WO2015151240A1 - Analysis method and analysis device for detection of abnormal analyte - Google Patents

Analysis method and analysis device for detection of abnormal analyte Download PDF

Info

Publication number
WO2015151240A1
WO2015151240A1 PCT/JP2014/059714 JP2014059714W WO2015151240A1 WO 2015151240 A1 WO2015151240 A1 WO 2015151240A1 JP 2014059714 W JP2014059714 W JP 2014059714W WO 2015151240 A1 WO2015151240 A1 WO 2015151240A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
light
scatterer
analyzer
unit
Prior art date
Application number
PCT/JP2014/059714
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 與儀
悠 石毛
原田 邦男
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/059714 priority Critical patent/WO2015151240A1/en
Publication of WO2015151240A1 publication Critical patent/WO2015151240A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 Measurement of milky fluid and hemolyzed blood concentrations in an analyte is carried out. As the analyte flows through a channel, a signal series is obtained through multiple measurements of absorbance or scattered light, and the average value and dispersion of the absorbance or scattered light is calculated. The average value and dispersion obtained thereby are compared with correction data from a storage unit, to thereby calculate the concentrations of milky fluid and hemolyzed blood.

Description

異常検体検出のための分析方法及び分析装置Analysis method and analyzer for detecting abnormal specimen
 本発明は、血液由来の異常検体を検出するための分析方法及び分析装置に関する。 The present invention relates to an analysis method and an analysis apparatus for detecting an abnormal specimen derived from blood.
 臨床検査において、ヒト由来の血液から得られる検体(血清もしくは血漿)を用いて、血液中の特定成分濃度を定量する自動分析装置が広く用いられている(例えば特許文献1)。一方、検体には分析に影響を与える干渉物質が混入している場合がある。干渉物質には、脂質、ヘモグロビン、ビリルビンなどがあり、それらが混入した異常検体はそれぞれ乳び、溶血、ビリルビンと呼ばれる。干渉物質が混入した異常検体の識別、並びに干渉物質の濃度がわからなければ、検査の正確性が保証できない上、検査結果が異常値を示すことで再検査による診断遅延やコストの増加を招く。そのため、異常検体を光学測定で検出し、含まれる乳び・溶血・ビリルビンの濃度を定量化する手法が複数考案されている。たとえば、血清の輸送箇所に着目し、輸血用パック間のチューブにおいて検出する方法(特許文献2)、検体分注用のノズル部において検出する方法(特許文献3)などがある。 In a clinical test, an automatic analyzer that quantifies the concentration of a specific component in blood using a sample (serum or plasma) obtained from blood derived from humans is widely used (for example, Patent Document 1). On the other hand, the sample may contain an interfering substance that affects the analysis. Interfering substances include lipids, hemoglobin, bilirubin, and the like, and abnormal specimens mixed with them are called chyle, hemolysis, and bilirubin, respectively. If the identification of the abnormal specimen mixed with the interfering substance and the concentration of the interfering substance are not known, the accuracy of the test cannot be guaranteed, and the test result shows an abnormal value, thereby causing a delay in diagnosis and an increase in cost due to the retest. Therefore, a plurality of methods have been devised for detecting abnormal specimens by optical measurement and quantifying the concentrations of chyle, hemolysis, and bilirubin contained therein. For example, there are a method of detecting in a tube between blood transfusion packs (Patent Document 2) and a method of detecting in a nozzle portion for sample dispensing (Patent Document 3) by paying attention to a serum transport location.
 一般的に干渉物質の検出は、乳び中の乳化した脂肪などによる光散乱、溶血中のヘモグロビン、ビリルビンによる分子吸光特性を利用している。具体的には、中性脂肪は可視光域の広い波長の光を散乱し、ヘモグロビン、ビリルビンは吸光スペクトルのピークが異なるため、干渉物質の吸光スペクトルの違いを利用し検出を行う技術がある。たとえば、特許文献2,3,4に記載の技術では、複数の波長の吸光度を測定し、その吸光度から干渉物質の種類と濃度を特定する。透過光による吸光度測定以外の測定法には、全反射減衰赤外プリズムを利用することで赤外光の吸収を検出し干渉物質を検出する特許文献5がある。 Generally, the detection of interfering substances utilizes light scattering by emulsified fat in chyle, etc., and molecular absorption characteristics by hemoglobin and bilirubin in hemolysis. Specifically, neutral fat scatters light with a wide wavelength in the visible light range, and hemoglobin and bilirubin have different absorption spectrum peaks. Therefore, there is a technique for detecting using the difference in the absorption spectrum of an interfering substance. For example, in the techniques described in Patent Documents 2, 3, and 4, the absorbance at a plurality of wavelengths is measured, and the type and concentration of the interference substance are specified from the absorbance. As a measuring method other than the measurement of absorbance by transmitted light, there is Patent Document 5 in which absorption of infrared light is detected by using a total reflection attenuation infrared prism to detect an interference substance.
米国特許第4451433号明細書U.S. Pat. No. 4,451,433 特表2001-514744号公報JP-T-2001-514744 特開2008-020381号公報JP 2008-020801 A 特開平06-241981号公報Japanese Patent Laid-Open No. 06-241981 特開平06-000173号公報Japanese Patent Laid-Open No. 06-000173
 光学測定によって干渉物質を検出する場合、長波長域の光は干渉物質の中では乳びのみと相互作用することを前提としている。しかし、検体は非健常者から採られる場合も多く、乳び、溶血の干渉物質が混じり合ったり、想定外の混濁物が入る場合がある。さらに、実際には、溶血においても、血中の赤血球や血小板が破損した細胞片、それらの集合体などが混濁しているため、長波長域の光も散乱される。そのため、溶血が混合した検体において溶血と乳びの濃度を測定することが困難となっている。 When detecting an interfering substance by optical measurement, it is assumed that light in a long wavelength region interacts only with chyle in the interfering substance. However, specimens are often collected from non-healthy people, and chyle and hemolytic interference substances may be mixed together or unexpected turbid substances may be introduced. Furthermore, in practice, even in hemolysis, cell fragments in which erythrocytes and platelets in the blood are broken, aggregates thereof, etc. are turbid, so that light in the long wavelength range is also scattered. Therefore, it is difficult to measure the concentration of hemolysis and chyle in a specimen in which hemolysis is mixed.
 特許文献2には、乳び・溶血が混じり合った血清に関して、各成分の濃度を分離する方法には示されていない。特許文献3,4は長波長域の光で乳びのみを検出しようとしているが、溶血濃度が高い場合には長波長域の光が溶血の影響でも散乱されるため、乳びと溶血の区別ができない場合がある。さらには、上記手法は検体に想定外の混濁物が含まれていても、区別することができない。特許文献5は、そもそも溶血に関しては検出ができない。 Patent Document 2 does not disclose a method for separating the concentration of each component of serum mixed with chyle and hemolysis. Patent Documents 3 and 4 attempt to detect only chyle with light in the long wavelength range. However, when the hemolysis concentration is high, the light in the long wavelength range is scattered even under the influence of hemolysis. There are cases where it is not possible. Furthermore, the above method cannot be distinguished even if the sample contains unexpected turbidity. Patent Document 5 cannot detect hemolysis in the first place.
 本発明では、検体を流路内に流し、流路を流れてくる検体の局所的な吸光度の分散もしくは散乱光の分散を測定することにより、乳びや溶血の判定並びに濃度の計測、さらに乳び、溶血以外の混濁物の検知を行う。 In the present invention, the specimen is flowed into the flow path, and the dispersion of the local absorbance or scattered light of the specimen flowing through the flow path is measured, thereby determining chyle and hemolysis, measuring the concentration, and further measuring the chyle. Detect turbidity other than hemolysis.
 具体的に説明すると、検体もしくはその希釈溶液を一定の流速で流路を移動させ、流路に照射した光からもたらされる透過光もしくは散乱光(以下、信号)を一定の時間間隔で測定し、検体ごとの信号系列を得る。得られた信号系列から、透過光の場合は吸光度、散乱光の場合は散乱光強度の、平均値Sと分散ΔSを求める。ここで校正データとして、予め濃度が既知の乳びもしくは溶血を用いて、乳びもしくは溶血の、濃度ごとの平均値S並びに分散指標ΔS/Sを用意しておく。続いて、検体から得られた平均値S、分散指標ΔS/Sと上記校正データとを比較し、異常検体の種類(溶血、乳び、それ以外の混濁物)の特定並びに濃度比を算出する。分散指標ΔS/Sの代わりに分散ΔSそのものを用いてもよい。 Specifically, the specimen or its diluted solution is moved through the flow path at a constant flow rate, and transmitted light or scattered light (hereinafter referred to as a signal) resulting from the light irradiated to the flow path is measured at regular time intervals. A signal sequence for each specimen is obtained. From the obtained signal series, an average value S and a variance ΔS of the absorbance in the case of transmitted light and the scattered light intensity in the case of scattered light are obtained. Here, as calibration data, an average value S and a dispersion index ΔS / S for each concentration of chyle or hemolysis are prepared in advance using chyle or hemolysis having a known concentration. Subsequently, the average value S and dispersion index ΔS / S obtained from the specimen are compared with the calibration data, and the type of abnormal specimen (hemolysis, chyle, other turbid substances) and the concentration ratio are calculated. . Instead of the dispersion index ΔS / S, the dispersion ΔS itself may be used.
 すなわち、本発明の分析装置は、溶液が流される流路と、流路中の溶液に光を照射する光照射部と溶液から出射された光を受光する受光部を備える光学測定部と、記憶部とを有し、光学測定部で複数回にわたり測定を行うことで信号系列を得、得られた信号系列の平均値と分散を演算し、記憶部は信号系列の平均値と分散を溶液中の散乱体の種類ごとに予め記憶し、記憶部に記憶された値と演算された値とを比較することにより溶液中の散乱体の種類と濃度を算出する。 That is, the analyzer of the present invention includes a flow path through which a solution flows, a light irradiation section that irradiates light to the solution in the flow path, an optical measurement section that includes a light receiving section that receives light emitted from the solution, and a memory. A signal sequence is obtained by performing measurement multiple times with the optical measurement unit, the average value and variance of the obtained signal sequence are calculated, and the storage unit calculates the average value and variance of the signal sequence in the solution. Each type of scatterer is stored in advance, and the type and concentration of the scatterer in the solution are calculated by comparing the value stored in the storage unit with the calculated value.
 1波長の光で検出した信号系列の分散を求めることで、乳びと溶血を区別し、かつ乳びと溶血の混合した異常検体において両者の濃度を測定することができる。また、想定している干渉物質以外が混濁した場合を判定することが可能となる。 By obtaining the dispersion of the signal sequence detected with light of one wavelength, chyle and hemolysis can be distinguished, and the concentration of both in an abnormal specimen in which chyle and hemolysis are mixed can be measured. Further, it is possible to determine a case where other than the assumed interference substance is clouded.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
検体中の干渉物質を検出する手順の例を示すフローチャート。The flowchart which shows the example of the procedure which detects the interference substance in a test substance. 光学測定部の構成例を示す模式図。The schematic diagram which shows the structural example of an optical measurement part. 本発明による分析装置の構成例を示すブロック図。The block diagram which shows the structural example of the analyzer by this invention. 散乱体粒子1個当たりの吸光度、吸光度0.1absの溶液に含まれる粒子の個数、吸光度0.1absの溶液における吸光度分散の粒径依存性を示す図。The figure which shows the particle size dependence of the light absorbency per scatterer particle | grains, the number of particles contained in the solution of light absorbency 0.1abs, and the light-absorbance dispersion | distribution in the solution of light absorbency 0.1abs. ラテックス粒子分散溶液における吸光度分散の吸光度依存性を示す図。The figure which shows the light-absorbency dependence of the light-absorbing dispersion | distribution in a latex particle dispersion solution. ラテックス粒子分散溶液における吸光度分散の流速依存性を示す図。The figure which shows the flow rate dependence of the light-absorbing dispersion | distribution in a latex particle dispersion solution. 2種類の散乱体を含む溶液の吸光度分散図。The absorbance dispersion diagram of a solution containing two kinds of scatterers. 異常血清における吸光度分散の吸光度依存性を表す校正データの図。The figure of the calibration data showing the light-absorbency dependence of the light-absorbance dispersion | distribution in abnormal serum. 異常血清における吸光度分散の流速依存性を示す図。The figure which shows the flow rate dependence of the light-absorption dispersion | distribution in abnormal serum.
 以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の分析方法に従って検体中の干渉物質を検出する手順の例を示すフローチャートである。ここで、検体とは血清、血漿、又は血清や血漿の希釈溶液のことを指す。以下では図1と共に他の図をも参照しながら説明する。 FIG. 1 is a flowchart showing an example of a procedure for detecting an interfering substance in a specimen according to the analysis method of the present invention. Here, the specimen refers to serum, plasma, or a diluted solution of serum or plasma. The following description will be made with reference to FIG. 1 and other drawings.
 光学測定部が設置された流路に検体が一定の速度で流され(S11)、流路に含まれる検体の吸光度あるいは散乱光強度を光学測定部で複数回にわたって測定する(S12)。1回ごとの測定時間は、流速に対して十分短い時間とする。1回ごとの測定時間中に照射光が照射される液量が少なくなるように、測定時に流れを止めてもかまわない。図1のフローチャートによる測定は、採血から自動分析装置などによる血液成分分析までの間に行われる。たとえば自動分析装置上に検体をフローする機構を設け、血液成分分析用に搬送されてきた検体の一部を、血液成分分析の前に予め測定する。 The specimen is caused to flow through the flow path in which the optical measurement section is installed at a constant speed (S11), and the absorbance or scattered light intensity of the specimen contained in the flow path is measured a plurality of times by the optical measurement section (S12). The measurement time for each time is sufficiently short with respect to the flow rate. The flow may be stopped during the measurement so that the amount of the liquid irradiated with the irradiation light is reduced during each measurement time. The measurement according to the flowchart of FIG. 1 is performed between blood collection and blood component analysis using an automatic analyzer or the like. For example, a mechanism for flowing a specimen is provided on an automatic analyzer, and a part of the specimen conveyed for blood component analysis is measured in advance before blood component analysis.
 図2(a)は、光学測定部の構成例を示す模式図である。光学測定部では、可視光域の波長を出射する光源21からの照射光24が検体の流れる流路22にスリット26を介して照射され、流路22から出射される透過光もしくは散乱光25を受光部23でスリット26を介して受光する。 FIG. 2A is a schematic diagram showing a configuration example of the optical measurement unit. In the optical measurement unit, the irradiation light 24 from the light source 21 that emits a wavelength in the visible light range is irradiated to the flow path 22 through which the specimen flows through the slit 26, and transmitted light or scattered light 25 emitted from the flow path 22 is used. The light receiving unit 23 receives light through the slit 26.
 図3は、本発明による分析装置の構成例を示すブロック図である。光学測定部31で得られた透過光もしくは散乱光の強度信号は、データ格納部32へ格納され、その後、解析部33で強度信号から吸光度もしくは散乱光強度の信号系列の平均値と分散を算出する(S13)。得られた平均値と分散は、その後データ記憶部に記憶される異常検体の種類、濃度ごとの平均値・分散を有する校正データベース35と参照され(S14)、異常検体の種類と濃度が出力部34で出力される。 FIG. 3 is a block diagram showing a configuration example of the analyzer according to the present invention. The transmitted light or scattered light intensity signal obtained by the optical measurement unit 31 is stored in the data storage unit 32, and then the analysis unit 33 calculates the average value and variance of the signal series of absorbance or scattered light intensity from the intensity signal. (S13). The obtained average value and variance are then referred to the calibration database 35 having the average value / variance for each type and concentration of the abnormal sample stored in the data storage unit (S14), and the type and concentration of the abnormal sample are output to the output unit. 34 is output.
 以下、本発明により検体の種類並びに濃度を検出する方法を説明する。 Hereinafter, a method for detecting the type and concentration of the specimen according to the present invention will be described.
 散乱体が照射光を散乱する割合は、散乱体の散乱断面積から算出される。1個あたりの散乱による吸光度σは散乱断面積に比例するため、散乱体としてラテックス粒子を例にとると、図4(a)のようにMie散乱によりラテックス粒子の粒径が大きいほど粒子1個あたりの吸光度は増加する。以下、信号として吸光度を測定する場合を例にとるが、散乱光強度を測定する場合にも同様の結果が得られる。ここで、図4(a)は溶媒が純水、粒子がラテックス粒子の場合の値であるが、同様に、乳びと溶血に含まれる散乱体の大きさは異なるため、両者の1個あたりの吸光度も異なる。 The rate at which the scatterer scatters the irradiated light is calculated from the scattering cross section of the scatterer. Since the absorbance σ due to scattering per unit is proportional to the scattering cross section, taking a latex particle as an example of the scatterer, as the particle size of the latex particle increases due to Mie scattering as shown in FIG. The per unit absorbance increases. Hereinafter, the case where the absorbance is measured as a signal is taken as an example, but the same result can be obtained when the scattered light intensity is measured. Here, FIG. 4 (a) shows the values when the solvent is pure water and the particles are latex particles. Similarly, since the sizes of scatterers contained in chyle and hemolysis are different, the per one of both Absorbance is also different.
 溶液の吸光度Sは、散乱体1個あたりの吸光度と、測定体積に含まれる散乱体の個数にほぼ比例する。ここで測定体積とは、照射光に照射され、かつ受光系で受光される溶液の体積のことを指す。そのため吸光度Sの分散は、測定体積内に含まれる散乱体の個数の分散に比例する。 The absorbance S of the solution is approximately proportional to the absorbance per scatterer and the number of scatterers contained in the measurement volume. Here, the measurement volume refers to the volume of the solution irradiated with the irradiation light and received by the light receiving system. Therefore, the dispersion of the absorbance S is proportional to the dispersion of the number of scatterers contained in the measurement volume.
 一方、測定体積内に含まれる散乱体の個数は、散乱体1個あたりの吸光度で溶液全体の吸光度を割った値に等しく、たとえば0.1absの吸光度を示す溶液内に含まれるラテックス粒子の個数は図4(b)のようになる。図4(b)に示されているように、粒径が100μm以下の粒子において、粒径の小さい粒子ほど同一吸光度の溶液内に含まれる個数は顕著に増大する。 On the other hand, the number of scatterers contained in the measurement volume is equal to the value obtained by dividing the absorbance of the entire solution by the absorbance per scatterer. For example, the number of latex particles contained in the solution exhibiting an absorbance of 0.1 abs. Is as shown in FIG. As shown in FIG. 4B, among particles having a particle size of 100 μm or less, the number of particles contained in a solution having the same absorbance increases remarkably as the particle size is smaller.
 そのため同一吸光度を示す溶液であっても、含まれる散乱体の種類が異なる場合には測定体積内に含まれる散乱体の個数が異なるために吸光度Sの分散が異なる。具体的には、図4(c)に示すように、散乱断面積の大きい散乱体で構成される溶液ほど吸光度の分散は大きい。 Therefore, even in a solution exhibiting the same absorbance, when the types of scatterers contained are different, the number of scatterers contained in the measurement volume is different, so the dispersion of absorbance S is different. Specifically, as shown in FIG. 4C, the dispersion of the absorbance is larger as the solution is composed of a scatterer having a larger scattering cross section.
 測定体積をv,測定体積内に含まれる散乱体個数をn(v),密度をdn,光学系ごとの比例係数をkとおくと、 The measurement volume v, the scatterer number contained in the measurement volume n (v), density d n, when placing the proportional coefficient for each optical system and k,
式1 Formula 1
Figure JPOXMLDOC01-appb-I000001
の関係が得られる。そこから、
Figure JPOXMLDOC01-appb-I000001
The relationship is obtained. From there,
式2 Formula 2
Figure JPOXMLDOC01-appb-I000002
が求められる。
Figure JPOXMLDOC01-appb-I000002
Is required.
 ここで、含まれる散乱体の散乱断面積が異なる2種類の溶液(溶液1、溶液2)が混合している場合には、信号はS=S1+S2,ΔS=√(ΔS1 2+ΔS2 2)となるため、平均的な1個あたりの吸光度は Here, when two types of solutions (solution 1 and solution 2) having different scattering cross sections of the scatterers are mixed, the signals are S = S 1 + S 2 , ΔS = √ (ΔS 1 2 + ΔS). 2 2 ), so the average absorbance per piece is
式3 Formula 3
Figure JPOXMLDOC01-appb-I000003
となる。ここで、σ1,σ2は溶液の種類ごとに含まれる散乱体の散乱断面積であり、溶液ごとに固有の値をとるため、濃度比n2(v)/n1(v)(=測定体積中の個数比)を得る。
Figure JPOXMLDOC01-appb-I000003
It becomes. Here, σ 1 and σ 2 are the scattering cross sections of the scatterers included in each type of solution, and take a specific value for each solution. Therefore, the concentration ratio n 2 (v) / n 1 (v) (= Number ratio in the measurement volume).
 検出したい散乱体1個あたりの吸光度σを予め測定しておき、溶液に含まれる散乱体の種類や濃度を上記関係より求めてもよいが、溶液の種類と濃度ごとに予めS並びに分散指標ΔS/Sの校正データを取得しておき、その校正データから溶液の種類と濃度を検出してもよい。乳び、溶血における校正データの例を図8に示す。以下では、校正データを用いる方法を説明する。 The absorbance σ per scatterer to be detected may be measured in advance, and the type and concentration of the scatterer contained in the solution may be obtained from the above relationship, but S and the dispersion index ΔS are previously determined for each type and concentration of the solution. / S calibration data may be acquired and the type and concentration of the solution may be detected from the calibration data. An example of calibration data for chyle and hemolysis is shown in FIG. Hereinafter, a method using calibration data will be described.
 原理説明のため、粒経4.5μm又は10μmのラテックス粒子が純水に分散した溶液を、流径1mmの流路22へ流速6mL/minで流し、波長700nmの照射光24を照射し、吸光度を30秒間測定(測定点数600ポイント)した結果を図5に示す。上記計算結果と同様に、散乱体が分散した溶液の種類(粒経4.5μm又は10μmの散乱体分散溶液)ごとに分散指標ΔS/Sが固有の値をもち、同一吸光度の分散溶液では大粒径ラテックス粒子の分散溶液ほどΔS/S(S=abs)が大きく、特に同一粒径の分散溶液では粒子の密度(吸光度)が小さくなるにつれΔS/S(S=abs)が増大する。つまり、散乱体が薄い、もしくは測定される散乱体の個数が少ないほどΔS/Sが大きく測定しやすくなる。 In order to explain the principle, a solution in which latex particles having a particle size of 4.5 μm or 10 μm are dispersed in pure water is flowed at a flow rate of 6 mL / min into a flow path 22 having a flow diameter of 1 mm, irradiated with irradiation light 24 having a wavelength of 700 nm, and absorbance. FIG. 5 shows the result of measurement for 30 seconds (600 measurement points). Similar to the above calculation results, the dispersion index ΔS / S has a unique value for each type of solution in which the scatterer is dispersed (scatterer dispersion solution having a particle size of 4.5 μm or 10 μm). The dispersion solution of latex particles having a particle size has a larger ΔS / S (S = abs). In particular, in a dispersion solution having the same particle size, ΔS / S (S = abs) increases as the particle density (absorbance) decreases. That is, ΔS / S becomes larger and easier to measure as the scatterer is thinner or the number of scatterers to be measured is smaller.
 そこで、散乱体が多く含まれている溶液でΔS/Sを測定しやすくするため、1回あたりに測定される溶液量を変えて測定する複数の方法が用意される。具体的には、測定の総時間を固定し流速を調整する、もしくは、流速を固定し測定時間を調整する、もしくは、スリット26のサイズや光路長を調整し照射光が照射される溶液体積を調整する手法を用いる。当然ながら、測定される散乱体の個数を調整するため、溶液を希釈するなどの上記以外の手法を用いてもよい。 Therefore, in order to make it easy to measure ΔS / S in a solution containing a large amount of scatterers, a plurality of methods for changing the amount of solution measured per time are prepared. Specifically, the total time of measurement is fixed and the flow rate is adjusted, or the flow rate is fixed and the measurement time is adjusted, or the size of the slit 26 and the optical path length are adjusted and the volume of the solution irradiated with irradiation light is adjusted. Use the adjustment method. Of course, other methods such as diluting the solution may be used to adjust the number of scatterers to be measured.
 図6は、粒経10μmラテックス粒子の1abs分散溶液におけるΔS/S(S=abs)の流速依存性(測定の総時間を30秒(測定点数600ポイント)に固定)を示す図である。測定の総時間が固定されているため、1回あたりに測定される溶液量は流速に比例する。ΔS/S(S=abs)は流速を遅くすることにより増加し、流速が遅いほど測定は容易になる。 FIG. 6 is a diagram showing the flow rate dependence of ΔS / S (S = abs) in a 1 abs dispersion solution of 10 μm particle size latex particles (the total measurement time is fixed at 30 seconds (600 measurement points)). Since the total measurement time is fixed, the amount of solution measured per time is proportional to the flow rate. ΔS / S (S = abs) is increased by lowering the flow rate, and the slower the flow rate, the easier the measurement.
 流速ではなく、照射光を制限するスリット26のサイズを変更することにより1回あたりに測定される溶液量を減少させてもΔS/S(S=abs)は増加する。ここで、測定体積内の散乱体濃度が濃い場合には信号の分散を測定することが難しくなるため、図2(b)のように流れ方向に垂直な流路断面を流路方向の軸に対して非対称とし、同一流路の複数の箇所に光路長の異なる条件で測定する測定系を複数用意してもよい。すなわち、非対称な流路断面において差し渡し長さが異なる複数の位置に測定光路を設定すればよい。もしくは図2(c)のように、それぞれが異なるサイズのスリット26を備え照射される光束の面積が異なる光学系を複数用意してもよい。すなわち、光照射部から流路中の溶液に照射される光束の大きさを異ならせた光学測定部を複数設けてもよい。 [Delta] S / S (S = abs) increases even if the amount of solution measured per time is decreased by changing the size of the slit 26 that limits the irradiation light, not the flow rate. Here, when the scatterer concentration in the measurement volume is high, it is difficult to measure the dispersion of the signal. Therefore, as shown in FIG. 2B, the flow path cross section perpendicular to the flow direction is set to the flow path direction axis. On the other hand, a plurality of measurement systems that perform measurement under different conditions of the optical path length may be prepared at a plurality of locations in the same flow path. That is, the measurement optical paths may be set at a plurality of positions having different passing lengths in the asymmetric channel cross section. Alternatively, as shown in FIG. 2 (c), a plurality of optical systems having different sizes of slits 26 and different areas of the irradiated light beam may be prepared. That is, a plurality of optical measurement units may be provided in which the sizes of the light beams irradiated from the light irradiation unit to the solution in the flow path are different.
 組成の明らかな2種類の散乱体が混合している溶液においては、図7のように、それぞれの散乱体が単分散した溶液1,溶液2の校正データを用いて、ΔS1/SとΔS2/Sに対する混合溶液の実測値ΔSmix/Sの比を用いて、混合溶液中の散乱体濃度比を求めることができる。具体的には、散乱体1,散乱体2のそれぞれの成分による信号をS1,S2(S=S1+S2)とし、S1:S2=(ΔS2-ΔSmix):(ΔSmix-ΔS1)から、各散乱体の濃度(S1,S2)を得る。また、予め散乱体1,散乱体2の比率の異なる混合溶液の校正データを取得しておき、それら校正データとの対応によりそれぞれの濃度を算出しても構わない。 In a solution in which two types of scatterers having a clear composition are mixed, as shown in FIG. 7, ΔS 1 / S and ΔS are obtained using calibration data of solution 1 and solution 2 in which each scatterer is monodispersed. Using the ratio of the measured value ΔS mix / S of the mixed solution to 2 / S, the scatterer concentration ratio in the mixed solution can be obtained. Specifically, S 1 and S 2 (S = S 1 + S 2 ) are signals from the components of scatterer 1 and scatterer 2, and S 1 : S 2 = (ΔS 2 -ΔS mix ) :( ΔS The concentration (S 1 , S 2 ) of each scatterer is obtained from mix− ΔS 1 ). Alternatively, calibration data of mixed solutions having different ratios of the scatterer 1 and the scatterer 2 may be acquired in advance, and the respective concentrations may be calculated based on the correspondence with the calibration data.
 同様に、ある溶液の測定値が、図7の領域A(溶液1の校正データ(Δabs/abs)以下)にある場合は、溶液1の散乱体よりも散乱断面積の小さな散乱体が含まれると判断し、領域B(溶液2の校正データ(Δabs/abs)以上)にある場合は、溶液2の散乱体よりも散乱断面積の大きな散乱体が含まれると判断することができる。 Similarly, when the measured value of a certain solution is in the region A of FIG. 7 (below the calibration data (Δabs / abs) of the solution 1), a scatterer having a smaller scattering cross section than that of the solution 1 is included. If it is in the region B (more than the calibration data (Δabs / abs) of the solution 2), it can be determined that a scatterer having a larger scattering cross section than that of the solution 2 is included.
 以上の説明では分散ΔSをシグナルSで正規化したΔS/Sを解析に用いているが、分散ΔSそのものを同様に用いても構わない。 In the above description, ΔS / S obtained by normalizing the variance ΔS with the signal S is used for the analysis, but the variance ΔS itself may be used in the same manner.
 上記手法を用い、異常検体の種類と濃度を検出する方法を説明する。なお、このようにして測定された異常検体の干渉物質濃度は、血液中の特定濃度を定量する際の信頼性を評価したり、異常検体の取り扱いを決定することに用いられる。 A method for detecting the type and concentration of an abnormal specimen using the above method will be described. The interference substance concentration of the abnormal specimen thus measured is used to evaluate the reliability when quantifying a specific concentration in blood or to determine the handling of the abnormal specimen.
 はじめに、濃度が既知の乳び、溶血、ブランク(正常血清)を、上記手法と同様に流路径1mmの流路22へ流速6mL/minで流し、波長700nmの照射光24を照射し、吸光度SとΔS/S(S=abs)の校正データ(図8)を得、校正データベース35に保存しておく。ここでは、乳び、溶血、ブランクともにシスメックス社の干渉チェックAプラスを用いている。 First, chyle, hemolysis, and blank (normal serum) having a known concentration are flowed at a flow rate of 6 mL / min into a flow path 22 having a flow path diameter of 1 mm in the same manner as described above, irradiated with irradiation light 24 having a wavelength of 700 nm, and absorbance S And ΔS / S (S = abs) calibration data (FIG. 8) is obtained and stored in the calibration database 35. Here, interference check A plus of Sysmex is used for chyle, hemolysis, and blank.
 続いて、図1のフローに従い検体を評価する。検体の吸光度を測定し、測定された吸光度SとΔS/S(S=abs)を、校正データベース35の校正データと比較し(S14)、ステップ15の判定においてブランク値と一致すれば、正常検体と出力部34で出力する(S16)。ステップ15の判定でブランク値と一致しなかった場合、ステップ17の判定に進み、測定結果のΔS/S(S=abs)が乳びの校正データ以下である場合は乳びよりも散乱断面積の小さな散乱体が含まれ、溶血の校正データ以上である場合は溶血よりも散乱断面積の大きな散乱体が含まれると判断することができる(S18)。測定結果のΔS/S(S=abs)が乳び、溶血の校正データの中間値である場合には、乳びと溶血の混合溶液であると判断し、濃度比を算出する(S19)。 Subsequently, the specimen is evaluated according to the flow of FIG. The absorbance of the sample is measured, and the measured absorbance S and ΔS / S (S = abs) are compared with the calibration data in the calibration database 35 (S14). And output by the output unit 34 (S16). If it does not coincide with the blank value in the determination of step 15, the process proceeds to the determination of step 17, and when ΔS / S (S = abs) of the measurement result is equal to or less than the calibration data of chyle, the scattering cross section is larger than that of chyle. If a small scatterer is included and the lysis data is greater than or equal to the hemolysis calibration data, it can be determined that a scatterer having a larger scattering cross section than the hemolysis is included (S18). If ΔS / S (S = abs) of the measurement result is an intermediate value between the calibration data of chyle and hemolysis, it is determined that the solution is a mixed solution of chyle and hemolysis, and the concentration ratio is calculated (S19).
 ここで、0.02absの乳び、0.1absの溶血のΔS/S(S=abs)の流速依存性は図9のようになり、ラテックス粒子と同様に、1回あたりに測定される溶液量に依存して変化するため、検出したい乳び、溶血の濃度幅に応じて、1回あたりに測定される溶液量を調整することができる。 Here, the flow rate dependence of ΔS / S (S = abs) of 0.02abs chyle and 0.1abs hemolysis is as shown in FIG. 9, and the solution measured per time is similar to latex particles. Since it changes depending on the amount, the amount of solution measured per time can be adjusted according to the chyle to be detected and the concentration range of hemolysis.
 図2(b)や図2(c)の例に示すように複数の光学系で測定を行う場合、光学系ごとのS(=abs)とΔS/S(S=abs)が得られるが、その中で最も精度が高いΔS/S(S=abs)信号を用いることで、様々な濃度の異常検体を、安定した精度で測定することができる。 As shown in the examples of FIGS. 2B and 2C, when measurement is performed with a plurality of optical systems, S (= abs) and ΔS / S (S = abs) are obtained for each optical system. By using the ΔS / S (S = abs) signal having the highest accuracy among them, it is possible to measure abnormal samples of various concentrations with stable accuracy.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、図面は説明上必要と考えられるものを示しており、製品上必ずしも全ての構成部や機能を示しているわけではない。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Further, the drawings show what is considered necessary for explanation, and do not necessarily show all the components and functions on the product.
21 光源
22 流路
23 受光器
24 照射光
25 透過光もしくは散乱光
26 スリット
31 光学測定部
32 データ格納部
33 解析部
34 出力部
35 校正データベース部
21 Light source 22 Channel 23 Light receiver 24 Irradiation light 25 Transmitted light or scattered light 26 Slit 31 Optical measurement unit 32 Data storage unit 33 Analysis unit 34 Output unit 35 Calibration database unit

Claims (6)

  1.  溶液が流される流路と、
     前記流路中の溶液に光を照射する光照射部と前記溶液から出射された光を受光する受光部を備える光学測定部と、
     記憶部とを有し、
     前記光学測定部で複数回にわたり測定を行うことで信号系列を得、
     得られた前記信号系列の平均値と分散を演算し、
     前記記憶部は、前記信号系列の平均値と分散を前記溶液中の散乱体の種類ごとに予め記憶し、
     前記記憶部に記憶された値と前記演算された値とを比較することにより前記溶液中の散乱体の種類と濃度を算出することを特徴とする分析装置。
    A flow path through which the solution flows;
    An optical measuring unit comprising a light irradiating unit for irradiating light to the solution in the flow path and a light receiving unit for receiving light emitted from the solution;
    A storage unit;
    A signal sequence is obtained by measuring multiple times in the optical measurement unit,
    Calculate the average value and variance of the obtained signal sequence,
    The storage unit stores in advance the average value and dispersion of the signal series for each type of scatterer in the solution,
    An analyzer characterized in that the type and concentration of the scatterer in the solution are calculated by comparing the value stored in the storage unit with the calculated value.
  2.  請求項1記載の分析装置において、
     前記溶液は血清又は血漿、もしくは血清又は血漿の希釈溶液であることを特徴とする分析装置。
    The analyzer according to claim 1,
    The analyzer is characterized in that the solution is serum or plasma, or a diluted solution of serum or plasma.
  3.  請求項1記載の分析装置において、
     前記溶液は乳び又は溶血であることを特徴とする分析装置。
    The analyzer according to claim 1,
    The analyzer is characterized in that the solution is chyle or hemolysis.
  4.  請求項1記載の分析装置において、
     前記溶液に含まれる散乱体が前記記憶部に記憶された散乱体の種類以外のものである場合、当該散乱体のサイズが前記記憶部に記憶された散乱体の最小サイズよりも小さいか最大サイズよりも大きいかを判別することを特徴とする分析装置。
    The analyzer according to claim 1,
    When the scatterer contained in the solution is other than the type of scatterer stored in the storage unit, the size of the scatterer is smaller than the minimum size of the scatterer stored in the storage unit or the maximum size An analyzer characterized by determining whether it is larger than the above.
  5.  請求項1記載の分析装置において、
     前記光照射部から前記溶液に照射される光束の大きさが異なる前記光学測定部を複数有することを特徴とする分析装置。
    The analyzer according to claim 1,
    An analysis apparatus comprising a plurality of the optical measurement units having different sizes of light beams applied to the solution from the light irradiation unit.
  6.  請求項1記載の分析装置において、
     前記流路中の溶液を通過する光路長がそれぞれ異なる前記光学測定部を複数有することを特徴とする分析装置。
    The analyzer according to claim 1,
    An analyzer comprising a plurality of the optical measuring units having different optical path lengths for passing through the solution in the channel.
PCT/JP2014/059714 2014-04-02 2014-04-02 Analysis method and analysis device for detection of abnormal analyte WO2015151240A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059714 WO2015151240A1 (en) 2014-04-02 2014-04-02 Analysis method and analysis device for detection of abnormal analyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059714 WO2015151240A1 (en) 2014-04-02 2014-04-02 Analysis method and analysis device for detection of abnormal analyte

Publications (1)

Publication Number Publication Date
WO2015151240A1 true WO2015151240A1 (en) 2015-10-08

Family

ID=54239606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059714 WO2015151240A1 (en) 2014-04-02 2014-04-02 Analysis method and analysis device for detection of abnormal analyte

Country Status (1)

Country Link
WO (1) WO2015151240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798613A1 (en) * 2019-09-30 2021-03-31 Sysmex Corporation Liquid transfer monitoring method and sample measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251044A (en) * 1988-08-12 1990-02-21 Omron Tateisi Electron Co Cell analyzer
JPH05256760A (en) * 1984-12-04 1993-10-05 Dow Chem Co:The Method for measuring size and/or concentration of substance in suspended matter
JP2003114214A (en) * 2001-08-01 2003-04-18 Lifescan Inc Method and device for use in analyte concentration determing assay
JP2004516052A (en) * 2000-11-15 2004-06-03 サイトメトリックス リミテッド ライアビリティ カンパニー Method, system, and program for measuring hematocrit in blood vessels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256760A (en) * 1984-12-04 1993-10-05 Dow Chem Co:The Method for measuring size and/or concentration of substance in suspended matter
JPH0251044A (en) * 1988-08-12 1990-02-21 Omron Tateisi Electron Co Cell analyzer
JP2004516052A (en) * 2000-11-15 2004-06-03 サイトメトリックス リミテッド ライアビリティ カンパニー Method, system, and program for measuring hematocrit in blood vessels
JP2003114214A (en) * 2001-08-01 2003-04-18 Lifescan Inc Method and device for use in analyte concentration determing assay

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798613A1 (en) * 2019-09-30 2021-03-31 Sysmex Corporation Liquid transfer monitoring method and sample measuring device
US20210096072A1 (en) * 2019-09-30 2021-04-01 Sysmex Corporation Liquid transfer monitoring method and sample measuring device
JP7368161B2 (en) 2019-09-30 2023-10-24 シスメックス株式会社 Liquid feeding monitoring method and sample measuring device
US11835454B2 (en) 2019-09-30 2023-12-05 Sysmex Corporation Liquid transfer monitoring method and sample measuring device

Similar Documents

Publication Publication Date Title
US5194909A (en) Apparatus and method for measuring volume and hemoglobin concentration of red blood cells
EP2016390B1 (en) A method and a system for quantitative hemoglobin determination
US9528978B2 (en) Blood analyzer and blood analyzing method
JP5058172B2 (en) Method for distinguishing platelets from red blood cells
AU2002359193B2 (en) Method for quantitative hemoglobin determination in undiluted unhemolyzed whole blood
US8137920B2 (en) Multi-wavelength analyses of sol-particle specific binding assays
Radtke et al. Hemoglobin screening in prospective blood donors: comparison of different blood samples and different quantitative methods
EP2434289B1 (en) Whole blood component measuring device and method
US20080144005A1 (en) Method for analyzing blood content of cytological specimens
JP6494649B2 (en) Method and device for assigning plasma samples
CN101876629B (en) Method for calculating the haemolysis of a blood sample and device
Boğdaycioğlu et al. Comparison of iSED and Ves‐Matic Cube 200 erythrocyte sedimentation rate measurements with Westergren method
NO750639L (en)
JP2009109196A (en) Dilution ratio deriving method, quantity determination method and analyzer
JP2008008794A (en) Analyzing device
Zhang et al. Improved diffusing wave spectroscopy based on the automatized determination of the optical transport and absorption mean free path
JP7366020B2 (en) Determination of particle size distribution by size exclusion chromatography
US20210033516A1 (en) Method for measuring the permeability of superabsorbers
WO2015151240A1 (en) Analysis method and analysis device for detection of abnormal analyte
US6330058B1 (en) Spectrophotometric method and apparatus for blood typing
JPS6332132B2 (en)
RU2610942C1 (en) Method for optical measurement of calculating concentration of dispersed particles in liquid environments and device for its implementation
Gray et al. A new method for cell volume measurement based on volume exclusion of a fluorescent dye
JPS6252434A (en) Absorption photometric analytic method
RU2212029C1 (en) Way of analysis of liquid biological medium in process of monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP