WO2015151631A1 - Fluidized-bed type combustion equipment and method for supplying fluidized medium to fluidized-bed combustion furnace - Google Patents
Fluidized-bed type combustion equipment and method for supplying fluidized medium to fluidized-bed combustion furnace Download PDFInfo
- Publication number
- WO2015151631A1 WO2015151631A1 PCT/JP2015/054615 JP2015054615W WO2015151631A1 WO 2015151631 A1 WO2015151631 A1 WO 2015151631A1 JP 2015054615 W JP2015054615 W JP 2015054615W WO 2015151631 A1 WO2015151631 A1 WO 2015151631A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow rate
- fluidized
- fluid medium
- furnace
- fluidized bed
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
- F23C10/18—Details; Accessories
- F23C10/28—Control devices specially adapted for fluidised bed, combustion apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
- F23C10/18—Details; Accessories
- F23C10/22—Fuel feeders specially adapted for fluidised bed combustion apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/30—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/01001—Co-combustion of biomass with coal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/10004—Adding inert bed material to maintain proper fluidized bed inventory
Definitions
- the present invention relates to a fluidized bed combustion facility equipped with a fluidized bed combustion furnace that burns fuel while flowing the fluidized medium, and a method of supplying the fluidized medium to the fluidized bed combustion furnace.
- a fluidized bed combustion facility that includes a fluidized bed fuel furnace, introduces sand such as silica sand as a fluidized medium into the furnace, and burns fuel while circulating the fluidized medium (for example, see Patent Document 1).
- the fluidity of the fluid medium in the furnace is improved by introducing a fluid medium whose particle size is adjusted into the furnace.
- a fluid medium is conveyed using a carrier fluid such as air, and the fluid medium is supplied into the combustion furnace.
- a carrier fluid such as air
- the transport capacity has a margin.
- the required transport flow rate differs depending on the granular material properties. If the operation is continued at the designed flow rate, the difference between the really necessary flow rate (optimal flow rate) and the operation flow rate, and the wear rate of the piping will increase. The pipe life was shorter than expected at the time of design.
- An object of the present invention is to provide a fluidized bed combustion facility and a fluidized medium supply method to a fluidized bed combustion furnace capable of suppressing the progress of damage to a supply pipe for supplying the fluidized medium.
- a fluidized bed combustion facility includes a fluidized bed combustion furnace that burns fuel while flowing a fluidized medium, and a supply unit that supplies the fluidized medium to the fluidized bed combustion furnace.
- the supply unit includes a blower that blows the gas that transports the fluid medium, and a flow rate adjuster that adjusts the flow rate of the gas.
- the flow rate of the gas transporting the fluidized medium can be adjusted in the supply unit that supplies the fluidized medium to the fluidized bed combustion furnace, it is possible to suppress damage to the piping through which the fluidized medium flows. it can. For example, the progress of damage to the pipe can be suppressed by reducing the gas flow rate.
- the flow rate adjustment unit may include a flow rate adjustment valve
- the supply unit may further include a discharge unit that discharges a part of the gas blown from the blower unit from the upstream side of the flow rate adjustment valve.
- a part of the gas blown by the blower can be discharged on the upstream side of the flow rate adjustment valve, and the pressure rise can be suppressed on the upstream side of the flow rate adjustment valve.
- the discharge unit may further include a pressure adjustment unit that adjusts the pressure on the upstream side of the flow rate adjustment valve.
- a pressure adjustment unit that adjusts the pressure on the upstream side of the flow rate adjustment valve.
- Another aspect of the present invention is a method for supplying a fluidized medium to a fluidized bed combustion furnace, in which the fluidized medium is transported in the method for supplying a fluidized medium to a fluidized bed combustion furnace that burns fuel while fluidizing the fluidized medium.
- a step of adjusting the flow rate of the gas is a step of adjusting the flow rate of the gas.
- the gas flow velocity can be adjusted to suppress damage to the pipe through which the fluid medium flows.
- the flow rate of the gas it is possible to suppress the progress of damage to the piping.
- the progress of damage to the supply pipe for supplying the fluidized medium is suppressed. Can do.
- the fluidized bed combustion facility 1 includes a circulating fluidized bed boiler (fluidized bed combustion furnace) 2, a fluidized medium supply device 3, and an exhaust gas treatment device 4.
- Fuels used in the circulating fluidized bed boiler 2 include coal, biomass, plastics, tires, sludge, RFP (Refuse paper & plastic fuel), RDF (Refuse Delivered), TDF (Tire).
- a wide range of fuels such as Derived Fuel (waste tire solid fuel) and paper sludge can be used.
- Other combustible materials can be used as fuel to burn in a fluidized bed combustion furnace.
- the circulating fluidized bed boiler 2 has a furnace 21 that forms a fluidized bed and burns fuel.
- a fuel inlet (not shown) for introducing fuel is provided on the side of the furnace 21.
- the furnace 21 for example, a fuel input port for supplying coal and a fuel input port for supplying biomass are provided.
- the furnace 21 is provided with a fluid medium supply port 21a for supplying a fluid medium.
- the fluid medium supply device 3 that supplies the fluid medium to the furnace 21 supplies the fluid medium into the furnace 21 through the fluid medium supply port 21a.
- a gas outlet 21b for discharging exhaust gas generated by fuel is formed in the upper part of the furnace 21, and a cyclone 22 is connected to the gas outlet 21b.
- the cyclone 22 is called a separator, a cyclone classifier, or a cyclone separator, and functions as a solid-gas separator.
- the inlet 22a of the cyclone 22 is connected to the gas outlet 21b, and the outlet 22b of the cyclone 22 is connected to the exhaust gas treatment device 4 at the subsequent stage via a back path 24.
- a return line 23 called a downcomer extends downward from the bottom outlet of the cyclone 22, and the lower end of the return line 23 is connected to the lower side surface of the furnace 21.
- a plurality of openings are provided at the bottom of the furnace 21, and air is supplied into the furnace 21 through the plurality of openings.
- the air supplied from the bottom flows coal, biomass, and fluidized medium to form a fluidized bed, and fuel burns.
- the exhaust gas generated in the furnace 21 is introduced into the cyclone 22 along with a fluid medium.
- a swirling flow of exhaust gas is formed, and the fluid medium and the gas are separated by a centrifugal separation action by the swirling flow.
- the separated fluid medium is discharged from the bottom of the cyclone 22, flows from the top to the bottom in the return line 23, and the fluid medium that has passed through the return line 23 is returned to the bottom of the furnace 21. Thereby, the fluid medium circulates through the furnace 21, the cyclone 22 and the return line 23.
- the exhaust gas from which the fluid medium has been removed by the cyclone 22 passes through the discharge port 22b, is introduced into the back path 24 at the subsequent stage, and is introduced into the exhaust gas treatment device 4.
- the back path 24 is a duct through which exhaust gas is circulated.
- the back path 24 is provided with a heat recovery unit 25 for recovering the heat of the exhaust gas.
- the heat recovery unit 25 includes a heat transfer tube that is introduced into the back path 24 and arranged so as to cross the exhaust gas passage. The heat of the exhaust gas flowing in the back path 24 is transferred to and recovered by a fluid (for example, boiler feed water) flowing in the heat transfer pipe.
- the exhaust gas flows from the top to the bottom in the back path 24, is discharged from the bottom of the back path 24, and is introduced into the exhaust gas treatment device 4.
- the exhaust gas treatment device 4 removes fine particles such as fly ash accompanying the exhaust gas and performs a desulfurization process on the exhaust gas.
- the exhaust gas treated by the exhaust gas treatment device 4 is released from the chimney 26 to the atmosphere, for example.
- a furnace wall tube is formed in the furnace 21.
- the furnace wall tube has a boiler tube for circulating the boiler water, and a fin that protrudes from the boiler tube and connects adjacent boiler tubes.
- Boiler feed water flows through the boiler tube, heat from the combustion in the furnace 21 is transferred and heated, and steam is generated.
- the fluid medium that flows in the furnace 21 functions as a heat transfer medium that transmits heat generated by combustion to the furnace wall tube. Water vapor generated by heating is supplied to a power generation turbine and used for power generation.
- the fluid medium supply device 3 functions as a supply unit that supplies the fluid medium to the furnace 21.
- the fluid medium supply device 3 includes a fluid medium storage unit 31, a blower unit 32, a fluid medium transfer unit 33, and a flow rate adjustment unit 34.
- the fluid medium storage unit 31 includes a hopper that is a reservoir for storing the fluid medium.
- a pipe L31 for circulating the fluid medium is connected to the bottom of the hopper, and this pipe L31 is connected to the fluid medium transfer part 33.
- the fluid medium stored in the hopper is extracted from the bottom of the hopper, and introduced into the fluid medium transfer unit 33 through the pipe.
- the blower 32 blows a transport gas for transporting the fluid medium.
- the blower 32 is a blower that compresses air, for example.
- the air blower 32 boosts atmospheric pressure air to, for example, 50 kPa.
- a communication pipe L ⁇ b> 32 is connected to the discharge port 32 a of the blower unit 32, and the communication pipe L ⁇ b> 32 is connected to the fluid medium transfer unit 33.
- the fluid medium transfer unit 33 includes a fluid medium supply pipe L33 which is a pipe connected to the furnace 21.
- the fluid medium supply pipe L33 is connected to the pipe L31 and the communication pipe L32.
- the compressed air blown from the blower unit 32 flows into the furnace 21 through the communication pipe L32 and the fluid medium supply pipe L33.
- a pipe L31 communicating with the fluid medium storage unit 31 is connected to the downstream side of the connecting pipe L32.
- a downstream pipe from the junction P31 between the connecting pipe L32 and the pipe L31 is referred to as a fluid medium supply pipe L33.
- Compressed air discharged from the blower 32 passes through the connecting pipe L32, passes through the merging part P31, and flows into the furnace 21 through the fluid medium supply pipe L33.
- the fluid medium extracted from the fluid medium storage part 31 falls in the pipe L31, is introduced into the fluid medium supply pipe L33 from the joining part P31, is transported by compressed air, and is supplied into the furnace 21.
- the fluid medium supply device 3 includes a flow rate adjusting valve 34a as the flow rate adjusting unit 34 that adjusts the flow rate of the transport gas.
- the flow rate adjustment valve 34a includes a valve body (not shown), and drives the valve body to adjust the valve opening to change the cross-sectional area of the flow path. Thereby, the flow rate is adjusted by adjusting the flow rate of the transport gas downstream of the flow rate adjustment valve 34a.
- the flow rate adjusting valve 34a is provided on the downstream side of the connecting pipe L32, and is disposed on the upstream side of the junction P31.
- the flow rate adjustment valve 34a may be provided on the fluid medium supply pipe L33 on the downstream side of the junction P31.
- a flow rate detection unit 35 for measuring the flow rate of the transport gas is provided in the communication pipe L32 on the downstream side of the flow rate adjustment valve 34a.
- an orifice can be used as the flow rate detection unit 35, and the flow rate may be calculated by detecting the differential pressure using the orifice.
- Other flowmeters may be used as the flow velocity detector 35.
- the fluid medium supply device 3 further includes a discharge unit 36 that discharges a part of the transport gas blown from the blower unit 32 to the outside from the upstream side of the flow rate adjustment valve 34a.
- the discharge part 36 has a relief pipe L34 connected to the communication pipe L32.
- the escape pipe L34 is a pipe branched from the connecting pipe L32 on the upstream side of the flow rate adjusting valve 34a, and discharges a part of the transport gas from the connecting pipe L32 to the atmosphere.
- the discharge part 36 has a pressure adjustment valve 37a provided in the escape pipe L34 as a pressure adjustment part 37 for adjusting the pressure of the transport gas upstream of the flow rate adjustment valve 34a.
- the pressure adjustment valve 37a includes a valve body (not shown), and drives the valve body to adjust the valve opening to change the cross-sectional area of the flow path. As a result, the flow rate of the transport gas discharged to the atmosphere through the pressure control valve 37a is adjusted, and the pressure of the transport gas upstream of the pressure control valve 37a is suitably maintained.
- the pressure regulating valve 37a is not provided, even if the valve opening degree is adjusted by the flow velocity regulating valve 34a, the upstream transportation gas is released to the atmosphere through the escape pipe L34, and the flow velocity regulating valve. The transport gas does not flow into the downstream side of 34a, and the fluid medium cannot be transported.
- Coal and biomass as fuel are introduced into the furnace 21. Further, other combustible waste may be introduced into the furnace 21 as fuel.
- a fluid medium is accommodated in the furnace 21. The fuel and fluid medium introduced into the furnace 21 are blown up by the air introduced from the bottom of the furnace 21 and burned while flowing. The exhaust gas generated by the combustion and the fluid medium accompanying the exhaust gas are introduced into the cyclone 22 from the gas outlet 21 b at the top of the furnace 21.
- the cyclone 22 separates the fluid medium from the exhaust gas.
- the exhaust gas from which the fluid medium has been removed flows into the back path 24 through the discharge port 22b, and the exhaust heat is recovered by the heat recovery unit 25 and flows into the exhaust gas treatment device 4.
- the exhaust gas that has flowed into the exhaust gas treatment device 4 is subjected to desulfurization treatment while removing fine particles such as fly ash and is released into the atmosphere through the chimney 26.
- the fluid medium separated by the cyclone 22 passes through the return line 23 and is returned to the lower part of the furnace 21.
- the fluid medium in the furnace 21 is heated by combustion and transfers heat to the furnace wall tube of the furnace 21.
- Boiler feed water that flows inside the furnace wall tube is heated to generate water vapor.
- the generated water vapor is supplied to, for example, a power generation turbine and used for power generation.
- the fluid medium is supplied into the furnace 21 by the fluid medium supply device 3 before the fluidized bed combustion facility 1 is operated. Further, the fluid medium supply device 3 may supply the fluid medium into the furnace 21 while the furnace 21 is in operation.
- the fluid medium is supplied to the furnace 21 using the fluid medium supply device 3.
- the air is pressurized by the blower 32, and the compressed air, which is the pressurized air, is supplied to the communication pipe L32.
- the compressed air flowing in the communication pipe L32 passes through the flow rate adjustment valve 34a and flows into the fluid medium supply pipe L33.
- the discharge flow rate by the blower 32 is maintained constant.
- the fluid medium is stored in the fluid medium reservoir 31.
- the fluid medium stored in the fluid medium reservoir 31 is extracted from the bottom of the fluid medium reservoir 31, dropped in the pipe L31, and flows into the fluid medium supply pipe L33 from the junction P31. Let The fluid medium that has flowed into the fluid medium supply pipe L33 is caused to flow by the compressed air, passes through the fluid medium supply port 21a, and is introduced into the furnace 21.
- the supply method of the fluid medium includes a step of adjusting the flow rate of the gas transporting the fluid medium.
- the flow rate of the gas transporting the fluid medium is adjusted by adjusting the valve opening degree with the flow velocity adjusting valve 34a. Increasing the valve opening with the flow rate adjusting valve 34a increases the flow rate of air flowing inside to increase the flow rate, and decreasing the valve opening degree with the flow rate adjusting valve 34a reduces the flow rate of air flowing inside. To reduce the flow rate.
- the flow velocity adjustment valve 34a can be controlled to adjust the flow velocity of the air for transportation.
- the air flow rate is reduced.
- a part of the transport air flowing through the communication pipe L32 flows into the escape pipe L34 on the upstream side of the flow rate adjustment valve 34a, and is released to the outside of the fluidized bed combustion facility 1.
- the valve opening degree of the pressure adjustment valve 37a provided in the relief pipe L34 is adjusted to adjust the pressure in the communication pipe L32 upstream of the flow rate adjustment valve 34a.
- the flow rate of air discharged through the escape pipe L34 can be adjusted, the pressure on the upstream side of the flow rate adjustment valve 34a can be adjusted, and the flow rate can be adjusted while keeping the discharge flow rate of the blower 32 constant.
- the fluidized medium can be suitably transported and supplied into the furnace 21.
- the flow velocity of air for transportation can be adjusted, so that wear damage of the fluid medium supply pipe L33 through which the fluid medium flows can be suppressed. it can.
- wear damage of the fluid medium supply pipe L33 through which the fluid medium flows can be suppressed.
- a part of the transport air blown from the air blowing section 32 can be discharged from the upstream side of the flow rate adjustment valve 34a to the outside of the fluid medium supply device 3, so that the flow rate adjustment valve An increase in pressure can be suppressed on the upstream side of 34a.
- the ventilation part 32 which has a sealing structure can be employ
- the fluid can be discharged from the upstream side of the regulating valve 34a to the outside of the fluid medium supply device 3. As a result, a pressure increase on the upstream side of the flow rate adjustment valve 34a can be suppressed, and a decrease in reliability of the blower 32 can be suppressed.
- the gas that transports the fluid medium is air, but the fluid medium may be transported by blowing other gases.
- the blower is used as the blower, but other blowers such as a compressor may be used.
- the cylinder storage container in which the compressed gas is stored may be connected to the communication pipe L32 to blow the gas from the cylinder.
- the flow rate of the transporting air flowing through the fluid medium supply pipe L33 is adjusted using the flow rate adjusting valve 34a.
- the flow rate of the transporting gas may be adjusted by other methods.
- the structure provided with the ventilation part which adjusts the flow rate of the gas for transport by adjusting the discharge flow rate from a ventilation part may be sufficient.
- the air blowing unit includes a flow rate adjusting unit that adjusts the gas flow rate. Even if it is the structure provided with such a ventilation part, there exists an effect similar to said embodiment, the damage can be suppressed to the piping through which a fluid medium flows by adjusting the flow velocity of gas. Furthermore, it is not necessary to provide a flow rate adjusting unit separately from the air blowing unit.
- the flow rate in the fluid medium supply line L33 may be increased or decreased by providing a flow rate adjustment unit that adjusts the flow rate of the transport gas discharged from the escape line L34. Even when such a flow rate adjusting unit is provided, the same effect as the above embodiment can be achieved, the gas flow rate can be adjusted, and damage to the pipe through which the fluid medium flows can be suppressed. Can be kept constant, and the flow velocity in the fluid medium supply pipe L33 can be adjusted.
- the blower unit is equipped with a flow rate adjusting unit that adjusts the discharge flow rate by controlling the rotation speed of a rotating machine (fluid machine such as a blower or compressor) that discharges the gas for transportation, and the flow rate of the gas for transportation Can also be adjusted.
- the flow speed may be decreased by increasing the rotational speed of the rotating machine to increase the flow speed and decreasing the rotational speed of the rotating machine.
- the control part inverter control part which controls the rotation speed of a rotary machine becomes a flow volume adjustment part.
- the fluid medium supply device 3 includes the escape pipe L34 as the discharge part 36
- the discharge part 36 may be an opening provided in the communication pipe L32. Gas for transportation may be discharged from this opening. In this case, it is not necessary to provide the escape pipe L34, and the construction cost can be suppressed.
- the discharge part 36 is discharging
- the pressurized gas can be used for another use. For example, you may use the gas discharged
- the fluid medium supply device 3 may be configured not to include the discharge unit 36. Thereby, as mentioned above, construction cost can be suppressed.
- the steam generated in the circulating fluidized bed boiler 2 is supplied to the turbine for power generation.
- the steam generated in the circulating fluidized bed boiler 2 is used as a driving source for other rotating machines. It may be used as another heat source, and the use of water vapor is not limited.
- the fluidized bed combustion furnace is not limited to the furnace 21 of the circulating fluidized bed boiler 2, may be a fluidized bed boiler furnace in which the fluid medium does not circulate, a fluidized bed combustion furnace without a boiler, or other incineration equipment.
- the fluidized bed combustion furnace may be used.
- the fluid medium supplied into the furnace 21 by the fluid medium supply device 3 is not limited to sand, and may be other powders.
- bottom ash (furnace bottom ash) extracted from the furnace 21 may be supplied to the furnace 21 as a fluid medium.
- a mixture of sand and bottom ash may be supplied into the furnace 21 using the fluid medium supply device 3.
- the temperature and pressure of the furnace 21 can be adjusted by adjusting the amount of bottom ash extracted.
- particles such as a catalyst and a combustible material may be supplied to the fluidized bed combustion furnace using the fluidized medium supply device 3.
- Flow rate adjustment valve 35.
- Flow rate detection unit 36 ... Discharge unit, 37 ... Pressure adjustment unit, 37a ... Pressure adjustment valve
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Air Transport Of Granular Materials (AREA)
Abstract
Fluidized-bed type combustion equipment (1) is provided with: a fluidized-bed combustion furnace (21) in which fuel is burned while a fluidized medium is made to flow; and a supply section (3) for supplying the fluidized medium to the fluidized-bed combustion furnace. The supply section (3) is provided with: a blower unit (32) for blowing gas used to transport the fluidized medium; and a flow velocity-adjusting part (34) for adjusting the flow velocity of the gas. The flow velocity-adjusting part (34) adjusts the flow velocity of the gas used to transport the fluidized medium, such that damage to a pipe (L33) through which the fluidized medium flows is suppressed. Because the flow velocity of the gas is decreased, the damage progression of the pipe can be suppressed.
Description
本発明は、流動媒体を流動させながら燃料を燃焼する流動層燃焼炉を備えた流動層式燃焼設備および流動層燃焼炉への流動媒体の供給方法に関する。
The present invention relates to a fluidized bed combustion facility equipped with a fluidized bed combustion furnace that burns fuel while flowing the fluidized medium, and a method of supplying the fluidized medium to the fluidized bed combustion furnace.
このような分野の技術として、流動層燃料炉を備え、流動媒体として珪砂などの砂を炉内に導入し、流動媒体を循環させながら燃料を燃焼させる流動層式燃焼設備が知られている(例えば、特許文献1参照)。特許文献1に記載の技術では、例えば、粒度調整された流動媒体を炉内に導入することで、炉内における流動媒体の流動性を向上させている。
As a technology in such a field, there is known a fluidized bed combustion facility that includes a fluidized bed fuel furnace, introduces sand such as silica sand as a fluidized medium into the furnace, and burns fuel while circulating the fluidized medium ( For example, see Patent Document 1). In the technique described in Patent Document 1, for example, the fluidity of the fluid medium in the furnace is improved by introducing a fluid medium whose particle size is adjusted into the furnace.
従来の流動層式燃焼設備では、例えば空気などの搬送用流体を用いて流動媒体を搬送し、燃焼炉内に流動媒体を供給している。従来技術では設計時に見込んだ条件(紛体性状、外気条件、輸送距離、など)と実運用時の実態との違いを考慮し裕度をもった輸送能力としていた。しかしながら、粉粒体性状ごとに必要な輸送流速は異なり、設計した流速のまま運転を継続していると、本当に必要な流速(最適流速)と運用流速との差分、配管の摩耗速度が速くなり、設計時に見込んでいた寿命よりも短い配管寿命となっていた。
In a conventional fluidized bed combustion facility, for example, a fluid medium is conveyed using a carrier fluid such as air, and the fluid medium is supplied into the combustion furnace. In the prior art, considering the difference between the conditions (powder properties, outside air conditions, transport distance, etc.) expected at the time of design and the actual conditions during actual operation, the transport capacity has a margin. However, the required transport flow rate differs depending on the granular material properties. If the operation is continued at the designed flow rate, the difference between the really necessary flow rate (optimal flow rate) and the operation flow rate, and the wear rate of the piping will increase. The pipe life was shorter than expected at the time of design.
本発明は、流動媒体を供給するための供給配管の損傷の進行を抑制することが可能な流動層式燃焼設備および流動層燃焼炉への流動媒体の供給方法を提供することを目的とする。
An object of the present invention is to provide a fluidized bed combustion facility and a fluidized medium supply method to a fluidized bed combustion furnace capable of suppressing the progress of damage to a supply pipe for supplying the fluidized medium.
本発明の一形態である流動層式燃焼設備は、流動媒体を流動させながら燃料を燃焼する流動層燃焼炉と、流動層燃焼炉に流動媒体を供給する供給部と、を備えた流動層式燃焼設備において、供給部は、流動媒体を輸送する気体を送風する送風部と、気体の流速を調整する流速調整部と、を備えている。
A fluidized bed combustion facility according to one aspect of the present invention includes a fluidized bed combustion furnace that burns fuel while flowing a fluidized medium, and a supply unit that supplies the fluidized medium to the fluidized bed combustion furnace. In the combustion facility, the supply unit includes a blower that blows the gas that transports the fluid medium, and a flow rate adjuster that adjusts the flow rate of the gas.
この流動層式燃焼設備では、流動層燃焼炉に流動媒体を供給する供給部において、流動媒体を輸送する気体の流速を調整することができるので、流動媒体が流れる配管の損傷を抑制することができる。例えば、気体の流速を低下させることで、配管の損傷の進行を抑制することができる。
In this fluidized bed combustion facility, since the flow rate of the gas transporting the fluidized medium can be adjusted in the supply unit that supplies the fluidized medium to the fluidized bed combustion furnace, it is possible to suppress damage to the piping through which the fluidized medium flows. it can. For example, the progress of damage to the pipe can be suppressed by reducing the gas flow rate.
また、流速調整部は、流速調整弁を有し、供給部は、送風部から送風された気体の一部を流速調整弁の上流側から排出する排出部を更に有する構成でもよい。この構成の流動層式燃焼設備では、流速調整弁の上流側で、送風部によって送風された気体の一部を排出することができ、流速調整弁の上流側において圧力上昇を抑制することができる。これにより、密閉構造を有する送風部を採用することができ、一定の流量で送風を継続しても、流速調整弁によって流速を低下させることができ、その際の余剰の気体を流速調整弁の上流側から排出することができる。その結果、流速調整弁の上流側の圧力上昇を抑えて、送風部の信頼性の低下を抑制することができる。
Further, the flow rate adjustment unit may include a flow rate adjustment valve, and the supply unit may further include a discharge unit that discharges a part of the gas blown from the blower unit from the upstream side of the flow rate adjustment valve. In the fluidized bed combustion facility having this configuration, a part of the gas blown by the blower can be discharged on the upstream side of the flow rate adjustment valve, and the pressure rise can be suppressed on the upstream side of the flow rate adjustment valve. . As a result, it is possible to employ a blower unit having a sealed structure, and even if blowing continues at a constant flow rate, the flow rate can be reduced by the flow rate adjustment valve, and excess gas at that time can be removed from the flow rate adjustment valve. It can be discharged from the upstream side. As a result, it is possible to suppress an increase in pressure on the upstream side of the flow rate adjustment valve and to suppress a decrease in reliability of the blower unit.
排出部は、流速調整弁の上流側の圧力を調整する圧力調整部を更に備えていてもよい。これにより、排出部から気体の一部を排出することができると共に、圧力調整部によって流速調整弁の上流側の圧力を調整することができ、流速調整弁の上流側で圧力の低下を抑制して、流動媒体の輸送を好適に行いつつ、配管の損傷を抑制することができる。
The discharge unit may further include a pressure adjustment unit that adjusts the pressure on the upstream side of the flow rate adjustment valve. As a result, a part of the gas can be discharged from the discharge unit, and the pressure adjustment unit can adjust the pressure on the upstream side of the flow rate adjustment valve, thereby suppressing the pressure drop on the upstream side of the flow rate adjustment valve. Thus, it is possible to suppress damage to the piping while suitably transporting the fluid medium.
本発明の別の形態である流動層燃焼炉への流動媒体の供給方法は、流動媒体を流動させながら燃料を燃焼する流動層燃焼炉に流動媒体を供給する供給方法において、流動媒体を輸送する気体の流速を調整する工程を備えている。
Another aspect of the present invention is a method for supplying a fluidized medium to a fluidized bed combustion furnace, in which the fluidized medium is transported in the method for supplying a fluidized medium to a fluidized bed combustion furnace that burns fuel while fluidizing the fluidized medium. A step of adjusting the flow rate of the gas.
この流動媒体の供給方法では、流動媒体を輸送する気体の流速を調整することができるので、気体の流速を調整して、流動媒体が流れる配管の損傷を抑制することができる。気体の流速を低下させることで、配管の損傷の進行を抑制することができる。
In this fluid medium supply method, since the flow velocity of the gas transporting the fluid medium can be adjusted, the gas flow velocity can be adjusted to suppress damage to the pipe through which the fluid medium flows. By reducing the flow rate of the gas, it is possible to suppress the progress of damage to the piping.
本発明の一形態である流動層式燃焼設備および別の形態である流動層燃焼炉への流動媒体の供給方法によれば、流動媒体を供給するための供給配管の損傷の進行を抑制することができる。
According to the fluidized bed combustion facility which is one form of the present invention and the fluidized medium supply method to the fluidized bed combustion furnace which is another form, the progress of damage to the supply pipe for supplying the fluidized medium is suppressed. Can do.
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
図1に示されるように、流動層式燃焼設備1は、循環流動層ボイラ(流動層燃焼炉)2と、流動媒体供給装置3と、排ガス処理装置4と、を備えている。循環流動層ボイラ2で使用される燃料としては、石炭のほか、バイオマス、プラスチック、タイヤ、汚泥、RFP(Refuse paper&Plastic Fuel;プラスチック系固体燃料)、RDF(Refuse Derived;ごみ固形燃料)、TDF(Tire Derived Fuel;廃タイヤ系固体燃料)、ペーパースラッジなどの幅広い燃料を使用することができる。その他の可燃物を燃料として、流動層燃焼炉内で燃焼させることもできる。
As shown in FIG. 1, the fluidized bed combustion facility 1 includes a circulating fluidized bed boiler (fluidized bed combustion furnace) 2, a fluidized medium supply device 3, and an exhaust gas treatment device 4. Fuels used in the circulating fluidized bed boiler 2 include coal, biomass, plastics, tires, sludge, RFP (Refuse paper & plastic fuel), RDF (Refuse Delivered), TDF (Tire). A wide range of fuels such as Derived Fuel (waste tire solid fuel) and paper sludge can be used. Other combustible materials can be used as fuel to burn in a fluidized bed combustion furnace.
循環流動層ボイラ2は、流動層を形成し燃料を燃焼させる火炉21を有する。火炉21の側部には燃料を投入するための燃料投入口(不図示)が設けられている。火炉21では、例えば、石炭を供給するための燃料投入口と、バイオマスを供給するための燃料投入口とが設けられている。また、火炉21には、流動媒体を供給するための流動媒体供給口21aが設けられている。火炉21に流動媒体を供給する流動媒体供給装置3は、流動媒体供給口21aを通じて火炉21内に流動媒体を供給する。
The circulating fluidized bed boiler 2 has a furnace 21 that forms a fluidized bed and burns fuel. A fuel inlet (not shown) for introducing fuel is provided on the side of the furnace 21. In the furnace 21, for example, a fuel input port for supplying coal and a fuel input port for supplying biomass are provided. Further, the furnace 21 is provided with a fluid medium supply port 21a for supplying a fluid medium. The fluid medium supply device 3 that supplies the fluid medium to the furnace 21 supplies the fluid medium into the furnace 21 through the fluid medium supply port 21a.
火炉21の上部には燃料で発生する排ガスを排出するガス出口21bが形成され、ガス出口21bにはサイクロン22が接続されている。サイクロン22は、セパレータ、サイクロン分級装置、あるいはサイクロン分離器などと呼ばれ、固気分離装置として機能する。サイクロン22の入口22aは上記のガス出口21bに接続され、サイクロン22の排出口22bはバックパス24を介して後段の排ガス処理装置4に接続されている。また、サイクロン22の底部出口からはダウンカマーと称されるリターンライン23が下方に延びており、リターンライン23の下端は火炉21の下部側面に接続されている。
A gas outlet 21b for discharging exhaust gas generated by fuel is formed in the upper part of the furnace 21, and a cyclone 22 is connected to the gas outlet 21b. The cyclone 22 is called a separator, a cyclone classifier, or a cyclone separator, and functions as a solid-gas separator. The inlet 22a of the cyclone 22 is connected to the gas outlet 21b, and the outlet 22b of the cyclone 22 is connected to the exhaust gas treatment device 4 at the subsequent stage via a back path 24. A return line 23 called a downcomer extends downward from the bottom outlet of the cyclone 22, and the lower end of the return line 23 is connected to the lower side surface of the furnace 21.
また、火炉21の底部には複数の開口が設けられ、この複数の開口を通じて火炉21内に空気が供給される。火炉21内では、底部から供給された空気によって、石炭、バイオマス及び流動媒体が流動して流動層を形成し、燃料が燃焼する。
Also, a plurality of openings are provided at the bottom of the furnace 21, and air is supplied into the furnace 21 through the plurality of openings. In the furnace 21, the air supplied from the bottom flows coal, biomass, and fluidized medium to form a fluidized bed, and fuel burns.
サイクロン22には、火炉21で発生した排ガスが流動媒体を同伴しながら導入される。サイクロン22の内部では、排ガスの旋回流が形成され、この旋回流による遠心分離作用によって流動媒体と気体とが分離される。分離された流動媒体は、サイクロン22の底部から排出され、リターンライン23内を上から下へ流れ、リターンライン23を通過した流動媒体は火炉21の底部に戻される。これにより、流動媒体は、火炉21、サイクロン22及びリターンライン23を循環する。サイクロン22で流動媒体が取り除かれた排ガスは、排出口22bを通り後段のバックパス24に導入されて、排ガス処理装置4に導入される。
The exhaust gas generated in the furnace 21 is introduced into the cyclone 22 along with a fluid medium. Inside the cyclone 22, a swirling flow of exhaust gas is formed, and the fluid medium and the gas are separated by a centrifugal separation action by the swirling flow. The separated fluid medium is discharged from the bottom of the cyclone 22, flows from the top to the bottom in the return line 23, and the fluid medium that has passed through the return line 23 is returned to the bottom of the furnace 21. Thereby, the fluid medium circulates through the furnace 21, the cyclone 22 and the return line 23. The exhaust gas from which the fluid medium has been removed by the cyclone 22 passes through the discharge port 22b, is introduced into the back path 24 at the subsequent stage, and is introduced into the exhaust gas treatment device 4.
バックパス24は、排ガスを流通させるダクトである。バックパス24には、排ガスの熱を回収するための熱回収部25が設けられている。熱回収部25は、バックパス24の内部に導入されて排ガス流路を横切るように配置された伝熱管を有する。バックパス24内を流れる排ガスの熱は、伝熱管内を流れる流体(例えばボイラ給水)に伝熱されて回収される。
The back path 24 is a duct through which exhaust gas is circulated. The back path 24 is provided with a heat recovery unit 25 for recovering the heat of the exhaust gas. The heat recovery unit 25 includes a heat transfer tube that is introduced into the back path 24 and arranged so as to cross the exhaust gas passage. The heat of the exhaust gas flowing in the back path 24 is transferred to and recovered by a fluid (for example, boiler feed water) flowing in the heat transfer pipe.
排ガスは、バックパス24内を上から下に流れ、バックパス24の底部から排出されて、排ガス処理装置4に導入される。排ガス処理装置4は、排ガスに同伴する飛灰等の微粒子を除去する共に、排ガスに対して脱硫処理を行う。排ガス処理装置4で処理された排ガスは、例えば煙突26から大気に放出される。
The exhaust gas flows from the top to the bottom in the back path 24, is discharged from the bottom of the back path 24, and is introduced into the exhaust gas treatment device 4. The exhaust gas treatment device 4 removes fine particles such as fly ash accompanying the exhaust gas and performs a desulfurization process on the exhaust gas. The exhaust gas treated by the exhaust gas treatment device 4 is released from the chimney 26 to the atmosphere, for example.
また、火炉21には炉壁管が形成されている。炉壁管はボイラ水を流通させるボイラーチューブと、ボイラーチューブから張り出し隣接するボイラーチューブ同士を接続するフィンとを有する。ボイラー給水は、ボイラーチューブ内を流れ、火炉21内の燃焼による熱が伝熱されて加熱され、水蒸気を発生させる。火炉21内で流動する流動媒体は、燃焼で発生した熱を炉壁管に伝達する熱伝達媒体として機能する。加熱により生じた水蒸気は、発電用タービンに供給されて発電に利用される。
Also, a furnace wall tube is formed in the furnace 21. The furnace wall tube has a boiler tube for circulating the boiler water, and a fin that protrudes from the boiler tube and connects adjacent boiler tubes. Boiler feed water flows through the boiler tube, heat from the combustion in the furnace 21 is transferred and heated, and steam is generated. The fluid medium that flows in the furnace 21 functions as a heat transfer medium that transmits heat generated by combustion to the furnace wall tube. Water vapor generated by heating is supplied to a power generation turbine and used for power generation.
流動媒体供給装置3は、火炉21に流動媒体を供給する供給部として機能する。流動媒体供給装置3は、流動媒体貯留部31と、送風部32と、流動媒体移送部33と、流速調整部34と、を備えている。
The fluid medium supply device 3 functions as a supply unit that supplies the fluid medium to the furnace 21. The fluid medium supply device 3 includes a fluid medium storage unit 31, a blower unit 32, a fluid medium transfer unit 33, and a flow rate adjustment unit 34.
流動媒体貯留部31は、流動媒体を貯留する貯留槽であるホッパーを有する。ホッパーの底部には、流動媒体を流通させる配管L31が接続され、この配管L31が流動媒体移送部33に接続されている。ホッパー内に貯留された流動媒体は、ホッパー底部から抜き出られて、配管を通り流動媒体移送部33に導入される。
The fluid medium storage unit 31 includes a hopper that is a reservoir for storing the fluid medium. A pipe L31 for circulating the fluid medium is connected to the bottom of the hopper, and this pipe L31 is connected to the fluid medium transfer part 33. The fluid medium stored in the hopper is extracted from the bottom of the hopper, and introduced into the fluid medium transfer unit 33 through the pipe.
送風部32は、流動媒体を輸送するための輸送用気体を送風する。送風部32は、例えば空気を圧縮するブロワである。送風部32は、大気圧の空気を例えば50kPaまで昇圧する。送風部32の吐出口32aには、連絡配管L32が接続され、この連絡配管L32は流動媒体移送部33に接続されている。
The blower 32 blows a transport gas for transporting the fluid medium. The blower 32 is a blower that compresses air, for example. The air blower 32 boosts atmospheric pressure air to, for example, 50 kPa. A communication pipe L <b> 32 is connected to the discharge port 32 a of the blower unit 32, and the communication pipe L <b> 32 is connected to the fluid medium transfer unit 33.
流動媒体移送部33は、火炉21に接続された配管である流動媒体供給配管L33を有する。流動媒体供給配管L33は、配管L31及び連絡配管L32と接続されている。送風部32から送風された圧縮空気は、連絡配管L32及び流動媒体供給配管L33を通り、火炉21内に流入する。流動媒体貯留部31に通じる配管L31は、連絡配管L32の下流側に接続されている。連絡配管L32と配管L31との合流部P31から下流側の配管を流動媒体供給配管L33とする。
The fluid medium transfer unit 33 includes a fluid medium supply pipe L33 which is a pipe connected to the furnace 21. The fluid medium supply pipe L33 is connected to the pipe L31 and the communication pipe L32. The compressed air blown from the blower unit 32 flows into the furnace 21 through the communication pipe L32 and the fluid medium supply pipe L33. A pipe L31 communicating with the fluid medium storage unit 31 is connected to the downstream side of the connecting pipe L32. A downstream pipe from the junction P31 between the connecting pipe L32 and the pipe L31 is referred to as a fluid medium supply pipe L33.
送風部32から吐出された圧縮空気は、連絡配管L32を通り、合流部P31を通過して、流動媒体供給配管L33を通り火炉21内に流入する。一方、流動媒体貯留部31から抜き出された流動媒体は、配管L31内を落下し、合流部P31から流動媒体供給配管L33内に導入され、圧縮空気によって輸送されて、火炉21内に供給される。
Compressed air discharged from the blower 32 passes through the connecting pipe L32, passes through the merging part P31, and flows into the furnace 21 through the fluid medium supply pipe L33. On the other hand, the fluid medium extracted from the fluid medium storage part 31 falls in the pipe L31, is introduced into the fluid medium supply pipe L33 from the joining part P31, is transported by compressed air, and is supplied into the furnace 21. The
ここで、流動媒体供給装置3は、輸送用気体の流速を調整する流速調整部34として、流速調整弁34aを備えている。流速調整弁34aは、図示しない弁体を備え、弁体を駆動して弁開度を調整して流路の断面積を変更する。これにより、流速調整弁34aの下流側の輸送用気体の流量を調整して流速を調整する。
Here, the fluid medium supply device 3 includes a flow rate adjusting valve 34a as the flow rate adjusting unit 34 that adjusts the flow rate of the transport gas. The flow rate adjustment valve 34a includes a valve body (not shown), and drives the valve body to adjust the valve opening to change the cross-sectional area of the flow path. Thereby, the flow rate is adjusted by adjusting the flow rate of the transport gas downstream of the flow rate adjustment valve 34a.
流速調整弁34aは、連絡配管L32の下流側に設けられ、合流部P31よりも上流側に配置されている。流速調整弁34aは、合流部P31の下流側であり、流動媒体供給配管L33に設けられているものでもよい。
The flow rate adjusting valve 34a is provided on the downstream side of the connecting pipe L32, and is disposed on the upstream side of the junction P31. The flow rate adjustment valve 34a may be provided on the fluid medium supply pipe L33 on the downstream side of the junction P31.
また、流速調整弁34aの下流側の連絡配管L32には、輸送用気体の流速を計測するための流速検出部35が設けられている。流速検出部35としては例えばオリフィスを用いることができ、オリフィスを用いて差圧を検出して、流速を算出してもよい。その他の流速計を流速検出部35として使用してもよい。
Further, a flow rate detection unit 35 for measuring the flow rate of the transport gas is provided in the communication pipe L32 on the downstream side of the flow rate adjustment valve 34a. For example, an orifice can be used as the flow rate detection unit 35, and the flow rate may be calculated by detecting the differential pressure using the orifice. Other flowmeters may be used as the flow velocity detector 35.
また、流動媒体供給装置3は、送風部32から送風された輸送用気体の一部を流速調整弁34aの上流側から外部に排出する排出部36を更に備えている。排出部36は、連絡配管L32に接続された逃がし配管L34を有する。逃がし配管L34は、流速調整弁34aの上流側において、連絡配管L32から分岐された配管であり、連絡配管L32から輸送用気体の一部を大気中に放出する。
The fluid medium supply device 3 further includes a discharge unit 36 that discharges a part of the transport gas blown from the blower unit 32 to the outside from the upstream side of the flow rate adjustment valve 34a. The discharge part 36 has a relief pipe L34 connected to the communication pipe L32. The escape pipe L34 is a pipe branched from the connecting pipe L32 on the upstream side of the flow rate adjusting valve 34a, and discharges a part of the transport gas from the connecting pipe L32 to the atmosphere.
また、排出部36は、流速調整弁34aの上流側の輸送用気体の圧力を調整する圧力調整部37として、逃がし配管L34に設けられた圧力調整弁37aを有する。圧力調整弁37aは図示しない弁体を備え、弁体を駆動して弁開度を調整して流路の断面積を変更する。これにより、圧力調整弁37aを通過して大気放出される輸送用気体の流量を調整し、圧力調整弁37aの上流側の輸送用気体の圧力を好適に維持する。圧力調整弁37aが設けられていない場合には、流速調整弁34aによって弁開度を調整しても、上流側の輸送用気体が、逃がし配管L34を通じて、大気に放出されてしまい、流速調整弁34aの下流側に輸送用気体が流入せず、流動媒体を輸送することができなくなる。
Further, the discharge part 36 has a pressure adjustment valve 37a provided in the escape pipe L34 as a pressure adjustment part 37 for adjusting the pressure of the transport gas upstream of the flow rate adjustment valve 34a. The pressure adjustment valve 37a includes a valve body (not shown), and drives the valve body to adjust the valve opening to change the cross-sectional area of the flow path. As a result, the flow rate of the transport gas discharged to the atmosphere through the pressure control valve 37a is adjusted, and the pressure of the transport gas upstream of the pressure control valve 37a is suitably maintained. When the pressure regulating valve 37a is not provided, even if the valve opening degree is adjusted by the flow velocity regulating valve 34a, the upstream transportation gas is released to the atmosphere through the escape pipe L34, and the flow velocity regulating valve. The transport gas does not flow into the downstream side of 34a, and the fluid medium cannot be transported.
次に、流動層式燃焼設備1の作用について説明する。
Next, the operation of the fluidized bed combustion facility 1 will be described.
火炉21内には、燃料である石炭及びバイオマスが導入される。また、その他の可燃性の廃棄物を燃料として火炉21内に導入してもよい。火炉21内には、流動媒体が収容されており、火炉21に導入された燃料及び流動媒体は、火炉21の底部から導入された空気によって吹き上がられ流動しながら燃焼する。燃焼によって発生した排ガス及びこの排ガスに同伴する流動媒体は、火炉21の上部のガス出口21bからサイクロン22に導入される。
Coal and biomass as fuel are introduced into the furnace 21. Further, other combustible waste may be introduced into the furnace 21 as fuel. A fluid medium is accommodated in the furnace 21. The fuel and fluid medium introduced into the furnace 21 are blown up by the air introduced from the bottom of the furnace 21 and burned while flowing. The exhaust gas generated by the combustion and the fluid medium accompanying the exhaust gas are introduced into the cyclone 22 from the gas outlet 21 b at the top of the furnace 21.
サイクロン22は、排ガスから流動媒体を分離する。流動媒体が取り除かれた排ガスは、排出口22bを通りバックパス24に流入して、熱回収部25で排熱が回収されて、排ガス処理装置4に流入する。排ガス処理装置4に流入した排ガスは、飛灰などの微粒子が除去されると共に脱硫処理が行われ、煙突26を通じて大気放出される。
The cyclone 22 separates the fluid medium from the exhaust gas. The exhaust gas from which the fluid medium has been removed flows into the back path 24 through the discharge port 22b, and the exhaust heat is recovered by the heat recovery unit 25 and flows into the exhaust gas treatment device 4. The exhaust gas that has flowed into the exhaust gas treatment device 4 is subjected to desulfurization treatment while removing fine particles such as fly ash and is released into the atmosphere through the chimney 26.
一方、サイクロン22で分離された流動媒体は、リターンライン23を通り、火炉21の下部に戻される。
On the other hand, the fluid medium separated by the cyclone 22 passes through the return line 23 and is returned to the lower part of the furnace 21.
また、火炉21内の流動媒体は、燃焼によって加熱され、火炉21の炉壁管に熱を伝達する。炉壁管の内部を流れるボイラー給水は、加熱されて水蒸気を発生させる。発生した水蒸気は、例えば発電用タービンに供給されて発電に利用される。
Also, the fluid medium in the furnace 21 is heated by combustion and transfers heat to the furnace wall tube of the furnace 21. Boiler feed water that flows inside the furnace wall tube is heated to generate water vapor. The generated water vapor is supplied to, for example, a power generation turbine and used for power generation.
流動媒体は、流動層式燃焼設備1の稼働前に、流動媒体供給装置3によって火炉21内に供給されている。また、流動媒体供給装置3は、火炉21の稼働中に流動媒体を火炉21内に供給してもよい。
The fluid medium is supplied into the furnace 21 by the fluid medium supply device 3 before the fluidized bed combustion facility 1 is operated. Further, the fluid medium supply device 3 may supply the fluid medium into the furnace 21 while the furnace 21 is in operation.
次に、火炉21への流動媒体の供給方法について説明する。火炉21への流動媒体の供給は、流動媒体供給装置3を使用して行われる。
Next, a method for supplying a fluid medium to the furnace 21 will be described. The fluid medium is supplied to the furnace 21 using the fluid medium supply device 3.
まず、流動媒体の供給方法では、送風部32によって空気を昇圧し、昇圧された空気である圧縮空気を連絡配管L32に供給する。連絡配管L32内を流れる圧縮空気は、流速調整弁34aを通過して、流動媒体供給配管L33に流入する。送風部32による吐出流量は、例えば一定のままに維持する。
First, in the fluid medium supply method, the air is pressurized by the blower 32, and the compressed air, which is the pressurized air, is supplied to the communication pipe L32. The compressed air flowing in the communication pipe L32 passes through the flow rate adjustment valve 34a and flows into the fluid medium supply pipe L33. For example, the discharge flow rate by the blower 32 is maintained constant.
流動媒体貯留部31には流動媒体が貯留されている。流動媒体の供給方法では、流動媒体貯留部31に貯留された流動媒体を、流動媒体貯留部31の底部から抜き出し、配管L31内を落下させて、合流部P31から流動媒体供給配管L33内に流入させる。流動媒体供給配管L33内に流入した流動媒体は、圧縮空気によって流されて流動媒体供給口21aを通過して、火炉21内に導入される。
The fluid medium is stored in the fluid medium reservoir 31. In the fluid medium supply method, the fluid medium stored in the fluid medium reservoir 31 is extracted from the bottom of the fluid medium reservoir 31, dropped in the pipe L31, and flows into the fluid medium supply pipe L33 from the junction P31. Let The fluid medium that has flowed into the fluid medium supply pipe L33 is caused to flow by the compressed air, passes through the fluid medium supply port 21a, and is introduced into the furnace 21.
ここで、流動媒体の供給方法は、流動媒体を輸送する気体の流速を調整する工程を含んでいる。この流動媒体の供給方法では、流速調整弁34aで弁開度を調整することで、流動媒体を輸送する気体の流速を調整している。流速調整弁34aで弁開度を大きくすることで、内部を流れる空気の流量を増やして流速を上昇させ、流速調整弁34aで弁開度を小さくすることで、内部を流れる空気の流量を減らして流速を低下させる。
Here, the supply method of the fluid medium includes a step of adjusting the flow rate of the gas transporting the fluid medium. In this fluid medium supply method, the flow rate of the gas transporting the fluid medium is adjusted by adjusting the valve opening degree with the flow velocity adjusting valve 34a. Increasing the valve opening with the flow rate adjusting valve 34a increases the flow rate of air flowing inside to increase the flow rate, and decreasing the valve opening degree with the flow rate adjusting valve 34a reduces the flow rate of air flowing inside. To reduce the flow rate.
また、流速検出部35で検出された流速に基づいて、流速調整弁34aを制御して、輸送用の空気の流速を調整することができる。流動媒体が流れる配管の摩耗損傷の進行の程度を抑制したい場合には、空気の流速を低下させる。
Further, based on the flow velocity detected by the flow velocity detector 35, the flow velocity adjustment valve 34a can be controlled to adjust the flow velocity of the air for transportation. When it is desired to suppress the progress of wear damage of the piping through which the fluid medium flows, the air flow rate is reduced.
また、流動媒体の供給方法では、連絡配管L32を流れる輸送用の空気の一部を、流速調整弁34aの上流側で、逃がし配管L34に流入させて、流動層式燃焼設備1の外部に放出させる。このとき、逃がし配管L34に設けられた圧力調整弁37aの弁開度を調整して、流速調整弁34aより上流側の連絡配管L32内の圧力を調整する。圧力調整弁37aの弁開度を大きくすることで、流速調整弁34aの上流側の連絡配管L32内の圧力を低下させ、圧力調整弁37aの弁開度を小さくすることで、流速調整弁34aの上流側の連絡配管L32内の圧力を上昇させる。これにより、逃がし配管L34内を通って排出される空気の流量を調整する共に、流速調整弁34aの上流側の圧力を調整することができ、送風部32の吐出流量を一定としつつ、流速調整弁34aを通過する空気の流量を適正に調整して、流動媒体を好適に輸送して火炉21内に供給することができる。
In addition, in the fluid medium supply method, a part of the transport air flowing through the communication pipe L32 flows into the escape pipe L34 on the upstream side of the flow rate adjustment valve 34a, and is released to the outside of the fluidized bed combustion facility 1. Let At this time, the valve opening degree of the pressure adjustment valve 37a provided in the relief pipe L34 is adjusted to adjust the pressure in the communication pipe L32 upstream of the flow rate adjustment valve 34a. By increasing the valve opening degree of the pressure adjustment valve 37a, the pressure in the connecting pipe L32 upstream of the flow rate adjustment valve 34a is reduced, and by reducing the valve opening degree of the pressure adjustment valve 37a, the flow speed adjustment valve 34a. The pressure in the communication pipe L32 on the upstream side is increased. As a result, the flow rate of air discharged through the escape pipe L34 can be adjusted, the pressure on the upstream side of the flow rate adjustment valve 34a can be adjusted, and the flow rate can be adjusted while keeping the discharge flow rate of the blower 32 constant. By appropriately adjusting the flow rate of the air passing through the valve 34a, the fluidized medium can be suitably transported and supplied into the furnace 21.
このような流動層式燃焼設備1及び流動媒体の供給方法によれば、輸送用の空気の流速を調整することができるので、流動媒体が流れる流動媒体供給配管L33の摩耗損傷を抑制することができる。輸送用の空気の流速を低下させることで、流動媒体を流通させる配管の摩耗損傷の進行を抑制することができる。これにより、配管の寿命を延長することができ、配管の取替え頻度を抑えることができる。
According to such a fluidized bed combustion facility 1 and a fluid medium supply method, the flow velocity of air for transportation can be adjusted, so that wear damage of the fluid medium supply pipe L33 through which the fluid medium flows can be suppressed. it can. By reducing the flow velocity of the air for transportation, it is possible to suppress the progress of wear damage of the piping through which the fluid medium flows. Thereby, the lifetime of piping can be extended and the replacement frequency of piping can be suppressed.
また、流動媒体供給装置3では、送風部32から送風された輸送用の空気の一部を流速調整弁34aの上流側から流動媒体供給装置3の外部に排出することができるので、流速調整弁34aの上流側において圧力上昇を抑制することができる。これにより、密閉構造を有する送風部32を採用することができ、この送風部32による吐出流量を一定としても、流速調整弁34aによって流速を低下させることができ、その際の余剰の空気を流速調整弁34aの上流側から流動媒体供給装置3の外部に排出することができる。その結果、流速調整弁34aの上流側の圧力上昇を抑えて、送風部32の信頼性の低下を抑制することができる。
Further, in the fluid medium supply device 3, a part of the transport air blown from the air blowing section 32 can be discharged from the upstream side of the flow rate adjustment valve 34a to the outside of the fluid medium supply device 3, so that the flow rate adjustment valve An increase in pressure can be suppressed on the upstream side of 34a. Thereby, the ventilation part 32 which has a sealing structure can be employ | adopted, and even if the discharge flow rate by this ventilation part 32 is made constant, the flow rate can be reduced by the flow rate adjustment valve 34a, and the excess air at that time is used as the flow rate. The fluid can be discharged from the upstream side of the regulating valve 34a to the outside of the fluid medium supply device 3. As a result, a pressure increase on the upstream side of the flow rate adjustment valve 34a can be suppressed, and a decrease in reliability of the blower 32 can be suppressed.
本発明は、前述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で下記のような種々の変形が可能である。
The present invention is not limited to the above-described embodiment, and various modifications as described below are possible without departing from the gist of the present invention.
上記実施形態では、流動媒体を輸送する気体を空気としているが、その他の気体を送風することで、流動媒体を輸送してもよい。
In the above embodiment, the gas that transports the fluid medium is air, but the fluid medium may be transported by blowing other gases.
また、上記の実施形態では送風部としてブロアを使用しているが、例えば、コンプレッサーなどその他の送風部でもよい。また、圧縮された気体が貯留されているボンベ(貯留容器)を連絡配管L32に接続し、ボンベから気体を送風してもよい。
In the above embodiment, the blower is used as the blower, but other blowers such as a compressor may be used. Moreover, the cylinder (storage container) in which the compressed gas is stored may be connected to the communication pipe L32 to blow the gas from the cylinder.
上記実施形態では、流速調整弁34aを用いて、流動媒体供給配管L33を流れる輸送用の空気の流速を調整しているが、その他の方法により、輸送用の気体の流速を調整してもよい。例えば、送風部からの吐出流量を調節することで、輸送用の気体の流速を調整する送風部を備える構成でもよい。この場合は、送風部が気体の流速を調整する流速調整部を備えている。このような送風部を備える構成であっても、上記の実施形態と同様の作用効果を奏し、気体の流速を調整して、流動媒体が流れる配管の損傷を抑えることができる。さらに、送風部とは別に流速調整部を設ける必要がなくなる。
In the above embodiment, the flow rate of the transporting air flowing through the fluid medium supply pipe L33 is adjusted using the flow rate adjusting valve 34a. However, the flow rate of the transporting gas may be adjusted by other methods. . For example, the structure provided with the ventilation part which adjusts the flow rate of the gas for transport by adjusting the discharge flow rate from a ventilation part may be sufficient. In this case, the air blowing unit includes a flow rate adjusting unit that adjusts the gas flow rate. Even if it is the structure provided with such a ventilation part, there exists an effect similar to said embodiment, the damage can be suppressed to the piping through which a fluid medium flows by adjusting the flow velocity of gas. Furthermore, it is not necessary to provide a flow rate adjusting unit separately from the air blowing unit.
また、逃がし配管L34から排出される輸送用の気体の流量を調整する流速調整部を備えることで、流動媒体供給配管L33内の流速を上昇させたり、低下させたりしてもよい。このような流量調整部を備える場合でも、上記の実施形態と同様の作用効果を奏し、気体の流速を調整して、流動媒体が流れる配管の損傷を抑えることができ、送風部からの吐出流量を一定のままとして、流動媒体供給配管L33内の流速を調整することができる。
Moreover, the flow rate in the fluid medium supply line L33 may be increased or decreased by providing a flow rate adjustment unit that adjusts the flow rate of the transport gas discharged from the escape line L34. Even when such a flow rate adjusting unit is provided, the same effect as the above embodiment can be achieved, the gas flow rate can be adjusted, and damage to the pipe through which the fluid medium flows can be suppressed. Can be kept constant, and the flow velocity in the fluid medium supply pipe L33 can be adjusted.
また、送風部において、輸送用の気体を吐出する回転機(ブロア、コンプレッサーなどの流体機械)の回転数を制御することで、吐出流量を調整する流量調整部を備え、輸送用の気体の流速を調整することもできる。回転機の回転数を上昇させることで、流速を上昇させ、回転機の回転数を低下させることで、流速を低下させてもよい。この場合には、回転機の回転数を制御する制御部(インバータ制御部)が、流量調整部となる。このような構成でも、上記の実施形態と同様の作用効果を奏し、気体の流速を調整することができ、流動媒体が流れる配管の損傷を抑えることができる。さらに、送風部とは別に流速調整部を設ける必要がなくなる。
In addition, the blower unit is equipped with a flow rate adjusting unit that adjusts the discharge flow rate by controlling the rotation speed of a rotating machine (fluid machine such as a blower or compressor) that discharges the gas for transportation, and the flow rate of the gas for transportation Can also be adjusted. The flow speed may be decreased by increasing the rotational speed of the rotating machine to increase the flow speed and decreasing the rotational speed of the rotating machine. In this case, the control part (inverter control part) which controls the rotation speed of a rotary machine becomes a flow volume adjustment part. Even with such a configuration, the same effects as those of the above-described embodiment can be achieved, the gas flow rate can be adjusted, and damage to the piping through which the fluid medium flows can be suppressed. Furthermore, it is not necessary to provide a flow rate adjusting unit separately from the air blowing unit.
また、流動媒体供給装置3は、排出部36として逃がし配管L34を備えているが、排出部36は連絡配管L32に設けられた開口部でもよい。この開口部から輸送用の気体を排出してもよい。この場合には、逃がし配管L34を設ける必要がなく、建設コストを抑制することができる。また、排出部36は、輸送用の気体を大気に放出しているが、昇圧された気体をその他の用途に用いることができる。例えば、流動媒体以外のその他の粉粒体の輸送に、排出部36から排出された気体を用いてもよい。これにより、送風部から吐出された輸送用気体を大気放出することなく有効利用することができる。また、流動媒体供給装置3は、排出部36を備えていない構成でもよい。これにより、上述したように、建設コストを抑制することができる。
Moreover, although the fluid medium supply device 3 includes the escape pipe L34 as the discharge part 36, the discharge part 36 may be an opening provided in the communication pipe L32. Gas for transportation may be discharged from this opening. In this case, it is not necessary to provide the escape pipe L34, and the construction cost can be suppressed. Moreover, although the discharge part 36 is discharging | emitting the gas for transport to air | atmosphere, the pressurized gas can be used for another use. For example, you may use the gas discharged | emitted from the discharge part 36 for transport of other granular materials other than a fluid medium. Thereby, the transporting gas discharged from the blower can be effectively used without being released into the atmosphere. Further, the fluid medium supply device 3 may be configured not to include the discharge unit 36. Thereby, as mentioned above, construction cost can be suppressed.
また、上記実施形態では、循環流動層ボイラ2で発生した水蒸気を発電用のタービンに供給しているが、循環流動層ボイラ2で発生した水蒸気は、その他の回転機の駆動源として利用してもよく、その他の熱源として利用してもよく、水蒸気の用途は限定されない。
In the above embodiment, the steam generated in the circulating fluidized bed boiler 2 is supplied to the turbine for power generation. However, the steam generated in the circulating fluidized bed boiler 2 is used as a driving source for other rotating machines. It may be used as another heat source, and the use of water vapor is not limited.
また、流動層燃焼炉は、循環流動層ボイラ2の火炉21に限定されず、流動媒体が循環しない流動層ボイラの火炉でもよく、ボイラを備えていない流動層燃焼炉でもよく、その他の焼却設備の流動層燃焼炉でもよい。
In addition, the fluidized bed combustion furnace is not limited to the furnace 21 of the circulating fluidized bed boiler 2, may be a fluidized bed boiler furnace in which the fluid medium does not circulate, a fluidized bed combustion furnace without a boiler, or other incineration equipment. The fluidized bed combustion furnace may be used.
また、上記実施形態では、流動媒体として砂を採用しているが、流動媒体供給装置3で火炉21内に供給される流動媒体は、砂に限定されず、その他の粉粒体でもよい。例えば、火炉21から抜き出されたボトムアッシュ(炉底灰)を、流動媒体として火炉21に供給してもよい。また、砂とボトムアッシュとの混合物を、流動媒体供給装置3を用いて火炉21内に供給してもよい。このような構成によれば、ボトムアッシュの抜き出し量を調整することで、火炉21の温度及び圧力を調整することができる。また、流動媒体と共に、触媒、可燃物などの粉粒体を、流動媒体供給装置3を用いて、流動層燃焼炉に供給してもよい。このような構成によれば、触媒を火炉に投入するための触媒投入口や、可燃物を火炉に投入するための可燃物投入口を、流動媒体供給口と別に設ける必要がなく、共通の供給口とすることができる。これにより、建設コストを抑えることができる。
In the above embodiment, sand is used as the fluid medium. However, the fluid medium supplied into the furnace 21 by the fluid medium supply device 3 is not limited to sand, and may be other powders. For example, bottom ash (furnace bottom ash) extracted from the furnace 21 may be supplied to the furnace 21 as a fluid medium. Further, a mixture of sand and bottom ash may be supplied into the furnace 21 using the fluid medium supply device 3. According to such a configuration, the temperature and pressure of the furnace 21 can be adjusted by adjusting the amount of bottom ash extracted. Further, together with the fluidized medium, particles such as a catalyst and a combustible material may be supplied to the fluidized bed combustion furnace using the fluidized medium supply device 3. According to such a configuration, it is not necessary to provide a catalyst inlet for introducing the catalyst into the furnace and a combustible inlet for introducing the combustible material into the furnace. It can be a mouth. Thereby, construction cost can be held down.
1…流動層式燃焼設備、2…循環流動層ボイラ、3…流動媒体供給装置(供給部)、4…排ガス処理装置、21…火炉(流動層燃焼炉)、21a…流動媒体供給口、21b…火炉ガス出口、22…サイクロン、22a…サイクロン入口、22b…サイクロン排出口、23…リターンライン、24…バックパス、25…熱回収部、26…煙突、31…流動媒体貯留部、32…送風部、32a…送風部吐出口、33…流動媒体移送部、34…流速調整部、34a…流速調整弁、35…流速検出部、36…排出部、37…圧力調整部、37a…圧力調整弁、L31…配管、L32…連絡配管、L33…流動媒体供給配管(供給配管)、L34…逃がし配管、P31…合流部。
DESCRIPTION OFSYMBOLS 1 ... Fluidized bed type combustion equipment, 2 ... Circulating fluidized bed boiler, 3 ... Fluidized medium supply apparatus (supply part), 4 ... Exhaust gas processing apparatus, 21 ... Furnace (fluidized bed combustion furnace), 21a ... Fluidized medium supply port, 21b ... Furnace gas outlet, 22 ... Cyclone, 22a ... Cyclone inlet, 22b ... Cyclone outlet, 23 ... Return line, 24 ... Back pass, 25 ... Heat recovery part, 26 ... Chimney, 31 ... Fluid medium storage part, 32 ... Air blow , 32a... Blower discharge port, 33... Fluid medium transfer unit, 34... Flow rate adjustment unit, 34a... Flow rate adjustment valve, 35. Flow rate detection unit, 36 ... Discharge unit, 37 ... Pressure adjustment unit, 37a ... Pressure adjustment valve L31 ... piping, L32 ... communication piping, L33 ... fluid medium supply piping (supply piping), L34 ... relief piping, P31 ... junction.
DESCRIPTION OF
Claims (4)
- 流動媒体を流動させながら燃料を燃焼する流動層燃焼炉と、
前記流動層燃焼炉に前記流動媒体を供給する供給部と、を備えた流動層式燃焼設備において、
前記供給部は、
前記流動媒体を輸送する気体を送風する送風部と、
前記気体の流速を調整する流速調整部と、を備える流動層式燃焼設備。 A fluidized bed combustion furnace for burning fuel while flowing a fluid medium;
In a fluidized bed combustion facility comprising a supply unit for supplying the fluidized medium to the fluidized bed combustion furnace,
The supply unit
A blower for blowing a gas transporting the fluid medium;
A fluidized bed combustion facility comprising: a flow rate adjusting unit that adjusts the flow rate of the gas. - 前記流速調整部は、流速調整弁を有し、
前記供給部は、前記送風部から送風された前記気体の一部を前記流速調整弁の上流側から排出する排出部を更に有する請求項1に記載の流動層式燃焼設備。 The flow rate adjustment unit has a flow rate adjustment valve,
The fluidized bed combustion facility according to claim 1, wherein the supply unit further includes a discharge unit that discharges a part of the gas blown from the blower unit from an upstream side of the flow rate adjustment valve. - 前記排出部は、前記流速調整弁の上流側の圧力を調整する圧力調整部を更に備える請求項2に記載の流動層式燃焼設備。 The fluidized bed combustion facility according to claim 2, wherein the discharge unit further includes a pressure adjustment unit that adjusts a pressure upstream of the flow rate adjustment valve.
- 流動媒体を流動させながら燃料を燃焼する流動層燃焼炉に前記流動媒体を供給する供給方法において、
前記流動媒体を輸送する気体の流速を調整する工程を備える流動層燃焼炉への流動媒体の供給方法。
In the supply method of supplying the fluidized medium to a fluidized bed combustion furnace that combusts fuel while fluidizing the fluidized medium,
A method for supplying a fluidized medium to a fluidized bed combustion furnace comprising a step of adjusting a flow rate of a gas transporting the fluidized medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PH12016501775A PH12016501775A1 (en) | 2014-03-31 | 2016-09-09 | Fluidized-bed type combustion equipment and method for supplying fluidized medium to fluidized-bed combustion furnace |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-070889 | 2014-03-31 | ||
JP2014070889A JP6258102B2 (en) | 2014-03-31 | 2014-03-31 | Fluidized bed combustion facility and method of supplying fluidized medium to fluidized bed combustion furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015151631A1 true WO2015151631A1 (en) | 2015-10-08 |
Family
ID=54239967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054615 WO2015151631A1 (en) | 2014-03-31 | 2015-02-19 | Fluidized-bed type combustion equipment and method for supplying fluidized medium to fluidized-bed combustion furnace |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6258102B2 (en) |
MY (1) | MY180386A (en) |
PH (1) | PH12016501775A1 (en) |
WO (1) | WO2015151631A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017141997A (en) * | 2016-02-08 | 2017-08-17 | 三菱日立パワーシステムズ株式会社 | Fluidized bed boiler |
CN109458614A (en) * | 2018-09-21 | 2019-03-12 | 湖南骏泰生物质发电有限责任公司 | A kind of transformation device of circulating fluidized bed combustion coal boiler combustion biomass |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06193826A (en) * | 1992-12-21 | 1994-07-15 | Hitachi Ltd | Fluidized bed boiler equipment and composite power generating facilities |
JPH06257716A (en) * | 1993-03-08 | 1994-09-16 | Babcock Hitachi Kk | Pressurized fluidized bed type boiler |
JPH0953807A (en) * | 1995-08-18 | 1997-02-25 | Ishikawajima Harima Heavy Ind Co Ltd | Method and device for controlling bed height of pressure fluidized bed boiler |
JP2002286216A (en) * | 2001-03-28 | 2002-10-03 | Chugai Ro Co Ltd | Operation method for circulated fluidized bed |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5713025A (en) * | 1980-06-27 | 1982-01-23 | Mitsubishi Heavy Ind Ltd | Apparatus for supplying matter to be incinerated to incinerator |
JPH0748578Y2 (en) * | 1990-11-01 | 1995-11-08 | 株式会社日本アルミ | Pneumatic transport device |
JP3463188B2 (en) * | 1997-10-31 | 2003-11-05 | 赤武エンジニアリング株式会社 | Pneumatic device for powder |
-
2014
- 2014-03-31 JP JP2014070889A patent/JP6258102B2/en active Active
-
2015
- 2015-02-19 WO PCT/JP2015/054615 patent/WO2015151631A1/en active Application Filing
- 2015-02-19 MY MYPI2016703252A patent/MY180386A/en unknown
-
2016
- 2016-09-09 PH PH12016501775A patent/PH12016501775A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06193826A (en) * | 1992-12-21 | 1994-07-15 | Hitachi Ltd | Fluidized bed boiler equipment and composite power generating facilities |
JPH06257716A (en) * | 1993-03-08 | 1994-09-16 | Babcock Hitachi Kk | Pressurized fluidized bed type boiler |
JPH0953807A (en) * | 1995-08-18 | 1997-02-25 | Ishikawajima Harima Heavy Ind Co Ltd | Method and device for controlling bed height of pressure fluidized bed boiler |
JP2002286216A (en) * | 2001-03-28 | 2002-10-03 | Chugai Ro Co Ltd | Operation method for circulated fluidized bed |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017141997A (en) * | 2016-02-08 | 2017-08-17 | 三菱日立パワーシステムズ株式会社 | Fluidized bed boiler |
CN109458614A (en) * | 2018-09-21 | 2019-03-12 | 湖南骏泰生物质发电有限责任公司 | A kind of transformation device of circulating fluidized bed combustion coal boiler combustion biomass |
Also Published As
Publication number | Publication date |
---|---|
PH12016501775B1 (en) | 2017-02-06 |
MY180386A (en) | 2020-11-28 |
JP2015190752A (en) | 2015-11-02 |
JP6258102B2 (en) | 2018-01-10 |
PH12016501775A1 (en) | 2017-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5594941B2 (en) | Biomass crusher and control method of the apparatus | |
AU2011333496B2 (en) | Low-rank coal processing apparatus and method | |
JP5753585B2 (en) | Waste treatment facility | |
RU2007117379A (en) | INSTALLATION AND METHOD FOR SEPARATION OF GRAIN MATERIALS | |
JP2009079830A (en) | Solid fuel crushing supply device and method | |
JP6258102B2 (en) | Fluidized bed combustion facility and method of supplying fluidized medium to fluidized bed combustion furnace | |
US20100294180A1 (en) | Oxygen fired steam generator | |
US3896746A (en) | Fuel preparation system | |
TWI803544B (en) | Drying hopper and use of the drying hopper, as well as grinding and drying plant comprising such | |
JP6612655B2 (en) | Method and apparatus for processing fluidized medium in fluidized bed furnace | |
JP2012225518A (en) | Fluidized bed drying apparatus | |
JP7191642B2 (en) | Boiler, ash processing equipment, method of operating boiler and method of operating ash processing equipment | |
JP6357969B2 (en) | Drying apparatus and method for drying water-containing material | |
WO2023026370A1 (en) | Sludge incineration system and sludge incineration method | |
KR102326929B1 (en) | Fluidized bed furnace of spiral flow type | |
JP6554985B2 (en) | Operating method and operating apparatus for pressurized circulating fluidized furnace | |
JP2000227210A (en) | Circulating fluidized bed furnace | |
JPS596691B2 (en) | Foreign matter removal method | |
JP2014159935A (en) | Fuel processing facility | |
JPWO2020071142A1 (en) | Stalker type incinerator and incinerator method | |
JP5279865B2 (en) | Classification processing system | |
CN104748129B (en) | Grate type incinerator | |
JP2019045098A (en) | Drying system | |
JPH05346203A (en) | Fluidized bed combustion apparatus equipping stationarily fluidizezd bed and method for producing high temperature water or vapor using same | |
JP2024033256A (en) | Combustion facility comprising supply part for low specific gravity combustion body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15772373 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12016501775 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15772373 Country of ref document: EP Kind code of ref document: A1 |