WO2015151294A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2015151294A1
WO2015151294A1 PCT/JP2014/060036 JP2014060036W WO2015151294A1 WO 2015151294 A1 WO2015151294 A1 WO 2015151294A1 JP 2014060036 W JP2014060036 W JP 2014060036W WO 2015151294 A1 WO2015151294 A1 WO 2015151294A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
indoor
operation state
compressor
cooling
Prior art date
Application number
PCT/JP2014/060036
Other languages
English (en)
French (fr)
Inventor
直史 嶋田
▲高▼田 茂生
明 坂本
千賀 田邊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/060036 priority Critical patent/WO2015151294A1/ja
Publication of WO2015151294A1 publication Critical patent/WO2015151294A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits

Definitions

  • the present invention relates to an air conditioner.
  • the air conditioner described in Patent Document 1 determines the season based on seasonal information such as the outdoor temperature, sets an upper limit value and a lower limit value of an indoor temperature range in which the air conditioner is operated and stopped according to the season, When the outdoor temperature is not less than the lower limit value and not more than the upper limit value, the air conditioning is stopped, the cooling operation is performed when the outdoor temperature exceeds the upper limit value, and the heating operation is performed when the outdoor temperature is lower than the lower limit value. It controls the harmony machine.
  • the air conditioner described in Patent Document 1 stops the cooling operation when the indoor temperature is equal to or lower than the upper limit value of the indoor temperature range, and performs the heating operation when the indoor temperature is equal to or higher than the lower limit value of the indoor temperature range. Stop. For this reason, for example, if the room temperature is equal to or lower than the upper limit during cooling operation, the cooling operation stops and cold air is not blown out immediately, and the temperature of the user who has been lowered by the cold air suddenly increases. Inconvenience arises. Therefore, when switching between the start of the cooling / heating operation and the stop of the cooling / heating operation, there is a problem that the user's sensible temperature changes suddenly and the user's discomfort increases.
  • the present invention has been made against the background of the above-described problems, and provides an air conditioner that is more comfortable than before even after stopping the cooling and heating operation while ensuring the conventional energy saving performance. With the goal.
  • An air conditioner includes an indoor temperature detecting means for detecting an indoor temperature, an indoor unit fan, and a control means for controlling the indoor unit fan based on at least the temperature detected by the indoor temperature detecting means,
  • the control means includes a heating operation mode that is executed when the detected temperature of the indoor temperature detecting means is equal to or lower than a lower limit temperature, and a cooling operation that is executed when the detected temperature of the indoor temperature detecting means is equal to or higher than the upper limit temperature.
  • the detected temperature is One of the plurality of air-blowing operations in which the air volume of the indoor unit fan is different so that the larger the air volume is, the larger the air volume of the indoor unit fan is. Determines, and controls the indoor unit fan so that the air volume corresponding to the blowing operation of the one.
  • the control means when the air blowing operation mode is started, performs a plurality of air blowing operations in which the air blowing amounts of the indoor unit fans are different so that the air blowing amount of the indoor unit fan increases as the detected temperature increases.
  • One air blow operation is determined from the inside, and the indoor unit fan is controlled so that the air flow amount corresponding to the one air blow operation is obtained. For this reason, the ventilation operation according to a user's liking can be performed. Therefore, it is possible to obtain an air conditioner that is more comfortable than the prior art even after stopping the cooling and heating operation while ensuring the conventional energy saving.
  • FIG. It is a figure which shows the block diagram of the air conditioner 100 of this Embodiment 1.
  • FIG. It is a figure which shows the control flowchart of the air conditioner 100 of this Embodiment 1.
  • FIG. It is a figure which shows the relationship between the driving
  • FIG. It is a figure which shows the control flowchart of the air conditioner 100 of this Embodiment 2.
  • FIG. It is a figure which shows the block diagram of the air conditioner 100 of this Embodiment 3.
  • FIG. It is a figure which shows the control flowchart of the air conditioner 100 of this Embodiment 3.
  • FIG. 1 It is a figure which shows the relationship between the driving
  • FIG. 1 It is a figure which shows the relationship between driving
  • FIG. 1 is a block diagram of an air conditioner 100 according to the first embodiment.
  • FIG. 2 is a control flowchart of the air conditioner 100 according to the first embodiment.
  • FIG. 3 is a diagram showing a relationship among the operation elapsed time, the indoor temperature change, and the operation state of the air conditioner 100 of the first embodiment.
  • the air conditioner 100 includes an indoor temperature detection means 1, an operation operation means 2, a microcomputer 3, an indoor unit 4, and an outdoor unit 7.
  • the driving operation means 2 corresponds to the operation means in the present invention.
  • the indoor temperature detection means 1 detects the temperature of the air-conditioning target space such as a room, and is composed of, for example, a thermistor.
  • the operation operation means 2 is for performing setting of the operation mode of the air conditioner 100, temperature adjustment, and the like, and is constituted by a remote controller, for example.
  • the microcomputer 3 controls the operation of the air conditioner 100 and includes an indoor temperature determination unit 12 and an operation state determination unit 13.
  • the room temperature determination unit 12 determines in which temperature range the room temperature is based on the signal related to the room temperature output from the room temperature detection unit 1.
  • the room temperature determination means 12 stores a heating set temperature Theat and a cooling set temperature Tcool that are automatically set during automatic operation.
  • the operation state determination unit 13 determines the operation state of the air conditioner based on at least one of the operation signal output from the operation operation unit 2 and the signal indicating the temperature region output from the room temperature determination unit 12. Outputs signals to control various devices.
  • the operation state of the air conditioner 100 includes, for example, cooling operation, cooling operation (weak), air blowing operation (strong wind), air blowing operation (medium wind), air blowing operation (weak wind), air blowing operation (slight wind), and heating operation. And heating operation (weak).
  • the operation state determination means 13 is executed when the heating operation mode is executed when the detected temperature of the indoor temperature detecting means 1 is lower than the lower limit temperature, and when the detected temperature of the indoor temperature detecting means 1 is higher than the upper limit temperature.
  • a cooling operation mode, and an air blowing operation mode that is executed when the detected temperature of the indoor temperature detecting means 1 exceeds the lower limit temperature and falls below the upper limit temperature.
  • the heating operation mode includes a heating operation and a heating operation (weak).
  • the cooling operation mode includes a cooling operation and a cooling operation (weak).
  • the air blowing operation mode includes air blowing operation (strong wind), air blowing operation (medium wind), air blowing operation (weak wind), and air blowing operation (slight wind).
  • the indoor unit 4 includes an air flow control means 5 and an indoor unit fan 6.
  • the air flow control means 5 controls the rotational speed of the indoor unit fan 6 based on the signal output from the operation state determination means 13.
  • the outdoor unit 7 includes a compressor 9 for circulating the refrigerant of the air conditioner 100, a compressor operation control device 8 for controlling the compressor 9, a four-way valve 11 for switching the refrigerant circuit between cooling and heating, and a four-way valve. And four-way valve control means 10 for controlling 11.
  • the compressor operation control device 8 controls the rotation speed of the compressor 9 based on the signal output from the operation state determination means 13.
  • the four-way valve control means 10 performs control to switch the four-way valve 11 based on the signal output from the operating state determination means 13.
  • the air flow rate control means 5, the compressor operation control device 8, and the four-way valve control means 10 are, for example, hardware such as a circuit device that realizes this function, or software executed on an arithmetic device such as a microcomputer or a CPU. Composed. In addition, you may comprise so that the function which the microcomputer 3 has may be provided in the ventilation volume control means 5, the compressor operation control apparatus 8, and the four-way valve control means 10. FIG.
  • the air conditioner 100 switches the operation state by comparing the room temperature Tr with various set temperatures after starting the automatic operation.
  • FIG. 3 showing the control contents used in the flowchart of FIG. 2 will be explained.
  • the elapsed time of operation of the air conditioner 100 is shown on the horizontal axis of the graph of FIG.
  • regions (a), (b), (c), (d), (e), and (f) are shown in the order of time.
  • the room temperature Tr is shown on the vertical axis of the graph of FIG.
  • the room temperature Tr is the heating set temperature Theat, the airflow switching temperature T3, the airflow switching temperature T2, the airflow switching temperature T1, and the cooling setting temperature Tcool in order of increasing temperature.
  • the control content corresponding to the region (a) is executed.
  • control is performed such that the operation state is “cooling”, the air flow rate is “strong wind”, and the compressor 9 is “operation”.
  • the control content corresponding to the region (b) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow amount is “strong wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (c) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow amount is “medium wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (d) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow rate is “weak wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (e) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow amount is “light wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (f) is executed.
  • control is performed such that the operation state is “heating”, the air flow rate is “strong wind”, and the compressor 9 is “operation”.
  • the air conditioner 100 performs the process of step S101 for starting automatic operation.
  • the setting that divides the temperature range between the heating set temperature Theat and the cooling set temperature Tcool into four equal parts is, for example, that the indoor temperature determination means 12 sets the air flow switching temperatures T1, T2, and T3. It is set by specifying. Accordingly, the set temperatures are the cooling set temperature Tcool, the air volume switching temperature T1, the air volume switching temperature T2, the air volume switching temperature T3, and the heating setting temperature Heat in order of increasing temperature.
  • the heating set temperature Theat corresponds to the lower limit temperature of the present invention.
  • the cooling set temperature Tcool corresponds to the upper limit temperature of the present invention.
  • step S103 the room temperature determination means 12 determines whether or not the room temperature Tr is lower than the set temperature Tcool.
  • step S103 when the room temperature determination unit 12 determines that the room temperature Tr is lower than the set temperature Tcool (Yes in step S103), the room temperature determination unit 12 proceeds to step S105.
  • step S103 when the room temperature determination means 12 determines that the room temperature Tr is equal to or higher than the set temperature Tcool (No in step S103), a signal indicating that it corresponds to the region (a) in FIG. Is output and the process proceeds to step S104.
  • step S104 the operation state determination means 13 is based on a signal indicating that it corresponds to the region (a) output from the room temperature determination means 12, the operation state is "cooling", the air flow rate is "strong wind”, and the compression A signal for performing the cooling operation in which the machine 9 becomes “operation” is output.
  • step S106 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signal output from the operation state determination means 13. Specifically, the air flow control means 5 controls the indoor unit fan 6 so that the air flow becomes “strong wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 becomes “operation”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “heating”.
  • step S107 the compressor operation control device 8 controls the compressor 9 to stop the compressor 9, and proceeds to step S108.
  • step S ⁇ b> 109 the operation state determination means 13 is based on a signal indicating that it corresponds to the region (b) output from the room temperature determination means 12, the operation state is “fan”, the blower volume is “strong wind”, and the compression is performed.
  • a signal for performing a blowing operation (strong wind) in which the machine 9 is “stopped” is output.
  • step S110 the room temperature determination means 12 determines whether or not the room temperature Tr is lower than the air volume switching temperature T2. In step S110, when the room temperature determination unit 12 determines that the room temperature Tr is lower than the air volume switching temperature T2 (Yes in step S110), the room temperature determination unit 12 proceeds to step S112. In step S110, when the room temperature determination unit 12 determines that the room temperature Tr is equal to or higher than the air flow switching temperature T2 (No in step S110), a signal indicating that the area corresponds to the region (c) in FIG. The process proceeds to step S111.
  • step S111 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signals output from the operation state determination means 13. Specifically, the air volume control means 5 controls the indoor unit fan 6 so that the air volume becomes “medium wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 is “stopped”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “fan”.
  • step S112 the room temperature determination means 12 determines whether or not the room temperature Tr is lower than the air volume switching temperature T3. In step S112, when the room temperature determination unit 12 determines that the room temperature Tr is lower than the air flow switching temperature T3 (Yes in step S112), a signal indicating that it corresponds to the region (e) in FIG. Output, and the process proceeds to step S114. In step S112, if the room temperature determination unit 12 determines that the room temperature Tr is equal to or higher than the air flow switching temperature T3 (No in step S112), a signal indicating that it corresponds to the region (d) in FIG. Output, and the process proceeds to step S113.
  • step S113 the operation state determination means 13 is based on a signal indicating that it corresponds to the region (d) output from the room temperature determination means 12, the operation state is “air blowing”, the air flow amount is “weak wind”, The compressor 9 outputs a signal for performing a blowing operation (weak wind) that is “stopped”.
  • step S113 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signal output from the operation state determination means 13. Specifically, the air flow control means 5 controls the indoor unit fan 6 so that the air flow becomes “weak wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 is “stopped”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “fan”.
  • step S104, step S106, step S109, step S111, step S113, and step S114 are completed, the process returns to step S102.
  • the processes in steps S102 to S114 are repeated until the automatic operation is stopped.
  • the temperature range from the heating set temperature Theat to the cooling set temperature Tcool is set as the blowing operation, and the air volume during the blowing operation is switched according to the room temperature. I am doing so. For this reason, there is no sudden change in the sensible temperature, and the air conditioner 100 having both energy saving effect and comfort can be obtained.
  • the number of airflow switching temperatures need not be three when there are four or more airflow settings or when there are less than three airflow settings. For example, if there are five or more types of airflow settings, the number of airflow switching temperatures may be set to four.
  • the wind direction in each temperature region may be set automatically or manually. For example, when the indoor temperature is high, the user needs air volume, so the wind direction is set so that the user feels comfortable. To decide.
  • Embodiment 2 can set the cooling set temperature Tcool, the heating set temperature Theat, and the air flow switching temperatures T1, T2, and T3 by operating the operation operation means 2. It is a thing.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • step S201 the operation state determination means 13 determines whether or not the operation of the operation operation means 2 for manually setting the cooling set temperature Tcool, the heating set temperature Theat, and the airflow switching temperatures T1, T2, and T3 has been performed. To do.
  • step S201 if the operation state determination means 13 determines that the operation of the operation operation means 2 for manually setting the cooling set temperature Tcool, the heating set temperature Theat, and the airflow switching temperatures T1, T2, T3 has been performed (step S201). Yes in S201), the process proceeds to step S203.
  • step S202 the room temperature determination means 12 sets the air flow switching temperatures T1, T2, and T3 based on the heating set temperature Theat and the cooling set temperature Tcool stored in itself, and the process proceeds to step S207.
  • step S203 when the operation operation means 2 is operated, the heating set temperature Theat and the cooling set temperature Tcool can be set.
  • the process proceeds to step S204.
  • step S204 when the driving operation means 2 is operated, the air volume switching temperature T1 can be set.
  • step S204 when the driving operation means 2 for setting the air volume switching temperature T1 is operated, the process proceeds to step S205.
  • step S205 when the driving operation means 2 is operated, the air volume switching temperature T2 can be set.
  • step S205 when the driving operation means 2 for setting the air volume switching temperature T2 is operated, the process proceeds to step S206.
  • step S206 when the driving operation means 2 is operated, the air volume switching temperature T3 can be set.
  • step S205 when the driving operation means 2 for setting the air volume switching temperature T3 is operated, the process proceeds to step S207.
  • step S207 the processing after step S102 of the first embodiment is performed.
  • Embodiment 3 FIG.
  • the air conditioner 100 includes an outdoor temperature detection means 14 and an outdoor temperature determination means 15.
  • items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations are described using the same reference numerals.
  • FIG. 5 is a block diagram of the air conditioner 100 according to the third embodiment.
  • FIG. 6 is a control flowchart of the air conditioner 100 according to the third embodiment.
  • FIG. 7 is a diagram illustrating a relationship among the operation elapsed time, the change in the indoor temperature, the change in the outdoor temperature, and the operation state of the air conditioner 100 according to the third embodiment.
  • the air conditioner 100 includes an outdoor temperature detection means 14 and an outdoor temperature determination means 15.
  • the outdoor temperature determination unit 15 outputs a signal related to the outdoor temperature output from the outdoor temperature detection unit 14 to the operation state determination unit 13.
  • the cooling operation, the heating operation, the air blowing operation, and the air flow rate are switched based on the indoor temperature detected by the indoor temperature detecting means 1 and the outdoor temperature To detected by the outdoor temperature detecting means 14. I do.
  • the air conditioner 100 switches the operation state by comparing the indoor temperature Tr with various set temperatures after starting the automatic operation.
  • FIG. 7 showing the control contents used in the flowchart of FIG. 6 will be described.
  • the elapsed time of operation of the air conditioner 100 is shown on the horizontal axis of the graph of FIG.
  • the room temperature Tr is shown on the vertical axis of the graph of FIG.
  • the room temperature Tr is the heating set temperature Theat, the intermediate temperature Ts, and the cooling set temperature Tcool in order of increasing temperature.
  • the control contents corresponding to the areas (b) to (f) in the third embodiment are the same as the control contents corresponding to the areas (b) to (f) in the first embodiment, and thus the description thereof is omitted. .
  • the control content corresponding to the region (a) is executed.
  • control is performed such that the operation state is “cooling”, the air flow rate is “medium wind”, and the compressor 9 is “operation”.
  • control content corresponding to the region (h) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow rate is “light wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (i) is executed.
  • control is performed such that the operation state is “air blowing”, the air blowing amount is “weak wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (j) is executed.
  • control is performed such that the operating state is “air blowing”, the air blowing amount is “medium wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (k) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow amount is “strong wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (l) is executed.
  • control is performed such that the operating state is “cooling”, the air flow rate is “strong wind”, and the compressor 9 is “stopped”.
  • step S301 the air conditioner 100 starts automatic operation.
  • Step S301 when the automatic operation is started, the operation state determination means 13 automatically sets the intermediate temperature Ts of the cooling / heating set temperature based on the cooling set temperature Tcool and the heating set temperature Theat.
  • the intermediate temperature Ts is calculated, for example, by dividing the numerical value obtained by calculating the sum of the cooling set temperature Tcool and the heating set temperature Theat by 2. Note that the compressor 9 is stopped during the air blowing operation.
  • step S303 the operation state determination means 13 determines whether or not the outdoor temperature To is lower than the indoor temperature Tr.
  • step S303 when the operation state determination unit 13 determines that the outdoor temperature To is lower than the indoor temperature Tr (Yes in step S303), the operation state determination unit 13 proceeds to step S304.
  • step S303 when the operation state determination means 13 determines that the outdoor temperature To is equal to or higher than the indoor temperature Tr (No in step S303), the operation state determination means 13 proceeds to step S315.
  • step S304 the operation state determination means 13 determines whether or not the outdoor temperature To is lower than the cooling set temperature Tcool.
  • step S304 when the operation state determination unit 13 determines that the outdoor temperature To is lower than the cooling set temperature Tcool (Yes in step S304), the operation state determination unit 13 proceeds to step S306.
  • step S304 when the operation state determination means 13 determines in step S304 that the outdoor temperature To is equal to or higher than the cooling set temperature Tcool (No in step S304), the operation state determination means 13 proceeds to step S305.
  • step S305 since the outdoor temperature To is equal to or higher than the cooling set temperature Tcool, the operation state determination means 13 determines that it corresponds to the region (a) in FIG. 7, and the operation state is “cooling” and the air flow rate is “medium wind” ”, A signal for performing the cooling operation (weak) in which the compressor 9 becomes“ operation ”is output.
  • step S306 the operation state determination means 13 determines whether or not the room temperature Tr is lower than the cooling set temperature Tcool.
  • step S306 when the operation state determination unit 13 determines that the room temperature Tr is lower than the cooling set temperature Tcool (Yes in step S306), the operation state determination unit 13 proceeds to step S308.
  • step S307 when the operation state determination means 13 determines in step S306 that the room temperature Tr is equal to or higher than the cooling set temperature Tcool (No in step S306), the operation state determination means 13 proceeds to step S307. Note that the processing in step S307 is the same as the processing in step S109, and thus description thereof is omitted.
  • step S308 the operation state determination means 13 determines whether or not the outdoor temperature To is lower than the intermediate temperature Ts.
  • step S308 when the operation state determination unit 13 determines that the outdoor temperature To is lower than the intermediate temperature Ts (Yes in step S308), the operation state determination unit 13 proceeds to step S310.
  • step S308 when the operation state determination unit 13 determines that the outdoor temperature To is equal to or higher than the intermediate temperature Ts (No in step S308), the operation state determination unit 13 proceeds to step S309.
  • the process of step S309 is the same as the process of step S111, description is omitted.
  • step S312 the operation state determination means 13 determines whether or not the room temperature Tr is lower than the heating set temperature Theat. In step S312, when the operation state determination unit 13 determines that the room temperature Tr is lower than the heating set temperature Theat (Yes in step S312), the operation state determination unit 13 proceeds to step S314. On the other hand, in step S312, when the operation state determination unit 13 determines that the room temperature Tr is equal to or higher than the heating set temperature Theat (No in step S312), the operation state determination unit 13 proceeds to step S313. In addition, since the process of step S313 is the same as the process of step S114, description is omitted.
  • step S303 when it is determined in step S303 that the outdoor temperature To is equal to or higher than the indoor temperature Tr (No in step S303), the operation state determination unit 13 proceeds to step S315.
  • step S315 the operation state determination means 13 determines whether the room temperature Tr is higher than the heating set temperature Theat. In step S315, if the operation state determination unit 13 determines that the room temperature Tr is higher than the heating set temperature Theat (Yes in step S315), the operation state determination unit 13 proceeds to step S317. On the other hand, when the operation state determination means 13 determines in step S315 that the room temperature Tr is equal to or lower than the heating set temperature Theat (No in step S315), the operation state determination means 13 proceeds to step S316.
  • step S316 since the room temperature Tr is equal to or lower than the heating set temperature Theat, the operation state determination means 13 determines that it corresponds to the region (g) in FIG. 7, and the operation state is “heating” and the air flow rate is “medium wind” ”, A signal for performing the heating operation (weak) in which the compressor 9 becomes“ operation ”is output.
  • step S 316 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signal output from the operation state determination means 13. Specifically, the air volume control means 5 controls the indoor unit fan 6 so that the air volume becomes “medium wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 becomes “operation”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “heating”. Since the outdoor temperature To is equal to or higher than the indoor temperature Tr, the air volume of the indoor unit fan 6 in the heating operation in step S316 is greater than the air volume of the indoor unit fan 6 in the normal cooling operation so that the room is not overheated. Is set to be smaller.
  • step S317 the operation state determination means 13 determines whether or not the outdoor temperature To is higher than the intermediate temperature Ts. In step S317, if the operation state determination unit 13 determines that the outdoor temperature To is higher than the intermediate temperature Ts (Yes in step S317), the operation state determination unit 13 proceeds to step S319. In step S317, if the operation state determination unit 13 determines that the outdoor temperature To is equal to or lower than the intermediate temperature Ts (No in step S317), the operation state determination unit 13 proceeds to step S318.
  • step S318 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signal output from the operation state determination means 13. Specifically, the air volume control means 5 controls the indoor unit fan 6 so that the air volume becomes “slight wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 is “stopped”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “fan”.
  • step S319 the operation state determination means 13 determines whether or not the room temperature Tr is higher than the intermediate temperature Ts.
  • step S319 when the operation state determination unit 13 determines that the room temperature Tr is higher than the intermediate temperature Ts (Yes in step S319), the operation state determination unit 13 proceeds to step S321.
  • step S319 if the operating state determination unit 13 determines that the room temperature Tr is equal to or lower than the intermediate temperature Ts (No in step S319), the operation state determination unit 13 proceeds to step S320.
  • step S320 the operation state determination means 13 determines that the room temperature Tr is equal to or lower than the intermediate temperature Ts, and therefore corresponds to the region (i) in FIG. 7, and the operation state is “fan” and the fan volume is “weak wind”. Then, the compressor 9 outputs a signal for performing the air blowing operation (weak wind) that is “stopped”.
  • step S320 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signal output from the operation state determination means 13. Specifically, the air flow control means 5 controls the indoor unit fan 6 so that the air flow becomes “weak wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 is “stopped”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “fan”.
  • step S321 the operation state determination means 13 determines whether the outdoor temperature To is higher than the cooling set temperature Tcool. In step S321, if the operation state determination unit 13 determines that the outdoor temperature To is higher than the cooling set temperature Tcool (Yes in step S321), the operation state determination unit 13 proceeds to step S323. On the other hand, in step S321, when the outdoor state To determines that the outdoor temperature To is equal to or lower than the cooling set temperature Tcool (No in step S321), the operation state determination unit 13 proceeds to step S322.
  • step S322 since the outdoor temperature To is equal to or lower than the cooling set temperature Tcool, the operation state determination means 13 determines that it corresponds to the region (j) in FIG. ”, A signal for performing a blowing operation (weak wind) in which the compressor 9 is“ stopped ”is output.
  • step S322 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signal output from the operation state determination means 13. Specifically, the air volume control means 5 controls the indoor unit fan 6 so that the air volume becomes “medium wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 is “stopped”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “fan”.
  • step S323 the operation state determination means 13 determines whether or not the room temperature Tr is higher than the cooling set temperature Tcool. In step S323, when the operation state determination means 13 determines that the room temperature Tr is higher than the cooling set temperature Tcool (Yes in step S323), the operation state determination means 13 proceeds to step S325. On the other hand, when the operation state determination means 13 determines in step S323 that the room temperature Tr is equal to or lower than the cooling set temperature Tcool (No in step S323), the operation state determination means 13 proceeds to step S324.
  • step S325 since the indoor temperature Tr is higher than the cooling set temperature Tcool, the operation state determination means 13 determines that it corresponds to the region (l) in FIG. 7, the operation state is “cooling”, and the air flow rate is “strong wind” ”, A signal for performing the cooling operation in which the compressor 9 is“ stopped ”is output.
  • step S 325 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signals output from the operation state determination means 13. Specifically, the air flow control means 5 controls the indoor unit fan 6 so that the air flow becomes “strong wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 is “stopped”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “cooling”.
  • step S324 since the room temperature Tr is equal to or lower than the cooling set temperature Tcool, the operation state determination unit 13 determines that the operation state is in the region (k) in FIG. ”, A signal for performing a blowing operation (strong wind) in which the compressor 9 is“ stopped ”is output.
  • the air conditioner 100 has the indoor unit fan 6 based on the indoor temperature detected by the indoor temperature detecting means 1 and the magnitude of the outdoor temperature detected by the outdoor temperature detecting means 14. To control. For this reason, it is possible to adjust the air volume further corresponding to the change in temperature, and the control to weaken the operation of the cooling and heating according to the change in the outdoor temperature To, so that more energy saving effect can be expected.
  • a signal output from the indoor temperature detection means 1 is input to the operating state determination means 13 via the indoor temperature determination means 12, and a signal output from the outdoor temperature detection means 14 is outdoor.
  • a signal output from the indoor temperature detection unit 1 is input to the operation state determination unit 13 without passing through the indoor temperature determination unit 12, and a signal output from the outdoor temperature detection unit 14 does not pass through the outdoor temperature determination unit 15. May be input to the operating state determination means 13.
  • the operation state determination unit 13 may function as the indoor temperature determination unit 12 and the outdoor temperature determination unit 15.
  • Embodiment 4 FIG.
  • the air conditioner 100 includes an indoor humidity detection means 16 and an indoor humidity determination means 17.
  • items not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 8 is a block diagram of the air conditioner 100 according to the fourth embodiment.
  • FIG. 9 is a diagram showing a control flowchart of the air conditioner 100 of the fourth embodiment.
  • FIG. 10 is a diagram illustrating a relationship among an operation elapsed time, a change in room temperature, a room humidity, and an operation state when the room humidity of the air conditioner 100 according to the fourth embodiment is high.
  • FIG. 11 is a diagram showing the relationship between the elapsed operation time, the change in indoor temperature, the indoor humidity, and the operating state when the indoor humidity of the air conditioner 100 of the fourth embodiment is low.
  • the air conditioner 100 includes indoor humidity detection means 16 and indoor humidity determination means 17.
  • the indoor humidity determination unit 17 outputs a signal related to the outdoor temperature output from the indoor humidity detection unit 16 to the operation state determination unit 13.
  • the cooling operation, the heating operation, the air blowing operation, and the air flow rate are switched based on the indoor temperature detected by the indoor temperature detecting means 1 and the indoor humidity detected by the indoor humidity detecting means 16. Do.
  • the air conditioner 100 switches the operation state by comparing the room temperature Tr with various set temperatures after starting the automatic operation.
  • FIGS. 10 and 11 showing the control contents used in the flowchart of FIG. 9 will be described.
  • the control content corresponding to the region (b) is executed.
  • control is performed such that the operation state is “cooling”, the air flow rate is “weak wind”, and the compressor 9 is “operation”.
  • the control content corresponding to the region (e) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow amount is “weak wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (g) is executed.
  • control is performed such that the operation state is “heating”, the air flow rate is “strong wind”, and the compressor 9 is “operation”.
  • the elapsed time of operation of the air conditioner 100 is shown on the horizontal axis of the graph in FIG. As the operation elapsed time, regions (a), (b), (c), (d), (e), (f), and (g) are shown in the order of time.
  • the room temperature Tr is shown on the vertical axis of the graph of FIG. The room temperature Tr is the heating set temperature Theat, the cooling / heating start temperature Ta, the airflow switching temperature T3, the airflow switching temperature T2, the airflow switching temperature T1, and the cooling setting temperature Tcool in order of increasing temperature.
  • the control content corresponding to the region (b) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow amount is “strong wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (c) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow amount is “medium wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (d) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow rate is “weak wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (e) is executed.
  • control is performed such that the operation state is “air blowing”, the air flow amount is “light wind”, and the compressor 9 is “stopped”.
  • the control content corresponding to the region (f) is executed.
  • control is performed such that the operation state is “heating”, the air flow rate is “weak wind”, and the compressor 9 is “operation”.
  • control content corresponding to the region (g) is executed.
  • control is performed such that the operation state is “heating”, the air flow rate is “strong wind”, and the compressor 9 is “operation”.
  • step S401 the indoor temperature detecting means 1 detects the indoor temperature Tr, and the indoor humidity detecting means 16 detects the indoor humidity, and the process proceeds to step S402.
  • step S402 the indoor humidity determination means 17 determines whether or not the indoor humidity detected by the indoor humidity detection means 16 is outside a predetermined reference humidity range.
  • step S402 when the indoor humidity determination means 17 determines that the indoor humidity detected by the indoor humidity detection means 16 is within the predetermined reference humidity range (Yes in step S402), the indoor humidity determination means 17 proceeds to step S403.
  • step S403 the operation of the first embodiment (steps S103 to S114 in FIG. 2) is performed, and the process returns to step S401.
  • step S402 if the indoor humidity determination unit 17 determines that the indoor humidity detected by the indoor humidity detection unit 16 is outside the predetermined reference humidity range (No in step S402), the process proceeds to step S404. To do.
  • step S404 for example, the operation state determination means 13 sets the cooling / heating start temperature Ta, and the process proceeds to step S405.
  • the cooling / heating start temperature Ta is set to a temperature lower than the cooling set temperature Tcool when the humidity is high, and is set to a temperature higher than the heating set temperature Theat when the humidity is low.
  • the room temperature is set to 65 to 70.
  • the formula for the discomfort index is calculated below.
  • Discomfort index 0.81 ⁇ room temperature + 0.01 ⁇ humidity ⁇ (0.99 ⁇ room temperature ⁇ 14.3) +46.3
  • step S405 the indoor humidity determination means 17 determines whether the indoor humidity detected by the indoor humidity detection means 16 is higher than the reference humidity range. In step S405, when the indoor humidity determination unit 17 determines that the indoor humidity detected by the indoor humidity detection unit 16 is higher than the reference humidity range (Yes in step S405), the indoor humidity determination unit 17 proceeds to step S406. On the other hand, in step S405, when the indoor humidity determination unit 17 determines that the indoor humidity detected by the indoor humidity detection unit 16 is equal to or lower than the reference humidity range (No in step S405), the indoor humidity determination unit 17 proceeds to step S414.
  • step S406 the operation state determination means 13 determines the air volume switching temperature T1 so as to divide the temperature range equal to or higher than the heating set temperature Theat and lower than the cooling / heating start temperature Ta into four equal parts based on the cooling / heating start temperature Ta and the heating set temperature Theat. , T2, T3 are set, and the process proceeds to step S407.
  • step S408 since the indoor temperature Tr is equal to or higher than the set temperature Tcool, the operation state determination means 13 determines that it corresponds to the region (a) in FIG. 10, the operation state is “cooling”, the air flow rate is “strong wind”, A signal for performing the cooling operation in which the compressor 9 is in “operation” is output.
  • step S408 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signal output from the operation state determination means 13. Specifically, the air flow control means 5 controls the indoor unit fan 6 so that the air flow becomes “strong wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 becomes “operation”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “cooling”.
  • step S409 the operation state determination means 13 determines whether or not the room temperature Tr is lower than the cooling / heating start temperature Ta. In step S409, when the operation state determination unit 13 determines that the room temperature Tr is lower than the cooling / heating start temperature Ta (Yes in step S409), the operation state determination unit 13 proceeds to step S411. In step S409, when the operation state determination unit 13 determines that the room temperature Tr is equal to or higher than the cooling / heating start temperature Ta (No in step S409), the operation state determination unit 13 proceeds to step S410.
  • step S410 since the indoor temperature Tr is equal to or higher than the cooling / heating start temperature Ta, the operation state determination means 13 determines that it corresponds to the region (b) in FIG. ”, A signal for performing the cooling operation (weak operation) in which the compressor 9 becomes“ operation ”is output.
  • step S410 the air flow rate control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signal output from the operation state determination means 13. Specifically, the air flow control means 5 controls the indoor unit fan 6 so that the air flow becomes “weak wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 becomes “operation”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “cooling”.
  • the process of step S410 is an operation for lowering the sensible temperature that has risen due to the temperature change
  • the air volume of the indoor unit fan 6 in the cooling operation of step S410 is a normal cooling operation so as not to overcool. Is set to be smaller than the air flow rate of the indoor unit fan 6 at.
  • step S411 the operation state determination means 13 determines whether the room temperature Tr is higher than the heating set temperature Theat. In step S411, if the operation state determination unit 13 determines that the room temperature Tr is higher than the heating set temperature Theat (Yes in step S411), the operation state determination unit 13 proceeds to step S413. In step S413, the same processing as in the first embodiment is performed (step S107 in FIG. 2). On the other hand, when the operation state determination means 13 determines in step S411 that the room temperature Tr is equal to or lower than the heating set temperature Theat (No in step S411), the operation state determination means 13 proceeds to step S412.
  • step S412 the operation state determination means 13 determines that the room temperature Tr is equal to or lower than the heating set temperature Theat and therefore falls within the region (g) of FIG. 10, the operation state is “heating”, and the air flow rate is “strong wind”. ”, A signal for performing the cooling operation in which the compressor 9 becomes“ operation ”is output.
  • step S412 the air flow control means 5, the compressor operation control device 8, and the four-way valve control means 10 control various devices based on the signal output from the operation state determination means 13. Specifically, the air flow control means 5 controls the indoor unit fan 6 so that the air flow becomes “strong wind”. The compressor operation control device 8 controls the compressor 9 so that the compressor 9 becomes “operation”. The four-way valve control means 10 controls the four-way valve 11 so that the operation state becomes “heating”.
  • step S414 when the humidity is low, based on the cooling / heating start temperature Ta and the cooling set temperature Tcool, a setting is made to divide the temperature range between the cooling / heating start temperature Ta and the cooling set temperature Tcool into four equal parts. The process proceeds to step S415.
  • the setting that divides the temperature range between the cooling / heating start temperature Ta and the cooling setting temperature Tcool into four equal parts is, for example, that the operating state determination means 13 defines the air volume switching temperatures T1, T2, and T3. It is set by doing. Accordingly, the set temperatures are the cooling set temperature Tcool, the airflow switching temperature T1, the airflow switching temperature T2, the airflow switching temperature T3, the cooling / heating start temperature Ta, and the heating setting temperature Heat in order of increasing temperature.
  • step S415 is the same as the process of step S407, description is abbreviate
  • step S417 is the same as the process of step S411, the description thereof is omitted. If Yes in step S417, the process proceeds to step S419. On the other hand, if No in step S417, the process proceeds to step S418. Note that the processing in step S418 is the same as the processing in step S412 and therefore will not be described.
  • step S419 the operation state determination means 13 determines whether or not the room temperature Tr is higher than the cooling / heating start temperature Ta.
  • step S419 when the operation state determination unit 13 determines that the room temperature Tr is higher than the cooling / heating start temperature Ta (Yes in step S419), the operation state determination unit 13 proceeds to step S421.
  • step S421 the same processing as in the first embodiment is performed (steps S107 to S114 in FIG. 2).
  • the operation state determination unit 13 proceeds to step S420.
  • step S403, step S408, step S410, step S412, step S413, step S416, step S418, step S420, and step S421 are completed, the process returns to step S401.
  • the processes in steps S401 to S421 are repeated until the automatic operation is stopped.
  • the air conditioner 100 controls the indoor unit fan 6 based on the indoor temperature detected by the indoor temperature detecting means 1 and the indoor humidity detected by the indoor humidity detecting means 16. . Specifically, it is determined whether or not the room humidity is within the reference humidity range, and the operation is switched depending on whether or not the room humidity is within the reference humidity range. For this reason, according to the humidity in the room, by starting the cooling and heating at a temperature lower or higher than the set temperature, it becomes possible to operate corresponding to the change in the temperature of the sensation due to the humidity, and to make the operation more comfortable for the user Can do.
  • a signal output from the indoor temperature detecting means 1 is input to the operating state determining means 13 via the indoor temperature determining means 12, and a signal output from the indoor humidity detecting means 16 is
  • running state determination means 13 via the humidity determination means 17 was demonstrated, it is not limited to this.
  • a signal output from the indoor temperature detection means 1 is input to the operating state determination means 13 without passing through the indoor temperature determination means 12, and a signal output from the indoor humidity detection means 16 does not pass through the indoor humidity determination means 17. May be input to the operating state determination means 13.
  • the operation state determination unit 13 may function as the indoor temperature determination unit 12 and the indoor humidity determination unit 17.
  • Embodiment 5 FIG.
  • the air conditioner 100 includes a calendar information acquisition unit 18 that acquires calendar information.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 12 is a block diagram of the air conditioner 100 according to the fifth embodiment.
  • FIG. 13 is a control flowchart of the air conditioner 100 according to the fifth embodiment.
  • the calendar information determination means 19 determines the season based on the calendar information acquired by the calendar information acquisition means 18 and outputs a signal relating to the determined season.
  • the calendar information is, for example, information such as month, day, hour, minute, and second.
  • the operation state determination means 13 Based on the output signals of the indoor temperature determination means 12 and the calendar information determination means 19, the operation state determination means 13 outputs a signal for controlling the change of the air volume switching temperature in the air blowing operation and the operation operation of the air conditioning.
  • step S501 the calendar information acquisition unit 18 acquires calendar information, and proceeds to step S502.
  • step S502 the calendar information determination unit 19 sets the driving state based on the signal related to the calendar information acquired by the calendar information acquisition unit 18 (step S502).
  • step S503 the operation of the first embodiment is performed based on the setting information determined in step S502.
  • the air blowing amount of the indoor unit fan 6 is halved in the range of strong wind and medium wind. Set according to the season.
  • the indoor unit fan 6 is controlled based on the indoor temperature detected by the indoor temperature detection unit 1 and the calendar information acquired by the calendar information acquisition unit 18. Control. For this reason, an appropriate driving according to the season can be realized, and a more comfortable driving for the user can be achieved.

Abstract

 制御手段が、送風運転モードが開始されると、検出温度が大きいほど室内ユニットファン6の送風量が大きくなるように、室内ユニットファン6の送風量が各々異なる複数の送風運転の中から一の送風運転を決定し、一の送風運転に対応する送風量となるように室内ユニットファン6を制御する。

Description

空気調和機
 本発明は、空気調和機に関する。
 昨今、ますます省エネルギー要求が高まっているが、空気調和機において、室内温度を一定に保つような運転を行うと、多大な空調エネルギーが必要となる。このため従来、季節の変化や外気環境の変化に合わせて、快適性を損なわない範囲で、より省エネルギーとなるように、空気調和機の運転を開始及び運転を停止する室内温度範囲を季節に応じて設定し、室内温度が室内温度範囲内である場合に空気調和機の運転を停止する空気調和機が提案されている(例えば、特許文献1)。
 特許文献1に記載の空気調和機は、室外温度等の季節情報を基に季節を判定し、季節に応じて空気調和機を運転及び停止する室内温度範囲の上限値及び下限値を設定し、室外温度が前記下限値以上前記上限値以下である場合に冷暖房を停止し、室外温度前記上限値を上回る場合には冷房運転を行い、前記下限値を下回る場合には暖房運転を行うように空気調和機を制御するものである。
特開2003-83586号公報(第4頁、図1)
 しかしながら、特許文献1に記載の空気調和機は、室内温度が室内温度範囲の上限値以下の場合に冷房運転を停止し、室内温度が室内温度範囲の下限値以上である場合には暖房運転を停止する。このため例えば、冷房運転時に室内温度が前記上限値以下であると冷房運転が停止して途端に冷風が吹き出されなくなり、冷風によって下がっていた使用者の体感温度が急激に上がってしまう等の不都合が生じる。したがって、冷暖房運転の開始及び冷暖房運転の停止を切り替えるときに使用者の体感温度が急変し、使用者の不快感が高まるという課題があった。
 本発明は、上述のような課題を背景としてなされたものであって、従来の省エネルギー性を確保しつつ、冷暖房運転を停止した後においても従来よりも快適性の高い空気調和機を提供することを目的とする。
 本発明に係る空気調和機は、室内温度を検出する室内温度検出手段と、室内ユニットファンと、少なくとも室内温度検出手段の検出温度に基づいて前記室内ユニットファンを制御する制御手段と、を備え、前記制御手段は、前記室内温度検出手段の検出温度が下限温度以下である場合に実行される暖房運転モードと、前記室内温度検出手段の検出温度が上限温度以上である場合に実行される冷房運転モードと、前記室内温度検出手段の検出温度が前記下限温度を上回り前記上限温度を下回る場合に実行される送風運転モードと、を有し、前記送風運転モードが開始されると、前記検出温度が大きいほど前記室内ユニットファンの送風量が大きくなるように、前記室内ユニットファンの送風量が各々異なる複数の送風運転の中から一の送風運転を決定し、前記一の送風運転に対応する送風量となるように前記室内ユニットファンを制御するものである。
 本発明によれば、制御手段が、送風運転モードが開始されると、検出温度が大きいほど室内ユニットファンの送風量が大きくなるように、室内ユニットファンの送風量が各々異なる複数の送風運転の中から一の送風運転を決定し、一の送風運転に対応する送風量となるように室内ユニットファンを制御するものである。このため、使用者の好みに応じた送風運転を行うことができる。したがって、従来の省エネルギー性を確保しつつ、冷暖房運転を停止した後においても従来よりも快適性の高い空気調和機を得ることができる。
本実施の形態1の空気調和機100のブロック図を示す図である。 本実施の形態1の空気調和機100の制御フローチャートを示す図である。 本実施の形態1の空気調和機100の運転経過時間と室内温度変化と運転状態との関係を示す図である。 本実施の形態2の空気調和機100の制御フローチャートを示す図である。 本実施の形態3の空気調和機100のブロック図を示す図である。 本実施の形態3の空気調和機100の制御フローチャートを示す図である。 本実施の形態3の空気調和機100の運転経過時間と室内温度の変化と室外温度の変化と運転状態との関係を示す図である。 本実施の形態4の空気調和機100のブロック図を示す図である。 本実施の形態4の空気調和機100の制御フローチャートを示す図である。 本実施の形態4の空気調和機100の室内湿度が高い場合の、運転経過時間と室内温度の変化と室内湿度と運転状態との関係を示す図である。 本実施の形態4の空気調和機100の室内湿度が低い場合の、運転経過時間と室内温度の変化と室内湿度と運転状態との関係を示す図である。 本実施の形態5の空気調和機100のブロック図を示す図である。 本実施の形態5の空気調和機100の制御フローチャートを示す図である。
実施の形態1.
 図1は本実施の形態1の空気調和機100のブロック図を示す図である。図2は本実施の形態1の空気調和機100の制御フローチャートを示す図である。図3は本実施の形態1の空気調和機100の運転経過時間と室内温度変化と運転状態との関係を示す図である。
 図1に示されるように、空気調和機100は、室内温度検出手段1と、運転操作手段2と、マイクロコンピュータ3と、室内ユニット4と、室外ユニット7と、を備える。なお、運転操作手段2が、本発明における操作手段に相当する。
 室内温度検出手段1は、例えば、室内等の空調対象空間の温度を検出するものであり、例えばサーミスタで構成される。運転操作手段2は、空気調和機100の運転モードの設定、温度調節等を行うためのものであり、例えばリモートコントローラで構成される。
 マイクロコンピュータ3は、空気調和機100の動作を制御するものであり、室内温度判定手段12と、運転状態決定手段13と、を備える。室内温度判定手段12は、室内温度検出手段1から出力された室内温度に関する信号に基づいて、室内温度がどの温度領域にあるかを判定するものである。室内温度判定手段12は、自動運転時に自動設定された暖房用設定温度Theat及び冷房用設定温度Tcoolを記憶している。運転状態決定手段13は、運転操作手段2から出力された操作信号、及び室内温度判定手段12から出力された温度領域を示す信号の少なくとも何れかに基づいて、空気調和機の運転状態を決定し各種機器を制御する信号を出力する。
 ここで、空気調和機100の運転状態とは例えば、冷房運転、冷房運転(弱)、送風運転(強風)、送風運転(中風)、送風運転(弱風)、送風運転(微風)、暖房運転、及び暖房運転(弱)のうち何れかである。
 運転状態決定手段13は、室内温度検出手段1の検出温度が下限温度以下である場合に実行される暖房運転モードと、室内温度検出手段1の検出温度が上限温度以上である場合に実行される冷房運転モードと、室内温度検出手段1の検出温度が下限温度を上回り上限温度を下回る場合に実行される送風運転モードと、を有する。ここで、暖房運転モードは、暖房運転及び暖房運転(弱)を含む。また、冷房運転モードは、冷房運転及び冷房運転(弱)を含む。また、送風運転モードは、送風運転(強風)、送風運転(中風)、送風運転(弱風)、及び送風運転(微風)を含む。
 室内ユニット4は、送風量制御手段5と、室内ユニットファン6と、を備える。送風量制御手段5は、運転状態決定手段13から出力される信号に基づいて、室内ユニットファン6の回転数を制御する。
 室外ユニット7は、空気調和機100の冷媒を循環させる圧縮機9と、圧縮機9を制御する圧縮機運転制御装置8と、冷媒回路を冷房時及び暖房時で切替える四方弁11と、四方弁11を制御する四方弁制御手段10と、を備える。圧縮機運転制御装置8は、運転状態決定手段13から出力される信号に基づいて、圧縮機9の回転数を制御する。四方弁制御手段10は、運転状態決定手段13から出力される信号に基づいて、四方弁11を切り替える制御を行う。
 送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、例えば、この機能を実現する回路デバイスなどのハードウェア、又はマイコン若しくはCPUなどの演算装置上で実行されるソフトウェアで構成される。なお、マイクロコンピュータ3が有する機能を送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10が有するように構成してもよい。
 図2に示されるように、空気調和機100は、自動運転を開始した後に室内温度Trと、各種設定温度とを比較して運転状態を切り替える。ここで、図2のフローチャートを説明するのに先立ち、図2のフローチャートで用いられる制御内容を示す図3を説明する。
 図3のグラフの横軸には、空気調和機100の運転経過時間が示されている。運転経過時間として、時間の経過順に、領域(a)、(b)、(c)、(d)、(e)、及び(f)を示している。また、図3のグラフの縦軸には、室内温度Trが示されている。室内温度Trは、温度の低い順に、暖房用設定温度Theat、風量切替温度T3、風量切替温度T2、風量切替温度T1、冷房用設定温度Tcoolである。
 室内温度Trが、冷房用設定温度Tcool以上であるとき、領域(a)に対応する制御内容が実行される。ここで、領域(a)の時間帯においては、運転状態が「冷房」、送風量が「強風」、圧縮機9が「運転」となる制御が行われる。
 室内温度Trが、風量切替温度T1以上冷房用設定温度Tcool未満であるとき、領域(b)に対応する制御内容が実行される。ここで、領域(b)の時間帯においては、運転状態が「送風」、送風量が「強風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、風量切替温度T2以上風量切替温度T1未満であるとき、領域(c)に対応する制御内容が実行される。ここで、領域(c)の時間帯においては、運転状態が「送風」、送風量が「中風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、風量切替温度T3以上風量切替温度T2未満であるとき、領域(d)に対応する制御内容が実行される。ここで、領域(d)の時間帯においては、運転状態が「送風」、送風量が「弱風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、暖房用設定温度Theatを超過し風量切替温度T3未満であるとき、領域(e)に対応する制御内容が実行される。ここで、領域(e)の時間帯においては、運転状態が「送風」、送風量が「微風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、暖房用設定温度Theat以下であるとき、領域(f)に対応する制御内容が実行される。ここで、領域(f)の時間帯においては、運転状態が「暖房」、送風量が「強風」、圧縮機9が「運転」となる制御が行われる。
 次に、本実施の形態1の動作について、図2,図3を参照して説明する。
 例えば使用者が、空気調和機100の電源をONする運転操作手段2の操作を行うと、空気調和機100は自動運転を開始するステップS101の処理を行う。
 ステップS101において、自動運転が開始されると、室内温度判定手段12は、暖房用設定温度Theat及び冷房用設定温度Tcoolに基づいて、暖房用設定温度Theat以上で冷房用設定温度Tcool以下の間の温度範囲を4等分するような設定を行い、ステップS102に移行する。
 ここで、暖房用設定温度Theat以上で冷房用設定温度Tcool以下の間の温度範囲を4等分するような設定とは、例えば、室内温度判定手段12が、風量切替温度T1,T2,T3を規定することにより設定される。これにより、設定温度は、温度が高い順に、冷房用設定温度Tcool、風量切替温度T1、風量切替温度T2、風量切替温度T3、暖房用設定温度Theatとなっている。なお、暖房用設定温度Theatが、本発明の下限温度に相当する。また、冷房用設定温度Tcoolが、本発明の上限温度に相当する。
 ステップS102において、室内温度検出手段1は、室内温度Trを検出して室内温度Trに関する信号を出力し、ステップS103に移行する。室内温度判定手段12は、室内温度検出手段1から出力された信号に基づいて、室内温度Trがどの運転の温度範囲にあるか判定する。
 ステップS103において、室内温度判定手段12は、室内温度Trが設定温度Tcool未満であるか否かを判定する。
 ステップS103において、室内温度判定手段12は、室内温度Trが設定温度Tcool未満であると判定した場合には(ステップS103においてYes)、ステップS105へ移行する。
 一方、ステップS103において、室内温度判定手段12は、室内温度Trが設定温度Tcool以上であると判定した場合には(ステップS103においてNo)、図3の領域(a)に該当することを示す信号を出力し、ステップS104に移行する。
 ステップS104において、運転状態決定手段13は、室内温度判定手段12から出力された領域(a)に該当することを示す信号に基づいて、運転状態が「冷房」、送風量が「強風」、圧縮機9が「運転」となる冷房運転を行うための信号を出力する。
 そして、ステップS104において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「強風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「運転」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「冷房」となるように四方弁11を制御する。
 ステップS105において、室内温度判定手段12は、室内温度Trが暖房用設定温度Theatよりも高いか否かを判定する。
 ステップS105において、室内温度判定手段12は、室内温度Trが暖房用設定温度Theatよりも高いと判定した場合には(ステップS105においてYes)、ステップS107に移行する。
 一方、ステップS105において、室内温度判定手段12は、室内温度Trが暖房用設定温度Theat以下であると判定した場合には(ステップS105においてNo)、図3の領域(f)に該当することを示す信号を出力し、ステップS106に移行する。
 ステップS106において、運転状態決定手段13は、室内温度判定手段12から出力された領域(f)に該当することを示す信号に基づいて、運転状態が「暖房」、送風量が「強風」、圧縮機9が「運転」となる暖房運転を行うための信号を出力する。
 そして、ステップS106において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「強風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「運転」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「暖房」となるように四方弁11を制御する。
 ステップS107において、圧縮機運転制御装置8は、圧縮機9を停止するように圧縮機9を制御し、ステップS108に移行する。
 ステップS108において、室内温度判定手段12は、室内温度Trが風量切替温度T1未満であるか否かを判定する。
 ステップS108において、室内温度判定手段12は、室内温度Trが風量切替温度T1未満であると判定した場合には(ステップS108でYes)、ステップS110に移行する。
 一方、ステップS108において、室内温度判定手段12は、室内温度Trが風量切替温度T1以上であると判定した場合には(ステップS108でNo)、図3の領域(b)に該当することを示す信号を出力し、ステップS109に移行する。
 ステップS109において、運転状態決定手段13は、室内温度判定手段12から出力された領域(b)に該当することを示す信号に基づいて、運転状態が「送風」、送風量が「強風」、圧縮機9が「停止」となる送風運転(強風)を行うための信号を出力する。
 そして、ステップS109において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「強風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「停止」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「送風」となるように四方弁11を制御する。
 ステップS110において、室内温度判定手段12は、室内温度Trが風量切替温度T2未満であるか否かを判定する。
 ステップS110において、室内温度判定手段12は、室内温度Trが風量切替温度T2未満であると判定した場合には(ステップS110でYes)、ステップS112に移行する。
 ステップS110において、室内温度判定手段12は、室内温度Trが風量切替温度T2以上であると判定した場合には(ステップS110でNo)、図3の領域(c)に該当することを示す信号を出力し、ステップS111に移行する。
 ステップS111において、運転状態決定手段13は、室内温度判定手段12から出力された領域(c)に該当することを示す信号に基づいて、運転状態が「送風」、送風量が「中風」、圧縮機9が「停止」となる送風運転(中風)を行うための信号を出力する。
 そして、ステップS111において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「中風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「停止」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「送風」となるように四方弁11を制御する。
 ステップS112において、室内温度判定手段12は、室内温度Trが風量切替温度T3未満か否かを判定する。
 ステップS112において、室内温度判定手段12は、室内温度Trが風量切替温度T3未満であると判定した場合には(ステップS112でYes)、図3の領域(e)に該当することを示す信号を出力し、ステップS114に移行する。
 ステップS112において、室内温度判定手段12は、室内温度Trが風量切替温度T3以上であると判定した場合には(ステップS112でNo)、図3の領域(d)に該当することを示す信号を出力し、ステップS113に移行する。
 ステップS114において、運転状態決定手段13は、室内温度判定手段12から出力された領域(e)に該当することを示す信号に基づいて、運転状態が「送風」、送風量が「微風」、圧縮機9が「停止」となる送風運転(微風)を行うための信号を出力する。
 そして、ステップS114において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「微風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「停止」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「送風」となるように四方弁11を制御する。
 ステップS113において、運転状態決定手段13は、室内温度判定手段12から出力された領域(d)に該当することを示す信号に基づいて、運転状態が「送風」、送風量が「弱風」、圧縮機9が「停止」となる送風運転(弱風)を行うための信号を出力する。
 そして、ステップS113において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「弱風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「停止」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「送風」となるように四方弁11を制御する。
 ステップS104、ステップS106、ステップS109、ステップS111、ステップS113、及びステップS114の処理が終了すると、ステップS102に戻る。ステップS102~S114の処理は、自動運転が停止されるまで繰り返される。
 以上のように、本実施の形態1に係る空気調和機100は、暖房用設定温度Theat以上冷房用設定温度Tcool以下の温度領域を送風運転とし、送風運転時における風量を室内温度に応じて切り替えるようにしている。このため、急激な体感温度の変化はなくなり、省エネルギー効果及び快適性を兼ね備えた空気調和機100を得ることができる。 
 なお、室内温度判定手段12、運転状態決定手段13、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10の機能を一つの手段で集約した構成としてもよい。 また、室内温度判定手段12及び運転状態決定手段13、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10を総合したものが、本発明の制御手段に相当する。
 また、以上の説明では、風量の設定が4種類以上の場合や、風量の設定が3種類未満の場合には、風量切替温度の設定数は3つでなくてもよい。例えば、風量の設定が5種類以上である場合には、風量切替温度の設定数を4つとすればよい。
 また、各温度領域における風向を自動設定又は手動設定してもよい。風向の自動設定としては、例えば室内温度が高い場合、使用者は風量を要するため、使用者に風が当たるように、真下又は斜め下方向に設定する等、使用者が快適に感じるように風向を決定する。
実施の形態2.
 本実施の形態2は、実施の形態1とは異なり、運転操作手段2を操作することで、冷房用設定温度Tcool、暖房用設定温度Theat、及び風量切替温度T1,T2,T3を設定できるようにしたものである。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図4は本実施の形態2の空気調和機100の制御フローチャートを示す図である。次に実施の形態2の動作について、図4を参照して説明する。空気調和機100の電源をONする運転操作手段2の操作がされると、ステップS201の処理を開始する。
 ステップS201において、運転状態決定手段13は、冷房用設定温度Tcool、暖房用設定温度Theat、及び風量切替温度T1,T2,T3を手動設定する運転操作手段2の操作が行われたか否かを判定する。
 ステップS201において、運転状態決定手段13は、冷房用設定温度Tcool、暖房用設定温度Theat、及び風量切替温度T1,T2,T3を手動設定する運転操作手段2の操作が行われたと判定すると(ステップS201でYes)、ステップS203に移行する。
 一方、ステップS201において、運転状態決定手段13は、冷房用設定温度Tcool、暖房用設定温度Theat、及び風量切替温度T1,T2,T3を手動設定する運転操作手段2の操作が行われなかったと判定すると(ステップS201でNo)、ステップS202に移行する。
 ステップS202において、室内温度判定手段12は、自身が記憶している暖房用設定温度Theat及び冷房用設定温度Tcoolに基づいて、風量切替温度T1,T2,T3を設定し、ステップS207に移行する。
 ステップS203において、運転操作手段2が操作されると、暖房用設定温度Theat及び冷房用設定温度Tcoolを設定可能な状態となる。ステップS203において、暖房用設定温度Theat及び冷房用設定温度Tcoolが設定されると、ステップS204に移行する。
 ステップS204において、運転操作手段2が操作されると、風量切替温度T1を設定可能な状態となる。ステップS204において、風量切替温度T1を設定する運転操作手段2が操作されると、ステップS205に移行する。
 ステップS205において、運転操作手段2が操作されると、風量切替温度T2を設定可能な状態となる。ステップS205において、風量切替温度T2を設定する運転操作手段2が操作されると、ステップS206に移行する。
 ステップS206において、運転操作手段2が操作されると、風量切替温度T3を設定可能な状態となる。ステップS205において、風量切替温度T3を設定する運転操作手段2が操作されると、ステップS207に移行する。
 ステップS207においては、実施の形態1のステップS102以降の処理が行われる。
 以上のように、本実施の形態2に係る空気調和機100は、運転操作手段2を操作することで、冷房用設定温度Tcool、暖房用設定温度Theat、及び風量切替温度T1,T2,T3(複数の送風運転間の閾値温度)を設定できるようにしている。このため、使用者の好みにあった快適な送風運転が可能となる。
実施の形態3.
 本実施の形態3は、実施の形態1とは異なり、空気調和機100が室外温度検出手段14及び室外温度判定手段15を有する。なお、本実施の形態3において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図5は本実施の形態3の空気調和機100のブロック図を示す図である。図6は本実施の形態3の空気調和機100の制御フローチャートを示す図である。図7は本実施の形態3の空気調和機100の運転経過時間と室内温度の変化と室外温度の変化と運転状態との関係を示す図である。
 図5に示されるように、空気調和機100は、室外温度検出手段14及び室外温度判定手段15を有する。室外温度判定手段15は、室外温度検出手段14から出力された室外温度に関する信号を運転状態決定手段13に出力する。
 本実施の形態3においては、室内温度検出手段1が検出した室内温度と、室外温度検出手段14が検出した室外温度Toと、に基づいて、冷房運転、暖房運転、送風運転及び送風量の切替えを行う。
 図6に示されるように、空気調和機100は、自動運転を開始した後に室内温度Trと、各種設定温度とを比較して運転状態を切り替える。ここで、図6のフローチャートを説明するのに先立ち、図6のフローチャートで用いられる制御内容を示す図7を説明する。
 図7のグラフの横軸には、空気調和機100の運転経過時間が示されている。運転経過時間として、時間の経過順に、領域(a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)、(i)、(j)、(k)、及び(l)を示している。また、図7のグラフの縦軸には、室内温度Trが示されている。室内温度Trは、温度の低い順に、暖房用設定温度Theat、中間温度Ts、冷房用設定温度Tcoolである。なお、実施の形態3における領域(b)~(f)に対応する制御内容は、実施の形態1における領域(b)~(f)に対応する制御内容と同一であるため、説明を割愛する。
 室外温度Toが、冷房用設定温度Tcool以上であるとき、領域(a)に対応する制御内容が実行される。ここで、領域(a)の時間帯においては、運転状態が「冷房」、送風量が「中風」、圧縮機9が「運転」となる制御が行われる。
 室内温度Trが、暖房用設定温度Theat以下であるとき、領域(g)に対応する制御内容が実行される。ここで、領域(g)の時間帯においては、運転状態が「暖房」、送風量が「中風」、圧縮機9が「運転」となる制御が行われる。
 室外温度Toが、暖房用設定温度Theatよりも高く中間温度Ts以下であるとき、領域(h)に対応する制御内容が実行される。ここで、領域(h)の時間帯においては、運転状態が「送風」、送風量が「微風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、暖房用設定温度Theatよりも高く中間温度Ts以下であるとき、領域(i)に対応する制御内容が実行される。ここで、領域(i)の時間帯においては、運転状態が「送風」、送風量が「弱風」、圧縮機9が「停止」となる制御が行われる。
 室外温度Toが、中間温度Tsよりも高く冷房用設定温度Tcool以下であるとき、領域(j)に対応する制御内容が実行される。領域(j)の時間帯においては、運転状態が「送風」、送風量が「中風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、中間温度Tsよりも高く冷房用設定温度Tcool以下であるとき、領域(k)に対応する制御内容が実行される。領域(k)の時間帯においては、運転状態が「送風」、送風量が「強風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、冷房用設定温度Tcoolよりも高いとき、領域(l)に対応する制御内容が実行される。領域(l)の時間帯においては、運転状態が「冷房」、送風量が「強風」、圧縮機9が「停止」となる制御が行われる。
 次に、本実施の形態3の動作について、図6,図7を参照して説明する。
 空気調和機100の電源をONする運転操作手段2の操作がされると、ステップS301の処理を開始する。ステップS301において、空気調和機100は自動運転を開始する。
 ステップS301において、自動運転が開始されると、運転状態決定手段13は、冷房用設定温度Tcool及び暖房用設定温度Theatに基づいて、冷暖房の設定温度の中間温度Tsが自動設定される。中間温度Tsは、例えば、冷房用設定温度Tcoolと暖房用設定温度Theatとの和を算出し得られた数値を2で割ることで算出される。なお、送風運転時には、圧縮機9は停止しているものとする。
 ステップS302において、室内温度検出手段1が室内温度Trを検出して室内温度Trに関する信号を出力し、室外温度検出手段14が室外温度Toを検出して室外温度Toに関する信号を出力し、ステップS303に移行する。
 ステップS303において、運転状態決定手段13は、室外温度Toが室内温度Tr未満であるか否かを判定する。
 ステップS303において、運転状態決定手段13は、室外温度Toが室内温度Tr未満であると判定した場合には(ステップS303でYes)、ステップS304に移行する。
 一方、ステップS303において、運転状態決定手段13は、室外温度Toが室内温度Tr以上であると判定した場合には(ステップS303でNo)、ステップS315に移行する。
 ステップS304において、運転状態決定手段13は、室外温度Toが冷房用設定温度Tcool未満か否かを判定する。
 ステップS304において、運転状態決定手段13は、室外温度Toが冷房用設定温度Tcool未満であると判定した場合には(ステップS304でYes)、ステップS306に移行する。
 一方、ステップS304において、運転状態決定手段13は、室外温度Toが冷房用設定温度Tcool以上であると判定した場合には(ステップS304でNo)、ステップS305に移行する。
 ステップS305において、運転状態決定手段13は、室外温度Toが冷房用設定温度Tcool以上であるため、図7の領域(a)に該当すると判定し、運転状態が「冷房」、送風量が「中風」、圧縮機9が「運転」となる冷房運転(弱)を行うための信号を出力する。
 そして、ステップS305において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「中風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「運転」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「冷房」となるように四方弁11を制御する。なお、室外温度Toが室内温度Tr未満であるため、室内を冷却しすぎないように、ステップS305の冷房運転における室内ユニットファン6の送風量は、通常の冷房運転における室内ユニットファン6の送風量よりも小さくなるように設定されている。
 ステップS306において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcool未満か否かを判定する。
 ステップS306において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcool未満であると判定した場合には(ステップS306でYes)、ステップS308に移行する。
 一方、ステップS306において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcool以上であると判定した場合には(ステップS306でNo)、ステップS307に移行する。なお、ステップS307の処理は、ステップS109の処理と同一であるため、説明を割愛する。
 ステップS308において、運転状態決定手段13は、室外温度Toが中間温度Ts未満であるか否かを判定する。
 ステップS308において、運転状態決定手段13は、室外温度Toが中間温度Ts未満であると判定した場合には(ステップS308でYes)、ステップS310に移行する。
 一方、ステップS308において、運転状態決定手段13は、室外温度Toが中間温度Ts以上であると判定した場合には(ステップS308でNo)、ステップS309に移行する。なお、ステップS309の処理は、ステップS111の処理と同一であるため、説明を割愛する。
 ステップS310において、運転状態決定手段13は、室内温度Trが中間温度Ts未満か否かを判定する。
 ステップS310において、運転状態決定手段13は、室内温度Trが中間温度Ts未満であると判定した場合には(ステップS310でYes)、ステップS312に移行する。
 一方、ステップS310において、運転状態決定手段13は、室内温度Trが中間温度Ts以上であると判定した場合には(ステップS310でNo)、ステップS311に移行する。なお、ステップS311の処理は、ステップS113の処理と同一であるため、説明を割愛する。
 ステップS312において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theat未満か否かを判定する。
 ステップS312において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theat未満であると判定した場合には(ステップS312でYes)、ステップS314に移行する。
 一方、ステップS312において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theat以上であると判定した場合には(ステップS312でNo)、ステップS313に移行する。なお、ステップS313の処理は、ステップS114の処理と同一であるため、説明を割愛する。
 上述したように、ステップS303において、運転状態決定手段13は、室外温度Toが室内温度Tr以上であると判定した場合には(ステップS303でNo)、ステップS315に移行する。
 ステップS315において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theatより高いか否かを判定する。
 ステップS315において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theatより高いと判定した場合には(ステップS315でYes)、ステップS317に移行する。
 一方、ステップS315において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theat以下であると判定した場合には(ステップS315でNo)、ステップS316に移行する。
 ステップS316において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theat以下であるため、図7の領域(g)に該当すると判定し、運転状態が「暖房」、送風量が「中風」、圧縮機9が「運転」となる暖房運転(弱)を行うための信号を出力する。
 そして、ステップS316において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「中風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「運転」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「暖房」となるように四方弁11を制御する。なお、室外温度Toが室内温度Tr以上であるため、室内を暖めすぎないように、ステップS316の暖房運転における室内ユニットファン6の送風量は、通常の冷房運転における室内ユニットファン6の送風量よりも小さくなるように設定されている。
 ステップS317において、運転状態決定手段13は、室外温度Toが中間温度Tsよりも高いか否かを判定する。
 ステップS317において、運転状態決定手段13は、室外温度Toが中間温度Tsよりも高いと判定した場合には(ステップS317でYes)、ステップS319に移行する。
 ステップS317において、運転状態決定手段13は、室外温度Toが中間温度Ts以下であると判定した場合には(ステップS317でNo)、ステップS318に移行する。
 ステップS318において、運転状態決定手段13は、室外温度Toが中間温度Ts以下であるため、図7の領域(h)に該当すると判定し、運転状態が「送風」、送風量が「微風」、圧縮機9が「停止」となる送風運転(微風)を行うための信号を出力する。
 そして、ステップS318において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「微風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「停止」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「送風」となるように四方弁11を制御する。
 ステップS319において、運転状態決定手段13は、室内温度Trが中間温度Tsよりも高いか否かを判定する。
 ステップS319において、運転状態決定手段13は、室内温度Trが中間温度Tsよりも高いと判定した場合には(ステップS319でYes)、ステップS321へ移行する。
 一方、ステップS319において、運転状態決定手段13は、室内温度Trが中間温度Ts以下と判定した場合には(ステップS319でNo)、ステップS320へ移行する。
 ステップS320において、運転状態決定手段13は、室内温度Trが中間温度Ts以下であるため、図7の領域(i)に該当すると判定し、運転状態が「送風」、送風量が「弱風」、圧縮機9が「停止」となる送風運転(弱風)を行うための信号を出力する。
 そして、ステップS320において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「弱風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「停止」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「送風」となるように四方弁11を制御する。
 ステップS321において、運転状態決定手段13は、室外温度Toが冷房用設定温度Tcoolよりも高いか否かを判定する。
 ステップS321において、運転状態決定手段13は、室外温度Toが冷房用設定温度Tcoolよりも高いと判定した場合には(ステップS321でYes)、ステップS323へ移行する。
 一方、ステップS321において、運転状態決定手段13は、室外温度Toが冷房用設定温度Tcool以下と判定した場合には(ステップS321でNo)、ステップS322へ移行する。
 ステップS322において、運転状態決定手段13は、室外温度Toが冷房用設定温度Tcool以下であるため、図7の領域(j)に該当すると判定し、運転状態が「送風」、送風量が「中風」、圧縮機9が「停止」となる送風運転(弱風)を行うための信号を出力する。
 そして、ステップS322において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「中風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「停止」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「送風」となるように四方弁11を制御する。
 ステップS323において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcoolよりも高いか否かを判定する。
 ステップS323において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcoolよりも高いと判定した場合には(ステップS323でYes)、ステップS325に移行する。
 一方、ステップS323において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcool以下であると判定した場合には(ステップS323でNo)、ステップS324に移行する。
 ステップS325において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcoolよりも高いため、図7の領域(l)に該当すると判定し、運転状態が「冷房」、送風量が「強風」、圧縮機9が「停止」となる冷房運転を行うための信号を出力する。
 そして、ステップS325において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「強風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「停止」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「冷房」となるように四方弁11を制御する。
 ステップS324において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcool以下であるため、図7の領域(k)に該当すると判定し、運転状態が「送風」、送風量が「強風」、圧縮機9が「停止」となる送風運転(強風)を行うための信号を出力する。
 そして、ステップS324において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「強風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「停止」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「送風」となるように四方弁11を制御する。
 ステップS305、ステップS307、ステップS309、ステップS311、ステップS313、ステップS314、ステップS316、ステップS318、ステップS320、ステップS322、ステップS324、及びステップS325の処理が終了すると、ステップS302に戻る。ステップS302~S325の処理は、自動運転が停止されるまで繰り返される。
 以上のように、本実施の形態3に係る空気調和機100は、室内温度検出手段1が検出した室内温度及び室外温度検出手段14が検出した室外温度の大きさに基づいて、室内ユニットファン6を制御する。このため、温度の変化に一層対応した風量調整が可能となり、室外温度Toの変化に応じて冷暖房の運転を弱める制御としたため、より省エネルギー効果を期待できる。
 なお、本実施の形態3においては、室内温度検出手段1から出力される信号が室内温度判定手段12を介して運転状態決定手段13に入力され、室外温度検出手段14から出力される信号が室外温度判定手段15を介して運転状態決定手段13に入力される例について説明したが、これに限定されない。例えば、室内温度検出手段1から出力される信号が室内温度判定手段12を介さないで運転状態決定手段13に入力され、室外温度検出手段14から出力される信号が室外温度判定手段15を介さないで運転状態決定手段13に入力されるようになっていてもよい。この場合には、運転状態決定手段13が、室内温度判定手段12及び室外温度判定手段15の機能を兼ねるようにすればよい。
実施の形態4.
 本実施の形態4は、実施の形態1とは異なり、空気調和機100が室内湿度検出手段16及び室内湿度判定手段17を有する。なお、本実施の形態4において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図8は本実施の形態4の空気調和機100のブロック図を示す図である。図9は本実施の形態4の空気調和機100の制御フローチャートを示す図である。図10は本実施の形態4の空気調和機100の室内湿度が高い場合の、運転経過時間と室内温度の変化と室内湿度と運転状態との関係を示す図である。図11は本実施の形態4の空気調和機100の室内湿度が低い場合の、運転経過時間と室内温度の変化と室内湿度と運転状態との関係を示す図である。
 図8に示されるように、空気調和機100は、室内湿度検出手段16及び室内湿度判定手段17を有する。室内湿度判定手段17は、室内湿度検出手段16から出力された室外温度に関する信号を運転状態決定手段13に出力する。
 本実施の形態4においては、室内温度検出手段1が検出した室内温度と、室内湿度検出手段16が検出した室内湿度と、に基づいて、冷房運転、暖房運転、送風運転及び送風量の切替えを行う。
 図9に示されるように、空気調和機100は、自動運転を開始した後に室内温度Trと、各種設定温度とを比較して運転状態を切り替える。ここで、図9のフローチャートを説明するのに先立ち、図9のフローチャートで用いられる制御内容を示す図10,図11を説明する。
 図10のグラフの横軸には、空気調和機100の運転経過時間が示されている。運転経過時間として、時間の経過順に、領域(a)、(b)、(c)、(d)、(e)、(f)及び(g)を示している。また、図10のグラフの縦軸には、室内温度Trが示されている。室内温度Trは、温度の低い順に、暖房用設定温度Theat、風量切替温度T3、風量切替温度T2、風量切替温度T1、冷暖房開始温度Ta、冷房用設定温度Tcoolである。
 室内温度Trが、冷房用設定温度Tcool以上であるとき、領域(a)に対応する制御内容が実行される。ここで、領域(a)の時間帯においては、運転状態が「冷房」、送風量が「強風」、圧縮機9が「運転」となる制御が行われる。
 室内温度Trが、冷暖房開始温度Ta以上冷房用設定温度Tcool未満であるとき、領域(b)に対応する制御内容が実行される。ここで、領域(b)の時間帯においては、運転状態が「冷房」、送風量が「弱風」、圧縮機9が「運転」となる制御が行われる。
 室内温度Trが、風量切替温度T1以上冷暖房開始温度Ta未満であるとき、領域(c)に対応する制御内容が実行される。ここで、領域(c)の時間帯においては、運転状態が「送風」、送風量が「強風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、風量切替温度T2以上風量切替温度T1未満であるとき、領域(d)に対応する制御内容が実行される。ここで、領域(d)の時間帯においては、運転状態が「送風」、送風量が「中風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、風量切替温度T3以上風量切替温度T2未満であるとき、領域(e)に対応する制御内容が実行される。ここで、領域(e)の時間帯においては、運転状態が「送風」、送風量が「弱風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、暖房用設定温度Theatよりも大きく風量切替温度T3未満であるとき、領域(f)に対応する制御内容が実行される。ここで、領域(f)の時間帯においては、運転状態が「送風」、送風量が「微風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、暖房用設定温度Theat以下であるとき、領域(g)に対応する制御内容が実行される。ここで、領域(g)の時間帯においては、運転状態が「暖房」、送風量が「強風」、圧縮機9が「運転」となる制御が行われる。
 図11のグラフの横軸には、空気調和機100の運転経過時間が示されている。運転経過時間として、時間の経過順に、領域(a)、(b)、(c)、(d)、(e)、(f)及び(g)を示している。また、図11のグラフの縦軸には、室内温度Trが示されている。室内温度Trは、温度の低い順に、暖房用設定温度Theat、冷暖房開始温度Ta、風量切替温度T3、風量切替温度T2、風量切替温度T1、冷房用設定温度Tcoolである。
 室内温度Trが、冷房用設定温度Tcool以上であるとき、領域(a)に対応する制御内容が実行される。ここで、領域(a)の時間帯においては、運転状態が「冷房」、送風量が「強風」、圧縮機9が「運転」となる制御が行われる。
 室内温度Trが、風量切替温度T1以上冷房用設定温度Tcool未満であるとき、領域(b)に対応する制御内容が実行される。ここで、領域(b)の時間帯においては、運転状態が「送風」、送風量が「強風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、風量切替温度T2以上風量切替温度T1未満であるとき、領域(c)に対応する制御内容が実行される。ここで、領域(c)の時間帯においては、運転状態が「送風」、送風量が「中風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、風量切替温度T3以上風量切替温度T2未満であるとき、領域(d)に対応する制御内容が実行される。ここで、領域(d)の時間帯においては、運転状態が「送風」、送風量が「弱風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、冷暖房開始温度Ta以上風量切替温度T3未満であるとき、領域(e)に対応する制御内容が実行される。ここで、領域(e)の時間帯においては、運転状態が「送風」、送風量が「微風」、圧縮機9が「停止」となる制御が行われる。
 室内温度Trが、暖房用設定温度Theat以上冷暖房開始温度Ta未満であるとき、領域(f)に対応する制御内容が実行される。ここで、領域(f)の時間帯においては、運転状態が「暖房」、送風量が「弱風」、圧縮機9が「運転」となる制御が行われる。
 室内温度Trが、暖房用設定温度Theat未満であるとき、領域(g)に対応する制御内容が実行される。ここで、領域(g)の時間帯においては、運転状態が「暖房」、送風量が「強風」、圧縮機9が「運転」となる制御が行われる。
 次に、本実施の形態4の動作について、図9、図10、図11を参照して説明する。
 空気調和機100の電源をONする運転操作手段2の操作がされると、ステップS401の処理を開始する。ステップS401において、室内温度検出手段1は室内温度Trを検出し、室内湿度検出手段16は室内湿度を検出し、ステップS402に移行する。
 ステップS402において、室内湿度判定手段17は、室内湿度検出手段16が検出した室内湿度が、所定の基準湿度範囲外であるか否かを判定する。
 ステップS402において、室内湿度判定手段17は、室内湿度検出手段16が検出した室内湿度が、所定の基準湿度範囲内であると判定した場合には(ステップS402でYes)、ステップS403に移行する。ステップS403において、実施の形態1の動作(図2のステップS103~S114)を行い、ステップS401に戻る。
 一方、ステップS402において、室内湿度判定手段17は、室内湿度検出手段16が検出した室内湿度が、所定の基準湿度範囲外であると判定した場合には(ステップS402でNo)、ステップS404に移行する。
 ステップS404において、例えば、運転状態決定手段13が冷暖房開始温度Taを設定し、ステップS405に移行する。冷暖房開始温度Taは、湿度が高いときは冷房用設定温度Tcoolより低い温度、湿度が低い場合は暖房用設定温度Theatより高い温度に設定され、冷暖房開始温度Taの決定方法としては、不快指数が65~70となるような室温とする。不快指数の計算式は以下で計算する。
 不快指数=0.81×室温+0.01×湿度×(0.99×室温-14.3)+46.3
 ステップS405において、室内湿度判定手段17は、室内湿度検出手段16が検出した室内湿度が基準湿度範囲よりも高いか否かを判定する。
 ステップS405において、室内湿度判定手段17は、室内湿度検出手段16が検出した室内湿度が基準湿度範囲よりも高いと判定した場合には(ステップS405でYes)、ステップS406に移行する。
 一方、ステップS405において、室内湿度判定手段17は、室内湿度検出手段16が検出した室内湿度が基準湿度範囲以下であると判定した場合には(ステップS405でNo)、ステップS414に移行する。
 ステップS406において、運転状態決定手段13は、冷暖房開始温度Ta及び暖房用設定温度Theatに基づいて、暖房用設定温度Theat以上冷暖房開始温度Ta未満の温度領域を4等分するように風量切替温度T1、T2、T3を設定し、ステップS407に移行する。
 ステップS407において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcool未満か否かを判定する。
 ステップS407において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcool未満であると判定した場合には(ステップS407でYes)、ステップS409に移行する。
 一方、ステップS407において、運転状態決定手段13は、室内温度Trが冷房用設定温度Tcool以上であると判定した場合には(ステップS407でNo)、ステップS408に移行する。
 ステップS408において、運転状態決定手段13は、室内温度Trが設定温度Tcool以上であるため、図10の領域(a)に該当すると判定し、運転状態が「冷房」、送風量が「強風」、圧縮機9が「運転」となる冷房運転を行うための信号を出力する。
 そして、ステップS408において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「強風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「運転」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「冷房」となるように四方弁11を制御する。
 ステップS409において、運転状態決定手段13は、室内温度Trが冷暖房開始温度Ta未満であるか否かを判定する。
 ステップS409において、運転状態決定手段13は、室内温度Trが冷暖房開始温度Ta未満であると判定した場合には(ステップS409においてYes)、ステップS411に移行する。
 ステップS409において、運転状態決定手段13は、室内温度Trが冷暖房開始温度Ta以上であると判定した場合には(ステップS409においてNo)、ステップS410に移行する。
 ステップS410において、運転状態決定手段13は、室内温度Trが冷暖房開始温度Ta以上であるため、図10の領域(b)に該当すると判定し、運転状態が「冷房」、送風量が「弱風」、圧縮機9が「運転」となる冷房運転(弱運転)を行うための信号を出力する。
 そして、ステップS410において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「弱風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「運転」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「冷房」となるように四方弁11を制御する。なお、ステップS410の処理は、温度変化によって上がった体感温度を下げるための運転であるため、冷却しすぎないように、ステップS410の冷房運転における室内ユニットファン6の送風量は、通常の冷房運転における室内ユニットファン6の送風量よりも小さくなるように設定されている。
 ステップS411において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theatよりも高いか否かを判定する。
 ステップS411において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theatよりも高いと判定した場合には(ステップS411でYes)、ステップS413に移行する。ステップS413においては、実施の形態1と同一の処理を行う(図2のステップS107)。
 一方、ステップS411において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theat以下であると判定した場合には(ステップS411でNo)、ステップS412に移行する。
 ステップS412において、運転状態決定手段13は、室内温度Trが暖房用設定温度Theat以下であるため、図10の領域(g)に該当すると判定し、運転状態が「暖房」、送風量が「強風」、圧縮機9が「運転」となる冷房運転を行うための信号を出力する。
 そして、ステップS412において、送風量制御手段5、圧縮機運転制御装置8、及び四方弁制御手段10は、運転状態決定手段13から出力された信号に基づいて、各種機器を制御する。具体的には、送風量制御手段5は、送風量が「強風」となるように室内ユニットファン6を制御する。圧縮機運転制御装置8は、圧縮機9が「運転」となるように圧縮機9を制御する。四方弁制御手段10は、運転状態が「暖房」となるように四方弁11を制御する。
 ステップS414において、湿度が低い場合は冷暖房開始温度Ta及び冷房用設定温度Tcoolに基づいて、冷暖房開始温度Ta以上で冷房用設定温度Tcool以下の間の温度範囲を4等分するような設定を行い、ステップS415に移行する。
 ここで、冷暖房開始温度Ta以上で冷房用設定温度Tcool以下の間の温度範囲を4等分するような設定とは、例えば、運転状態決定手段13が、風量切替温度T1,T2,T3を規定することにより設定される。これにより、設定温度は、温度が高い順に、冷房用設定温度Tcool、風量切替温度T1、風量切替温度T2、風量切替温度T3、冷暖房開始温度Ta、暖房用設定温度Theatとなっている。
 なお、ステップS415の処理は、ステップS407の処理と同一であるため説明を省略する。ステップS415でYesの場合には、ステップS417に移行する。一方、ステップS415でNoの場合には、ステップS416に移行する。なお、ステップS416の処理は、ステップS408の処理と同一であるため説明を省略する。
 また、ステップS417の処理は、ステップS411の処理と同一であるため説明を省略する。ステップS417でYesの場合には、ステップS419に移行する。一方、ステップS417でNoの場合には、ステップS418に移行する。なお、ステップS418の処理は、ステップS412の処理と同一であるため説明を省略する。
 ステップS419において、運転状態決定手段13は、室内温度Trが冷暖房開始温度Taよりも大きいか否かを判定する。
 ステップS419において、運転状態決定手段13は、室内温度Trが冷暖房開始温度Taよりも大きいと判定した場合には(ステップS419においてYes)、ステップS421に移行する。ステップS421においては、実施の形態1と同一の処理を行う(図2のステップS107~S114)。
 一方、ステップS419において、運転状態決定手段13は、室内温度Trが冷暖房開始温度Ta以下であると判定した場合には(ステップS419においてNo)、ステップS420に移行する。ステップS420の処理は、温度変化によって下がった体感温度を上げるための運転であるため、暖めすぎないように、ステップS420の暖房運転における室内ユニットファン6の送風量は、通常の冷房運転における室内ユニットファン6の送風量よりも小さくなるように設定されている。なお、ステップS420の処理は、ステップS410の処理と同一であるため説明を省略する。
 ステップS403、ステップS408、ステップS410、ステップS412、ステップS413、ステップS416、ステップS418、ステップS420、及びステップS421の処理が終了すると、ステップS401に戻る。ステップS401~S421の処理は、自動運転が停止されるまで繰り返される。
 以上のように、本実施の形態4に係る空気調和機100は、室内温度検出手段1が検出した室内温度及び室内湿度検出手段16が検出した室内湿度に基づいて、室内ユニットファン6を制御する。具体的には、室内湿度が基準湿度範囲であるか否かを判定し、室内湿度が基準湿度範囲内であるか否かによって運転を切り替えるものである。このため、室内の湿度に応じて、設定温度よりも低い又は高い温度で冷暖房を開始することで、湿度による体感温度の変化に対応した運転が可能となり、使用者にとって一層快適な運転をすることができる。
 なお、本実施の形態4においては、室内温度検出手段1から出力される信号が室内温度判定手段12を介して運転状態決定手段13に入力され、室内湿度検出手段16から出力される信号が室内湿度判定手段17を介して運転状態決定手段13に入力される例について説明したが、これに限定されない。例えば、室内温度検出手段1から出力される信号が室内温度判定手段12を介さないで運転状態決定手段13に入力され、室内湿度検出手段16から出力される信号が室内湿度判定手段17を介さないで運転状態決定手段13に入力されるようになっていてもよい。この場合には、運転状態決定手段13が、室内温度判定手段12及び室内湿度判定手段17の機能を兼ねるようにすればよい。
実施の形態5.
 本実施の形態5においては、実施の形態1とは異なり、空気調和機100は、カレンダー情報を取得するカレンダー情報取得手段18を有する。なお、本実施の形態5において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図12は本実施の形態5の空気調和機100のブロック図を示す図である。図13は本実施の形態5の空気調和機100の制御フローチャートを示す図である。
 図12に示されるように、空気調和機100は、カレンダー情報取得手段18と、カレンダー情報判定手段19と、を有している。カレンダー情報判定手段19は、例えば、マイクロコンピュータ3の一要素として構成されている。
 カレンダー情報判定手段19は、カレンダー情報取得手段18が取得したカレンダー情報に基づいて季節を判定し、判定した季節に関する信号を出力する。ここで、カレンダー情報とは、例えば、月、日、時、分、秒等の情報である。運転状態決定手段13は、室内温度判定手段12及びカレンダー情報判定手段19の出力信号に基づいて、送風運転の風量切替温度の変更及び冷暖房の運転動作を制御する信号を出力する。
 次に、本実施の形態5の動作について、図13を参照して説明する。
 ステップS501において、カレンダー情報取得手段18は、カレンダー情報を取得し、ステップS502に移行する。ステップS502において、カレンダー情報判定手段19は、カレンダー情報取得手段18が取得したカレンダー情報に関する信号に基づいて、運転状態を設定する(ステップS502)。ステップS503において、ステップS502で決定された設定情報に基づいて、実施の形態1の動作を実施する。
 なお、運転状態の設定方法としては、例えば、気温が低い季節においては、送風が必要と感じる使用者は少ないため、室内ユニットファン6の送風量について、強風、中風の範囲を半分にする等により、季節に応じた設定とする。
 以上のように、本実施の形態5に係る空気調和機100によれば、室内温度検出手段1が検出した室内温度及びカレンダー情報取得手段18が取得したカレンダー情報に基づいて、室内ユニットファン6を制御する。このため、季節に応じた適切な運転を実現でき、使用者にとって一層快適な運転をすることができる。
 なお、本実施の形態5においては、室内温度検出手段1から出力される信号が室内温度判定手段12を介して運転状態決定手段13に入力され、カレンダー情報取得手段18から出力される信号がカレンダー情報判定手段19を介して運転状態決定手段13に入力される例について説明したが、これに限定されない。例えば、室内温度検出手段1から出力される信号が室内温度判定手段12を介さないで運転状態決定手段13に入力され、カレンダー情報取得手段18から出力される信号がカレンダー情報判定手段19を介さないで運転状態決定手段13に入力されるようになっていてもよい。この場合には、運転状態決定手段13が、室内温度判定手段12及びカレンダー情報判定手段19の機能を兼ねるようにすればよい。
 1 室内温度検出手段、2 運転操作手段、3 マイクロコンピュータ、4 室内ユニット、5 送風量制御手段、6 室内ユニットファン、7 室外ユニット、8 圧縮機運転制御手段、9 圧縮機、10 四方弁制御手段、11 四方弁、12 室内温度判定手段、13 運転状態決定手段、14 室外温度検出手段、15 室外温度判定手段、16 室内湿度検出手段、17 室内湿度判定手段、18 カレンダー情報取得手段、19 カレンダー情報判定手段、100 空気調和機、T1,T2,T3 風量切替温度、Ta 冷暖房開始温度、Tcool 冷房用設定温度、Theat 暖房用設定温度、To 室外温度、Tr 室内温度、Ts 中間温度。

Claims (5)

  1.  室内温度を検出する室内温度検出手段と、
     室内ユニットファンと、
     少なくとも室内温度検出手段の検出温度に基づいて前記室内ユニットファンを制御する制御手段と、を備え、
     前記制御手段は、
     前記室内温度検出手段の検出温度が下限温度以下である場合に実行される暖房運転モードと、
     前記室内温度検出手段の検出温度が上限温度以上である場合に実行される冷房運転モードと、
     前記室内温度検出手段の検出温度が前記下限温度を上回り前記上限温度を下回る場合に実行される送風運転モードと、を有し、
     前記送風運転モードが開始されると、前記検出温度が大きいほど前記室内ユニットファンの送風量が大きくなるように、前記室内ユニットファンの送風量が各々異なる複数の送風運転の中から一の送風運転を決定し、前記一の送風運転に対応する送風量となるように前記室内ユニットファンを制御する
     空気調和機。
  2.  前記下限温度、前記上限温度、及び前記複数の送風運転間の閾値温度の少なくとも何れかを設定する操作手段をさらに備えた
     請求項1に記載の空気調和機。
  3.  室外温度を検出する室外温度検出手段をさらに備え、
     前記制御手段は、
     前記室内温度検出手段が検出した室内温度及び前記室外温度検出手段が検出した室外温度に基づいて、前記室内ユニットファンを制御する
     請求項1又は請求項2に記載の空気調和機。
  4.  室内湿度を検出する室内湿度検出手段をさらに備え、
     前記制御手段は、
     前記室内温度検出手段が検出した室内温度及び前記室内湿度検出手段が検出した室内湿度に基づいて、前記室内ユニットファンを制御する
     請求項1~請求項3の何れか一項に記載の空気調和機。
  5.  カレンダー情報を取得するカレンダー情報取得手段をさらに備え、
     前記制御手段は、
     前記室内温度検出手段が検出した室内温度及び前記カレンダー情報取得手段が取得したカレンダー情報に基づいて、前記室内ユニットファンを制御する
     請求項1~請求項4の何れか一項に記載の空気調和機。
PCT/JP2014/060036 2014-04-04 2014-04-04 空気調和機 WO2015151294A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060036 WO2015151294A1 (ja) 2014-04-04 2014-04-04 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060036 WO2015151294A1 (ja) 2014-04-04 2014-04-04 空気調和機

Publications (1)

Publication Number Publication Date
WO2015151294A1 true WO2015151294A1 (ja) 2015-10-08

Family

ID=54239654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060036 WO2015151294A1 (ja) 2014-04-04 2014-04-04 空気調和機

Country Status (1)

Country Link
WO (1) WO2015151294A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537113A (ja) * 2017-10-11 2020-12-17 フィリップ アソウアド ベチャーラ 体感温度に基づいた自動スイッチオーバーサーモスタットシステム、及び空調された空間の体感温度を判定して自動制御する方法
US20220196279A1 (en) * 2020-12-22 2022-06-23 Kyungdong Navien Co., Ltd. Device for managing temperature

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280675A (ja) * 2000-03-31 2001-10-10 Fujitsu General Ltd 空気調和機の制御方法
JP2003083586A (ja) * 2001-09-10 2003-03-19 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2007322088A (ja) * 2006-06-02 2007-12-13 Matsushita Electric Ind Co Ltd 空気調和装置
JP2012007779A (ja) * 2010-06-23 2012-01-12 Daikin Industries Ltd 空気調和装置
JP2013050239A (ja) * 2011-08-30 2013-03-14 Mitsubishi Electric Corp 空気調和機
JP2014059124A (ja) * 2012-09-19 2014-04-03 Azbil Corp 空調制御システムおよび空調制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280675A (ja) * 2000-03-31 2001-10-10 Fujitsu General Ltd 空気調和機の制御方法
JP2003083586A (ja) * 2001-09-10 2003-03-19 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2007322088A (ja) * 2006-06-02 2007-12-13 Matsushita Electric Ind Co Ltd 空気調和装置
JP2012007779A (ja) * 2010-06-23 2012-01-12 Daikin Industries Ltd 空気調和装置
JP2013050239A (ja) * 2011-08-30 2013-03-14 Mitsubishi Electric Corp 空気調和機
JP2014059124A (ja) * 2012-09-19 2014-04-03 Azbil Corp 空調制御システムおよび空調制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537113A (ja) * 2017-10-11 2020-12-17 フィリップ アソウアド ベチャーラ 体感温度に基づいた自動スイッチオーバーサーモスタットシステム、及び空調された空間の体感温度を判定して自動制御する方法
US20220196279A1 (en) * 2020-12-22 2022-06-23 Kyungdong Navien Co., Ltd. Device for managing temperature
US11965668B2 (en) * 2020-12-22 2024-04-23 Kyungdong Navien Co., Ltd. Device for managing temperature

Similar Documents

Publication Publication Date Title
US20210108817A1 (en) Hvac controller with indoor air quality scheduling
US20210088239A1 (en) Thermostat temperature compensation modeling
CN112567183B (zh) 空调装置、控制装置、空气调节方法以及存储介质
US20060260334A1 (en) Thermostat and method for operating in either a normal or dehumidification mode
RU2471126C1 (ru) Воздушный кондиционер
CN109323377B (zh) 空调器及其控制方法和控制装置
JP2020505577A (ja) 外気調和機およびその冷風防止制御方法ならびに装置
CN110567137B (zh) 空调器及其送风控制方法
CN109323379B (zh) 空调器及其控制方法和装置
JP6298323B2 (ja) 温度環境制御システムおよび装置
JP6419497B2 (ja) 空調制御装置、空調制御方法、及びプログラム
JP5449049B2 (ja) 空調システム
JP2007327708A (ja) 空気調和機
WO2015141118A1 (ja) 送風制御システムおよび送風制御プログラム
WO2015151294A1 (ja) 空気調和機
JP6701449B1 (ja) 空調装置、制御装置、空調方法及びプログラム
EP3163202B1 (en) Air conditioning system
JP6139097B2 (ja) 空気調和機
CN109312950B (zh) 空调系统
WO2018002990A1 (ja) 空気調和機
JPH0552379A (ja) 空気調和機の制御方法
JPH0213750A (ja) 空調システム制御装置
JP2008232553A (ja) 空気調和機
CN112378055A (zh) 空调控制方法、装置及空调室内机、空调系统、存储介质
US20200148026A1 (en) Automatic cooling/heating control method of air conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP