manufacturing method and pig iron manufacturing method
JP5247193B2 (en) Coke manufacturing method and pig iron manufacturing method
JP5259216B2 (en) Production method of ashless coal
US20180320083A1 (en) Method for producing coke, and coke
JP5390977B2 (en) Iron ore-containing coke and method for producing the iron ore-containing coke
JP5143433B2 (en) Coke manufacturing method and pig iron manufacturing method
JP2014043583A (en) Method of manufacturing raw material coal for manufacturing coke, method of manufacturing coke and method of manufacturing pig iron
JP5449685B2 (en) Method for producing highly reactive coke
CN114437851A (en) Method for quality improvement and desulfurization of high-sulfur fertilizer coal
AU782157B2 (en) A process for recovering hydrocarbons from a carbon containing material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4109686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250