WO2015150071A2 - Method for producing a hollow body by cold spraying and mould core suitable for carrying out said method - Google Patents

Method for producing a hollow body by cold spraying and mould core suitable for carrying out said method Download PDF

Info

Publication number
WO2015150071A2
WO2015150071A2 PCT/EP2015/055611 EP2015055611W WO2015150071A2 WO 2015150071 A2 WO2015150071 A2 WO 2015150071A2 EP 2015055611 W EP2015055611 W EP 2015055611W WO 2015150071 A2 WO2015150071 A2 WO 2015150071A2
Authority
WO
WIPO (PCT)
Prior art keywords
hollow body
mold core
layer
produced
metal
Prior art date
Application number
PCT/EP2015/055611
Other languages
German (de)
French (fr)
Other versions
WO2015150071A3 (en
Inventor
Axel Arndt
Uwe Pyritz
Ralph Reiche
Oliver Stier
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP15712560.0A priority Critical patent/EP3102718A2/en
Priority to CA2944238A priority patent/CA2944238A1/en
Priority to JP2016560489A priority patent/JP2017512908A/en
Priority to US15/300,851 priority patent/US20170022615A1/en
Publication of WO2015150071A2 publication Critical patent/WO2015150071A2/en
Publication of WO2015150071A3 publication Critical patent/WO2015150071A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F2005/103Cavity made by removal of insert

Definitions

  • a method for producing a hollow body by means of cold gas ⁇ spraying and for performing this method suitable mandrel
  • the invention relates to a method for producing a hollow body.
  • the hollow body is produced by coating a mold core by cold gas spraying.
  • the layer produced on the mandrel forms the hollow body to be produced.
  • the invention relates to a mold core with a surface suitable as a substrate for the cold gas spraying. The surface must be suitable for cold gas spraying in that the particles that are accelerated with the cold gas jet to the surface of the mold ⁇ core, must adhere to this.
  • Cold spraying is a method known per se, are preferably accelerated at the foreseen for the coating particles by means of a convergent-divergent nozzle onto Matterschallge ⁇ speed, so that they stick to the surface to be coated due to their impressed kinetic energy.
  • the kinetic energy of the particles is used, which leads to a plastic deformation of the same, wherein the coating particles are melted on impact only on their surface. Therefore, this method is referred to as cold gas spraying in comparison with other thermal spraying methods, because it is carried out at comparatively low temperatures at which the coating particles remain substantially fixed.
  • the gas heating means to overheat an ER- comprises a gas.
  • a stagnation chamber is connected to the gas heater, which is connected on the output side with the convergent-divergent nozzle, preferably a Laval nozzle.
  • Convergent-divergent nozzles have a merging section and a widening section, which are connected by a nozzle neck.
  • the convergent-divergent nozzle produces the output side a powder jet in the form of a gas stream with particles therein at high speed, preferably supersonic speed ⁇ .
  • a method for producing a hollow body of the type specified is known from DE 10 2010 060 362 AI.
  • the cold gas spraying can thus be used to produce a tube on a cylindrical die.
  • the cold gas jet is inclined against the surface of the cylinder so far that the particles primarily adhere to the pipe being produced.
  • the cylindrical mandrel can therefore be removed after production of the tube from this. This is possible because of the typical geometry of tubes that are free from undercuts inside, so that the cylindrical shaped body can slide along the inner walls of the tube. However, more complicated geometries of hollow bodies can not be produced in this way.
  • the object of the invention is therefore to provide a method for producing a hollow body by means of cold gas spraying, with which hollow bodies of complex geometry can be manufactured.
  • This object is achieved according to the invention with the method specified at the outset by providing the mandrel with an auxiliary layer prior to producing the hollow body.
  • the material of this auxiliary layer according to the invention is metallic or has at least predominantly metallic components.
  • the auxiliary layer can provide a metallic matrix in which non-metallic inclusions can be embedded. In essence, such a situation still behaves like a metal.
  • the deposits may be, for example, particles of a dry lubricant to to facilitate removal of a nucleus.
  • the material of the auxiliary layer has a different composition than the material from which the hollow body is to be produced. This advantageously makes it possible to optimally adapt the material which forms the surface for coating with the material of the hollow body to the requirements of a substrate for cold gas spraying.
  • this material must be sufficiently ductile, so that the particles from the cold gas ⁇ beam adhere to the surface of the mandrel.
  • this material must be sufficiently temperature resistant, taking into account, under certain circumstances, that the gas which is used for the formation of the cold gas jet, is preheated. In this case, approximately the temperatures which the carrier gas has in the stagnation chamber upstream of the cold gas injection nozzle can be achieved in the impingement flow forming in front of the mold core.
  • Another feature that the surface of the mandrel aufwei ⁇ sen need is a resistance to the erosive effect of impacting particles. This surface is mechanically unstable, it provides the impinging particles of the cold gas ⁇ beam namely no sufficient resistance so that it which would not lead to a destruction of the mold core to a mechanical attachment of the particles on the surface and in a row.
  • the material of the mandrel can advantageously be chosen far ⁇ de regardless of the requirements of the cold gas spraying.
  • the method according to the invention also makes available materials for shaped cores whose mechanical stability would normally not be sufficient for an application of cold gas spraying. However, it is precisely these materials in a cost on the other hand easy to remove from the finished shaped body produced in the United ⁇ and application.
  • the mandrel sand, wood, metal or plastic can be used for the mandrel sand, wood, metal or plastic.
  • Sand cores have the advantage that they can be produced cost-effectively as lost cores are and can be easily removed from the cavity of the cavity structure by dissolving the bond between the individual grains of sand.
  • Wood forms a cost-effective material that can be easily processed, especially in very small series, to produce cores of the required geometry.
  • Metal is particularly suitable for the production of cores that are to be used several times. Their wear is advantageously low. In addition, these can be made with egg ⁇ ner high dimensional accuracy.
  • the surface DIE ser metal cores is then passed through the auxiliary sheet before Ver ⁇ wear protected. Also plastic cores have the advantage ei ⁇ ner simple production and a cost-effective material, which can be cast for example.
  • a mold core which can be made in particular of the materials mentioned, is then provided according to the invention with an auxiliary layer of a metallic material, which is involved in the formation of the starting layer on the material of the mold core or forms them alone, wherein the starting layer, the surface for a subsequent cold gas injection ⁇ the cavity structure provides.
  • Inner surface can be so far supported by a molding during manufacture, while it is accessible from the convex side for the cold gas jet.
  • a schüsseiförmiges component would be, for example, also to be understood as a hollow body according to the invention, the bowl-shaped recess would represent the cavity with a entspre ⁇ accordingly wide opening.
  • Classical hollow body would be, for example, housing, which may have as compared to the ge ⁇ cavity formed small opening.
  • the hollow bodies do not necessarily have exclusively convex outer walls. There may also be concave portions on the outside.
  • the auxiliary layer consists of a metal foil, in particular ⁇ sondere an aluminum foil, is formed.
  • the metal foil is placed on the mold core and thus forms the metallic surface on which the hollow body can be deposited by cold gas injection ⁇ .
  • aluminum represents a very cost-effective variant, whereby this material is on the one hand ductile enough so that the sprayed particles adhere.
  • this metal is mechanically stable enough to protect the molded body from erosive erosion by the cold gas jet.
  • an aluminum foil with a thickness of 0.1 mm is sufficient to allow the deposition of metallic materials.
  • the thickness of the auxiliary layer must be selected. For example, if sand cores are used, due to the need for a higher protection, the layer thicknesses of the
  • auxiliary position larger. At lower thicknesses of the auxiliary layer, it should be noted that this is plastically deformed due to the impact of the particles of the cold gas jet. However, the plastic deformation must not lead to a complete destruction of the auxiliary position, since the rest of the mold core would then no longer be protected. If the auxiliary sheet designed as a metal foil ⁇ , this can advantageously be adhesively bonded to the mold core. As a result, on the one hand slipping of the film during coating, in particular at angles between the cold gas jet and the surface of unequal
  • the bonding facilitates Applikati ⁇ on the film on the mold core, especially in complex overall ometrieen of the mandrel.
  • the at least one auxiliary layer is produced as a starting layer by cold gas spraying of a metallic material on the shaped body.
  • a metallic chosen sches material, which is classified as unproblematic in terms of film formation on the molding in comparison to the material which is provided for the hollow body.
  • the metallic material which can be formed in particular by a very ductile metal, keeps on the molding without destroying it. If the starting layer is applied with a sufficient thickness to the shaped body, this then provides a sufficient resistance during the deposition of the material of the hollow body. The thickness of the seed layer thickness details given from ⁇ leadership as a foil apply accordingly.
  • the production of the starting layer by means of cold gas spraying also has the advantage that the starting layer can be constructed in several auxiliary layers. In this way, it is possible to deposit me ⁇ tallische materials sequentially, which is used in the sequence of producing the auxiliary layers with increasingly harder and / or higher melting metallic materials.
  • the auxiliary layer which is produced directly on the mandrel, can be selected according to the fact that the mandrel is subjected to as little mechanical stress as possible. This is the case in particular with very low-melting and / or very ductile materials. In particular zinc, tin and lead are used here.
  • the following layers can then be made of other metals, preferably zinc, aluminum, copper, silver and gold can be used.
  • thermal stability is in the foreground in the selection when the temperature of the cold ⁇ gas jet is increased by preheating the carrier gas.
  • the processed particles are warmer and therefore exert less mechanical stress on the surface of the mandrel.
  • the mechanical stability ⁇ formality is more in the foreground when the particles in the cold gas jet ⁇ are even slightly ductile and therefore result in a higher mechanical load on the mold core.
  • the so-called low pressure gas dynamic spray has been granted ⁇ .
  • the particles are fed into the divergent part of the convergent-divergent nozzle and the carrier gas is brought to a pressure which is comparatively low for cold gas spraying.
  • LPGDS low pressure gas dynamic spray
  • the at least one auxiliary layer is removed from the hollow body after removal of the mold core.
  • the demolding of the mold core can be carried out according to conventional methods of the prior art. For example, a sand core or other lost cores may be melted out or destroyed by ultrasound.
  • Made of plastic or wood or metal can be produced cores that can be made Edgetei ⁇ lig, so that they can be removed in their individual parts from the finished hollow body.
  • the auxiliary position remains in the cavity formed by the hollow body, since they are firmly connected to the latter due to the mechanical deformations by the impinging particles of the hollow body material.
  • the material of the auxiliary layer does not interfere with the function of the manufactured hollow body, this can remain as a lining of the hollow space in the interior of the hollow body.
  • the material of the auxiliary layer in the hollow body can even take on additional functions such as corrosion protection or an antimicrobial effect.
  • the auxiliary layer must then be removed. This removal can be achieved mechanically, for example by sandblasting.
  • An alternative is to remove the material by a selective etching process, wherein the etchant does not or only slightly attacks the material of the hollow body.
  • FIG 1 shows an embodiment of the invention
  • FIG. 1 schematically shows a cold spray system which is accommodated in a process chamber 11.
  • the cold ⁇ injection system is reduced to its essential components and thus represents only a schematic diagram.
  • the cold gas Spraying plant has a convergent-divergent spray nozzle 12 which is connected to a unit 13 with a stagnation chamber not shown in detail.
  • a mold core 16 is held such that it can be coated by a generated by means of the spray nozzle 12 cold gas jet. This coating process takes place in several stages. Particles of a tin solder are introduced into the divergent part 19 of the spray nozzle 12 via a first reservoir 18 and accelerated in the cold gas jet 17.
  • a hollow body 23 is shown as it might be prepared with egg ⁇ ner cold spray system of FIG. 1
  • a composite mold core 16 was used which has a plurality of mold elements 24 made of wood.
  • joining aids 25 are integrated, which define the position of the individual mold elements 24 to each other and facilitate assembly in this way. At the same time, these joining aids are designed such that the mold core can be removed from the cavity of the hollow body 23 without destroying the individual mold elements 24.
  • the mold core 16 was pasted with a metal foil 26 before coating with the material of the hollow body 23, wherein the adhesive layer is not shown as such in FIG. The coating with the formation of the hollow body 23 is then carried out with cold gas spraying.
  • the state after fertigge ⁇ imputed coating is shown in FIG. 2
  • the mold elements 24 can be removed in the manner already described from the cavity of the hollow body 23, wherein the adhesive bond between mold core 16 and metal foil 26 is formed weaker than the resulting by the cold gas injection connection between the hollow body 23 and the metal foil 26th Therefore, the metal foil 26 remains in the cavity while the adhesive bond is released. This can be removed in a manner not shown, for example, by a selective etching process from the cavity, if necessary.
  • FIG. 3 shows a molded core of bonded sand. This is coated with the starting layer 21 produced according to Figure 1, wherein in a subsequent step of
  • Hollow body 23 was made of titanium.
  • Figure 3 not shown is the ability to destroy the sand mold core at ⁇ play by means of ultrasound, so that it is lost and can be entnom- men from the cavity of the hollow body 23rd
  • the starting layer 21 remains in the cavity, as has already been described with reference to FIG.
  • be ⁇ is the ability to subsequently remove those mechanically or chemically.
  • FIG. 4 shows the detail IV according to FIG. 3 enlarged. It is clear that the core sand to ⁇ next is coated with a base layer 27, which is in accordance with Fi gur ⁇ 1 made of a tin solder. Alternative materials would be a white metal (tin-containing alloy) or zinc.
  • the base layer is followed by a cover layer 28 which consists of copper and provides a surface 29 for coating with the material of the hollow body (here titanium).
  • the top layer can also be made of zinc or aluminum or Alloys containing at least one of these metals.
  • further auxiliary layers can be produced in order, for example, to make the transition to different property profiles of the auxiliary layers (ductility, hardness and / or temperature resistance) more fluid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The invention relates to a method for producing a hollow body (23) by cold spraying. According to the invention, a mould core (16) is used for producing the hollow body, said mould core being prepared for the production of the hollow body (23) by cold spraying in a suitable manner by means of an auxiliary layer (21). The auxiliary layer (21) consists of a metallic material and therefore forms a suitable surface to which the particles processed by cold spraying remain adhered to form the hollow body (23). The mould core, to which the invention also relates, can therefore advantageously be produced from an inexpensive material such as sand or wood, although said materials are in principle only suitable to a limited extent or not at all for depositing metals by cold spraying. The auxiliary layer (21) can advantageously be applied to the mould core (16) as a foil, or be produced on the mould core (16) by cold-spraying particularly low-melting and/or soft materials.

Description

Beschreibung description
Verfahren zum Herstellen eines Hohlkörpers mittels Kaltgas¬ spritzen und zur Durchführung dieses Verfahrens geeigneter Formkern A method for producing a hollow body by means of cold gas ¬ spraying and for performing this method suitable mandrel
Die Erfindung betrifft ein Verfahren zum Herstellen eines Hohlkörpers. Bei diesem wird der Hohlkörper durch Beschichten eines Formkerns durch Kaltgasspritzen hergestellt. Mit ande- ren Worten bildet die auf dem Formkern hergestellte Schicht den zu erzeugenden Hohlkörper aus. Nach Fertigstellung dieses Hohlkörpers wird der Formkern aus diesem entfernt. Außerdem betrifft die Erfindung einen Formkern mit einer als Substrat für das Kaltgasspritzen geeigneten Oberfläche. Die Oberfläche muss insofern für das Kaltgasspritzen geeignet sein, dass die Partikel, die mit dem Kaltgasstrahl zur Oberfläche des Form¬ kerns beschleunigt werden, auf diesem haften bleiben müssen. The invention relates to a method for producing a hollow body. In this, the hollow body is produced by coating a mold core by cold gas spraying. In other words, the layer produced on the mandrel forms the hollow body to be produced. After completion of this hollow body of the mandrel is removed from this. Moreover, the invention relates to a mold core with a surface suitable as a substrate for the cold gas spraying. The surface must be suitable for cold gas spraying in that the particles that are accelerated with the cold gas jet to the surface of the mold ¬ core, must adhere to this.
Das Kaltgasspritzen ist ein an sich bekanntes Verfahren, bei dem für die Beschichtung vorgesehene Partikel mittels einer konvergent-divergenten Düse vorzugsweise auf Überschallge¬ schwindigkeit beschleunigt werden, damit diese aufgrund ihrer eingeprägten kinetischen Energie auf der zu beschichtenden Oberfläche haften bleiben. Hierbei wird die kinetische Ener- gie der Teilchen genutzt, welche zu einer plastischen Verformung derselben führt, wobei die Beschichtungspartikel beim Auftreffen lediglich an ihrer Oberfläche aufgeschmolzen werden. Deshalb wird dieses Verfahren im Vergleich zu anderen thermischen Spritzverfahren als Kaltgasspritzen bezeichnet, weil es bei vergleichsweise tiefen Temperaturen durchgeführt wird, bei denen die Beschichtungspartikel im Wesentlichen fest bleiben. Vorzugsweise wird zum Kaltgasspritzen, welches auch als kinetisches Spritzen bezeichnet wird, eine Kaltgas¬ spritzanlage verwendet, die eine Gasheizeinrichtung zum Er- hitzen eines Gases aufweist. An die Gasheizeinrichtung wird eine Stagnationskammer angeschlossen, die ausgangsseitig mit der konvergent-divergenten Düse, vorzugsweise einer Lavaldüse verbunden wird. Konvergent-divergente Düsen weisen einen zu- sammenlaufenden Teilabschnitt sowie einen sich aufweitenden Teilabschnitt auf, die durch einen Düsenhals verbunden sind. Die konvergent-divergente Düse erzeugt ausgangsseitig einen Pulverstrahl in Form eines Gasstroms mit darin befindlichen Partikeln mit hoher Geschwindigkeit, vorzugsweise Überschall¬ geschwindigkeit . Cold spraying is a method known per se, are preferably accelerated at the foreseen for the coating particles by means of a convergent-divergent nozzle onto Überschallge ¬ speed, so that they stick to the surface to be coated due to their impressed kinetic energy. Here, the kinetic energy of the particles is used, which leads to a plastic deformation of the same, wherein the coating particles are melted on impact only on their surface. Therefore, this method is referred to as cold gas spraying in comparison with other thermal spraying methods, because it is carried out at comparatively low temperatures at which the coating particles remain substantially fixed. Preferably, for cold gas spraying, which is also called kinetic spraying, using a cold gas ¬ injection system, the gas heating means to overheat an ER- comprises a gas. To the gas heater a stagnation chamber is connected, which is connected on the output side with the convergent-divergent nozzle, preferably a Laval nozzle. Convergent-divergent nozzles have a merging section and a widening section, which are connected by a nozzle neck. The convergent-divergent nozzle produces the output side a powder jet in the form of a gas stream with particles therein at high speed, preferably supersonic speed ¬.
Ein Verfahren zum Erzeugen eines Hohlkörpers der eingangs angegebenen Art ist aus der DE 10 2010 060 362 AI bekannt. Das Kaltgasspritzen kann demnach zur Herstellung eines Rohres auf einer zylindrischen Matrize verwendet werden. Dabei wird der Kaltgasstrahl gegen die Oberfläche des Zylinders so weit ge¬ neigt, dass die Partikel vorrangig an dem in Herstellung befindlichen Rohr haften bleiben. Der zylindrische Formkern kann daher nach Herstellung des Rohres aus diesem entfernt werden. Dies gelingt wegen der typischen Geometrie von Rohren, die im Inneren frei von Hinterschneidungen sind, so dass der zylindrische Formkörper an den Innenwänden des Rohres entlanggleiten kann. Kompliziertere Geometrien von Hohlkör- pern lassen sich auf diese Weise jedoch nicht herstellen. A method for producing a hollow body of the type specified is known from DE 10 2010 060 362 AI. The cold gas spraying can thus be used to produce a tube on a cylindrical die. In this case, the cold gas jet is inclined against the surface of the cylinder so far that the particles primarily adhere to the pipe being produced. The cylindrical mandrel can therefore be removed after production of the tube from this. This is possible because of the typical geometry of tubes that are free from undercuts inside, so that the cylindrical shaped body can slide along the inner walls of the tube. However, more complicated geometries of hollow bodies can not be produced in this way.
Die Aufgabe der Erfindung liegt daher darin, ein Verfahren zum Herstellen eines Hohlkörpers mittels Kaltgasspritzen anzugeben, mit dem auch Hohlkörper komplexer Geometrie gefer- tigt werden können. Außerdem ist es Aufgabe der Erfindung, einen Formkörper anzugeben, der bei dem genannten Verfahren zum Einsatz kommen kann. The object of the invention is therefore to provide a method for producing a hollow body by means of cold gas spraying, with which hollow bodies of complex geometry can be manufactured. In addition, it is an object of the invention to provide a shaped body which can be used in the said method.
Diese Aufgabe wird mit dem eingangs angegebenen Verfahren er- findungsgemäß dadurch gelöst, dass der Formkern vor dem Herstellen des Hohlkörpers mit einer Hilfslage versehen wird. Das Material dieser Hilfslage ist erfindungsgemäß metallisch oder weist zumindest überwiegend metallische Anteile auf. Dies bedeutet, dass die Hilfslage eine metallische Matrix zur Verfügung stellen kann, in die nichtmetallische Einlagerungen eingebettet sein können. Im Wesentlichen verhält sich eine solche Lage dennoch wie ein Metall. Die Einlagerungen können beispielsweise Partikel eines Trockenschmierstoffs sein, um ein Entformen eines Kerns zu erleichtern. Bevorzugt weist das Material der Hilfslage eine andere Zusammensetzung auf, als das Material, aus dem der Hohlkörper hergestellt werden soll. Dies ermöglicht es vorteilhaft, das Material, welches die Oberfläche zur Beschichtung mit dem Material des Hohlkörpers bildet, optimal an die Anforderungen eines Substrats für das Kaltgasspritzen anzupassen. Einerseits muss dieses Material genügend duktil sein, damit die Partikel aus dem Kaltgas¬ strahl auf der Oberfläche des Formkerns haften bleiben. Au- ßerdem muss dieses Material hinreichend temperaturbeständig sein, wobei unter Umständen zu berücksichtigen ist, dass das Gas, welches für die Bildung des Kaltgasstrahls verwendet wird, vorgeheizt wird. Hierbei können in der sich vor dem Formkern ausbildenden Prallströmung annähernd die Temperatu- ren erreicht werden, die das Trägergas in der der Kaltgas- spritzdüse vorgelagerten Stagnationskammer aufweist. Eine weitere Eigenschaft, die die Oberfläche des Formkerns aufwei¬ sen muss, ist eine Resistenz gegen den erosiven Einfluss der aufprallenden Partikel. Ist diese Oberfläche mechanisch zu instabil, bietet sie den auftreffenden Partikeln des Kaltgas¬ strahls nämlich keinen genügenden Widerstand, so dass es nicht zu einer mechanischen Anbindung der Partikel auf der Oberfläche und in Folge dessen zu einer Zerstörung des Formkerns kommen würde. This object is achieved according to the invention with the method specified at the outset by providing the mandrel with an auxiliary layer prior to producing the hollow body. The material of this auxiliary layer according to the invention is metallic or has at least predominantly metallic components. This means that the auxiliary layer can provide a metallic matrix in which non-metallic inclusions can be embedded. In essence, such a situation still behaves like a metal. The deposits may be, for example, particles of a dry lubricant to to facilitate removal of a nucleus. Preferably, the material of the auxiliary layer has a different composition than the material from which the hollow body is to be produced. This advantageously makes it possible to optimally adapt the material which forms the surface for coating with the material of the hollow body to the requirements of a substrate for cold gas spraying. On the one hand, this material must be sufficiently ductile, so that the particles from the cold gas ¬ beam adhere to the surface of the mandrel. In addition, this material must be sufficiently temperature resistant, taking into account, under certain circumstances, that the gas which is used for the formation of the cold gas jet, is preheated. In this case, approximately the temperatures which the carrier gas has in the stagnation chamber upstream of the cold gas injection nozzle can be achieved in the impingement flow forming in front of the mold core. Another feature that the surface of the mandrel aufwei ¬ sen need is a resistance to the erosive effect of impacting particles. This surface is mechanically unstable, it provides the impinging particles of the cold gas ¬ beam namely no sufficient resistance so that it which would not lead to a destruction of the mold core to a mechanical attachment of the particles on the surface and in a row.
Werden diese Eigenschaften von der metallischen Hilfslage erfüllt, kann das Material des Formkerns vorteilhaft weitgehen¬ de unabhängig von den Anforderungen des Kaltgasspritzens gewählt werden. Hierdurch werden dem erfindungsgemäßen Verfah- ren auch Materialien für Formkerne zugänglich, deren mechanische Stabilität normalerweise für eine Applikation des Kalt- gasspritzens nicht ausreichen würde. Jedoch sind es gerade diese Materialien, die einerseits kostengünstig in der Ver¬ wendung und andererseits einfach aus dem fertig hergestellten Formkörper zu entfernen sind. Gemäß einer Ausgestaltung der Erfindung können für den Formkern Sand, Holz, Metall oder Kunststoff verwendet werden. Sandkerne haben den Vorteil, dass diese als verlorene Kerne kostengünstig herzustellen sind und durch Auflösen der Bindung zwischen den einzelnen Sandkörnern auch leicht aus dem Hohlraum der Hohlraumstruktur entfernt werden können. Holz bildet einen kostengünstigen Werkstoff, der insbesondere bei sehr kleinen Serien einfach bearbeitet werden kann, um Kerne der geforderten Geometrie zu erzeugen. Metall eignet sich insbesondere zur Herstellung von Kernen, die mehrfach verwendet werden sollen. Deren Verschleiß ist vorteilhaft gering. Außerdem können diese mit ei¬ ner hohen Maßhaltigkeit gefertigt werden. Die Oberfläche die- ser Metallkerne wird dann durch die Hilfslage vor einem Ver¬ schleiß geschützt. Auch Kunststoffkerne haben den Vorteil ei¬ ner einfachen Herstellung und eines kostengünstigen Materials, welches beispielsweise auch gegossen werden kann. Ein Formkern, der insbesondere aus den genannten Materialien gefertigt sein kann, wird erfindungsgemäß dann mit einer Hilfslage aus einem metallischen Werkstoff versehen, wobei diese an der Bildung der Startschicht auf dem Material des Formkerns beteiligt ist oder diese allein bildet, wobei die Startschicht die Oberfläche für ein anschließendes Kaltgas¬ spritzen der Hohlraumstruktur zur Verfügung stellt. If these properties are met by the metallic auxiliary layer, the material of the mandrel can advantageously be chosen far ¬ de regardless of the requirements of the cold gas spraying. As a result of this, the method according to the invention also makes available materials for shaped cores whose mechanical stability would normally not be sufficient for an application of cold gas spraying. However, it is precisely these materials in a cost on the other hand easy to remove from the finished shaped body produced in the United ¬ and application. According to one embodiment of the invention can be used for the mandrel sand, wood, metal or plastic. Sand cores have the advantage that they can be produced cost-effectively as lost cores are and can be easily removed from the cavity of the cavity structure by dissolving the bond between the individual grains of sand. Wood forms a cost-effective material that can be easily processed, especially in very small series, to produce cores of the required geometry. Metal is particularly suitable for the production of cores that are to be used several times. Their wear is advantageously low. In addition, these can be made with egg ¬ ner high dimensional accuracy. The surface DIE ser metal cores is then passed through the auxiliary sheet before Ver ¬ wear protected. Also plastic cores have the advantage ei ¬ ner simple production and a cost-effective material, which can be cast for example. A mold core, which can be made in particular of the materials mentioned, is then provided according to the invention with an auxiliary layer of a metallic material, which is involved in the formation of the starting layer on the material of the mold core or forms them alone, wherein the starting layer, the surface for a subsequent cold gas injection ¬ the cavity structure provides.
Als Hohlkörper nach der Erfindung sollen im weitesten Sinne alle Strukturen verstanden werden, die eine konkave Innenflä- che und eine konvexe Außenfläche aufweisen. Die konkave As a hollow body according to the invention, in the broadest sense, all structures are to be understood which have a concave inner surface and a convex outer surface. The concave
Innenfläche kann insofern durch einen Formkörper während der Herstellung gestützt werden, während sie von der konvexen Seite aus für den Kaltgasstrahl zugänglich ist. Insofern wäre beispielsweise ein schüsseiförmiges Bauteil ebenfalls als Hohlkörper im Sinne der Erfindung zu verstehen, wobei die schüsseiförmige Vertiefung den Hohlraum mit einer entspre¬ chend weiten Öffnung darstellen würde. Klassische Hohlkörper wären beispielsweise Gehäuse, die eine im Vergleich zum ge¬ bildeten Hohlraum kleine Öffnung aufweisen können. Die Hohl- körper müssen selbstverständlich auch nicht ausschließlich konvexe Außenwände aufweisen. Es können auch auf der Außenseite konkave Teilbereiche vorhanden sein. Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Hilfslage aus einer Metallfolie, insbe¬ sondere einer Aluminiumfolie, gebildet wird. Hierbei wird die Metallfolie auf den Formkern aufgelegt und bildet somit die metallische Oberfläche, auf der der Hohlkörper durch Kaltgas¬ spritzen abgeschieden werden kann. Hierbei stellt Aluminium eine sehr kostengünstige Variante dar, wobei dieses Material einerseits duktil genug ist, damit die gespritzten Partikel haften bleiben. Andererseits ist dieses Metall mechanisch ge- nügend stabil, um den Formkörper vor einem erosiven Abtragen durch den Kaltgasstrahl zu schützen. Auf Formkörpern aus Holz reicht beispielsweise eine Aluminiumfolie mit einer Dicke von 0,1 mm, um die Abscheidung metallischer Materialien zu ermöglichen. Beispielsweise ist es auch gelungen, einen Hohlkörper aus einer Titanlegierung darauf abzuscheiden. Inner surface can be so far supported by a molding during manufacture, while it is accessible from the convex side for the cold gas jet. To that extent a schüsseiförmiges component would be, for example, also to be understood as a hollow body according to the invention, the bowl-shaped recess would represent the cavity with a entspre ¬ accordingly wide opening. Classical hollow body would be, for example, housing, which may have as compared to the ge ¬ cavity formed small opening. Of course, the hollow bodies do not necessarily have exclusively convex outer walls. There may also be concave portions on the outside. According to an advantageous embodiment of the invention it is provided that the auxiliary layer consists of a metal foil, in particular ¬ sondere an aluminum foil, is formed. In this case, the metal foil is placed on the mold core and thus forms the metallic surface on which the hollow body can be deposited by cold gas injection ¬ . In this case, aluminum represents a very cost-effective variant, whereby this material is on the one hand ductile enough so that the sprayed particles adhere. On the other hand, this metal is mechanically stable enough to protect the molded body from erosive erosion by the cold gas jet. On wooden moldings, for example, an aluminum foil with a thickness of 0.1 mm is sufficient to allow the deposition of metallic materials. For example, it has also been possible to deposit a hollow body made of a titanium alloy thereon.
Abhängig von der Härte und der Empfindlichkeit des Materials des Formkerns muss die Dicke der Hilfslage gewählt werden. Werden beispielsweise Sandkerne verwendet, so fallen aufgrund des Bedarfs eines höheren Schutzes die Schichtdicken derDepending on the hardness and the sensitivity of the material of the mold core, the thickness of the auxiliary layer must be selected. For example, if sand cores are used, due to the need for a higher protection, the layer thicknesses of the
Hilfslage größer aus. Bei geringeren Dicken der Hilfslage ist zu berücksichtigen, dass diese aufgrund des Auftreffens der Partikel des Kaltgasstrahls plastisch verformt wird. Die plastische Verformung darf jedoch nicht zu einer kompletten Zerstörung der Hilfslage führen, da der restliche Formkern dann nicht mehr geschützt wäre. Ist die Hilfslage als Metall¬ folie ausgeführt, kann diese vorteilhaft auf den Formkern aufgeklebt werden. Hierdurch lässt sich einerseits ein Verrutschen der Folie während des Beschichtens, insbesondere bei Winkeln zwischen Kaltgasstrahl und Oberfläche von ungleichAuxiliary position larger. At lower thicknesses of the auxiliary layer, it should be noted that this is plastically deformed due to the impact of the particles of the cold gas jet. However, the plastic deformation must not lead to a complete destruction of the auxiliary position, since the rest of the mold core would then no longer be protected. If the auxiliary sheet designed as a metal foil ¬, this can advantageously be adhesively bonded to the mold core. As a result, on the one hand slipping of the film during coating, in particular at angles between the cold gas jet and the surface of unequal
90° vermeiden. Außerdem erleichtert das Kleben die Applikati¬ on der Folie auf den Formkern, insbesondere bei komplexen Ge- ometrieen des Formkerns. Gemäß einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass die mindestens eine Hilfslage als Startschicht durch Kaltgasspritzen eines metallischen Materials auf dem Formkörper erzeugt wird. Hierbei wird bewusst ein metalli- sches Material gewählt, was hinsichtlich der Schichtbildung auf dem Formkörper im Vergleich zu dem Material, welches für den Hohlkörper vorgesehen ist, als unproblematisch einzustufen ist. Mit anderen Worten hält das metallische Material, welches insbesondere durch ein sehr duktiles Metall gebildet werden kann, auf dem Formkörper, ohne diesen zu zerstören. Wird die Startschicht mit einer genügenden Dicke auf den Formkörper aufgebracht, bietet diese bei der Abscheidung des Materials des Hohlkörpers anschließend einen genügenden Wi- derstand. Für die Dicke der Startschicht gelten die zur Aus¬ führung als Folie gemachten Dickenangaben entsprechend. Avoid 90 °. In addition, the bonding facilitates Applikati ¬ on the film on the mold core, especially in complex overall ometrieen of the mandrel. According to a further embodiment of the invention, it is provided that the at least one auxiliary layer is produced as a starting layer by cold gas spraying of a metallic material on the shaped body. Here, a metallic chosen sches material, which is classified as unproblematic in terms of film formation on the molding in comparison to the material which is provided for the hollow body. In other words, the metallic material, which can be formed in particular by a very ductile metal, keeps on the molding without destroying it. If the starting layer is applied with a sufficient thickness to the shaped body, this then provides a sufficient resistance during the deposition of the material of the hollow body. The thickness of the seed layer thickness details given from ¬ leadership as a foil apply accordingly.
Die Herstellung der Startschicht mittels Kaltgasspritzen hat zudem den Vorteil, dass die Startschicht in mehreren Hilfsla- gen aufgebaut sein kann. Auf diese Weise ist es möglich, me¬ tallische Materialien nacheinander abzuscheiden, wobei in der Folge der Herstellung der Hilfslagen mit zunehmend härteren und/oder höher schmelzenden metallischen Werkstoffen gearbeitet wird. Dies bedeutet, dass die Hilfslage, die direkt auf dem Formkern hergestellt wird, danach ausgewählt werden kann, dass der Formkern möglichst wenig mechanisch beansprucht wird. Dies ist insbesondere bei sehr niedrig schmelzenden und/oder sehr duktilen Werkstoffen der Fall. Hier kommen insbesondere Zink, Zinn und Blei zum Einsatz. Die folgenden La- gen können dann aus anderen Metallen hergestellt werden, wobei bevorzugt Zink, Aluminium, Kupfer, Silber und Gold zum Einsatz kommen können. Bei den Edelmetallen ist zu beachten, dass diese in der Anschaffung sehr teuer sind. Allerdings können diese im Hohlkörper besondere Aufgaben übernehmen, beispielsweise einen Korrosionsschutz oder eine antimikro- bielle oder katalytische Wirkung, was die Kosten ihres Ein¬ satzes evtl. rechtfertigt. Statt der oben genannten Metalle können selbstverständlich auch Metalllegierungen verwendet werden, die diese Metalle als Legierungsbestandteile aufwei- sen und vergleichbare mechanische Eigenschaften haben. The production of the starting layer by means of cold gas spraying also has the advantage that the starting layer can be constructed in several auxiliary layers. In this way, it is possible to deposit me ¬ tallische materials sequentially, which is used in the sequence of producing the auxiliary layers with increasingly harder and / or higher melting metallic materials. This means that the auxiliary layer, which is produced directly on the mandrel, can be selected according to the fact that the mandrel is subjected to as little mechanical stress as possible. This is the case in particular with very low-melting and / or very ductile materials. In particular zinc, tin and lead are used here. The following layers can then be made of other metals, preferably zinc, aluminum, copper, silver and gold can be used. With the precious metals it is to be noted that these are very expensive in the purchase. However, these can take on special tasks in the hollow body, such as a corrosion protection or antimikro- bielle or catalytic effect, which justifies the cost of its A ¬ set if necessary. Instead of the abovementioned metals, of course, it is also possible to use metal alloys which have these metals as alloy components and have comparable mechanical properties.
Bei der Auswahl der Metalle für die Hilfslage, die die zu be¬ schichtende Oberfläche des Formkerns ausbildet, ist zu beach- ten, ob eher eine thermische Stabilität gefordert ist oder eine mechanische Stabilität. Die thermische Stabilität steht bei der Auswahl im Vordergrund, wenn die Temperatur des Kalt¬ gasstrahls durch Vorheizen des Trägergases erhöht wird. In the selection of metals for the auxiliary layer that forms to be ¬ layer surface of the mold core, is to Beach- whether thermal stability is required or mechanical stability. The thermal stability is in the foreground in the selection when the temperature of the cold ¬ gas jet is increased by preheating the carrier gas.
Gleichzeitig sind in diesem Fall die verarbeiteten Partikel wärmer und üben daher eine geringere mechanische Belastung auf die Oberfläche des Formkerns aus. Die mechanische Stabi¬ lität steht eher im Vordergrund, wenn die Partikel im Kalt¬ gasstrahl selbst wenig duktil sind und daher eine höhere me- chanische Belastung des Formkerns bewirken. At the same time in this case, the processed particles are warmer and therefore exert less mechanical stress on the surface of the mandrel. The mechanical stability ¬ formality is more in the foreground when the particles in the cold gas jet ¬ are even slightly ductile and therefore result in a higher mechanical load on the mold core.
Für die Abscheidung der Hilfslage oder der Hilfslagen als Startschicht durch das Kaltgasspritzen hat sich insbesondere das sogenannte Low Pressure Gas Dynamic Spray (LPGDS) be¬ währt. Bei diesem Verfahren werden die Partikel in den divergenten Teil der konvergent-divergenten Düse eingespeist und das Trägergas auf ein für das Kaltgasspritzen vergleichsweise geringen Druck gebracht. Hierbei treten geringere For the deposition of the auxiliary layer or auxiliary layers as a starting layer by the cold gas spraying, in particular the so-called low pressure gas dynamic spray (LPGDS) has been granted ¬ . In this process, the particles are fed into the divergent part of the convergent-divergent nozzle and the carrier gas is brought to a pressure which is comparatively low for cold gas spraying. Here are lower
Partikelgeschwindigkeiten auf, als wenn die Partikel wie üblich in die der Düse vorgelagerte Stagnationskammer eingespeist und von einem höheren Druckniveau des Trägergases aus beschleunigt werden. Damit ist beim LPGDS auch die mechani¬ sche Belastung des Formkerns beim Auftreffen der Partikel auf dessen Oberfläche geringer. Da das Material des Formkerns oh¬ nehin empfindlich gegenüber dem Kaltgasstrahl ist, bleiben die Partikel dennoch am Formkern haften, ohne diesen nachhaltig zu zerstören. Particle velocities, as if the particles are fed as usual in the stagnation chamber upstream of the nozzle and accelerated from a higher pressure level of the carrier gas. So that when the mechanical LPGDS ¬ traumatic stress of the mandrel upon impact of the particles is less on its surface. Since the material of the mandrel is oh ¬ neh sensitive to the cold gas jet, the particles still adhere to the mandrel, without destroying this sustainable.
Gemäß einer besonderen Ausgestaltung der Erfindung ist vorge- sehen, dass die mindestens eine Hilfslage nach dem Entformen des Formkerns aus dem Hohlkörper entfernt wird. Das Entformen des Formkerns kann gemäß üblicher Methoden aus dem Stand der Technik erfolgen. Ein Sandkern oder andere verlorene Kerne können beispielsweise ausgeschmolzen oder mit Hilfe von Ult- raschall zerstört werden. Aus Kunststoff oder Holz oder auch aus Metall lassen sich gebaute Kerne herstellen, die mehrtei¬ lig ausgeführt sein können, damit diese in ihren Einzelteilen aus dem fertiggestellten Hohlkörper entfernt werden können. Anschließend verbleibt die Hilfslage im durch den Hohlkörper ausgebildeten Hohlraum, da diese aufgrund der mechanischen Verformungen durch die auftreffenden Partikel des Hohlkörpermaterials fest mit diesen verbunden sind. According to a particular embodiment of the invention, it is provided that the at least one auxiliary layer is removed from the hollow body after removal of the mold core. The demolding of the mold core can be carried out according to conventional methods of the prior art. For example, a sand core or other lost cores may be melted out or destroyed by ultrasound. Made of plastic or wood or metal can be produced cores that can be made mehrtei ¬ lig, so that they can be removed in their individual parts from the finished hollow body. Subsequently, the auxiliary position remains in the cavity formed by the hollow body, since they are firmly connected to the latter due to the mechanical deformations by the impinging particles of the hollow body material.
Wenn das Material der Hilfslage die Funktion des hergestell¬ ten Hohlkörpers nicht stört, kann dieses als Auskleidung des Hohlraums im Inneren des Hohlkörpers verbleiben. Wie bereits angedeutet, kann das Material der Hilfslage im Hohlkörper so- gar zusätzliche Funktionen wie Korrosionsschutz oder eine an- timikrobielle Wirkung übernehmen. Wenn das Material des Hohl¬ körpers jedoch die Innenwand des Hohlraums bilden soll, muss die Hilfslage anschließend entfernt werden. Diese Entfernung kann mechanisch beispielsweise durch Sandstrahlen erreicht werden. Eine Alternative besteht darin, das Material durch ein selektives Ätzverfahren zu entfernen, wobei das Ätzmittel das Material des Hohlkörpers nicht oder nur wenig angreift. If the material of the auxiliary layer does not interfere with the function of the manufactured hollow body, this can remain as a lining of the hollow space in the interior of the hollow body. As already indicated, the material of the auxiliary layer in the hollow body can even take on additional functions such as corrosion protection or an antimicrobial effect. However, if the material of the hollow ¬ body is to form the inner wall of the cavity, the auxiliary layer must then be removed. This removal can be achieved mechanically, for example by sandblasting. An alternative is to remove the material by a selective etching process, wherein the etchant does not or only slightly attacks the material of the hollow body.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszei¬ chen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen : Further details of the invention are described below with reference to the drawing. Identical or corresponding drawing elements are each provided with the same Bezugszei ¬ chen and are only explained several times as far as differences arise between the individual figures. Show it :
Figur 1 ein Ausführungsbeispiel des erfindungsgemäßen Figure 1 shows an embodiment of the invention
Verfahrens, welches in einer Kaltgasspritzanlage durchgeführt wird, als Schemazeichnung, Figur 2 und 3 Ausführungsbeispiele des erfindungsgemäßen  Method, which is carried out in a cold gas spraying, as a schematic drawing, Figure 2 and 3 embodiments of the invention
Formkerns im Schnitt und  Molded core in section and
Figur 4 das Detail IV wie in Figur 3 dargestellt. In Figur 1 ist schematisch eine Kaltspritzanlage dargestellt, die in einer Prozesskammer 11 untergebracht ist. Die Kalt¬ spritzanlage ist auf ihre wesentlichen Bauteile reduziert und stellt somit lediglich eine Prinzipskizze dar. Die Kaltgas- Spritzanlage weist eine konvergent-divergente Spritzdüse 12 auf, die an eine Einheit 13 mit einer nicht näher dargestell¬ ten Stagnationskammer angeschlossen ist. Mittels eines Industrieroboters 15 wird ein Formkern 16 derart gehalten, dass dieser durch einen mittels der Spritzdüse 12 erzeugten Kaltgasstrahl beschichtet werden kann. Dieser Beschichtungsvor- gang läuft in mehreren Stufen ab. Über einen ersten Vorratsbehälter 18 werden Partikel eines Zinnlots in den divergenten Teil 19 der Spritzdüse 12 eingeleitet und im Kaltgasstrahl 17 beschleunigt. Diese bilden eine in Figur 1 nicht näher darge¬ stellte erste Hilfslage auf dem Formkern 16 (hierzu auch Fi¬ guren 3 und 4) . Anschließend werden aus einem zweiten Vorratsbehälter Kupferpartikel in die Stagnationskammer (nicht näher dargestellt) vor der Spritzdüse 12 eingeleitet und ebenfalls über den Kaltgasstrahl 17 zum mit der ersten Hilfslage beschichteten Formkörper 16 beschleunigt. Es entsteht eine zweite Hilfslage, wobei diese beiden Hilfslagen eine Startschicht 21 (vgl. Figur 3 und 4) ausbilden. Zuletzt werden aus einem dritten Vorratsbehälter 22 Titanpartikel ent- nommen und ebenfalls über die Stagnationskammer dem Kaltgasstrahl 17 beigemischt. Hier können mehrere Lagen von Titan auf die Startschicht aufgebracht werden, wodurch eine Wandung gewünschter Dicke eines herzustellenden Hohlkörpers ausgebil¬ det wird, wobei der durch den Hohlkörper eingeschlossene Hohlraum durch den Formkern 16 definiert ist. Figure 4 shows the detail IV as shown in Figure 3. FIG. 1 schematically shows a cold spray system which is accommodated in a process chamber 11. The cold ¬ injection system is reduced to its essential components and thus represents only a schematic diagram. The cold gas Spraying plant has a convergent-divergent spray nozzle 12 which is connected to a unit 13 with a stagnation chamber not shown in detail. By means of an industrial robot 15, a mold core 16 is held such that it can be coated by a generated by means of the spray nozzle 12 cold gas jet. This coating process takes place in several stages. Particles of a tin solder are introduced into the divergent part 19 of the spray nozzle 12 via a first reservoir 18 and accelerated in the cold gas jet 17. These form an unspecified Darge in Figure 1 ¬ presented first auxiliary sheet on the mandrel 16 (see also ¬ Fi gures 3 and 4). Subsequently, copper particles are introduced into the stagnation chamber (not shown) in front of the spray nozzle 12 from a second reservoir and also accelerated via the cold gas jet 17 to the molded body 16 coated with the first auxiliary layer. A second auxiliary layer is formed, these two auxiliary layers forming a starting layer 21 (compare FIGS. 3 and 4). Finally, 22 titanium particles are taken from a third storage container and also mixed with the cold gas jet 17 via the stagnation chamber. Here, several layers of titanium can be applied to the starting layer, whereby a wall of desired thickness of a hollow body to be produced is ausgebil ¬ det, wherein the cavity enclosed by the hollow body is defined by the mandrel 16.
In Figur 2 ist ein Hohlkörper 23 dargestellt, wie er mit ei¬ ner Kaltspritzanlage gemäß Figur 1 hergestellt werden könnte. Für diesen Hohlkörper wurde ein zusammengesetzter Formkern 16 verwendet, der mehrere Formelemente 24 aus Holz aufweist. In die Formelemente sind Fügehilfen 25 integriert, die die Lage der einzelnen Formelemente 24 zueinander definieren und auf diese Weise die Montage erleichtern. Gleichzeitig sind diese Fügehilfen derart ausgeführt, dass sich der Formkern ohne Zerstörung der einzelnen Formelemente 24 aus dem Hohlraum des Hohlkörpers 23 entfernen lässt. Der Formkern 16 wurde vor dem Beschichten mit dem Material des Hohlkörpers 23 mit einer Metallfolie 26 beklebt, wobei die Klebeschicht als solche in Figur 2 nicht dargestellt ist. Die Beschichtung unter Ausbildung des Hohlkörpers 23 erfolgt anschließend mit Kaltgasspritzen. Der Zustand nach fertigge¬ stellter Beschichtung ist in Figur 2 dargestellt. Nach Fertigstellung der Beschichtung können die Formelemente 24 in der bereits beschriebenen Weise aus dem Hohlraum des Hohlkörpers 23 entnommen werden, wobei die Klebeverbindung zwischen Formkern 16 und Metallfolie 26 schwächer ausgebildet ist als die durch das Kaltgasspritzen entstandene Verbindung zwischen dem Hohlkörper 23 und der Metallfolie 26. Daher verbleibt die Metallfolie 26 in dem Hohlraum, während sich die Klebeverbindung löst. Diese kann in nicht dargestellter Weise beispiels- weise durch ein selektives Ätzverfahren aus dem Hohlraum entfernt werden, soweit dies erforderlich ist. In Figure 2, a hollow body 23 is shown as it might be prepared with egg ¬ ner cold spray system of FIG. 1 For this hollow body, a composite mold core 16 was used which has a plurality of mold elements 24 made of wood. In the form of elements joining aids 25 are integrated, which define the position of the individual mold elements 24 to each other and facilitate assembly in this way. At the same time, these joining aids are designed such that the mold core can be removed from the cavity of the hollow body 23 without destroying the individual mold elements 24. The mold core 16 was pasted with a metal foil 26 before coating with the material of the hollow body 23, wherein the adhesive layer is not shown as such in FIG. The coating with the formation of the hollow body 23 is then carried out with cold gas spraying. The state after fertigge ¬ imputed coating is shown in FIG. 2 After completion of the coating, the mold elements 24 can be removed in the manner already described from the cavity of the hollow body 23, wherein the adhesive bond between mold core 16 and metal foil 26 is formed weaker than the resulting by the cold gas injection connection between the hollow body 23 and the metal foil 26th Therefore, the metal foil 26 remains in the cavity while the adhesive bond is released. This can be removed in a manner not shown, for example, by a selective etching process from the cavity, if necessary.
In Figur 3 ist ein Formkern aus gebundenem Sand dargestellt. Dieser ist mit der gemäß Figur 1 hergestellten Startschicht 21 beschichtet, wobei in einem nachfolgenden Schritt derFIG. 3 shows a molded core of bonded sand. This is coated with the starting layer 21 produced according to Figure 1, wherein in a subsequent step of
Hohlkörper 23 aus Titan hergestellt wurde. In Figur 3 nicht dargestellt ist die Möglichkeit, den Formkern aus Sand bei¬ spielsweise mittels Ultraschall zu zerstören, so dass dieser verloren ist und aus dem Hohlraum des Hohlkörpers 23 entnom- men werden kann. Die Startschicht 21 verbleibt im Hohlraum, wie dies zu Figur 2 bereits beschrieben wurde. Auch hier be¬ steht die Möglichkeit, diese anschließend mechanisch oder chemisch zu entfernen. In Figur 4 ist der Ausschnitt IV gemäß Figur 3 vergrößert dargestellt. Es wird deutlich, dass der Kern aus Sand zu¬ nächst mit einer Basislage 27 beschichtet wird, die gemäß Fi¬ gur 1 aus einem Zinnlot besteht. Alternative Werkstoffe wären ein Weißmetall (zinnhaltige Legierung) oder auch Zink. Auf die Basislage folgt eine Decklage 28, die aus Kupfer besteht und eine Oberfläche 29 zur Beschichtung mit dem Material des Hohlkörpers (hier Titan) zur Verfügung stellt. Alternativ zu Kupfer kann die Decklage auch aus Zink oder Aluminium oder Legierungen bestehen, die mindestens eines dieser Metalle enthalten. Zwischen der Basislänge 27 und der Decklage 28 können weitere Hilfslagen hergestellt werden, um zum Beispiel den Übergang zu verschiedenen Eigenschaftsprofilen der Hilfs- lagen (Duktilität, Härte und/oder Temperaturbeständigkeit) fließender zu gestalten. Hollow body 23 was made of titanium. In Figure 3, not shown is the ability to destroy the sand mold core at ¬ play by means of ultrasound, so that it is lost and can be entnom- men from the cavity of the hollow body 23rd The starting layer 21 remains in the cavity, as has already been described with reference to FIG. Here, too, be ¬ is the ability to subsequently remove those mechanically or chemically. FIG. 4 shows the detail IV according to FIG. 3 enlarged. It is clear that the core sand to ¬ next is coated with a base layer 27, which is in accordance with Fi gur ¬ 1 made of a tin solder. Alternative materials would be a white metal (tin-containing alloy) or zinc. The base layer is followed by a cover layer 28 which consists of copper and provides a surface 29 for coating with the material of the hollow body (here titanium). As an alternative to copper, the top layer can also be made of zinc or aluminum or Alloys containing at least one of these metals. Between the base length 27 and the cover layer 28, further auxiliary layers can be produced in order, for example, to make the transition to different property profiles of the auxiliary layers (ductility, hardness and / or temperature resistance) more fluid.

Claims

Patentansprüche claims
1. Verfahren zum Herstellen eines Hohlkörpers, bei dem 1. A method for producing a hollow body, in which
- der Hohlkörper (23) durch Beschichten eines Formkerns (16) durch Kaltgasspritzen hergestellt wird und  - The hollow body (23) by coating a mold core (16) is produced by cold gas spraying and
- der Formkern (16) nach Fertigstellung des Hohlkörpers (23) aus diesem entfernt wird,  - The mold core (16) after completion of the hollow body (23) is removed from this,
d a d u r c h g e k e n n z e i c h n e t, dass d a d u r c h e c e n c i n e s that
der Formkern (16) vor dem Herstellen des Hohlkörpers (23) mit einer Hilfslage (26, 27, 28) versehen wird, wobei das Materi¬ al der Hilfslage metallisch ist oder zumindest überwiegend metallische Anteile aufweist, und die Hilfslage (26, 27, 28) nach dem Entformen des Formkerns (16) aus dem Hohlkörper (23) entfernt wird. having the mandrel (16) prior to the production of the hollow body (23) with an auxiliary layer (26, 27, 28) is provided, wherein the Materi ¬ al of the auxiliary sheet is metallic or at least predominantly metal parts, and the auxiliary layer (26, 27, 28) is removed from the hollow body (23) after removal of the mold core (16).
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
d a d u r c h g e k e n n z e i c h n e t, dass d a d u r c h e c e n c i n e s that
das Material der Hilfslage sich in seiner Zusammensetzung von dem Material des Hohlkörpers unterscheidet. the material of the auxiliary layer differs in its composition from the material of the hollow body.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
d a d u r c h g e k e n n z e i c h n e t, dass d a d u r c h e c e n c i n e s that
die Hilfslage aus einer Metallfolie (26), insbesondere einer Aluminiumfolie gebildet wird. the auxiliary layer is formed from a metal foil (26), in particular an aluminum foil.
4. Verfahren nach Anspruch 3, 4. The method according to claim 3,
d a d u r c h g e k e n n z e i c h n e t, dass d a d u r c h e c e n c i n e s that
die Metallfolie (26) auf den Formkern (16) aufgeklebt wird. the metal foil (26) is glued to the mold core (16).
5. Verfahren nach Anspruch 1 oder 2, 5. The method according to claim 1 or 2,
d a d u r c h g e k e n n z e i c h n e t, dass d a d u r c h e c e n c i n e s that
die mindestens eine Hilfslage als Startschicht (21) durch Kaltgasspritzen, insbesondere durch Low Pressure Gas Dynamic Spray, eines metallischen Materials auf dem Formkörper (16) erzeugt wird. the at least one auxiliary layer is produced as a starting layer (21) by cold gas spraying, in particular by low-pressure gas dynamic spray, of a metallic material on the shaped body (16).
6. Verfahren nach Anspruch 5, 6. The method according to claim 5,
d a d u r c h g e k e n n z e i c h n e t, dass metallische Materialien mit einem duktilen Werkstoff erhal¬ ten, insbesondere eines oder mehrere der Metalle oder Metall¬ legierungen auf Basis der Metalle Zink, Zinn, Blei, Aluminium, Kupfer, Silber und Gold abgeschieden werden. characterized in that metallic materials with a ductile material erhal ¬ th, in particular one or more of the metals or metal ¬ alloys based on the metals zinc, tin, lead, aluminum, copper, silver and gold are deposited.
7. Verfahren nach Anspruch 6, 7. The method according to claim 6,
d a d u r c h g e k e n n z e i c h n e t, dass d a d u r c h e c e n c i n e s that
die Startschicht (21) mehrlagig ausgeführt wird, wobei in der Folge der Herstellung die Hilfslagen (26, 27, 28) mit zuneh- mend härteren und/oder höher schmelzenden metallischen Werkstoffen hergestellt werden. the starting layer (21) is carried out in several layers, the auxiliary layers (26, 27, 28) being produced with increasingly harder and / or higher-melting metallic materials as a result of the production.
8. Verfahren nach Anspruch 7, 8. The method according to claim 7,
d a d u r c h g e k e n n z e i c h n e t, dass d a d u r c h e c e n c i n e s that
die Startschicht (21) zweilagig mit the starting layer (21) with two layers
- einer auf dem Formkern liegenden Basislage (27) aus einem der Metalle oder Metalllegierung auf Basis der Metalle Zink, Zinn und Blei,  a base layer (27) made of one of the metals or metal alloys based on the metals zinc, tin and lead, lying on the mold core,
- und mit einer hierauf folgenden Decklage (28) aus einem der Metalle oder Metalllegierung auf Basis der Metalle - And with a subsequent cover layer (28) made of one of the metals or metal alloy based on the metals
Zink, Aluminium, Kupfer, Silber und Gold Zinc, aluminum, copper, silver and gold
hergestellt wird. will be produced.
9. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass 9. Method according to one of the preceding claims, characterized in that
der Formkern (16) aus Holz, Kunststoff, Metall oder gebunde¬ ner Sand hergestellt wird. the mold core (16) made of wood, plastic, metal or gebound ¬ ner sand is produced.
10. Formkern (16) mit einer als Substrat für das Kaltgas- spritzen geeigneten Oberfläche (29), 10. mold core (16) with a suitable substrate for the cold gas injection surface (29),
d a d u r c h g e k e n n z e i c h n e t, dass d a d u r c h e c e n c i n e s that
die Oberfläche (29) durch mindestens eine Hilfslage (26, 27, 28) aus einem metallischen Werkstoff gebildet wird, die eine Startschicht auf dem Material des Formkerns (16) bildet. the surface (29) is formed by at least one auxiliary layer (26, 27, 28) of a metallic material which forms a starting layer on the material of the mold core (16).
11. Formkern nach Anspruch 10, 11. mold core according to claim 10,
d a d u r c h g e k e n n z e i c h n e t, dass dieser aus gebundenem Sand, Holz, Metall oder Kunststoff be¬ steht . characterized in that this made of bonded sand, wood, metal or plastic be ¬ stands.
PCT/EP2015/055611 2014-03-31 2015-03-18 Method for producing a hollow body by cold spraying and mould core suitable for carrying out said method WO2015150071A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15712560.0A EP3102718A2 (en) 2014-03-31 2015-03-18 Method for producing a hollow body by cold spraying and mould core suitable for carrying out said method
CA2944238A CA2944238A1 (en) 2014-03-31 2015-03-18 Method for producing a hollow body by cold spraying and mould core suitable for carrying out said method
JP2016560489A JP2017512908A (en) 2014-03-31 2015-03-18 Method for producing hollow bodies using cold gas spray and molded core suitable for carrying out the method
US15/300,851 US20170022615A1 (en) 2014-03-31 2015-03-18 Method For Producing A Hollow Body By Cold Spraying And Mould Core Suitable For Carrying Out Said Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014206073.7A DE102014206073A1 (en) 2014-03-31 2014-03-31 Process for producing a hollow body by means of cold gas spraying and mold core suitable for carrying out this process
DE102014206073.7 2014-03-31

Publications (2)

Publication Number Publication Date
WO2015150071A2 true WO2015150071A2 (en) 2015-10-08
WO2015150071A3 WO2015150071A3 (en) 2015-11-26

Family

ID=52829062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/055611 WO2015150071A2 (en) 2014-03-31 2015-03-18 Method for producing a hollow body by cold spraying and mould core suitable for carrying out said method

Country Status (6)

Country Link
US (1) US20170022615A1 (en)
EP (1) EP3102718A2 (en)
JP (1) JP2017512908A (en)
CA (1) CA2944238A1 (en)
DE (1) DE102014206073A1 (en)
WO (1) WO2015150071A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2868388A1 (en) * 2013-10-29 2015-05-06 Alstom Technology Ltd Device for HVOF spraying process
US10519552B2 (en) 2016-12-22 2019-12-31 United Technologies Corporation Deposited material structure with integrated component
US10907256B2 (en) 2016-12-22 2021-02-02 Raytheon Technologies Corporation Reinforcement of a deposited structure forming a metal matrix composite
US10563310B2 (en) 2016-12-22 2020-02-18 United Technologies Corporation Multi-wall deposited thin sheet structure
US10363634B2 (en) 2016-12-22 2019-07-30 United Technologies Corporation Deposited structure with integral cooling enhancement features
US20180179639A1 (en) * 2016-12-22 2018-06-28 United Technologies Corporation Modular tooling for a deposited structure
US10648084B2 (en) 2016-12-22 2020-05-12 United Technologies Corporation Material deposition to form a sheet structure
GB202004947D0 (en) * 2020-04-03 2020-05-20 Rolls Royce Plc Joining component bodies
CN111514318B (en) * 2020-04-15 2021-06-22 中国科学院宁波材料技术与工程研究所 Sterilization method of cold spraying electrothermal coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010060362A1 (en) 2010-11-04 2012-05-10 Linde Aktiengesellschaft Method for producing a pipe

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305142A1 (en) * 1987-08-28 1989-03-01 Corning Glass Works Method of forming an article of desired geometry
SE509043C2 (en) * 1996-09-05 1998-11-30 Sandvik Ab Use of a compound tube with an outer layer of a Ni alloy for superheaters and waste boilers
DE29914796U1 (en) * 1998-09-18 2000-01-20 Jung & Lindig Bleiind Shaped bodies such as plates, sheets or foils
EP1903127A1 (en) * 2006-09-21 2008-03-26 Siemens Aktiengesellschaft Process of manufacturing of workpieces by cold gas spraying and turbine workpiece
DE102007017754B4 (en) * 2007-04-16 2016-12-29 Hermle Maschinenbau Gmbh Method for producing a workpiece with at least one free space
US20110223053A1 (en) * 2008-03-06 2011-09-15 Commonwealth Scientific And Industrial Research Organisation Manufacture of pipes
WO2011017752A1 (en) * 2009-08-11 2011-02-17 Frontline Australasia Pty. Ltd. Method of forming seamless pipe of titanium and / or titanium alloys
DE102009037893A1 (en) * 2009-08-18 2011-02-24 Mtu Aero Engines Gmbh Producing hollow body with cavity, comprises producing molded body with outer mold partially having shape of hollow cavity, where molded body is displaceable by solvent/melt in flowable state, and coating molded body with coating material
DE102009037894A1 (en) * 2009-08-18 2011-02-24 Mtu Aero Engines Gmbh Thin-walled structural component and method for its production
DE102009048706A1 (en) * 2009-10-08 2011-04-28 Hermle Maschinenbau Gmbh Method and device for producing a molded part by means of generative application
FR2978076B1 (en) * 2011-07-22 2013-08-16 Snecma ASSEMBLY OF A TITANIUM HULL AND A TITANIUM FIRE RESISTANT ALLOY COVER BY DEPOT BY COLD-SPRAY
KR102131464B1 (en) * 2012-04-04 2020-07-08 코몬웰스 싸이언티픽 엔드 인더스트리얼 리서치 오가니제이션 A process for producing a titanium load-bearing structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010060362A1 (en) 2010-11-04 2012-05-10 Linde Aktiengesellschaft Method for producing a pipe

Also Published As

Publication number Publication date
DE102014206073A1 (en) 2015-10-01
CA2944238A1 (en) 2015-10-08
US20170022615A1 (en) 2017-01-26
JP2017512908A (en) 2017-05-25
WO2015150071A3 (en) 2015-11-26
EP3102718A2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
EP3102718A2 (en) Method for producing a hollow body by cold spraying and mould core suitable for carrying out said method
EP3259381B1 (en) Method for manufacturing a component by thermal spraying and installation for manufacturing a component with a device for thermal spraying
EP1857183B1 (en) Device for cold gas spraying
DE102009034566A1 (en) Use of generative manufacturing method for layered structure of a component of a tank shell of a tank for liquids and/or gases, preferably fuel tank of e.g. satellite, where the component consists of titanium or an alloy of titanium
DE102009048706A1 (en) Method and device for producing a molded part by means of generative application
EP1791645B1 (en) Method for cold gas spraying and cold gas spraying pistol with increased retention time for the powder in the gas stream
DE102011081998A1 (en) A method of repairing a damaged area in a casting and method of producing a suitable repair material
EP2885441B1 (en) Method for coating by thermal spraying with an inclined particle jet
WO2011151195A1 (en) Bogie shaft for a railway vehicle having a stone guard and method for producing same
DE102009011913A1 (en) Thermal insulation layer system for use in gas turbine, comprises metallic adhesion-promoting layer, and ceramic thermal insulation layer applied on adhesion-promoting layer
EP2113036B1 (en) Method for the production of a fiber composite comprising a metallic matrix
WO2014191155A1 (en) Method for producing a metal foam and method for producing particles suitable for said method
EP2499279A1 (en) Coating plastic components by means of kinetic cold gas spraying
EP2981381B1 (en) Method for producing a shell-shaped component and production system suitable for the use of said method
DE102010022597A1 (en) Method for producing a layer by means of cold gas spraying and use of such a layer
WO2019219551A1 (en) Brake body and method for producing same
DE10208868B4 (en) Method for producing a component and / or a layer of a vibration-damping alloy or intermetallic compound and component produced by this method
DE102015015313A1 (en) Interior trim part and a method for producing an interior trim part
DE102006029070B3 (en) Process to apply a protective coating to gas turbine engine blade with hole sidewalls masked by sacrificial plug
DE102006023567A1 (en) Rolling bearing component and method for producing such
DE102010005897A1 (en) Method for producing a body by spray compacting, comprises spraying a melt, and applying drop on a carrier, where the drops are applied on a separating layer on which the body is replaced by an each subsurface
DE2657271C2 (en) Method of manufacturing a tubular body from wear-resistant metal
EP3485056B1 (en) Coating of cylindrical boreholes without previous activation of the coating
DE102007021736A1 (en) Process for the aftertreatment of welded joints
EP3636375B1 (en) Method for producing a threaded tool and a threaded tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15712560

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2015712560

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015712560

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2944238

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016560489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15300851

Country of ref document: US