WO2015147259A1 - MnドープのPZT系圧電体膜形成用組成物及びMnドープのPZT系圧電体膜 - Google Patents

MnドープのPZT系圧電体膜形成用組成物及びMnドープのPZT系圧電体膜 Download PDF

Info

Publication number
WO2015147259A1
WO2015147259A1 PCT/JP2015/059619 JP2015059619W WO2015147259A1 WO 2015147259 A1 WO2015147259 A1 WO 2015147259A1 JP 2015059619 W JP2015059619 W JP 2015059619W WO 2015147259 A1 WO2015147259 A1 WO 2015147259A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pzt
composition
piezoelectric film
piezoelectric
Prior art date
Application number
PCT/JP2015/059619
Other languages
English (en)
French (fr)
Inventor
土井 利浩
桜井 英章
曽山 信幸
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014065635A external-priority patent/JP6183261B2/ja
Priority claimed from JP2015019859A external-priority patent/JP6481394B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201580015871.3A priority Critical patent/CN106104826B/zh
Priority to EP15769102.3A priority patent/EP3125317B1/en
Priority to US15/129,077 priority patent/US10411183B2/en
Priority to KR1020167026249A priority patent/KR102384736B1/ko
Publication of WO2015147259A1 publication Critical patent/WO2015147259A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a composition for forming a PZT-based piezoelectric film doped with Mn and a PZT-based piezoelectric film doped with Mn.
  • the PZT-based piezoelectric film doped with Mn is used for a piezoelectric element, an IPD (Integrated Passive Device), a pyroelectric element, and the like.
  • the PZT-based piezoelectric film doped with Mn is used for a gyro sensor, an infrared sensor, a piezoelectric sensor, an inkjet head, an autofocus, and the like.
  • the second aspect relates to a Mn-doped PZT-based piezoelectric film excellent in stability after polarization treatment, which is suitable for the applications of the various sensors.
  • This application claims priority based on Japanese Patent Application No. 2014-066565 filed in Japan on March 27, 2014 and Japanese Patent Application No. 2015-019859 filed on February 4, 2015 in Japan. , The contents of which are incorporated herein.
  • the performance index g of the piezoelectric film used is expressed by the following equation (1).
  • d 31 a piezoelectric constant
  • ⁇ 33 a dielectric constant. That is, when a ferroelectric film such as PZT is used for a sensor such as a pyroelectric sensor or a gyro sensor, it is desirable that the piezoelectric constant of the film is large, and that the dielectric constant and dielectric loss (tan ⁇ ) of the film are generally low. It is desirable from the standpoint that the polarization direction of the film is aligned immediately after the film formation, in that the polarization stability and the polarization step are unnecessary.
  • the problem of productivity is a problem when a film is formed by the CSD method.
  • the film formation rate is as fast as possible.
  • the sol-gel method generally undergoes a high-temperature process such as calcination or baking, so that a single coating amount If an attempt is made to obtain a thicker film by increasing the number of the films, the tensile stress generated in the film during firing or the like increases, and there is a problem that cracks are generated in the formed film. If cracks occur in the film after formation, the electrical properties of the ferroelectric film are deteriorated.
  • the thickness of the film that can be formed by one application is limited to about 100 nm.
  • the coating and baking of the composition are repeated a plurality of times.
  • Patent Document 1 discloses a raw material solution for forming a metal oxide thin film containing Ti, and a raw material solution for forming a metal oxide thin film in which propylene glycol is added to the raw material solution. ing. With this raw material solution, a thick film having a thickness of 0.2 ⁇ m or more can be formed by a single application without generating cracks or the like.
  • a CSD method represented by a sol-gel method and a sputtering method are well known.
  • a PZT-based film manufactured by the CSD method has a high dielectric breakdown voltage and is suitable for a high voltage driving device such as an ink jet head.
  • PZT-based films produced by sputtering often have compressive stress due to the implantation effect during film formation, and a film excellent in low-voltage driving can be formed by being oriented in the (001) plane. It is also possible to develop a spontaneous polarization phenomenon that aligns the polarization direction immediately after film formation by devising the film formation method.
  • a ferroelectric thin film such as PZT When a ferroelectric thin film such as PZT is produced as a sensor element such as a gyro sensor by sputtering, the polarization state may be lost due to heat treatment for soldering in a reflow process after packaging. However, since a film having a spontaneous polarization phenomenon has an internal bias in the film, this heat treatment is advantageous in that the polarization state is not lost.
  • the produced ferroelectric thin film is excellent in property reproducibility and in-wafer property uniformity due to its film formation properties.
  • the CSD method does not use a vacuum, the apparatus cost is significantly lower than the sputtering method. In order to take advantage of such merits, there is a demand for a PZT film that has excellent temperature characteristics even in the CSD method and does not lose the polarization state.
  • Non-Patent Document 1 studies the spontaneous polarization phenomenon of the PZT film, and discloses that the spontaneous polarization phenomenon appears in the PZT film even by the CSD method. Non-patent document 1 describes that this phenomenon is caused by the distortion of the film due to the effect of distortion due to lattice mismatch at the substrate interface and the spontaneous polarization phenomenon is induced at the thin film level.
  • Patent Document 2 A method for manufacturing a ferroelectric thin film in which an orientation control layer having a crystal orientation of (100) plane is formed on a lower electrode, which will be described later, is described in Patent Document 2.
  • Patent Document 3 A method for manufacturing a ferroelectric thin film in which an orientation control layer having a crystal orientation of (110) plane is formed on a lower electrode, which will be described later, is described in Patent Document 3.
  • JP 2001-261338 A (Claim 1, paragraphs [0015] to [0024], Table 1) JP2012-256850 (Claims 1 to 3) JP2012-256851A (Claims 1 to 3)
  • the first object of the present invention is to improve the piezoelectric constant of the piezoelectric film, to lower the dielectric constant, and to form a piezoelectric film having excellent stability after polarization treatment. It is an object to provide a composition for forming a PZT-based piezoelectric film and a Mn-doped PZT-based piezoelectric film formed using the composition.
  • the second object of the present invention is to obtain a dense and high-performance piezoelectric film without generating voids and cracks even if the coating thickness per one time is relatively thick, and moreover,
  • An object of the present invention is to provide a composition for forming an Mn-doped PZT-based piezoelectric film that can be crystallized by firing, and an Mn-doped PZT-based piezoelectric film formed using the composition.
  • Non-Patent Document 1 shows that when the film is formed by the CSD method, the spontaneous polarization phenomenon disappears as the thickness of the PZT film increases. Specifically, in a PZT film with a film thickness of 0.7 ⁇ m or less, the polarization does not change significantly, but when it exceeds 0.7 ⁇ m, the effect of strain is eliminated and the spontaneous polarization phenomenon disappears. Is explained to be very small. For this reason, in order to produce a film having a spontaneous polarization phenomenon with a thickness of 0.8 ⁇ m or more that can be practically used by the CSD method, there is still a problem to be solved.
  • a third object of the present invention is a Mn-doped PZT piezoelectric material formed by the CSD method, having a film thickness of 0.8 ⁇ m or more, excellent in stability after polarization treatment, and having no deterioration in piezoelectric characteristics. It is to provide a membrane.
  • a first aspect of the present invention is a composition used for forming a PZT-based piezoelectric film made of a Mn-doped composite metal oxide, and a PZT-based precursor containing each metal atom constituting the composite metal oxide;
  • the metal atomic ratio in the composition is Pb: Mn: Zr: Ti
  • Pb satisfies 1.00 to 1.20
  • Mn is 0.002 or more and 0.00.
  • the PZT precursor satisfies 0.40 to 0.55, Ti satisfies 0.45 to 0.60, and the total ratio of the metal atomic ratio of Zr and Ti is 1, the PZT precursor
  • concentration of the PZT-based precursor in 100% by mass of the composition is 17 to 35% by mass in terms of oxide concentration, and the proportion of diol in 100% by mass of the composition is 16 to 56% by mass
  • Polyvinylpyrrolidone proportion is PZT 0.005 to 0.25 mol in terms of monomer relative to precursor 1 mol, PZT system piezoelectric film-forming composition of Mn-doped.
  • the second aspect of the present invention is formed by CSD method using a composition according to the first aspect, a composite metal oxide of the general formula Pb z Mn x Zr y Ti 1 -y O 3 in Mn doped shown
  • a third aspect of the present invention is an invention based on the second aspect, and is an Mn-doped PZT-based piezoelectric film having an orientation degree of (100) plane or (001) plane of 90% or more by X-ray diffraction It is.
  • a fourth aspect of the present invention is the invention based on the second aspect, wherein when the total number of moles of Zr and Ti in the composite metal oxide is 1 mole, the molar ratio of Mn is 0.01 to Mn-doped PZT-based piezoelectric film having a thickness in the range of 0.045, wherein the PZT-based piezoelectric film is preferentially crystallized in the (100) plane or (001) plane, and has a thickness of 0.8 to 3 ⁇ m. It is.
  • a fifth aspect of the present invention is an invention based on the fourth aspect, wherein the Mn-doped PZT-based piezoelectric film has an orientation degree of (100) plane or (001) plane of 95% or more by X-ray diffraction. It is.
  • a sixth aspect of the present invention is an invention based on the fourth or fifth aspect, wherein the deviation D of the hysteresis loop of the polarization-electric field characteristic obtained by the following formula (2) is at least 8.8 kV / cm.
  • D E C + ⁇ [(E C + + E C ⁇ ) / 2] (2)
  • E C + is the absolute value of the positive electric field value from 0 kV / cm when the polarization is 0 ⁇ C / cm 2
  • E C ⁇ is the negative value from 0 kV / cm when the polarization is 0 ⁇ C / cm 2.
  • the present inventors By adding Mn to the PZT-based material and increasing the degree of crystal orientation of the (100) plane or (001) plane of the film, the present inventors have practically sufficient even if the film thickness is 0.8 ⁇ m or more. It was found that a PZT film having a spontaneous polarization phenomenon can be obtained, and the present invention has been achieved.
  • the composition according to the first aspect of the present invention is used to form a PZT piezoelectric film made of a Mn-doped composite metal oxide.
  • the metal atom ratio in the composition is Pb: Mn: Zr: Ti, including a PZT precursor containing each metal atom constituting the composite metal oxide, a diol, and polyvinylpyrrolidone, Pb Satisfies 1.00 to 1.20, Mn satisfies 0.002 or more and less than 0.05, Zr satisfies 0.40 to 0.55, Ti satisfies 0.45 to 0.60, and Zr
  • the PZT precursor is included in such a ratio that the total ratio of the metal atomic ratio of Ti and Ti is 1.
  • the concentration of the PZT precursor in 100% by mass of the composition is 17 to 35% by mass in terms of oxide concentration
  • the proportion of diol in 100% by mass of the composition is 16 to 56% by mass
  • the polarization direction of the Mn-doped piezoelectric film whose orientation is controlled to the (100) plane or the (001) plane is aligned upward immediately after the film formation, the (100) plane or ( By forming a piezoelectric film whose orientation is controlled on the (001) plane, the stability of polarization can be improved. Further, since the generation of cracks and voids can be suppressed even in the formation of a thick film of 150 nm or more, production efficiency can be increased.
  • PZT system piezoelectric film of the second aspect of Mn dope of the present invention is formed by using the composition of the present invention, a composite of Mn doped represented by the general formula Pb z Mn x Zr y Ti 1 -y O 3 This is a PZT-based piezoelectric film made of a metal oxide.
  • the mole ratio of Pb is in the range of 0.95 to 1.10, and the mole ratio of Mn is 0.002 or more and 0.
  • the Mn-doped PZT-based piezoelectric film according to the third aspect of the present invention is very stable in polarization because it is doped with Mn and has a high degree of orientation toward the (100) plane or (001) plane. .
  • the Mn-doped PZT-based piezoelectric film of the fourth aspect of the present invention in the PZT material having a perovskite structure represented by ABO 3 containing Pb, Zr and Ti, by adding Mn, Some of Ti and Zr are replaced with Mn, and spontaneous polarization phenomenon appears. As a result, even if the film is 0.8-3 ⁇ m, it has excellent temperature stability in the polarization state. It is possible to suppress the disappearance of the polarization state by the heat treatment of the soldering in the reflow process. As a specific technical reason, first, as shown in the following formula (3), oxygen deficiency is generated, and thereby the domain wall is pinned, whereby a spontaneous polarization phenomenon appears.
  • Mn is doped by the CSD method
  • a Mn composition gradient is formed in which the concentration of Mn ions decreases in the film thickness direction from the lower surface side of the film toward the upper surface side of the film, and an oxygen defect gradient is also generated at the same time.
  • concentration gradient of oxygen defects creates a bias in the film and the spontaneous polarization phenomenon appears more reliably.
  • the crystal orientation is preferentially oriented to the (100) plane or the (001) plane, the polarization direction is aligned upward immediately after film formation, so that the spontaneous polarization phenomenon is maintained and the stability of polarization is improved. Can be increased. Even if Mn is doped, the piezoelectric characteristics of the piezoelectric film do not deteriorate.
  • the degree of orientation of the (100) plane or (001) plane by X-ray diffraction is 95% or more, the polarization stability is further improved. Can do.
  • the Mn-doped PZT piezoelectric film according to the sixth aspect of the present invention has a hysteresis loop shift D immediately after the film formation, and D is at least 8.8 kV / cm. can get.
  • Each PZT-based piezoelectric film made of a composite metal oxide doped with Mn according to the second aspect of the present invention (shown by a solid line), a PZT-based piezoelectric film not doped with Mn, and a piezoelectric body (shown by a broken line) It is a figure which shows the hysteresis curve of a film
  • Mn-doped PZT-based piezoelectric film forming composition The composition of the first aspect is used to form a Mn-doped PZT-based piezoelectric film, which is a Pb-containing perovskite such as lead zirconate titanate (PZT). Mn element is added to the composite metal oxide having a structure, a piezoelectric film having a composition represented by the general formula Pb z Mn x Zr y Ti 1 -y O 3. And this composition contains the PZT type
  • the PZT-based precursor contained in the composition is a raw material for constituting the composite metal oxide and the like in the formed piezoelectric film, and is contained in such a ratio that gives a desired metal atomic ratio.
  • the metal atomic ratio (Pb: Mn: Zr: Ti) in the composition is (1.00 to 1.20) :( 0.002 to 0.05) :( 0.40 to 0.55). ): (0.45 to 0.60) is satisfied, and the total ratio of the metal atomic ratios of Zr and Ti is 1 inclusive.
  • x, y and z in the above general formula are 0.002 ⁇ x ⁇ 0.05, 0.40 ⁇ y ⁇ 0.55 and 0.95 ⁇ z ⁇ 1. 10 to a desired composition.
  • the metal atomic ratio in the composition in other words, when Pb: Mn: Zr: Ti is indicated, Pb satisfies 1.00 to 1.20, Mn satisfies 0.002 or more and less than 0.05, Zr satisfies 0.40 to 0.55, and Ti satisfies 0.45 to 0.60.
  • the PZT-based precursor is preferably a compound in which an organic group is bonded to each metal atom of Pb, Mn, Zr and Ti via the oxygen or nitrogen atom.
  • an organic group is bonded to each metal atom of Pb, Mn, Zr and Ti via the oxygen or nitrogen atom.
  • metal alkoxide metal diol complex, metal triol complex, metal carboxylate, metal ⁇ -diketonate complex, metal ⁇ -diketoester complex, metal ⁇ -iminoketo complex, and metal amino complex Or 2 or more types are illustrated.
  • Particularly suitable compounds are metal alkoxides, partial hydrolysates thereof, and organic acid salts.
  • examples of the Pb compound include acetates such as lead acetate: Pb (OAc) 2 and alkoxides such as lead diisopropoxide: Pb (OiPr) 2 .
  • examples of the Mn compound include organic acid salts such as manganese 2-ethylhexanoate, manganese naphthenate, and manganese acetate, and metal ⁇ -diketonate complexes such as acetylacetone manganese.
  • Ti compounds include titanium tetraethoxide: Ti (OEt) 4 , titanium tetraisopropoxide: Ti (OiPr) 4 , titanium tetra n-butoxide: Ti (OnBu) 4 , titanium tetraisobutoxide: Ti (OiBu). 4 , alkoxides such as titanium tetra-t-butoxide: Ti (OtBu) 4 and titanium dimethoxydiisopropoxide: Ti (OMe) 2 (OiPr) 2 .
  • Zr compounds include zirconium tetraethoxide: Zr (OEt) 4 , zirconium tetraisopropoxide: Zr (OiPr) 4 , zirconium tetra n-butoxide: Zr (OnBu) 4 , zirconium tetraisobutoxide: Zr (OiBu). 4 , alkoxides such as zirconium tetra t-butoxide: Zr (OtBu) 4 and zirconium dimethoxydiisopropoxide: Zr (OMe) 2 (OiPr) 2 . .
  • the metal alkoxide may be used as it is, a partially hydrolyzed product thereof may be used in order to promote decomposition.
  • PZT precursors that is, the Pb compound, the Mn compound, the Ti compound, and the Zr compound are contained in the composition at a ratio that gives the above-described desired metal atomic ratio.
  • the reason for controlling the Mn ratio in the composition to be in the above range is that if the Mn ratio in the composition is less than the lower limit, x in the above general formula indicating the film composition after film formation is the lower limit. If it is less than the value and close to zero with a very small amount, the piezoelectric constant may improve slightly, but the relative permittivity does not decrease sufficiently, but if it is close to the lower limit, the relative permittivity decreases slightly. This is because there is a case where the piezoelectric constant is not so much improved.
  • the reason for controlling the ratio of Pb in the composition to be in the above range is that if the ratio of Pb in the composition is less than the lower limit, z in the above general formula indicating the film composition after film formation is the lower limit. This is because a large amount of pyrochlore phase is contained in the film, and electrical characteristics such as piezoelectric characteristics are remarkably deteriorated. On the other hand, if the ratio of Pb in the composition exceeds the upper limit value, z in the above general formula indicating the film composition after film formation exceeds the upper limit value, and a large amount of PbO remains in the film after baking. This is because the current increases and the electrical reliability of the film decreases.
  • the metal atomic ratio (Pb: Mn: Zr: Ti) in the composition is (1.05 to 1.15) :( 0.005 to 0.03) :( 0.45 in the above range. 0.55): (0.45 to 0.55) is preferably satisfied, and the ratio of the total metal atomic ratio of Zr and Ti is preferably 1.
  • the magnitude (high and low) of the piezoelectric constant means the magnitude (high and low) of the absolute value of the piezoelectric constant.
  • the concentration of the PZT precursor in 100% by mass of the composition is 17 to 35% by mass in terms of oxide concentration.
  • the reason why the concentration of the PZT precursor is limited to this range is that a sufficient film thickness cannot be obtained if the concentration is less than the lower limit value, whereas cracks are likely to occur if the upper limit value is exceeded.
  • the concentration of the PZT precursor in 100% by mass of the composition is preferably 20 to 25% by mass in terms of oxide concentration.
  • the oxide concentration in the concentration of the PZT-based precursor in the composition occupies 100% by mass of the composition calculated on the assumption that all metal atoms contained in the composition have become the target oxide. The concentration of metal oxide.
  • the diol contained in the composition is a component that serves as a solvent for the composition.
  • Specific examples include propylene glycol, ethylene glycol, or 1,3-propanediol. Of these, propylene glycol or ethylene glycol is preferred.
  • diol By using diol as an essential solvent component, the storage stability of the composition can be enhanced.
  • the proportion of the diol in 100% by mass of the composition is 16 to 56% by mass.
  • the reason why the ratio of the diol is limited to this range is that if it is less than the lower limit value, a problem that precipitates are generated occurs. On the other hand, if it exceeds the upper limit value, voids (micropores) are easily generated when the film is thickened.
  • the proportion of diol is preferably 28 to 42% by mass.
  • solvents include carboxylic acids, alcohols (eg, polyhydric alcohols other than ethanol, 1-butanol, and diol), esters, ketones (eg, acetone, methyl ethyl ketone), ethers (eg, dimethyl ether, diethyl ether). , Cycloalkanes (for example, cyclohexane, cyclohexanol), aromatics (for example, benzene, toluene, xylene), other tetrahydrofuran, etc., and mixed solvents in which one or more of these are further added to a diol It can also be.
  • alcohols eg, polyhydric alcohols other than ethanol, 1-butanol, and diol
  • esters eg, ketones (eg, acetone, methyl ethyl ketone), ethers (eg, dimethyl ether, diethyl ether).
  • ketones eg, acetone
  • carboxylic acid examples include n-butyric acid, ⁇ -methylbutyric acid, i-valeric acid, 2-ethylbutyric acid, 2,2-dimethylbutyric acid, 3,3-dimethylbutyric acid, 2,3-dimethylbutyric acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 2,2-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2- Ethylhexanoic acid and 3-ethylhexanoic acid are preferably used.
  • ester ethyl acetate, propyl acetate, n-butyl acetate, sec-butyl acetate, tert-butyl acetate, isobutyl acetate, n-amyl acetate, sec-amyl acetate, tert-amyl acetate, isoamyl acetate are used.
  • alcohol 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butyl alcohol, 1-pentanol, 2-pentanol, 2-methyl-2-pentanol, 2-methoxy It is preferred to use ethanol.
  • the composition of the first aspect includes polyvinyl pyrrolidone (PVP) which is a polymer compound.
  • PVP polyvinyl pyrrolidone
  • Polyvinyl pyrrolidone is used for adjusting the liquid viscosity in the composition, and has a large crack suppressing effect.
  • polyvinylpyrrolidone is used to adjust the relative viscosity determined by the k value.
  • the k value is a viscosity characteristic value that correlates with a molecular weight, and is a value calculated by applying a relative viscosity value (25 ° C.) measured by a capillary viscometer to the following Fikentscher equation.
  • k value (1.5 log ⁇ rel -1) / (0.15 + 0.003c) + (300clog ⁇ rel + (c + 1.5clog ⁇ rel) 2 ) 1/2 /(0.15c+0.003c 2 )
  • ⁇ rel represents the relative viscosity of the aqueous polyvinylpyrrolidone solution to water
  • c represents the polyvinylpyrrolidone concentration (%) in the aqueous polyvinylpyrrolidone solution.
  • the k value of polyvinylpyrrolidone contained in the composition of the first aspect is preferably 30 to 90.
  • the applied coating film (gel film) needs to have sufficient viscosity to maintain its thickness. If the value is less than the lower limit, it is difficult to obtain it. On the other hand, when the upper limit is exceeded, the viscosity becomes too high, and it becomes difficult to uniformly apply the composition.
  • the ratio of the polyvinyl pyrrolidone is 0.005 to 0.25 mol in terms of monomer with respect to 1 mol of the PZT precursor.
  • the reason why the ratio of polyvinyl pyrrolidone is limited to the above range is that cracks are likely to occur if it is less than the lower limit value, whereas voids are likely to occur if the upper limit value is exceeded.
  • the proportion of polyvinylpyrrolidone is preferably 0.025 to 0.075 mol in terms of monomer with respect to 1 mol of the PZT precursor.
  • Polyvinyl pyrrolidone has a high decomposition temperature and a high affinity with the PZT precursor, and thus is difficult to remove from the film and easily causes voids. Therefore, it is desirable that the addition amount be as small as possible.
  • the precursor is moderately hydrolyzed so that organic substances are easily removed from the film. Can be kept low.
  • the monomer conversion is a value obtained by converting the molecular weight of the polymer based on the molecular weight of the monomer constituting the polymer (1 mol).
  • a linear monoalcohol having 6 to 12 carbon atoms in the composition of the first aspect, and the addition ratio is 0.6 to 10% by mass in 100% by mass of the composition. It is preferable that When an appropriate amount of linear monoalcohol is included in the composition, a gel film capable of effectively releasing organic substances out of the film at the time of calcination can be formed, and even if the film thickness exceeds 100 nm, the fine and high characteristic Mn A doped PZT piezoelectric film is obtained.
  • the reason why the linear monoalcohol preferably has 6 to 12 carbon atoms is that if it is less than the lower limit, the boiling point is not sufficiently high and the densification of the film may not sufficiently proceed.
  • the film can be densified, but the solubility in the sol-gel solution is low, it is difficult to dissolve a sufficient amount, and the viscosity of the solution is too high. This is because there may be cases where uniform coating may not be possible due to the occurrence of stripes).
  • the carbon number of the linear monoalcohol is more preferably 7-9.
  • the reason why the proportion of the linear monoalcohol in 100% by mass of the composition is preferably in the above range is that if it is less than the lower limit, a sufficient gap cannot be formed in the film, This is because the organic matter cannot be effectively removed, and the film may not be sufficiently densified.
  • the proportion of linear monoalcohol in 100% by mass of the composition is more preferably 1 to 3% by mass.
  • the straight-chain monoalcohol having 6 carbon atoms is 1-hexanol
  • the straight-chain monoalcohol having 7 carbon atoms is 1-heptanol
  • the straight-chain monoalcohol having 8 carbon atoms is 1-octanol
  • the linear monoalcohol is 1-nonanol.
  • the linear monoalcohol having 10 carbon atoms is 1-decanol
  • the linear monoalcohol having 11 carbon atoms is 1-undecanol
  • the linear monoalcohol having 12 carbons is 1-dodecanol.
  • ⁇ -diketones for example, acetylacetone, heptafluorobutanoylpivaloylmethane, dipivaloylmethane, trifluoroacetylacetone, benzoylacetone, etc.
  • Ketone acids for example, acetoacetic acid, propionyl acetic acid, benzoylacetic acid, etc.
  • ⁇ -ketoesters for example, lower alkyl esters of the above ketone acids such as methyl, propyl, butyl, etc.
  • oxyacids for example, lactic acid, glycolic acid) , ⁇ -oxybutyric acid, salicylic acid, etc.
  • lower alkyl esters of the above oxyacids, oxyketones eg, diacetone alcohol, acetoin, etc.
  • diols, triols higher carboxylic acids, alkanolamines (eg, diethanolamine, triethanol) Am
  • the reflux it is preferable to remove the solvent by a method of atmospheric distillation or vacuum distillation.
  • stabilizers such as acetylacetone
  • these are preferably added to the synthesis solution after desolvation and refluxed at a temperature of 130 to 175 ° C. for 0.5 to 5 hours in a nitrogen atmosphere. Then, the synthetic liquid is cooled to room temperature (about 25 ° C.) by allowing to cool at room temperature.
  • the concentration of the PZT precursor contained in the synthesis solution is adjusted to a desired concentration.
  • the amount of the PZT precursor and diol used is such that the concentration of the PZT precursor in the final composition of 100% by mass is 17 to 35% by mass in terms of oxide concentration, and the concentration of diol is 16 to 56% by mass. Adjust as follows.
  • linear monoalcohol is added to the cooled synthetic solution to prepare a sol-gel solution.
  • linear monoalcohol when adding solvents other than the above-mentioned diol to the synthetic liquid after cooling, these are added together to prepare a sol-gel liquid.
  • the sol-gel solution is refluxed again in a predetermined atmosphere, for example, in a nitrogen atmosphere at a temperature of 100 to 175 ° C. for 0.5 to 10 hours.
  • the Mn-doped PZT-based piezoelectric film forming composition of the first aspect is obtained.
  • the particles are removed by filtration or the like, and the number of particles having a particle size of 0.5 ⁇ m or more (particularly 0.3 ⁇ m or more, especially 0.2 ⁇ m or more) is 50 or less per milliliter of the composition. It is preferable to do this. If the number of particles having a particle size of 0.5 ⁇ m or more in the composition exceeds 50 particles per milliliter of the composition, the long-term storage stability becomes poor.
  • the number of particles having a particle size of 0.5 ⁇ m or more in the composition is preferably as small as possible, and particularly preferably 30 or less per milliliter of the composition.
  • the method of treating the composition after adjusting the number of particles to be in the above range is not particularly limited, and examples thereof include the following methods.
  • the first method is a filtration method in which a commercially available membrane filter having a pore size of 0.2 ⁇ m is used and pressure-fed with a syringe.
  • the second method is a pressure filtration method combining a commercially available membrane filter having a pore diameter of 0.05 ⁇ m and a pressure tank.
  • the third method is a circulation filtration method in which the filter used in the second method and the solution circulation tank are combined.
  • the particle capture rate by the filter varies depending on the pressure of the composition. It is generally known that the lower the pressure, the higher the capture rate.
  • the number of particles having a particle size of 0.5 ⁇ m or more is 50 per milliliter of the composition. In order to achieve the following conditions, it is preferable to pass the composition through the filter very slowly at low pressure.
  • This forming method is a method of forming a piezoelectric film by a sol-gel method, and the above-described composition for forming a PZT-based piezoelectric film of Mn dope is used as a raw material solution.
  • the Mn-doped PZT-based piezoelectric film forming composition is applied on a substrate to form a coating film (gel film) having a desired thickness.
  • the coating method is not particularly limited, and examples thereof include spin coating, dip coating, LSMCD (Liquid Source Misted Chemical Deposition) method, and electrostatic spraying method.
  • a heat resistant substrate such as a silicon substrate or a sapphire substrate on which a lower electrode is formed is used.
  • the lower electrode formed on the substrate is formed of a material having conductivity such as Pt, TiO x , Ir, Ru, etc. and not reacting with the piezoelectric film.
  • the lower electrode can have a two-layer structure of a TiO x film and a Pt film in order from the substrate side.
  • a specific example of the TiO x film is a TiO 2 film.
  • an SiO 2 film can be formed on the substrate surface.
  • an orientation control film in which the crystal orientation is preferentially controlled is formed on the (100) plane or the (001) plane before the piezoelectric film is formed. It is desirable. This is because a Mn-doped PZT-based piezoelectric film can be formed into a film having a uniform polarization direction immediately after film formation by strongly orienting it to the (100) plane or (001) plane.
  • the orientation control film include an LNO film (LaNiO 3 film), a PZT film, and a SrTiO 3 film whose crystal orientation is controlled preferentially on the (100) plane or the (001) plane.
  • this coating film is calcined and further baked for crystallization.
  • the calcination is performed under a predetermined condition using a hot plate or a rapid heating process (RTA).
  • RTA rapid heating process
  • the calcination is performed in order to remove the solvent and convert the metal compound into a composite metal oxide by thermal decomposition or hydrolysis, and therefore, it is preferable to perform the calcination in air, in an oxidizing atmosphere, or in a steam-containing atmosphere. Even in heating in the air, the moisture required for hydrolysis is sufficiently secured by the humidity in the air.
  • low temperature heating drying may be performed at a temperature of 70 to 90 ° C. for 0.5 to 5 minutes using a hot plate or the like. Good.
  • the calcination is preferably carried out by holding at 250 to 300 ° C. for 2 to 5 minutes.
  • the first stage is calcination held at 250 to 300 ° C. for 3 to 10 minutes
  • the second stage is calcination held at 400 to 500 ° C. for 3 to 10 minutes.
  • the reason why the first stage calcining temperature is preferably in the range of 250 to 300 ° C. is that if it is less than the lower limit value, the thermal decomposition of the precursor becomes insufficient and cracks are likely to occur.
  • the upper limit is exceeded, the precursor on the substrate is decomposed before the precursor in the vicinity of the substrate is completely decomposed, and the organic matter remains near the substrate of the film, so that voids are easily generated.
  • the reason why the first calcination time is preferably 3 to 10 minutes is that the decomposition of the precursor does not proceed sufficiently if the lower limit value is exceeded, and if the upper limit value is exceeded, the process time becomes longer and the productivity decreases. Because there are cases.
  • the reason why the second stage calcining temperature is preferably in the range of 400 to 450 ° C. is that if it is less than the lower limit value, residual organic substances remaining in the precursor cannot be completely removed, and the film is sufficiently densified. It is because there is a case not to do. On the other hand, if the upper limit is exceeded, crystallization may proceed and it may be difficult to control the orientation. Further, the reason why the second calcination time is preferably in the range of 3 to 10 minutes is that if the amount is less than the lower limit, residual organic substances cannot be sufficiently removed, and a strong stress is generated during crystallization, resulting in peeling of the film. This is because cracks are likely to occur. On the other hand, if the upper limit is exceeded, the process time becomes longer and the productivity may decrease.
  • the process up to calcination can be repeated a plurality of times so that the desired film thickness is obtained, and finally baking can be performed collectively.
  • the composition of the first aspect described above is used as the raw material solution, it is possible to suppress stress due to film shrinkage that occurs at the time of film formation, and so on. Thus, a thick film of about several hundred nm can be formed. Therefore, the number of steps to be repeated can be reduced.
  • Firing is a process for firing and crystallizing the coating film after calcination at a temperature equal to or higher than the crystallization temperature, whereby a piezoelectric film is obtained.
  • the firing atmosphere in this crystallization step is preferably O 2 , N 2 , Ar, N 2 O, H 2, or a mixed gas thereof.
  • Firing is performed at 600 to 700 ° C. for about 1 to 5 minutes.
  • Firing may be performed by rapid heat treatment (RTA). In the case of firing by rapid heating treatment (RTA), the rate of temperature rise is preferably 2.5 to 100 ° C./second.
  • the Mn-doped PZT-based piezoelectric film of the first aspect has a total number of moles of Zr and Ti in the Mn-doped composite metal oxide represented by the general formula Pb z Mn x Zr y Ti 1-y O 3 of 1
  • the molar ratio of Pb is preferably in the range of 0.95 to 1.10
  • the molar ratio of Mn is preferably in the range of 0.002 to 0.05.
  • the mole ratio of Pb is in the range of 1.00 to 1.09, and the mole ratio of Mn is 0. It is in the range of .01 to 0.03.
  • This piezoelectric film can improve the piezoelectric constant by doping Mn, so that a larger displacement can be obtained and the dielectric constant can be lowered. Becomes larger. It is considered that this is mainly because the added Mn substituted Zr or Ti to cause oxygen deficiency. Further, as shown in FIG. 1, the hysteresis curve is greatly shifted to the positive side, and the polarization direction is aligned upward immediately after the film formation.
  • Such a film is less prone to depolarization due to heat treatment such as a reflow process after polarization treatment, and is excellent in stability of polarization. Therefore, a device can be stably formed by applying an electric field on the negative side. Can be operated. Therefore, this film can be used as a piezoelectric body. Specifically, as shown in FIG. 2, each molecule 11 a in the piezoelectric film 11 is polarized before the DC voltage 14 is applied between the electrodes 12 and 13 disposed on both surfaces of the piezoelectric film 11. The state is maintained (FIG. 2A). As shown in FIG.
  • the piezoelectric film 11 when a voltage is applied between the electrodes 12 and 13 disposed on both surfaces of the piezoelectric film 11, the piezoelectric film 11 extends in the direction in which the voltage is applied, and this voltage is applied. When zero, the piezoelectric film 11 extending in the direction in which the voltage is applied contracts and returns to its original state (FIG. 2A), and can be applied to a piezoelectric element or the like.
  • the piezoelectric film having the characteristic of extending in the direction in which the voltage is applied is described. However, a piezoelectric film having the characteristic of extending in the direction orthogonal to the direction in which the voltage is applied may be used.
  • the Mn-doped PZT-based piezoelectric film of the first aspect has an orientation degree of (100) plane or (001) plane of 90% or more by X-ray diffraction. The upper limit of the degree of orientation can be 100%.
  • the Mn-doped PZT-based piezoelectric film of the first aspect When the Mn-doped PZT-based piezoelectric film of the first aspect is used as a gyro sensor or the like, the film thickness that can be formed by a single coating can be increased, so that the number of manufacturing steps can be reduced. In addition, this piezoelectric film has a small number of steps during film formation and is a relatively simple and thick film, but has very few cracks and a dense film structure. Excellent. Further, since the device is manufactured through baking at a high temperature of 600 to 700 ° C., the piezoelectric characteristics are not lost even if the device using the piezoelectric film is exposed to a high temperature for reflow soldering. Therefore, the Mn-doped PZT-based piezoelectric film of the first aspect can be suitably used as a constituent material in composite electronic parts such as piezoelectric elements, IPDs, pyroelectric elements and the like.
  • the composition for forming the Mn-doped PZT-based piezoelectric film according to the second aspect is obtained by adding Mn element to a composite metal oxide having a Pb-containing perovskite structure such as lead zirconate titanate (PZT) (dope This is a composition for forming a piezoelectric film.
  • the composition for forming the Mn-doped PZT-based piezoelectric film of the second aspect includes a PZT-based precursor, a diol as a main solvent, polyvinylpyrrolidone as a liquid viscosity modifier, and the like.
  • the PZT-based precursor contained in the composition is a raw material for constituting the composite metal oxide and the like in the formed PZT-based piezoelectric film, and the total number of moles of Zr and Ti in the composite metal oxide Is 1 mol, the molar ratio of Mn is in the range of 0.01 to 0.045.
  • the molar ratio of Mn is less than 0.01, the imprint phenomenon does not occur in the formed PZT-based piezoelectric film, and the spontaneous polarization phenomenon does not occur. If it exceeds 0.045, the piezoelectric properties of the piezoelectric film are deteriorated.
  • the metal atomic ratio (Pb: Mn: Zr: Ti) in the composition is (1.00 to 1.20): (0.01 to 0.045): (0.40 to 0.55): (0.45 to 0.60) is satisfied, and the total ratio of the metal atomic ratio of Zr to Ti is 1. It is included in the ratio.
  • the metal atomic ratio (Pb: Mn: Nb: Zr: Ti) in the composition is (1.00 to 1.20). : (0.01 to 0.045): (0.01 to 0.045): (0.40 to 0.55): (0.45 to 0.60) and Zr, Ti, Mn
  • the total proportion of Nb metal atom ratios is included at a rate of 1.
  • the general formula of the PNbZT piezoelectric film is represented by Pb z Mn x Nb 1-x Zr y Ti 1-y O 3
  • x, y, and z in the general formula are The composition can be controlled so as to satisfy 0.01 ⁇ x ⁇ 0.045, 0.40 ⁇ y ⁇ 0.55, and 0.95 ⁇ z ⁇ 1.10.
  • the metal atomic ratio (Pb: La: Mn: Zr: Ti) in the composition is (1.00 to 1.20). : (0.01 to 0.05): (0.01 to 0.045): (0.40 to 0.55): (0.45 to 0.60) and Pb and La metal atoms The total ratio is included at a ratio of 1.
  • x in the general formula, y is z and t It can be controlled to a desired composition satisfying 0.01 ⁇ x ⁇ 0.045, 0.40 ⁇ y ⁇ 0.55, 0.01 ⁇ t ⁇ 0.05, and 1.00 ⁇ z ⁇ 1.20. .
  • the PZT-based precursor has an organic group on each metal atom of Pb, Mn, Zr and Ti, each metal atom of Pb, Mn, Nb, Zr and Ti, or each metal atom of Pb, Mn, La, Zr and Ti.
  • a compound in which is bonded via its oxygen or nitrogen atom is preferred.
  • metal alkoxide, metal diol complex, metal triol complex, metal carboxylate, metal ⁇ -diketonate complex, metal ⁇ -diketoester complex, metal ⁇ -iminoketo complex, and metal amino complex Or 2 or more types are illustrated.
  • Particularly suitable compounds are metal alkoxides, partial hydrolysates thereof, and organic acid salts.
  • Examples of the Pb compound include the same Pb compound as in the first embodiment.
  • the Mn compound the same Mn compound as in the first embodiment can be mentioned.
  • Examples of the Ti compound include the same Ti compound as in the first embodiment.
  • Examples of the Zr compound include the same Zr compound as in the first embodiment.
  • examples of the Nb compound include alkoxides and organometallic acid salts such as niobium pentaethoxide and niobium 2-ethylhexanoate
  • examples of the La compound include organic metal acid salts such as lanthanum acetate hemihydrate. It is done.
  • the metal alkoxide may be used as it is, a partially hydrolyzed product thereof may be used in order to promote decomposition.
  • the Pb compound, Mn compound, Ti compound and Zr compound, or Nb compound or La compound are contained in the composition in such a ratio as to give the desired metal atom ratio.
  • the reason for controlling the Mn ratio in the composition to be in the above range is that if the Mn ratio in the composition is less than the lower limit, x in the above general formula indicating the film composition after film formation is the lower limit. As described above, the imprint phenomenon does not occur in the PZT piezoelectric film after formation, and the spontaneous polarization phenomenon does not occur.
  • the ratio of Mn in the composition exceeds the upper limit
  • x in the above general formula indicating the film composition after film formation exceeds the upper limit
  • the piezoelectric characteristics of the piezoelectric film deteriorate. It is.
  • the reason for controlling the ratio of Zr and Ti in the composition to be in the above range is that if the ratio of Zr and Ti in the composition is out of the above range, This is because y of y is out of the above desired range and the piezoelectric constant of the piezoelectric film cannot be sufficiently improved.
  • the reason for controlling the ratio of Pb in the composition to be in the above range is that if the ratio of Pb in the composition is less than the lower limit, z in the above general formula indicating the film composition after film formation is the lower limit This is because a large amount of pyrochlore phase is contained in the film, and electrical characteristics such as piezoelectric characteristics are remarkably deteriorated.
  • the ratio of Pb in the composition exceeds the upper limit value, z in the above general formula indicating the film composition after film formation exceeds the upper limit value, and a large amount of PbO remains in the film after baking. This is because the current increases and the electrical reliability of the film decreases. That is, excess lead tends to remain in the film, and the leak characteristics and insulation characteristics are deteriorated.
  • the metal atomic ratio (Pb: Mn: Zr: Ti) in the composition is (1 .05 to 1.15): (0.02 to 0.042): (0.45 to 0.55): (0.45 to 0.55), and the sum of the metal atomic ratios of Zr and Ti The ratio is preferably set to 1.
  • the metal atomic ratio (Pb: Mn: Nb: Zr: Ti) in the composition is (1.03 to 1.10). : (0.015 to 0.03): (0.015 to 0.03): (0.45 to 0.54): (0.46 to 0.56) and Zr, Ti and Mn It is preferable that the total ratio of the metal atom ratio of Nb is 1.
  • the metal atom ratio (Pb: La: Mn: Zr: Ti) in the composition is (1.00 to 1.20) : (0.01 to 0.045): (0.01 to 0.045): (0.40 to 0.55): (0.45 to 0.60), and metal atoms of Pb and La It is preferable to set the ratio so that the total ratio is 1.
  • the magnitude (high and low) of the piezoelectric constant means the magnitude (high and low) of the absolute value of the piezoelectric constant.
  • the concentration of the PZT precursor in 100% by mass of the composition is the same oxide concentration as in the first embodiment. Further, the critical significance of the upper limit value and the lower limit value of the concentration of the PZT-based precursor is the same as in the first embodiment.
  • the diol shown in the first embodiment can be used as the main solvent diol contained in the composition.
  • the ratio of the diol in 100% by mass of the composition is the same ratio as in the first aspect. Moreover, the critical significance of the upper limit value and lower limit value of the ratio of diol is the same as in the first embodiment.
  • carboxylic acids as in the first embodiment, carboxylic acids, alcohols (for example, polyhydric alcohols other than ethanol, 1-butanol and diol), esters, ketones (for example, acetone, methyl ethyl ketone), ethers ( For example, dimethyl ether, diethyl ether), cycloalkanes (for example, cyclohexane, cyclohexanol), aromatics (for example, benzene, toluene, xylene), other tetrahydrofuran, and the like can be mentioned. It can also be used as a mixed solvent to which is further added.
  • carboxylic acid and specific examples of the ester the same compounds as in the first embodiment can be listed.
  • the liquid viscosity modifier contained in the composition has a large effect of suppressing cracks in the formed piezoelectric film.
  • this liquid viscosity adjusting agent polyvinylpyrrolidone (PVP) which is a polymer compound is suitable for adjusting the relative viscosity.
  • the k value of polyvinylpyrrolidone contained in the composition of the second aspect is preferably 30 to 90.
  • the ratio of the polyvinyl pyrrolidone is 0.005 to 0.25 mol in terms of monomer with respect to 1 mol of the PZT precursor.
  • a linear monoalcohol having 6 to 12 carbon atoms in the composition of the second aspect as in the first aspect.
  • the proportion of linear monoalcohol having 6 to 12 carbon atoms and the critical significance thereof are the same as in the first embodiment.
  • stabilizer molecule number (number of metal atoms) is about 0.2 to 3 as in the first embodiment. It may be added.
  • Method for producing Mn-doped PZT-based piezoelectric film forming composition The method for producing the Mn-doped PZT piezoelectric film forming composition of the second aspect will be described.
  • the Mn-doped PZT-based piezoelectric film-forming composition is manufactured in the same procedure as the method for producing the Mn-doped PZT-based piezoelectric film forming composition of the first aspect.
  • a composition for forming a PZT-based piezoelectric film is prepared. The removal of the particles after the preparation of the composition may be performed in the same procedure as in the first aspect.
  • This forming method is a method of forming a piezoelectric film by a sol-gel method, and the above-described composition for forming a PZT-based piezoelectric film of Mn dope is used as a raw material solution.
  • the Mn-doped PZT-based piezoelectric film forming composition is applied on a substrate to form a coating film (gel film) having a desired thickness.
  • a coating film gel film
  • the coating method shown in the first embodiment and the substrate on which the piezoelectric film is formed can be used.
  • an orientation control film in which the crystal orientation is preferentially controlled is formed on the (100) plane or the (001) plane before the piezoelectric film is formed. It is desirable. This is because a Mn-doped PZT-based piezoelectric film can be formed into a film having a uniform polarization direction immediately after film formation by strongly orienting it to the (100) plane or (001) plane.
  • the orientation control film include an LNO film (LaNiO 3 film), a PZT film, and a SrTiO 3 film whose crystal orientation is controlled preferentially on the (100) plane or the (001) plane.
  • the preferential crystal orientation of the orientation control layer to the (100) plane
  • a composition for forming a ferroelectric thin film is applied, calcined, and fired on an electrode to form an orientation control layer, a crystal grain size control layer is formed on the lower electrode.
  • the application amount of the composition for forming a ferroelectric thin film on the control layer is set so that the layer thickness after crystallization of the orientation control layer is in the range of 35 nm to 150 nm, and the temperature during the calcination Can be included in the range of 150 ° C. to 200 ° C. or 285 ° C. to 315 ° C. (hereinafter referred to as the first method).
  • the preferential crystal orientation of the orientation control layer to the (110) plane
  • a composition for forming a ferroelectric thin film is applied, calcined, and fired on an electrode to form an orientation control layer, a crystal grain size control layer is formed on the lower electrode.
  • the coating amount of the composition for forming a ferroelectric thin film on the control layer is set so that the layer thickness after crystallization of the orientation control layer is in the range of 5 nm to 30 nm, and the temperature during the calcination Can be included in the range of 180 ° C. to 300 ° C. (hereinafter referred to as the second method).
  • the coating film is calcined and further baked to be crystallized.
  • the calcination is performed under a predetermined condition using a hot plate or a rapid heating process (RTA).
  • the calcination conditions are the same as in the first embodiment.
  • a hot plate or the like at a temperature of 70 to 90 ° C. for 0.5 to 5 minutes. (Drying) may be performed.
  • the process up to calcination can be repeated a plurality of times so that the desired film thickness is obtained, and finally baking can be performed collectively.
  • the composition of the second aspect described above is used for the raw material solution, it is possible to suppress the stress due to film shrinkage that occurs during film formation, and so on, so that it can be applied once without generating voids or cracks.
  • a thick film in the range up to 200 nm can be formed. Therefore, the number of steps to be repeated can be reduced.
  • Calcination is a process for crystallizing the calcined coating film by heat treatment at a temperature equal to or higher than the crystallization temperature, whereby a piezoelectric film is obtained.
  • the firing conditions (atmosphere, temperature, time) of this crystallization step are the same as in the first embodiment. Firing may be performed by rapid heat treatment (RTA). In the case of firing by rapid heating treatment (RTA), the rate of temperature rise is preferably 2.5 to 100 ° C./second.
  • the Mn-doped PZT-based piezoelectric film of the second aspect is obtained.
  • This piezoelectric film can improve the piezoelectric constant by doping Mn, so that a larger displacement can be obtained and the dielectric constant can be lowered. Becomes larger. It is considered that this is mainly because the added Mn substituted Zr or Ti to cause oxygen deficiency.
  • the hysteresis curve is greatly shifted to the positive side, and the polarization direction is aligned upward immediately after film formation.
  • Such a film is less prone to depolarization due to heat treatment in the reflow process after polarization treatment, and has excellent polarization stability. Therefore, the device operates stably by applying an electric field on the negative side. Can be made.
  • the Mn-doped PZT-based piezoelectric film of the second embodiment is a piezoelectric film in which a Mn element is added (doped) to a composite metal oxide having a Pb-containing perovskite structure such as lead zirconate titanate (PZT). is there.
  • This piezoelectric film is a Mn-doped PZT piezoelectric film, a Mn-doped PNbZT piezoelectric film, a Mn-doped PLaZT piezoelectric film, or the like. In this specification, these piezoelectric films are called PZT-based piezoelectric films.
  • This Mn-doped PZT-based piezoelectric film is formed by the CSD method and is made of a Mn-doped composite metal oxide.
  • the molar ratio of Mn is in the range of 0.01 to 0.045, and the PZT piezoelectric film has a (100) plane.
  • it is preferentially crystallized in the (001) plane and has a thickness of 0.8 to 3 ⁇ m.
  • the preferential orientation refers to a state in which an arbitrary peak intensity is relatively higher than other peak intensities as compared with a bulk X-ray diffraction pattern.
  • the Mn-doped PZT-based piezoelectric film of the second aspect has an orientation degree of (100) plane or (001) plane of 95% or more by X-ray diffraction.
  • the upper limit of the degree of orientation can be 100%.
  • such a film has excellent polarization stability due to the imprint phenomenon caused by Mn doping, and does not deteriorate the piezoelectric characteristics, so that the film is more suitable as a piezoelectric body. If the film is not preferentially crystallized in the (100) plane or the (001) plane, the imprint phenomenon does not occur and the spontaneous polarization phenomenon does not occur. Further, when the film thickness is less than 0.8 ⁇ m, there is a problem that a sufficient amount of displacement cannot be obtained. When the film thickness exceeds 3 ⁇ m, there is a problem that the film formation takes time and productivity is lowered. A preferred film thickness is 1 to 2 ⁇ m.
  • the deviation D of the hysteresis loop of the polarization-electric field characteristic represented by the following formula (2) is preferably at least 8.8 kV / cm.
  • the deviation D is preferably large, but the hysteresis loop deviation that can be achieved in practice is 22 kV / cm.
  • the deviation D is more preferably 10.0 kV / cm to 22.0 kV / cm.
  • E C + is the absolute value of the electric field value on the positive side from 0 kV / cm when the polarization is 0 ⁇ C / cm 2
  • E C ⁇ is from 0 kV / cm when the polarization is 0 ⁇ C / cm 2. Is the absolute value of the electric field value on the negative side.
  • D E C + - [( E C + + E C -) / 2] (2)
  • This film can be used as a piezoelectric body as in the first embodiment. Specifically, as shown in FIG. 2, each molecule 11 a in the piezoelectric film 11 is polarized before the DC voltage 14 is applied between the electrodes 12 and 13 disposed on both surfaces of the piezoelectric film 11. The state is maintained (FIG. 2A). As shown in FIG. 2B, when a voltage is applied between the electrodes 12 and 13 disposed on both surfaces of the piezoelectric film 11, the piezoelectric film 11 extends in the direction in which the voltage is applied, and this voltage is applied. When zero, the piezoelectric film 11 extending in the direction in which the voltage is applied contracts and returns to its original state (FIG. 2A), and can be applied to a piezoelectric element or the like.
  • Example A1 First, lead acetate trihydrate (Pb source) and propylene glycol (diol) are placed in a reaction vessel and refluxed at a temperature of 150 ° C. for 1 hour in a nitrogen atmosphere, and then manganese 2-ethylhexanoate is placed in the reaction vessel. (Mn source), zirconium tetrabutoxide (Zr source), titanium tetraisopropoxide (Ti source) and acetylacetone (stabilizer) are further added, and the mixture is refluxed and reacted at a temperature of 150 ° C. for 1 hour in a nitrogen atmosphere. Thus, a synthesis solution was prepared.
  • Pb source lead acetate trihydrate
  • diol propylene glycol
  • Mn source zirconium tetrabutoxide
  • Ti source titanium tetraisopropoxide
  • stabilizer acetylacetone
  • the PZT-based precursors of lead acetate trihydrate (Pb source), manganese 2-ethylhexanoate (Mn source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide (Ti source) are The metal atomic ratio (Pb: Mn: Zr: Ti) in the liquid was weighed so as to have the values shown in Table 1 below.
  • Pb: Mn: Zr: Ti titanium tetraisopropoxide
  • the concentration of the PZT precursor in 100% by mass of the synthetic solution was 35% by mass in terms of oxide concentration.
  • the oxide concentration in the concentration of the PZT-based precursor in the synthesis solution is calculated assuming that all metal atoms contained in the synthesis solution are the target oxide, and is 100% by mass of the synthesis solution. It refers to the concentration of metal oxide (oxide conversion value).
  • the synthesis solution was allowed to cool to room temperature by cooling at room temperature.
  • 1-octanol linear monoalcohol having 8 carbon atoms
  • ethanol solvent
  • concentration of the PZT precursor in 100% by mass of the sol-gel solution is changed to the oxide concentration.
  • a sol-gel solution of 25% by mass was obtained.
  • the oxide concentration in the concentration of the PZT precursor in the sol-gel liquid is 100% by mass of the sol-gel liquid calculated on the assumption that all metal atoms contained in the sol-gel liquid have become the target oxide. It refers to the concentration of metal oxide (oxide equivalent value).
  • PVP polyvinyl pyrrolidone
  • the composition was obtained by stirring for a period of time.
  • This composition used a commercially available membrane filter having a pore size of 0.05 ⁇ m, and was pressure-fed with a syringe and filtered, whereby the number of particles having a particle size of 0.5 ⁇ m or more was 1 per 1 ml of the solution.
  • concentration of the PZT type precursor which occupies in the said composition 100 mass% was 17 mass% in the oxide density
  • the oxide concentration in the concentration of the PZT-based precursor in the composition occupies 100% by mass of the composition calculated on the assumption that all metal atoms contained in the composition have become the target oxide. It refers to the concentration of metal oxide (oxide equivalent value).
  • 1-octanol linear monoalcohol having 8 carbon atoms
  • 37 mass% of propylene glycol (diol) was contained with respect to 100 mass% of the composition.
  • the obtained composition is dropped on the uppermost Pt film (lower electrode) of the silicon substrate in which the SiO 2 film, the TiO 2 film and the Pt film are laminated in this order from the bottom to the top and set on the spin coater.
  • a coating film (gel film) was formed on the Pt film (lower electrode) by performing spin coating at a rotational speed of 1800 rpm for 60 seconds.
  • the silicon substrate on which this coating film (gel film) was formed was heated and held (dried) at a temperature of 75 ° C. for 1 minute using a hot plate to remove the low boiling point solvent and water. Thereafter, the gel film was thermally decomposed by heating and holding (first-stage calcination) for 5 minutes on a 300 ° C. hot plate.
  • the piezoelectric film was a film having a composition represented by Pb 1.01 Mn 0.002 Zr 0.40 Ti 0.60 O 3 .
  • a decrease in Pb was observed in the film after film formation, which is due to evaporation of the Pb source during film formation such as baking.
  • Example A2> The use of manganese naphthenate instead of manganese 2-ethylhexanoate as the Mn source, lead acetate trihydrate (Pb source), manganese naphthenate (Mn source), zirconium tetrabutoxide (Zr source) and titanium tetraiso
  • Pb source lead acetate trihydrate
  • Mn source manganese naphthenate
  • Zr source zirconium tetrabutoxide
  • Ti source titanium tetraiso
  • Each PZT-based precursor of propoxide (Ti source) was weighed so that the metal atomic ratio (Pb: Mn: Zr: Ti) in the liquid was the value shown in Table 1 below, 100% by mass of the composition
  • a composition was prepared in the same manner as in Example A1 except that the concentration of the PZT-based precursor in the oxide was adjusted so as to be the value shown in Table 1 below. Formed.
  • the formed piezoelectric film was a film having
  • Example A3> Use of manganese acetate instead of manganese 2-ethylhexanoate as a Mn source, lead acetate trihydrate (Pb source), manganese acetate (Mn source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide
  • Pb source lead acetate trihydrate
  • Mn source manganese acetate
  • Zr source zirconium tetrabutoxide
  • Ti titanium tetraisopropoxide
  • Each PZT-based precursor of (Ti source) was weighed so that the metal atomic ratio (Pb: Mn: Zr: Ti) in the liquid was a value shown in Table 1 below, and in 100% by mass of the composition
  • a composition was prepared and a piezoelectric film was formed in the same manner as in Example A1, except that the concentration of the PZT-based precursor occupied was adjusted to be the oxide concentration and the value shown in Table 1 below.
  • Example A4 to Example A9 The use of acetylacetone manganese instead of manganese 2-ethylhexanoate as the Mn source, lead acetate trihydrate (Pb source), acetylacetone manganese (Mn source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide
  • Pb source lead acetate trihydrate
  • Mn source acetylacetone manganese
  • Zr source zirconium tetrabutoxide
  • Ti titanium tetraisopropoxide
  • the piezoelectric film formed in Example A4 is a film having a composition represented by Pb 1.02 Mn 0.01 Zr 0.40 Ti 0.60 O 3
  • the piezoelectric film formed in Example A5 is Pb 1.01 Mn 0.01 Zr 0.52 Ti
  • a piezoelectric film having a composition represented by 0.48 O 3 and the piezoelectric film formed in Example A6 is a film having a composition represented by Pb 1.02 Mn 0.01 Zr 0.55 Ti 0.45 O 3
  • the piezoelectric film formed in Example A7 is a film having a composition represented by Pb 1.02 Mn 0.01 Zr 0.55 Ti 0.45 O 3
  • the film is a film having a composition represented by Pb 1.00 Mn 0.04 Zr 0.40 Ti 0.60 O 3
  • the piezoelectric film formed in Example A8 is a film having a composition represented by Pb 1.00 Mn 0.04 Zr 0.52 Ti 0.48 O 3.
  • the piezoelectric film formed in Example A9 was a film having a composition represented by Pb 1.01 Mn 0.04 Zr 0.55 Ti 0.45 O 3 .
  • Example A11 PZT-based precursors of lead acetate trihydrate (Pb source), manganese 2-ethylhexanoate (Mn source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide (Ti source)
  • Pb source lead acetate trihydrate
  • Mn source manganese 2-ethylhexanoate
  • Zr source zirconium tetrabutoxide
  • Ti source titanium tetraisopropoxide
  • the metal atomic ratio (Pb: Mn: Zr: Ti) was weighed so as to have the value shown in Table 1 below, and the concentration of the PZT precursor in 100% by mass of the composition was the oxide concentration.
  • a composition was prepared and a piezoelectric film was formed in the same manner as in Example A1, except that the values were adjusted to the values shown in Table 1.
  • the piezoelectric film formed in Example A10 was a film having a composition represented by Pb 0.98 Mn 0.04 Zr 0.52 Ti 0.48 O 3 .
  • the piezoelectric film formed in Example A11 was a film having a composition represented by Pb 1.05 Mn 0.04 Zr 0.52 Ti 0.48 O 3 .
  • Example A12 to Example A15 PZT-based precursors of lead acetate trihydrate (Pb source), manganese 2-ethylhexanoate (Mn source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide (Ti source)
  • the metal atomic ratio (Pb: Mn: Zr: Ti) was weighed so as to have the value shown in Table 1 below, and the concentration of the PZT precursor in 100% by mass of the composition was the oxide concentration.
  • a composition was prepared and a piezoelectric film was formed in the same manner as in Example A1, except that the values were adjusted to the values shown in Table 1. Note that the piezoelectric films formed in Example A12 to Example A15 were films having compositions represented by Pb 1.02 Mn 0.04 Zr 0.55 Ti 0.45 O 3 .
  • each PZT-based precursor of lead acetate trihydrate (Pb source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide (Ti source) was weighed so as to have the value shown in Table 1 below, and the concentration of the PZT precursor in 100% by mass of the composition was the oxide concentration.
  • a composition was prepared and a piezoelectric film was formed in the same manner as in Example A1, except that the values were adjusted to the values shown in Table 1 below.
  • the formed piezoelectric film was a film having a composition represented by Pb 1.00 Zr 0.52 Ti 0.48 O 3 .
  • the piezoelectric film formed in Comparative Example A2 is a film having a composition represented by Pb 1.01 Mn 0.001 Zr 0.40 Ti 0.60 O 3
  • the piezoelectric film formed in Comparative Example A3 is Pb 1.01 Mn 0.001 Zr 0.52 Ti.
  • a piezoelectric film formed in Comparative example A4 was a film having a composition represented by Pb 1.01 Mn 0.05 Zr 0.55 Ti 0.45 O 3.
  • Example A1 A composition was prepared and a piezoelectric film was formed.
  • the piezoelectric film formed in Comparative Example A5 is a film having a composition represented by Pb 1.01 Mn 0.01 Zr 0.40 Ti 0.60 O 3
  • the piezoelectric film formed in Comparative Example A6 is Pb 1.02 Mn 0.01 Zr 0.52 Ti.
  • the film had a composition represented by 0.48 O 3 .
  • Example A1 A composition was prepared and a piezoelectric film was formed.
  • the piezoelectric film formed in Comparative Example A7 is a film having a composition represented by Pb 1.02 Mn 0.01 Zr 0.55 Ti 0.45 O 3
  • the piezoelectric film formed in Comparative Example A8 is Pb 1.01 Mn 0.01 Zr 0.40 Ti
  • the film had a composition represented by 0.60 O 3 .
  • the piezoelectric film formed in Comparative Example A9 is a film having a composition represented by Pb 1.01 Mn 0.01 Zr 0.57 Ti 0.43 O 3
  • the piezoelectric film formed in Comparative Example A10 is Pb 1.01 Mn 0.01 Zr 0.38 Ti.
  • the film had a composition represented by 0.62 O 3 .
  • the piezoelectric film formed in Comparative Example A13 was a film having a composition represented by Pb 0.98 Mn 0.04 Zr 0.52 Ti 0.48 O 3 .
  • the piezoelectric film formed in Comparative Example A14 was a film having a composition represented by Pb 1.10 Mn 0.04 Zr 0.52 Ti 0.48 O 3 .
  • Example A1 to Example A15 and Comparative Examples A1 to A14 were evaluated for hysteresis shift, relative permittivity, piezoelectric constant e 31.f, and the presence or absence of cracks. Further, the degree of orientation in the (100) plane of the crystal was evaluated for each piezoelectric film. These results are shown in Table 1 below.
  • Hysteresis shift (shift amount) First, a pair of electrodes of 200 ⁇ m ⁇ was formed on the upper surface of the piezoelectric film by sputtering, and then held at 700 ° C. for 1 minute in an oxygen atmosphere using RTA. Then, annealing for recovering the damage was performed to fabricate a capacitor structure. Next, using these as test samples, a voltage of 25 V was applied at a frequency of 1 kHz to measure the hysteresis of the polarization amount of the piezoelectric film, and the deviation of the hysteresis of the obtained polarization amount was obtained. For comparison, FIG. 1 shows hysteresis curves of Example A5 and Comparative Example A1 measured by this method.
  • Dielectric constant Dimensionless after measuring the dielectric constant of the piezoelectric element used to measure the hysteresis shift of the piezoelectric film with a ferroelectric evaluation apparatus (aix ACCT, TF-analyzer2000). In order to achieve this, the relative dielectric constant was calculated by dividing the measured dielectric constant by the vacuum dielectric constant.
  • Piezoelectric constant e 31.f A piezoelectric film is processed into a strip shape by a focused ion beam (FIB), and the piezoelectric film processed into the strip shape is 110 ° C. in an electric field of 100 kV / cm. The polarization treatment was carried out by holding at the temperature of 1 minute. Furthermore, the piezoelectric constant e 31.f was determined by measuring the amount of charge generated by applying strain to the above-mentioned polarized piezoelectric film with a piezoelectric evaluation apparatus (aix PES manufactured by aix ACCT).
  • Presence / absence of cracks Using a scanning electron microscope (SEM) used for the film thickness measurement, the presence or absence of cracks was observed from the SEM image obtained by photographing the structure of the film surface and film cross section. Then, “None” was given when no cracks were observed, and “Yes” when cracks were observed.
  • SEM scanning electron microscope
  • Examples A1 to 15 in which Mn is doped at a desired ratio the dielectric constant can be lowered while the piezoelectric constant is kept at a relatively high value, and a piezoelectric film useful as a sensor can be obtained. Obtained. In addition, a shift in hysteresis is observed, and it can be seen that it is difficult to separate after the polarization treatment.
  • Examples A1 to A15 are compared with Comparative Example A11 and Comparative Example A12, in Comparative Example A11 where the precursor concentration is less than the lower limit, there is a limit on the film thickness that can be formed per coating. The thickness was 130 nm, and a sufficient thick film could not be formed. On the other hand, in Comparative Example A12 where the precursor concentration exceeded the upper limit value, the piezoelectric constant decreased and cracks also occurred. On the other hand, in Examples A1 to A15 in which the precursor concentration was adjusted to a desired range, the above-described problems and the like caused in Comparative Examples A11 and A12 were not obtained, and piezoelectric films having excellent characteristics were obtained. .
  • Examples A1 to A15 are compared with Comparative Examples A13 and A14, the proportion of Pb is small, and in the above general formula indicating the film composition after film formation, z is less than the lower limit. Then, the piezoelectric constant decreased. On the other hand, in Comparative Example A14 in which the ratio of Pb is large and z exceeds the upper limit in the above general formula indicating the film composition after film formation, the relative dielectric constant was not sufficiently lowered. On the other hand, in Examples A1 to A15 in which the Pb ratio satisfies the desired range, a piezoelectric film having excellent characteristics was obtained without the above-described problems occurring in Comparative Examples A13 and A14.
  • Example B1 First, lead acetate trihydrate (Pb source) and propylene glycol (diol) were placed in a reaction vessel, refluxed at a temperature of 150 ° C. for 1 hour in a nitrogen atmosphere, and then titanium tetraisopropoxide ( (Ti source), zirconium tetrabutoxide (Zr source), manganese 2-ethylhexanoate (Mn source) and acetylacetone (stabilizer) are further added, and the mixture is refluxed at a temperature of 150 ° C. for 1 hour in a nitrogen atmosphere. Thus, a synthesis solution was prepared.
  • Ti source titanium tetraisopropoxide
  • Zr source zirconium tetrabutoxide
  • Mn source manganese 2-ethylhexanoate
  • stabilizer acetylacetone
  • the PZT-based precursors of lead acetate trihydrate (Pb source), manganese 2-ethylhexanoate (Mn source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide (Ti source) are The metal atomic ratio (Pb: Mn: Zr: Ti) in the liquid was weighed so as to have the values shown in Table 3 below.
  • Pb: Mn: Zr: Ti titanium tetraisopropoxide
  • the concentration of the PZT precursor in 100% by mass of the synthetic solution was 35% by mass in terms of oxide concentration.
  • the oxide concentration in the concentration of the PZT-based precursor in the synthesis solution is calculated assuming that all metal atoms contained in the synthesis solution are the target oxide, and is 100% by mass of the synthesis solution. It refers to the concentration of metal oxide (oxide conversion value).
  • the synthesis solution was allowed to cool to room temperature by cooling at room temperature.
  • 1-octanol linear monoalcohol having 8 carbon atoms
  • ethanol solvent
  • concentration of the PZT precursor in 100% by mass of the sol-gel solution is changed to the oxide concentration.
  • a sol-gel solution of 25% by mass was obtained.
  • the oxide concentration in the concentration of the PZT precursor in the sol-gel liquid is 100% by mass of the sol-gel liquid calculated on the assumption that all metal atoms contained in the sol-gel liquid have become the target oxide. It refers to the concentration of metal oxide (oxide equivalent value).
  • PVP polyvinyl pyrrolidone
  • the composition was obtained by stirring for a period of time.
  • This composition used a commercially available membrane filter having a pore size of 0.05 ⁇ m, and was pressure-fed with a syringe and filtered, whereby the number of particles having a particle size of 0.5 ⁇ m or more was 1 per 1 ml of the solution.
  • concentration of the PZT type precursor which occupies in the said composition 100 mass% was 17 mass% in the oxide density
  • the oxide concentration in the concentration of the PZT-based precursor in the composition occupies 100% by mass of the composition calculated on the assumption that all metal atoms contained in the composition have become the target oxide. It refers to the concentration of metal oxide (oxide equivalent value).
  • 1-octanol linear monoalcohol having 8 carbon atoms
  • 37 mass% of propylene glycol (diol) was contained with respect to 100 mass% of the composition.
  • a SiO 2 film, a TiO x film and a Pt film are laminated in this order from the bottom to the top, and the orientation degree of the (100) plane is 96% on the Pt film by the first method described above.
  • a silicon substrate on which a PZT film serving as an orientation control layer was formed was prepared. Each film thickness is, SiO 2 film is 500 nm, TiO 2 film is 20nm and a Pt film was 100 nm.
  • the orientation control layer had a thickness of 60 nm, and the silicon substrate had a diameter of 4 inches.
  • the silicon substrate on which this coating film (gel film) was formed was heated and held (dried) at a temperature of 75 ° C. for 1 minute using a hot plate to remove the low boiling point solvent and water. Thereafter, the gel film was thermally decomposed by heating and holding (first-stage calcination) for 5 minutes on a 300 ° C. hot plate. Furthermore, the organic substance and adsorption water which remain
  • a calcined film having a thickness of 400 nm was obtained.
  • This thickness of 400 nm is the thickness after firing described later.
  • the silicon substrate on which the 400 nm-thick calcined film was formed was baked by being held at 700 ° C. for 1 minute in an oxygen atmosphere by rapid heating treatment (RTA). The temperature rising rate at this time was 10 ° C./second.
  • the MZ-doped PZT-based piezoelectric film is formed on the orientation control layer on the Pt film (lower electrode) by repeating a series of operations including application of the composition, calcination of the coating film, and baking three times. did.
  • the piezoelectric film was a film having a composition represented by Pb 1.01 Mn 0.01 Zr 0.52 Ti 0.48 O 3. there were.
  • a decrease in Pb was observed in the film after film formation. This was because the Pb source evaporated during film formation such as firing. Is due to.
  • Manganese naphthenate was used in place of manganese 2-ethylhexanoate as the Mn source.
  • PZT precursors of lead acetate trihydrate (Pb source), manganese naphthenate (Mn source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide (Ti source) Weighed so that (Pb: Mn: Zr: Ti) had the values shown in Table 3 below. It adjusted so that the density
  • Example B1 a composition was prepared in the same manner as in Example B1, and applied on the same (100) plane PZT orientation control layer as in Example B1 by the same method as in Example B1.
  • a piezoelectric film was formed by repeating calcination and firing.
  • the formed piezoelectric film was a film having a composition represented by Pb 1.02 Mn 0.02 Zr 0.52 Ti 0.48 O 3 .
  • Example B3 Manganese acetate was used in place of manganese 2-ethylhexanoate as the Mn source.
  • Each PZT-based precursor of lead acetate trihydrate (Pb source), manganese acetate (Mn source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide (Ti source) is added to a metal atomic ratio ( Pb: Mn: Zr: Ti) was weighed so as to have the values shown in Table 3 below. It adjusted so that the density
  • a PZT piezoelectric film was formed on the orientation control layer having a (100) plane orientation of 96%. Except for the above, a composition was prepared in the same manner as in Example B1, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1. In Example B, since the number of layers is five, the last layer was fired at a thickness of 200 nm.
  • the formed piezoelectric film was a film having a composition represented by Pb 1.03 Mn 0.042 Zr 0.52 Ti 0.48 O 3 .
  • Example B4> As the Mn source, acetylacetone manganese was used instead of manganese 2-ethylhexanoate.
  • Mn source acetylacetone manganese
  • Mn source acetylacetone manganese
  • Zr source zirconium tetrabutoxide
  • Zr source zirconium tetrabutoxide
  • Ti source titanium tetraisopropoxide
  • Pb: Mn: Zr: Ti was weighed so as to have the values shown in Table 3 below. It adjusted so that the density
  • a PZT orientation control layer was formed on the orientation control layer having a (100) plane orientation degree of 96%. Except for the above, a composition was prepared in the same manner as in Example B1, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1. The formed piezoelectric film was a film having a composition represented by Pb 1.02 Mn 0.02 Zr 0.45 Ti 0.55 O 3 .
  • Example B5> As the Mn source, acetylacetone manganese was used instead of manganese 2-ethylhexanoate.
  • Mn source acetylacetone manganese
  • Mn source acetylacetone manganese
  • Zr source zirconium tetrabutoxide
  • Zr source zirconium tetrabutoxide
  • Ti source titanium tetraisopropoxide
  • Pb: Mn: Zr: Ti was weighed so as to have the values shown in Table 3 below. It adjusted so that the density
  • a piezoelectric film was formed on the orientation control layer having a (100) plane orientation degree of 76% by the first method described above. Except for the above, a composition was prepared in the same manner as in Example B1, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1. The formed piezoelectric film was a film having a composition represented by Pb 1.02 Mn 0.02 Zr 0.52 Ti 0.48 O 3 .
  • Example B6 As the Mn source, acetylacetone manganese was used instead of manganese 2-ethylhexanoate.
  • Mn source lead acetate trihydrate
  • Mn source acetylacetone manganese
  • Zr source zirconium tetrabutoxide
  • Zr source zirconium tetrabutoxide
  • Ti source titanium tetraisopropoxide
  • Pb: Mn: Zr: Ti was weighed so as to have the values shown in Table 3 below. It adjusted so that the density
  • Example B1 a composition was prepared in the same manner as in Example B1, and applied on the PZT orientation control layer having the same (100) plane degree of 96% as in Example B1 by the same method as in Example B1.
  • a piezoelectric film was formed by repeating firing and firing.
  • the formed piezoelectric film was a film having a composition represented by Pb 1.02 Mn 0.005 Zr 0.52 Ti 0.48 O 3 .
  • Example B7 As the Mn source, acetylacetone manganese was used instead of manganese 2-ethylhexanoate.
  • Mn source acetylacetone manganese
  • Mn source acetylacetone manganese
  • Zr source zirconium tetrabutoxide
  • Zr source zirconium tetrabutoxide
  • Ti source titanium tetraisopropoxide
  • Pb: Mn: Zr: Ti was weighed so as to have the values shown in Table 3 below. It adjusted so that the density
  • a piezoelectric film was formed on the orientation control layer having an orientation degree of (110) / (101) plane of 90% and an orientation degree of (100) / (001) plane of 0% by the second method described above.
  • a composition was prepared in the same manner as in Example B1, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1.
  • the formed piezoelectric film was a film having a composition represented by Pb 1.02 Mn 0.02 Zr 0.52 Ti 0.48 O 3 .
  • Example B1 The same PbT source, Mn source, Zr source, and Ti source PZT precursor as in Example B4, so that the metal atomic ratio (Pb: Mn: Zr: Ti) in the liquid becomes the values shown in Table 3 below. Weighed out. Except for this, a composition was prepared in the same manner as in Example B4, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1. The formed piezoelectric film was a film having a composition represented by Pb 1.06 Mn 0.05 Zr 0.45 Ti 0.55 O 3 .
  • Example B8> A composition was synthesized in the same manner as in Example B1.
  • Lead acetate trihydrate (Pb source), acetylacetone manganese (Mn source), niobium pentaethoxide (Nb source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide (Ti source) PZT precursors were weighed so that the metal atomic ratio (Pb: Mn: Nb: Zr: Ti) in the liquid would be the value shown in Table 3 below. It adjusted so that the density
  • a piezoelectric film was formed on the PZT orientation control layer having a (100) / (001) plane orientation degree of 96%. Except for the above, a composition was prepared in the same manner as in Example B1, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1. The formed piezoelectric film was a film having a composition represented by Pb 1.02 Mn 0.02 Nb 0.01 Zr 0.52 Ti 0.48 O 3 .
  • Example B9 A composition was synthesized in the same manner as in Example B1.
  • Lead acetate trihydrate (Pb source), acetylacetone manganese (Mn source), niobium pentaethoxide (Nb source), zirconium tetrabutoxide (Zr source) and titanium tetraisopropoxide (Ti source) PZT precursors were weighed so that the metal atomic ratio (Pb: Mn: Nb: Zr: Ti) in the liquid would be the value shown in Table 3 below. It adjusted so that the density
  • a piezoelectric film was formed on the orientation control layer having a (100) / (001) plane orientation degree of 96%. Except for the above, a composition was prepared in the same manner as in Example B1, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1. The formed piezoelectric film was a film having a composition represented by Pb 1.02 Mn 0.02 Nb 0.01 Zr 0.40 Ti 0.60 O 3 .
  • Example B10> A composition was synthesized in the same manner as in Example B1.
  • the PZT-based precursor was weighed so that the metal atomic ratio (Pb: La: Mn: Zr: Ti) in the liquid was a value shown in Table 3 below. It adjusted so that the density
  • a piezoelectric film was formed on the PZT orientation control layer having a (100) / (001) plane orientation degree of 96%. Except for the above, a composition was prepared in the same manner as in Example B1, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1. The formed piezoelectric film was a film having a composition represented by Pb 1.01 La 0.01 Mn 0.02 Zr 0.55 Ti 0.45 O 3 .
  • Example B11> A composition was synthesized in the same manner as in Example B1.
  • the PZT-based precursor was weighed so that the metal atomic ratio (Pb: La: Mn: Zr: Ti) in the liquid was a value shown in Table 3 below. It adjusted so that the density
  • a piezoelectric film was formed on the PZT orientation control layer having a (100) / (001) plane orientation degree of 96%. Except for the above, a composition was prepared in the same manner as in Example B1, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1. The formed piezoelectric film was a film having a composition represented by Pb 1.011 La 0.02 Mn 0.02 Zr 0.50 Ti 0.50 O 3 .
  • Example B12 A composition was synthesized in the same manner as in Example B1.
  • the PZT-based precursor was weighed so that the metal atomic ratio (Pb: La: Mn: Zr: Ti) in the liquid was a value shown in Table 3 below. It adjusted so that the density
  • a piezoelectric film was formed on the PZT orientation control layer having a (100) / (001) plane orientation degree of 96%. Except for the above, a composition was prepared in the same manner as in Example B1, and a piezoelectric film was formed by repeating coating, calcining, and firing in the same manner as in Example B1. The formed piezoelectric film was a film having a composition represented by Pb 1.01 La 0.01 Mn 0.02 Zr 0.52 Ti 0.48 O 3 .
  • the hysteresis loop shift (hereinafter referred to as the film thickness, the orientation degree of the orientation control layer, the piezoelectric constant, the orientation degree of the piezoelectric film, and the polarization-electric field characteristics) , Simply referred to as “hysteresis deviation”).
  • Table 3 shows the composition and film thickness results of the piezoelectric films formed in Examples B1 to B12 and Comparative Example B1.
  • Table 4 below shows the results of the orientation degree of the orientation control layer, the piezoelectric constant, the orientation degree of the piezoelectric film, and the hysteresis shift.
  • Piezoelectric film thickness The cross-sectional thickness (total thickness) of the piezoelectric film was measured by SEM (manufactured by Hitachi, Ltd .: S4300).
  • (Ii) Piezoelectric constant The piezoelectric constant d33 of the piezoelectric film was measured by DBLI manufactured by aix ACCT. Specifically, a capacitor structure is formed by a method similar to the method of measuring “(iv) hysteresis shift (shift amount)” described later, the displacement amount of the film when 25 V is applied is measured, and the displacement with respect to the voltage is measured.
  • DBLI hysteresis shift
  • Orientation degree Measured by a concentration method using CuK ⁇ rays using an X-ray diffraction (XRD) apparatus (manufactured by Panalytica, model name: Empyrean). From the obtained diffraction results, the peak intensity of the (100) plane or (001) plane, the peak intensity of the (110) plane or (101) plane, and the peak intensity of the (111) plane were measured, respectively, and the following formula (4 ) was used to calculate the degree of orientation of the (100) plane or (001) plane (hereinafter abbreviated as “(100) / (001) degree of orientation”).
  • Hysteresis shift (shift amount) First, a pair of electrodes of 200 ⁇ m ⁇ was formed on the upper surface of the piezoelectric film by sputtering, and then held at 700 ° C. for 1 minute in an oxygen atmosphere using RTA. Then, annealing for recovering the damage was performed to fabricate a capacitor structure. Next, using these as test samples, a voltage of 25 V was applied at a frequency of 1 kHz with a TF analyzer 2000 to measure the hysteresis of the polarization amount of the piezoelectric film, and the coercive electric field (Ec) was obtained. Further, the obtained deviation D of hysteresis of the polarization amount was obtained from the above-described equation (2).
  • Example B8 to Example B12 and Example 6 the Mn content in the film is the total number of moles of Zr and Ti. It was found that when the ratio was less than 0.01 with respect to 1 (Example 6), a sufficient shift in hysteresis could not be obtained, and the addition amount of Mn was more preferably 0.01 or more. In Examples B8 to B12, Mn, La, and Nb are co-doped. However, when the amount of Mn added is 0.01 or more, PMnZT having a large hysteresis shift as in Examples B1 to B5. A system membrane could be obtained. From this result, it was found that even if other elements were added to the PMnZT film, a hysteresis shift was large and a PMnZT-based film having excellent polarization temperature stability was obtained.
  • the Mn-doped PZT-based piezoelectric film-forming composition of the first aspect of the present invention can be used for the production of constituent materials and the like in composite electronic parts of piezoelectric elements, IPDs, and pyroelectric elements.
  • the Mn-doped PZT-based piezoelectric film of the second aspect of the present invention can be suitably used as a constituent material in composite electronic parts such as a gyro sensor, an infrared sensor, a piezoelectric sensor, an inkjet head, and an autofocus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 Mnドープの複合金属酸化物からなるPZT系圧電体膜の形成に用いられる組成物は、前記複合金属酸化物を構成する各金属原子を含むPZT系前駆体と、ジオールと、ポリビニルピロリドンとを含み、前記組成物中の金属原子比をPb:Mn:Zr:Tiと示す際に、Pbが1.00~1.20を満たし、Mnが0.002以上0.05未満を満たし、Zrが0.40~0.55を満たし、Tiが0.45~0.60を満たし、かつ前記Zrと前記Tiの金属原子比の合計割合が1となる割合で、前記PZT系前駆体を含む。

Description

MnドープのPZT系圧電体膜形成用組成物及びMnドープのPZT系圧電体膜
 本発明は、MnがドープされたPZT系圧電体膜を形成するための組成物及びMnドープのPZT系圧電体膜に関する。
 本発明の第1の態様では、MnがドープされたPZT系圧電体膜は、圧電素子、IPD(Integrated Passive Device)、焦電素子等に用いられる。
 本発明の第2の態様では、MnがドープされたPZT系圧電体膜は、ジャイロセンサ、赤外線センサ、圧電センサ、インクジェットヘッド、オートフォーカス等に用いられる。更に詳しくは、第2の態様は、上記各種センサの用途に好適な分極処理後の安定性に優れたMnドープのPZT系圧電体膜に関する。
 本願は、2014年3月27日に、日本に出願された特願2014-065635号、及び2015年2月4日に、日本に出願された特願2015-019859号に基づき優先権を主張し、その内容をここに援用する。
 ゾルゲル法に代表される、CSD(Chemical Solution Deposition)法で形成したPZT等の強誘電体膜は、成膜後、直ちに圧電体として使用することはできず、ジャイロセンサ等に使用するには分極処理を行わなければならない。焦電センサやジャイロセンサ等のセンサに利用する場合、使用される圧電膜の性能指数gは、以下の式(1)で表される。
      g(V・m/N)=d31/ε33    (1)
式(1)中、d31は圧電定数、ε33は誘電率を示す。
 即ち、PZT等の強誘電体膜を焦電センサやジャイロセンサ等のセンサに利用する場合、膜の圧電定数が大きく、膜の誘電率や誘電損失(tanδ)は一般に低い方が望ましく、また、成膜直後から膜の分極方向が揃っていることが、分極の安定性、分極工程が不要であるという面から望ましい。
 一方、このような膜をインクジェットヘッド等のアクチュエータに利用する場合は、高い電圧を印加して使用するため、分極処理は必ずしも必要にはならない。これは、高い電圧を印加して強誘電体膜を使用する場合、例えば成膜直後から膜の分極方向が揃っていなくても、駆動電圧で分極されるためである。しかし、仮に分極処理を行ったとしても、その後のリフロープロセス等の熱処理時に脱分極してしまう可能性等もある。
 このような問題については、PZT膜の自発分極現象について研究が行われており、膜中の欠陥によるドメインのピニングが主要因である可能性が示唆されている(例えば、非特許文献1参照。)。
 また、圧電体の分野でも、CSD法で膜形成を行う際に問題となるのが生産性の問題である。生産性を考慮した場合、成膜速度はできるだけ速い方が望ましいが、PZT膜を、例えばゾルゲル法で形成する場合、ゾルゲル法では一般に仮焼や焼成といった高温プロセスを経るため、1回の塗布量を多くしてより厚い膜を得ようとすると、焼成等の際に膜中に発生する引張応力が増大し、形成後の膜にクラックが発生するという問題が生じる。形成後の膜にクラックが発生すると強誘電体膜の電気特性等を低下させるため、従来、ゾルゲル法では、1回の塗布で形成できる膜の厚さは100nm程度が限界とされており、厚みのある強誘電体膜を形成する場合には、組成物の塗布や焼成等を複数回繰り返すといった方法が採用されていた。
 しかし、この方法では生産効率を低下させ、製造コストを向上させることになる。このため、材料面からの改良、即ちクラックを発生させずに、1回の塗布で形成される膜厚をより厚くすることができるような原料溶液の研究や開発も盛んに行われている。例えば、特許文献1には、Tiを含有する金属酸化物薄膜を成膜するための原料溶液であって、該原料溶液にプロピレングリコールを添加させた金属酸化物薄膜形成用原料溶液等が開示されている。この原料溶液では、クラック等を発生させずに、1回の塗布で0.2μm以上の厚膜成膜を可能としている。
 また、圧電MEMS(Micro Electro Mechanical Systems)デバイス用途のPZT系膜を作製する方法として、ゾルゲル法に代表されるCSD法とスパッタリング法が良く知られている。一般的に、CSD法で作製したPZT系膜は絶縁破壊耐圧が高く、インクジェットヘッドなどの高電圧駆動デバイスに適している。一方、スパッタリング法で作製したPZT系膜は成膜時の打ち込み効果により圧縮応力を有することが多く、(001)面に配向させることにより低電圧駆動に優れた膜を形成することができる。また、成膜法を工夫することにより成膜直後から分極方向を揃える自発分極現象を発現させることも可能である。
 スパッタリング法により、ジャイロセンサ等のセンサ素子として、PZTなどの強誘電体薄膜を作製した場合、これをパッケージングした後でリフロー工程でのはんだ付けのための熱処理によって分極状態が失われることが懸念されるけれども、自発分極現象を有する膜では膜中に内部バイアスが存在するため、この熱処理によって分極状態が失われることがなく、有利である。
 一方、CSD法によりPZTなどの強誘電体薄膜を作製した場合には、作製された強誘電体薄膜はその成膜上の性質から、特性再現性やウエハ面内の特性均一性に優れる。またCSD法は真空を使用しないため装置コストがスパッタリング法と比較して大幅に低くなる。このようなメリットを生かすため、CSD法でも温度特性に優れ分極状態が失われることがないPZT膜が求められている。
 前述の通り、非特許文献1では、PZT膜の自発分極現象について研究が行われており、CSD法でもPZT膜において自発分極現象が発現することが開示されている。この現象は、薄膜レベルでは基板界面での格子の不整合による歪みの影響により膜が歪み、自発分極現象が誘発されるためであると非特許文献1では説明している。
 なお、後述する下部電極上に結晶配向を(100)面にした配向制御層を形成する強誘電体薄膜の製造方法については、特許文献2に記載されている。また後述する下部電極上に結晶配向を(110)面にした配向制御層を形成する強誘電体薄膜の製造方法については、特許文献3に記載されている。
特開2001-261338号公報(請求項1、段落[0015]~[0024]、表1) 特開2012-256850(請求項1~3) 特開2012-256851(請求項1~3)
A. L. Kholkin, K. G. Brooks, D. V. Taylor, S. Hiboux and N. Setter : Integrated Ferroelectrics, 1998, vol. 22, pp. 525-533.
 しかしながら、特許文献1に示された原料溶液では、添加されたプロピレングリコールや高分子により、膜のクラックの発生はある程度防止できるものの、依然として膜のクラックを抑制するには不十分であり、実用上十分な特性を備えた厚膜を形成するには、更にクラックの発生を抑制し、しかも緻密な膜構造を有する膜に形成する必要があった。
 本発明の第1の目的は、圧電体膜の圧電定数を向上することができ、誘電率を低くすることができ、更に分極処理後の安定性に優れた圧電体膜を形成できるMnドープのPZT系圧電体膜形成用組成物及び該組成物を用いて形成されたMnドープのPZT系圧電体膜を提供することにある。
 本発明の第2の目的は、1回当たりの塗布厚さを比較的厚くても、ボイド及びクラックを発生させることなく、緻密で高特性の圧電体膜を得ることができ、しかも1回の焼成で結晶化できる、MnドープのPZT系圧電体膜形成用組成物及び該組成物を用いて形成されたMnドープのPZT系圧電体膜を提供することにある。
 また、非特許文献1には、CSD法で成膜したときに、PZT膜の膜厚が増大するに従って、自発分極現象が消滅することが示されている。具体的には、膜厚が0.7μm以下のPZT膜では分極(polarization)は顕著に変化しないが、0.7μmを超えると、歪みの影響が除去されるため自発分極現象は消失し、分極は非常に小さくなることが説明されている。このため、CSD法で実用可能な0.8μm厚さ以上の自発分極現象を有する膜を作製するには、まだ解決すべき課題があった。
 そこで、本発明の第3の目的は、CSD法により形成された、膜厚が0.8μm以上であり、かつ分極処理後の安定性に優れ、圧電特性が低下しないMnドープのPZT系圧電体膜を提供することにある。
 本発明の第1の観点は、Mnドープの複合金属酸化物からなるPZT系圧電体膜の形成に用いられる組成物であり、複合金属酸化物を構成する各金属原子を含むPZT系前駆体と、ジオールと、ポリビニルピロリドンとを含み、組成物中の金属原子比をPb:Mn:Zr:Tiと示す際に、Pbが1.00~1.20を満たし、Mnが0.002以上0.05未満を満たし、Zrが0.40~0.55を満たし、Tiが0.45~0.60を満たし、かつZrとTiの金属原子比の合計割合が1となる割合で、PZT系前駆体を含み、組成物100質量%中に占めるPZT系前駆体の濃度が酸化物濃度で17~35質量%であり、組成物100質量%中のジオールの割合が16~56質量%であり、ポリビニルピロリドンの割合がPZT系前駆体1モルに対してモノマー換算で0.005~0.25モルである、MnドープのPZT系圧電体膜形成用組成物である。
 本発明の第2の観点は、第1の観点に基づく組成物を用いてCSD法により形成された、一般式PbzMnxZryTi1-y3で示されるMnドープの複合金属酸化物からなるPZT系圧電体膜であり、前記複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Pbのモル比が0.95~1.10の範囲にあり、Mnのモル比が0.002以上0.05未満の範囲にあるMnドープのPZT系圧電体膜である。
 本発明の第3の観点は、第2の観点に基づく発明であって、X線回折による(100)面又は(001)面の配向度が90%以上であるMnドープのPZT系圧電体膜である。
 本発明の第4の観点は、第2の観点に基づく発明であって、前記複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Mnのモル比が0.01~0.045の範囲にあり、前記PZT系圧電体膜が(100)面又は(001)面に優先的に結晶配向され、膜厚が0.8~3μmであるMnドープのPZT系圧電体膜である。
 本発明の第5の観点は、第4の観点に基づく発明であって、X線回折による(100)面又は(001)面の配向度が95%以上であるMnドープのPZT系圧電体膜である。
 本発明の第6の観点は、第4又は第5の観点に基づく発明であって、下記の式(2)で求められる分極-電界特性のヒステリシスループのずれDが少なくとも8.8kV/cmであるMnドープのPZT系圧電体膜である。
   D =E  - [(E + E )/2]  (2)
 但し、E は分極が0μC/cmのときの0kV/cmからの正側の電界値の絶対値をいい、E は分極が0μC/cmのときの0kV/cmからの負側の電界値の絶対値をいう。
 本発明者らは、PZT系材料にMnを添加し、膜の(100)面又は(001)面の結晶配向度を高めることにより、膜厚が0.8μm以上であっても、実用上十分な自発分極現象を有するPZT系膜が得られることを知見し、本発明に到達した。
 本発明の第1の観点の組成物は、Mnドープの複合金属酸化物からなるPZT系圧電体膜の形成に用いられる。そして、複合金属酸化物を構成する各金属原子を含むPZT系前駆体と、ジオールと、ポリビニルピロリドンとを含み、組成物中の金属原子比をPb:Mn:Zr:Tiと示す際に、Pbが1.00~1.20を満たし、Mnが0.002以上0.05未満を満たし、Zrが0.40~0.55を満たし、Tiが0.45~0.60を満たし、かつZrとTiの金属原子比の合計割合が1となる割合で、PZT系前駆体を含む。また、組成物100質量%中に占めるPZT系前駆体の濃度が酸化物濃度で17~35質量%であり、組成物100質量%中のジオールの割合が16~56質量%であり、ポリビニルピロリドンの割合がPZT系前駆体1モルに対してモノマー換算で0.005~0.25モルである。これにより、圧電定数が高く、より大きな変位を示すとともに、誘電率が低い圧電体膜を形成できる。また、(100)面又は(001)面に配向制御されたMnドープの圧電体膜は、成膜直後から上向きに分極方向が揃っているため、該組成物を用いて(100)面又は(001)面に配向制御された圧電体膜を形成することで、分極の安定性を高めることができる。また、150nm以上の厚膜形成においてもクラックやボイドの発生を抑制できるため、生産効率を高めることができる。
 本発明の第2の観点のMnドープのPZT系圧電体膜は、本発明の組成物を用いて形成され、一般式PbzMnxZryTi1-y3で示されるMnドープの複合金属酸化物からなるPZT系圧電体膜である。そして、前記複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Pbのモル比が0.95~1.10の範囲にあり、Mnのモル比が0.002以上0.05未満の範囲にある(一般式中のx、y及びzが0.002≦x<0.05、0.40≦y≦0.55及び0.95≦z≦1.10を満たす)ことで、圧電定数が高く、より大きな変位を示すとともに、誘電率が低くなるため、センサ等の用途として使用する場合に利得が大きくなる。
 本発明の第3の観点のMnドープのPZT系圧電体膜は、Mnがドープされ、更に(100)面又は(001)面のへの配向度が高いため、分極の安定性が非常に高い。
 本発明の第4の観点のMnドープのPZT系圧電体膜では、Pb、Zr及びTiを含有するABOで表されるペロブスカイト構造のPZT材料において、Mnを添加することにより、BサイトイオンであるTi、Zrの一部がMnで置換されて自発分極現象が発現し、これにより膜が0.8~3μmであっても、分極状態の温度安定性に優れ、この膜をパッケージングした後のリフロー工程でのはんだ付けの熱処理によって分極状態が消失するのを抑制することができる。この具体的な技術的理由は、第一に、下記の式(3)に示されるように酸素欠損が生成され、これによりドメインウォールがピニングされることにより自発分極現象が発現する。
  Pb1+y/2ZrTi(1-x)O+yMn3+ →
     Pb1+y/2(ZrTi(1-x)Mn)(O3-y/2V・・ y/2)    (3)
 第二に、CSD法でMnをドープすると、Mnイオンの濃度が膜の下面側から膜の上面側に向かう膜厚方向に減少するMnの組成傾斜が形成され、酸素欠損の傾斜も同時に生成される。酸素欠陥の濃度傾斜が膜中にバイアスを生み出し自発分極現象がより確実に発現すると推測される。
 第三に、(100)面又は(001)面に優先的に結晶配向されているため、成膜直後から上向きに分極方向が揃っているため、自発分極現象が保たれ、分極の安定性を高めることができる。またMnをドープしても圧電体膜の圧電特性が低下しない。
 本発明の第5の観点のMnドープのPZT系圧電体膜では、X線回折による(100)面又は(001)面の配向度が95%以上であるため、更に分極の安定性が高めることができる。
 本発明の第6の観点のMnドープのPZT系圧電体膜では、成膜直後からヒステリシスループのずれDを有し、Dが少なくとも8.8kV/cmであるため、分極状態の安定した膜が得られる。
実施例A5及び比較例A1の圧電体膜のヒステリシス曲線を示す図である。 本発明実施形態(第1の態様及び第2の態様)のMnドープのPZT系圧電体膜形成用組成物を用いて作製された圧電体膜に電圧を印加したときの圧電体膜の挙動を示す模式図である。 本発明の第2の態様のMnをドープした複合金属酸化物からなるPZT系圧電体膜と(実線で示す)と、MnをドープしないPZT系圧電体膜と(破線で示す)の各圧電体膜のヒステリシス曲線を示す図である。
 次に本発明を実施するための形態を図面に基づいて説明する。
[第1の態様]
〔MnドープのPZT系圧電体膜形成用組成物〕
 第1の態様の組成物は、MnドープのPZT系圧電体膜を形成するのに用いられ、このMnドープのPZT系圧電体膜は、チタン酸ジルコン酸鉛(PZT)等のPb含有のペロブスカイト構造を有する複合金属酸化物にMn元素が添加された、一般式PbzMnxZryTi1-y3で示される組成の圧電体膜である。そして、この組成物には、上記複合金属酸化物を構成する各金属原子を含むPZT系前駆体と、ジオールと、ポリビニルピロリドンとが含まれる。
 組成物中に含まれるPZT系前駆体は、形成後の圧電体膜において上記複合金属酸化物等を構成するための原料であり、これらが所望の金属原子比を与えるような割合で含まれる。具体的には、組成物中の金属原子比(Pb:Mn:Zr:Ti)が(1.00~1.20):(0.002~0.05):(0.40~0.55):(0.45~0.60)を満たし、かつZrとTiの金属原子比の合計割合が1となる割合で含まれる。これにより、形成後の圧電体膜において、上記一般式中のx、y及びzが0.002≦x<0.05、0.40≦y≦0.55及び0.95≦z≦1.10を満たす所望の組成に制御することができる。
 組成物中の金属原子比は、言い換えると、Pb:Mn:Zr:Tiと示されるときに、Pbが1.00~1.20を満たし、Mnが0.002以上0.05未満を満たし、Zrが0.40~0.55を満たし、Tiが0.45~0.60を満たす。
 Mnをドープしない、ゾルゲル法等の湿式塗工法で成膜したPZT膜の場合、成膜直後は圧電特性を示さない。一方、Mnをドープし、(100)面又は(001)面に強く配向させた膜では、ヒステリシスが正側にシフトし、膜全体として成膜直後から分極方向が上向きに揃った膜になる。また、このような膜では、ヒステリシスのインプリント現象により分極の安定性に優れると共に、誘電率、誘電損失(tanδ)が低く、圧電体としてより好適な膜に形成されやすくすることができる。
 PZT系前駆体は、Pb、Mn、Zr及びTiの各金属原子に、有機基がその酸素又は窒素原子を介して結合している化合物が好適である。例えば、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β-ジケトネート錯体、金属β-ジケトエステル錯体、金属β-イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上が例示される。特に好適な化合物は、金属アルコキシド、その部分加水分解物、有機酸塩である。
 具体的には、Pb化合物としては、酢酸鉛:Pb(OAc)2等の酢酸塩や、鉛ジイソプロポキシド:Pb(OiPr)2等のアルコキシドが挙げられる。またMn化合物としては、2-エチルヘキサン酸マンガン、ナフテン酸マンガン、酢酸マンガン等の有機酸塩や、アセチルアセトンマンガン等の金属β-ジケトネート錯体が挙げられる。またTi化合物としては、チタンテトラエトキシド:Ti(OEt)4、チタンテトライソプロポキシド:Ti(OiPr)4、チタンテトラn-ブトキシド:Ti(OnBu)4、チタンテトライソブトキシド:Ti(OiBu)4、チタンテトラt-ブトキシド:Ti(OtBu)4、チタンジメトキシジイソプロポキシド:Ti(OMe)2(OiPr)2等のアルコキシドが挙げられる。更にZr化合物としては、ジルコニウムテトラエトキシド:Zr(OEt)4、ジルコニウムテトライソプロポキシド:Zr(OiPr)4、ジルコニウムテトラn-ブトキシド:Zr(OnBu)4、ジルコニウムテトライソブトキシド:Zr(OiBu)4、ジルコニウムテトラt-ブトキシド:Zr(OtBu)4、ジルコニウムジメトキシジイソプロポキシド:Zr(OMe)2(OiPr)2等のアルコキシドが挙げられる。。金属アルコキシドはそのまま使用してもよいが、分解を促進させるためにその部分加水分解物を使用してもよい。
 これらのPZT系前駆体、即ち上記Pb化合物、Mn化合物、Ti化合物及びZr化合物は、上述の所望の金属原子比を与えるような割合で組成物中に含まれる。ここで、組成物中のMnの割合を上記範囲になるよう制御する理由は、組成物中のMnの割合が下限値未満では、成膜後の膜組成を示す上記一般式中のxが下限値未満となり、極微量でゼロに近い場合は圧電定数が若干向上する場合はあるものの、比誘電率の十分な低下がみられず、下限に近い場合は比誘電率の低下は若干みられるものの、圧電定数の向上があまりみられない場合があるからである。一方、組成物中のMnの割合が上限値を超えると、成膜後の膜組成を示す上記一般式中のxが上限値を越え、圧電体膜に比誘電率の十分な低下がみられないからである。また、組成物中のZr、Tiの割合を上記範囲になるよう制御する理由は、組成物中のZr、Tiの割合が上記範囲から外れると、成膜後の膜組成を示す上記一般式中のyが上述の所望の範囲から外れ、圧電体膜の圧電定数を十分に向上させることができないからである。また、組成物中のPbの割合を上記範囲になるよう制御する理由は、組成物中のPbの割合が下限値未満では、成膜後の膜組成を示す上記一般式中のzが下限値未満となり、膜中にパイロクロア相が多量に含まれてしまい、圧電特性等の電気特性を著しく低下させるからである。一方、組成物中のPbの割合が上限値を越えると、成膜後の膜組成を示す上記一般式中のzが上限値を越え、焼成後の膜中に多量にPbOが残留し、リーク電流が増大して膜の電気的信頼性が低下するからである。即ち、膜中に過剰な鉛が残りやすくなり、リーク特性や絶縁特性を劣化させるからである。なお、組成物中の金属原子比(Pb:Mn:Zr:Ti)は、上述の範囲のうち、(1.05~1.15):(0.005~0.03):(0.45~0.55):(0.45~0.55)を満たし、かつZrとTiの金属原子比の合計割合が1となる割合とするのが好ましい。なお、本明細書において、圧電定数の大小(高低)とは、圧電定数の絶対値の大小(高低)をいう。
 組成物100質量%中に占める上記PZT系前駆体の濃度は、酸化物濃度で17~35質量%である。PZT系前駆体の濃度をこの範囲に限定したのは、下限値未満では十分な膜厚を得ることができず、一方、上限値を超えるとクラックが発生しやすくなるからである。このうち、組成物100質量%中に占めるPZT系前駆体の濃度は、酸化物濃度で20~25質量%とするのが好ましい。なお、組成物中に占めるPZT系前駆体の濃度における酸化物濃度とは、組成物に含まれる全ての金属原子が目的の酸化物になったと仮定して算出した、組成物100質量%に占める金属酸化物の濃度をいう。
 組成物中に含まれるジオールは、組成物の溶媒となる成分である。具体的には、プロピレングリコール、エチレングリコール又は1,3―プロパンジオール等が挙げられる。このうち、プロピレングリコール又はエチレングリコールが好ましい。ジオールを必須の溶媒成分とすることにより、組成物の保存安定性を高めることができる。
 組成物100質量%中の上記ジオールの割合は、16~56質量%である。ジオールの割合をこの範囲に限定したのは、下限値未満では沈殿が生成する不具合が生じ、一方、上限値を超えると厚膜化したときにボイド(マイクロポア)が生じやすくなるからである。このうち、ジオールの割合は、28~42質量%とするのが好ましい。
 また、他の溶媒として、カルボン酸、アルコール(例えば、エタノールや1-ブタノール、ジオール以外の多価アルコール)、エステル、ケトン類(例えば、アセトン、メチルエチルケトン)、エーテル類(例えば、ジメチルエーテル、ジエチルエーテル)、シクロアルカン類(例えば、シクロヘキサン、シクロヘキサノール)、芳香族系(例えば、ベンゼン、トルエン、キシレン)、その他テトラヒドロフラン等が挙げられ、ジオールにこれらの1種又は2種以上を更に添加させた混合溶媒とすることもできる。
 カルボン酸としては、具体的には、n-酪酸、α-メチル酪酸、i-吉草酸、2-エチル酪酸、2,2-ジメチル酪酸、3,3-ジメチル酪酸、2,3-ジメチル酪酸、3-メチルペンタン酸、4-メチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸、2,2-ジメチルペンタン酸、3,3-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸を用いるのが好ましい。
 また、エステルとしては、酢酸エチル、酢酸プロピル、酢酸n-ブチル、酢酸sec-ブチル、酢酸tert-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸sec-アミル、酢酸tert-アミル、酢酸イソアミルを用いるのが好ましく、アルコールとしては、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソ-ブチルアルコール、1-ペンタノール、2-ペンタノール、2-メチル-2-ペンタノール、2-メトキシエタノールを用いるのが好適である。
 また、第1の態様の組成物は、高分子化合物であるポリビニルピロリドン(PVP)が含まれる。ポリビニルピロリドンは、組成物中の液粘度を調整するために用いられ、クラックの抑制効果が大きい。特に、ポリビニルピロリドンは、k値によって決定される相対粘度を調整するために用いられる。ここでk値とは、分子量と相関する粘性特性値であり、毛細管粘度計により測定される相対粘度値(25℃)を下記のFikentscherの式に適用して算出される値である。
 k値=(1.5 logηrel -1)/(0.15+0.003c)
+(300clogηrel +(c+1.5clogηrel)21/2/(0.15c+0.003c2
上記式中、「ηrel」は、ポリビニルピロリドン水溶液の水に対する相対粘度を示し、「c」は、ポリビニルピロリドン水溶液中のポリビニルピロリドン濃度(%)を示す。
 第1の態様の組成物に含まれるポリビニルピロリドンのk値は、30~90であることが好ましい。厚みのある圧電体膜を形成するには、組成物を基板等へ塗布する際、塗布された塗膜(ゲル膜)がその厚さを維持するために十分な粘度が必要となるが、k値が下限値未満では、それが得られにくい。一方、上限値を超えると粘度が高くなりすぎて、組成物を均一に塗布することが困難になる。
 上記ポリビニルピロリドンの割合が上記PZT系前駆体1モルに対してモノマー換算で0.005~0.25モルである。ポリビニルピロリドンの割合を上記範囲に限定したのは、下限値未満では、クラックが発生しやすくなり、一方、上限値を超えるとボイドが発生しやすくなるからである。このうち、ポリビニルピロリドンの割合は、上記PZT系前駆体1モルに対してモノマー換算で0.025~0.075モルとするのが好ましい。なお、ポリビニルピロリドン(PVP)は、分解温度が高い上、PZT系前駆体との親和力が大きいため、膜中から除去されにくく、ボイドの原因となりやすい。そのため、添加量はできるだけ少ない方が望ましいが、第1の態様の組成物では、前駆体を適度に加水分解し、膜中から有機物が除去されやすいようにしているため、これらの添加量を比較的低量に抑えることができる。
 ここで、モノマー換算とは、ポリマーを構成するモノマーの分子量を基準(1モル)として、ポリマーの分子量を換算して得る値である。
 また、第1の態様の組成物中には、炭素数6以上12以下の直鎖状モノアルコールを添加することが好ましく、その添加割合は組成物100質量%中に0.6~10質量%であることが好ましい。組成物中に適量の直鎖状モノアルコールを含ませると、仮焼時に効果的に有機物を膜外に放出可能なゲル膜を形成でき、膜厚が100nmを超えても緻密で高特性のMnドープのPZT系圧電体膜が得られる。上記直鎖モノアルコールの炭素数が6以上12以下であることが好ましい理由は、下限値未満では、沸点が十分に高くなく、膜の緻密化が十分に進行しない場合があるからである。一方、上限値を超えると、膜の緻密化はできるけれども、ゾルゲル液への溶解度が低く、十分な量を溶解させることが難しく、また液の粘性が上がり過ぎるため、ストリエーション(striation、細い筋、縞)の発生等により均一に塗布できない場合があるからである。なお、直鎖モノアルコールの炭素数は、7~9とするのが更に好ましい。また、組成物100質量%中の直鎖状モノアルコールの割合が上記範囲であることが好ましい理由は、下限値未満では、膜中に十分な隙間を作ることができず、プロセス中に膜中の有機物を効果的に除去できないため、十分に膜の緻密化が進行しない場合があるからである。一方、上限値を超えると、膜の乾燥が遅くなり、乾燥するまでの時間が掛かるため、膜厚が薄くなってしまう場合があるからである。なお、組成物100質量%中の直鎖状モノアルコールの割合は1~3質量%とするのが更に好ましい。また、炭素数6の直鎖モノアルコールは1-ヘキサノールであり、炭素数7の直鎖モノアルコールは1-ヘプタノールであり、炭素数8の直鎖モノアルコールは1-オクタノールであり、炭素数9の直鎖モノアルコールは1-ノナノールである。また、炭素数10の直鎖モノアルコールは1-デカノールであり、炭素数11の直鎖モノアルコールは1-ウンデカノールであり、炭素数12の直鎖モノアルコールは1-ドデカノールである。
 また、上記成分以外に、必要に応じて安定化剤として、β-ジケトン類(例えば、アセチルアセトン、ヘプタフルオロブタノイルピバロイルメタン、ジピバロイルメタン、トリフルオロアセチルアセトン、ベンゾイルアセトン等)、β-ケトン酸類(例えば、アセト酢酸、プロピオニル酢酸、ベンゾイル酢酸等)、β-ケトエステル類(例えば、上記ケトン酸のメチル、プロピル、ブチル等の低級アルキルエステル類)、オキシ酸類(例えば、乳酸、グリコール酸、α-オキシ酪酸、サリチル酸等)、上記オキシ酸の低級アルキルエステル類、オキシケトン類(例えば、ジアセトンアルコール、アセトイン等)、ジオール、トリオール、高級カルボン酸、アルカノールアミン類(例えば、ジエタノールアミン、トリエタノールアミン、モノエタノールアミン)、多価アミン等を、(安定化剤分子数)/(金属原子数)で0.2~3程度添加してもよい。このうち、安定化剤としてはβ-ジケトン類のアセチルアセトンが好ましい。
〔MnドープのPZT系圧電体膜形成用組成物の製造方法〕
 続いて、第1の態様のMnドープのPZT系圧電体膜形成用組成物の製造方法について説明する。先ず、上述したPb化合物等のPZT系前駆体をそれぞれ用意し、これらを上記所望の金属原子比を与える割合になるように秤量する。秤量した上記PZT系前駆体とジオールとを反応容器内に投入して混合し、好ましくは窒素雰囲気中、130~175℃の温度で0.5~3時間還流し反応させることで合成液を調製する。還流後は、常圧蒸留や減圧蒸留の方法により、脱溶媒させておくのが好ましい。また、アセチルアセトン等の安定化剤を添加する場合は、上述のPZT系前駆体、ジオールを反応容器内に投入する際、これらとともに投入して混合する。或いは、脱溶媒後の合成液にこれらを添加し、窒素雰囲気中、130~175℃の温度で0.5~5時間還流を行うのが好ましい。その後、室温下で放冷することにより、合成液を室温(25℃程度)まで冷却させる。冷却後、ジオール以外の溶媒を添加することにより、合成液中に含まれるPZT系前駆体の濃度を所望の濃度に調整する。PZT系前駆体、ジオールの使用量は、最終的に得られる組成物100質量%のPZT系前駆体の濃度が酸化物濃度で17~35質量%、ジオールの濃度が16~56質量%となるように調整する。
 冷却後の合成液に、好ましくは直鎖状モノアルコールを添加してゾルゲル液を調製する。直鎖状モノアルコールを添加する場合は、冷却後の合成液に、上述のジオール以外の溶媒を添加する際、これらを併せて添加してゾルゲル液を調製する。次にこのゾルゲル液を、所定の雰囲気中、例えば窒素雰囲気中、100~175℃の温度で0.5~10時間再び還流を行う。
 そして、上記ゾルゲル液に、PZT系前駆体1モルに対する割合がモノマー換算で0.005~0.25モルとなる量のポリビニルピロリドンを添加し、撹拌することで均一に分散させる。これにより、第1の態様のMnドープのPZT系圧電体膜形成用組成物が得られる。
 なお、組成物の調製後、濾過処理等によってパーティクルを除去して、粒径0.5μm以上(特に0.3μm以上とりわけ0.2μm以上)のパーティクルの個数が組成物1ミリリットル当たり50個以下とするのが好ましい。組成物中の粒径0.5μm以上のパーティクルの個数が組成物1ミリリットル当たり50個を超えると、長期保存安定性が劣るものとなる。この組成物中の粒径0.5μm以上のパーティクルの個数は少ない程好ましく、特に組成物1ミリリットル当たり30個以下であることが好ましい。
 パーティクル個数が上記範囲内となるように調整した後の組成物を処理する方法は特に限定されるものではないが、例えば、次のような方法が挙げられる。第1の方法としては、市販の0.2μm孔径のメンブランフィルタを使用し、シリンジで圧送する濾過法である。第2の方法としては、市販の0.05μm孔径のメンブランフィルタと加圧タンクを組合せた加圧濾過法である。第3の方法としては、上記第2の方法で使用したフィルタと溶液循環槽を組合せた循環濾過法である。
 いずれの方法においても、組成物の圧送圧力によって、フィルタによるパーティクル捕捉率が異なる。圧力が低いほど捕捉率が高くなることは一般的に知られており、特に、第1の方法又は第2の方法で、粒径0.5μm以上のパーティクルの個数を組成物1ミリリットル当たり50個以下とする条件を実現するためには、組成物を低圧で非常にゆっくりとフィルタに通すのが好ましい。
〔MnドープのPZT系圧電体膜の形成方法〕
 次に、第1の態様のMnドープのPZT系圧電体膜の形成方法について説明する。この形成方法は、ゾルゲル法による圧電体膜の形成方法であり、原料溶液に、上述のMnドープのPZT系圧電体膜形成用組成物を使用する。
 先ず、上記MnドープのPZT系圧電体膜形成用組成物を基板上に塗布し、所望の厚さを有する塗膜(ゲル膜)を形成する。塗布法については、特に限定されないが、スピンコート、ディップコート、LSMCD(Liquid Source Misted Chemical Deposition)法又は静電スプレー法等が挙げられる。圧電体膜を形成する基板には、下部電極が形成されたシリコン基板やサファイア基板等の耐熱性基板が用いられる。基板上に形成する下部電極は、Pt、TiOX、Ir、Ru等の導電性を有し、かつ圧電体膜と反応しない材料により形成される。例えば、下部電極を基板側から順にTiOX膜及びPt膜の2層構造にすることができる。上記TiOX膜の具体例としては、TiO2膜が挙げられる。更に基板としてシリコン基板を用いる場合には、この基板表面にSiO2膜を形成することができる。
 また、圧電体膜を形成する下部電極上には、圧電体膜を形成する前に、(100)面又は(001)面に優先的に結晶配向が制御された配向制御膜を形成しておくことが望ましい。これは、MnドープのPZT系圧電体膜を(100)面又は(001)面に強く配向させることにより、成膜直後から分極方向が揃った膜に形成できるからである。配向制御膜としては、(100)面又は(001)面に優先的に結晶配向が制御されたLNO膜(LaNiO3膜)、PZT膜、SrTiO3膜等が挙げられる。
 基板上に塗膜を形成した後、この塗膜を仮焼し、更に焼成して結晶化させる。仮焼は、ホットプレート又は急速加熱処理(RTA)等を用いて、所定の条件で行う。仮焼は、溶媒を除去するとともに金属化合物を熱分解又は加水分解して複合金属酸化物に転化させるために行うことから、空気中、酸化雰囲気中、又は含水蒸気雰囲気中で行うのが望ましい。空気中での加熱でも、加水分解に必要な水分は空気中の湿気により十分に確保される。なお、仮焼前に、特に低沸点溶媒や吸着した水分子を除去するため、ホットプレート等を用いて70~90℃の温度で、0.5~5分間低温加熱(乾燥)を行ってもよい。
 仮焼は、好ましくは250~300℃に2~5分間保持することにより行うが、溶媒等を十分に除去し、ボイドやクラックの抑制効果をより高めるため、或いは膜構造の緻密化を促進させる理由から、加熱保持温度を変更させた二段仮焼により行うことが好ましい。二段仮焼を行う場合、一段目は250~300℃に3~10分間保持する仮焼とし、二段目は400~500℃に3~10分間保持する仮焼とする。
 ここで、一段目の仮焼温度を250~300℃の範囲とするのが好ましい理由は、下限値未満では前駆物質の熱分解が不十分となり、クラックが発生しやすくなるからである。一方、上限値を超えると基板付近の前駆物質が完全に分解する前に基板上部の前駆物質が分解してしまい、有機物が膜の基板寄りに残留することでボイドが発生しやすくなるからである。また一段目の仮焼時間を3~10分間とするのが好ましい理由は、下限値未満では前駆物質の分解が十分に進行せず、上限値を超えるとプロセス時間が長くなり生産性が低下する場合があるからである。また二段目の仮焼温度を400~450℃の範囲とするのが好ましい理由は、下限値未満では前駆物質中に残った残留有機物を完全に除去できず、膜の緻密化が十分に進行しない場合があるからである。一方、上限値を越えると結晶化が進行して配向性の制御が難しくなる場合があるからである。更に二段目の仮焼時間を3~10分間の範囲とするのが好ましい理由は、下限値未満では十分に残留有機物を除去できず、結晶化時に強い応力が発生して、膜の剥がれやクラックが発生しやすくなる場合があるからである。一方、上限値を超えるとプロセス時間が長くなり生産性が低下する場合があるからである。
 組成物の塗布から仮焼までの工程は、所望の膜厚になるように、仮焼までの工程を複数回繰り返して、最後に一括で焼成を行うこともできる。一方、原料溶液に、上述した第1の態様の組成物等を使用すれば、成膜時に発生する膜収縮由来の応力を抑制できること等から、ボイドやクラックを発生させることなく、1回の塗布で数百nm程度の厚い膜を形成できる。そのため、上記繰り返し行う工程数を少なくできる。
 焼成は、仮焼後の塗膜を結晶化温度以上の温度で焼成して結晶化させるための工程であり、これにより圧電体膜が得られる。この結晶化工程の焼成雰囲気はO2、N2、Ar、N2O又はH2等或いはこれらの混合ガス等が好適である。焼成は、600~700℃で1~5分間程度行われる。焼成は、急速加熱処理(RTA)で行ってもよい。急速加熱処理(RTA)で焼成する場合、その昇温速度を2.5~100℃/秒とすることが好ましい。
〔MnドープのPZT系圧電体膜〕
 以上の工程により、MnドープのPZT系圧電体膜が得られる。
 第1の態様のMnドープのPZT系圧電体膜は、一般式PbzMnxZryTi1-y3で示されるMnドープの複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Pbのモル比が0.95~1.10の範囲にあり、Mnのモル比が0.002~0.05の範囲にあることが好ましい。より好ましくは、Mnドープの複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Pbのモル比が1.00~1.09の範囲にあり、Mnのモル比が0.01~0.03の範囲にある。
 この圧電体膜は、Mnをドープすることにより、圧電定数を向上することができるので、より大きな変位を得ることができるとともに、誘電率を低くすることができるので、センサとして使用する場合、利得が大きくなる。これは、添加されたMnがZr若しくはTiを置換し、酸素欠損を生じさせたことが主要因であると考えられる。また、図1に示すように、ヒステリシス曲線が大きく正側にシフトしており、成膜直後から上向きに分極方向が揃っている。このような膜は、分極処理後、リフロープロセス等の熱処理等よって脱分極してしまうといった不具合が起こりにくく、分極の安定性に優れるため、負側で電界を印加することで安定してデバイスを作動させることができる。そのため、この膜は、圧電体として利用できる。具体的には、図2に示すように、圧電体膜11の両面にそれぞれ配置された電極12,13間に直流電圧14を印加する前から、圧電体膜11中の各分子11aが分極した状態に保たれる(図2(a))。そして、図2(b)に示すように、圧電体膜11の両面にそれぞれ配置された電極12,13間に電圧を印加すると、圧電体膜11が電圧を印加した方向に伸び、この電圧をゼロにすると、電圧を印加した方向に伸びた圧電体膜11が縮んで元に戻るので(図2(a))、圧電素子等に適用できる。なお、この実施の形態では、電圧を印加した方向に伸びる特性を有する圧電体膜を挙げたが、電圧を印加した方向に直交する方向に伸びる特性を有する圧電体膜であってもよい。
 また、第1の態様のMnドープのPZT系圧電体膜は、X線回折による(100)面又は(001)面の配向度が90%以上である。配向度の上限値は100%とすることが可能である。
 第1の態様のMnドープのPZT系圧電体膜をジャイロセンサ等として使用した場合、一回の塗布により形成できる膜厚を厚くできるため、製造工数を低減できる。また、この圧電体膜は、成膜時の工程数が少なく、比較的簡便に得られた厚い膜であるにも拘わらず、クラックが極めて少なく、緻密な膜構造を有するので、電気特性に非常に優れる。更に、600~700℃という高温の焼成を経て作製されているため、圧電体膜を用いたデバイスをリフロー方式のハンダ付けのために高温に曝しても圧電特性が失われることはない。このため、第1の態様のMnドープのPZT系圧電体膜は、圧電素子、IPD、焦電素子等の複合電子部品における構成材料として好適に使用することができる。
[第2の態様]
〔MnドープのPZT系圧電体膜形成用組成物〕
 第2の態様のMnドープのPZT系圧電体膜を形成するための組成物は、チタン酸ジルコン酸鉛(PZT)等のPb含有のペロブスカイト構造を有する複合金属酸化物にMn元素が添加(ドープ)された圧電体膜を形成するための組成物である。第2の態様のMnドープのPZT系圧電体膜を形成するための組成物は、PZT系前駆体、主たる溶媒としてのジオール、液粘度調整剤としてのポリビニルピロリドン等を含む。組成物中に含まれるPZT系前駆体は、形成後のPZT系圧電体膜において上記複合金属酸化物等を構成するための原料であり、上記複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Mnのモル比が0.01~0.045の範囲にある。Mnのモル比が0.01未満では、形成後のPZT系圧電体膜においてインプリント現象は起きず、自発分極現象が発現しない。また0.045を超えると、圧電体膜の圧電特性が低下する。
 より具体的には、PZT系圧電体膜形成用組成物がPMnZT圧電体膜形成用組成物である場合、組成物中の金属原子比(Pb:Mn:Zr:Ti)が(1.00~1.20):(0.01~0.045):(0.40~0.55):(0.45~0.60)を満たし、かつZrとTiの金属原子比の合計割合が1となる割合で含まれる。これにより、形成後の圧電体膜において、上記PZT圧電体膜の一般式をPbMnZrTi1-yで示すとき、一般式中のx、y及びzが0.01≦x≦0.045、0.40≦y≦0.55及び0.95≦z≦1.10を満たす所望の組成に制御することができる。
 PZT系圧電体膜形成用組成物がPMnNbZT圧電体膜形成用組成物である場合、組成物中の金属原子比(Pb:Mn:Nb:Zr:Ti)が(1.00~1.20):(0.01~0.045):(0.01~0.045):(0.40~0.55):(0.45~0.60)を満たし、かつZrとTiとMnとNbの金属原子比の合計割合が1となる割合で含まれる。これにより、形成後の圧電体膜において、上記PNbZT圧電体膜の一般式をPbMnNb1-xZrTi1-yで示すとき、一般式中のx、y及びzが0.01≦x≦0.045、0.40≦y≦0.55及び0.95≦z≦1.10を満たす所望の組成に制御することができる。
 PZT系圧電体膜形成用組成物がPMnLaZT圧電体膜形成用組成物である場合、組成物中の金属原子比(Pb:La:Mn:Zr:Ti)が(1.00~1.20):(0.01~0.05):(0.01~0.045):(0.40~0.55):(0.45~0.60)を満たし、かつPbとLaの金属原子比の合計割合が1となる割合で含まれる。これにより、形成後の圧電体膜において、上記PLaZT圧電体膜の一般式をPbLaMnZrTi1-yで示すとき、一般式中のx、y、z及びtが0.01≦x≦0.045、0.40≦y≦0.55、0.01≦t≦0.05及び1.00≦z≦1.20を満たす所望の組成に制御することができる。
 PZT系前駆体は、Pb、Mn、Zr及びTiの各金属原子、Pb、Mn、Nb、Zr及びTiの各金属原子、又はPb、Mn、La、Zr及びTiの各金属原子に、有機基がその酸素又は窒素原子を介して結合している化合物が好適である。例えば、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β-ジケトネート錯体、金属β-ジケトエステル錯体、金属β-イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上が例示される。特に好適な化合物は、金属アルコキシド、その部分加水分解物、有機酸塩である。
 Pb化合物としては、第1の態様と同様のPb化合物が挙げられる。Mn化合物としては、第1の態様と同様のMn化合物が挙げられる。Ti化合物としては、第1の態様と同様のTi化合物が挙げられる。Zr化合物としては、第1の態様と同様のZr化合物が挙げられる。
 更にNb化合物としては、ニオブペンタエトキシド、2-エチルヘキサン酸ニオブ等のアルコキシドや有機金属酸塩が挙げられ、La化合物としては、酢酸ランタン1.5水和物等の有機金属酸塩が挙げられる。金属アルコキシドはそのまま使用してもよいが、分解を促進させるためにその部分加水分解物を使用してもよい。
 上記Pb化合物、Mn化合物、Ti化合物及びZr化合物、又はNb化合物若しくはLa化合物は、上述の所望の金属原子比を与えるような割合で組成物中に含まれる。ここで、組成物中のMnの割合を上記範囲になるよう制御する理由は、組成物中のMnの割合が下限値未満では、成膜後の膜組成を示す上記一般式中のxが下限値未満となり、前述したように、形成後のPZT系圧電体膜においてインプリント現象は起きず、自発分極現象が発現しない。一方、組成物中のMnの割合が上限値を超えると、成膜後の膜組成を示す上記一般式中のxが上限値を越え、前述したように圧電体膜の圧電特性が低下するからである。
 また、組成物中のZr、Tiの割合を上記範囲になるよう制御する理由は、組成物中のZr、Tiの割合が上記範囲から外れると、成膜後の膜組成を示す上記一般式中のyが上述の所望の範囲から外れ、圧電体膜の圧電定数を十分に向上させることができないからである。また、組成物中のPbの割合を上記範囲になるよう制御する理由は、組成物中のPbの割合が下限値未満では、成膜後の膜組成を示す上記一般式中のzが下限値未満となり、膜中にパイロクロア相が多量に含まれてしまい、圧電特性等の電気特性を著しく低下させるからである。一方、組成物中のPbの割合が上限値を越えると、成膜後の膜組成を示す上記一般式中のzが上限値を越え、焼成後の膜中に多量にPbOが残留し、リーク電流が増大して膜の電気的信頼性が低下するからである。即ち、膜中に過剰な鉛が残りやすくなり、リーク特性や絶縁特性を劣化させるからである。
 なお、PZT系圧電体膜形成用組成物がPZT圧電体膜形成用組成物である場合、組成物中の金属原子比(Pb:Mn:Zr:Ti)は、上述の範囲のうち、(1.05~1.15):(0.02~0.042):(0.45~0.55):(0.45~0.55)を満たし、かつZrとTiの金属原子比の合計割合が1となる割合とするのが好ましい。
 PZT系圧電体膜形成用組成物がPNbZT圧電体膜形成用組成物である場合、組成物中の金属原子比(Pb:Mn:Nb:Zr:Ti)が(1.03~1.10):(0.015~0.03):(0.015~0.03):(0.45~0.54):(0.46~0.56)を満たし、かつZrとTiとMnとNbの金属原子比の合計割合が1とするのが好ましい。
 PZT系圧電体膜形成用組成物がPLaZT圧電体膜形成用組成物である場合、組成物中の金属原子比(Pb:La:Mn:Zr:Ti)が(1.00~1.20):(0.01~0.045):(0.01~0.045):(0.40~0.55):(0.45~0.60)を満たし、かつPbとLaの金属原子比の合計割合が1となる割合とすることが好ましい。なお、本明細書において、圧電定数の大小(高低)とは、圧電定数の絶対値の大小(高低)をいう。
 組成物100質量%中に占める上記PZT系前駆体の濃度は、第1の態様と同様の酸化物濃度である。また、PZT系前駆体の濃度の上限値及び下限値の臨界的意義も第1の態様と同じである。
 組成物中に含まれる主たる溶媒のジオールとしては、第1の態様で示すジオールを用いることができる。
 組成物100質量%中の上記ジオールの割合は、第1の態様と同様の割合である。また、ジオールの割合の上限値及び下限値の臨界的意義も第1の態様と同じである。
 また、他の溶媒として、第1の態様と同様にカルボン酸、アルコール(例えば、エタノールや1-ブタノール、ジオール以外の多価アルコール)、エステル、ケトン類(例えば、アセトン、メチルエチルケトン)、エーテル類(例えば、ジメチルエーテル、ジエチルエーテル)、シクロアルカン類(例えば、シクロヘキサン、シクロヘキサノール)、芳香族系(例えば、ベンゼン、トルエン、キシレン)、その他テトラヒドロフラン等が挙げられ、ジオールにこれらの1種又は2種以上を更に添加させた混合溶媒とすることもできる。
 カルボン酸の具体例及びエステルの具体例としては、第1の態様と同様の化合物を列挙することができる。
 また、組成物中に含まれる液粘度調整剤は、形成後の圧電体膜のクラックの抑制効果が大きい。この液粘度調整剤としては、高分子化合物であるポリビニルピロリドン(PVP)が相対粘度を調整するのに好適である。第2の態様の組成物に含まれるポリビニルピロリドンのk値は、30~90であることが好ましい。上記ポリビニルピロリドンの割合が上記PZT系前駆体1モルに対してモノマー換算で0.005~0.25モルである。
 また、第2の態様の組成物中には、第1の態様と同様に炭素数6以上12以下の直鎖状モノアルコールを添加することが好ましい。炭素数6以上12以下の直鎖状モノアルコールの添加割合と、その臨界的意義は第1の態様と同じである。
 また、上記成分以外に、必要に応じて第1の態様と同様の安定化剤を、第1の態様と同様に(安定化剤分子数)/(金属原子数)で0.2~3程度添加してもよい。
〔MnドープのPZT系圧電体膜形成用組成物の製造方法〕
 第2の態様のMnドープのPZT系圧電体膜形成用組成物の製造方法は、について説明する。第2の態様のMnドープのPZT系圧電体膜形成用組成物の製造方法では、第1の態様のMnドープのPZT系圧電体膜形成用組成物の製造方法と同様の手順で、MnドープのPZT系圧電体膜形成用組成物を調製する。また、組成物の調製後のパーティクルの除去も、第1の態様と同様の手順で行うとよい。
〔MnドープのPZT系圧電体膜の形成方法〕
 次に、第2の態様のMnドープのPZT系圧電体膜の形成方法について説明する。この形成方法は、ゾルゲル法による圧電体膜の形成方法であり、原料溶液に、上述のMnドープのPZT系圧電体膜形成用組成物を使用する。
 先ず、上記MnドープのPZT系圧電体膜形成用組成物を基板上に塗布し、所望の厚さを有する塗膜(ゲル膜)を形成する。塗布法及び圧電体膜を形成する基板には、第1の態様で示す塗布法と圧電体膜を形成する基板とを用いることができる。
 また、圧電体膜を形成する下部電極上には、圧電体膜を形成する前に、(100)面又は(001)面に優先的に結晶配向が制御された配向制御膜を形成しておくことが望ましい。これは、MnドープのPZT系圧電体膜を(100)面又は(001)面に強く配向させることにより、成膜直後から分極方向が揃った膜に形成できるからである。配向制御膜としては、(100)面又は(001)面に優先的に結晶配向が制御されたLNO膜(LaNiO膜)、PZT膜、SrTiO膜等が挙げられる。
 なお、配向制御層の優先的な結晶配向を(100)面にする方法としては、例えば、特許文献2に記載された結晶面が(111)軸方向に配向した下部電極を有する基板のこの下部電極上に、強誘電体薄膜形成用組成物を塗布、仮焼、焼成して配向制御層を形成するときに、上記下部電極上に結晶粒径制御層を形成しておき、この結晶粒径制御層の上に上記強誘電体薄膜形成用組成物の塗布量を上記配向制御層の結晶化後の層厚が35nm~150nmの範囲内になるように設定し、かつ上記仮焼時の温度を150℃~200℃又は285℃~315℃の範囲内にする方法(以下、第1の方法という。)が挙げられる。
 また、配向制御層の優先的な結晶配向を(110)面にする方法としては、例えば、特許文献2に記載された結晶面が(111)軸方向に配向した下部電極を有する基板のこの下部電極上に、強誘電体薄膜形成用組成物を塗布、仮焼、焼成して配向制御層を形成するときに、上記下部電極上に結晶粒径制御層を形成しておき、この結晶粒径制御層の上に上記強誘電体薄膜形成用組成物の塗布量を上記配向制御層の結晶化後の層厚が5nm~30nmの範囲内になるように設定し、かつ上記仮焼時の温度を180℃~300℃の範囲内にする方法(以下、第2の方法という。)が挙げられる。
 基板上に前述した組成物を塗膜を形成した後、この塗膜を仮焼し、更に焼成して結晶化させる。仮焼は、ホットプレート又は急速加熱処理(RTA)等を用いて、所定の条件で行う。仮焼条件(雰囲気、温度、時間、手順等)は、第1の態様と同じである。また第1の態様と同様に、仮焼前に、特に低沸点溶媒や吸着した水分子を除去するため、ホットプレート等を用いて70~90℃の温度で、0.5~5分間低温加熱(乾燥)を行ってもよい。
 組成物の塗布から仮焼までの工程は、所望の膜厚になるように、仮焼までの工程を複数回繰り返して、最後に一括で焼成を行うこともできる。一方、原料溶液に、上述した第2の態様の組成物等を使用すれば、成膜時に発生する膜収縮由来の応力を抑制できること等から、ボイドやクラックを発生させることなく、1回の塗布で200nmまでの範囲の厚い膜を形成できる。そのため、上記繰り返し行う工程数を少なくできる。
 焼成は、仮焼後の塗膜を結晶化温度以上の温度で熱処理して結晶化させるための工程であり、これにより圧電体膜が得られる。この結晶化工程の焼成条件(雰囲気、温度、時間)は、第1の態様と同じである。焼成は、急速加熱処理(RTA)で行ってもよい。急速加熱処理(RTA)で焼成する場合、その昇温速度を2.5~100℃/秒とすることが好ましい。
 以上の工程により、第2の態様のMnドープのPZT系圧電体膜が得られる。この圧電体膜は、Mnをドープすることにより、圧電定数を向上することができるので、より大きな変位を得ることができるとともに、誘電率を低くすることができるので、センサとして使用する場合、利得が大きくなる。これは、添加されたMnがZr若しくはTiを置換し、酸素欠損を生じさせたことが主要因であると考えられる。また、図3に示すように、ヒステリシス曲線が大きく正側にシフトしており、成膜直後から上向きに分極方向が揃っている。このような膜は、分極処理後、リフロー工程での熱処理よって脱分極してしまうといった不具合が起こりにくく、分極の安定性に優れるため、負側で電界を印加することで安定してデバイスを作動させることができる。
〔MnドープのPZT系圧電体膜〕
 第2の態様のMnドープのPZT系圧電体膜は、チタン酸ジルコン酸鉛(PZT)等のPb含有のペロブスカイト構造を有する複合金属酸化物にMn元素が添加(ドープ)された圧電体膜である。この圧電体膜は、MnドープのPZT圧電体膜、MnドープのPNbZT圧電体膜、MnドープのPLaZT圧電体膜等である。本明細書では、これらの圧電体膜をPZT系圧電体膜という。このMnドープのPZT系圧電体膜は、CSD法により形成され、Mnドープの複合金属酸化物からなる。そしてこの複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Mnのモル比が0.01~0.045の範囲にあり、このPZT系圧電体膜が(100)面又は(001)面に優先的に結晶配向され、膜厚が0.8~3μmである。優先配向とは、バルクのX線回折パターンと比較して任意のピーク強度が他のピーク強度より相対的に高い状態を指す。
 複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Mnのモル比はより好ましくは0.01~0.03である。
 また、第2の態様のMnドープのPZT系圧電体膜は、X線回折による(100)面又は(001)面の配向度が95%以上である。配向度の上限値は100%とすることが可能である。
 Mnをドープしない、ゾルゲル法等の湿式塗工法で成膜したPZT系膜の場合、成膜直後は圧電特性を示さず、分極処理が必要である。一方、Mnをドープし、(100)面又は(001)面に優先的に結晶配向された膜では、たて軸が分極量であって、よこ軸が電界である分極-電界特性のヒステリシスループが正電界側にシフトするインプリント現象を有し、膜全体として成膜直後から分極方向が上向きに揃った膜になる。また、このような膜では、Mnドープによるインプリント現象により分極の安定性に優れるとともに、圧電特性が低下せず、圧電体としてより好適な膜になる。膜が(100)面又は(001)面に優先的に結晶配向されない場合には、インプリント現象が起きず、自発分極現象が発現しない。また膜厚が0.8μm未満では十分な変位量が得られない不具合があり、3μmを超えると成膜に時間を有し生産性が低下する不具合がある。好ましい膜厚は1~2μmである。
 MnドープのPZT系圧電体膜では、下記の式(2)に示す分極-電界特性のヒステリシスループのずれDが少なくとも8.8kV/cmであることが好ましい。ずれDが8.8kV/cm未満である場合には、十分に分極状態が揃っておらず十分な圧電特性が発現しない。またずれDは大きい方が好ましいが、現実的に達成し得るヒステリシスループのずれは22kV/cmである。ずれDは、より好ましくは10.0kV/cm~22.0kV/cmである。図3の実線で示すヒステリシスループは、第2の態様のMnをドープしたPZT系圧電体膜のものであり、図3の破線で示すヒステリシスループは、MnをドープしないPZT系圧電体膜のものである。図3において、E は分極が0μC/cmのときの0kV/cmからの正側の電界値の絶対値であり、E は分極が0μC/cmのときの0kV/cmからの負側の電界値の絶対値である。
    D = E  - [(E + E )/2]  (2)
 この膜は、第1の態様と同様、圧電体として利用できる。具体的には、図2に示すように、圧電体膜11の両面にそれぞれ配置された電極12,13間に直流電圧14を印加する前から、圧電体膜11中の各分子11aが分極した状態に保たれる(図2(a))。そして、図2(b)に示すように、圧電体膜11の両面にそれぞれ配置された電極12,13間に電圧を印加すると、圧電体膜11が電圧を印加した方向に伸び、この電圧をゼロにすると、電圧を印加した方向に伸びた圧電体膜11が縮んで元に戻るので(図2(a))、圧電素子等に適用できる。
 次に本発明の実施例を比較例とともに詳しく説明する。
 <実施例A1>
 先ず、反応容器に酢酸鉛三水和物(Pb源)とプロピレングリコール(ジオール)とを入れ、窒素雰囲気中、150℃の温度で1時間還流した後、この反応容器に2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)、チタンテトライソプロポキシド(Ti源)及びアセチルアセトン(安定化剤)を更に加え、窒素雰囲気中、150℃の温度で1時間還流して反応させることにより、合成液を調製した。ここで、上記酢酸鉛三水和物(Pb源)、2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体は、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量した。またプロピレングリコール(ジオール)は、調製後の組成物100質量%に対して37質量%となるように添加し、アセチルアセトン(安定化剤)は調製後の組成物に含まれるPZT系前駆体1モルに対して2モルとなる割合で添加した。次いで上記合成液100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で35質量%になるように減圧蒸留を行って不要な溶媒を除去した。ここで、合成液中に占めるPZT系前駆体の濃度における酸化物濃度とは、合成液に含まれる全ての金属原子が目的の酸化物になったと仮定して算出した、合成液100質量%に占める金属酸化物の濃度(酸化物換算値)をいう。
 次いで、合成液を室温で放冷することにより25℃まで冷却した。この合成液に1-オクタノール(炭素数8の直鎖状モノアルコール)とエタノール(溶媒)とを添加することにより、ゾルゲル液100質量%中に占める上記PZT系前駆体の濃度が、酸化物濃度で25質量%であるゾルゲル液を得た。なお、ゾルゲル液中に占めるPZT系前駆体の濃度における酸化物濃度とは、ゾルゲル液に含まれる全ての金属原子が目的の酸化物になったと仮定して算出した、ゾルゲル液100質量%に占める金属酸化物の濃度(酸化物換算値)をいう。
 次に、上記ゾルゲル液に、ポリビニルピロリドン(PVP:k値=30)を上記PZT系前駆体1モルに対してモノマー換算で0.025モルとなるように添加し、室温(25℃)で24時間撹拌することにより、組成物を得た。この組成物は、市販の0.05μm孔径のメンブランフィルタを使用し、シリンジで圧送して濾過することにより粒径0.5μm以上のパーティクル個数がそれぞれ溶液1ミリリットル当たり1個であった。また、上記組成物100質量%中に占めるPZT系前駆体の濃度は、酸化物濃度(酸化物換算値)で17質量%であった。なお、組成物中に占めるPZT系前駆体の濃度における酸化物濃度とは、組成物に含まれる全ての金属原子が目的の酸化物になったと仮定して算出した、組成物100質量%に占める金属酸化物の濃度(酸化物換算値)をいう。また、1-オクタノール(炭素数8の直鎖状モノアルコール)は、上記組成物100質量%に対して4質量%含まれていた。更に、プロピレングリコール(ジオール)は、上記組成物100質量%に対して37質量%含まれていた。
 得られた組成物を、SiO2膜、TiO2膜及びPt膜が下から上に向ってこの順に積層されかつスピンコータ上にセットされたシリコン基板の最上層のPt膜(下部電極)上に滴下し、1800rpmの回転速度で60秒間スピンコートを行うことにより、上記Pt膜(下部電極)上に塗膜(ゲル膜)を形成した。この塗膜(ゲル膜)が形成されたシリコン基板を、ホットプレートを用いて、75℃の温度で1分間加熱保持(乾燥)することにより、低沸点溶媒や水を除去した。その後、300℃のホットプレートで5分間加熱保持(一段目の仮焼)することにより、ゲル膜を加熱分解した。更に別のホットプレートを用いて、450℃の温度で5分間加熱保持(二段目の仮焼)することにより、ゲル膜中に残存する有機物や吸着水を除去した。このようにして厚さ200nmの仮焼膜(MnドープのPZTアモルファス膜)を得た。上記と同様の操作を2回繰り返すことにより、厚さ400nmの仮焼膜を得た。更に、上記厚さ400nmの仮焼膜が形成されたシリコン基板を、急速加熱処理(RTA)により酸素雰囲気中で700℃に1分間保持することにより、焼成した。このときの昇温速度は10℃/秒であった。このようにしてPt膜(下部電極)上に厚さ400nmの圧電体膜を形成した。なお、圧電体膜の膜厚は、圧電体膜の断面の厚さ(総厚)を、SEM(日立社製:S4300)により測定した。また、蛍光X線分析により形成後の圧電体膜の組成を測定したところ、圧電体膜は、Pb1.01Mn0.002Zr0.40Ti0.603で示される組成の膜であった。なお、実施例A1等において、成膜後の膜中においてPbの減少がみられたが、これは焼成等の成膜中にPb源が蒸発したことによるものである。
 <実施例A2>
 Mn源として2-エチルヘキサン酸マンガンの代わりにナフテン酸マンガンを使用したこと、酢酸鉛三水和物(Pb源)、ナフテン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.02Mn0.002Zr0.52Ti0.483で示される組成の膜であった。
 <実施例A3>
 Mn源として2-エチルヘキサン酸マンガンの代わりに酢酸マンガンを使用したこと、酢酸鉛三水和物(Pb源)、酢酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.01Mn0.002Zr0.55Ti0.453で示される組成の膜であった。
 <実施例A4~実施例A9>
 Mn源として2-エチルヘキサン酸マンガンの代わりにアセチルアセトンマンガンを使用したこと、酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、実施例A4で形成した圧電体膜は、Pb1.02Mn0.01Zr0.40Ti0.603で示される組成の膜であり、実施例A5で形成した圧電体膜は、Pb1.01Mn0.01Zr0.52Ti0.483で示される組成の膜であり、実施例A6で形成した圧電体膜は、Pb1.02Mn0.01Zr0.55Ti0.453で示される組成の膜であり、実施例A7で形成した圧電体膜は、Pb1.00Mn0.04Zr0.40Ti0.603で示される組成の膜であり、実施例A8で形成した圧電体膜は、Pb1.00Mn0.04Zr0.52Ti0.483で示される組成の膜であり、実施例A9で形成した圧電体膜は、Pb1.01Mn0.04Zr0.55Ti0.453で示される組成の膜であった。
 <実施例A10,実施例A11>
 酢酸鉛三水和物(Pb源)、2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、実施例A10で形成した圧電体膜は、Pb0.98Mn0.04Zr0.52Ti0.483で示される組成の膜であった。また、実施例A11で形成した圧電体膜は、Pb1.05Mn0.04Zr0.52Ti0.483で示される組成の膜であった。
  <実施例A12~実施例A15>
 酢酸鉛三水和物(Pb源)、2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。
 なお、実施例A12~実施例A15で形成した圧電体膜は、Pb1.02Mn0.04Zr0.55Ti0.453で示される組成の膜であった。
 <比較例A1>
 Mn源としてのPZT系前駆体を使用せず、酢酸鉛三水和物(Pb源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.00Zr0.52Ti0.483で示される組成の膜であった。
 <比較例A2~比較例A4>
 酢酸鉛三水和物(Pb源)、2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、比較例A2で形成した圧電体膜は、Pb1.01Mn0.001Zr0.40Ti0.603で示される組成の膜であり、比較例A3で形成した圧電体膜は、Pb1.01Mn0.001Zr0.52Ti0.483で示される組成の膜であり、比較例A4で形成した圧電体膜は、Pb1.01Mn0.05Zr0.55Ti0.453で示される組成の膜であった。
 <比較例A5,比較例A6>
 酢酸鉛三水和物(Pb源)、2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、PZT系前駆体1モルに対するポリビニルピロリドン(PVP)の混合割合を以下の表1に示す割合としたこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、比較例A5で形成した圧電体膜は、Pb1.01Mn0.01Zr0.40Ti0.603で示される組成の膜であり、比較例A6で形成した圧電体膜は、Pb1.02Mn0.01Zr0.52Ti0.483で示される組成の膜であった。
 <比較例A7,比較例A8>
 酢酸鉛三水和物(Pb源)、2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中のプロピレングリコール(ジオール)の混合割合を以下の表1に示す割合としたこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、比較例A7で形成した圧電体膜は、Pb1.02Mn0.01Zr0.55Ti0.453で示される組成の膜であり、比較例A8で形成した圧電体膜は、Pb1.01Mn0.01Zr0.40Ti0.603で示される組成の膜であった。
 <比較例A9,比較例A10>
 Mn源として2-エチルヘキサン酸マンガンの代わりにナフテン酸マンガンを使用したこと、酢酸鉛三水和物(Pb源)、ナフテン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、比較例A9で形成した圧電体膜は、Pb1.01Mn0.01Zr0.57Ti0.433で示される組成の膜であり、比較例A10で形成した圧電体膜は、Pb1.01Mn0.01Zr0.38Ti0.623で示される組成の膜であった。
 <比較例A11,比較例A12>
酢酸鉛三水和物(Pb源)、2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、比較例A11,12で形成した圧電体膜は、いずれもPb1.00Mn0.01Zr0.52Ti0.483で示される組成の膜であった。
 <比較例A13,比較例A14>
酢酸鉛三水和物(Pb源)、2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表1に示す値になるように秤量したこと、組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、以下の表1に示す値になるように調整したこと以外は、実施例A1と同様にして組成物を調製し、圧電体膜を形成した。なお、比較例A13で形成した圧電体膜は、Pb0.98Mn0.04Zr0.52Ti0.483で示される組成の膜であった。また、比較例A14で形成した圧電体膜は、Pb1.10Mn0.04Zr0.52Ti0.483で示される組成の膜であった。
 <比較試験及び評価>
 実施例A1~実施例A15及び比較例A1~比較例A14で形成した圧電体膜について、ヒステリシスのずれ、比誘電率、圧電定数e31.f及びクラックの有無をそれぞれ評価した。また、それぞれの圧電体膜について、結晶の(100)面における配向度をそれぞれ評価した。これらの結果を以下の表1に示す。
 (i) ヒステリシスのずれ(シフト量):先ず、圧電体膜の上面に、スパッタ法により200μmφの一対の電極をそれぞれ形成した後、RTAを用いて、酸素雰囲気中で700℃に1分間保持して、ダメージを回復するためのアニーリングを行い、キャパシタ構造を作製した。次にこれらを試験用サンプルとし、1kHzの周波数で25Vの電圧を印加して圧電体膜の分極量のヒステリシスを測定し、更に得られた分極量のヒステリシスのずれを求めた。なお、比較のため、この方法によって測定した実施例A5及び比較例A1のヒステリシス曲線を図1に示す。
 (ii) 比誘電率:上記圧電体膜のヒステリシスのずれを測定するために用いた圧電素子の誘電率を強誘電体評価装置(aix ACCT社製:TF-analyzer2000)により測定した後、無次元化するために、上記測定された誘電率を真空の誘電率で除して比誘電率を算出した。
 (iii) 圧電定数e31.f:圧電体膜を集束イオンビーム(FIB:Focused Ion Beam)により短冊状に加工し、この短冊状に加工した圧電体膜に100kV/cmの電界中で110℃の温度で1分間保持することにより分極処理を行った。更に、圧電評価装置(aix ACCT社製:aixPES)により、上記分極処理された圧電体膜に歪みを印加して生じた電荷量を測定し圧電定数e31.fを求めた。
 (iv) クラックの有無:上記膜厚測定に使用した走査型電子顕微鏡(SEM)を用いて、膜表面及び膜断面の組織を撮影したSEM画像から、クラックの有無を観察した。そして、クラックが観察されなかった状態であったときを『無し』とし、クラックが観察された状態であったときを『有り』とした。
 (v) 配向度:X線回折(XRD)装置(パナリティカル社製、型式名:Empyrean)を用いた集中法により得られた回折結果から、(100)面の強度/{(100)面の強度+(110)面の強度+(111)面の強度}を計算することにより算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例A1~実施例A15と比較例A1~比較例A4とを比較すると、Mnをドープしていない比較例A1では、ヒステリシスのシフトがみられなかった。また、Mnのドープ量が少なく、成膜後の膜組成を示す一般式PbzMnxZryTi1-y3において、xが下限値に満たない比較例A2では、比誘電率が十分に低下しなかった。また、比較例A3でも、比誘電率が十分に低下しなかった。また、Mnのドープ量が多く、成膜後の膜組成を示す上記一般式においてxが上限値を越える比較例A4では、圧電定数が低くなった。これに対し、Mnを所望の割合でドープした実施例A1~15では、圧電定数を比較的高い値に保った状態で、誘電率を低下させることができ、センサとしても有用な圧電体膜が得られた。また、ヒステリシスのシフトがみられ、分極処理後に脱分離しにくいことが判る。
 また、実施例A1~実施例A15と比較例A5~比較例A8とを比較すると、PVP又はジオールの割合が下限値に満たない比較例A5,比較例A7では、得られた圧電体膜にクラックの発生がみられた。一方、PVP又はジオールの割合が上限値を越える比較例A6,比較例A8ではクラックの発生がみられなかったが、圧電定数が低下した。これに対し、PVP及びジオールを所望の割合で添加した実施例A1~実施例A15では、150nm以上の厚膜形成において、クラックを発生することなく、また、比較例A6,比較例A8で生じた圧電定数の低下等もみられず、優れた特性の圧電体膜が得られた。このことから、実施例A1~実施例A15で得られた圧電体膜は生産性が高いことも判る。
 また、実施例A1~実施例A15と比較例A9,比較例A10とを比較すると、Zrの割合に対してTiの割合が少なく、成膜後の膜組成を示す上記一般式においてyが上限値を越える比較例A9では、圧電定数が低下した。また、Zrの割合に対してTiの割合が多く、成膜後の膜組成を示す上記一般式においてyが下限値に満たない比較例A10でも圧電定数が低下した。これに対し、ZrとTiの割合が所望の範囲を満たす実施例A1~実施例A15では、比較例A9,比較例A10で生じた圧電定数の低下等もみられず、優れた特性の圧電体膜が得られた。
また、実施例A1~実施例A15と比較例A11,比較例A12とを比較すると、前駆体濃度が下限値に満たない比較例A11では、一回の塗布あたりに成膜できる膜厚の限界が130nmとなり、十分な厚膜形成ができなかった。一方、前駆体濃度が上限値を越える比較例A12では圧電定数が低下し、クラックも発生した。これに対し、前駆体濃度を所望の範囲に調整した実施例A1~実施例A15では、比較例A11,比較例A12で生じた上記不具合等もなく、優れた特性の圧電体膜が得られた。
 また、実施例A1~実施例A15と比較例A13,比較例A14とを比較すると、Pbの割合が少なく、成膜後の膜組成を示す上記一般式においてzが下限値に満たない比較例A13では、圧電定数が低下した。一方、Pbの割合が多く、成膜後の膜組成を示す上記一般式においてzが上限値を越える比較例A14では、比誘電率が十分に低下しなかった。これに対し、Pbの割合が所望の範囲を満たす実施例A1~実施例A15では、比較例A13,比較例A14で生じた上記不具合もなく、優れた特性の圧電体膜が得られた。
 <実施例B1>
 先ず、反応容器に酢酸鉛三水和物(Pb源)とプロピレングリコール(ジオール)とを入れ、窒素雰囲気中、150℃の温度で1時間還流した後、この反応容器にチタンテトライソプロポキシド(Ti源)、ジルコニウムテトラブトキシド(Zr源)、2-エチルヘキサン酸マンガン(Mn源)及びアセチルアセトン(安定化剤)を更に加え、窒素雰囲気中、150℃の温度で1時間還流して反応させることにより、合成液を調製した。ここで、上記酢酸鉛三水和物(Pb源)、2-エチルヘキサン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体は、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。またプロピレングリコール(ジオール)は、調製後の組成物100質量%に対して37質量%となるように添加し、アセチルアセトン(安定化剤)は調製後の組成物に含まれるPZT系前駆体1モルに対して2モルとなる割合で添加した。次いで上記合成液100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で35質量%になるように減圧蒸留を行って不要な溶媒を除去した。ここで、合成液中に占めるPZT系前駆体の濃度における酸化物濃度とは、合成液に含まれる全ての金属原子が目的の酸化物になったと仮定して算出した、合成液100質量%に占める金属酸化物の濃度(酸化物換算値)をいう。
 次いで、合成液を室温で放冷することにより25℃まで冷却した。この合成液に1-オクタノール(炭素数8の直鎖状モノアルコール)とエタノール(溶媒)とを添加することにより、ゾルゲル液100質量%中に占める上記PZT系前駆体の濃度が、酸化物濃度で25質量%であるゾルゲル液を得た。なお、ゾルゲル液中に占めるPZT系前駆体の濃度における酸化物濃度とは、ゾルゲル液に含まれる全ての金属原子が目的の酸化物になったと仮定して算出した、ゾルゲル液100質量%に占める金属酸化物の濃度(酸化物換算値)をいう。
 次に、上記ゾルゲル液に、ポリビニルピロリドン(PVP:k値=30)を上記PZT系前駆体1モルに対してモノマー換算で0.025モルとなるように添加し、室温(25℃)で24時間撹拌することにより、組成物を得た。この組成物は、市販の0.05μm孔径のメンブランフィルタを使用し、シリンジで圧送して濾過することにより粒径0.5μm以上のパーティクル個数がそれぞれ溶液1ミリリットル当たり1個であった。また、上記組成物100質量%中に占めるPZT系前駆体の濃度は、酸化物濃度(酸化物換算値)で17質量%であった。なお、組成物中に占めるPZT系前駆体の濃度における酸化物濃度とは、組成物に含まれる全ての金属原子が目的の酸化物になったと仮定して算出した、組成物100質量%に占める金属酸化物の濃度(酸化物換算値)をいう。また、1-オクタノール(炭素数8の直鎖状モノアルコール)は、上記組成物100質量%に対して4質量%含まれていた。更に、プロピレングリコール(ジオール)は、上記組成物100質量%に対して37質量%含まれていた。
 一方、SiO膜、TiO膜及びPt膜が下から上に向ってこの順に積層されかつこのPt膜の上に、前述した第1の方法により(100)面の配向度が96%である配向制御層となるPZT膜が形成されたシリコン基板を用意した。各膜厚は、SiO膜が500nm、TiO膜が20nm及びPt膜が100nmであった。また配向制御層の膜厚は60nmであり、シリコン基板は直径が4インチであった。このシリコン基板をスピンコータ上にセットした後、得られた組成物1000μLを上記シリコン基板の配向制御層上に滴下し、1800rpmの回転速度で60秒間スピンコートを行うことにより、上記配向制御層上に塗膜(ゲル膜)を形成した。
 この塗膜(ゲル膜)が形成されたシリコン基板を、ホットプレートを用いて、75℃の温度で1分間加熱保持(乾燥)することにより、低沸点溶媒や水を除去した。その後、300℃のホットプレートで5分間加熱保持(一段目の仮焼)することにより、ゲル膜を加熱分解した。更に別のホットプレートを用いて、450℃の温度で5分間加熱保持(二段目の仮焼)することにより、ゲル膜中に残存する有機物や吸着水を除去した。このようにして厚さ200nmの仮焼膜(MnドープのPZTアモルファス膜)を得た。この厚さ200nmは後述する焼成後の厚さである。
 上記と同様の操作を2回繰り返すことにより、厚さ400nmの仮焼膜を得た。この厚さ400nmは後述する焼成後の厚さである。更に、上記厚さ400nmの仮焼膜が形成されたシリコン基板を、急速加熱処理(RTA)により酸素雰囲気中で700℃に1分間保持することにより、焼成した。このときの昇温速度は10℃/秒であった。このような組成物の塗布、塗膜の仮焼、焼成からなる一連の操作を3回繰り返し行って、Pt膜(下部電極)上の配向制御層上にMnドープのPZT系圧電体膜を形成した。また、蛍光X線分析により形成後の圧電体膜の組成を測定したところ、圧電体膜は、Pb1.01Mn0.01Zr0.52Ti0.48で示される組成の膜であった。なお、実施例B1及び以下の実施例B2~12、比較例B1において、成膜後の膜中においてPbの減少がみられたが、これは焼成等の成膜中にPb源が蒸発したことによるものである。
 <実施例B2>
 Mn源として2-エチルヘキサン酸マンガンの代わりにナフテン酸マンガンを使用した。酢酸鉛三水和物(Pb源)、ナフテン酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同じ(100)面の配向度が96%のPZT配向制御層上に、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.02Mn0.02Zr0.52Ti0.48で示される組成の膜であった。
 <実施例B3>
 Mn源として2-エチルヘキサン酸マンガンの代わりに酢酸マンガンを使用した。酢酸鉛三水和物(Pb源)、酢酸マンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。また(100)面の配向度が96%の配向制御層上にPZT圧電体膜を形成した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、本実施例Bにおいては積層数が5層となるため、最後の1層は200nm厚さで焼成を行った。なお、形成後の圧電体膜は、Pb1.03Mn0.042Zr0.52Ti0.48で示される組成の膜であった。
 <実施例B4>
 Mn源として2-エチルヘキサン酸マンガンの代わりにアセチルアセトンマンガンを使用した。酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。また(100)面の配向度が96%の配向制御層上にPZT配向制御層を形成した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.02Mn0.02Zr0.45Ti0.55で示される組成の膜であった。
 <実施例B5>
 Mn源として2-エチルヘキサン酸マンガンの代わりにアセチルアセトンマンガンを使用した。酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。また前述した第1の方法により(100)面の配向度が76%の配向制御層上に圧電体膜を形成した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.02Mn0.02Zr0.52Ti0.48で示される組成の膜であった。
 <実施例B6>
 Mn源として2-エチルヘキサン酸マンガンの代わりにアセチルアセトンマンガンを使用した。酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同じ(100)面の配向度が96%のPZT配向制御層上に実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.02Mn0.005Zr0.52Ti0.48で示される組成の膜であった。
 <実施例B7>
 Mn源として2-エチルヘキサン酸マンガンの代わりにアセチルアセトンマンガンを使用した。酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。また前述した第2の方法により(110)/(101)面の配向度が90%であり(100)/(001)面の配向度が0%の配向制御層上に圧電体膜を形成した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.02Mn0.02Zr0.52Ti0.48で示される組成の膜であった。
 <比較例B1>
実施例B4と同じPb源、Mn源、Zr源、Ti源の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。これ以外は実施例B4と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.06Mn0.05Zr0.45Ti0.55で示される組成の膜であった。
 <実施例B8>
 実施例B1と同様の手法で組成物を合成した。酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、ニオブペンタエトキシド(Nb源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Nb:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。また(100)/(001)面の配向度が96%のPZT配向制御層上に圧電体膜を形成した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.02Mn0.02Nb0.01Zr0.52Ti0.48で示される組成の膜であった。
 <実施例B9>
 実施例B1と同様の手法で組成物を合成した。酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、ニオブペンタエトキシド(Nb源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:Mn:Nb:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。また(100)/(001)面の配向度が96%の配向制御層上に圧電体膜を形成した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.02Mn0.02Nb0.01Zr0.40Ti0.60で示される組成の膜であった。
 <実施例B10>
実施例B1と同様の手法で組成物を合成した。酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、酢酸ランタン1.5水和物(La源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:La:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。また(100)/(001)面の配向度が96%のPZT配向制御層上に圧電体膜を形成した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.01La0.01Mn0.02Zr0.55Ti0.45で示される組成の膜であった。
 <実施例B11>
実施例B1と同様の手法で組成物を合成した。酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、酢酸ランタン1.5水和物(La源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:La:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。また(100)/(001)面の配向度が96%のPZT配向制御層上に圧電体膜を形成した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.011La0.02Mn0.02Zr0.50Ti0.50で示される組成の膜であった。
 <実施例B12>
実施例B1と同様の手法で組成物を合成した。酢酸鉛三水和物(Pb源)、アセチルアセトンマンガン(Mn源)、酢酸ランタン1.5水和物(La源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)の各PZT系前駆体を、液中の金属原子比(Pb:La:Mn:Zr:Ti)が以下の表3に示す値になるように秤量した。組成物100質量%中に占めるPZT系前駆体の濃度が、酸化物濃度で、25質量%になるように調整した。また(100)/(001)面の配向度が96%のPZT配向制御層上に圧電体膜を形成した。前記以外は、実施例B1と同様にして組成物を調製し、実施例B1と同様の手法で塗布、仮焼、焼成を繰り返すことにより圧電体膜を形成した。なお、形成後の圧電体膜は、Pb1.01La0.01Mn0.02Zr0.52Ti0.48で示される組成の膜であった。
 <比較試験及び評価>
 実施例B1~実施例B12及び比較例B1で形成した圧電体膜について、膜厚、配向制御層の配向度、圧電定数、圧電体膜の配向度及び分極-電界特性のヒステリシスループのずれ(以下、単に「ヒステリシスのずれ」という。)をそれぞれ評価した。実施例B1~実施例B12及び比較例B1で形成した圧電体膜の組成と膜厚の結果を表3に示す。また配向制御層の配向度、圧電定数、圧電体膜の配向度及びヒステリシスのずれの結果を以下の表4に示す。
 (i) 圧電体膜の膜厚:圧電体膜の断面の厚さ(総厚)を、SEM(日立社製:S4300)により測定した。
 (ii) 圧電定数:圧電体膜の圧電定数d33をaix ACCT社製DBLIにより測定した。具体的には、後述する「(iv) ヒステリシスのずれ(シフト量)」を測定する方法と同様の方法によりキャパシタ構造を形成し、25V印加時の膜の変位量を測定し、その電圧に対する変位の傾きを圧電定数d33とした。
 (iii) 配向度:X線回折(XRD)装置(パナリティカル社製、型式名:Empyrean)を使用し、CuKα線による集中法で測定した。得られた回折結果から、(100)面又は(001)面のピーク強度、(110)面又は(101)面のピーク強度、(111)面のピーク強度をそれぞれ測定し、以下の式(4)を用いて計算することにより、(100)面又は(001)面の配向度(以下の式では「(100)/(001)配向度」と略記する。)を求めた。なお、MPB組成近傍のPZT系薄膜においてはCuKα線では(100)面及び(001)面、(110)面及び(101)面のピークを分離することが困難なためそれぞれ(100)/(001)、(110)/(101)と表記した。
 (100)/(001)配向度=(100)/(001)面の強度/{(100)/(001)面の強度+(110)/(101)面の強度+(111)面の強度}    (4)
 (iv) ヒステリシスのずれ(シフト量):先ず、圧電体膜の上面に、スパッタ法により200μmφの一対の電極をそれぞれ形成した後、RTAを用いて、酸素雰囲気中で700℃に1分間保持して、ダメージを回復するためのアニーリングを行い、キャパシタ構造を作製した。次にこれらを試験用サンプルとし、TFアナライザー2000により1kHzの周波数で25Vの電圧を印加して圧電体膜の分極量のヒステリシスを測定し、抗電界(Ec)を求めた。更に得られた分極量のヒステリシスのずれDを前述した式(2)から求めた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(a) 配向度とヒステリシスのずれの関係
 表3から明らかなように、実施例B1~実施例B5、実施例B8~実施例B12においては成膜後700℃でDRA処理を行ったにもかかわらず少なくとも8.8kV/cmのヒステリシスのずれが発生しており膜中に強い内部バイアスが存在することが確認できた。一方、実施例B2、実施例B5、実施例B7を比較すると(100)/(001)配向度の劣る実施例B5、実施例B7ではヒステリシスのずれは小さくなった。この結果より、より大きなヒステリシスのずれを得るには高い配向度が必要で有ることが分かった。
 (b) Mn添加量とヒステリシスのずれの関係
 実施例B1~実施例B5、実施例B8~実施例B12と実施例6とを比較すると膜中のMn含有量がZr、Tiの合計モル数を1とした時に対して0.01未満(実施例6)であると十分なヒステリシスのずれは得られず、Mnの添加量は0.01以上であることがより好ましいことが分かった。実施例B8~実施例B12ではMnとLa、Nbを共ドープしているが、Mnの添加量を0.01以上にすると、実施例B1~実施例B5と同様に大きなヒステリシスのずれを有するPMnZT系膜を得ることができた。この結果より、PMnZT膜に他の元素を添加してもヒステリシスのずれが大きく、分極の温度安定性に優れるPMnZT系膜が得られることが分かった。
 (c) Mn添加量と圧電特性の関係
 実施例B1~実施例B12と比較例B1を比較すると膜中のMn含有量がZr、Tiの合計モル数を1とした時に対して0.045を超える(比較例B4)と圧電定数が極端に低下し、圧電体として機能に劣るため、Mnの添加量は0.045以下であることが必要であることが分かった。実施例B8~実施例B12ではMnとLa、Nbを共ドープしているが、Mnの添加量を0.0045以下にすると、実施例B1~実施例B5と同様に圧電定数は低下せず、圧電体として機能するPMnZT系膜が得られることが分かった。
 (d) 圧電体膜の膜厚と圧電特性の関係
 実施例B1~実施例B12では、圧電体膜の膜厚は0.8μm以上であるため、圧電定数は低下せず、圧電体として機能するPMnZT系膜が得られた。実施例B8~実施例B12ではMnとLa、Nbを共ドープしているが、圧電体膜の膜厚を0.8μm以上にすると、実施例B1~実施例B5と同様に圧電定数は低下せず、圧電体として機能するPMnZT系膜が得られることが分かった。
 本発明の第1の態様のMnドープのPZT系圧電体膜形成用組成物は、圧電素子、IPD、焦電素子の複合電子部品における構成材料等の製造に利用できる。
 本発明第2の態様のMnドープのPZT系圧電体膜は、ジャイロセンサ、赤外線センサ、圧電センサ、インクジェットヘッド、オートフォーカス等に等の複合電子部品における構成材料として好適に使用することができる。

Claims (6)

  1.  Mnドープの複合金属酸化物からなるPZT系圧電体膜の形成に用いられる組成物であり、
     前記複合金属酸化物を構成する各金属原子を含むPZT系前駆体と、ジオールと、ポリビニルピロリドンとを含み、
     前記組成物中の金属原子比をPb:Mn:Zr:Tiと示す際に、Pbが1.00~1.20を満たし、Mnが0.002以上0.05未満を満たし、Zrが0.40~0.55を満たし、Tiが0.45~0.60を満たし、かつ前記Zrと前記Tiの金属原子比の合計割合が1となる割合で、前記PZT系前駆体を含み、
     前記組成物100質量%中に占める前記PZT系前駆体の濃度が酸化物濃度で17~35質量%であり、
     前記組成物100質量%中の前記ジオールの割合が16~56質量%であり、
     前記ポリビニルピロリドンの割合が前記PZT系前駆体1モルに対してモノマー換算で0.005~0.25モルである、MnドープのPZT系圧電体膜形成用組成物。
  2.  請求項1記載の組成物を用いてCSD法により形成された、一般式PbzMnxZryTi1-y3で示されるMnドープの複合金属酸化物からなるPZT系圧電体膜であり、
     前記複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Pbのモル比が0.95~1.10の範囲にあり、Mnのモル比が0.002以上0.05未満の範囲にあるMnドープのPZT系圧電体膜。
  3.  X線回折による(100)面又は(001)面の配向度が90%以上である請求項2に記載のMnドープのPZT系圧電体膜。
  4.  前記複合金属酸化物中のZrとTiの合計モル数を1モルとするとき、Mnのモル比が0.01~0.045の範囲にあり、
     前記PZT系圧電体膜が(100)面又は(001)面に優先的に結晶配向され、
     膜厚が0.8~3μmである請求項2に記載のMnドープのPZT系圧電体膜。
  5.  X線回折による(100)面又は(001)面の配向度が95%以上である請求項4に記載のMnドープのPZT系圧電体膜。
  6.  下記の式(1)で求められる分極-電界特性のヒステリシスループのずれDが少なくとも8.8kV/cmである請求項4又は5に記載のMnドープのPZT系圧電体膜。
       D = E  - [(E + E )/2] (1)
     但し、E は分極が0μC/cmのときの0kV/cmからの正側の電界値の絶対値及びE は分極が0μC/cmのときの0kV/cmからの負側の電界値の絶対値をいう。
PCT/JP2015/059619 2014-03-27 2015-03-27 MnドープのPZT系圧電体膜形成用組成物及びMnドープのPZT系圧電体膜 WO2015147259A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580015871.3A CN106104826B (zh) 2014-03-27 2015-03-27 掺杂Mn的PZT系压电膜形成用组合物及掺杂Mn的PZT系压电膜
EP15769102.3A EP3125317B1 (en) 2014-03-27 2015-03-27 Mn-doped pzt-based piezoelectric film formation composition and mn-doped pzt-based piezoelectric film
US15/129,077 US10411183B2 (en) 2014-03-27 2015-03-27 Composition for forming Mn-doped PZT-based piezoelectric film and Mn-doped PZT-based piezoelectric film
KR1020167026249A KR102384736B1 (ko) 2014-03-27 2015-03-27 Mn 도프의 PZT 계 압전체막 형성용 조성물 및 Mn 도프의 PZT 계 압전체막

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-065635 2014-03-27
JP2014065635A JP6183261B2 (ja) 2014-03-27 2014-03-27 MnドープのPZT系圧電体膜形成用組成物
JP2015-019859 2015-02-04
JP2015019859A JP6481394B2 (ja) 2015-02-04 2015-02-04 MnドープのPZT系圧電体膜

Publications (1)

Publication Number Publication Date
WO2015147259A1 true WO2015147259A1 (ja) 2015-10-01

Family

ID=54195763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059619 WO2015147259A1 (ja) 2014-03-27 2015-03-27 MnドープのPZT系圧電体膜形成用組成物及びMnドープのPZT系圧電体膜

Country Status (6)

Country Link
US (1) US10411183B2 (ja)
EP (1) EP3125317B1 (ja)
KR (1) KR102384736B1 (ja)
CN (1) CN106104826B (ja)
TW (1) TWI650774B (ja)
WO (1) WO2015147259A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017325A1 (ja) * 2018-07-17 2020-01-23 株式会社村田製作所 圧電セラミックス、セラミックス電子部品、及び、圧電セラミックスの製造方法
JP2021185614A (ja) * 2016-06-21 2021-12-09 アドバンストマテリアルテクノロジーズ株式会社 成膜装置
WO2022091497A1 (ja) * 2020-10-28 2022-05-05 パナソニックIpマネジメント株式会社 圧電素子およびmemsミラー

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202112670A (zh) * 2019-05-31 2021-04-01 日商三菱綜合材料股份有限公司 壓電體膜之製造方法、壓電體膜及壓電元件
CN116462503A (zh) * 2023-04-17 2023-07-21 江苏雷奥生物科技有限公司 一种用于超声治疗仪探头上的pzt陶瓷及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211328A (ja) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Pzt系強誘電体薄膜及びその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384294A (en) * 1993-11-30 1995-01-24 The United States Of America As Represented By The Secretary Of The Air Force Sol-gel derived lead oxide containing ceramics
JP3405498B2 (ja) 1995-02-20 2003-05-12 セイコーエプソン株式会社 圧電体薄膜およびその製造法ならびにそれを用いたインクジェット記録ヘッド
US6066581A (en) * 1995-07-27 2000-05-23 Nortel Networks Corporation Sol-gel precursor and method for formation of ferroelectric materials for integrated circuits
JP3890634B2 (ja) 1995-09-19 2007-03-07 セイコーエプソン株式会社 圧電体薄膜素子及びインクジェット式記録ヘッド
JP4146533B2 (ja) * 1997-08-21 2008-09-10 ローム株式会社 強誘電体膜形成用溶液および強誘電体膜の形成法
US6203608B1 (en) * 1998-04-15 2001-03-20 Ramtron International Corporation Ferroelectric thin films and solutions: compositions
JP2001261338A (ja) 2000-03-15 2001-09-26 Mitsubishi Materials Corp Tiを含有する金属酸化物薄膜形成用原料溶液、Tiを含有する金属酸化物薄膜の形成方法及びTiを含有する金属酸化物薄膜
JP2003221229A (ja) 2002-01-29 2003-08-05 Murata Mfg Co Ltd 膜の製造方法および膜状素子の製造方法
CN1983464B (zh) 2002-10-24 2010-12-08 精工爱普生株式会社 强电介质膜、强电介质电容器、强电介质存储器、压电元件、半导体元件
WO2006006406A1 (ja) * 2004-07-13 2006-01-19 Seiko Epson Corporation 強誘電体薄膜形成用組成物、強誘電体薄膜及び強誘電体薄膜の製造方法並びに液体噴射ヘッド
JPWO2007029789A1 (ja) * 2005-09-08 2009-03-19 三井金属鉱業株式会社 プリント配線板の内蔵キャパシタ回路に適したpzt系誘電層の形成方法
JP2009252786A (ja) 2008-04-01 2009-10-29 Seiko Epson Corp 酸化物原料溶液、酸化物膜、圧電素子、酸化物膜の形成方法および圧電素子の製造方法
JP2009290364A (ja) 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd Baw共振装置およびその製造方法
JP2009290369A (ja) 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd Baw共振装置
JP5613910B2 (ja) 2011-05-17 2014-10-29 三菱マテリアル株式会社 Pzt強誘電体薄膜の製造方法
JP5828293B2 (ja) 2011-05-17 2015-12-02 三菱マテリアル株式会社 Pzt強誘電体薄膜の製造方法
WO2012169078A1 (ja) * 2011-06-07 2012-12-13 株式会社ユーテック 強誘電体膜、成膜方法及び強誘電体膜の製造方法
JP5817621B2 (ja) 2012-03-30 2015-11-18 三菱マテリアル株式会社 強誘電体薄膜形成用ゾルゲル液
JP2013211329A (ja) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Pzt系強誘電体薄膜及びその製造方法
JP5919956B2 (ja) * 2012-03-30 2016-05-18 三菱マテリアル株式会社 Pzt系強誘電体薄膜の製造方法
JP6075145B2 (ja) * 2013-03-25 2017-02-08 三菱マテリアル株式会社 Pzt系強誘電体薄膜形成用組成物の製造方法並びに該組成物を用いたpzt系強誘電体薄膜の形成方法
JP6075152B2 (ja) * 2013-03-27 2017-02-08 三菱マテリアル株式会社 Pzt系強誘電体薄膜形成用組成物の製造方法並びに該組成物を用いたpzt系強誘電体薄膜の形成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211328A (ja) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Pzt系強誘電体薄膜及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Q.ZHANG ET AL.: "Hysteretic properties of Mn- doped Pb(Zr,Ti)O3 thin films", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 24, no. Issue 2, 2004, pages 277 - 282, XP004479453 *
See also references of EP3125317A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021185614A (ja) * 2016-06-21 2021-12-09 アドバンストマテリアルテクノロジーズ株式会社 成膜装置
WO2020017325A1 (ja) * 2018-07-17 2020-01-23 株式会社村田製作所 圧電セラミックス、セラミックス電子部品、及び、圧電セラミックスの製造方法
WO2022091497A1 (ja) * 2020-10-28 2022-05-05 パナソニックIpマネジメント株式会社 圧電素子およびmemsミラー

Also Published As

Publication number Publication date
KR20160138417A (ko) 2016-12-05
EP3125317B1 (en) 2022-04-27
EP3125317A4 (en) 2017-11-08
US20170222127A1 (en) 2017-08-03
KR102384736B1 (ko) 2022-04-07
EP3125317A1 (en) 2017-02-01
US10411183B2 (en) 2019-09-10
TW201546831A (zh) 2015-12-16
TWI650774B (zh) 2019-02-11
CN106104826A (zh) 2016-11-09
CN106104826B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
WO2015147259A1 (ja) MnドープのPZT系圧電体膜形成用組成物及びMnドープのPZT系圧電体膜
JP6264447B2 (ja) Mn及びNbドープのPZT系圧電体膜形成用液組成物
JP6036460B2 (ja) PNbZT強誘電体薄膜の形成方法
JP6237407B2 (ja) Mn及びNbドープのPZT系圧電体膜の形成方法
JP6481394B2 (ja) MnドープのPZT系圧電体膜
JP6183261B2 (ja) MnドープのPZT系圧電体膜形成用組成物
KR102176808B1 (ko) Ce 도프의 PZT 계 압전체막 형성용 조성물
TWI648887B (zh) 摻雜Ce之PZT系壓電體膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167026249

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15129077

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769102

Country of ref document: EP