WO2015147243A1 - Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projection image display - Google Patents

Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projection image display Download PDF

Info

Publication number
WO2015147243A1
WO2015147243A1 PCT/JP2015/059559 JP2015059559W WO2015147243A1 WO 2015147243 A1 WO2015147243 A1 WO 2015147243A1 JP 2015059559 W JP2015059559 W JP 2015059559W WO 2015147243 A1 WO2015147243 A1 WO 2015147243A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
compound
polymerizable
liquid crystal
Prior art date
Application number
PCT/JP2015/059559
Other languages
French (fr)
Japanese (ja)
Inventor
佑起 中沢
峻也 加藤
拓史 松山
林 大介
吉川 将
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015053774A external-priority patent/JP6080884B2/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167026768A priority Critical patent/KR101811974B1/en
Priority to CN201580016763.8A priority patent/CN106164108B/en
Publication of WO2015147243A1 publication Critical patent/WO2015147243A1/en
Priority to US15/273,784 priority patent/US10012868B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/75Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/86Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with esterified hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3077Cy-Cy-COO-Ph

Definitions

  • the present invention relates to a novel polymerizable compound.
  • the present invention also relates to a polymerizable composition comprising a novel polymerizable compound, a film produced using the polymerizable composition comprising the novel polymerizable compound, and a projected image produced using the polymerizable composition. It relates to a display half mirror.
  • Various optical films such as a retardation film and a reflective film can be produced using a polymerizable compound having liquid crystallinity.
  • the birefringence of the polymerizable compound is one of the properties greatly related to the optical properties of the obtained optical film.
  • a retardation film having a desired retardation can be obtained with a thin film thickness by using a liquid crystal exhibiting high birefringence (Patent Document 1).
  • Patent Document 1 a film in which a cholesteric liquid crystal phase formed using a polymerizable compound having low birefringence is fixed, a reflective film having high selectivity in the reflection wavelength region can be obtained.
  • Patent Document 2 a non-liquid crystalline (meth) acrylate compound having a specific structure is used together with a polymerizable liquid crystal compound to obtain a low birefringence retardation film or a reflective film with high selectivity in the reflection wavelength region. It is described.
  • the inventors of the present invention have studied compounds having various structures in order to solve the above-described problems. As a result, a novel compound having a structure similar to a known polymerizable compound according to Patent Document 3 or 4 has low birefringence. In addition, the inventors have found that the film has properties that are advantageous for film formation, and have further studied based on this finding, thereby completing the present invention. That is, the present invention provides the following ⁇ 1> to ⁇ 22>. ⁇ 1> a polymerizable compound represented by formula (I);
  • Z 1 and Z 2 each independently have a trans-1,4-cyclohexylene group which may have a substituent, an arylene group which may have a substituent or a substituent.
  • a heteroarylene group which may be Each of the above substituents is independently 1 to 4 substituents selected from the group consisting of —CO—X—Sp 3 —R 3 , an alkyl group, and an alkoxy group, m represents an integer of 1 or 2, n represents an integer of 0 or 1, When m represents 2, n represents 0, when m represents 2, two Z 1 may be the same or different; L 1 , L 2 , L 3 and L 4 are each independently a single bond, —O—, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC ( ⁇ O) —, —C ( ⁇ O) O (CH 2 ) 2 —, —NH—, N (CH 3 ) —, —S—, —C ( ⁇ O)
  • R 1 and R 2 each independently represents any polymerizable group selected from the group consisting of groups represented by the following formulas (Q-1) to (Q-5);
  • R 3 , R 4 and R 5 each independently represents one or more —CH 2 — in a hydrogen atom, cycloalkyl group or cycloalkyl group —O—, —S—, —NH—, —N
  • a group substituted with (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O) O—, or the following formulas (Q-1) to (Q ⁇ 5) represents any polymerizable group selected from the group consisting of the
  • ⁇ 2> The polymerizable compound according to ⁇ 1>, wherein the arylene group is a 1,4-phenylene group.
  • At least one of Z 1 and Z 2 is an arylene group which may have a substituent or a heteroarylene group which may have a substituent, described in ⁇ 1> or ⁇ 2> Polymerizable compound.
  • ⁇ 4> The polymerizable compound according to any one of ⁇ 1> to ⁇ 3>, wherein m + n is 2.
  • ⁇ 5> m is 2, and two Z 1 groups may each have a substituent from the R 1 direction, trans-1,4-cyclohexylene group, and optionally substituted arylene group Or m is 1, n is 1, Z 1 is an arylene group which may have a substituent, and Z 2 is an arylene group which may have a substituent.
  • ⁇ 6> Any one of ⁇ 1> to ⁇ 5>, wherein L 2 is —C ( ⁇ O) O— from the R 1 direction and L 3 is —OC ( ⁇ O) — from the R 1 direction.
  • ⁇ 10> Any one of ⁇ 1> to ⁇ 9>, wherein L 1 , L 2 , L 3 , and L 4 are all —C ( ⁇ O) O— or —OC ( ⁇ O) —.
  • ⁇ 11> A polymer obtained by a polymerization reaction of the polymerizable compound according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 12> A polymerizable composition comprising the polymerizable compound according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 13> The polymerizable composition according to ⁇ 12>, which contains another liquid crystal compound together with the polymerizable compound represented by formula (I).
  • ⁇ 14> The polymerizable composition according to ⁇ 12> or ⁇ 13>, which contains a crosslinking agent.
  • ⁇ 15> The polymerizable composition according to any one of ⁇ 12> to ⁇ 14>, containing a polymerization initiator.
  • ⁇ 16> The polymerizable composition according to any one of ⁇ 12> to ⁇ 15>, containing a chiral compound.
  • ⁇ 17> A film comprising a layer obtained by curing the polymerizable composition as described in any one of ⁇ 12> to ⁇ 16>.
  • ⁇ 18> A film comprising two or more layers obtained by curing the polymerizable composition as described in any one of ⁇ 12> to ⁇ 17>.
  • ⁇ 19> indicates selective reflection, ⁇ 17> or ⁇ 18>
  • ⁇ 20> The film according to any one of ⁇ 17> to ⁇ 19>, which reflects visible light.
  • a film comprising at least three layers formed from the polymerizable composition according to any one of ⁇ 12> to ⁇ 16>, The three layers are a layer in which a cholesteric liquid crystal phase having a central wavelength of selective reflection is fixed in a red light wavelength region, a layer in which a cholesteric liquid crystal phase having a central wavelength of selective reflection is fixed in a green light wavelength region, and a blue light wavelength region A film in which a cholesteric liquid crystal phase having a central wavelength of selective reflection is fixed.
  • a half mirror for displaying projected images including the film according to ⁇ 21>.
  • the half mirror for displaying projected images according to ⁇ 22> including a base material made of inorganic glass or acrylic resin.
  • the present invention provides a novel polymerizable compound that can be used as a low birefringence liquid crystal.
  • the present invention also provides a novel film such as a low birefringence retardation film or a reflection film having high selectivity in the reflection wavelength region.
  • a numerical value range expressed using “to” is a numerical value described before and after “to” as a lower limit value and an upper limit value.
  • the description of “(meth) acrylate” represents the meaning of “any one or both of acrylate and methacrylate”.
  • the same applies to “(meth) acryl group” and “(meth) acryloyl group” means “one or both of acryloyl group and methacryloyl group”.
  • the term “retardation” refers to in-plane retardation, and when there is no mention of wavelength, it refers to in-plane retardation at a wavelength of 550 nm.
  • in-plane retardation is measured using a polarization phase difference analyzer AxoScan manufactured by AXOMETRIC.
  • In-plane retardation at a wavelength of ⁇ nm can also be measured by making light at a wavelength of ⁇ nm incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments).
  • ⁇ Polymerizable compound represented by formula (I)> each group in formula (I) will be described.
  • the stereo of the cyclohexylene group in the formula (I) indicates a relative configuration, that is, a trans-1,4-cyclohexylene group.
  • Z 1 and Z 2 may each independently have a trans-1,4-cyclohexylene group which may have a substituent, an arylene group which may have a substituent or a substituent.
  • a good heteroarylene group is shown.
  • At least one of Z 1 and Z 2 which may be present may be substituted with trans-1,4- It is preferably not a cyclohexylene group. That is, at least one of Z 1 and Z 2 which may be present is preferably an arylene group which may have a substituent or a heteroarylene group which may have a substituent. .
  • Z 1 and Z 2 are each preferably an arylene group which may have a substituent or a heteroarylene group which may have a substituent. More preferably, it is an arylene group that may be present.
  • Z 1 when m is 2 is an arylene group which may have a substituent or a heteroarylene group which may have a substituent, and may have a substituent.
  • a good arylene group is preferred.
  • Z 1 closer to the cyclohexyl group bonded to L 2 is preferably an arylene group which may have a substituent or a heteroarylene group which may have a substituent.
  • An arylene group is a divalent group formed by removing two hydrogen atoms (hydrogen radicals) from an aromatic compound.
  • the aromatic compound is preferably a 5- to 18-membered ring.
  • the heteroarylene group is a divalent group formed by removing two hydrogen atoms (hydrogen radicals) from an aromatic heterocyclic compound.
  • the aromatic heterocyclic compound is preferably a 5- to 18-membered ring.
  • the arylene group a phenylene group is particularly preferable, and a 1,4-phenylene group is particularly preferable.
  • the substituent when “optionally has a substituent” is —CO—X—Sp 3 —R 3 , an alkyl group And a substituent selected from the group consisting of alkoxy groups. Further, it may have 1 to 4 substituents. When it has two or more substituents, the two or more substituents may be the same or different from each other.
  • the alkyl group may be linear or branched.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
  • Examples of the alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group.
  • alkylene group 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, linear or branched heptyl group, octyl group, nonyl group, decyl group, undecyl group, or dodecyl group.
  • alkyl group is the same for the alkoxy group containing an alkyl group.
  • specific examples of the alkylene group referred to as an alkylene group include a divalent group obtained by removing one arbitrary hydrogen atom in each of the above examples of the alkyl group.
  • the cycloalkyl group preferably has 3 to 20 carbon atoms, more preferably 5 or more, more preferably 10 or less, still more preferably 8 or less, and still more preferably 6 or less.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • n represents an integer of 0 or 1.
  • n represents 0. That is, the polymerizable compound represented by the formula (I) has 4 or 5 cyclic groups.
  • two Z 1 may be the same or different.
  • the polymerizable compound represented by the formula (I) preferably has a structure in which 1,4-phenylene groups and trans-1,4-cyclohexylene groups are alternately present.
  • n is 2, n And Z 1 is a trans-1,4-cyclohexylene group which may have a substituent from the R 1 side, an arylene group which may have a substituent, or m 1 Is a structure in which n is 1, Z 1 is an arylene group which may have a substituent, and Z 2 is an arylene group which may have a substituent.
  • L 1 , L 2 , L 3 and L 4 are each independently a single bond, —O—, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC ( ⁇ O) —, —C ( ⁇ O) O (CH 2 ) 2 —, —NH—, N (CH 3 ) —, —S—, —C ( ⁇ O) O—, —OC ( ⁇ O) —, —OC ( ⁇ O) O —, —C ( ⁇ O) N (T 3 ) —, —N (T 3 ) C ( ⁇ O) —, —C ( ⁇ O) S—, —SC ( ⁇ O) —, —CH 2 C ( ⁇ O) O—, —OC ( ⁇ O) CH 2 —, —CH ⁇ CH—C ( ⁇ O) O—, —OC ( ⁇ O) —CH ⁇ CH—, —CH ⁇ N—, —N ⁇
  • a linking group selected from the group consisting of
  • L 1 , L 2 , L 3 and L 4 are preferably each independently —C ( ⁇ O) O— or —OC ( ⁇ O) —, and L 2 is —C ( ⁇ O) O—.
  • L 3 is —OC ( ⁇ O) —
  • L 1 is —OC ( ⁇ O) —
  • L 2 is —C ( ⁇ O) O—
  • L 3 is More preferably, —OC ( ⁇ O) — and L 4 is —C ( ⁇ O) O—.
  • T 3 represents —Sp 4 —R 4 and is preferably a hydrogen atom (Sp 4 is a single bond and R 4 is a hydrogen atom).
  • X represents —O—, —S—, or —N (Sp 5 —R 5 ) —, and is preferably —O—.
  • X may represent a nitrogen atom that forms a ring structure with R 3 and Sp 3 . That is, —X—Sp 3 —R 3 may be a nitrogen-containing cyclic group bonded to an adjacent carbonyl group with a nitrogen atom. Examples of the nitrogen-containing cyclic group include a 1-piperidyl group, a 1-piperazinyl group, and a 1-pyrrolidyl group.
  • r represents an integer of 1 to 4, and is preferably 1.
  • the polymerizable compound represented by the formula (I) has a carbonyl group bonded to a 1,4-phenylene group to which a trans-1,4-cyclohexylene group is bonded via L 2 and L 3 on both sides. Having at least one substituent bonded to each other, wherein the carbonyl group has a structure bonded to —O—, —S—, or —N (Sp 5 —R 5 ) —.
  • the substituent bonded to the 1,4-phenylene group is particularly preferably bonded at C of — (C ⁇ O) —O—.
  • Sp 1 , Sp 2 , Sp 3 , Sp 4 and Sp 5 are each independently a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, or a linear or branched alkylene group having 1 to 20 carbon atoms.
  • —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —
  • a linking group selected from the group consisting of a group substituted with C ( ⁇ O) O— is shown.
  • a linking group containing one or more structural units selected from the group consisting of — (CH 2 ) 2 —O— is preferable.
  • Sp 3 , Sp 4 , and Sp 5 are each independently a single bond, a linear alkylene group having 1 to 10 carbon atoms, or a linear alkylene group having 1 to 10 carbon atoms in which —O— is bonded to one end. Groups are preferred.
  • R 1 and R 2 each independently represents any polymerizable group selected from the group consisting of groups represented by the following formulas (Q-1) to (Q-5).
  • R 3 , R 4 and R 5 each independently represents one or more —CH 2 — in a hydrogen atom, cycloalkyl group or cycloalkyl group —O—, —S—, —NH—, —N
  • a group substituted with (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O) O—, or the following formulas (Q-1) to (Q -5) represents any polymerizable group selected from the group consisting of groups represented by
  • one or more of —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O).
  • Specific examples of the group substituted with — or —C ( ⁇ O) O— include a tetrahydrofuranyl group, a pyrrolidinyl group, an imidazolidinyl group, a pyrazolidinyl group, a piperidyl group, a piperazinyl group, a morpholinyl group, and the like. It is done.
  • the substitution position is not particularly limited.
  • R 3 may represent a single bond when X is a nitrogen atom that forms a ring structure with R 3 and Sp 3 .
  • Sp 5 is a single bond, R 5 is not a hydrogen atom.
  • an acryloyl group (formula (Q-1)) or a methacryloyl group (formula (Q-2)) is preferable.
  • R 3 , R 4 and R 5 are each preferably a hydrogen atom.
  • the polymerizable compound represented by the formula (I) is also preferably a compound represented by the following formula (I-1).
  • Sp 3 and R 3 have the same definitions as in formula (I).
  • Each Sp is independently a single bond, one or more —CH 2 — in a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms. Substituted with —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O) O—.
  • a linking group selected from the group consisting of groups is shown.
  • Sp is a straight chain or branched alkylene group having 1 to 20 carbon atoms, and one or more of —CH 2 — is —O—, —OC ( ⁇ O) —, or —C ( ⁇ O).
  • a group substituted with O— is preferred, and in a linear or branched alkylene group having 1 to 20 carbon atoms, one terminal —CH 2 — is —O— and the other one terminal —CH 2 —.
  • Is a group substituted by —C ( ⁇ O) O—, which is bonded to the cyclohexylene group by an oxygen atom of —C ( ⁇ O) O—, and is converted to —C ( ⁇ O) — by —O—.
  • a bonded group is more preferable, and —O—C 4 H 8 —O—C ( ⁇ O) — or —C ( ⁇ O) —O—C 4 H 8 —O— and —C It is more preferable that the group is bonded to the cyclohexylene group by the oxygen atom of ( ⁇ O) O— and bonded to —C ( ⁇ O) — by —O—.
  • Examples of the polymerizable compound represented by the formula (I) are shown below, but are not limited to these examples.
  • the polymerizable compound represented by the formula (I) can be produced by a known method, for example, by the following method.
  • phenol (or alcohol) derivative A-1 and carboxylic acid derivatives A-2 and A-3 are obtained. It can manufacture by esterifying using.
  • the esterification reaction method for example, the carboxylic acid derivatives A-2 and A-3 are converted into acid anhydrides by thionyl chloride, oxalyl chloride, or the like, or mesyl chloride is reacted with a base to form mixed acid anhydrides.
  • a method in which the phenol (or alcohol) derivative A-1 is allowed to act in the presence of a base.
  • Another example is a method of directly esterifying A-1, A-2, and A-3 using a condensing agent such as carbodiimide.
  • the phenol (or alcohol) derivative A-1 can be produced by esterifying the carboxylic acid derivative A-4 with the compound A-5.
  • LG of compound A-5 represents a hydroxy group or a leaving group.
  • A-1 can be produced by dehydration condensation by heating in the presence of a condensing agent such as carbodiimide or an acid catalyst.
  • LG is a leaving group A-1 can be produced by heating A-4 and A-5 in an aprotic polar solvent in the presence of a base.
  • the leaving group halogen, mesyl group, tosyl group and the like can be used.
  • a retardation film is prepared by using the polymerizable compound represented by the formula (I).
  • the birefringence of the film can be adjusted to a desired range.
  • a reflection film having a narrow selective reflection wavelength band, that is, a selectivity of the reflection wavelength range is obtained.
  • a high reflective film can be obtained.
  • the polymerizable compound represented by the formula (I) is colorless and transparent because the absorption in the visible light region is extremely small regardless of the type of aromatic ring substituent and the linking group, and the liquid crystal phase range is wide. It satisfies several characteristics such as easy dissolution in solvents and easy polymerization. Derived from this, a cured film produced using a polymerizable composition containing a polymerizable compound represented by formula (I) exhibits sufficient hardness, is colorless and transparent, and has good weather resistance and heat resistance. A plurality of characteristics can be satisfied.
  • the cured film formed using the polymerizable composition is, for example, a retardation plate, a polarizing element, a selective reflection film, a color filter, an antireflection film, a viewing angle compensation film, which is a component of the optical element, It can be used for various applications such as holography and alignment films.
  • ⁇ Polymerizable composition In the polymerizable composition, only one type of polymerizable compound represented by the formula (I) may be contained, or two or more types may be contained.
  • the polymerizable compound represented by the formula (I) (when two or more types are included, the total amount of two or more types) may be 10% by mass or more based on the solid content mass of the polymerizable composition. Preferably, it may be 30 to 99.9% by mass, more preferably 50 to 99.5% by mass, and still more preferably 70 to 99% by mass. However, it is not limited to this range.
  • the polymerizable composition may contain other components such as other liquid crystal compounds, chiral compounds, polymerization initiators, and alignment control agents. Each component will be described below.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenyl Pyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • liquid crystal compounds may be polymerizable or non-polymerizable.
  • the rod-like liquid crystal compound having no polymerizable group is described in various documents (for example, Y. Goto et.al., Mol. Cryst. Liq. Cryst. 1995, Vol. 260, pp. 23-28).
  • the polymerizable rod-like liquid crystal compound can be obtained by introducing a polymerizable group into the rod-like liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the rod-like liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable rod-like liquid crystal compound is preferably 1 to 6, more preferably 1 to 3.
  • Examples of the polymerizable rod-like liquid crystal compound are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No. 4,683,327, US Pat. No. 5,622,648, US Pat. No. 5,770,107, International Publication WO95 / 22586. No. 95/24455, No. 97/00600, No. 98/23580, No.
  • Two or more kinds of polymerizable rod-like liquid crystal compounds may be used in combination. When two or more kinds of polymerizable rod-like liquid crystal compounds are used in combination, the alignment temperature can be lowered.
  • the addition amount of the other liquid crystal compound is not particularly limited, and is preferably 0 to 70% by mass, more preferably 0 to 50% by mass, and further preferably 0 to 30% by mass based on the solid content mass of the polymerizable composition. %. However, it is not limited to this range.
  • the mass ratio of the polymerizable compound represented by the formula (I) and the other liquid crystal compound was 100 / It may be 0 to 30/70, preferably 100/0 to 50/50, and more preferably 100/0 to 70/30. This ratio can be adjusted to a preferred range depending on the application.
  • Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral compound (chiral agent) may have a polymerizable group.
  • the rod-shaped liquid crystal compound used in combination also has a polymerizable group, a repeating unit derived from the rod-shaped liquid crystal compound by a polymerization reaction between the polymerizable chiral compound and the polymerizable rod-shaped liquid crystal compound And polymers having repeating units derived from chiral compounds.
  • the polymerizable group possessed by the polymerizable chiral compound is preferably the same type as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound, particularly the polymerizable compound represented by formula (I). Therefore, the polymerizable group of the chiral compound is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
  • the chiral compound is preferably 1 to 30 mol% with respect to the total number of moles of the liquid crystal compound containing the polymerizable compound represented by the formula (I).
  • a smaller amount of chiral compound is preferred because it tends not to affect liquid crystallinity. Therefore, as the chiral compound, a compound having a strong twisting power is preferable so that a twisted orientation with a desired helical pitch can be achieved even with a small amount.
  • Examples of such a chiral agent exhibiting a strong twisting force include a chiral agent described in JP-A-2003-287623. Further, chiral agents described in JP-A Nos. 2002-302487, 2002-80478, 2002-80851, and 2014-034581, LC-756 manufactured by BASF, and the like can be mentioned. It is done.
  • a film formed by fixing a polymerizable composition containing a chiral compound into a cholesteric liquid crystal phase and then fixing the cholesteric liquid crystal phase exhibits selective reflection characteristics with respect to light of a predetermined wavelength according to the helical pitch. It is useful as a reflective film (for example, a visible light reflective film or an infrared reflective film).
  • a reflective film for example, a visible light reflective film or an infrared reflective film.
  • the polymerizable composition preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can initiate a polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics. Group acyloin compounds (described in US Pat. No.
  • orientation control agent An alignment controller that contributes to the formation of a stable or rapid liquid crystal phase (for example, a cholesteric liquid crystal phase) may be added to the polymerizable composition.
  • orientation control agents include fluorine-containing (meth) acrylate polymers, compounds represented by general formulas (X1) to (X3) described in WO2011 / 162291, and paragraphs [0020] to JP2013-47204A.
  • the compounds described in [0031] are included. You may contain 2 or more types selected from these. These compounds can reduce the tilt angle of the molecules of the liquid crystal compound or can be substantially horizontally aligned at the air interface of the layer.
  • horizontal alignment means that the major axis of the liquid crystal molecule is parallel to the film surface, but it is not required to be strictly parallel.
  • An orientation with an inclination angle of less than 20 degrees is meant.
  • the liquid crystal compound is horizontally aligned in the vicinity of the air interface, alignment defects are less likely to occur, and thus transparency in the visible light region is increased.
  • the molecules of the liquid crystal compound are aligned at a large tilt angle, for example, in the case of a cholesteric liquid crystal phase, the spiral axis is deviated from the film surface normal, so that the reflectance decreases or a fingerprint pattern occurs, This is not preferable because it increases haze and shows diffractive properties.
  • fluorine-containing (meth) acrylate-based polymers that can be used as orientation control agents are described in JP-A-2007-272185, [0018] to [0043].
  • the polymerizable composition may optionally contain a crosslinking agent in order to improve the film strength after hardening and the durability.
  • a crosslinking agent those that can be cured by ultraviolet rays, heat, moisture and the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate, a pentaerythritol tri (meth) acrylate, a pentaerythritol tetraacrylate; Epoxy compounds such as glycidyl (meth) acrylate and ethylene glycol diglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane, etc.
  • Aziridine compounds such as hexamethylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- Such as 2-aminoethyl) 3-aminopropyl alkoxysilane compounds such as trimethoxysilane.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent is preferably 3% by mass to 20% by mass and more preferably 5% by mass to 15% by mass with respect to the solid content mass of the polymerizable composition.
  • the content of the crosslinking agent is 3% by mass or more, the effect of improving the crosslinking density is higher, and when it is 20% by mass or less, the stability of the cholesteric liquid crystal layer is higher.
  • the polymerizable compound represented by the formula (I) is useful as a material for various optical films such as a retardation film and a reflective film, and a polymerizable composition containing the polymerizable compound represented by the formula (I) is used.
  • Various optical films can be formed.
  • An example of a method for producing an optical film is: (I) Applying a polymerizable composition containing a polymerizable compound represented by formula (I) to the surface of a substrate or the like to bring it into a liquid crystal phase (cholesteric liquid crystal phase, etc.) (Ii) proceeding the curing reaction of the polymerizable composition, fixing the liquid crystal phase to form a cured film; Is a production method comprising at least The steps (i) and (ii) can be repeated a plurality of times to produce a film in which a plurality of the cured films are laminated. Moreover, the some laminated
  • Organic solvents include amides (eg N, N-dimethylformamide); sulfoxides (eg dimethyl sulfoxide); heterocyclic compounds (eg pyridine); hydrocarbons (eg benzene, hexane); alkyl halides (eg chloroform, dichloromethane); esters (Eg, methyl acetate, butyl acetate); ketones (eg, acetone, methyl ethyl ketone); ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane); 1,4-butanediol diacetate and the like.
  • alkyl halides and ketones are particularly preferable.
  • Two or more organic solvents may be used in combination.
  • the coating solution can be applied by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
  • a coating film can be formed by discharging the composition from a nozzle using an ink jet apparatus.
  • a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase. Also, if it exceeds 200 ° C, a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration. There is.
  • the coating film in a liquid crystal phase is cured.
  • Curing may proceed according to any polymerization method such as a radical polymerization method, an anionic polymerization method, a cationic polymerization method, or a coordination polymerization method.
  • a suitable polymerization method may be selected according to the polymerizable compound represented by the formula (I).
  • a polymer having units derived from the polymerizable compound represented by the formula (I) in the structural unit is obtained.
  • ultraviolet light is irradiated to advance the curing reaction.
  • a light source such as an ultraviolet lamp is used.
  • the curing reaction of the composition proceeds by irradiating ultraviolet rays, the liquid crystal phase (cholesteric liquid crystal phase or the like) is fixed, and a cured film is formed.
  • the amount of irradiation energy of ultraviolet rays in general, 0.1J / cm 2 ⁇ 0.8J / cm 2 is preferably about.
  • limiting in particular about the time which irradiates a coating film with an ultraviolet-ray is just to determine from the viewpoint of both sufficient intensity
  • ultraviolet irradiation may be performed under heating conditions. Moreover, it is preferable to maintain the temperature at the time of ultraviolet irradiation in the temperature range which exhibits a liquid crystal phase so that a liquid crystal phase may not be disturbed. Also, since the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable.
  • the liquid crystal phase is fixed and a cured film is formed.
  • the state in which the liquid crystal phase is “fixed” is the most typical and preferred state in which the orientation of the compound that is the liquid crystal phase is maintained.
  • the layer has no fluidity, and the orientation form is influenced by an external field or external force. This means a state in which the fixed orientation form can be kept stable without causing a change in the above.
  • the alignment state of the liquid crystal phase is preferably fixed by a curing reaction that proceeds by ultraviolet irradiation.
  • the composition in the cured film no longer needs to exhibit liquid crystal properties.
  • the composition may be no longer liquid crystalline due to a high molecular weight due to the curing reaction.
  • the thickness of the cured film is not particularly limited. What is necessary is just to determine a preferable film thickness according to an application or according to the optical characteristic made desired. In general, the thickness is preferably 0.05 to 50 ⁇ m, more preferably 1 to 35 ⁇ m.
  • the film may have a substrate.
  • the substrate is self-supporting, and there is no limitation on the material and optical characteristics as long as it supports the cured film. It can be selected from a glass plate, a quartz plate, a polymer film, and the like. Depending on the application, those having high transparency to ultraviolet light may be used. Examples of the polymer film having high transparency to visible light include polymer films for various optical films used as members of display devices such as liquid crystal display devices.
  • substrates examples include polyester films such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate (PEN); polycarbonate (PC) films and polymethyl methacrylate films; polyolefin films such as polyethylene and polypropylene; polyimide films and triacetyl A cellulose (TAC) film etc. are mentioned.
  • PET polyethylene terephthalate
  • PEN polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • polyolefin films such as polyethylene and polypropylene
  • polyimide films and triacetyl A cellulose (TAC) film etc. are mentioned.
  • a polyethylene terephthalate film and a triacetyl cellulose film are preferred.
  • the film may have an alignment layer between the substrate and the cured film.
  • the alignment layer has a function of more precisely defining the alignment direction of the liquid crystal compound.
  • the alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound, or formation of a layer having a microgroove.
  • an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.
  • the alignment layer is preferably formed on the surface of the polymer film by rubbing treatment.
  • a polymer of an organic compound is preferable, and a polymer that can be crosslinked by itself or a polymer that is crosslinked by a crosslinking agent is often used. Of course, polymers having both functions are also used.
  • polymers examples include polymethyl methacrylate, acrylic acid / methacrylic acid copolymer, styrene / maleimide copolymer, polyvinyl alcohol and modified polyvinyl alcohol, poly (N-methylolacrylamide), styrene / vinyl toluene copolymer Polymer, chlorosulfonated polyethylene, nitrocellulose, polyvinyl chloride, chlorinated polyolefin, polyester, polyimide, vinyl acetate / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, carboxymethylcellulose, gelatin, polyethylene, polypropylene, polycarbonate, etc. And polymers such as silane coupling agents.
  • preferred polymers include water-soluble polymers such as poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvir alcohol and modified polyvinyl alcohol, of which gelatin, polyvir alcohol and modified polyvinyl alcohol In particular, polyvinyl alcohol and modified polyvinyl alcohol are preferable.
  • water-soluble polymers such as poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvir alcohol and modified polyvinyl alcohol, of which gelatin, polyvir alcohol and modified polyvinyl alcohol In particular, polyvinyl alcohol and modified polyvinyl alcohol are preferable.
  • Adhesive layer When bonding a plurality of cured films with an adhesive, an adhesive layer is provided between the cured films.
  • the adhesive layer may be formed from an adhesive.
  • Adhesives include hot melt type, thermosetting type, photocuring type, reactive curing type, and pressure-sensitive adhesive type that does not require curing, from the viewpoint of curing method, and the materials are acrylate, urethane, urethane acrylate, epoxy , Epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide, polyimide, polystyrene, polyvinyl butyral, etc. can do.
  • the photocuring type is preferable as the curing method, and from the viewpoint of optical transparency and heat resistance, the material is preferably an acrylate, urethane acrylate, epoxy acrylate, or the like.
  • the thickness of the adhesive layer may be 0.5 to 10 ⁇ m, preferably 1 to 5 ⁇ m. When used as a projected image display half mirror, it is preferably provided with a uniform film thickness to reduce color unevenness and the like.
  • One embodiment of the film is a film in which the alignment of the liquid crystal phase (for example, horizontal alignment, vertical alignment, hybrid alignment, etc.) of the polymerizable composition is fixed and exhibits optical anisotropy.
  • the film is used as an optical compensation film for a liquid crystal display device or the like.
  • One aspect of the optical film is a film including a layer in which a cholesteric liquid crystal phase of a polymerizable composition is fixed, and exhibits selective reflection characteristics with respect to light in a predetermined wavelength range. In the cholesteric liquid crystal phase, the liquid crystal molecules are arranged in a spiral.
  • a layer in which a cholesteric liquid crystal phase is fixed selectively reflects either right circularly polarized light or left circularly polarized light in the selective reflection wavelength region, and the other sense circle. It functions as a circularly polarized light selective reflection layer that transmits polarized light.
  • a film containing one or more cholesteric liquid crystal layers can be used for various applications.
  • the sense of circularly polarized light reflected by each cholesteric liquid crystal layer may be the same or opposite depending on the application.
  • the center wavelength of selective reflection described later of each cholesteric liquid crystal layer may be the same or different depending on the application.
  • the term “sense” for circularly polarized light means whether it is right circularly polarized light or left circularly polarized light.
  • the sense of circularly polarized light is right-handed circularly polarized light when the electric field vector tip turns clockwise as time increases when viewed as the light travels toward you, and left when it turns counterclockwise. Defined as being circularly polarized.
  • the term “sense” may be used for the twist direction of the spiral of the cholesteric liquid crystal.
  • the selective reflection by the cholesteric liquid crystal reflects right circularly polarized light when the twist direction (sense) of the cholesteric liquid crystal spiral is right, transmits left circularly polarized light, and reflects left circularly polarized light when the sense is left, Transmits circularly polarized light.
  • a film including a cholesteric liquid crystal layer exhibiting selective reflection characteristics in the visible light wavelength region can be used as a screen for projecting image display and a half mirror. Further, by controlling the reflection band, it can be used as a color filter or a filter that improves the color purity of display light of a display (see, for example, JP-A-2003-294948).
  • the optical film can be used for various applications such as a polarizing element, a reflection film, an antireflection film, a viewing angle compensation film, a holography, and an alignment film, which are constituent elements of the optical element.
  • the use as a projection image display member, which is a particularly preferred use, will be described below.
  • projection display material With the above function of the cholesteric liquid crystal layer, it is possible to form a projected image by reflecting the circularly polarized light of one of the senses at a wavelength showing selective reflection in the projection light.
  • the projected image may be displayed on the surface of the projected image display member and viewed as such, or may be a virtual image that appears above the projected image display member when viewed from the observer.
  • the selective reflection center wavelength ⁇ of the cholesteric liquid crystal layer means a wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
  • the center wavelength of selective reflection can be adjusted by adjusting the pitch of the helical structure.
  • the center wavelength ⁇ is adjusted, and an apparent selection is made.
  • the central wavelength of reflection can be in the wavelength range of 450 nm to 495 nm.
  • the apparent selective reflection center wavelength is the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum of the cholesteric liquid crystal layer measured from the observation direction in practical use (when used as a projection image display member). means.
  • the pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these.
  • ⁇ / ⁇ which is the ratio of the half-value width ⁇ of the selective reflection wavelength region and the center wavelength ⁇ of selective reflection
  • ⁇ / ⁇ is preferably 0.09 or less, and more preferably 0.07 or less. More specifically, in the cholesteric liquid crystal layer in the film, ⁇ / ⁇ preferably satisfies the above, and in a film including two or more cholesteric liquid crystal layers, ⁇ / ⁇ in each of the two or more cholesteric liquid crystal layers is It is preferable to satisfy the above.
  • Each layer may have the same or different ⁇ and ⁇ .
  • a cured film having an apparent selective reflection center wavelength in each of the red light wavelength region, the green light wavelength region, and the blue light wavelength region is prepared, and a full color is obtained by laminating them.
  • a projection image display member capable of displaying the projection image can be produced.
  • the half mirror is laminated with cured films having respective selective reflection center wavelengths in the respective ranges of 750 to 620 nm, 630 to 500 nm, and 530 to 420 nm (different from each other, for example, 50 nm or more). Is preferred.
  • the center wavelength of selective reflection of each cured film By adjusting the center wavelength of selective reflection of each cured film according to the emission wavelength range of the light source used for projection and the usage mode of the projection image display member, it is possible to display a clear projection image with high light utilization efficiency. it can.
  • a clear color projection image can be displayed with high light utilization efficiency.
  • usage of the projection image display member include an incident angle of projection light on the surface of the projection image display half mirror, a projection image observation direction on the surface of the projection image display member, and the like.
  • a half mirror that can be used as a combiner for a head-up display can be obtained by configuring the projection image display member to be transparent to light in the visible light region.
  • the projected image display half mirror can display an image projected from a projector or the like so that the projected image can be viewed.
  • the projected image displayed half mirror is observed from the same side where the image is displayed, It is possible to observe information or scenery on the surface side at the same time.
  • the substrate is preferably transparent in the visible light region and low birefringence.
  • the retardation of the substrate at a wavelength of 550 nm is preferably 50 nm or less, and more preferably 20 nm or less.
  • base materials include inorganic glass and polymer resins (acrylic resins (acrylic esters such as polymethyl (meth) acrylate)), polycarbonate, cyclic polyolefins such as cyclopentadiene polyolefin and norbornene polyolefin, and polyolefins such as polypropylene. And aromatic vinyl polymers such as polystyrene, polyarylate, cellulose acylate, etc.).
  • acrylic resins acrylic esters such as polymethyl (meth) acrylate
  • polycarbonate cyclic polyolefins such as cyclopentadiene polyolefin and norbornene polyolefin
  • polyolefins such as polypropylene.
  • aromatic vinyl polymers such as polystyrene, polyarylate, cellulose acylate, etc.
  • the half mirror for displaying projected images may include an antireflection layer.
  • the antireflection layer is preferably contained on the outermost surface. It may be provided on the outermost surface on the observation side when using the half mirror for projected image display, or may be provided on the outermost surface on the opposite side, but provided on the outermost surface on the observation side Is preferred.
  • an antireflection layer may be provided on both the substrate side surface and the cured film side on the observation side. This is because such a configuration makes it difficult to generate a double image that may occur particularly when the base material has high birefringence.
  • the antireflection layer for example, in addition to a film having fine surface irregularities, a two-layer structure in which a high refractive index layer and a low refractive index layer are combined, a medium refractive index layer, a high refractive index layer, and a low refractive index
  • a film having a three-layer film structure in which rate layers are sequentially stacked As a configuration example, two layers of a high refractive index layer / low refractive index layer or three layers having different refractive indexes are arranged in order from the bottom, and a medium refractive index layer (having a higher refractive index than the lower layer and a high refractive index).
  • a layer having a lower refractive index than a layer) / a layer having a higher refractive index / a layer having a lower refractive index are stacked in this order.
  • a medium refractive index layer / high refractive index layer / low refractive index layer in this order on the hard coat layer.
  • JP-A-8-122504 Examples include the configurations described in JP-A-8-110401, JP-A-10-300902, JP-A-2002-243906, JP-A-2000-11706, and the like.
  • each layer may be provided with other functions, for example, an antifouling low refractive index layer, an antistatic high refractive index layer, an antistatic hard coat layer, an antiglare hard coat layer, and the like. (For example, JP-A-10-206603, JP-A-2002-243906, JP-A-2007-264113, etc.).
  • SiO 2, SiO, ZrO 2 , TiO 2, TiO, Ti 2 O 3, Ti 2 O 5, Al 2 O 3, Ta 2 O 5, CeO 2, MgO, Y 2 O 3 , SnO 2 , MgF 2 , WO 3 and the like can be mentioned, and these can be used alone or in combination of two or more.
  • SiO 2 , ZrO 2 , TiO 2 and Ta 2 O 5 are preferable because they can be vacuum-deposited at a low temperature and can form a film on the surface of a plastic substrate.
  • the total optical film thickness of the ZrO 2 layer and the SiO 2 layer from the substrate side is ⁇ / 4
  • the optical film thickness of the ZrO 2 layer is ⁇ / 4
  • the outermost SiO 2 layer is SiO 2.
  • a laminated structure in which a high refractive index material layer and a low refractive index material layer having an optical film thickness of ⁇ / 4 are alternately formed is exemplified.
  • is a design wavelength, and usually 520 nm is used.
  • the outermost layer is preferably made of SiO 2 because it has a low refractive index and can impart mechanical strength to the antireflection layer.
  • the antireflection layer is formed of an inorganic material
  • a vacuum deposition method for example, an ion plating method, a sputtering method, a CVD method, a method of depositing by a chemical reaction in a saturated solution, or the like can be employed.
  • Examples of the organic material used for the low refractive index layer include FFP (tetrafluoroethylene-hexafluoropropylene copolymer), PTFE (polytetrafluoroethylene), ETFE (ethylene-tetrafluoroethylene copolymer), and the like. And a composition containing a fluorine-containing curable resin and inorganic fine particles described in JP-A-2007-298974, JP-A-2002-317152, JP-A-2003-202406, and JP-A-2003-292831.
  • the low-refractive-index coating composition containing hollow silica fine particles described in the Japanese Patent Publication No. 1 can be suitably used.
  • the film can be formed by a coating method having excellent mass productivity such as a spin coating method, a dip coating method, and a gravure coating method in addition to the vacuum vapor deposition method.
  • the low refractive index layer preferably has a refractive index of 1.30 to 1.51. It is preferably 1.30 to 1.46, more preferably 1.32 to 1.38.
  • Examples of organic materials used for the medium refractive index layer and the high refractive index layer include ionizing radiation curable compounds containing aromatic rings, ionizing radiation curable compounds containing halogenated elements other than fluorine (eg, Br, I, Cl, etc.), Examples thereof include binders obtained by crosslinking or polymerization reaction such as ionizing radiation curable compounds containing atoms such as S, N, and P, and inorganic particles mainly composed of TiO 2 added thereto. Specifically, those described in paragraph numbers [0074] to [0094] of JP-A-2008-262187 can be exemplified.
  • the refractive index of the high refractive index layer is preferably 1.65 to 2.20, more preferably 1.70 to 1.80.
  • the refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer.
  • the refractive index of the middle refractive index layer is preferably 1.55 to 1.65, and more preferably 1.58 to 1.63.
  • the thickness of the antireflection layer is not particularly limited, but may be about 0.1 to 10 ⁇ m, 1 to 5 ⁇ m, or 2 to 4 ⁇ m.
  • Trans-1,4-cyclohexadicarboxylic acid (21 g) and thionyl chloride (29 g) were stirred in toluene (60 mL) at an internal temperature of 70 ° C. for 2 hours. After the solvent was distilled off under reduced pressure, THF (tetrahydrofuran) (50 mL), phenol 1 (31.21 g) and BHT (dibutylhydroxytoluene) (0.2 g) were added, and N, N-dimethylaminopyridine (0.
  • Carboxylic acid I-1 500 mg
  • 2- (methoxycarbonyl) hydroquinone 100 mg
  • N, N-dimethylaminopyridine 7.3 mg
  • BHT 6.6 mg
  • DMAc dimethylacetamide
  • the mixture was stirred in a mixed solvent of THF (1 mL)
  • 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (252 mg) was added, and the mixture was stirred for 3 hours.
  • Water and ethyl acetate were added to remove the aqueous layer and washed with dilute hydrochloric acid.
  • 2,5-dihydroxybenzoic acid (10 g) was stirred in dimethylacetamide (50 mL), and triethylamine (9.8 mL), 4-acryloyloxybutyl methanesulfonate (11.1 g) and BHT (0.2 g) were added.
  • the mixture was stirred for 10 hours at an internal temperature of 70 ° C. After cooling to 30 ° C., water and ethyl acetate were added to remove the aqueous layer, and the mixture was washed successively with saturated aqueous sodium hydrogen carbonate, dilute hydrochloric acid and brine.
  • the organic layer was dried over magnesium sulfate, the desiccant was filtered, BHT (0.1 g) was added, and the solvent was distilled off under reduced pressure to obtain phenol derivative I-2.
  • Carboxylic acid I-1 500 mg
  • phenol derivative I-2 167 mg
  • N, N-dimethylaminopyridine 7.3 mg
  • BHT 6.6 mg
  • DMAc 2 mL
  • THF 1 mL
  • 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride 252 mg
  • Water and ethyl acetate were added to remove the aqueous layer and washed with dilute hydrochloric acid.
  • Succinic acid mono (2-acryloyloxyethyl) (10 g) was stirred in a mixed solution of ethyl acetate (32 mL) and dimethylacetamide (8 mL), and BHT (0.2 g) was added.
  • the reaction solution was cooled to an internal temperature of 0 ° C., a solution of thionyl chloride (3.3 mL) in ethyl acetate (10 mL) was added dropwise, and the mixture was stirred at 0 ° C. for 30 minutes. Thereafter, 2- (4-hydroxyphenyl) ethanol (5.3 g) and pyridine (3.7 mL) were added at an internal temperature of 0 ° C., and the mixture was stirred at room temperature for 2 hours.
  • Trans-1,4-cyclohexadicarboxylic acid (5.0 g) was stirred in toluene (30 mL), the temperature was raised to 75 ° C., thionyl chloride (6.3 mL) was added dropwise, and the mixture was stirred for 3 hours.
  • the solvent was distilled off under reduced pressure, washed with hexane, and collected by filtration to obtain dicarboxylic acid chloride I-6 (4.5 g).
  • Dicarboxylic acid chloride I-6 (1.7 g) and phenol (4.5 g) were stirred in THF (10 mL). Triethylamine (2.5 mL) and N, N-dimethylaminopyridine (0.2 g) were added at an internal temperature of 2 ° C., and the mixture was stirred at room temperature for 3 hours. Water and ethyl acetate were added to remove the aqueous layer, followed by washing with water and brine in this order. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and then the solvent was distilled off under reduced pressure to obtain ester I-7.
  • Ester I-7 (5.0 g) was stirred in a mixed solution of THF (16 mL) and acetic acid (4.6 mL), and 1.0 mol / L N, N, N. N-tetrabutylammonium fluoride / THF solution (23.8 mL) was added dropwise. After stirring at room temperature for 1 hour, water and ethyl acetate were added to remove the aqueous layer, followed by washing with water and brine in this order. After drying the organic layer with magnesium sulfate and filtering the desiccant, the solvent was distilled off under reduced pressure, washed with acetonitrile, and collected by filtration to obtain phenol derivative I-8 (1.7 g).
  • trans-1,4-cyclohexadicarboxylic acid (10 g), mesyl chloride (1.9 mL), and BHT (0.2 g) were stirred in THF (72 mL), and the internal temperature was kept at 25 ° C. or less to triethylamine ( 3.7 mL) was added dropwise.
  • THF 72 mL
  • N, N-dimethylaminopyridine 0.3 g
  • 4-hydroxybutyl acrylate 3.1 g
  • trans-1,4-cyclohexadicarboxylic acid (10 g), mesyl chloride (1.9 mL) and BHT (0.2 g) were stirred in THF (72 mL), and the internal temperature was kept at 25 ° C. or lower to maintain triethylamine (3 7 mL) was added dropwise.
  • THF 72 mL
  • triethylamine 3 7 mL
  • N, N-dimethylaminopyridine 0.3 g
  • 2-hydroxyethyl acrylate 2.3 mL
  • triethylamine (3.7 mL) was added dropwise at an internal temperature of 25 ° C. or lower. did.
  • Carboxylic acid I-9 (1.0 g), phenol derivative I-8 (751 mg), N, N-dimethylaminopyridine (39 mg) and BHT (18 mg) were stirred in dichloromethane (3.3 mL), and 3- [ (Ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (914 mg) was added and stirred at room temperature for 4 hours. After performing Celite filtration, water was added to the filtrate to remove the aqueous layer, and the organic layer was dried over magnesium sulfate. The desiccant was filtered, BHT (10 mg) was added, and the solvent was distilled off under reduced pressure. Methanol (5 mL) was added and cooled to an internal temperature of 0 ° C., and the resulting crystals were filtered to obtain Compound 1.
  • Carboxylic acid I-9 (332 mg), carboxylic acid I-10 (301 mg), phenol derivative I-8 (500 mg), N, N-dimethylaminopyridine (26 mg), and BHT (12 mg) in dichloromethane (2.1 mL) Then, 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (920 mg) was added and stirred for 4 hours. After performing Celite filtration, water was added to the filtrate to remove the aqueous layer, and the organic layer was dried over magnesium sulfate. The desiccant was filtered, BHT (10 mg) was added, and the solvent was distilled off under reduced pressure.
  • Trans-1,4-cyclohexadicarboxylic acid (3.4 g), mesyl chloride (1.2 g), and BHT (0.1 g) were stirred in THF (30 mL), and the internal temperature was kept below 25 ° C. Triethylamine (1.5 mL) was added dropwise. After stirring at room temperature for 2 hours, N, N-dimethylaminopyridine (0.1 g) and phenol derivative I-11 (1.9 g) were added, and triethylamine (1.5 mL) was added dropwise at an internal temperature of 25 ° C. or lower. .
  • Carboxylic acid I-12 (600 mg), 2- (methoxycarbonyl) hydroquinone (242 mg), N, N-dimethylaminopyridine (11 mg), and BHT (9.5 mg) in dichloromethane (4 mL) and DMAc (2 mL)
  • dichloromethane 4 mL
  • DMAc 2 mL
  • 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (498 mg) was added, and the mixture was stirred at room temperature for 6 hours.
  • silica gel filtration water was added to the filtrate to remove the aqueous layer, and the organic layer was dried over magnesium sulfate.
  • Carboxylic acid I-12 (600 mg), phenol derivative I-2 (145 mg), N, N-dimethylaminopyridine (11 mg) and BHT (9.5 mg) were mixed in a mixed solvent of dichloromethane (4 mL) and DMAc (2 mL). The mixture was stirred, 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (498 mg) was added, and the mixture was stirred at room temperature for 6 hours. After silica gel filtration, water was added to the filtrate to remove the aqueous layer, and the organic layer was dried over magnesium sulfate.
  • Dicarboxylic acid chloride I-6 (960 mg) and 2- (methoxycarbonyl) hydroquinone (1.5 g) were stirred in THF (5.7 mL). Triethylamine (1.5 mL) and N, N-dimethylaminopyridine (56 mg) were added at an internal temperature of 2 ° C., and the mixture was stirred at room temperature for 2 hours. Water and ethyl acetate were added to remove the aqueous layer, and the organic layer was washed with water and brine successively. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and the solvent was distilled off under reduced pressure. Methanol (15 mL) was added and the mixture was stirred at an internal temperature of 0 ° C. for 30 minutes, and the produced crystals were filtered to obtain 1.85 g of Compound I-13.
  • Carboxylic acid I-9 (1.72 g), BHT (0.3 g) and thionyl chloride (0.47 mL) were stirred in toluene (2.7 mL) at room temperature for 1 hour. After evaporation of the solvent under reduced pressure, ethyl acetate (5 mL) and phenol derivative I-13 (0.8 g) were added, and N, N-dimethylaminopyridine (0.1 g) and triethylamine (1.1 mL) were added dropwise. And stirred at room temperature for 3 hours. Methanol (1 mL) was added, and the mixture was stirred at room temperature for 15 minutes.
  • Phenol derivative I-17 was synthesized in the same manner as compound I-13. Further, Compound 49 was obtained using the same synthesis method as that for Compound 47.
  • a phenol derivative was synthesized in the same manner as for compound I-13. Further, Compound 58 was obtained using the same synthesis method as Compound 47.
  • a phenol derivative was synthesized in the same manner as for compound I-13. Further, Compound 59 was obtained by purification by column chromatography using the same synthesis method as that for Compound 55.
  • Compound 62 was obtained using the same synthesis method as Compound 55.
  • a carboxylic acid was synthesized in the same manner as in Compound I-10. Further, the mixture was purified by column chromatography using the same synthesis method as that for Compound 55 to obtain a mixture of Compounds 66, 67 and 68.
  • Trans-1,4-cyclohexanedicarboxylic acid monoethoxymethyl ester (1.5 g) was stirred in dimethylacetamide (7 mL), alcohol derivative (2.0 g), BHT (0.1 g), dimethylaminopyridine (0. 08g) was added and cooled to 0 degrees.
  • 1- (3-Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (WSCD HCl) 1.5 g was added in small portions and stirred for 3 hours.
  • 1M Dilute hydrochloric acid was added, and the mixture was further stirred for 5 minutes.
  • ⁇ Measurement of birefringence 1> The birefringence ( ⁇ n) of each compound synthesized above and a conventionally known compound is shown in p. Of Liquid Crystal Handbook (Liquid Crystal Handbook Editorial Committee). Measured according to the method described in 202. Specifically, ⁇ n at 60 ° C. was determined by injecting a sample into a wedge-shaped cell, irradiating the sample with laser light having a wavelength of 550 nm, and measuring the refraction angle of transmitted light. As a sample, a liquid crystal composition prepared by mixing each compound synthesized above or a conventionally known compound according to the following table was used. In Examples 1 to 4 and Comparative Example 1, precipitation of crystals during measurement was not observed, but in Comparative Example 2, crystals were precipitated during measurement, and ⁇ n could not be measured.
  • the birefringence ( ⁇ n) of a liquid crystal composition obtained by mixing Compound I-1-56 and the following Compound M-3 was determined by referring to the liquid crystal manual (Liquid Crystal Handbook Editorial Committee) p. Measured according to the method described in 202. Specifically, the liquid crystal composition obtained by mixing Compound I-1-56 (50 parts by mass) with Compound M-3 (50 parts by mass) is injected into a wedge-shaped cell, and light having a wavelength of 550 nm is injected. Then, ⁇ n at 50 ° C. was determined by measuring the interval between the stripe patterns observed under the crossed Nicols condition. The obtained ⁇ n was 0.066.
  • a liquid crystal composition coating liquid (1) having the following composition was prepared.
  • Compound 20 50 parts by mass Compound (M-1) 50 parts by mass Air interface alignment agent (1) 0.15 parts by mass Polymerization initiator IRGACURE819 (manufactured by BASF) 2 parts by mass Solvent chloroform 900 parts by mass
  • a polyimide alignment film SE-130 manufactured by Nissan Chemical Industries, Ltd. was applied onto the cleaned glass substrate by a spin coating method, dried, and baked at 250 ° C. for 1 hour. This was rubbed to produce a substrate with an alignment film.
  • the liquid crystal composition coating liquid (1) is applied to the rubbing-treated surface of the prepared alignment film-coated substrate at room temperature by a spin coating method, and subjected to orientation aging at 100 ° C. for 1 minute, and then at 50 ° C. in a nitrogen gas atmosphere.
  • the alignment was fixed by irradiating light for 30 seconds using a high-pressure mercury lamp, and the retardation film 1 was formed. During the period after application and before heating, no crystal deposition was observed in the coating film.
  • the average tilt angle of the liquid crystal calculated by this apparatus is 0.8 degrees, and the A-plate type retardation film is It was confirmed that it was formed.
  • the phase difference measured using this apparatus was 211 nm.
  • the film thickness measured using a non-contact three-dimensional surface shape measurement system (Nikon BW-A501) was 1.9 nm, and ⁇ n at a wavelength of 550 nm calculated from the ratio of the phase difference and the film thickness was 0.111. Met.
  • compound 20 is compound 44, compound 16, polymerizable liquid crystal compound (M-2), compound 50, compound 53, compound 54, compound 55, compound 57, compound 59, and compound.
  • polymerizable composition coating liquids respectively changed to 62 and 60, retardation films 2 to 11 were prepared in the same manner as the retardation film 1, and ⁇ n was measured in the same manner as the measurement of the retardation film 1. Calculated. The results are shown in Table 2.
  • the compound 20, the compound 44, the compound 16, the compound 50, the compound 53, the compound 54, the compound 55, the compound 57, the compound 59, the compound 62, and the compound 60 are used, it is between application and polymerization. Crystallization was not observed, but when the polymerizable liquid crystal compound (M-2) was used, crystal deposition was observed on a part of the coated surface before polymerization after coating, which was uneven. It became planar.
  • a liquid crystal composition coating liquid (13) having the following composition was prepared using the exemplary compounds synthesized in the above Examples.
  • a polyimide alignment film SE-130 manufactured by Nissan Chemical Industries, Ltd. was applied onto the cleaned glass substrate by a spin coating method, dried, and baked at 250 ° C. for 1 hour. This was rubbed to produce a substrate with an alignment film.
  • a liquid crystal composition coating solution (13) is applied to the rubbing-treated surface of the prepared substrate with an alignment film by spin coating at room temperature, and subjected to alignment aging at 130 ° C. for 1 minute, and then at 50 ° C. in a nitrogen gas atmosphere.
  • the alignment was fixed by irradiating light for 30 seconds using a high-pressure mercury lamp, and the retardation film 12 was formed. During the period after application and before heating, no crystal deposition was observed in the coating film.
  • the average tilt angle of the liquid crystal calculated by this apparatus is 1.0 degree, and the A-plate type retardation film is It was confirmed that it was formed.
  • the phase difference measured using this apparatus was 200 nm.
  • the film thickness measured using a non-contact three-dimensional surface shape measurement system (Nikon BW-A501) was 1.8 nm, and ⁇ n at a wavelength of 550 nm calculated from the ratio between the phase difference and the film thickness was 0.112. Met.
  • a liquid crystalline composition coating liquid (111) having the following composition was prepared.
  • Compound 28 80 parts by mass Compound (M-3) 20 parts by mass Trimethylolpropane triacrylate 5 parts by mass chiral agent LC-756 (manufactured by BASF) 6 parts by mass air interface alignment agent (1) 0.1 parts by mass polymerization initiator IRGACURE 819 (manufactured by BASF) 4 parts by weight solvent chloroform 300 parts by weight
  • a polyimide alignment film SE-130 manufactured by Nissan Chemical Industries, Ltd. was applied onto the cleaned glass substrate by a spin coating method, dried, and baked at 250 ° C. for 1 hour. This was rubbed to produce a substrate with an alignment film.
  • a liquid crystal composition coating liquid (111) is applied to the rubbing-treated surface of the prepared substrate with an alignment film by spin coating at room temperature, followed by orientation aging at 120 ° C. for 2 minutes, and then at 70 ° C. in a nitrogen gas atmosphere. Using a high-pressure mercury lamp, UV irradiation was performed so that the irradiation amount was 300 mJ / cm 2 , the orientation was fixed, and the selective reflection layer (111) was formed, whereby the selective reflection film 1 was obtained.
  • the coating film During the period after application and before heating, no crystal deposition was observed in the coating film.
  • the thickness of the coating film was 5.2 ⁇ m.
  • the selective reflection layer (111) obtained by aligning and fixing the liquid crystal composition was observed with a polarizing microscope, it was confirmed that there was no alignment defect and the layer was uniformly aligned.
  • the transmission spectrum of the selective reflection film 1 was measured with a spectrophotometer UV-3100PC manufactured by Shimadzu Corporation, there was a selective reflection peak centered at 472 nm, and its half-value width was 27 nm.
  • the ratio ( ⁇ / ⁇ ) between the half-value width of the selective reflection wavelength region and the center wavelength of selective reflection was 0.057.
  • the obtained transmission spectrum is shown in FIG.
  • a liquid crystal composition coating liquid (112) having the following composition was prepared.
  • Compound (M-1) 100 parts by mass chiral agent LC-756 (manufactured by BASF) 5.4 parts by mass air interface alignment agent (1) 0.1 part by mass polymerization initiator IRGACURE819 (manufactured by BASF) 3 parts by mass solvent chloroform 300 parts by mass
  • the selective reflection layer (112) is formed in the same procedure as the production of the selective reflection layer (111) except that the liquid crystal composition coating liquid (112) is used instead of the liquid crystal composition coating liquid (111).
  • a selective reflection film 2 was obtained.
  • precipitation of crystals was observed on a part of the coated surface, resulting in a non-uniform surface.
  • the transmission spectrum of the uniform part of the selective reflection film 2 was measured, there was a selective reflection peak centered at 569 nm, and the half-value width was 71 nm.
  • the ratio ( ⁇ / ⁇ ) between the half-value width of the selective reflection wavelength region and the center wavelength of selective reflection was 0.125.
  • a liquid crystal composition coating liquid (113) having the following composition was prepared.
  • Compound 55 100 parts by mass chiral agent LC-756 (manufactured by BASF) 4.2 parts by mass air interface alignment agent (1) 0.1 parts by mass polymerization initiator IRGACURE 819 (manufactured by BASF) 3 parts by mass solvent methyl ethyl ketone 180 parts by mass cyclohexanone 20 parts by mass
  • the coating layer is dried at room temperature for 30 seconds, then heated in an atmosphere of 75 ° C. for 2 minutes, and UV irradiation is performed using a high-pressure mercury lamp at 50 ° C. in a nitrogen gas atmosphere to select 300 mJ / cm 2.
  • a reflective layer (113) was formed to obtain a selective reflection film 3. During the period after application and before heating, no crystal deposition was observed in the coating film.
  • the selective reflection layer (113) was observed with a polarizing microscope, it was confirmed that the selective reflection layer (113) was uniformly oriented with no orientation defect. Furthermore, when the transmission spectrum of the selective reflection film 3 was measured with a spectrophotometer UV-3100PC manufactured by Shimadzu Corporation, there was a selective reflection peak centered at 498 nm, and its half-value width was 23 nm. The ratio ( ⁇ / ⁇ ) between the half-value width of the selective reflection wavelength region and the center wavelength of selective reflection was 0.046. The obtained transmission spectrum is shown in FIG.
  • a liquid crystal composition coating liquid (114) having the following composition was prepared.
  • Compound 55 70 parts by mass Compound 62 30 parts by mass chiral agent LC-756 (manufactured by BASF) 3.6 parts by mass air interface alignment agent (2) 0.05 parts by mass polymerization initiator IRGACURE819 (manufactured by BASF) 3 parts by mass solvent 230 parts by mass of methyl acetate
  • a liquid crystal composition coating liquid (115) having the following composition was prepared.
  • Compound 55 70 parts by mass Compound 62 30 parts by mass chiral agent LC-756 (manufactured by BASF) 4.1 parts by mass air interface alignment agent (2) 0.05 parts by mass polymerization initiator IRGACURE 819 (manufactured by BASF) 3 parts by mass solvent 230 parts by mass of methyl acetate
  • a liquid crystal composition coating liquid (116) having the following composition was prepared.
  • Compound 55 70 parts by mass Compound 62 30 parts by mass chiral agent LC-756 (manufactured by BASF) 4.8 parts by mass air interface alignment agent (2) 0.05 parts by mass polymerization initiator IRGACURE 819 (manufactured by BASF) 3 parts by mass solvent 230 parts by mass of methyl acetate
  • the coating layer is dried at room temperature for 30 seconds, it is heated for 2 minutes in an atmosphere of 75 ° C., and UV irradiation is performed using a high pressure mercury lamp at 55 ° C. in a nitrogen gas atmosphere so that the irradiation dose is 300 mJ / cm 2.
  • a reflective layer (114) was formed. During the period after application and before heating, no crystal deposition was observed in the coating film.
  • the polymerizable composition coating liquid (115) is dried on the selective reflection layer (114) at room temperature so that the dry film thickness becomes 3.8 ⁇ m (total film thickness with the lower layer is 8.3 ⁇ m). And using a wire bar. After the coating layer is dried at room temperature for 30 seconds, it is heated for 2 minutes in an atmosphere of 75 ° C., and UV irradiation is performed using a high pressure mercury lamp at 55 ° C. in a nitrogen gas atmosphere so that the irradiation dose is 300 mJ / cm 2. A reflective layer (115) was formed.
  • the dry film thickness is 2.8 ⁇ m (total film thickness with the lower layer is 11.1 ⁇ m) at room temperature. And applied using a wire bar.
  • the coating layer was dried at room temperature for 30 seconds, then heated in an atmosphere of 70 ° C. for 1 minute, and irradiated with UV at 55 ° C. in a nitrogen gas atmosphere using a high-pressure mercury lamp so that the irradiation amount was 300 mJ / cm 2 .
  • the selective reflection layer (116) was formed, and the selective reflection film 4 was obtained.
  • a UV curable adhesive Exp. U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the surface and the adhesive application surface of the selective reflection film 4 are bonded together and irradiated with UV, and the PET film of the selective reflection film 4 is peeled off, so that the projected image display half mirror 1 is formed on the acrylic substrate.
  • a high refractive index layer having a thickness of 0.13 ⁇ m and a low refractive index layer having a refractive index of 1.343 and a thickness of 0.094 ⁇ m formed thereon with an antireflection layer having a surface reflectance at 550 nm of 0.4% A film was prepared.
  • U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coated surface and the selective reflection film (116) side of the selective reflection film 4 produced above were bonded together so that no air bubbles would enter, and then output at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at 60% output.
  • UV irradiation was performed for 6 to 12 seconds, and then the PET film of the selective reflection film 4 was peeled off to produce a visible light reflection film 11 with an antireflection layer.
  • a UV curable adhesive Exp. U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • a transparent substrate made of methacrylic with a maximum thickness of 5 nm and a retardation of 5 mm in a 10 cm square plane where color unevenness is not visible in the plane with the polarizing plates orthogonally crossed (“Mitsubishi Rayon” Acrylite L ”) surface and the adhesive-coated surface of the visible light reflecting film 11 are bonded together and irradiated with UV, whereby an acrylic base material, a selective reflection layer (114), a selective reflection layer (115), a selective reflection layer ( 116), and a projection image display half mirror 2 having an antireflection layer in this order.

Abstract

The present invention provides: a polymerizable compound represented by formula (I) (In the formula: Z1 and Z2 represent arylene groups or the like; m represents an integer of 1 or 2; n represents an integer of 0 or 1; n is 0 when m is 2; L1, L2, L3, and L4 each independently represent a bonded group such as -C(=O)O- or -OC(=O)-; T3 represents -Sp4-R4; X represents -O- or the like; r represents 1 to 4; Sp1, Sp2, Sp3, Sp4, and Sp5 each independently represent a single bond or a bonded group; R1 and R2 each independently represent a polymerizable group; and R3, R4, and R5 each independently represent a hydrogen atom, a polymerizable group, or the like.); a polymerizable composition including the polymerizable compound; a film formed from the polymerizable composition; and a half mirror for projection image display including the film.

Description

重合性化合物、ポリマー、重合性組成物、フィルム、および投映像表示用ハーフミラーPolymerizable compound, polymer, polymerizable composition, film, and half mirror for projected image display
 本発明は、新規な重合性化合物に関する。本発明はまた、新規な重合性化合物を含む重合性組成物および新規な重合性化合物を含む重合性組成物を用いて作製されるフィルム、および上記重合性組成物を用いて作製される投映像表示用ハーフミラーに関する。 The present invention relates to a novel polymerizable compound. The present invention also relates to a polymerizable composition comprising a novel polymerizable compound, a film produced using the polymerizable composition comprising the novel polymerizable compound, and a projected image produced using the polymerizable composition. It relates to a display half mirror.
 液晶性を有する重合性化合物を用いて、位相差膜や反射膜などの様々な光学フィルムの作製が可能である。重合性化合物の複屈折性は得られる光学フィルムの光学的性質に大きく関わる性質の1つである。例えば、高い複屈折性を示す液晶を用いることにより薄い膜厚で所望の位相差を有する位相差膜を得ることができる(特許文献1)。
 一方、複屈折性の低い重合性化合物を用いて形成したコレステリック液晶相を固定したフィルムとすることにより、反射波長域の選択性の高い反射膜を得ることができる。特許文献2には、特定の構造の非液晶性(メタ)アクリレート化合物を重合性液晶化合物とともに用いることにより低複屈折性位相差膜、または反射波長域の選択性の高い反射膜が得られたことが記載されている。
Various optical films such as a retardation film and a reflective film can be produced using a polymerizable compound having liquid crystallinity. The birefringence of the polymerizable compound is one of the properties greatly related to the optical properties of the obtained optical film. For example, a retardation film having a desired retardation can be obtained with a thin film thickness by using a liquid crystal exhibiting high birefringence (Patent Document 1).
On the other hand, by using a film in which a cholesteric liquid crystal phase formed using a polymerizable compound having low birefringence is fixed, a reflective film having high selectivity in the reflection wavelength region can be obtained. In Patent Document 2, a non-liquid crystalline (meth) acrylate compound having a specific structure is used together with a polymerizable liquid crystal compound to obtain a low birefringence retardation film or a reflective film with high selectivity in the reflection wavelength region. It is described.
WO2011/162291WO2011 / 162291 特開2004-262884号公報Japanese Patent Application Laid-Open No. 2004-262884 WO2014/010325WO2014 / 010325 特開2010―270108号公報JP 2010-270108 A
 本発明は、低複屈折性液晶として利用可能な新規な重合性化合物を提供することを課題とする。本発明はまた、低複屈折性位相差膜、または反射波長域の選択性の高い反射膜等のフィルムを提供することを課題とする。 An object of the present invention is to provide a novel polymerizable compound that can be used as a low birefringence liquid crystal. Another object of the present invention is to provide a film such as a low birefringence retardation film or a reflection film having high selectivity in the reflection wavelength region.
 本発明者らは、上記課題の解決のために様々な構造の化合物を検討していたところ、特許文献3または4により公知の重合性化合物に類似の構造を有する新規な化合物が、低複屈折性を示し、また、フィルムの形成に有利な性質を有することを見出し、この知見に基づきさらに検討を重ね、本発明を完成させた。
 すなわち、本発明は以下の<1>~<22>を提供するものである。
<1>式(I)で表される重合性化合物;
The inventors of the present invention have studied compounds having various structures in order to solve the above-described problems. As a result, a novel compound having a structure similar to a known polymerizable compound according to Patent Document 3 or 4 has low birefringence. In addition, the inventors have found that the film has properties that are advantageous for film formation, and have further studied based on this finding, thereby completing the present invention.
That is, the present invention provides the following <1> to <22>.
<1> a polymerizable compound represented by formula (I);
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式中、Z1およびZ2は、それぞれ独立に、置換基を有していてもよいトランス-1,4-シクロヘキシレン基、置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基を示し、
上記置換基はいずれもそれぞれ独立に、-CO-X-Sp3-R3、アルキル基、およびアルコキシ基からなる群から選択される1から4個の置換基であり、
mは1または2の整数を示し、nは0または1の整数を示し、
mが2を示すときnは0を示し、
mが2を示すとき2つのZ1は同一であっても異なっていてもよく、
1、L2、L3、L4はそれぞれ独立に、単結合、-O-、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-NH-、N(CH3)-、-S-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-C(=O)N(T3)-、-N(T3)C(=O)-、-C(=O)S-、-SC(=O)-、-CH2C(=O)O-、-OC(=O)CH2-、-CH=CH-C(=O)O-、-OC(=O)-CH=CH-、-CH=N-、-N=CH-、および-N=N-からなる群から選択される連結基を示し、
3は-Sp4-R4を表し、
Xは-O-、-S-、もしくは-N(Sp5-R5)-を示すか、または、R3およびSp3と共に環構造を形成する窒素原子を示し、
rは1から4の整数を示し、
Sp1、Sp2、Sp3、Sp4、Sp5はそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示し、
1およびR2はそれぞれ独立に、以下の式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示し、
3、R4、R5はそれぞれ独立に、水素原子、シクロアルキル基、シクロアルキル基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、または以下の式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示し、R3は、XがR3およびSp3と共に環構造を形成する窒素原子である場合において単結合を示してもよく、Sp5が単結合のとき、R5は水素原子ではない。
In the formula, Z 1 and Z 2 each independently have a trans-1,4-cyclohexylene group which may have a substituent, an arylene group which may have a substituent or a substituent. A heteroarylene group which may be
Each of the above substituents is independently 1 to 4 substituents selected from the group consisting of —CO—X—Sp 3 —R 3 , an alkyl group, and an alkoxy group,
m represents an integer of 1 or 2, n represents an integer of 0 or 1,
When m represents 2, n represents 0,
when m represents 2, two Z 1 may be the same or different;
L 1 , L 2 , L 3 and L 4 are each independently a single bond, —O—, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC (═O) —, —C ( ═O) O (CH 2 ) 2 —, —NH—, N (CH 3 ) —, —S—, —C (═O) O—, —OC (═O) —, —OC (═O) O —, —C (═O) N (T 3 ) —, —N (T 3 ) C (═O) —, —C (═O) S—, —SC (═O) —, —CH 2 C ( ═O) O—, —OC (═O) CH 2 —, —CH═CH—C (═O) O—, —OC (═O) —CH═CH—, —CH═N—, —N═ A linking group selected from the group consisting of CH— and —N═N—,
T 3 represents —Sp 4 —R 4 ,
X represents —O—, —S—, or —N (Sp 5 —R 5 ) —, or represents a nitrogen atom that forms a ring structure with R 3 and Sp 3 ,
r represents an integer of 1 to 4,
Sp 1 , Sp 2 , Sp 3 , Sp 4 and Sp 5 are each independently a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms. In which one or more —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O) —, or A linking group selected from the group consisting of groups substituted with -C (= O) O-;
R 1 and R 2 each independently represents any polymerizable group selected from the group consisting of groups represented by the following formulas (Q-1) to (Q-5);
R 3 , R 4 and R 5 each independently represents one or more —CH 2 — in a hydrogen atom, cycloalkyl group or cycloalkyl group —O—, —S—, —NH—, —N A group substituted with (CH 3 ) —, —C (═O) —, —OC (═O) —, or —C (═O) O—, or the following formulas (Q-1) to (Q −5) represents any polymerizable group selected from the group consisting of the groups represented by the formula: R 3 represents a single bond when X is a nitrogen atom that forms a ring structure with R 3 and Sp 3. It may be shown that when Sp 5 is a single bond, R 5 is not a hydrogen atom.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
<2>上記アリーレン基が1,4-フェニレン基である<1>に記載の重合性化合物。
<3>Z1およびZ2の少なくともいずれか一つは置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基である<1>または<2>に記載の重合性化合物。
<4>m+nが2である<1>~<3>のいずれか一項に記載の重合性化合物。
<5>mが2であり、かつ2つのZ1がR1方向からそれぞれ置換基を有していてもよいトランス-1,4-シクロヘキシレン基、置換基を有していてもよいアリーレン基であるか、または
mが1であり、nが1であり、Z1が置換基を有していてもよいアリーレン基であり、かつZ2が置換基を有していてもよいアリーレン基である<4>に記載の重合性化合物。
<6>L2がR1方向から-C(=O)O-であり、かつL3がR1方向から-OC(=O)-である<1>~<5>のいずれか一項に記載の重合性化合物。
<7>R1およびR2がそれぞれ独立に式(Q-1)で表される基または式(Q-2)で表される基である<1>~<6>のいずれか一項に記載の重合性化合物。
<8>mが1であり、nが1であり、rが1であり、Sp3が炭素数1から20の直鎖もしくは分岐のアルキレン基であり、かつR3が水素原子である<1>~<3>のいずれか一項に記載の重合性化合物。
<9>mが1であり、nが1であり、Z1およびZ2が、いずれも置換基を有していてもよいトランス-1,4-シクロヘキシレン基である<1>または<2>に記載の重合性化合物。
<10>L1、L2、L3、L4がいずれも、-C(=O)O-、または-OC(=O)-である<1>~<9>のいずれか一項に記載の重合性化合物。
<11><1>~<10>のいずれか一項に記載の重合性化合物の重合反応により得られるポリマー。
<2> The polymerizable compound according to <1>, wherein the arylene group is a 1,4-phenylene group.
<3> At least one of Z 1 and Z 2 is an arylene group which may have a substituent or a heteroarylene group which may have a substituent, described in <1> or <2> Polymerizable compound.
<4> The polymerizable compound according to any one of <1> to <3>, wherein m + n is 2.
<5> m is 2, and two Z 1 groups may each have a substituent from the R 1 direction, trans-1,4-cyclohexylene group, and optionally substituted arylene group Or m is 1, n is 1, Z 1 is an arylene group which may have a substituent, and Z 2 is an arylene group which may have a substituent. The polymerizable compound according to <4>.
<6> Any one of <1> to <5>, wherein L 2 is —C (═O) O— from the R 1 direction and L 3 is —OC (═O) — from the R 1 direction. The polymerizable compound described in 1.
<7> In any one of <1> to <6>, wherein R 1 and R 2 are each independently a group represented by the formula (Q-1) or a group represented by the formula (Q-2) The polymerizable compound described.
<8> m is 1, n is 1, r is 1, Sp 3 is a linear or branched alkylene group having 1 to 20 carbon atoms, and R 3 is a hydrogen atom <1 The polymerizable compound according to any one of> to <3>.
<9> m is 1, n is 1, and Z 1 and Z 2 are both trans-1,4-cyclohexylene groups which may have a substituent, <1> or <2 The polymerizable compound according to>.
<10> Any one of <1> to <9>, wherein L 1 , L 2 , L 3 , and L 4 are all —C (═O) O— or —OC (═O) —. The polymerizable compound described.
<11> A polymer obtained by a polymerization reaction of the polymerizable compound according to any one of <1> to <10>.
<12><1>~<10>のいずれか一項に記載の重合性化合物を含む重合性組成物。
<13>式(I)で表される重合性化合物とともに他の液晶化合物を含む<12>に記載の重合性組成物。
<14>架橋剤を含む<12>または<13>に記載の重合性組成物。
<15>重合開始剤を含有する<12>~<14>のいずれか一項に記載の重合性組成物。
<16>キラル化合物を含有する<12>~<15>のいずれか一項に記載の重合性組成物。
<17><12>~<16>のいずれか1項に記載の重合性組成物の硬化により得られる層を含むフィルム。
<18><12>~<17>のいずれか1項に記載の重合性組成物の硬化により得られる層を2層以上含むフィルム。
<19>選択反射を示し、
上記選択反射の波長域の半値幅Δλと上記選択反射の中心波長λとの比であるΔλ/λが0.09以下である<17>または<18>に記載のフィルム。
<20>可視光を反射する<17>~<19>のいずれか一項に記載のフィルム。
<21><12>~<16>のいずれか一項に記載の重合性組成物から形成される層を少なくとも3層含むフィルムであって、
上記3層が、赤色光波長域に選択反射の中心波長を有するコレステリック液晶相を固定した層、緑色光波長域に選択反射の中心波長を有するコレステリック液晶相を固定した層、および青色光波長域に選択反射の中心波長を有するコレステリック液晶相を固定した層であるフィルム。
<22><21>に記載のフィルムを含む投映像表示用ハーフミラー。
<23>無機ガラスまたはアクリル樹脂である基材を含む<22>に記載の投映像表示用ハーフミラー。
<24>最表面に反射防止層を含む、<22>または<23>に記載の投映像表示用ハーフミラー。
<12> A polymerizable composition comprising the polymerizable compound according to any one of <1> to <10>.
<13> The polymerizable composition according to <12>, which contains another liquid crystal compound together with the polymerizable compound represented by formula (I).
<14> The polymerizable composition according to <12> or <13>, which contains a crosslinking agent.
<15> The polymerizable composition according to any one of <12> to <14>, containing a polymerization initiator.
<16> The polymerizable composition according to any one of <12> to <15>, containing a chiral compound.
<17> A film comprising a layer obtained by curing the polymerizable composition as described in any one of <12> to <16>.
<18> A film comprising two or more layers obtained by curing the polymerizable composition as described in any one of <12> to <17>.
<19> indicates selective reflection,
<17> or <18> The film according to <17> or <18>, wherein Δλ / λ, which is a ratio between the half-value width Δλ of the selective reflection wavelength region and the central wavelength λ of the selective reflection, is 0.09 or less.
<20> The film according to any one of <17> to <19>, which reflects visible light.
<21> A film comprising at least three layers formed from the polymerizable composition according to any one of <12> to <16>,
The three layers are a layer in which a cholesteric liquid crystal phase having a central wavelength of selective reflection is fixed in a red light wavelength region, a layer in which a cholesteric liquid crystal phase having a central wavelength of selective reflection is fixed in a green light wavelength region, and a blue light wavelength region A film in which a cholesteric liquid crystal phase having a central wavelength of selective reflection is fixed.
<22> A half mirror for displaying projected images including the film according to <21>.
<23> The half mirror for displaying projected images according to <22>, including a base material made of inorganic glass or acrylic resin.
<24> The half mirror for displaying projected images according to <22> or <23>, including an antireflection layer on the outermost surface.
 本発明により、低複屈折性液晶として利用可能な新規な重合性化合物が提供される。本発明はまた、低複屈折性位相差膜、または反射波長域の選択性の高い反射膜等の新規なフィルムを提供する。 The present invention provides a novel polymerizable compound that can be used as a low birefringence liquid crystal. The present invention also provides a novel film such as a low birefringence retardation film or a reflection film having high selectivity in the reflection wavelength region.
実施例で作製した選択反射フィルム1の透過スペクトルを示す図である。It is a figure which shows the transmission spectrum of the selective reflection film 1 produced in the Example. 実施例で作製した選択反射フィルム3の透過スペクトルを示す図である。It is a figure which shows the transmission spectrum of the selective reflection film 3 produced in the Example. 実施例で作製した選択反射フィルム4の透過スペクトルを示す図である。It is a figure which shows the transmission spectrum of the selective reflection film 4 produced in the Example.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値とする。
 本明細書において、「(メタ)アクリレート」との記載は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味を表す。「(メタ)アクリル基」等も同様であり、「(メタ)アクリロイル基」は、「アクリロイル基およびメタクリロイル基のいずれか一方または双方」の意味を表す。
Hereinafter, the present invention will be described in detail. In the present specification, a numerical value range expressed using “to” is a numerical value described before and after “to” as a lower limit value and an upper limit value.
In the present specification, the description of “(meth) acrylate” represents the meaning of “any one or both of acrylate and methacrylate”. The same applies to “(meth) acryl group” and “(meth) acryloyl group” means “one or both of acryloyl group and methacryloyl group”.
 本明細書において、位相差というときは、面内のレターデーションを表し、波長についての言及がないときは、波長550nmにおける面内のレターデーションを表す。
 本明細書において、面内のレターデーションはAXOMETRICS社製の偏光位相差解析装置AxoScanを用いて測定したものとする。波長λnmにおける面内のレターデーションはKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定することもできる。
In this specification, the term “retardation” refers to in-plane retardation, and when there is no mention of wavelength, it refers to in-plane retardation at a wavelength of 550 nm.
In the present specification, in-plane retardation is measured using a polarization phase difference analyzer AxoScan manufactured by AXOMETRIC. In-plane retardation at a wavelength of λ nm can also be measured by making light at a wavelength of λ nm incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments).
<式(I)で表される重合性化合物>
 以下、式(I)における各基について説明する。
 式(I)中のシクロヘキシレン基の立体は相対配置を示すもので、すなわちトランス-1,4-シクロヘキシレン基を意味する。
 Z1およびZ2は、それぞれ独立に、置換基を有していてもよいトランス-1,4-シクロヘキシレン基、置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基を示す。
<Polymerizable compound represented by formula (I)>
Hereinafter, each group in formula (I) will be described.
The stereo of the cyclohexylene group in the formula (I) indicates a relative configuration, that is, a trans-1,4-cyclohexylene group.
Z 1 and Z 2 may each independently have a trans-1,4-cyclohexylene group which may have a substituent, an arylene group which may have a substituent or a substituent. A good heteroarylene group is shown.
 式(I)で示される重合性化合物の1つの態様として、2つ存在することもあるZ1およびZ2の少なくともいずれか一つは置換基を有していてもよいトランス-1,4-シクロヘキシレン基ではないことが好ましい。すなわち、2つ存在することもあるZ1およびZ2の少なくともいずれか一つは置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基であることが好ましい。
 mおよびnがそれぞれ1のときZ1およびZ2はそれぞれ、置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基であることが好ましく、置換基を有していてもよいアリーレン基であることがより好ましい。mが2のときのZ1は、少なくともいずれか一方が置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基であり、置換基を有していてもよいアリーレン基であることが好ましい。特に、L2に結合しているシクロヘキシル基により近いZ1が置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基であることが好ましい。
 アリーレン基は芳香族化合物から水素原子(水素ラジカル)を2つ除いて構成される2価の基である。芳香族化合物は5~18員環であることが好ましい。また、ヘテロアリーレン基は、芳香族複素環化合物から水素原子(水素ラジカル)を2つ除いて構成される2価の基である。芳香族複素環化合物は5~18員環であることが好ましい。
 以下に、芳香族化合物および芳香族複素環化合物の例を示すが、これらに限定されるものではない。
In one embodiment of the polymerizable compound represented by the formula (I), at least one of Z 1 and Z 2 which may be present may be substituted with trans-1,4- It is preferably not a cyclohexylene group. That is, at least one of Z 1 and Z 2 which may be present is preferably an arylene group which may have a substituent or a heteroarylene group which may have a substituent. .
When m and n are each 1, Z 1 and Z 2 are each preferably an arylene group which may have a substituent or a heteroarylene group which may have a substituent. More preferably, it is an arylene group that may be present. Z 1 when m is 2 is an arylene group which may have a substituent or a heteroarylene group which may have a substituent, and may have a substituent. A good arylene group is preferred. In particular, Z 1 closer to the cyclohexyl group bonded to L 2 is preferably an arylene group which may have a substituent or a heteroarylene group which may have a substituent.
An arylene group is a divalent group formed by removing two hydrogen atoms (hydrogen radicals) from an aromatic compound. The aromatic compound is preferably a 5- to 18-membered ring. The heteroarylene group is a divalent group formed by removing two hydrogen atoms (hydrogen radicals) from an aromatic heterocyclic compound. The aromatic heterocyclic compound is preferably a 5- to 18-membered ring.
Although the example of an aromatic compound and an aromatic heterocyclic compound is shown below, it is not limited to these.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 アリーレン基としては特にフェニレン基が好ましく、特に1,4-フェニレン基が好ましい。
 アリーレン基およびヘテロアリーレン基、ならびにトランス-1,4-シクロヘキシレン基について「置換基を有していてもよい」というときの置換基はいずれも-CO-X-Sp3-R3、アルキル基、およびアルコキシ基からなる群から選択される置換基である。また、置換基を1~4個有していてもよい。2個以上の置換基を有するとき、2個以上の置換基は互いに同一であっても異なっていてもよい。
As the arylene group, a phenylene group is particularly preferable, and a 1,4-phenylene group is particularly preferable.
For the arylene group, heteroarylene group, and trans-1,4-cyclohexylene group, the substituent when “optionally has a substituent” is —CO—X—Sp 3 —R 3 , an alkyl group And a substituent selected from the group consisting of alkoxy groups. Further, it may have 1 to 4 substituents. When it has two or more substituents, the two or more substituents may be the same or different from each other.
 本明細書において、アルキル基は直鎖状または分枝鎖状のいずれでもよい。アルキル基の炭素数は1~30が好ましく、1~10がより好ましく、1~6が特に好ましい。アルキル基の例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、直鎖状または分枝鎖状のヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、またはドデシル基を挙げることができる。アルキル基に関する上記説明はアルキル基を含むアルコキシ基においても同様である。また、本明細書において、アルキレン基というときのアルキレン基の具体例としては、上記のアルキル基の例それぞれにおいて、任意の水素原子を1つ除いて得られる2価の基などが挙げられる。 In the present specification, the alkyl group may be linear or branched. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms. Examples of the alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group. Group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, linear or branched heptyl group, octyl group, nonyl group, decyl group, undecyl group, or dodecyl group. . The above description regarding the alkyl group is the same for the alkoxy group containing an alkyl group. In the present specification, specific examples of the alkylene group referred to as an alkylene group include a divalent group obtained by removing one arbitrary hydrogen atom in each of the above examples of the alkyl group.
 本明細書において、シクロアルキル基の炭素数は、3~20が好ましく、5以上がより好ましく、また、10以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。シクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基を挙げることができる。 In the present specification, the cycloalkyl group preferably has 3 to 20 carbon atoms, more preferably 5 or more, more preferably 10 or less, still more preferably 8 or less, and still more preferably 6 or less. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
 mは1または2の整数を示し、nは0または1の整数を示す。ただし、mが2を示すとき、nは0を示す。すなわち、式(I)で表される重合性化合物は、4つまたは5つの環状基を有する。mが2を示すとき、2つのZ1は同一であっても異なっていてもよい。式(I)で表される重合性化合物は、1,4-フェニレン基およびトランス-1,4-シクロヘキシレン基が交互に存在する構造であることも好ましく、例えば、mが2であり、nが0であり、かつZ1がR1側からそれぞれ置換基を有していてもよいトランス-1,4-シクロヘキシレン基、置換基を有していてもよいアリーレン基であるか、またはmが1であり、nが1であり、Z1が置換基を有していてもよいアリーレン基であり、かつZ2が置換基を有していてもよいアリーレン基である構造が好ましい。 m represents an integer of 1 or 2, and n represents an integer of 0 or 1. However, when m represents 2, n represents 0. That is, the polymerizable compound represented by the formula (I) has 4 or 5 cyclic groups. When m represents 2, two Z 1 may be the same or different. The polymerizable compound represented by the formula (I) preferably has a structure in which 1,4-phenylene groups and trans-1,4-cyclohexylene groups are alternately present. For example, m is 2, n And Z 1 is a trans-1,4-cyclohexylene group which may have a substituent from the R 1 side, an arylene group which may have a substituent, or m 1 Is a structure in which n is 1, Z 1 is an arylene group which may have a substituent, and Z 2 is an arylene group which may have a substituent.
 L1、L2、L3、L4はそれぞれ独立に、単結合、-O-、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-NH-、N(CH3)-、-S-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-C(=O)N(T3)-、-N(T3)C(=O)-、-C(=O)S-、-SC(=O)-、-CH2C(=O)O-、-OC(=O)CH2-、-CH=CH-C(=O)O-、-OC(=O)-CH=CH-、-CH=N-、-N=CH-、および-N=N-からなる群から選択される連結基を示す。なお、本明細書において、上記のように2価の連結基が記載されるとき、左側(「-CH2O-」であれば、「C」)の結合が式(I)において、よりR1側にあり、右側(「-CH2O-」であれば、「O」)の結合が式(I)において、よりR2側にある。L1、L2、L3、L4はそれぞれ独立に、-C(=O)O-または-OC(=O)-であることが好ましく、L2が-C(=O)O-であり、かつL3が-OC(=O)-であることがより好ましく、L1が-OC(=O)-であり、L2が-C(=O)O-であり、L3が-OC(=O)-であり、およびL4が-C(=O)O-であることがより好ましい。
 T3は-Sp4-R4を表し、水素原子(Sp4が単結合であり、かつR4が水素原子である)であることが好ましい。
L 1 , L 2 , L 3 and L 4 are each independently a single bond, —O—, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC (═O) —, —C ( ═O) O (CH 2 ) 2 —, —NH—, N (CH 3 ) —, —S—, —C (═O) O—, —OC (═O) —, —OC (═O) O —, —C (═O) N (T 3 ) —, —N (T 3 ) C (═O) —, —C (═O) S—, —SC (═O) —, —CH 2 C ( ═O) O—, —OC (═O) CH 2 —, —CH═CH—C (═O) O—, —OC (═O) —CH═CH—, —CH═N—, —N═ A linking group selected from the group consisting of CH— and —N═N— is shown. In the present specification, when a divalent linking group is described as described above, the bond on the left side (“C” for “—CH 2 O—”) is more R in the formula (I). The bond on the 1 side and on the right side (“O” for “—CH 2 O—”) is closer to the R 2 side in Formula (I). L 1 , L 2 , L 3 and L 4 are preferably each independently —C (═O) O— or —OC (═O) —, and L 2 is —C (═O) O—. More preferably, L 3 is —OC (═O) —, L 1 is —OC (═O) —, L 2 is —C (═O) O—, and L 3 is More preferably, —OC (═O) — and L 4 is —C (═O) O—.
T 3 represents —Sp 4 —R 4 and is preferably a hydrogen atom (Sp 4 is a single bond and R 4 is a hydrogen atom).
 Xは-O-、-S-、または-N(Sp5-R5)-を示し、-O-であることが好ましい。また、Xは、R3およびSp3と共に環構造を形成する窒素原子を示していてもよい。すなわち、-X-Sp3-R3は隣接するカルボニル基に窒素原子で結合している含窒素環状基であってもよい。含窒素環状基の例としては、1-ピペリジル基、1-ピペラジニル基、および1-ピロリジル基などが挙げられる。
 rは1から4の整数を示し、1であることが好ましい。すなわち、式(I)で表される重合性化合物は、両側にL2およびL3をそれぞれ介してトランス-1,4-シクロヘキシレン基が結合している1,4-フェニレン基に、カルボニル基で結合している置換基を少なくとも1つ有し、この置換基においてカルボニル基は-O-、-S-、または-N(Sp5-R5)-に結合している構造を有することを特徴とする。上記の1,4-フェニレン基に結合する置換基は、-(C=O)-O-のCで結合していることが特に好ましい。
X represents —O—, —S—, or —N (Sp 5 —R 5 ) —, and is preferably —O—. X may represent a nitrogen atom that forms a ring structure with R 3 and Sp 3 . That is, —X—Sp 3 —R 3 may be a nitrogen-containing cyclic group bonded to an adjacent carbonyl group with a nitrogen atom. Examples of the nitrogen-containing cyclic group include a 1-piperidyl group, a 1-piperazinyl group, and a 1-pyrrolidyl group.
r represents an integer of 1 to 4, and is preferably 1. That is, the polymerizable compound represented by the formula (I) has a carbonyl group bonded to a 1,4-phenylene group to which a trans-1,4-cyclohexylene group is bonded via L 2 and L 3 on both sides. Having at least one substituent bonded to each other, wherein the carbonyl group has a structure bonded to —O—, —S—, or —N (Sp 5 —R 5 ) —. Features. The substituent bonded to the 1,4-phenylene group is particularly preferably bonded at C of — (C═O) —O—.
 Sp1、Sp2、Sp3、Sp4、Sp5はそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基、からなる群から選択される連結基を示す。 Sp1およびSp2はそれぞれ独立に、両末端にそれぞれ-O-が結合した炭素数1から10の直鎖のアルキレン基、-OC(=O)-(CH22-、-C(=O)O-(CH22-、-O-(CH22-、-(CH22-OC(=O)-、-(CH22-C(=O)O-および-(CH22-O-からなる群から選択される1つ以上の構造単位を含む連結基であることが好ましい。Sp3、Sp4、Sp5は、それぞれ独立に、単結合、炭素数1から10の直鎖のアルキレン基、または一方の末端に-O-が結合した炭素数1から10の直鎖のアルキレン基が好ましい。
 R1およびR2はそれぞれ独立に、以下の式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示す。
 R3、R4、R5はそれぞれ独立に、水素原子、シクロアルキル基、シクロアルキル基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、または以下の式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示す。
Sp 1 , Sp 2 , Sp 3 , Sp 4 and Sp 5 are each independently a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, or a linear or branched alkylene group having 1 to 20 carbon atoms. One or more of —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O) —, or — A linking group selected from the group consisting of a group substituted with C (═O) O— is shown. Sp 1 and Sp 2 are each independently a linear alkylene group having 1 to 10 carbon atoms having —O— bonded to both ends, —OC (═O) — (CH 2 ) 2 —, —C (= O) O— (CH 2 ) 2 —, —O— (CH 2 ) 2 —, — (CH 2 ) 2 —OC (═O) —, — (CH 2 ) 2 —C (═O) O— and A linking group containing one or more structural units selected from the group consisting of — (CH 2 ) 2 —O— is preferable. Sp 3 , Sp 4 , and Sp 5 are each independently a single bond, a linear alkylene group having 1 to 10 carbon atoms, or a linear alkylene group having 1 to 10 carbon atoms in which —O— is bonded to one end. Groups are preferred.
R 1 and R 2 each independently represents any polymerizable group selected from the group consisting of groups represented by the following formulas (Q-1) to (Q-5).
R 3 , R 4 and R 5 each independently represents one or more —CH 2 — in a hydrogen atom, cycloalkyl group or cycloalkyl group —O—, —S—, —NH—, —N A group substituted with (CH 3 ) —, —C (═O) —, —OC (═O) —, or —C (═O) O—, or the following formulas (Q-1) to (Q -5) represents any polymerizable group selected from the group consisting of groups represented by
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 シクロアルキル基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基の例として、具体的には、テトラヒドロフラニル基、ピロリジニル基、イミダゾリジニル基、ピラゾリジニル基、ピペリジル基、ピペラジニル基、モルホルニル基、などが挙げられる。置換位置は特に限定されない。これらのうち、テトラヒドロフラニル基が好ましく、特に2-テトラヒドロフラニル基が好ましい。
 R3は、XがR3およびSp3と共に環構造を形成する窒素原子である場合において単結合を示してもよい。また、Sp5が単結合のとき、R5は水素原子ではない。
 重合性基としては、アクリロイル基(式(Q-1))またはメタクリロイル基(式(Q-2))が好ましい。
 また、R3、R4、R5はそれぞれ水素原子であることが好ましい。
In the cycloalkyl group, one or more of —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O). Specific examples of the group substituted with — or —C (═O) O— include a tetrahydrofuranyl group, a pyrrolidinyl group, an imidazolidinyl group, a pyrazolidinyl group, a piperidyl group, a piperazinyl group, a morpholinyl group, and the like. It is done. The substitution position is not particularly limited. Of these, tetrahydrofuranyl group is preferable, and 2-tetrahydrofuranyl group is particularly preferable.
R 3 may represent a single bond when X is a nitrogen atom that forms a ring structure with R 3 and Sp 3 . When Sp 5 is a single bond, R 5 is not a hydrogen atom.
As the polymerizable group, an acryloyl group (formula (Q-1)) or a methacryloyl group (formula (Q-2)) is preferable.
R 3 , R 4 and R 5 are each preferably a hydrogen atom.
 式(I)で示される重合性化合物としては、mが1であり、nが1であり、Z1およびZ2が、いずれも置換基を有していてもよいトランス-1,4-シクロヘキシレン基である重合性化合物も好ましい。このとき、rが1であることもより好ましい。さらに、式(I)で示される重合性化合物は以下の式(I-1)で表される化合物であることも好ましい。 As the polymerizable compound represented by the formula (I), m is 1, n is 1, and each of Z 1 and Z 2 may have a substituent, trans-1,4-cyclohexyl. A polymerizable compound that is a silene group is also preferred. At this time, it is more preferable that r is 1. Furthermore, the polymerizable compound represented by the formula (I) is also preferably a compound represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中、Sp3およびR3は式(I)における定義と同義である。
Spは、それぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示す。
Spはいずれも炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が、-O-、-OC(=O)-、または-C(=O)O-で置換された基であることが好ましく、炭素数1から20の直鎖もしくは分岐のアルキレン基において1つ末端の-CH2-が-O-、他の1つ末端の-CH2-が-C(=O)O-で置換された基であって、-C(=O)O-の酸素原子でシクロヘキシレン基に結合し、かつ-O-で-C(=O)-に結合している基であることがより好ましく、-O-C48-O-C(=O)-または-C(=O)-O-C48-O-であって-C(=O)O-の酸素原子でシクロヘキシレン基に結合し、かつ-O-で-C(=O)-に結合している基であることがさらに好ましい。
 以下に式(I)で示される重合性化合物の例を示すが、これらの例に限定されるものではない。
In the formula, Sp 3 and R 3 have the same definitions as in formula (I).
Each Sp is independently a single bond, one or more —CH 2 — in a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms. Substituted with —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O) —, or —C (═O) O—. A linking group selected from the group consisting of groups is shown.
Sp is a straight chain or branched alkylene group having 1 to 20 carbon atoms, and one or more of —CH 2 — is —O—, —OC (═O) —, or —C (═O). A group substituted with O— is preferred, and in a linear or branched alkylene group having 1 to 20 carbon atoms, one terminal —CH 2 — is —O— and the other one terminal —CH 2 —. Is a group substituted by —C (═O) O—, which is bonded to the cyclohexylene group by an oxygen atom of —C (═O) O—, and is converted to —C (═O) — by —O—. A bonded group is more preferable, and —O—C 4 H 8 —O—C (═O) — or —C (═O) —O—C 4 H 8 —O— and —C It is more preferable that the group is bonded to the cyclohexylene group by the oxygen atom of (═O) O— and bonded to —C (═O) — by —O—.
Examples of the polymerizable compound represented by the formula (I) are shown below, but are not limited to these examples.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(I)で示される重合性化合物は、公知の方法により製造することが可能であり、例えば以下の方法で製造することができる。 The polymerizable compound represented by the formula (I) can be produced by a known method, for example, by the following method.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 例えばL2が-C(=O)O-かつL2が-OC(=O)-、の場合には、フェノール(もしくはアルコール)誘導体A-1とカルボン酸誘導体A-2およびA-3を用いてエステル化することで製造できる。
 エステル化反応の方法としては、例えば、カルボン酸誘導体A-2、A-3を塩化チオニルやオキザリルクロリドなどによって酸クロリド化する、もしくはメシルクロリドなどと塩基を作用させて混合酸無水物化したのち、フェノール(もしくはアルコール)誘導体A-1を塩基の存在下で作用させる方法が挙げられる。または、A-1とA-2、A-3をカルボジイミドなどの縮合剤を用いて直接エステル化する方法が挙げられる。
For example, when L 2 is —C (═O) O— and L 2 is —OC (═O) —, phenol (or alcohol) derivative A-1 and carboxylic acid derivatives A-2 and A-3 are obtained. It can manufacture by esterifying using.
As the esterification reaction method, for example, the carboxylic acid derivatives A-2 and A-3 are converted into acid anhydrides by thionyl chloride, oxalyl chloride, or the like, or mesyl chloride is reacted with a base to form mixed acid anhydrides. And a method in which the phenol (or alcohol) derivative A-1 is allowed to act in the presence of a base. Another example is a method of directly esterifying A-1, A-2, and A-3 using a condensing agent such as carbodiimide.
 フェノール(もしくはアルコール)誘導体A-1の製造方法としては、例えばXが-O-の場合は、カルボン酸誘導体A-4に対し、化合物A-5を用いてエステル化することで製造できる。化合物A-5のLGはヒドロキシ基もしくは脱離基を表す。LGがヒドロキシ基のときは、カルボジイミドなどの縮合剤、もしくは酸触媒存在下の加熱による脱水縮合によってA-1を製造することができる。LGが脱離基のときは、A-4とA-5を非プロトン性極性溶媒中、塩基存在下で加熱することで、A-1を製造することができる。脱離基としてはハロゲン、メシル基、トシル基などを用いることができる。 For example, when X is —O—, the phenol (or alcohol) derivative A-1 can be produced by esterifying the carboxylic acid derivative A-4 with the compound A-5. LG of compound A-5 represents a hydroxy group or a leaving group. When LG is a hydroxy group, A-1 can be produced by dehydration condensation by heating in the presence of a condensing agent such as carbodiimide or an acid catalyst. When LG is a leaving group, A-1 can be produced by heating A-4 and A-5 in an aprotic polar solvent in the presence of a base. As the leaving group, halogen, mesyl group, tosyl group and the like can be used.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(I)で示される重合性化合物は、液晶性を示すと同時に複屈折性が低いため、式(I)で示される重合性化合物を利用して位相差フィルムを作製することによって、位相差フィルムの複屈折性を所望の範囲に調整することができる。特に式(I)で示される重合性化合物を用いてコレステリック液晶相を形成し、これを固定したフィルムとすることにより、選択反射の波長帯域の狭い反射膜、すなわち、反射波長域の選択性の高い反射膜を得ることができる。 Since the polymerizable compound represented by the formula (I) exhibits liquid crystallinity and simultaneously has low birefringence, a retardation film is prepared by using the polymerizable compound represented by the formula (I). The birefringence of the film can be adjusted to a desired range. In particular, by forming a cholesteric liquid crystal phase using a polymerizable compound represented by the formula (I) and fixing the cholesteric liquid crystal phase, a reflection film having a narrow selective reflection wavelength band, that is, a selectivity of the reflection wavelength range is obtained. A high reflective film can be obtained.
 また、式(I)で示される重合性化合物は、芳香環の置換基の種類や連結基によらず、可視光領域での吸収が極めて小さいことから無色透明であり、液晶相範囲が広い、溶剤に溶解しやすい、重合しやすいなどといった複数の特性を満足する。これに由来して、式(I)で示される重合性化合物を含む重合性組成物を用いて作製される硬化膜は、十分な硬度を示し、無色透明であり、耐候性・耐熱性が良好である等、複数の特性を満足し得る。従って、上記重合性組成物を利用して形成された硬化膜は、例えば、光学素子の構成要素である位相差板、偏光素子、選択反射膜、カラーフィルタ、反射防止膜、視野角補償膜、ホログラフィー、配向膜等、種々の用途に利用することができる。 In addition, the polymerizable compound represented by the formula (I) is colorless and transparent because the absorption in the visible light region is extremely small regardless of the type of aromatic ring substituent and the linking group, and the liquid crystal phase range is wide. It satisfies several characteristics such as easy dissolution in solvents and easy polymerization. Derived from this, a cured film produced using a polymerizable composition containing a polymerizable compound represented by formula (I) exhibits sufficient hardness, is colorless and transparent, and has good weather resistance and heat resistance. A plurality of characteristics can be satisfied. Therefore, the cured film formed using the polymerizable composition is, for example, a retardation plate, a polarizing element, a selective reflection film, a color filter, an antireflection film, a viewing angle compensation film, which is a component of the optical element, It can be used for various applications such as holography and alignment films.
<重合性組成物>
 重合性組成物において、式(I)で示される重合性化合物は1種のみ含まれていてもよく、2種以上含まれていてもよい。
 式(I)で示される重合性化合物(2種以上含まれている場合は、2種以上の合計量)は、重合性組成物の固形分質量に対して、10質量%以上であればよく、好ましくは30~99.9質量%、より好ましくは50~99.5質量%、さらに好ましくは70~99質量%であればよい。但し、この範囲に限定されるものではない。
 重合性組成物は、式(I)で示される重合性化合物のほか、他の液晶化合物、キラル化合物、重合開始剤、配向制御剤などの他の成分を含んでいてもよい。以下各成分について説明する。
<Polymerizable composition>
In the polymerizable composition, only one type of polymerizable compound represented by the formula (I) may be contained, or two or more types may be contained.
The polymerizable compound represented by the formula (I) (when two or more types are included, the total amount of two or more types) may be 10% by mass or more based on the solid content mass of the polymerizable composition. Preferably, it may be 30 to 99.9% by mass, more preferably 50 to 99.5% by mass, and still more preferably 70 to 99% by mass. However, it is not limited to this range.
In addition to the polymerizable compound represented by the formula (I), the polymerizable composition may contain other components such as other liquid crystal compounds, chiral compounds, polymerization initiators, and alignment control agents. Each component will be described below.
[他の液晶化合物]
 重合性組成物は、式(I)で示される重合性化合物とともに、他の1種以上の液晶化合物を含有していてもよい。式(I)で示される重合性化合物は、他の液晶化合物との相溶性が高いので、他の液晶化合物を混合しても、不透明化等が生じず、透明性の高い膜を形成可能である。他の液晶化合物を併用可能であることから、種々の用途に適する種々の組成の組成物を提供できる。併用可能な他の液晶化合物の例には、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が挙げられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
[Other liquid crystal compounds]
The polymerizable composition may contain one or more other liquid crystal compounds together with the polymerizable compound represented by the formula (I). Since the polymerizable compound represented by the formula (I) is highly compatible with other liquid crystal compounds, mixing with other liquid crystal compounds does not cause opacification and can form a highly transparent film. is there. Since other liquid crystal compounds can be used in combination, compositions having various compositions suitable for various applications can be provided. Examples of other liquid crystal compounds that can be used in combination include rod-shaped nematic liquid crystal compounds. Examples of rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenyl Pyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
 他の液晶化合物は、重合性であっても非重合性であってもよい。重合性基を有しない棒状液晶化合物については、様々な文献(例えば、Y. Goto et.al., Mol. Cryst. Liq. Cryst. 1995, Vol. 260, pp.23-28)に記載がある。
 重合性棒状液晶化合物は、重合性基を棒状液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、棒状液晶化合物の分子中に導入できる。重合性棒状液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性棒状液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced  Materials  5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性棒状液晶化合物を併用してもよい。2種類以上の重合性棒状液晶化合物を併用すると、配向温度を低下させることができる。
Other liquid crystal compounds may be polymerizable or non-polymerizable. The rod-like liquid crystal compound having no polymerizable group is described in various documents (for example, Y. Goto et.al., Mol. Cryst. Liq. Cryst. 1995, Vol. 260, pp. 23-28). .
The polymerizable rod-like liquid crystal compound can be obtained by introducing a polymerizable group into the rod-like liquid crystal compound. Examples of the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group. The polymerizable group can be introduced into the molecule of the rod-like liquid crystal compound by various methods. The number of polymerizable groups possessed by the polymerizable rod-like liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of the polymerizable rod-like liquid crystal compound are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No. 4,683,327, US Pat. No. 5,622,648, US Pat. No. 5,770,107, International Publication WO95 / 22586. No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, and JP-A-7-110469. 11-80081 and JP-A-2001-328773, and the like. Two or more kinds of polymerizable rod-like liquid crystal compounds may be used in combination. When two or more kinds of polymerizable rod-like liquid crystal compounds are used in combination, the alignment temperature can be lowered.
 他の液晶化合物の添加量については特に制限はなく、重合性組成物の固形分質量に対して、好ましくは0~70質量%、より好ましくは0~50質量%、さらに好ましくは0~30質量%であればよい。但し、この範囲に限定されるものではない。重合性組成物において、式(I)で示される重合性化合物と他の液晶化合物との質量比(式(I)で示される重合性化合物の質量/他の液晶化合物の質量)は、100/0~30/70であればよく、100/0~50/50であることが好ましく、100/0~70/30であることがより好ましい。この比は用途に応じて好ましい範囲に調整することができる。 The addition amount of the other liquid crystal compound is not particularly limited, and is preferably 0 to 70% by mass, more preferably 0 to 50% by mass, and further preferably 0 to 30% by mass based on the solid content mass of the polymerizable composition. %. However, it is not limited to this range. In the polymerizable composition, the mass ratio of the polymerizable compound represented by the formula (I) and the other liquid crystal compound (the mass of the polymerizable compound represented by the formula (I) / the mass of the other liquid crystal compound) was 100 / It may be 0 to 30/70, preferably 100/0 to 50/50, and more preferably 100/0 to 70/30. This ratio can be adjusted to a preferred range depending on the application.
[キラル化合物]
 重合性組成物はキラル化合物を含んでいてもよい。キラル化合物を利用することにより、コレステリック液晶相を示す組成物として調製することができる。キラル化合物は液晶性であっても、非液晶性であってもよい。キラル化合物は、公知の種々のキラル剤(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)から選択することができる。キラル化合物は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物も用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル化合物(キラル剤)は、重合性基を有していてもよい。キラル化合物が重合性基を有するとともに、併用する棒状液晶化合物も重合性基を有する場合は、重合性キラル化合物と重合性棒状液晶化合物との重合反応により、棒状液晶化合物から誘導される繰り返し単位と、キラル化合物から誘導される繰り返し単位とを有するポリマーを形成することができる。したがって、重合性キラル化合物が有する重合性基は、重合性棒状液晶化合物、特に式(I)で示される重合性化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル化合物の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
[Chiral compound]
The polymerizable composition may contain a chiral compound. By using a chiral compound, it can be prepared as a composition showing a cholesteric liquid crystal phase. The chiral compound may be liquid crystalline or non-liquid crystalline. The chiral compound is derived from various known chiral agents (for example, described in Liquid Crystal Device Handbook, Chapter 3-4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 142nd Committee, 1989). You can choose. A chiral compound generally contains an asymmetric carbon atom, but an axial asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral compound (chiral agent) may have a polymerizable group. When the chiral compound has a polymerizable group and the rod-shaped liquid crystal compound used in combination also has a polymerizable group, a repeating unit derived from the rod-shaped liquid crystal compound by a polymerization reaction between the polymerizable chiral compound and the polymerizable rod-shaped liquid crystal compound And polymers having repeating units derived from chiral compounds. Accordingly, the polymerizable group possessed by the polymerizable chiral compound is preferably the same type as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound, particularly the polymerizable compound represented by formula (I). Therefore, the polymerizable group of the chiral compound is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
 重合性組成物中、キラル化合物は、式(I)で示される重合性化合物を含む液晶化合物の総モル数に対して、1~30モル%であることが好ましい。キラル化合物の使用量は、より少ないことが液晶性に影響を及ぼさない傾向があるため好まれる。従って、キラル化合物としては、少量でも所望の螺旋ピッチの捩れ配向を達成可能なように、強い捩り力のある化合物が好ましい。この様な、強い捩れ力を示すキラル剤としては、例えば、特開2003-287623号公報に記載のキラル剤が挙げられる。また、特開2002-302487号公報、特開2002-80478号公報、特開2002-80851号公報、特開2014-034581号公報に記載のキラル剤や、BASF社製のLC-756などが挙げられる。 In the polymerizable composition, the chiral compound is preferably 1 to 30 mol% with respect to the total number of moles of the liquid crystal compound containing the polymerizable compound represented by the formula (I). A smaller amount of chiral compound is preferred because it tends not to affect liquid crystallinity. Therefore, as the chiral compound, a compound having a strong twisting power is preferable so that a twisted orientation with a desired helical pitch can be achieved even with a small amount. Examples of such a chiral agent exhibiting a strong twisting force include a chiral agent described in JP-A-2003-287623. Further, chiral agents described in JP-A Nos. 2002-302487, 2002-80478, 2002-80851, and 2014-034581, LC-756 manufactured by BASF, and the like can be mentioned. It is done.
 キラル化合物を含有する態様の重合性組成物をコレステリック液晶相とした後、それを固定して形成された膜は、その螺旋ピッチに応じて、所定の波長の光に対して、選択反射特性を示し、反射膜(例えば、可視光反射膜や赤外線反射膜)として有用である。低い複屈折性を示す式(I)で示される重合性化合物を利用することにより、より高い複屈折性の液晶化合物を利用した同一の厚みの膜と比較して、反射波長域が狭くなり、選択性が高くなるという利点がある。 A film formed by fixing a polymerizable composition containing a chiral compound into a cholesteric liquid crystal phase and then fixing the cholesteric liquid crystal phase exhibits selective reflection characteristics with respect to light of a predetermined wavelength according to the helical pitch. It is useful as a reflective film (for example, a visible light reflective film or an infrared reflective film). By using the polymerizable compound represented by the formula (I) exhibiting low birefringence, the reflection wavelength range becomes narrower compared to a film having the same thickness using a liquid crystal compound having higher birefringence, There is an advantage that selectivity becomes high.
[重合開始剤]
 重合性組成物は、重合開始剤を含有していることが好ましい。例えば、紫外線照射により硬化反応を進行させて硬化膜を形成する態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
[Polymerization initiator]
The polymerizable composition preferably contains a polymerization initiator. For example, in an embodiment in which a curing reaction is caused to proceed by ultraviolet irradiation to form a cured film, the polymerization initiator to be used is preferably a photopolymerization initiator that can initiate a polymerization reaction by ultraviolet irradiation. Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. Group acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US patent) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,221,970), and the like. .
 光重合開始剤は、重合性組成物に、重合性組成物の固形分質量に対して、0.1~20質量%含まれていることが好ましく、1~8質量%含まれていることがさらに好ましい。 The photopolymerization initiator is preferably contained in the polymerizable composition in an amount of 0.1 to 20% by mass, preferably 1 to 8% by mass, based on the solid content of the polymerizable composition. Further preferred.
[配向制御剤]
 重合性組成物中に、安定的または迅速な液晶相(例えば、コレステリック液晶相)の形成に寄与する配向制御剤を添加してもよい。配向制御剤の例には、含フッ素(メタ)アクリレート系ポリマー、WO2011/162291に記載の一般式(X1)~(X3)で表される化合物、および特開2013-47204の段落[0020]~[0031]に記載の化合物が含まれる。これらから選択される2種以上を含有していてもよい。これらの化合物は、層の空気界面において、液晶化合物の分子のチルト角を低減若しくは実質的に水平配向させることができる。尚、本明細書で「水平配向」とは、液晶分子長軸と膜面が平行であることをいうが、厳密に平行であることを要求するものではなく、本明細書では、水平面とのなす傾斜角が20度未満の配向を意味するものとする。液晶化合物が空気界面付近で水平配向する場合、配向欠陥が生じ難いため、可視光領域での透明性が高くなる。一方、液晶化合物の分子が大きなチルト角で配向すると、例えば、コレステリック液晶相とする場合は、その螺旋軸が膜面法線からずれるため、反射率が低下したり、フィンガープリントパターンが発生し、ヘイズの増大や回折性を示したりするため好ましくない。
 配向制御剤として利用可能な含フッ素(メタ)アクリレート系ポリマーの例は、特開2007-272185号公報の[0018]~[0043]等に記載がある。
[Orientation control agent]
An alignment controller that contributes to the formation of a stable or rapid liquid crystal phase (for example, a cholesteric liquid crystal phase) may be added to the polymerizable composition. Examples of orientation control agents include fluorine-containing (meth) acrylate polymers, compounds represented by general formulas (X1) to (X3) described in WO2011 / 162291, and paragraphs [0020] to JP2013-47204A. [0031] The compounds described in [0031] are included. You may contain 2 or more types selected from these. These compounds can reduce the tilt angle of the molecules of the liquid crystal compound or can be substantially horizontally aligned at the air interface of the layer. In this specification, “horizontal alignment” means that the major axis of the liquid crystal molecule is parallel to the film surface, but it is not required to be strictly parallel. An orientation with an inclination angle of less than 20 degrees is meant. When the liquid crystal compound is horizontally aligned in the vicinity of the air interface, alignment defects are less likely to occur, and thus transparency in the visible light region is increased. On the other hand, when the molecules of the liquid crystal compound are aligned at a large tilt angle, for example, in the case of a cholesteric liquid crystal phase, the spiral axis is deviated from the film surface normal, so that the reflectance decreases or a fingerprint pattern occurs, This is not preferable because it increases haze and shows diffractive properties.
Examples of fluorine-containing (meth) acrylate-based polymers that can be used as orientation control agents are described in JP-A-2007-272185, [0018] to [0043].
 配向制御剤としては、一種の化合物を単独で用いてもよいし、二種以上の化合物を併用してもよい。
 重合性組成物中における、配向制御剤の含有量は、式(I)の化合物の質量の0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.02~1質量%が特に好ましい。
As the alignment controller, one kind of compound may be used alone, or two or more kinds of compounds may be used in combination.
The content of the orientation control agent in the polymerizable composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and more preferably 0.02 to 1% by mass of the compound of the formula (I). Mass% is particularly preferred.
[架橋剤]
 重合性組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラアクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、重合性組成物の固形分質量に対して、3質量%~20質量%が好ましく、5質量%~15質量%がより好ましい。架橋剤の含有量が、3質量%以上であると、架橋密度向上の効果がより高く、20質量%以下であると、コレステリック液晶層の安定性がより高い。
[Crosslinking agent]
The polymerizable composition may optionally contain a crosslinking agent in order to improve the film strength after hardening and the durability. As the cross-linking agent, those that can be cured by ultraviolet rays, heat, moisture and the like can be suitably used.
There is no restriction | limiting in particular as a crosslinking agent, According to the objective, it can select suitably, For example, polyfunctional acrylate compounds, such as a trimethylol propane tri (meth) acrylate, a pentaerythritol tri (meth) acrylate, a pentaerythritol tetraacrylate; Epoxy compounds such as glycidyl (meth) acrylate and ethylene glycol diglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane, etc. Aziridine compounds; isocyanate compounds such as hexamethylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- Such as 2-aminoethyl) 3-aminopropyl alkoxysilane compounds such as trimethoxysilane. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
The content of the crosslinking agent is preferably 3% by mass to 20% by mass and more preferably 5% by mass to 15% by mass with respect to the solid content mass of the polymerizable composition. When the content of the crosslinking agent is 3% by mass or more, the effect of improving the crosslinking density is higher, and when it is 20% by mass or less, the stability of the cholesteric liquid crystal layer is higher.
[その他の添加剤]
 重合性組成物は、1種または2種類以上の、酸化防止剤、紫外線吸収剤、増感剤、安定剤、可塑剤、連鎖移動剤、重合禁止剤、消泡剤、レべリング剤、増粘剤、難燃剤、界面活性物質、分散剤、染料、顔料等の色材、等の他の添加剤を含有していてもよい。
[Other additives]
The polymerizable composition may be one or more kinds of antioxidants, ultraviolet absorbers, sensitizers, stabilizers, plasticizers, chain transfer agents, polymerization inhibitors, antifoaming agents, leveling agents, enhancers. It may contain other additives such as a sticking agent, a flame retardant, a surfactant, a dispersant, a coloring material such as a dye and a pigment.
<フィルム>
 式(I)で示される重合性化合物は、位相差膜、反射フィルム等の種々の光学フィルムの材料として有用であり、式(I)で示される重合性化合物を含む重合性組成物を用いて種々の光学フィルムを形成することができる。
[フィルムの製造方法]
 光学フィルムの製造方法の一例は、
 (i)基板等の表面に、式(I)で示される重合性化合物を含む重合性組成物を塗布して、液晶相(コレステリック液晶相等)の状態にすること、
 (ii)重合性組成物の硬化反応を進行させ、液晶相を固定して硬化膜を形成すること、
を少なくとも含む製造方法である。
 (i)および(ii)の工程を、複数回繰り返して、複数の上記硬化膜が積層されたフィルムを作製することもできる。また、複数の硬化膜同士を接着剤により貼合して、複数の硬化膜が積層されたフィルムを作製することもできる。
<Film>
The polymerizable compound represented by the formula (I) is useful as a material for various optical films such as a retardation film and a reflective film, and a polymerizable composition containing the polymerizable compound represented by the formula (I) is used. Various optical films can be formed.
[Film production method]
An example of a method for producing an optical film is:
(I) Applying a polymerizable composition containing a polymerizable compound represented by formula (I) to the surface of a substrate or the like to bring it into a liquid crystal phase (cholesteric liquid crystal phase, etc.)
(Ii) proceeding the curing reaction of the polymerizable composition, fixing the liquid crystal phase to form a cured film;
Is a production method comprising at least
The steps (i) and (ii) can be repeated a plurality of times to produce a film in which a plurality of the cured films are laminated. Moreover, the some laminated | multilayer cured film can be bonded together with an adhesive agent, and the film by which the several cured film was laminated | stacked can also be produced.
 (i)工程では、まず、基板またはその上に形成された配向膜の表面に、重合性組成物を塗布する。重合性組成物は、溶媒に材料を溶解および/または分散した、塗布液として調製されることが好ましい。塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒としては、アミド(例えばN,N-ジメチルホルムアミド);スルホキシド(例えばジメチルスルホキシド);ヘテロ環化合物(例えばピリジン);炭化水素(例えばベンゼン、ヘキサン);アルキルハライド(例えばクロロホルム、ジクロロメタン);エステル(例えば酢酸メチル、酢酸ブチル);ケトン(例えばアセトン、メチルエチルケトン);エーテル(例えばテトラヒドロフラン、1,2-ジメトキシエタン);1,4-ブタンジオールジアセテートなどが含まれる。これらの中でも、アルキルハライドおよびケトンが特に好ましい。二種類以上の有機溶媒を併用してもよい。 (I) In the step (i), first, a polymerizable composition is applied to the surface of the substrate or the alignment film formed thereon. The polymerizable composition is preferably prepared as a coating solution in which a material is dissolved and / or dispersed in a solvent. As a solvent used for preparing the coating solution, an organic solvent is preferably used. Organic solvents include amides (eg N, N-dimethylformamide); sulfoxides (eg dimethyl sulfoxide); heterocyclic compounds (eg pyridine); hydrocarbons (eg benzene, hexane); alkyl halides (eg chloroform, dichloromethane); esters (Eg, methyl acetate, butyl acetate); ketones (eg, acetone, methyl ethyl ketone); ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane); 1,4-butanediol diacetate and the like. Among these, alkyl halides and ketones are particularly preferable. Two or more organic solvents may be used in combination.
 塗布液の塗布は、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法等の種々の方法によって行うことができる。また、インクジェット装置を用いて、組成物をノズルから吐出して、塗膜を形成することもできる。 The coating solution can be applied by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. In addition, a coating film can be formed by discharging the composition from a nozzle using an ink jet apparatus.
 次に、表面に塗布され、塗膜となった重合性組成物を、コレステリック液晶相等の液晶相の状態にする。重合性組成物が、溶媒を含む塗布液として調製されている態様では、塗膜を乾燥し、溶媒を除去することで、液晶相の状態にすることができる場合がある。また、液晶相への転移温度とするために、所望により、塗膜を加熱してもよい。例えば、一旦等方性相の温度まで加熱し、その後、液晶相転移温度まで冷却する等によって、安定的に液晶相の状態にすることができる。重合性組成物の液晶相転移温度は、製造適性等の面から10~250℃の範囲内であることが好ましく、10~150℃の範囲内であることがより好ましい。10℃未満であると液晶相を呈する温度範囲にまで温度を下げるために冷却工程等が必要となることがある。また200℃を超えると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にするために高温を要し、熱エネルギーの浪費、基板の変形、変質等からも不利になることがある。 Next, the polymerizable composition applied to the surface to become a coating film is brought into a liquid crystal phase state such as a cholesteric liquid crystal phase. In the aspect in which the polymerizable composition is prepared as a coating liquid containing a solvent, the liquid crystal phase may be obtained by drying the coating film and removing the solvent. Moreover, in order to set it as the transition temperature to a liquid crystal phase, you may heat a coating film if desired. For example, the liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the liquid crystal phase transition temperature. The liquid crystal phase transition temperature of the polymerizable composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C. from the viewpoint of production suitability and the like. When the temperature is lower than 10 ° C., a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase. Also, if it exceeds 200 ° C, a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration. There is.
 次に、(ii)の工程では、液晶相の状態となった塗膜を硬化させる。硬化は、ラジカル重合法、アニオン重合法、カチオン重合法、配位重合法等、いずれの重合法に従って進行させてもよい。式(I)で示される重合性化合物に応じて、適する重合法を選択すればよい。この重合により、式(I)で示される重合性化合物から誘導される単位を構成単位中に有する重合体が得られる。
 一例では、紫外線を照射して、硬化反応を進行させる。紫外線照射には、紫外線ランプ等の光源が利用される。この工程では、紫外線を照射することによって、組成物の硬化反応が進行し、液晶相(コレステリック液晶相等)が固定されて、硬化膜が形成される。
 紫外線の照射エネルギー量については特に制限はないが、一般的には、0.1J/cm2~0.8J/cm2程度が好ましい。また、塗膜に紫外線を照射する時間については特に制限はないが、硬化膜の充分な強度および生産性の双方の観点から決定すればよい。
Next, in the step (ii), the coating film in a liquid crystal phase is cured. Curing may proceed according to any polymerization method such as a radical polymerization method, an anionic polymerization method, a cationic polymerization method, or a coordination polymerization method. A suitable polymerization method may be selected according to the polymerizable compound represented by the formula (I). By this polymerization, a polymer having units derived from the polymerizable compound represented by the formula (I) in the structural unit is obtained.
In one example, ultraviolet light is irradiated to advance the curing reaction. For ultraviolet irradiation, a light source such as an ultraviolet lamp is used. In this step, the curing reaction of the composition proceeds by irradiating ultraviolet rays, the liquid crystal phase (cholesteric liquid crystal phase or the like) is fixed, and a cured film is formed.
No particular limitation is imposed on the amount of irradiation energy of ultraviolet rays, in general, 0.1J / cm 2 ~ 0.8J / cm 2 is preferably about. Moreover, there is no restriction | limiting in particular about the time which irradiates a coating film with an ultraviolet-ray, However, What is necessary is just to determine from the viewpoint of both sufficient intensity | strength and productivity of a cured film.
 硬化反応を促進するため、加熱条件下で紫外線照射を実施してもよい。また、紫外線照射時の温度は、液晶相が乱れないように、液晶相を呈する温度範囲に維持することが好ましい。また、雰囲気の酸素濃度は重合度に関与するため、空気中で所望の重合度に達せず、膜強度が不十分の場合には、窒素置換等の方法により、雰囲気中の酸素濃度を低下させることが好ましい。 In order to accelerate the curing reaction, ultraviolet irradiation may be performed under heating conditions. Moreover, it is preferable to maintain the temperature at the time of ultraviolet irradiation in the temperature range which exhibits a liquid crystal phase so that a liquid crystal phase may not be disturbed. Also, since the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable.
 上記工程では、液晶相が固定されて、硬化膜が形成される。ここで、液晶相を「固定化した」状態は、液晶相となっている化合物の配向が保持された状態が最も典型的、且つ好ましい態様である。それだけには限定されず、具体的には、通常0℃~50℃、より過酷な条件下では-30℃~70℃の温度範囲において、層に流動性が無く、また外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を意味するものとする。本発明では、紫外線照射によって進行する硬化反応により、液晶相の配向状態を固定することが好ましい。
 なお、フィルムにおいては、液晶相の光学的性質が層中において保持されていれば十分であり、最終的に硬化膜中の組成物がもはや液晶性を示す必要はない。例えば、組成物が、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
In the above step, the liquid crystal phase is fixed and a cured film is formed. Here, the state in which the liquid crystal phase is “fixed” is the most typical and preferred state in which the orientation of the compound that is the liquid crystal phase is maintained. However, it is not limited to this. Specifically, in the temperature range of usually 0 ° C to 50 ° C, and -30 ° C to 70 ° C under harsher conditions, the layer has no fluidity, and the orientation form is influenced by an external field or external force. This means a state in which the fixed orientation form can be kept stable without causing a change in the above. In the present invention, the alignment state of the liquid crystal phase is preferably fixed by a curing reaction that proceeds by ultraviolet irradiation.
In the film, it is sufficient that the optical properties of the liquid crystal phase are maintained in the layer, and the composition in the cured film no longer needs to exhibit liquid crystal properties. For example, the composition may be no longer liquid crystalline due to a high molecular weight due to the curing reaction.
 上記硬化膜の厚みについては特に制限はない。用途に応じて、または所望とされる光学特性に応じて、好ましい膜厚を決定すればよい。一般的には、厚さは0.05~50μmが好ましく、1~35μmがより好ましい。 The thickness of the cured film is not particularly limited. What is necessary is just to determine a preferable film thickness according to an application or according to the optical characteristic made desired. In general, the thickness is preferably 0.05 to 50 μm, more preferably 1 to 35 μm.
[基板]
 フィルムは、基板を有していてもよい。当該基板は自己支持性があり、上記硬化膜を支持するものであれば、材料および光学的特性についてなんら限定はない。ガラス板、石英板、およびポリマーフィルム等から選択することができる。用途によっては、紫外光に対する高い透明性を有するものを用いてもよい。可視光に対する透過性が高いポリマーフィルムとしては、液晶表示装置等の表示装置の部材として用いられる種々の光学フィルム用のポリマーフィルムが挙げられる。基板としては、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等のポリエステルフィルム;ポリカーボネート(PC)フィルム、ポリメチルメタクリレートフィルム;ポリエチレン、ポリプロピレン等のポリオレフィンフィルム;ポリイミドフィルム、トリアセチルセルロース(TAC)フィルム、などが挙げられる。ポリエチレンテレフタレートフィルム、トリアセチルセルロースフィルムが好ましい。
[substrate]
The film may have a substrate. The substrate is self-supporting, and there is no limitation on the material and optical characteristics as long as it supports the cured film. It can be selected from a glass plate, a quartz plate, a polymer film, and the like. Depending on the application, those having high transparency to ultraviolet light may be used. Examples of the polymer film having high transparency to visible light include polymer films for various optical films used as members of display devices such as liquid crystal display devices. Examples of substrates include polyester films such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate (PEN); polycarbonate (PC) films and polymethyl methacrylate films; polyolefin films such as polyethylene and polypropylene; polyimide films and triacetyl A cellulose (TAC) film etc. are mentioned. A polyethylene terephthalate film and a triacetyl cellulose film are preferred.
[配向層]
 フィルムは、基板と硬化膜との間に、配向層を有していてもよい。配向層は、液晶化合物の配向方向をより精密に規定する機能を有する。配向層は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成等の手段で設けることができる。さらには、電場の付与、磁場の付与、或いは光照射により配向機能が生じる配向層も知られている。配向層は、ポリマーの膜の表面に、ラビング処理により形成することが好ましい。
[Alignment layer]
The film may have an alignment layer between the substrate and the cured film. The alignment layer has a function of more precisely defining the alignment direction of the liquid crystal compound. The alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound, or formation of a layer having a microgroove. Furthermore, an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known. The alignment layer is preferably formed on the surface of the polymer film by rubbing treatment.
 配向層に用いられる材料としては、有機化合物のポリマーが好ましく、それ自体が架橋可能なポリマーか、或いは架橋剤により架橋されるポリマーがよく用いられる。当然、双方の機能を有するポリマーも用いられる。ポリマーの例としては、ポリメチルメタクリレート、アクリル酸/メタクリル酸共重合体、スチレン/マレインイミド共重合体、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N-メチロ-ルアクリルアミド)、スチレン/ビニルトルエン共重合体、クロロスルホン化ポリエチレン、ニトロセルロース、ポリ塩化ビニル、塩素化ポリオレフィン、ポリエステル、ポリイミド、酢酸ビニル/塩化ビニル共重合体、エチレン/酢酸ビニル共重合体、カルボキシメチルセルロース、ゼラチン、ポリエチレン、ポリプロピレンおよびポリカーボネート等のポリマーおよびシランカップリング剤等の化合物を挙げることができる。好ましいポリマーの例としては、ポリ(N-メチロ-ルアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビルアルコールおよび変性ポリビニルアルコール等の水溶性ポリマーが挙げられ、このうち、ゼラチン、ポリビルアルコールおよび変性ポリビニルアルコールが好ましく、特にポリビルアルコールおよび変性ポリビニルアルコールが好ましい。 As a material used for the alignment layer, a polymer of an organic compound is preferable, and a polymer that can be crosslinked by itself or a polymer that is crosslinked by a crosslinking agent is often used. Of course, polymers having both functions are also used. Examples of polymers include polymethyl methacrylate, acrylic acid / methacrylic acid copolymer, styrene / maleimide copolymer, polyvinyl alcohol and modified polyvinyl alcohol, poly (N-methylolacrylamide), styrene / vinyl toluene copolymer Polymer, chlorosulfonated polyethylene, nitrocellulose, polyvinyl chloride, chlorinated polyolefin, polyester, polyimide, vinyl acetate / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, carboxymethylcellulose, gelatin, polyethylene, polypropylene, polycarbonate, etc. And polymers such as silane coupling agents. Examples of preferred polymers include water-soluble polymers such as poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvir alcohol and modified polyvinyl alcohol, of which gelatin, polyvir alcohol and modified polyvinyl alcohol In particular, polyvinyl alcohol and modified polyvinyl alcohol are preferable.
[接着層]
 複数の硬化膜同士を接着剤により貼合する場合、硬化膜の間には接着層が設けられる。接着層は接着剤から形成されるものであればよい。
 接着剤としては硬化方式の観点からホットメルトタイプ、熱硬化タイプ、光硬化タイプ、反応硬化タイプ、硬化の不要な感圧接着タイプがあり、それぞれ素材としてアクリレート系、ウレタン系、ウレタンアクリレート系、エポキシ系、エポキシアクリレート系、ポリオレフィン系、変性オレフィン系、ポリプロピレン系、エチレンビニルアルコール系、塩化ビニル系、クロロプレンゴム系、シアノアクリレート系、ポリアミド系、ポリイミド系、ポリスチレン系、ポリビニルブチラール系などの化合物を使用することができる。作業性、生産性の観点から、硬化方式として光硬化タイプが好ましく、光学的な透明性、耐熱性の観点から、素材はアクリルレート系、ウレタンアクリレート系、エポキシアクリレート系などを使用することが好ましい。
 接着層の膜厚は0.5~10μm、好ましくは1~5μmであればよい。投映像表示用ハーフミラーとして用いられる場合、色ムラ等を軽減するため均一な膜厚で設けられることが好ましい。
[Adhesive layer]
When bonding a plurality of cured films with an adhesive, an adhesive layer is provided between the cured films. The adhesive layer may be formed from an adhesive.
Adhesives include hot melt type, thermosetting type, photocuring type, reactive curing type, and pressure-sensitive adhesive type that does not require curing, from the viewpoint of curing method, and the materials are acrylate, urethane, urethane acrylate, epoxy , Epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide, polyimide, polystyrene, polyvinyl butyral, etc. can do. From the viewpoint of workability and productivity, the photocuring type is preferable as the curing method, and from the viewpoint of optical transparency and heat resistance, the material is preferably an acrylate, urethane acrylate, epoxy acrylate, or the like. .
The thickness of the adhesive layer may be 0.5 to 10 μm, preferably 1 to 5 μm. When used as a projected image display half mirror, it is preferably provided with a uniform film thickness to reduce color unevenness and the like.
[フィルムの用途]
 フィルムの一態様は、重合性組成物の、液晶相の配向(例えば、水平配向、垂直配向、ハイブリッド配向等)を固定したフィルムであって、光学異方性を示すフィルムである。当該フィルムは、液晶表示装置等の光学補償フィルム等として利用される。
 光学フィルムの一態様は、重合性組成物のコレステリック液晶相を固定した層を含むフィルムであって、所定の波長域の光に対して選択反射特性を示すフィルムである。コレステリック液晶相では、液晶分子は螺旋状に配列している。コレステリック液晶相を固定した層(以下「コレステリック液晶層」ということがある。)は選択反射波長域において、右円偏光または左円偏光のいずれか一方を選択的に反射させ、他方のセンスの円偏光を透過させる円偏光選択反射層として機能する。コレステリック液晶層を1層または2層以上含むフィルムは、様々な用途に用いることができる。コレステリック液晶層を2層以上含むフィルムにおいて、各コレステリック液晶層が反射する円偏光のセンスは用途に応じて同じでも逆であってもよい。また、各コレステリック液晶層の後述の選択反射の中心波長も用途に応じて同じでも異なっていてもよい。
[Use of film]
One embodiment of the film is a film in which the alignment of the liquid crystal phase (for example, horizontal alignment, vertical alignment, hybrid alignment, etc.) of the polymerizable composition is fixed and exhibits optical anisotropy. The film is used as an optical compensation film for a liquid crystal display device or the like.
One aspect of the optical film is a film including a layer in which a cholesteric liquid crystal phase of a polymerizable composition is fixed, and exhibits selective reflection characteristics with respect to light in a predetermined wavelength range. In the cholesteric liquid crystal phase, the liquid crystal molecules are arranged in a spiral. A layer in which a cholesteric liquid crystal phase is fixed (hereinafter sometimes referred to as a “cholesteric liquid crystal layer”) selectively reflects either right circularly polarized light or left circularly polarized light in the selective reflection wavelength region, and the other sense circle. It functions as a circularly polarized light selective reflection layer that transmits polarized light. A film containing one or more cholesteric liquid crystal layers can be used for various applications. In a film including two or more cholesteric liquid crystal layers, the sense of circularly polarized light reflected by each cholesteric liquid crystal layer may be the same or opposite depending on the application. Further, the center wavelength of selective reflection described later of each cholesteric liquid crystal layer may be the same or different depending on the application.
 なお、本明細書において、円偏光につき「センス」というときは、右円偏光であるか、または左円偏光であるかを意味する。円偏光のセンスは、光が手前に向かって進んでくるように眺めた場合に電場ベクトルの先端が時間の増加に従って時計回りに回る場合が右円偏光であり、反時計回りに回る場合が左円偏光であるとして定義される。本明細書においては、コレステリック液晶の螺旋の捩れ方向について「センス」との用語を用いることもある。コレステリック液晶による選択反射は、コレステリック液晶の螺旋の捩れ方向(センス)が右の場合は右円偏光を反射し、左円偏光を透過し、センスが左の場合は左円偏光を反射し、右円偏光を透過する。 In this specification, the term “sense” for circularly polarized light means whether it is right circularly polarized light or left circularly polarized light. The sense of circularly polarized light is right-handed circularly polarized light when the electric field vector tip turns clockwise as time increases when viewed as the light travels toward you, and left when it turns counterclockwise. Defined as being circularly polarized. In this specification, the term “sense” may be used for the twist direction of the spiral of the cholesteric liquid crystal. The selective reflection by the cholesteric liquid crystal reflects right circularly polarized light when the twist direction (sense) of the cholesteric liquid crystal spiral is right, transmits left circularly polarized light, and reflects left circularly polarized light when the sense is left, Transmits circularly polarized light.
 例えば可視光波長域(波長400~750nm)に選択反射特性を示すコレステリック液晶層を含むフィルムは、投映像表示用のスクリーンやハーフミラーとして利用することができる。また、反射帯域を制御することで、カラーフィルタやディスプレイの表示光の色純度を向上させるフィルタ(例えば特開2003-294948号公報参照)として利用することができる。
 また、光学フィルムは、光学素子の構成要素である、偏光素子、反射膜、反射防止膜、視野角補償膜、ホログラフィー、配向膜等、種々の用途に利用することができる。
 以下特に好ましい用途である投映像表示用部材としての用途について説明する。
For example, a film including a cholesteric liquid crystal layer exhibiting selective reflection characteristics in the visible light wavelength region (wavelength 400 to 750 nm) can be used as a screen for projecting image display and a half mirror. Further, by controlling the reflection band, it can be used as a color filter or a filter that improves the color purity of display light of a display (see, for example, JP-A-2003-294948).
The optical film can be used for various applications such as a polarizing element, a reflection film, an antireflection film, a viewing angle compensation film, a holography, and an alignment film, which are constituent elements of the optical element.
The use as a projection image display member, which is a particularly preferred use, will be described below.
[投映像表示用部材]
 コレステリック液晶層の上記の機能により、投射光のうち選択反射を示す波長において、いずれか一方のセンスの円偏光を反射させて、投映像を形成することができる。投映像は投映像表示用部材表面で表示され、そのように視認されるものであってもよく、観察者から見て投映像表示用部材の先に浮かび上がって見える虚像であってもよい。
[Projection display material]
With the above function of the cholesteric liquid crystal layer, it is possible to form a projected image by reflecting the circularly polarized light of one of the senses at a wavelength showing selective reflection in the projection light. The projected image may be displayed on the surface of the projected image display member and viewed as such, or may be a virtual image that appears above the projected image display member when viewed from the observer.
 上記選択反射の中心波長λは、コレステリック相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶層の平均屈折率nとλ=n×Pの関係に従う。なお、ここで、コレステリック液晶層が有する選択反射の中心波長λは、当該コレステリック液晶層の法線方向から測定した円偏光反射スペクトルの反射ピークの重心位置にある波長を意味する。上記式から分かるように、螺旋構造のピッチを調節することによって、選択反射の中心波長を調整できる。すなわち、n値とP値を調節して、例えば、青色光に対して右円偏光または左円偏光のいずれか一方を選択的に反射させるために、中心波長λを調節し、見かけ上の選択反射の中心波長が450nm~495nmの波長域となるようにすることができる。なお、見かけ上の選択反射の中心波長とは実用の際(投映像表示用部材としての使用時)の観察方向から測定したコレステリック液晶層の円偏光反射スペクトルの反射ピークの重心位置にある波長を意味する。コレステリック液晶相のピッチは重合性液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調整することによって所望のピッチを得ることができる。なお、螺旋のセンスやピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。 The central wavelength λ of the selective reflection depends on the pitch P (= spiral period) of the helical structure in the cholesteric phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal layer and λ = n × P. Here, the selective reflection center wavelength λ of the cholesteric liquid crystal layer means a wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer. As can be seen from the above equation, the center wavelength of selective reflection can be adjusted by adjusting the pitch of the helical structure. That is, by adjusting the n value and the P value, for example, to selectively reflect either the right circularly polarized light or the left circularly polarized light with respect to the blue light, the center wavelength λ is adjusted, and an apparent selection is made. The central wavelength of reflection can be in the wavelength range of 450 nm to 495 nm. The apparent selective reflection center wavelength is the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum of the cholesteric liquid crystal layer measured from the observation direction in practical use (when used as a projection image display member). means. Since the pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these. For the method of measuring spiral sense and pitch, use the methods described in “Introduction to Liquid Crystal Chemistry Experiments” edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook”, Liquid Crystal Handbook Editorial Committee, Maruzen, page 196. be able to.
 円偏光選択反射を示す選択反射波長域の半値幅Δλ(nm)は、Δλが液晶化合物の複屈折Δnと上記ピッチPに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射波長域の幅の制御は、Δnを調整して行うことができる。すなわち、低複屈折性の本発明の重合性液晶化合物を含む組成物から形成したコレステリック液晶層においては、選択反射の波長選択性を高くすることができる。 The half-value width Δλ (nm) of the selective reflection wavelength region showing the circularly polarized light selective reflection follows the relationship of Δλ = Δn × P, where Δλ depends on the birefringence Δn of the liquid crystal compound and the pitch P. Therefore, the width of the selective reflection wavelength region can be controlled by adjusting Δn. That is, in the cholesteric liquid crystal layer formed from the composition containing the polymerizable liquid crystal compound of the present invention having low birefringence, the wavelength selectivity of selective reflection can be increased.
 選択反射の波長選択性を示す指標として、例えば、選択反射波長域の半値幅Δλと選択反射の中心波長λの比であるΔλ/λを用いることができる。本発明のフィルム、特に投映像表示用部材として用いられるフィルムはΔλ/λが、0.09以下であることが好ましく、0.07以下であることがより好ましい。より具体的にはフィルム中のコレステリック液晶層において、Δλ/λが上記を満たすことが好ましく、2層以上のコレステリック液晶層を含むフィルムにおいては2層以上のコレステリック液晶層のそれぞれにおいてΔλ/λが上記を満たすことが好ましい。なお、各層は、互いにΔλおよびλがそれぞれ同じであっても異なっていてもよい。 As an index indicating the wavelength selectivity of selective reflection, for example, Δλ / λ, which is the ratio of the half-value width Δλ of the selective reflection wavelength region and the center wavelength λ of selective reflection, can be used. In the film of the present invention, particularly a film used as a projection image display member, Δλ / λ is preferably 0.09 or less, and more preferably 0.07 or less. More specifically, in the cholesteric liquid crystal layer in the film, Δλ / λ preferably satisfies the above, and in a film including two or more cholesteric liquid crystal layers, Δλ / λ in each of the two or more cholesteric liquid crystal layers is It is preferable to satisfy the above. Each layer may have the same or different Δλ and λ.
 上記重合性組成物を用いて、赤色光波長域、緑色光波長域、および青色光波長域にそれぞれ見かけ上の選択反射の中心波長を有する硬化膜をそれぞれ作製し、それらを積層することによりフルカラーの投映像の表示が可能である投映像表示用部材を作製することができる。具体的には、ハーフミラーが、750-620nm、630-500nm、530-420nmのそれぞれの範囲であって、互いに異なる(例えば50nm以上異なる)選択反射の中心波長をそれぞれ有する硬化膜を積層することが好ましい。 Using the above-described polymerizable composition, a cured film having an apparent selective reflection center wavelength in each of the red light wavelength region, the green light wavelength region, and the blue light wavelength region is prepared, and a full color is obtained by laminating them. A projection image display member capable of displaying the projection image can be produced. Specifically, the half mirror is laminated with cured films having respective selective reflection center wavelengths in the respective ranges of 750 to 620 nm, 630 to 500 nm, and 530 to 420 nm (different from each other, for example, 50 nm or more). Is preferred.
 各硬化膜の選択反射の中心波長を、投映に用いられる光源の発光波長域、および投映像表示用部材の使用態様に応じて調整することにより光利用効率良く鮮明な投映像を表示することができる。特に硬化膜の選択反射の中心波長をそれぞれ投映に用いられる光源の発光波長域などに応じてそれぞれ調整することにより、光利用効率良く鮮明なカラー投映像を表示することができる。投映像表示用部材の使用態様としては、特に投映像表示用ハーフミラー表面への投射光の入射角、投映像表示用部材表面の投映像観察方向などが挙げられる。 By adjusting the center wavelength of selective reflection of each cured film according to the emission wavelength range of the light source used for projection and the usage mode of the projection image display member, it is possible to display a clear projection image with high light utilization efficiency. it can. In particular, by adjusting the center wavelength of selective reflection of the cured film in accordance with the emission wavelength range of the light source used for projection, a clear color projection image can be displayed with high light utilization efficiency. Examples of usage of the projection image display member include an incident angle of projection light on the surface of the projection image display half mirror, a projection image observation direction on the surface of the projection image display member, and the like.
 例えば、上記投映像表示用部材を可視光領域の光に対して透過性を有する構成とすることによりヘッドアップディスプレイのコンバイナとして使用可能なハーフミラーとすることができる。投映像表示用ハーフミラーは、プロジェクター等から投映された画像を視認可能に表示することができるとともに、画像が表示されている同じ面側から投映像表示用ハーフミラーを観察したときに、反対の面側にある情報または風景を同時に観察することができる。 For example, a half mirror that can be used as a combiner for a head-up display can be obtained by configuring the projection image display member to be transparent to light in the visible light region. The projected image display half mirror can display an image projected from a projector or the like so that the projected image can be viewed. When the projected image displayed half mirror is observed from the same side where the image is displayed, It is possible to observe information or scenery on the surface side at the same time.
 投映像表示用ハーフミラーとして用いられる際は、上記のように作製される硬化膜、特に3層以上の硬化膜の積層体を、基材表面に設けることが好ましい。基材は可視光領域で透明で低複屈折性であることが好ましい。例えば、基材の波長550nmにおける位相差は50nm以下であることが好ましく、20nm以下であることがより好ましい。
 基材の例としては、無機ガラスや高分子樹脂(アクリル樹脂(ポリメチル(メタ)アクリレートなどのアクリル酸エステル類など)、ポリカーボネート、シクロペンタジエン系ポリオレフィンやノルボルネン系ポリオレフィンなどの環状ポリオレフィン、ポリプロピレンなどのポリオレフィン類、ポリスチレンなどの芳香族ビニルポリマー類、ポリアリレート、セルロースアシレート等)が挙げられる。
When used as a projected image display half mirror, it is preferable to provide a cured film prepared as described above, particularly a laminate of three or more cured films on the surface of the substrate. The substrate is preferably transparent in the visible light region and low birefringence. For example, the retardation of the substrate at a wavelength of 550 nm is preferably 50 nm or less, and more preferably 20 nm or less.
Examples of base materials include inorganic glass and polymer resins (acrylic resins (acrylic esters such as polymethyl (meth) acrylate)), polycarbonate, cyclic polyolefins such as cyclopentadiene polyolefin and norbornene polyolefin, and polyolefins such as polypropylene. And aromatic vinyl polymers such as polystyrene, polyarylate, cellulose acylate, etc.).
 投映像表示用ハーフミラーは反射防止層を含んでいてもよい。反射防止層は、最表面に含まれていることが好ましい。投映像表示用ハーフミラーの使用の際に観察側となる最表面に設けられていてもよく、反対側の最表面に設けられていてもよいが、観察側の最表面に設けられていることが好ましい。基材表面に硬化膜を設ける場合は、基材側表面と観察側となる硬化膜側との双方に反射防止層を設けてもよい。このような構成により、特に基材の複屈折性が高い場合に生じうる二重像が生じにくくなるからである。 The half mirror for displaying projected images may include an antireflection layer. The antireflection layer is preferably contained on the outermost surface. It may be provided on the outermost surface on the observation side when using the half mirror for projected image display, or may be provided on the outermost surface on the opposite side, but provided on the outermost surface on the observation side Is preferred. When providing a cured film on the substrate surface, an antireflection layer may be provided on both the substrate side surface and the cured film side on the observation side. This is because such a configuration makes it difficult to generate a double image that may occur particularly when the base material has high birefringence.
 反射防止層としては、例えば、微細な表面凹凸を形成した膜のほか、高屈折率層と低屈折率層を組み合わせた2層膜の構成、中屈折率層、高屈折率層、および低屈折率層を順次積層した3層膜構成の膜などが挙げられる。
 構成例としては、下側から順に、高屈折率層/低屈折率層の2層のものや、屈折率の異なる3層を、中屈折率層(下層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているもの等があり、更に多くの反射防止層を積層するものも提案されている。中でも、耐久性、光学特性、コストや生産性等から、ハードコート層上に、中屈折率層/高屈折率層/低屈折率層の順に有することが好ましく、例えば、特開平8-122504号公報、特開平8-110401号公報、特開平10-300902号公報、特開2002-243906号公報、特開2000-111706号公報等に記載の構成が挙げられる。また、膜厚変動に対するロバスト性に優れる3層構成の反射防止フィルムは特開2008-262187号公報に記載されている。上記3層構成の反射防止フィルムは、画像表示装置の表面に設置した場合、反射率の平均値を0.5%以下とすることができ、映り込みを著しく低減することができ、立体感に優れる画像を得ることができる。また、各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層、帯電防止性のハードコート層、防眩性のハードコート層としたもの(例、特開平10-206603号公報、特開2002-243906号公報、特開2007-264113号公報等)等が挙げられる。
As the antireflection layer, for example, in addition to a film having fine surface irregularities, a two-layer structure in which a high refractive index layer and a low refractive index layer are combined, a medium refractive index layer, a high refractive index layer, and a low refractive index For example, a film having a three-layer film structure in which rate layers are sequentially stacked.
As a configuration example, two layers of a high refractive index layer / low refractive index layer or three layers having different refractive indexes are arranged in order from the bottom, and a medium refractive index layer (having a higher refractive index than the lower layer and a high refractive index). In some cases, a layer having a lower refractive index than a layer) / a layer having a higher refractive index / a layer having a lower refractive index are stacked in this order. Among them, in view of durability, optical characteristics, cost, productivity, etc., it is preferable to have a medium refractive index layer / high refractive index layer / low refractive index layer in this order on the hard coat layer. For example, JP-A-8-122504 Examples include the configurations described in JP-A-8-110401, JP-A-10-300902, JP-A-2002-243906, JP-A-2000-11706, and the like. Further, an antireflection film having a three-layer structure excellent in robustness against film thickness fluctuation is described in JP-A-2008-262187. When the antireflection film having the above three-layer structure is installed on the surface of an image display device, the average value of reflectance can be reduced to 0.5% or less, reflection can be remarkably reduced, and a three-dimensional effect can be achieved. An excellent image can be obtained. Further, each layer may be provided with other functions, for example, an antifouling low refractive index layer, an antistatic high refractive index layer, an antistatic hard coat layer, an antiglare hard coat layer, and the like. (For example, JP-A-10-206603, JP-A-2002-243906, JP-A-2007-264113, etc.).
 反射防止層を構成する無機材料としては、SiO2、SiO、ZrO2、TiO2、TiO、Ti23、Ti25、Al23、Ta25、CeO2、MgO、Y23、SnO2、MgF2、WO3等が挙げられ、これらを単独でまたは2種以上を併用して用いることができる。これらの中でも、SiO2、ZrO2、TiO2およびTa25は、低温で真空蒸着が可能であり、プラスチック基板の表面にも膜を形成可能であるので好ましい。
 無機材料で形成される多層膜としては、基板側からZrO2層とSiO2層の合計光学的膜厚がλ/4、ZrO2層の光学的膜厚がλ/4、最表層のSiO2層の光学的膜厚がλ/4の、高屈折率材料層と低屈折率材料層とを交互に成膜する積層構造が例示される。ここで、λは設計波長であり、通常520nmが用いられる。最表層は、屈折率が低く、かつ反射防止層に機械的強度を付与できることからSiO2とすることが好ましい。
 無機材料で反射防止層を形成する場合、成膜方法は例えば真空蒸着法、イオンプレーティング法、スパッタリング法、CVD法、飽和溶液中での化学反応により析出させる方法等を採用することができる。
As the inorganic material constituting the anti-reflection layer, SiO 2, SiO, ZrO 2 , TiO 2, TiO, Ti 2 O 3, Ti 2 O 5, Al 2 O 3, Ta 2 O 5, CeO 2, MgO, Y 2 O 3 , SnO 2 , MgF 2 , WO 3 and the like can be mentioned, and these can be used alone or in combination of two or more. Among these, SiO 2 , ZrO 2 , TiO 2 and Ta 2 O 5 are preferable because they can be vacuum-deposited at a low temperature and can form a film on the surface of a plastic substrate.
As a multilayer film formed of an inorganic material, the total optical film thickness of the ZrO 2 layer and the SiO 2 layer from the substrate side is λ / 4, the optical film thickness of the ZrO 2 layer is λ / 4, and the outermost SiO 2 layer is SiO 2. A laminated structure in which a high refractive index material layer and a low refractive index material layer having an optical film thickness of λ / 4 are alternately formed is exemplified. Here, λ is a design wavelength, and usually 520 nm is used. The outermost layer is preferably made of SiO 2 because it has a low refractive index and can impart mechanical strength to the antireflection layer.
When the antireflection layer is formed of an inorganic material, for example, a vacuum deposition method, an ion plating method, a sputtering method, a CVD method, a method of depositing by a chemical reaction in a saturated solution, or the like can be employed.
 低屈折率層に用いる有機材料としては、例えばFFP(テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体)、PTFE(ポリテトラフルオロエチレン)、ETFE(エチレン-テトラフルオロエチレン共重合体)等を挙げることができ、また特開2007-298974号公報に記載の含フッ素硬化性樹脂と無機微粒子を含有する組成物や、特開2002-317152号公報、特開2003-202406号公報、および特開2003-292831号公報に記載の中空シリカ微粒子含有低屈折率コーティング組成物を好適に用いることができる。成膜方法は、真空蒸着法の他、スピンコート法、ディップコート法、グラビアコート法などの量産性に優れた塗装方法で成膜することができる。
 低屈折率層は、屈折率が1.30~1.51であることが好ましい。1.30~1.46であることが好ましく、1.32~1.38が更に好ましい。
Examples of the organic material used for the low refractive index layer include FFP (tetrafluoroethylene-hexafluoropropylene copolymer), PTFE (polytetrafluoroethylene), ETFE (ethylene-tetrafluoroethylene copolymer), and the like. And a composition containing a fluorine-containing curable resin and inorganic fine particles described in JP-A-2007-298974, JP-A-2002-317152, JP-A-2003-202406, and JP-A-2003-292831. The low-refractive-index coating composition containing hollow silica fine particles described in the Japanese Patent Publication No. 1 can be suitably used. As a film forming method, the film can be formed by a coating method having excellent mass productivity such as a spin coating method, a dip coating method, and a gravure coating method in addition to the vacuum vapor deposition method.
The low refractive index layer preferably has a refractive index of 1.30 to 1.51. It is preferably 1.30 to 1.46, more preferably 1.32 to 1.38.
 中屈折率層、高屈折率層に用いる有機材料としては、芳香環を含む電離放射線硬化性化合物、フッ素以外のハロゲン化元素(例えば、Br,I,Cl等)を含む電離放射線硬化性化合物、S,N,P等の原子を含む電離放射線硬化性化合物などの架橋または重合反応で得られるバインダー、およびそれに添加するTiO2を主成分とする無機粒子をあげることができる。具体的には特開2008-262187号公報の段落番号[0074]~[0094]に記載のものが例示できる。
 高屈折率層の屈折率は、1.65~2.20であることが好ましく、1.70~1.80であることがより好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整される。中屈折率層の屈折率は、1.55~1.65であることが好ましく、1.58~1.63であることが更に好ましい。
 反射防止層の膜厚は、特に限定されるものではないが、0.1~10μm、1~5μm、2~4μm程度であればよい。
Examples of organic materials used for the medium refractive index layer and the high refractive index layer include ionizing radiation curable compounds containing aromatic rings, ionizing radiation curable compounds containing halogenated elements other than fluorine (eg, Br, I, Cl, etc.), Examples thereof include binders obtained by crosslinking or polymerization reaction such as ionizing radiation curable compounds containing atoms such as S, N, and P, and inorganic particles mainly composed of TiO 2 added thereto. Specifically, those described in paragraph numbers [0074] to [0094] of JP-A-2008-262187 can be exemplified.
The refractive index of the high refractive index layer is preferably 1.65 to 2.20, more preferably 1.70 to 1.80. The refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.55 to 1.65, and more preferably 1.58 to 1.63.
The thickness of the antireflection layer is not particularly limited, but may be about 0.1 to 10 μm, 1 to 5 μm, or 2 to 4 μm.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
<化合物I-1の合成>
Figure JPOXMLDOC01-appb-C000018
<Synthesis of Compound I-1>
Figure JPOXMLDOC01-appb-C000018
 trans-1,4-シクロヘキサジカルボン酸(21g)と塩化チオニル(29g)をトルエン(60mL)中、内温70℃で2時間攪拌した。減圧下、溶媒留去した後、THF(テトラヒドロフラン)(50mL)、フェノール1(31.21g)とBHT(ジブチルヒドロキシトルエン)(0.2g)を添加し、N,N-ジメチルアミノピリジン(0.8g)、N,N-ジイソプロピルエチルアミン(16.17g)のTHF(15mL)溶液を滴下し、室温で3時間攪拌した。メタノール(2mL)を加えて、室温で15分間攪拌した後、水と酢酸エチルを加えて水層を除去し、希塩酸、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去し、カラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製することで、カルボン酸I-1を得た。 Trans-1,4-cyclohexadicarboxylic acid (21 g) and thionyl chloride (29 g) were stirred in toluene (60 mL) at an internal temperature of 70 ° C. for 2 hours. After the solvent was distilled off under reduced pressure, THF (tetrahydrofuran) (50 mL), phenol 1 (31.21 g) and BHT (dibutylhydroxytoluene) (0.2 g) were added, and N, N-dimethylaminopyridine (0. 8 g), a solution of N, N-diisopropylethylamine (16.17 g) in THF (15 mL) was added dropwise, and the mixture was stirred at room temperature for 3 hours. Methanol (2 mL) was added, and the mixture was stirred at room temperature for 15 minutes. Water and ethyl acetate were added to remove the aqueous layer, followed by washing with dilute hydrochloric acid and brine. After drying the organic layer with magnesium sulfate and filtering the desiccant, the solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (hexane: ethyl acetate = 4: 1) to obtain carboxylic acid I-1. .
1H-NMR(溶媒:CDCl3)δ(ppm):
1.4-1.7(m,7H),1.7-1.9(m,5H),2.1-2.3(m,4H),2.3-2.4(m,1H),2.5-2.6(m,1H),3.9(t,2H),4.2(t,2H),5.8(dd,1H),6.1(dd,1H),6.4(dd,1H),6.9(d,2H),7.0(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.4-1.7 (m, 7H), 1.7-1.9 (m, 5H), 2.1-2.3 (m, 4H), 2.3-2.4 (m, 1H) ), 2.5-2.6 (m, 1H), 3.9 (t, 2H), 4.2 (t, 2H), 5.8 (dd, 1H), 6.1 (dd, 1H) , 6.4 (dd, 1H), 6.9 (d, 2H), 7.0 (d, 2H)
<化合物20の合成>
Figure JPOXMLDOC01-appb-C000019
<Synthesis of Compound 20>
Figure JPOXMLDOC01-appb-C000019
 カルボン酸I-1(500mg)、2-(メトキシカルボニル)ヒドロキノン(100mg)、N,N-ジメチルアミノピリジン(7.3mg)、およびBHT(6.6mg)をDMAc(ジメチルアセトアミド)(2mL)とTHF(1mL)の混合溶媒中で攪拌し、3-[(エチルカルボンイミドイル)アミノ]-N,N-ジメチル-1-プロパンアミン塩酸塩(252mg)を加え、3時間攪拌した。水と酢酸エチルを加えて水層を除去し、希塩酸で洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、BHT(0.1g)を加えて溶媒を減圧留去し、メタノール(10mL)を加えて内温0℃になるまで冷却し、生成した結晶をろ過することで、化合物20(420mg)を得た。 Carboxylic acid I-1 (500 mg), 2- (methoxycarbonyl) hydroquinone (100 mg), N, N-dimethylaminopyridine (7.3 mg), and BHT (6.6 mg) were added to DMAc (dimethylacetamide) (2 mL). The mixture was stirred in a mixed solvent of THF (1 mL), 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (252 mg) was added, and the mixture was stirred for 3 hours. Water and ethyl acetate were added to remove the aqueous layer and washed with dilute hydrochloric acid. After drying the organic layer with magnesium sulfate and filtering the desiccant, BHT (0.1 g) is added and the solvent is distilled off under reduced pressure. Methanol (10 mL) is added and cooled to an internal temperature of 0 ° C. The obtained crystals were filtered to obtain Compound 20 (420 mg).
1H-NMR(溶媒:CDCl3)δ(ppm):
1.4-1.6(m,8H),1.6-1.9(m,16H),2.2-2.4(m,8H),2.5-2.7(m,4H),3.86(s,3H),3.94(t,4H),4.2(t,4H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),6.9(d,4H),7.0(d,4H),7.1(d,1H),7.3(dd,1H),7.7(d,1H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.4-1.6 (m, 8H), 1.6-1.9 (m, 16H), 2.2-2.4 (m, 8H), 2.5-2.7 (m, 4H) ), 3.86 (s, 3H), 3.94 (t, 4H), 4.2 (t, 4H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (Dd, 2H), 6.9 (d, 4H), 7.0 (d, 4H), 7.1 (d, 1H), 7.3 (dd, 1H), 7.7 (d, 1H)
<化合物I-2の合成>
Figure JPOXMLDOC01-appb-C000020
<Synthesis of Compound I-2>
Figure JPOXMLDOC01-appb-C000020
 2,5-ジヒドロキシ安息香酸(10g)をジメチルアセトアミド(50mL)中で攪拌し、トリエチルアミン(9.8mL)とメタンスルホン酸 4-アクリロイルオキシブチル(11.1g)とBHT(0.2g)を加え、内温70℃で10時間攪拌した。30℃まで冷却した後、水と酢酸エチルを加えて水層を除去し、飽和重曹水と希塩酸、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、BHT(0.1g)を加えて溶媒を減圧留去し、フェノール誘導体I-2を得た。 2,5-dihydroxybenzoic acid (10 g) was stirred in dimethylacetamide (50 mL), and triethylamine (9.8 mL), 4-acryloyloxybutyl methanesulfonate (11.1 g) and BHT (0.2 g) were added. The mixture was stirred for 10 hours at an internal temperature of 70 ° C. After cooling to 30 ° C., water and ethyl acetate were added to remove the aqueous layer, and the mixture was washed successively with saturated aqueous sodium hydrogen carbonate, dilute hydrochloric acid and brine. The organic layer was dried over magnesium sulfate, the desiccant was filtered, BHT (0.1 g) was added, and the solvent was distilled off under reduced pressure to obtain phenol derivative I-2.
<化合物28の合成>
Figure JPOXMLDOC01-appb-C000021
<Synthesis of Compound 28>
Figure JPOXMLDOC01-appb-C000021
 カルボン酸I-1(500mg)、フェノール誘導体I-2(167mg)、N,N-ジメチルアミノピリジン(7.3mg)、およびBHT(6.6mg)をDMAc(2mL)とTHF(1mL)の混合溶媒中で攪拌し、3-[(エチルカルボンイミドイル)アミノ]-N,N-ジメチル-1-プロパンアミン塩酸塩(252mg)を加え、5時間攪拌した。水と酢酸エチルを加えて水層を除去し、希塩酸で洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、BHT(0.1g)を加えて溶媒を減圧留去し、メタノール(10mL)を加えて内温0℃になるまで冷却し、生成した結晶をろ過することで、化合物28(603mg)を得た。 Carboxylic acid I-1 (500 mg), phenol derivative I-2 (167 mg), N, N-dimethylaminopyridine (7.3 mg), and BHT (6.6 mg) were mixed with DMAc (2 mL) and THF (1 mL). The mixture was stirred in a solvent, 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (252 mg) was added, and the mixture was stirred for 5 hours. Water and ethyl acetate were added to remove the aqueous layer and washed with dilute hydrochloric acid. After drying the organic layer with magnesium sulfate and filtering the desiccant, BHT (0.1 g) is added and the solvent is distilled off under reduced pressure. Methanol (10 mL) is added and cooled to an internal temperature of 0 ° C. The obtained crystals were filtered to obtain Compound 28 (603 mg).
1H-NMR(溶媒:CDCl3)δ(ppm):
1.4-1.9(m,28H),2.2-2.4(m,8H),2.5-2.7(m,4H),3.9(t,4H),4.18(t,4H),4.22(t,2H),4.3(t,2H),5.8-5.9(m,3H),6.1-6.2(m,3H),6.4-6.5(m,3H),6.9(d,4H),7.0(d,4H),7.1(d,1H),7.3(dd,1H),7.7(dd,1H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.4-1.9 (m, 28H), 2.2-2.4 (m, 8H), 2.5-2.7 (m, 4H), 3.9 (t, 4H), 4. 18 (t, 4H), 4.22 (t, 2H), 4.3 (t, 2H), 5.8-5.9 (m, 3H), 6.1-6.2 (m, 3H) 6.4-6.5 (m, 3H), 6.9 (d, 4H), 7.0 (d, 4H), 7.1 (d, 1H), 7.3 (dd, 1H), 7.7 (dd, 1H)
<化合物I-3の合成>
Figure JPOXMLDOC01-appb-C000022
<Synthesis of Compound I-3>
Figure JPOXMLDOC01-appb-C000022
 こはく酸モノ(2-アクリロイルオキシエチル)(10g)を酢酸エチル(32mL)、ジメチルアセトアミド(8mL)の混合溶液中で攪拌し、BHT(0.2g)を加えた。反応液を内温0℃になるまで冷却し、塩化チオニル(3.3mL)の酢酸エチル(10mL)溶液を滴下し、0℃で30分間攪拌した。その後、2-(4-ヒドロキシフェニル)エタノール(5.3g)およびピリジン(3.7mL)を内温0℃で加え、室温で2時間攪拌した。水と酢酸エチルを加えて水層を除去し、希塩酸と飽和重曹水、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、BHT(0.1g)を加えて溶媒を減圧留去した。その後、カラムクロマトグラフィー(ヘキサン:酢酸エチル=6:4)で精製し、フェノール誘導体I-3(9.63g)を得た。 Succinic acid mono (2-acryloyloxyethyl) (10 g) was stirred in a mixed solution of ethyl acetate (32 mL) and dimethylacetamide (8 mL), and BHT (0.2 g) was added. The reaction solution was cooled to an internal temperature of 0 ° C., a solution of thionyl chloride (3.3 mL) in ethyl acetate (10 mL) was added dropwise, and the mixture was stirred at 0 ° C. for 30 minutes. Thereafter, 2- (4-hydroxyphenyl) ethanol (5.3 g) and pyridine (3.7 mL) were added at an internal temperature of 0 ° C., and the mixture was stirred at room temperature for 2 hours. Water and ethyl acetate were added to remove the aqueous layer, and the mixture was washed with diluted hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and brine in this order. After drying the organic layer with magnesium sulfate and filtering the desiccant, BHT (0.1 g) was added and the solvent was distilled off under reduced pressure. Thereafter, the residue was purified by column chromatography (hexane: ethyl acetate = 6: 4) to obtain phenol derivative I-3 (9.63 g).
1H-NMR(溶媒:CDCl3)δ(ppm):
2.6-2.7(m,4H),2.8(t,2H),4.2(t,2H),4.3-4.4(m,4H),5.6(brs,1H),5.9(dd,1H),6.1(dd,1H),6.4(dd,1H),5.8(d,2H),7.1(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
2.6-2.7 (m, 4H), 2.8 (t, 2H), 4.2 (t, 2H), 4.3-4.4 (m, 4H), 5.6 (brs, 1H), 5.9 (dd, 1H), 6.1 (dd, 1H), 6.4 (dd, 1H), 5.8 (d, 2H), 7.1 (d, 2H)
<化合物I-4の合成>
Figure JPOXMLDOC01-appb-C000023
<Synthesis of Compound I-4>
Figure JPOXMLDOC01-appb-C000023
 trans-1,4-シクロヘキサジカルボン酸(4.4g)および塩化チオニル(6.1g)をトルエン(15mL)中、内温70℃で2時間攪拌した。減圧下、溶媒留去した後、THF(30mL)、フェノール誘導体I-3(8.38g)、およびBHT(0.3g)を添加し、N,N-ジメチルアミノピリジン(0.3g)、N,N-ジイソプロピルエチルアミン(4.5mL)のTHF(10mL)溶液を滴下し、室温で3時間攪拌した。メタノール(2mL)を加えて、室温で15分間攪拌した後、水と酢酸エチルを加えて水層を除去し、希塩酸、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去し、カラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製することで、カルボン酸I-4を得た。 Trans-1,4-cyclohexadicarboxylic acid (4.4 g) and thionyl chloride (6.1 g) were stirred in toluene (15 mL) at an internal temperature of 70 ° C. for 2 hours. After evaporating the solvent under reduced pressure, THF (30 mL), phenol derivative I-3 (8.38 g), and BHT (0.3 g) were added, and N, N-dimethylaminopyridine (0.3 g), N , N-diisopropylethylamine (4.5 mL) in THF (10 mL) was added dropwise, and the mixture was stirred at room temperature for 3 hours. Methanol (2 mL) was added, and the mixture was stirred at room temperature for 15 minutes. Water and ethyl acetate were added to remove the aqueous layer, followed by washing with dilute hydrochloric acid and brine. After drying the organic layer with magnesium sulfate and filtering the desiccant, the solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (hexane: ethyl acetate = 2: 1) to obtain carboxylic acid I-4. .
1H-NMR(溶媒:CDCl3)δ(ppm):
1.5-1.7(m,4H),2.1-2.3(m,4H),2.3-2.5(m,1H),2.5-2.7(m,5H),2.9(t,2H),4.2-4.4(m,6H),5.9(dd,1H),6.1(dd,1H),6.4(dd,1H),7.0(d,2H),7.2(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.5-1.7 (m, 4H), 2.1-2.3 (m, 4H), 2.3-2.5 (m, 1H), 2.5-2.7 (m, 5H) ), 2.9 (t, 2H), 4.2-4.4 (m, 6H), 5.9 (dd, 1H), 6.1 (dd, 1H), 6.4 (dd, 1H) , 7.0 (d, 2H), 7.2 (d, 2H)
<化合物16の合成>
Figure JPOXMLDOC01-appb-C000024
<Synthesis of Compound 16>
Figure JPOXMLDOC01-appb-C000024
 カルボン酸I-4(700mg)、2-(メトキシカルボニル)ヒドロキノン(115mg)、N,N-ジメチルアミノピリジン(8.3mg)、およびBHT(7.5mg)をジクロロメタン(3mL)中で攪拌し、3-[(エチルカルボンイミドイル)アミノ]-N,N-ジメチル-1-プロパンアミン塩酸塩(391mg)を加え、5時間攪拌した。水を加えて水層を除去し、希塩酸で洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、BHT(0.1g)を加えて溶媒を減圧留去し、メタノール(10mL)を加えて内温0℃になるまで冷却し、生成した結晶をろ過することで、化合物16(620mg)を得た。 The carboxylic acid I-4 (700 mg), 2- (methoxycarbonyl) hydroquinone (115 mg), N, N-dimethylaminopyridine (8.3 mg), and BHT (7.5 mg) were stirred in dichloromethane (3 mL), 3-[(Ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (391 mg) was added and stirred for 5 hours. Water was added to remove the aqueous layer, and the mixture was washed with dilute hydrochloric acid. After drying the organic layer with magnesium sulfate and filtering the desiccant, BHT (0.1 g) is added and the solvent is distilled off under reduced pressure. Methanol (10 mL) is added and cooled to an internal temperature of 0 ° C. The obtained crystals were filtered to obtain Compound 16 (620 mg).
1H-NMR(溶媒:CDCl3)δ(ppm):
1.6-1.8(m,8H),2.2-2.4(m,8H),2.5-2.7(m,12H),2.9(t,4H),3.9(s,3H),4.2-4.4(m,12H),5.9(dd,1H),6.1(dd,1H),6.4(dd,1H),7.0(d,4H),7.1(d,1H),7.2-7.3(m,5H),7.7(d,1H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.6-1.8 (m, 8H), 2.2-2.4 (m, 8H), 2.5-2.7 (m, 12H), 2.9 (t, 4H), 3. 9 (s, 3H), 4.2-4.4 (m, 12H), 5.9 (dd, 1H), 6.1 (dd, 1H), 6.4 (dd, 1H), 7.0 (D, 4H), 7.1 (d, 1H), 7.2-7.3 (m, 5H), 7.7 (d, 1H)
<化合物I-5の合成>
Figure JPOXMLDOC01-appb-C000025
<Synthesis of Compound I-5>
Figure JPOXMLDOC01-appb-C000025
 2-(メトキシカルボニル)ヒドロキノン(3.0g)およびイミダゾール(1.8g)をジクロロメタン(60mL)中で攪拌し、内温2℃でtert-ブチルジメチルクロロシラン(2.8g)を加え室温で5時間攪拌した。希塩酸を加えて水層を除去し、希塩酸、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去した。その後、シリカゲル(10g)を加え、酢酸エチル(50mL)中で1時間攪拌した。シリカゲルをろ過した後、溶媒を減圧留去することでフェノールI-5(4.9g)を得た。 2- (Methoxycarbonyl) hydroquinone (3.0 g) and imidazole (1.8 g) were stirred in dichloromethane (60 mL), and tert-butyldimethylchlorosilane (2.8 g) was added at an internal temperature of 2 ° C. for 5 hours at room temperature. Stir. Dilute hydrochloric acid was added to remove the aqueous layer, and the mixture was washed with diluted hydrochloric acid and brine. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and the solvent was distilled off under reduced pressure. Thereafter, silica gel (10 g) was added, and the mixture was stirred in ethyl acetate (50 mL) for 1 hour. After filtering the silica gel, the solvent was distilled off under reduced pressure to obtain phenol I-5 (4.9 g).
1H-NMR(溶媒:CDCl3)δ(ppm):
0.2(s,6H),1.0(s,9H),4.0(s,3H),6.8(d,1H),7.0(dd,1H),7.2(d,1H),10.4(s,1H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
0.2 (s, 6H), 1.0 (s, 9H), 4.0 (s, 3H), 6.8 (d, 1H), 7.0 (dd, 1H), 7.2 (d , 1H), 10.4 (s, 1H)
<化合物I-6の合成>
Figure JPOXMLDOC01-appb-C000026
<Synthesis of Compound I-6>
Figure JPOXMLDOC01-appb-C000026
 trans-1,4-シクロヘキサジカルボン酸(5.0g)をトルエン(30mL)中で攪拌し、内温75℃まで昇温し、塩化チオニル(6.3mL)を滴下し、3時間攪拌した。溶媒を減圧留去し、ヘキサンで洗浄し、ろ取することで、ジカルボン酸塩化物I-6(4.5g)を得た。 Trans-1,4-cyclohexadicarboxylic acid (5.0 g) was stirred in toluene (30 mL), the temperature was raised to 75 ° C., thionyl chloride (6.3 mL) was added dropwise, and the mixture was stirred for 3 hours. The solvent was distilled off under reduced pressure, washed with hexane, and collected by filtration to obtain dicarboxylic acid chloride I-6 (4.5 g).
<化合物I-7の合成>
Figure JPOXMLDOC01-appb-C000027
<Synthesis of Compound I-7>
Figure JPOXMLDOC01-appb-C000027
 ジカルボン酸塩化物I-6(1.7g)およびフェノール(4.5g)をTHF(10mL)中で攪拌した。内温2℃でトリエチルアミン(2.5mL)およびN,N-ジメチルアミノピリジン(0.2g)を添加し、室温で3時間攪拌した。水と酢酸エチルとを加えて水層を除去し、水、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去することでエステルI-7を得た。 Dicarboxylic acid chloride I-6 (1.7 g) and phenol (4.5 g) were stirred in THF (10 mL). Triethylamine (2.5 mL) and N, N-dimethylaminopyridine (0.2 g) were added at an internal temperature of 2 ° C., and the mixture was stirred at room temperature for 3 hours. Water and ethyl acetate were added to remove the aqueous layer, followed by washing with water and brine in this order. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and then the solvent was distilled off under reduced pressure to obtain ester I-7.
<化合物I-8の合成>
Figure JPOXMLDOC01-appb-C000028
<Synthesis of Compound I-8>
Figure JPOXMLDOC01-appb-C000028
 エステルI-7(5.0g)をTHF(16mL)と酢酸(4.6mL)の混合溶液中で攪拌し、内温2℃で1.0mol/LのN,N,N.N-テトラブチルアンモニウムフルオリド/THF溶液(23.8mL)を滴下した。室温で1時間攪拌した後、水と酢酸エチルを加えて水層を除去し、水、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去し、アセトニトリルで洗浄し、ろ取することで、フェノール誘導体I-8(1.7g)を得た。 Ester I-7 (5.0 g) was stirred in a mixed solution of THF (16 mL) and acetic acid (4.6 mL), and 1.0 mol / L N, N, N. N-tetrabutylammonium fluoride / THF solution (23.8 mL) was added dropwise. After stirring at room temperature for 1 hour, water and ethyl acetate were added to remove the aqueous layer, followed by washing with water and brine in this order. After drying the organic layer with magnesium sulfate and filtering the desiccant, the solvent was distilled off under reduced pressure, washed with acetonitrile, and collected by filtration to obtain phenol derivative I-8 (1.7 g).
1H-NMR(溶媒:CD3OD)δ(ppm):
1.6-1.7(m,4H),2.2-2.4(m,4H),2.5-2.7(m,2H),3.8(s,6H),6.9-7.0(m,4H),7.3(d,2H)
1 H-NMR (solvent: CD 3 OD) δ (ppm):
1.6-1.7 (m, 4H), 2.2-2.4 (m, 4H), 2.5-2.7 (m, 2H), 3.8 (s, 6H), 6. 9-7.0 (m, 4H), 7.3 (d, 2H)
<化合物I-9の合成>
Figure JPOXMLDOC01-appb-C000029
<Synthesis of Compound I-9>
Figure JPOXMLDOC01-appb-C000029
 trans-1,4-シクロヘキサジカルボン酸(10g)、メシルクロリド(1.9mL)、およびBHT(0.2g)をTHF(72mL)中で攪拌し、内温を25℃以下に保ってトリエチルアミン(3.7mL)を滴下した。室温で2時間攪拌した後、N,N-ジメチルアミノピリジン(0.3g)および4-ヒドロキシブチルアクリレート(3.1g)を添加し、内温25℃以下でトリエチルアミン(3.7mL)を滴下した。室温で3時間攪拌した後、希塩酸と酢酸エチルを加えて水層を除去し、希塩酸、飽和重曹水、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去することで、カルボン酸I-9(7.1g)を得た。 trans-1,4-cyclohexadicarboxylic acid (10 g), mesyl chloride (1.9 mL), and BHT (0.2 g) were stirred in THF (72 mL), and the internal temperature was kept at 25 ° C. or less to triethylamine ( 3.7 mL) was added dropwise. After stirring at room temperature for 2 hours, N, N-dimethylaminopyridine (0.3 g) and 4-hydroxybutyl acrylate (3.1 g) were added, and triethylamine (3.7 mL) was added dropwise at an internal temperature of 25 ° C. or lower. . After stirring at room temperature for 3 hours, dilute hydrochloric acid and ethyl acetate were added to remove the aqueous layer, and the mixture was washed with dilute hydrochloric acid, saturated aqueous sodium bicarbonate, and brine in this order. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and then the solvent was distilled off under reduced pressure to obtain carboxylic acid I-9 (7.1 g).
1H-NMR(溶媒:CDCl3)δ(ppm):
1.4-1.6(m,4H),1.6-1.8(m,4H),2.0-2.2(m,4H),2.2-2.4(m,2H),4.1(t,2H),4.2(t,2H),5.8(dd,1H),6.1(dd,1H),6.4(dd,1H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.4-1.6 (m, 4H), 1.6-1.8 (m, 4H), 2.0-2.2 (m, 4H), 2.2-2.4 (m, 2H) ), 4.1 (t, 2H), 4.2 (t, 2H), 5.8 (dd, 1H), 6.1 (dd, 1H), 6.4 (dd, 1H)
<化合物I-10の合成>
Figure JPOXMLDOC01-appb-C000030
<Synthesis of Compound I-10>
Figure JPOXMLDOC01-appb-C000030
 trans-1,4-シクロヘキサジカルボン酸(10g)、メシルクロリド(1.9mL)およびBHT(0.2g)をTHF(72mL)中で攪拌し、内温を25℃以下に保ってトリエチルアミン(3.7mL)を滴下した。室温で2時間攪拌した後、N,N-ジメチルアミノピリジン(0.3g)と2-ヒドロキシエチルアクリレート(2.3mL)とを添加し、内温25℃以下でトリエチルアミン(3.7mL)を滴下した。室温で3時間攪拌した後、希塩酸と酢酸エチルを加えて水層を除去し、希塩酸、飽和重曹水、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去することで、カルボン酸I-9(3.8g)を得た。 trans-1,4-cyclohexadicarboxylic acid (10 g), mesyl chloride (1.9 mL) and BHT (0.2 g) were stirred in THF (72 mL), and the internal temperature was kept at 25 ° C. or lower to maintain triethylamine (3 7 mL) was added dropwise. After stirring at room temperature for 2 hours, N, N-dimethylaminopyridine (0.3 g) and 2-hydroxyethyl acrylate (2.3 mL) were added, and triethylamine (3.7 mL) was added dropwise at an internal temperature of 25 ° C. or lower. did. After stirring at room temperature for 3 hours, dilute hydrochloric acid and ethyl acetate were added to remove the aqueous layer, and the mixture was washed with dilute hydrochloric acid, saturated aqueous sodium bicarbonate, and brine in this order. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and then the solvent was distilled off under reduced pressure to obtain carboxylic acid I-9 (3.8 g).
1H-NMR(溶媒:CDCl3)δ(ppm):
1.3-1.6(m,4H),2.0-2.2(m,4H),2.2-2.4(m,2H),4.3-4.4(m,4H),5.9(dd,1H),6.1(dd,1H),6.4(dd,1H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.3-1.6 (m, 4H), 2.0-2.2 (m, 4H), 2.2-2.4 (m, 2H), 4.3-4.4 (m, 4H) ), 5.9 (dd, 1H), 6.1 (dd, 1H), 6.4 (dd, 1H)
<化合物1の合成>
Figure JPOXMLDOC01-appb-C000031
<Synthesis of Compound 1>
Figure JPOXMLDOC01-appb-C000031
 カルボン酸I-9(1.0g)、フェノール誘導体I-8(751mg)、N,N-ジメチルアミノピリジン(39mg)およびBHT(18mg)をジクロロメタン(3.3mL)中で攪拌し、3-[(エチルカルボンイミドイル)アミノ]-N,N-ジメチル-1-プロパンアミン塩酸塩(914mg)を加え、室温で4時間攪拌した。セライトろ過を行った後、ろ液に水を加えて水層を除去し、硫酸マグネシウムで有機層を乾燥した。乾燥剤をろ過し、BHT(10mg)を加えて溶媒を減圧留去した。メタノール(5mL)を加えて内温0℃になるまで冷却し、生成した結晶をろ過することで、化合物1を得た。 Carboxylic acid I-9 (1.0 g), phenol derivative I-8 (751 mg), N, N-dimethylaminopyridine (39 mg) and BHT (18 mg) were stirred in dichloromethane (3.3 mL), and 3- [ (Ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (914 mg) was added and stirred at room temperature for 4 hours. After performing Celite filtration, water was added to the filtrate to remove the aqueous layer, and the organic layer was dried over magnesium sulfate. The desiccant was filtered, BHT (10 mg) was added, and the solvent was distilled off under reduced pressure. Methanol (5 mL) was added and cooled to an internal temperature of 0 ° C., and the resulting crystals were filtered to obtain Compound 1.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.5-1.6(m,8H),1.6-1.8(m,10H),2.1-2.4(m,16H),2.5-2.7(m,4H),3.9(s,6H),4.1-4.2(m,8H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.5-1.6 (m, 8H), 1.6-1.8 (m, 10H), 2.1-2.4 (m, 16H), 2.5-2.7 (m, 4H) ), 3.9 (s, 6H), 4.1-4.2 (m, 8H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H) 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d, 2H)
<混合物Aの合成>
Figure JPOXMLDOC01-appb-C000032
<Synthesis of Mixture A>
Figure JPOXMLDOC01-appb-C000032
 カルボン酸I-9(332mg)、カルボン酸I-10(301mg)、フェノール誘導体I-8(500mg)、N,N-ジメチルアミノピリジン(26mg)、およびBHT(12mg)をジクロロメタン(2.1mL)中で攪拌し、3-[(エチルカルボンイミドイル)アミノ]-N,N-ジメチル-1-プロパンアミン塩酸塩(920mg)を加え、4時間攪拌した。セライトろ過を行った後、ろ液に水を加えて水層を除去し、硫酸マグネシウムで有機層を乾燥した。乾燥剤をろ過し、BHT(10mg)を加えて溶媒を減圧留去した。メタノール(5mL)を加えて内温0℃になるまで冷却し、生成した結晶をろ過することで、混合物A(化合物1、3、5の混合物)(410mg)を得た。
MALDI-MS
m/z=999.378[m+Na]+、1027.412[m+Na]+、1055.447[m+Na]+
Carboxylic acid I-9 (332 mg), carboxylic acid I-10 (301 mg), phenol derivative I-8 (500 mg), N, N-dimethylaminopyridine (26 mg), and BHT (12 mg) in dichloromethane (2.1 mL) Then, 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (920 mg) was added and stirred for 4 hours. After performing Celite filtration, water was added to the filtrate to remove the aqueous layer, and the organic layer was dried over magnesium sulfate. The desiccant was filtered, BHT (10 mg) was added, and the solvent was distilled off under reduced pressure. Methanol (5 mL) was added and cooled to an internal temperature of 0 ° C., and the produced crystals were filtered to obtain a mixture A (mixture of compounds 1, 3, and 5) (410 mg).
MALDI-MS
m / z = 999.378 [m + Na] + , 1027.412 [m + Na] + , 1055.5447 [m + Na] +
<化合物I-11の合成>
Figure JPOXMLDOC01-appb-C000033
<Synthesis of Compound I-11>
Figure JPOXMLDOC01-appb-C000033
 2-(4-ヒドロキシフェニル)エタノール(10g)、ピリジン(7.0mL)、およびBHT(0.8g)を酢酸エチル(72mL)中で攪拌した。内温3℃でアクリル酸クロリド(6.9g)を滴下し、内温3~5℃で8時間攪拌した。水と酢酸エチルとを加えて水層を除去し、水、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去した。カラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製することでフェノール誘導体I-11を得た。 2- (4-hydroxyphenyl) ethanol (10 g), pyridine (7.0 mL), and BHT (0.8 g) were stirred in ethyl acetate (72 mL). Acrylic acid chloride (6.9 g) was added dropwise at an internal temperature of 3 ° C., and the mixture was stirred at an internal temperature of 3 to 5 ° C. for 8 hours. Water and ethyl acetate were added to remove the aqueous layer, followed by washing with water and brine in this order. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and the solvent was distilled off under reduced pressure. Phenol derivative I-11 was obtained by purification by column chromatography (hexane: ethyl acetate = 2: 1).
1H-NMR(溶媒:CDCl3)δ(ppm):
2.9(t,2H),4.3(t,2H),5.0(s,1H),5.8(dd,1H),6.1(dd,1H),6.4(dd,1H),6.8(d,2H),7.1(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
2.9 (t, 2H), 4.3 (t, 2H), 5.0 (s, 1H), 5.8 (dd, 1H), 6.1 (dd, 1H), 6.4 (dd , 1H), 6.8 (d, 2H), 7.1 (d, 2H)
<化合物I-12の合成>
Figure JPOXMLDOC01-appb-C000034
<Synthesis of Compound I-12>
Figure JPOXMLDOC01-appb-C000034
 trans-1,4-シクロヘキサジカルボン酸(3.4g)、メシルクロリド(1.2g)、およびBHT(0.1g)をTHF(30mL)中で攪拌し、内温を25℃以下に保ってトリエチルアミン(1.5mL)を滴下した。室温で2時間攪拌した後、N,N-ジメチルアミノピリジン(0.1g)とフェノール誘導体I-11(1.9g)を添加し、内温25℃以下でトリエチルアミン(1.5mL)を滴下した。室温で3時間攪拌した後、希塩酸と酢酸エチルとを加えて水層を除去し、希塩酸、飽和重曹水、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去することで、カルボン酸I-12(1.4g)を得た。 Trans-1,4-cyclohexadicarboxylic acid (3.4 g), mesyl chloride (1.2 g), and BHT (0.1 g) were stirred in THF (30 mL), and the internal temperature was kept below 25 ° C. Triethylamine (1.5 mL) was added dropwise. After stirring at room temperature for 2 hours, N, N-dimethylaminopyridine (0.1 g) and phenol derivative I-11 (1.9 g) were added, and triethylamine (1.5 mL) was added dropwise at an internal temperature of 25 ° C. or lower. . After stirring at room temperature for 3 hours, dilute hydrochloric acid and ethyl acetate were added to remove the aqueous layer, and the mixture was washed with diluted hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and brine in this order. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and then the solvent was distilled off under reduced pressure to obtain carboxylic acid I-12 (1.4 g).
1H-NMR(溶媒:CD3OD)δ(ppm):
1.3-1.7(m,4H),1.9-2.4(m,5H),2.5-2.6(m,1H),3.0(t,2H),4.3(t,2H),5.9(dd,1H),6.1(dd,1H),6.3(dd,1H),7.0(d,2H),7.3(d,2H)
1 H-NMR (solvent: CD 3 OD) δ (ppm):
1.3-1.7 (m, 4H), 1.9-2.4 (m, 5H), 2.5-2.6 (m, 1H), 3.0 (t, 2H), 4. 3 (t, 2H), 5.9 (dd, 1H), 6.1 (dd, 1H), 6.3 (dd, 1H), 7.0 (d, 2H), 7.3 (d, 2H) )
<化合物33の合成>
Figure JPOXMLDOC01-appb-C000035
<Synthesis of Compound 33>
Figure JPOXMLDOC01-appb-C000035
 カルボン酸I-12(600mg)、2-(メトキシカルボニル)ヒドロキノン(242mg)、N,N-ジメチルアミノピリジン(11mg)、およびBHT(9.5mg)をジクロロメタン(4mL)とDMAc(2mL)の混合溶媒中で攪拌し、3-[(エチルカルボンイミドイル)アミノ]-N,N-ジメチル-1-プロパンアミン塩酸塩(498mg)を加え、室温で6時間攪拌した。シリカゲルろ過を行った後、ろ液に水を加えて水層を除去し、硫酸マグネシウムで有機層を乾燥した。乾燥剤をろ過し、BHT(10mg)を加えて溶媒を減圧留去した。メタノール(5mL)を加えて内温0℃になるまで冷却し、生成した結晶をろ過することで、化合物33を得た。 Carboxylic acid I-12 (600 mg), 2- (methoxycarbonyl) hydroquinone (242 mg), N, N-dimethylaminopyridine (11 mg), and BHT (9.5 mg) in dichloromethane (4 mL) and DMAc (2 mL) The mixture was stirred in a solvent, 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (498 mg) was added, and the mixture was stirred at room temperature for 6 hours. After silica gel filtration, water was added to the filtrate to remove the aqueous layer, and the organic layer was dried over magnesium sulfate. The desiccant was filtered, BHT (10 mg) was added, and the solvent was distilled off under reduced pressure. Methanol (5 mL) was added and cooled to an internal temperature of 0 ° C., and the resulting crystals were filtered to obtain Compound 33.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.4-1.8(m,8H),2.1-2.4(m,8H),2.5-2.8(m,4H),3.0(s,4H),3.9(s,3H),4.4(t,4H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.0-7.1(m,4H),7.2-7.3(m,5H),7.7-7.8(m,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.4-1.8 (m, 8H), 2.1-2.4 (m, 8H), 2.5-2.8 (m, 4H), 3.0 (s, 4H), 3. 9 (s, 3H), 4.4 (t, 4H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.0-7.1 (M, 4H), 7.2-7.3 (m, 5H), 7.7-7.8 (m, 2H)
<化合物34の合成>
Figure JPOXMLDOC01-appb-C000036
<Synthesis of Compound 34>
Figure JPOXMLDOC01-appb-C000036
 カルボン酸I-12(600mg)、フェノール誘導体I-2(145mg)、N,N-ジメチルアミノピリジン(11mg)およびBHT(9.5mg)をジクロロメタン(4mL)およびDMAc(2mL)の混合溶媒中で攪拌し、3-[(エチルカルボンイミドイル)アミノ]-N,N-ジメチル-1-プロパンアミン塩酸塩(498mg)を加え、室温で6時間攪拌した。シリカゲルろ過を行った後、ろ液に水を加えて水層を除去し、硫酸マグネシウムで有機層を乾燥した。乾燥剤をろ過し、BHT(10mg)を加えて溶媒を減圧留去した。メタノール(5mL)を加えて内温0℃になるまで冷却し、生成した結晶をろ過することで、化合物34を得た。 Carboxylic acid I-12 (600 mg), phenol derivative I-2 (145 mg), N, N-dimethylaminopyridine (11 mg) and BHT (9.5 mg) were mixed in a mixed solvent of dichloromethane (4 mL) and DMAc (2 mL). The mixture was stirred, 3-[(ethylcarbonimidoyl) amino] -N, N-dimethyl-1-propanamine hydrochloride (498 mg) was added, and the mixture was stirred at room temperature for 6 hours. After silica gel filtration, water was added to the filtrate to remove the aqueous layer, and the organic layer was dried over magnesium sulfate. The desiccant was filtered, BHT (10 mg) was added, and the solvent was distilled off under reduced pressure. Methanol (5 mL) was added and cooled to an internal temperature of 0 ° C., and the resulting crystals were filtered to obtain Compound 34.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.4-2.0(m,12H),2.1-2.4(m,8H),2.5-2.7(m,4H),3.0(t,4H),4.2-4.4(m,8H),5.8-5.9(m,3H),6.0-6.2(m,3H),6.3-6.5(m,3H),7.0-7.1(m,4H),7.2-7.4(m,5H),7.5-7.7(m,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.4-2.0 (m, 12H), 2.1-2.4 (m, 8H), 2.5-2.7 (m, 4H), 3.0 (t, 4H), 4. 2-4.4 (m, 8H), 5.8-5.9 (m, 3H), 6.0-6.2 (m, 3H), 6.3-6.5 (m, 3H), 7.0-7.1 (m, 4H), 7.2-7.4 (m, 5H), 7.5-7.7 (m, 2H)
<化合物I-13の合成>
Figure JPOXMLDOC01-appb-C000037
<Synthesis of Compound I-13>
Figure JPOXMLDOC01-appb-C000037
 ジカルボン酸塩化物I-6(960mg)および2-(メトキシカルボニル)ヒドロキノン(1.5g)をTHF(5.7mL)中で攪拌した。内温2℃でトリエチルアミン(1.5mL)およびN,N-ジメチルアミノピリジン(56mg)を添加し、室温で2時間攪拌した。水と酢酸エチルとを加えて水層を除去し、有機層を、水、食塩水を順に用いて洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去した。メタノール(15mL)を加えて内温0℃で30分間攪拌し、生成した結晶をろ過することで、化合物I-13を1.85g得た。 Dicarboxylic acid chloride I-6 (960 mg) and 2- (methoxycarbonyl) hydroquinone (1.5 g) were stirred in THF (5.7 mL). Triethylamine (1.5 mL) and N, N-dimethylaminopyridine (56 mg) were added at an internal temperature of 2 ° C., and the mixture was stirred at room temperature for 2 hours. Water and ethyl acetate were added to remove the aqueous layer, and the organic layer was washed with water and brine successively. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and the solvent was distilled off under reduced pressure. Methanol (15 mL) was added and the mixture was stirred at an internal temperature of 0 ° C. for 30 minutes, and the produced crystals were filtered to obtain 1.85 g of Compound I-13.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.6-1.7(m,4H),2.2-2.4(m,4H),2.5-2.6(m,2H),3.9(s,6H),7.0(d,2H),7.2(dd,2H),7.6(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.6-1.7 (m, 4H), 2.2-2.4 (m, 4H), 2.5-2.6 (m, 2H), 3.9 (s, 6H), 7. 0 (d, 2H), 7.2 (dd, 2H), 7.6 (d, 2H)
<化合物47の合成>
Figure JPOXMLDOC01-appb-C000038
<Synthesis of Compound 47>
Figure JPOXMLDOC01-appb-C000038
 カルボン酸I-9(1.72g)、BHT(0.3g)および塩化チオニル(0.47mL)をトルエン(2.7mL)中、室温で1時間攪拌した。減圧下、溶媒留去した後、酢酸エチル(5mL)、フェノール誘導体I-13(0.8g)を添加し、N,N-ジメチルアミノピリジン(0.1g)、トリエチルアミン(1.1mL)を滴下し、室温で3時間攪拌した。メタノール(1mL)を加えて、室温で15分間攪拌した後、水と酢酸エチルを加えて水層を除去し、有機層を希塩酸、食塩水を順に用いて洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、溶媒を減圧留去した。メタノール(15mL)を加えて内温0℃で30分間攪拌し、生成した結晶をろ過することで、化合物47を1.2g得た。 Carboxylic acid I-9 (1.72 g), BHT (0.3 g) and thionyl chloride (0.47 mL) were stirred in toluene (2.7 mL) at room temperature for 1 hour. After evaporation of the solvent under reduced pressure, ethyl acetate (5 mL) and phenol derivative I-13 (0.8 g) were added, and N, N-dimethylaminopyridine (0.1 g) and triethylamine (1.1 mL) were added dropwise. And stirred at room temperature for 3 hours. Methanol (1 mL) was added, and the mixture was stirred at room temperature for 15 minutes. Water and ethyl acetate were added to remove the aqueous layer, and the organic layer was washed with dilute hydrochloric acid and brine successively. The organic layer was dried over magnesium sulfate, the desiccant was filtered, and the solvent was distilled off under reduced pressure. Methanol (15 mL) was added and stirred at an internal temperature of 0 ° C. for 30 minutes, and the produced crystals were filtered to obtain 1.2 g of Compound 47.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.5-1.8(m,20H),2.1-2.2(m,4H),2.2-2.4(m,10H),2.5-2.7(m,4H),3.9(s,6H),4.1-4.3(m,8H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.5-1.8 (m, 20H), 2.1-2.2 (m, 4H), 2.2-2.4 (m, 10H), 2.5-2.7 (m, 4H) ), 3.9 (s, 6H), 4.1-4.3 (m, 8H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H) 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d, 2H)
<化合物49の合成>
Figure JPOXMLDOC01-appb-C000039
<Synthesis of Compound 49>
Figure JPOXMLDOC01-appb-C000039
 化合物I-13と同様の方法でフェノール誘導体I-17を合成した。さらに、化合物47と同様の合成法を用い、化合物49を得た。 Phenol derivative I-17 was synthesized in the same manner as compound I-13. Further, Compound 49 was obtained using the same synthesis method as that for Compound 47.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.1(t,3H),1.2(t,3H),1.4-1.8(m,20H),2.0-2.4(m,14H),2.4-2.6(m,4H),3.1-3.3(m,4H),3.4-3.6(m,4H),4.1-4.3(m,8H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.0-7.2(m,6H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.1 (t, 3H), 1.2 (t, 3H), 1.4-1.8 (m, 20H), 2.0-2.4 (m, 14H), 2.4-2. 6 (m, 4H), 3.1-3.3 (m, 4H), 3.4-3.6 (m, 4H), 4.1-4.3 (m, 8H), 5.8 ( dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.0-7.2 (m, 6H)
<化合物50の合成>
Figure JPOXMLDOC01-appb-C000040
<Synthesis of Compound 50>
Figure JPOXMLDOC01-appb-C000040
 化合物I-8と同様の方法で上記フェノール誘導体を合成した。さらに、化合物1と同様の合成法を用い、化合物50を得た。 The above phenol derivative was synthesized in the same manner as Compound I-8. Further, Compound 50 was obtained using the same synthesis method as Compound 1.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.0(t,6H),1.4-1.8(m,28H),2.1-2.4(m,14H),2.5-2.7(m,4H),4.1-4.3(m,12H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.0 (t, 6H), 1.4-1.8 (m, 28H), 2.1-2.4 (m, 14H), 2.5-2.7 (m, 4H), 4. 1-4.3 (m, 12H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.1 (d, 2H), 7.3 (Dd, 2H), 7.7 (d, 2H)
<化合物51の合成>
Figure JPOXMLDOC01-appb-C000041
<Synthesis of Compound 51>
Figure JPOXMLDOC01-appb-C000041
 化合物I-13と同様の方法で上記フェノール誘導体を合成した。さらに、化合物47と同様の合成法を用い、化合物51を得た。 The above phenol derivative was synthesized in the same manner as Compound I-13. Further, Compound 51 was obtained using the same synthesis method as Compound 47.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.0(t,6H),1.4-1.8(m,28H),2.1-2.2(m,4H),2.2-2.4(m,10H),2.5-2.7(m,4H),4.1-4.3(m,12H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.0 (t, 6H), 1.4-1.8 (m, 28H), 2.1-2.2 (m, 4H), 2.2-2.4 (m, 10H), 2. 5-2.7 (m, 4H), 4.1-4.3 (m, 12H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H) 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d, 2H)
<化合物52の合成>
Figure JPOXMLDOC01-appb-C000042
<Synthesis of Compound 52>
Figure JPOXMLDOC01-appb-C000042
 化合物I-8と同様の方法で上記フェノール誘導体を合成した。さらに、化合物1と同様の合成法を用い、化合物52を得た。 The above phenol derivative was synthesized in the same manner as Compound I-8. Further, Compound 52 was obtained using the same synthesis method as Compound 1.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.4-1.8(m,20H),2.0-2.4(m,14H),2.5-2.7(m,4H),3.4(s,6H),3.6(t,4H),3.7(t,4H),3.8(t,4H),4.1-4.2(m,8H),4.4(t,4H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.4-1.8 (m, 20H), 2.0-2.4 (m, 14H), 2.5-2.7 (m, 4H), 3.4 (s, 6H), 3. 6 (t, 4H), 3.7 (t, 4H), 3.8 (t, 4H), 4.1-4.2 (m, 8H), 4.4 (t, 4H), 5.8 (Dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d, 2H)
<化合物53の合成>
Figure JPOXMLDOC01-appb-C000043
<Synthesis of Compound 53>
Figure JPOXMLDOC01-appb-C000043
 化合物I-8と同様の方法で上記フェノール誘導体を合成した。さらに、化合物1と同様の合成法を用い、化合物53を得た。 The above phenol derivative was synthesized in the same manner as Compound I-8. Further, Compound 53 was obtained using the same synthesis method as Compound 1.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.5-1.8(m,20H),2.1-2.3(m,8H),2.3-2.4(m,6H),2.5-2.6(m,2H),2.6-2.7(m,2H),3.4(s,6H),3.6-3.7(m,4H)4.1-4.2(m,8H),4.4-4.5(m,4H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.5-1.8 (m, 20H), 2.1-2.3 (m, 8H), 2.3-2.4 (m, 6H), 2.5-2.6 (m, 2H) ), 2.6-2.7 (m, 2H), 3.4 (s, 6H), 3.6-3.7 (m, 4H) 4.1-4.2 (m, 8H), 4 4-4.5 (m, 4H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.1 (d, 2H), 7. 3 (dd, 2H), 7.7 (d, 2H)
<化合物54の合成>
Figure JPOXMLDOC01-appb-C000044
<Synthesis of Compound 54>
Figure JPOXMLDOC01-appb-C000044
 化合物I-13と同様の方法で上記フェノール誘導体を合成した。さらに、化合物47と同様の合成法を用い、化合物54を得た。 The above phenol derivative was synthesized in the same manner as Compound I-13. Further, Compound 54 was obtained using the same synthesis method as Compound 47.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.3-2.0(m,20H),2.1-2.2(m,4H),2.2-2.4(m,10H),2.5-2.7(m,4H),3.5(s,6H),3.6-3.7(m,4H),4.1-4.2(m,8H),4.4-4.5(m,4H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.3-2.0 (m, 20H), 2.1-2.2 (m, 4H), 2.2-2.4 (m, 10H), 2.5-2.7 (m, 4H) ), 3.5 (s, 6H), 3.6-3.7 (m, 4H), 4.1-4.2 (m, 8H), 4.4-4.5 (m, 4H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d , 2H)
<化合物55の合成> <Synthesis of Compound 55>
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 トランス-1,4-シクロヘキサンジカルボン酸(5g)、トルエン(40mL)、N,N-ジメチルホルムアミド(0.05mL)の混合物を加熱攪拌し、内温80℃にて塩化チオニル(8.3g)を滴下したのち内温80℃にて2時間加熱攪拌を行った。内温30℃まで冷却したのちに2-エトキシエチル=2,5-ジヒドロキシベンゾアート(13.1g)加えたのち、内温90℃にて4時間加熱攪拌を行った。内温40℃にてメタノール(60mL)を加えたのち、さらに内温5℃にて30分攪拌し、生成した結晶をろ過することで、フェノール誘導体Bを11.5g得た。
1H-NMR(溶媒:CDCl3)δ(ppm):
1.25(t,6H),1.6-1.7(m,4H),2.2-2.4(m,4H),2.5-2.6(m,2H),3.55-3.65(m,4H),3.8-3.85(m,4H),4.45-4.5(m,4H),7.0(d,2H),7.2(dd,2H),7.6(d,2H)
A mixture of trans-1,4-cyclohexanedicarboxylic acid (5 g), toluene (40 mL) and N, N-dimethylformamide (0.05 mL) was heated and stirred, and thionyl chloride (8.3 g) was added at an internal temperature of 80 ° C. After the dropwise addition, the mixture was stirred with heating at an internal temperature of 80 ° C. for 2 hours. After cooling to an internal temperature of 30 ° C., 2-ethoxyethyl = 2,5-dihydroxybenzoate (13.1 g) was added, followed by heating and stirring at an internal temperature of 90 ° C. for 4 hours. After adding methanol (60 mL) at an internal temperature of 40 ° C., the mixture was further stirred at an internal temperature of 5 ° C. for 30 minutes, and the resulting crystals were filtered to obtain 11.5 g of phenol derivative B.
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.25 (t, 6H), 1.6-1.7 (m, 4H), 2.2-2.4 (m, 4H), 2.5-2.6 (m, 2H), 3. 55-3.65 (m, 4H), 3.8-3.85 (m, 4H), 4.45-4.5 (m, 4H), 7.0 (d, 2H), 7.2 ( dd, 2H), 7.6 (d, 2H)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 化合物I-9(13.4g)、TsCl(10.3g)およびBHT(0.2g)を、THF(40mL)、1-エチル2-ピロリドン(25mL)中で攪拌し、氷冷下1-メチルイミダゾール(11mL)を滴下し、室温で1時間攪拌した。フェノール誘導体B(10.6g)を添加し、室温でさらに2時間攪拌した。水(10mL)を加えた後、水層を除去し、水、メタノールを加え、氷冷下1時間攪拌し、生成した結晶をろ過することで、化合物55(18.3g)を得た。 Compound I-9 (13.4 g), TsCl (10.3 g) and BHT (0.2 g) were stirred in THF (40 mL), 1-ethyl 2-pyrrolidone (25 mL), and 1-methyl under ice-cooling. Imidazole (11 mL) was added dropwise and stirred at room temperature for 1 hour. Phenol derivative B (10.6 g) was added, and the mixture was further stirred at room temperature for 2 hours. After adding water (10 mL), the aqueous layer was removed, water and methanol were added, the mixture was stirred for 1 hour under ice-cooling, and the resulting crystals were filtered to obtain Compound 55 (18.3 g).
1H-NMR(溶媒:CDCl3)δ(ppm):
1.2(t,6H),1.4-1.8(m,18H),2.1-2.2(m,4H),2.2-2.4(m,12H),2.5-2.7(m,4H),3.5(q,4H),3.7-3.8(m,4H),4.1-4.3(m,8H),4.4-4.5(m,4H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.2 (t, 6H), 1.4-1.8 (m, 18H), 2.1-2.2 (m, 4H), 2.2-2.4 (m, 12H), 2. 5-2.7 (m, 4H), 3.5 (q, 4H), 3.7-3.8 (m, 4H), 4.1-4.3 (m, 8H), 4.4- 4.5 (m, 4H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.1 (d, 2H), 7.3 (dd , 2H), 7.7 (d, 2H)
<化合物56の合成>
Figure JPOXMLDOC01-appb-C000047
<Synthesis of Compound 56>
Figure JPOXMLDOC01-appb-C000047
 化合物I-13と同様の方法で上記フェノール誘導体を合成した。さらに、化合物47と同様の合成法を用い、化合物56を得た。 The above phenol derivative was synthesized in the same manner as Compound I-13. Further, Compound 56 was obtained using the same synthesis method as that for Compound 47.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.4-1.8(m,26H),1.9-2.0(m,4H),2.0-2.2(m,4H),2.2-2.4(m,10H),2.5-2.7(m,4H),3.8-4.0(m,4H),4.1-4.4(m,12H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.4-1.8 (m, 26H), 1.9-2.0 (m, 4H), 2.0-2.2 (m, 4H), 2.2-2.4 (m, 10H) ), 2.5-2.7 (m, 4H), 3.8-4.0 (m, 4H), 4.1-4.4 (m, 12H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d, 2H)
<化合物57の合成>
Figure JPOXMLDOC01-appb-C000048
<Synthesis of Compound 57>
Figure JPOXMLDOC01-appb-C000048
 化合物I-13と同様の方法で上記フェノール誘導体を合成した。さらに、化合物47と同様の合成法を用い、化合物57を得た。 The above phenol derivative was synthesized in the same manner as Compound I-13. Further, Compound 57 was obtained using the same synthesis method as Compound 47.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.2(d,6H),1.5-1.8(m,22H),1.8-2.0(m,4H),2.1-2.2(m,4H),2.2-2.4(m,10H),2.5-2.7(m,4H),3.3(s,6H),4.1-4.3(m,8H),4.3-4.4(m,4H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.2 (d, 6H), 1.5-1.8 (m, 22H), 1.8-2.0 (m, 4H), 2.1-2.2 (m, 4H), 2. 2-2.4 (m, 10H), 2.5-2.7 (m, 4H), 3.3 (s, 6H), 4.1-4.3 (m, 8H), 4.3 4.4 (m, 4H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.1 (d, 2H), 7.3 (dd , 2H), 7.7 (d, 2H)
<化合物58の合成>
Figure JPOXMLDOC01-appb-C000049
<Synthesis of Compound 58>
Figure JPOXMLDOC01-appb-C000049
 化合物I-13と同様の方法でフェノール誘導体を合成した。さらに、化合物47と同様の合成法を用い、化合物58を得た。 A phenol derivative was synthesized in the same manner as for compound I-13. Further, Compound 58 was obtained using the same synthesis method as Compound 47.
1H-NMR(溶媒:CDCl3)δ(ppm):
0.9-1.0(m,12H),1.2-1.3(m,2H),1.4-1.9(m,24H),2.1-2.2(m,4H),2.2-2.4(m,10H),2.5-2.7(m,4H),4.0-4.3(m,12H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
0.9-1.0 (m, 12H), 1.2-1.3 (m, 2H), 1.4-1.9 (m, 24H), 2.1-2.2 (m, 4H) ), 2.2-2.4 (m, 10H), 2.5-2.7 (m, 4H), 4.0-4.3 (m, 12H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d, 2H)
<化合物59の合成>
Figure JPOXMLDOC01-appb-C000050
<Synthesis of Compound 59>
Figure JPOXMLDOC01-appb-C000050
 化合物I-13と同様の方法でフェノール誘導体を合成した。さらに、化合物55と同様の合成法を用い、カラムクロマトグラフィーにより精製して化合物59を得た。 A phenol derivative was synthesized in the same manner as for compound I-13. Further, Compound 59 was obtained by purification by column chromatography using the same synthesis method as that for Compound 55.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.45-1.8(m,18H),2.1-2.2(m,4H),2.25-2.4(m,12H),2.5-2.7(m,4H),4.1-4.35(m,8H),4.4-4.55(m,8H),5.8(dd,4H),6.1(dd,4H),6.4(dd,4H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.45-1.8 (m, 18H), 2.1-2.2 (m, 4H), 2.25-2.4 (m, 12H), 2.5-2.7 (m, 4H) ), 4.1-4.35 (m, 8H), 4.4-4.55 (m, 8H), 5.8 (dd, 4H), 6.1 (dd, 4H), 6.4 ( dd, 4H), 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d, 2H)
<化合物62の合成>
Figure JPOXMLDOC01-appb-C000051
<Synthesis of Compound 62>
Figure JPOXMLDOC01-appb-C000051
 化合物55と同様の合成法を用い、化合物62を得た。 Compound 62 was obtained using the same synthesis method as Compound 55.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.2(t,6H),1.5-1.7(m,12H),2.1-2.2(m,4H),2.2-2.5(m,10H),2.5-2.7(m,4H),3.5(q,4H),3.7-3.8(m,4H),4.3-4.4(m,12H),5.9(dd,2H),6.1(dd,2H),6.4(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.2 (t, 6H), 1.5-1.7 (m, 12H), 2.1-2.2 (m, 4H), 2.2-2.5 (m, 10H), 2. 5-2.7 (m, 4H), 3.5 (q, 4H), 3.7-3.8 (m, 4H), 4.3-4.4 (m, 12H), 5.9 ( dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d, 2H)
<化合物60の合成>
Figure JPOXMLDOC01-appb-C000052
<Synthesis of Compound 60>
Figure JPOXMLDOC01-appb-C000052
 化合物I―13と同様の方法で上記フェノール誘導体を合成した。さらに、化合物47と同様の合成法を用い、カラムクロマトグラフィーにより精製して化合物60を得た。 The above phenol derivative was synthesized in the same manner as Compound I-13. Further, Compound 60 was obtained by purification by column chromatography using the same synthesis method as that for Compound 47.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.5-1.8(m,20H),2.1-2.2(m,4H),2.2-2.4(m,10H),2.5-2.7(m,4H),3.9-4.0(m,4H),4.1-4.3(m,12H),4.45-4.55(m,4H),5.8(dd,2H),6.1(dd,2H),6.4(dd,2H),6.55(dd,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.5-1.8 (m, 20H), 2.1-2.2 (m, 4H), 2.2-2.4 (m, 10H), 2.5-2.7 (m, 4H) ), 3.9-4.0 (m, 4H), 4.1-4.3 (m, 12H), 4.45-4.55 (m, 4H), 5.8 (dd, 2H), 6.1 (dd, 2H), 6.4 (dd, 2H), 6.55 (dd, 2H), 7.1 (d, 2H), 7.3 (dd, 2H), 7.7 (d , 2H)
<化合物66~68の混合物の合成>
Figure JPOXMLDOC01-appb-C000053
<Synthesis of mixture of compounds 66-68>
Figure JPOXMLDOC01-appb-C000053
 化合物I-10と同様の方法でカルボン酸を合成した。さらに、化合物55と同様の合成法を用い、カラムクロマトグラフィーにより精製して化合物66、67、68の混合物を得た。 A carboxylic acid was synthesized in the same manner as in Compound I-10. Further, the mixture was purified by column chromatography using the same synthesis method as that for Compound 55 to obtain a mixture of Compounds 66, 67 and 68.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.2-1.3(m,6H),1.5-1.7(m,12H),2.1-2.2(m,4H),2.2-2.4(m,10H),2.6-2.7(m,4H),3.9(s,6H),4.1-4.3(m,4H),5.2-5.3(m,2H),5.8-5.9(m,2H),6.1-6.2(m,2H),6.4-6.5(m,2H),7.1(d,2H),7.3(dd,2H),7.7(d,2H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.2-1.3 (m, 6H), 1.5-1.7 (m, 12H), 2.1-2.2 (m, 4H), 2.2-2.4 (m, 10H) ), 2.6-2.7 (m, 4H), 3.9 (s, 6H), 4.1-4.3 (m, 4H), 5.2-5.3 (m, 2H), 5.8-5.9 (m, 2H), 6.1-6.2 (m, 2H), 6.4-6.5 (m, 2H), 7.1 (d, 2H), 7. 3 (dd, 2H), 7.7 (d, 2H)
(化合物I-1-56の合成)
Figure JPOXMLDOC01-appb-C000054
(Synthesis of Compound I-1-56)
Figure JPOXMLDOC01-appb-C000054
 トランス-1,4―シクロヘキサンジカルボン酸モノエトキシメチルエステル(1.5g)をジメチルアセトアミド(7mL)中で攪拌し、アルコール誘導体(2.0g)とBHT(0.1g)、ジメチルアミノピリジン(0.08g)を加え、0度に冷却した。1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド 塩酸塩(WSCD HCl)(1.5g)を少量ずつ加え、3時間攪拌した。1Mの希塩酸を加えさらに5分攪拌したのち、酢酸エチルを加えて水層を除去し、希塩酸、飽和重曹水、食塩水の順に洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、BHT(0.1g)を加えて溶媒を減圧留去した。
 次に、反応組成物エステル誘導体1にテトラヒドロフランを7mL、水0.12mLとp-トルエンスルホン酸1水和物を0.12g加え、50℃で2時間攪拌した。溶媒を減圧留去し、ノルマルヘキサンを加えて生じた結晶をろ別し、酢酸エチルに溶解させ、シリカゲルカラムクロマトグラフィーで精製してカルボン酸誘導体1を得た
Figure JPOXMLDOC01-appb-C000055
Trans-1,4-cyclohexanedicarboxylic acid monoethoxymethyl ester (1.5 g) was stirred in dimethylacetamide (7 mL), alcohol derivative (2.0 g), BHT (0.1 g), dimethylaminopyridine (0. 08g) was added and cooled to 0 degrees. 1- (3-Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (WSCD HCl) (1.5 g) was added in small portions and stirred for 3 hours. 1M Dilute hydrochloric acid was added, and the mixture was further stirred for 5 minutes. Ethyl acetate was added to remove the aqueous layer, and the mixture was washed with diluted hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and brine in this order. After drying the organic layer with magnesium sulfate and filtering the desiccant, BHT (0.1 g) was added and the solvent was distilled off under reduced pressure.
Next, 7 mL of tetrahydrofuran, 0.12 mL of water and 0.12 g of p-toluenesulfonic acid monohydrate were added to the reaction composition ester derivative 1, and the mixture was stirred at 50 ° C. for 2 hours. The solvent was distilled off under reduced pressure, normal hexane was added, and the resulting crystals were filtered off, dissolved in ethyl acetate, and purified by silica gel column chromatography to obtain carboxylic acid derivative 1.
Figure JPOXMLDOC01-appb-C000055
 カルボン酸誘導体1(1.0g)を、酢酸エチル(3mL)、ジイソプロピルエチルアミン(0.45mL)と混合した溶液を、メタンスルホニルクロリド(0.2mL)のテトラヒドロフラン(4mL)溶液に氷冷下でゆっくりと滴下した。氷冷下で1時間攪拌した後、混合物にジメチルアミノリジン(0.03g)とゲンチジン酸メチル(0.16g)のテトラヒドロフラン(4mL)溶液を滴下し、次いでトリエチルアミン(0.35mL)を氷冷下でゆっくりと滴下した。反応温度を20℃にて3時間攪拌した後、メタノールを加え、さらに水と酢酸エチルを加えて水層を除去し、有機層を、飽和重曹水、希塩酸、食塩水をこの順で用いて洗浄した。硫酸マグネシウムで有機層を乾燥し、乾燥剤をろ過した後、BHT(0.1g)を加えて溶媒を減圧留去し、シリカゲルカラムクロマトグラフィーで精製して化合物I-1-56を0.7g得た。 A solution obtained by mixing carboxylic acid derivative 1 (1.0 g) with ethyl acetate (3 mL) and diisopropylethylamine (0.45 mL) was slowly added to a solution of methanesulfonyl chloride (0.2 mL) in tetrahydrofuran (4 mL) under ice-cooling. And dripped. After stirring for 1 hour under ice cooling, a tetrahydrofuran (4 mL) solution of dimethylaminolysine (0.03 g) and methyl gentisate (0.16 g) was added dropwise to the mixture, and then triethylamine (0.35 mL) was added under ice cooling. And slowly added dropwise. After stirring the reaction temperature at 20 ° C. for 3 hours, methanol was added, water and ethyl acetate were further added to remove the aqueous layer, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate, dilute hydrochloric acid and brine in this order. did. The organic layer is dried over magnesium sulfate, the desiccant is filtered, BHT (0.1 g) is added, the solvent is distilled off under reduced pressure, and the residue is purified by silica gel column chromatography to obtain 0.7 g of compound I-1-56. Obtained.
1H-NMR(溶媒:CDCl3)δ(ppm):
1.35-1.8(m,30H),2.0-2.4(m,18H),2.5-2.7(m,2H),3.85(s,3H),4.1-4.25(m,8H),4.7-4.8(m,2H),5.8(dd,2H),6.15(dd,2H),6.4(dd,2H),7.1(dd,1H),7.3(dd,1H),7.8(d,1H)
1 H-NMR (solvent: CDCl 3 ) δ (ppm):
1.35-1.8 (m, 30H), 2.0-2.4 (m, 18H), 2.5-2.7 (m, 2H), 3.85 (s, 3H), 4. 1-4.25 (m, 8H), 4.7-4.8 (m, 2H), 5.8 (dd, 2H), 6.15 (dd, 2H), 6.4 (dd, 2H) 7.1 (dd, 1H), 7.3 (dd, 1H), 7.8 (d, 1H)
<複屈折の測定1>
 上記で合成した各化合物、および従来公知の化合物の複屈折(Δn)を、液晶便覧(液晶便覧編集委員会)のp.202に記載の方法に従って測定した。具体的には、試料をくさび型セルに注入し、これに波長550nmのレーザー光を照射し、透過光の屈折角を測定することにより、60℃におけるΔnを求めた。試料としては上記で合成した各化合物または従来公知の化合物を以下の表に従って混合した液晶組成物を用いた。実施例1から4、および比較例1では、測定中の結晶の析出は見られなかったが、比較例2では、測定中に結晶が析出し、Δnを測定することができなかった。
<Measurement of birefringence 1>
The birefringence (Δn) of each compound synthesized above and a conventionally known compound is shown in p. Of Liquid Crystal Handbook (Liquid Crystal Handbook Editorial Committee). Measured according to the method described in 202. Specifically, Δn at 60 ° C. was determined by injecting a sample into a wedge-shaped cell, irradiating the sample with laser light having a wavelength of 550 nm, and measuring the refraction angle of transmitted light. As a sample, a liquid crystal composition prepared by mixing each compound synthesized above or a conventionally known compound according to the following table was used. In Examples 1 to 4 and Comparative Example 1, precipitation of crystals during measurement was not observed, but in Comparative Example 2, crystals were precipitated during measurement, and Δn could not be measured.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
<複屈折の測定2>
 化合物I-1-56と以下化合物M-3を混合した液晶組成物の複屈折性(Δn)を、液晶便覧(液晶便覧編集委員会)のp.202に記載の方法に従って測定した。具体的には、化合物I-1-56(50質量部)と以下化合物M-3(50質量部)とを混合して得た上記液晶組成物をくさび型セルに注入し、波長550nmの光のもと、クロスニコル条件で観察された縞模様の間隔を測定することにより、50℃におけるΔnを求めた。得られたΔnは0.066であった。
<Measurement of birefringence 2>
The birefringence (Δn) of a liquid crystal composition obtained by mixing Compound I-1-56 and the following Compound M-3 was determined by referring to the liquid crystal manual (Liquid Crystal Handbook Editorial Committee) p. Measured according to the method described in 202. Specifically, the liquid crystal composition obtained by mixing Compound I-1-56 (50 parts by mass) with Compound M-3 (50 parts by mass) is injected into a wedge-shaped cell, and light having a wavelength of 550 nm is injected. Then, Δn at 50 ° C. was determined by measuring the interval between the stripe patterns observed under the crossed Nicols condition. The obtained Δn was 0.066.
<位相差膜の作製>
 上記で合成した例示化合物を用いて、下記の組成の液晶性組成物塗布液(1)を調製した。
化合物20                                  50質量部
化合物(M-1)                     50質量部
空気界面配向剤(1)                 0.15質量部
重合開始剤IRGACURE819(BASF社製)          2質量部
溶媒 クロロホルム                   900質量部
<Production of retardation film>
Using the exemplified compound synthesized above, a liquid crystal composition coating liquid (1) having the following composition was prepared.
Compound 20 50 parts by mass Compound (M-1) 50 parts by mass Air interface alignment agent (1) 0.15 parts by mass Polymerization initiator IRGACURE819 (manufactured by BASF) 2 parts by mass Solvent chloroform 900 parts by mass
 次に、洗浄したガラス基板上に日産化学社製ポリイミド配向膜SE-130をスピンコート法により塗布し、乾燥後に250℃で1時間焼成した。これをラビング処理して配向膜付き基板を作製した。作製した配向膜付き基板のラビング処理面に液晶性組成物塗布液(1)をスピンコート法により室温で塗布し、100℃で1分の配向熟成を行った後に、窒素ガス雰囲気下50℃で高圧水銀ランプを用いて30秒間光照射して配向を固定し位相差膜1を形成した。塗布後に加熱するまでの間に、塗布膜に結晶の析出は見られなかった。
 作製した位相差膜をAXOMETRIX社製のAxoScanを用いてTip-Tiltモードで測定した結果、この装置が算出した液晶の平均傾斜角度は0.8度であり、A-plate型の位相差膜が形成できていることを確認した。また、この装置を用いて測定した位相差は211nmであった。
 また、非接触三次元表面形状計測システム(ニコン社製BW-A501)を用いて測定した膜厚は1.9nmであり、位相差と膜厚の比から算出した波長550nmにおけるΔnは0.111であった。
Next, a polyimide alignment film SE-130 manufactured by Nissan Chemical Industries, Ltd. was applied onto the cleaned glass substrate by a spin coating method, dried, and baked at 250 ° C. for 1 hour. This was rubbed to produce a substrate with an alignment film. The liquid crystal composition coating liquid (1) is applied to the rubbing-treated surface of the prepared alignment film-coated substrate at room temperature by a spin coating method, and subjected to orientation aging at 100 ° C. for 1 minute, and then at 50 ° C. in a nitrogen gas atmosphere. The alignment was fixed by irradiating light for 30 seconds using a high-pressure mercury lamp, and the retardation film 1 was formed. During the period after application and before heating, no crystal deposition was observed in the coating film.
As a result of measuring the prepared retardation film in Tip-Tilt mode using AxoScan manufactured by AXOMETRIX, the average tilt angle of the liquid crystal calculated by this apparatus is 0.8 degrees, and the A-plate type retardation film is It was confirmed that it was formed. Moreover, the phase difference measured using this apparatus was 211 nm.
The film thickness measured using a non-contact three-dimensional surface shape measurement system (Nikon BW-A501) was 1.9 nm, and Δn at a wavelength of 550 nm calculated from the ratio of the phase difference and the film thickness was 0.111. Met.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 重合性組成物塗布液(1)において、化合物20を、化合物44、化合物16、重合性液晶化合物(M-2)、化合物50、化合物53、化合物54、化合物55、化合物57、化合物59、化合物62、および化合物60にそれぞれ変更した重合性組成物塗布液を用い、位相差膜1の作製と同様に、位相差膜2~11を作製し、位相差膜1の測定と同様に、Δnを算出した。結果を表2に示す。
 このとき、化合物20、化合物44、化合物16、化合物50、化合物53、化合物54、化合物55、化合物57、化合物59、化合物62および化合物60を用いた際には、塗布後に重合するまでの間に結晶の析出は見られなかったが、重合性液晶化合物(M-2)を用いた際には、塗布後に重合するまでの間に塗布面の一部に結晶の析出が見られ、不均一な面状となった。
In the polymerizable composition coating liquid (1), compound 20 is compound 44, compound 16, polymerizable liquid crystal compound (M-2), compound 50, compound 53, compound 54, compound 55, compound 57, compound 59, and compound. Using the polymerizable composition coating liquids respectively changed to 62 and 60, retardation films 2 to 11 were prepared in the same manner as the retardation film 1, and Δn was measured in the same manner as the measurement of the retardation film 1. Calculated. The results are shown in Table 2.
At this time, when the compound 20, the compound 44, the compound 16, the compound 50, the compound 53, the compound 54, the compound 55, the compound 57, the compound 59, the compound 62, and the compound 60 are used, it is between application and polymerization. Crystallization was not observed, but when the polymerizable liquid crystal compound (M-2) was used, crystal deposition was observed on a part of the coated surface before polymerization after coating, which was uneven. It became planar.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
<位相差膜の作製>
 上記実施例で合成した例示化合物を用いて、下記の組成の液晶性組成物塗布液(13)を調製した。
化合物66~68の混合物                       50質量部
化合物(M-1)                     50質量部
空気界面配向剤(1)                 0.15質量部
重合開始剤IRGACURE819(BASF社製)        2質量部
溶媒 クロロホルム                   900質量部
<Production of retardation film>
A liquid crystal composition coating liquid (13) having the following composition was prepared using the exemplary compounds synthesized in the above Examples.
Mixture of compounds 66-68 50 parts by mass Compound (M-1) 50 parts by mass Air interface alignment agent (1) 0.15 parts by mass Polymerization initiator IRGACURE819 (manufactured by BASF) 2 parts by mass Solvent chloroform 900 parts by mass
 次に、洗浄したガラス基板上に日産化学社製ポリイミド配向膜SE-130をスピンコート法により塗布し、乾燥後に250℃で1時間焼成した。これをラビング処理して配向膜付き基板を作製した。作製した配向膜付き基板のラビング処理面に液晶性組成物塗布液(13)をスピンコート法により室温で塗布し、130℃で1分の配向熟成を行った後に、窒素ガス雰囲気下50℃で高圧水銀ランプを用いて30秒間光照射して配向を固定し位相差膜12を形成した。塗布後に加熱するまでの間に、塗布膜に結晶の析出は見られなかった。
 作製した位相差膜をAXOMETRIX社製のAxoScanを用いてTip-Tiltモードで測定した結果、この装置が算出した液晶の平均傾斜角度は1.0度であり、A-plate型の位相差膜が形成できていることを確認した。また、この装置を用いて測定した位相差は200nmであった。
 また、非接触三次元表面形状計測システム(ニコン社製BW-A501)を用いて測定した膜厚は1.8nmであり、位相差と膜厚の比から算出した波長550nmにおけるΔnは0.112であった。
Next, a polyimide alignment film SE-130 manufactured by Nissan Chemical Industries, Ltd. was applied onto the cleaned glass substrate by a spin coating method, dried, and baked at 250 ° C. for 1 hour. This was rubbed to produce a substrate with an alignment film. A liquid crystal composition coating solution (13) is applied to the rubbing-treated surface of the prepared substrate with an alignment film by spin coating at room temperature, and subjected to alignment aging at 130 ° C. for 1 minute, and then at 50 ° C. in a nitrogen gas atmosphere. The alignment was fixed by irradiating light for 30 seconds using a high-pressure mercury lamp, and the retardation film 12 was formed. During the period after application and before heating, no crystal deposition was observed in the coating film.
As a result of measuring the prepared retardation film in Tip-Tilt mode using AxoScan manufactured by AXOMETRIX, the average tilt angle of the liquid crystal calculated by this apparatus is 1.0 degree, and the A-plate type retardation film is It was confirmed that it was formed. Moreover, the phase difference measured using this apparatus was 200 nm.
The film thickness measured using a non-contact three-dimensional surface shape measurement system (Nikon BW-A501) was 1.8 nm, and Δn at a wavelength of 550 nm calculated from the ratio between the phase difference and the film thickness was 0.112. Met.
<選択反射フィルム1の形成>
 上記で合成した例示化合物を用いて、下記の組成の液晶性組成物塗布液(111)を調製した。
化合物28                        80質量部
化合物(M-3)                     20質量部
トリメチロールプロパントリアクリレート           5質量部
キラル剤 LC-756(BASF社製)                  6質量部
空気界面配向剤(1)                  0.1質量部
重合開始剤IRGACURE819(BASF社製)        4質量部
溶媒 クロロホルム                   300質量部
<Formation of selective reflection film 1>
Using the exemplified compound synthesized above, a liquid crystalline composition coating liquid (111) having the following composition was prepared.
Compound 28 80 parts by mass Compound (M-3) 20 parts by mass Trimethylolpropane triacrylate 5 parts by mass chiral agent LC-756 (manufactured by BASF) 6 parts by mass air interface alignment agent (1) 0.1 parts by mass polymerization initiator IRGACURE 819 (manufactured by BASF) 4 parts by weight solvent chloroform 300 parts by weight
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 次に、洗浄したガラス基板上に日産化学社製ポリイミド配向膜SE-130をスピンコート法により塗布し、乾燥後に250℃で1時間焼成した。これをラビング処理して配向膜付き基板を作製した。作製した配向膜付き基板のラビング処理面に液晶性組成物塗布液(111)をスピンコート法により室温で塗布し、120℃で2分の配向熟成を行った後に、窒素ガス雰囲気下70℃で高圧水銀ランプを用いて照射量が300mJ/cm2となるようUV照射して配向を固定し選択反射層(111)を形成し、選択反射フィルム1を得た。塗布後に加熱するまでの間に、塗布膜に結晶の析出は見られなかった。塗布膜の厚さは5.2μmであった。
 この液晶組成物を配向固定して得られた選択反射層(111)を偏光顕微鏡で観察したところ配向欠陥が無く均一に配向していることが確認できた。さらに、島津社製の分光光度計UV-3100PCで、選択反射フィルム1の透過スペクトルを測定したところ472nmに中心を持つ選択反射ピークがあり、その半値幅が27nmであった。選択反射波長域の半値幅と選択反射の中心波長の比(Δλ/λ)は0.057であった
 得られた透過スペクトルを図1に示す。
Next, a polyimide alignment film SE-130 manufactured by Nissan Chemical Industries, Ltd. was applied onto the cleaned glass substrate by a spin coating method, dried, and baked at 250 ° C. for 1 hour. This was rubbed to produce a substrate with an alignment film. A liquid crystal composition coating liquid (111) is applied to the rubbing-treated surface of the prepared substrate with an alignment film by spin coating at room temperature, followed by orientation aging at 120 ° C. for 2 minutes, and then at 70 ° C. in a nitrogen gas atmosphere. Using a high-pressure mercury lamp, UV irradiation was performed so that the irradiation amount was 300 mJ / cm 2 , the orientation was fixed, and the selective reflection layer (111) was formed, whereby the selective reflection film 1 was obtained. During the period after application and before heating, no crystal deposition was observed in the coating film. The thickness of the coating film was 5.2 μm.
When the selective reflection layer (111) obtained by aligning and fixing the liquid crystal composition was observed with a polarizing microscope, it was confirmed that there was no alignment defect and the layer was uniformly aligned. Furthermore, when the transmission spectrum of the selective reflection film 1 was measured with a spectrophotometer UV-3100PC manufactured by Shimadzu Corporation, there was a selective reflection peak centered at 472 nm, and its half-value width was 27 nm. The ratio (Δλ / λ) between the half-value width of the selective reflection wavelength region and the center wavelength of selective reflection was 0.057. The obtained transmission spectrum is shown in FIG.
<選択反射フィルム2の形成>
 下記の組成の液晶組成物塗布液(112)を調製した。
化合物(M-1)                    100質量部
キラル剤 LC-756(BASF社製)              5.4質量部
空気界面配向剤(1)                  0.1質量部
重合開始剤IRGACURE819(BASF社製)        3質量部
溶媒 クロロホルム                   300質量部
<Formation of selective reflection film 2>
A liquid crystal composition coating liquid (112) having the following composition was prepared.
Compound (M-1) 100 parts by mass chiral agent LC-756 (manufactured by BASF) 5.4 parts by mass air interface alignment agent (1) 0.1 part by mass polymerization initiator IRGACURE819 (manufactured by BASF) 3 parts by mass solvent chloroform 300 parts by mass
 上記の液晶性組成物塗布液(111)の代わりに液晶組成物塗布液(112)を用いる以外は、選択反射層(111)の作製と同様の手順で選択反射層(112)を形成し、選択反射フィルム2を得た。このとき、塗布液(112)を塗布した後に重合するまでの間に、塗布面の一部に結晶の析出が見られ、不均一な面状となった。
 選択反射フィルム2の均一な部分の透過スペクトルを測定したところ569nmに中心を持つ選択反射ピークがあり、その半値幅が71nmであった。選択反射波長域の半値幅と選択反射の中心波長の比(Δλ/λ)は0.125であった。
The selective reflection layer (112) is formed in the same procedure as the production of the selective reflection layer (111) except that the liquid crystal composition coating liquid (112) is used instead of the liquid crystal composition coating liquid (111). A selective reflection film 2 was obtained. At this time, during the period from application of the coating liquid (112) to polymerization, precipitation of crystals was observed on a part of the coated surface, resulting in a non-uniform surface.
When the transmission spectrum of the uniform part of the selective reflection film 2 was measured, there was a selective reflection peak centered at 569 nm, and the half-value width was 71 nm. The ratio (Δλ / λ) between the half-value width of the selective reflection wavelength region and the center wavelength of selective reflection was 0.125.
<選択反射フィルム3の形成>
 上記で合成した例示化合物を用いて、下記の組成の液晶性組成物塗布液(113)を調製した。
化合物55                       100質量部
キラル剤 LC-756(BASF社製)                 4.2質量部
空気界面配向剤(1)                  0.1質量部
重合開始剤IRGACURE819(BASF社製)        3質量部
溶媒 メチルエチルケトン                180質量部
   シクロヘキサノン                  20質量部
<Formation of selective reflection film 3>
Using the exemplified compound synthesized above, a liquid crystal composition coating liquid (113) having the following composition was prepared.
Compound 55 100 parts by mass chiral agent LC-756 (manufactured by BASF) 4.2 parts by mass air interface alignment agent (1) 0.1 parts by mass polymerization initiator IRGACURE 819 (manufactured by BASF) 3 parts by mass solvent methyl ethyl ketone 180 parts by mass cyclohexanone 20 parts by mass
 ラビング処理を施した富士フイルム株式会社製PETのラビング処理面に、重合性組成物塗布液(113)を乾燥後の乾膜の厚みが3.3μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、75℃の雰囲気で2分間加熱し、窒素ガス雰囲気下50℃で高圧水銀ランプを用いて照射量が300mJ/cm2となるようUV照射し選択反射層(113)を形成し、選択反射フィルム3を得た。塗布後に加熱するまでの間に、塗布膜に結晶の析出は見られなかった。
 選択反射層(113)を偏光顕微鏡で観察したところ配向欠陥が無く均一に配向していることが確認できた。さらに、島津社製の分光光度計UV-3100PCで選択反射フィルム3の透過スペクトルを測定したところ、498nmに中心を持つ選択反射ピークがあり、その半値幅が23nmであった。選択反射波長域の半値幅と選択反射の中心波長の比(Δλ/λ)は0.046であった。得られた透過スペクトルを図2に示す。
Using a wire bar at room temperature so that the thickness of the dry film after drying the polymerizable composition coating liquid (113) is 3.3 μm on the rubbing treated surface of PET manufactured by Fuji Film Co., Ltd. that has been rubbed. Applied. The coating layer is dried at room temperature for 30 seconds, then heated in an atmosphere of 75 ° C. for 2 minutes, and UV irradiation is performed using a high-pressure mercury lamp at 50 ° C. in a nitrogen gas atmosphere to select 300 mJ / cm 2. A reflective layer (113) was formed to obtain a selective reflection film 3. During the period after application and before heating, no crystal deposition was observed in the coating film.
When the selective reflection layer (113) was observed with a polarizing microscope, it was confirmed that the selective reflection layer (113) was uniformly oriented with no orientation defect. Furthermore, when the transmission spectrum of the selective reflection film 3 was measured with a spectrophotometer UV-3100PC manufactured by Shimadzu Corporation, there was a selective reflection peak centered at 498 nm, and its half-value width was 23 nm. The ratio (Δλ / λ) between the half-value width of the selective reflection wavelength region and the center wavelength of selective reflection was 0.046. The obtained transmission spectrum is shown in FIG.
<選択反射フィルム4の形成>
 上記で合成した例示化合物を用いて、下記の組成の液晶性組成物塗布液(114)を調製した。
化合物55                        70質量部
化合物62                        30質量部
キラル剤 LC-756(BASF社製)                3.6質量部
空気界面配向剤(2)                     0.05質量部
重合開始剤IRGACURE819(BASF社製)        3質量部
溶媒 酢酸メチル                    230質量部
<Formation of selective reflection film 4>
Using the exemplified compound synthesized above, a liquid crystal composition coating liquid (114) having the following composition was prepared.
Compound 55 70 parts by mass Compound 62 30 parts by mass chiral agent LC-756 (manufactured by BASF) 3.6 parts by mass air interface alignment agent (2) 0.05 parts by mass polymerization initiator IRGACURE819 (manufactured by BASF) 3 parts by mass solvent 230 parts by mass of methyl acetate
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 上記で合成した例示化合物を用いて、下記の組成の液晶性組成物塗布液(115)を調製した。
化合物55                        70質量部
化合物62                        30質量部
キラル剤 LC-756(BASF社製)               4.1質量部
空気界面配向剤(2)                  0.05質量部
重合開始剤IRGACURE819(BASF社製)        3質量部
溶媒 酢酸メチル                    230質量部
Using the exemplified compound synthesized above, a liquid crystal composition coating liquid (115) having the following composition was prepared.
Compound 55 70 parts by mass Compound 62 30 parts by mass chiral agent LC-756 (manufactured by BASF) 4.1 parts by mass air interface alignment agent (2) 0.05 parts by mass polymerization initiator IRGACURE 819 (manufactured by BASF) 3 parts by mass solvent 230 parts by mass of methyl acetate
 上記で合成した例示化合物を用いて、下記の組成の液晶性組成物塗布液(116)を調製した。
化合物55                        70質量部
化合物62                        30質量部
キラル剤 LC-756(BASF社製)               4.8質量部
空気界面配向剤(2)                 0.05質量部
重合開始剤IRGACURE819(BASF社製)        3質量部
溶媒 酢酸メチル                    230質量部
Using the exemplified compound synthesized above, a liquid crystal composition coating liquid (116) having the following composition was prepared.
Compound 55 70 parts by mass Compound 62 30 parts by mass chiral agent LC-756 (manufactured by BASF) 4.8 parts by mass air interface alignment agent (2) 0.05 parts by mass polymerization initiator IRGACURE 819 (manufactured by BASF) 3 parts by mass solvent 230 parts by mass of methyl acetate
 ラビング処理を施した富士フイルム株式会社製PETのラビング処理面に、重合性組成物塗布液(114)を乾燥後の乾膜の厚みが4.5μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、75℃の雰囲気で2分間加熱し、窒素ガス雰囲気下55℃で高圧水銀ランプを用いて照射量が300mJ/cm2となるようUV照射し選択反射層(114)を形成した。塗布後に加熱するまでの間に、塗布膜に結晶の析出は見られなかった。
 続いて、選択反射層(114)の上に重合性組成物塗布液(115) を乾燥後の乾膜の厚みが3.8μm(下層との合計膜厚が8.3μm)になるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、75℃の雰囲気で2分間加熱し、窒素ガス雰囲気下55℃で高圧水銀ランプを用いて照射量が300mJ/cm2となるようUV照射し選択反射層(115)を形成した。
 さらに、選択反射層(115)の上に重合性組成物塗布液(116)を乾燥後の乾膜の厚みが2.8μm(下層との合計膜厚が11.1μm)になるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、70℃の雰囲気で1分間加熱し、窒素ガス雰囲気下55℃で高圧水銀ランプを用いて照射量が300mJ/cm2となるようUV照射し、選択反射層(116)を形成し、選択反射フィルム4を得た。
 島津社製の分光光度計UV-3100PCにてこの選択反射フィルム4の透過スペクトルを測定したところ、449nmと532nmと640nmに反射ピークがあり、80%以上の高い可視光透過率を有することがわかった。得られた透過スペクトルを図3に示す。
Using a wire bar at room temperature so that the thickness of the dry film after drying the polymerizable composition coating liquid (114) is 4.5 μm on the rubbing treated surface of PET manufactured by Fuji Film Co., Ltd. that has been rubbed. Applied. After the coating layer is dried at room temperature for 30 seconds, it is heated for 2 minutes in an atmosphere of 75 ° C., and UV irradiation is performed using a high pressure mercury lamp at 55 ° C. in a nitrogen gas atmosphere so that the irradiation dose is 300 mJ / cm 2. A reflective layer (114) was formed. During the period after application and before heating, no crystal deposition was observed in the coating film.
Subsequently, the polymerizable composition coating liquid (115) is dried on the selective reflection layer (114) at room temperature so that the dry film thickness becomes 3.8 μm (total film thickness with the lower layer is 8.3 μm). And using a wire bar. After the coating layer is dried at room temperature for 30 seconds, it is heated for 2 minutes in an atmosphere of 75 ° C., and UV irradiation is performed using a high pressure mercury lamp at 55 ° C. in a nitrogen gas atmosphere so that the irradiation dose is 300 mJ / cm 2. A reflective layer (115) was formed.
Further, after drying the polymerizable composition coating liquid (116) on the selective reflection layer (115), the dry film thickness is 2.8 μm (total film thickness with the lower layer is 11.1 μm) at room temperature. And applied using a wire bar. The coating layer was dried at room temperature for 30 seconds, then heated in an atmosphere of 70 ° C. for 1 minute, and irradiated with UV at 55 ° C. in a nitrogen gas atmosphere using a high-pressure mercury lamp so that the irradiation amount was 300 mJ / cm 2 . The selective reflection layer (116) was formed, and the selective reflection film 4 was obtained.
When the transmission spectrum of this selective reflection film 4 was measured with a spectrophotometer UV-3100PC manufactured by Shimadzu Corporation, it was found that there were reflection peaks at 449 nm, 532 nm and 640 nm, and a high visible light transmittance of 80% or more. It was. The obtained transmission spectrum is shown in FIG.
<ハーフミラー1の作製>
 選択反射フィルム4の選択反射層(116)側に、DIC株式会社製UV硬化型接着剤Exp.U12034-6を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。偏光板を直交させてその間に設置した状態で、面内に色ムラが視認できない10cm角の面内で最大5nmの位相差の厚さ5mmのメタアクリル製の透明基材(三菱レイヨン社製「アクリライトL」)表面と、選択反射フィルム4の接着剤塗布面を貼りあわせてUV照射し、選択反射フィルム4のPETフィルムを剥離することで、アクリル基材上に投映像表示用ハーフミラー1を作製した。
<Production of half mirror 1>
On the selective reflection layer (116) side of the selective reflection film 4, a UV curable adhesive Exp. U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 μm. A transparent substrate made of methacrylic with a maximum thickness of 5 nm and a retardation of 5 mm in a 10 cm square plane where color unevenness is not visible in the plane with the polarizing plates orthogonally crossed (“Mitsubishi Rayon” Acrylite L ") The surface and the adhesive application surface of the selective reflection film 4 are bonded together and irradiated with UV, and the PET film of the selective reflection film 4 is peeled off, so that the projected image display half mirror 1 is formed on the acrylic substrate. Was made.
<反射防止層付きハーフミラー2の作製>
 40μm厚みのTACフィルム上に屈折率1.52で厚み3.0μmのハードコート層、その上に屈折率1.594で厚み0.06μmの中間屈折率層、さらにその上に屈折率1.708で厚み0.13μmの高屈折率層、さらにその上に屈折率1.343で厚み0.094μmの低屈折率層が形成された、550nmにおける表面反射率が0.4%の反射防止層付フィルムを準備した。このTACフィルム側に、DIC株式会社製UV硬化型接着剤Exp.U12034-6を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。この塗布面と上記で作製した選択反射フィルム4の選択反射層(116)側とを気泡が入らないように貼りあわせ、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、その後選択反射フィルム4のPETフィルムを剥離することで、反射防止層付の可視光反射フィルム11を作製した。
<Production of half mirror 2 with antireflection layer>
A hard coating layer having a refractive index of 1.52 and a thickness of 3.0 μm on a TAC film having a thickness of 40 μm, an intermediate refractive index layer having a refractive index of 1.594 and a thickness of 0.06 μm, and a refractive index of 1.708. With a high refractive index layer having a thickness of 0.13 μm and a low refractive index layer having a refractive index of 1.343 and a thickness of 0.094 μm formed thereon, with an antireflection layer having a surface reflectance at 550 nm of 0.4% A film was prepared. On the TAC film side, a UV curable adhesive Exp. U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 μm. The coated surface and the selective reflection film (116) side of the selective reflection film 4 produced above were bonded together so that no air bubbles would enter, and then output at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at 60% output. Then, UV irradiation was performed for 6 to 12 seconds, and then the PET film of the selective reflection film 4 was peeled off to produce a visible light reflection film 11 with an antireflection layer.
 次に可視光反射フィルム11の選択反射層(114)側の面に対し、DIC株式会社製UV硬化型接着剤Exp.U12034-6を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。偏光板を直交させてその間に設置した状態で、面内に色ムラが視認できない10cm角の面内で最大5nmの位相差の厚さ5mmのメタアクリル製の透明基材(三菱レイヨン社製「アクリライトL」)表面と、可視光反射フィルム11の接着剤塗布面を貼りあわせてUV照射することで、アクリル基材、選択反射層(114)、選択反射層(115)、選択反射層(116)、および反射防止層をこの順で有する投映像表示用ハーフミラー2を作製した。 Next, with respect to the surface of the visible light reflection film 11 on the selective reflection layer (114) side, a UV curable adhesive Exp. U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 μm. A transparent substrate made of methacrylic with a maximum thickness of 5 nm and a retardation of 5 mm in a 10 cm square plane where color unevenness is not visible in the plane with the polarizing plates orthogonally crossed (“Mitsubishi Rayon” Acrylite L ") surface and the adhesive-coated surface of the visible light reflecting film 11 are bonded together and irradiated with UV, whereby an acrylic base material, a selective reflection layer (114), a selective reflection layer (115), a selective reflection layer ( 116), and a projection image display half mirror 2 having an antireflection layer in this order.

Claims (24)

  1. 式(I)で表される重合性化合物;
    Figure JPOXMLDOC01-appb-C000001
    式中、Z1およびZ2は、それぞれ独立に、置換基を有していてもよいトランス-1,4-シクロヘキシレン基、置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基を示し、
    前記置換基はいずれもそれぞれ独立に、-CO-X-Sp3-R3、アルキル基、およびアルコキシ基からなる群から選択される1から4個の置換基であり、
    mは1または2の整数を示し、nは0または1の整数を示し、
    mが2を示すときnは0を示し、
    mが2を示すとき2つのZ1は同一であっても異なっていてもよく、
    1、L2、L3、L4はそれぞれ独立に、単結合、-O-、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-NH-、N(CH3)-、-S-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-C(=O)N(T3)-、-N(T3)C(=O)-、-C(=O)S-、-SC(=O)-、-CH2C(=O)O-、-OC(=O)CH2-、-CH=CH-C(=O)O-、-OC(=O)-CH=CH-、-CH=N-、-N=CH-、および-N=N-からなる群から選択される連結基を示し、
    3は-Sp4-R4を表し、
    Xは-O-、-S-、もしくは-N(Sp5-R5)-を示すか、または、R3およびSp3と共に環構造を形成する窒素原子を示し、
    rは1から4の整数を示し、
    Sp1、Sp2、Sp3、Sp4、Sp5はそれぞれ独立に、単結合、炭素数1から20の直鎖もしくは分岐のアルキレン基、および炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示し、
    1およびR2はそれぞれ独立に、以下の式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示し、
    3、R4、R5はそれぞれ独立に、水素原子、シクロアルキル基、シクロアルキル基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、または以下の式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示し、R3は、XがR3およびSp3と共に環構造を形成する窒素原子である場合において単結合を示してもよく、Sp5が単結合のとき、R5は水素原子ではない。
    Figure JPOXMLDOC01-appb-C000002
    A polymerizable compound represented by formula (I);
    Figure JPOXMLDOC01-appb-C000001
    In the formula, Z 1 and Z 2 each independently have a trans-1,4-cyclohexylene group which may have a substituent, an arylene group which may have a substituent or a substituent. A heteroarylene group which may be
    Each of the substituents is independently 1 to 4 substituents selected from the group consisting of —CO—X—Sp 3 —R 3 , an alkyl group, and an alkoxy group;
    m represents an integer of 1 or 2, n represents an integer of 0 or 1,
    When m represents 2, n represents 0,
    when m represents 2, two Z 1 may be the same or different;
    L 1 , L 2 , L 3 and L 4 are each independently a single bond, —O—, —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC (═O) —, —C ( ═O) O (CH 2 ) 2 —, —NH—, N (CH 3 ) —, —S—, —C (═O) O—, —OC (═O) —, —OC (═O) O —, —C (═O) N (T 3 ) —, —N (T 3 ) C (═O) —, —C (═O) S—, —SC (═O) —, —CH 2 C ( ═O) O—, —OC (═O) CH 2 —, —CH═CH—C (═O) O—, —OC (═O) —CH═CH—, —CH═N—, —N═ A linking group selected from the group consisting of CH— and —N═N—,
    T 3 represents —Sp 4 —R 4 ,
    X represents —O—, —S—, or —N (Sp 5 —R 5 ) —, or represents a nitrogen atom that forms a ring structure with R 3 and Sp 3 ,
    r represents an integer of 1 to 4,
    Sp 1 , Sp 2 , Sp 3 , Sp 4 and Sp 5 are each independently a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms. In which one or more —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C (═O) —, —OC (═O) —, or A linking group selected from the group consisting of groups substituted with -C (= O) O-;
    R 1 and R 2 each independently represents any polymerizable group selected from the group consisting of groups represented by the following formulas (Q-1) to (Q-5);
    R 3 , R 4 and R 5 each independently represents one or more —CH 2 — in a hydrogen atom, cycloalkyl group or cycloalkyl group —O—, —S—, —NH—, —N A group substituted with (CH 3 ) —, —C (═O) —, —OC (═O) —, or —C (═O) O—, or the following formulas (Q-1) to (Q −5) represents any polymerizable group selected from the group consisting of the groups represented by the formula: R 3 represents a single bond when X is a nitrogen atom that forms a ring structure with R 3 and Sp 3. It may be shown that when Sp 5 is a single bond, R 5 is not a hydrogen atom.
    Figure JPOXMLDOC01-appb-C000002
  2. 前記アリーレン基が1,4-フェニレン基である請求項1に記載の重合性化合物。 The polymerizable compound according to claim 1, wherein the arylene group is a 1,4-phenylene group.
  3. 1およびZ2の少なくともいずれか一つは置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基である請求項1または2に記載の重合性化合物。 The polymerizable compound according to claim 1, wherein at least one of Z 1 and Z 2 is an arylene group which may have a substituent or a heteroarylene group which may have a substituent.
  4. m+nが2である請求項1~3のいずれか一項に記載の重合性化合物。 The polymerizable compound according to any one of claims 1 to 3, wherein m + n is 2.
  5. mが2であり、かつ2つのZ1がR1方向からそれぞれ置換基を有していてもよいトランス-1,4-シクロヘキシレン基、置換基を有していてもよいアリーレン基であるか、または
    mが1であり、nが1であり、Z1が置換基を有していてもよいアリーレン基であり、かつZ2が置換基を有していてもよいアリーレン基である請求項4に記載の重合性化合物。
    whether m is 2 and two Z 1 are each a trans-1,4-cyclohexylene group which may have a substituent or an arylene group which may have a substituent from the R 1 direction. Or m is 1, n is 1, Z 1 is an arylene group which may have a substituent, and Z 2 is an arylene group which may have a substituent. 4. The polymerizable compound according to 4.
  6. 2がR1方向から-C(=O)O-であり、かつL3がR1方向から-OC(=O)-である請求項1~5のいずれか一項に記載の重合性化合物。 The polymerizable property according to any one of claims 1 to 5, wherein L 2 is -C (= O) O- from the R 1 direction and L 3 is -OC (= O)-from the R 1 direction. Compound.
  7. 1およびR2がそれぞれ独立に式(Q-1)で表される基または式(Q-2)で表される基である請求項1~6のいずれか一項に記載の重合性化合物。 The polymerizable compound according to any one of claims 1 to 6, wherein R 1 and R 2 are each independently a group represented by the formula (Q-1) or a group represented by the formula (Q-2). .
  8. mが1であり、nが1であり、rが1であり、Sp3が炭素数1から20の直鎖もしくは分岐のアルキレン基であり、かつR3が水素原子である請求項1~3のいずれか一項に記載の重合性化合物。 m is 1, n is 1, r is 1, Sp 3 is a linear or branched alkylene group having 1 to 20 carbon atoms, and R 3 is a hydrogen atom. The polymerizable compound according to any one of the above.
  9. mが1であり、nが1であり、Z1およびZ2が、いずれも置換基を有していてもよいトランス-1,4-シクロヘキシレン基である請求項1または2に記載の重合性化合物。 3. The polymerization according to claim 1, wherein m is 1, n is 1, and Z 1 and Z 2 are both trans-1,4-cyclohexylene groups which may have a substituent. Sex compounds.
  10. 1、L2、L3、L4がいずれも、-C(=O)O-、または-OC(=O)-である請求項1~9のいずれか一項に記載の重合性化合物。 The polymerizable compound according to any one of claims 1 to 9, wherein L 1 , L 2 , L 3 , and L 4 are all —C (═O) O— or —OC (═O) —. .
  11. 請求項1~10のいずれか一項に記載の重合性化合物の重合反応により得られるポリマー。 A polymer obtained by a polymerization reaction of the polymerizable compound according to any one of claims 1 to 10.
  12. 請求項1~10のいずれか一項に記載の重合性化合物を含む重合性組成物。 A polymerizable composition comprising the polymerizable compound according to any one of claims 1 to 10.
  13. 式(I)で表される重合性化合物とともに他の液晶化合物を含む請求項12に記載の重合性組成物。 The polymerizable composition according to claim 12, comprising another liquid crystal compound together with the polymerizable compound represented by the formula (I).
  14. 架橋剤を含む請求項12または13に記載の重合性組成物。 The polymerizable composition according to claim 12 or 13, comprising a crosslinking agent.
  15. 重合開始剤を含有する請求項12~14のいずれか一項に記載の重合性組成物。 The polymerizable composition according to any one of claims 12 to 14, which contains a polymerization initiator.
  16. キラル化合物を含有する請求項12~15のいずれか一項に記載の重合性組成物。 The polymerizable composition according to any one of claims 12 to 15, comprising a chiral compound.
  17. 請求項12~16のいずれか1項に記載の重合性組成物の硬化により得られる層を含むフィルム。 A film comprising a layer obtained by curing the polymerizable composition according to any one of claims 12 to 16.
  18. 請求項12~17のいずれか1項に記載の重合性組成物の硬化により得られる層を2層以上含むフィルム。 A film comprising two or more layers obtained by curing the polymerizable composition according to any one of claims 12 to 17.
  19. 選択反射を示し、
    前記選択反射の波長域の半値幅Δλと前記選択反射の中心波長λとの比であるΔλ/λが0.09以下である請求項17または18に記載のフィルム。
    Shows selective reflection,
    The film according to claim 17 or 18, wherein Δλ / λ, which is a ratio of a half-value width Δλ of the selective reflection wavelength region to a central wavelength λ of the selective reflection, is 0.09 or less.
  20. 可視光を反射する請求項17~19のいずれか一項に記載のフィルム。 The film according to any one of claims 17 to 19, which reflects visible light.
  21. 請求項12~16のいずれか一項に記載の重合性組成物から形成される層を少なくとも3層含むフィルムであって、
    前記3層が、赤色光波長域に選択反射の中心波長を有するコレステリック液晶相を固定した層、緑色光波長域に選択反射の中心波長を有するコレステリック液晶相を固定した層、および青色光波長域に選択反射の中心波長を有するコレステリック液晶相を固定した層であるフィルム。
    A film comprising at least three layers formed from the polymerizable composition according to any one of claims 12 to 16,
    The three layers are a layer in which a cholesteric liquid crystal phase having a central wavelength of selective reflection is fixed in a red light wavelength region, a layer in which a cholesteric liquid crystal phase having a central wavelength of selective reflection is fixed in a green light wavelength region, and a blue light wavelength region A film in which a cholesteric liquid crystal phase having a central wavelength of selective reflection is fixed.
  22. 請求項21に記載のフィルムを含む投映像表示用ハーフミラー。 A half mirror for displaying projected images, comprising the film according to claim 21.
  23. 無機ガラスまたはアクリル樹脂である基材を含む請求項22に記載の投映像表示用ハーフミラー。 The half mirror for projecting image display according to claim 22, comprising a base material made of inorganic glass or acrylic resin.
  24. 最表面に反射防止層を含む、請求項22または23に記載の投映像表示用ハーフミラー。 The half mirror for displaying projected images according to claim 22 or 23, comprising an antireflection layer on the outermost surface.
PCT/JP2015/059559 2014-03-28 2015-03-27 Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projection image display WO2015147243A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167026768A KR101811974B1 (en) 2014-03-28 2015-03-27 Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projection image display
CN201580016763.8A CN106164108B (en) 2014-03-28 2015-03-27 Polymerizable compound, polymer, polymerizable composition, polymerizable composition, film and projected image, which are shown, uses half-reflecting mirror
US15/273,784 US10012868B2 (en) 2014-03-28 2016-09-23 Polymerizable compound, polymer, polymerizable composition, film, and half mirror for displaying projection image

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014069346 2014-03-28
JP2014-069346 2014-03-28
JP2014-181135 2014-09-05
JP2014181135 2014-09-05
JP2015053774A JP6080884B2 (en) 2014-03-28 2015-03-17 Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projected image display
JP2015-053774 2015-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/273,784 Continuation US10012868B2 (en) 2014-03-28 2016-09-23 Polymerizable compound, polymer, polymerizable composition, film, and half mirror for displaying projection image

Publications (1)

Publication Number Publication Date
WO2015147243A1 true WO2015147243A1 (en) 2015-10-01

Family

ID=54195747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059559 WO2015147243A1 (en) 2014-03-28 2015-03-27 Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projection image display

Country Status (1)

Country Link
WO (1) WO2015147243A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035873A1 (en) * 2014-09-05 2016-03-10 富士フイルム株式会社 Polymerizable compound, polymer, polymerizable composition, and film
WO2016143884A1 (en) * 2015-03-12 2016-09-15 富士フイルム株式会社 Polymerizable composition, film, and half mirror for projected image display
WO2016143883A1 (en) * 2015-03-12 2016-09-15 富士フイルム株式会社 Polymerizable composition, film, and half mirror for projection image display
WO2017090644A1 (en) * 2015-11-26 2017-06-01 富士フイルム株式会社 Optical film, polarizing plate, image display device, polymerizable compound and 1,4-cyclohexane dicarboxylic acid mono aryl ester production method
JP2017154986A (en) * 2016-02-29 2017-09-07 富士フイルム株式会社 Polymerizable compound, polymerizable composition, and film
JP2017181553A (en) * 2016-03-28 2017-10-05 富士フイルム株式会社 Method for manufacturing liquid crystal layer
WO2017199754A1 (en) * 2016-05-18 2017-11-23 日本ゼオン株式会社 Compound manufacturing method, compound, and mixture
JP2018002760A (en) * 2016-06-27 2018-01-11 富士フイルム株式会社 Polymerizable composition, film, and member for displaying projection image
JP2018018982A (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Light source and illuminating device
WO2018021485A1 (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Blue light blocking film and light source
WO2018021486A1 (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Eyeglass lens and eyeglasses
WO2018030190A1 (en) * 2016-08-09 2018-02-15 Jnc株式会社 Polymerizable liquid crystal composition and liquid crystal polymer
WO2018084076A1 (en) 2016-11-04 2018-05-11 富士フイルム株式会社 Windshield glass, head-up display system, and half-mirror film
US10012868B2 (en) 2014-03-28 2018-07-03 Fujifilm Corporation Polymerizable compound, polymer, polymerizable composition, film, and half mirror for displaying projection image
US10323120B2 (en) 2014-09-25 2019-06-18 Fujifilm Corporation Polymerizable composition containing polymerizable compound, film, and half mirror for displaying projection image
WO2020080355A1 (en) 2018-10-17 2020-04-23 富士フイルム株式会社 Projection image display member, windshield glass, and head-up display system
WO2020122023A1 (en) 2018-12-10 2020-06-18 富士フイルム株式会社 Projection image displaying member, windshield glass, and head-up display system
WO2021060402A1 (en) 2019-09-27 2021-04-01 富士フイルム株式会社 Projector for head-up display
WO2021193131A1 (en) * 2020-03-23 2021-09-30 住友化学株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, phase difference film, elliptically polarizing plate and organic el display device
WO2022123946A1 (en) 2020-12-09 2022-06-16 富士フイルム株式会社 Reflection film, windshield glass, and head-up display system
WO2023054324A1 (en) 2021-09-30 2023-04-06 富士フイルム株式会社 Head-up display system and transport

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100982A (en) * 2006-09-21 2008-05-01 Chisso Corp Trifunctional compound, composition and polymer thereof
JP2010270108A (en) * 2009-04-21 2010-12-02 Sumitomo Chemical Co Ltd Compound
WO2011036080A1 (en) * 2009-09-23 2011-03-31 Polymage Composite material using a mesomorphic elastomer, and method for making same
JP2011148762A (en) * 2009-12-22 2011-08-04 Jnc Corp Polymerizable liquid crystal compound, polymerizable liquid crystal composition and anisotropic polymer
WO2014010325A1 (en) * 2012-07-09 2014-01-16 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100982A (en) * 2006-09-21 2008-05-01 Chisso Corp Trifunctional compound, composition and polymer thereof
JP2010270108A (en) * 2009-04-21 2010-12-02 Sumitomo Chemical Co Ltd Compound
WO2011036080A1 (en) * 2009-09-23 2011-03-31 Polymage Composite material using a mesomorphic elastomer, and method for making same
JP2011148762A (en) * 2009-12-22 2011-08-04 Jnc Corp Polymerizable liquid crystal compound, polymerizable liquid crystal composition and anisotropic polymer
WO2014010325A1 (en) * 2012-07-09 2014-01-16 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012868B2 (en) 2014-03-28 2018-07-03 Fujifilm Corporation Polymerizable compound, polymer, polymerizable composition, film, and half mirror for displaying projection image
WO2016035873A1 (en) * 2014-09-05 2016-03-10 富士フイルム株式会社 Polymerizable compound, polymer, polymerizable composition, and film
US10316252B2 (en) 2014-09-05 2019-06-11 Fujifilm Corporation Polymerizable compound, polymer, polymerizable composition, and film
US10323120B2 (en) 2014-09-25 2019-06-18 Fujifilm Corporation Polymerizable composition containing polymerizable compound, film, and half mirror for displaying projection image
WO2016143884A1 (en) * 2015-03-12 2016-09-15 富士フイルム株式会社 Polymerizable composition, film, and half mirror for projected image display
WO2016143883A1 (en) * 2015-03-12 2016-09-15 富士フイルム株式会社 Polymerizable composition, film, and half mirror for projection image display
US10703973B2 (en) 2015-03-12 2020-07-07 Fujifilm Corporation Polymerizable composition, film, and half mirror for displaying projection image
US10782567B2 (en) 2015-11-26 2020-09-22 Fujifilm Corporation Optical film, polarizing plate, image display device, polymerizable compound, and method for manufacturing 1,4-cyclohexanedicarboxylic acid monoaryl ester
KR102139875B1 (en) * 2015-11-26 2020-07-30 후지필름 가부시키가이샤 Method for producing optical film, polarizing plate, image display device and polymerizable compound and 1,4-cyclohexanedicarboxylic acid monoaryl ester
KR20180074751A (en) * 2015-11-26 2018-07-03 후지필름 가부시키가이샤 OPTICAL FILM, POLARIZING PLATE, IMAGE DISPLAY APPARATUS AND METHOD FOR PRODUCING POLYMERIC COMPOUND AND 1,4-Cyclohexane dicarboxylic acid monoaryl ester
JPWO2017090644A1 (en) * 2015-11-26 2018-08-16 富士フイルム株式会社 Optical film, polarizing plate, image display device, polymerizable compound, and method for producing 1,4-cyclohexanedicarboxylic acid monoaryl ester
WO2017090644A1 (en) * 2015-11-26 2017-06-01 富士フイルム株式会社 Optical film, polarizing plate, image display device, polymerizable compound and 1,4-cyclohexane dicarboxylic acid mono aryl ester production method
JP2017154986A (en) * 2016-02-29 2017-09-07 富士フイルム株式会社 Polymerizable compound, polymerizable composition, and film
JP2017181553A (en) * 2016-03-28 2017-10-05 富士フイルム株式会社 Method for manufacturing liquid crystal layer
WO2017199754A1 (en) * 2016-05-18 2017-11-23 日本ゼオン株式会社 Compound manufacturing method, compound, and mixture
EP3459927A4 (en) * 2016-05-18 2020-01-08 Zeon Corporation Compound manufacturing method, compound, and mixture
CN109153629A (en) * 2016-05-18 2019-01-04 日本瑞翁株式会社 Manufacturing method, compound and the mixture of compound
JP2018002760A (en) * 2016-06-27 2018-01-11 富士フイルム株式会社 Polymerizable composition, film, and member for displaying projection image
JPWO2018021485A1 (en) * 2016-07-28 2019-05-23 富士フイルム株式会社 Blue light cut film and light source
WO2018021486A1 (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Eyeglass lens and eyeglasses
JP2018018982A (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Light source and illuminating device
WO2018021485A1 (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Blue light blocking film and light source
US10714665B2 (en) 2016-07-28 2020-07-14 Fujifilm Corporation Blue light blocking and light source
JPWO2018021486A1 (en) * 2016-07-28 2019-06-06 富士フイルム株式会社 Glasses lenses and glasses
WO2018030190A1 (en) * 2016-08-09 2018-02-15 Jnc株式会社 Polymerizable liquid crystal composition and liquid crystal polymer
CN109563408B (en) * 2016-08-09 2022-04-19 捷恩智株式会社 Polymerizable liquid crystal composition, liquid crystal polymer, retardation film, polarizing plate, display element, and polymerizable liquid crystal compound
US10961455B2 (en) 2016-08-09 2021-03-30 Jnc Corporation Polymerizable liquid crystal composition and liquid crystal polymer
JPWO2018030190A1 (en) * 2016-08-09 2019-06-06 Jnc株式会社 Polymerizable liquid crystal composition and liquid crystal polymer
CN109563408A (en) * 2016-08-09 2019-04-02 捷恩智株式会社 Polymerizable liquid crystal compound and liquid crystal polymer
WO2018084076A1 (en) 2016-11-04 2018-05-11 富士フイルム株式会社 Windshield glass, head-up display system, and half-mirror film
WO2020080355A1 (en) 2018-10-17 2020-04-23 富士フイルム株式会社 Projection image display member, windshield glass, and head-up display system
JPWO2020080355A1 (en) * 2018-10-17 2021-10-14 富士フイルム株式会社 Projection image display material, windshield glass and head-up display system
US11892627B2 (en) 2018-10-17 2024-02-06 Fujifilm Corporation Projection image display member, windshield glass, and head-up display system
WO2020122023A1 (en) 2018-12-10 2020-06-18 富士フイルム株式会社 Projection image displaying member, windshield glass, and head-up display system
WO2021060402A1 (en) 2019-09-27 2021-04-01 富士フイルム株式会社 Projector for head-up display
WO2021193131A1 (en) * 2020-03-23 2021-09-30 住友化学株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, phase difference film, elliptically polarizing plate and organic el display device
WO2022123946A1 (en) 2020-12-09 2022-06-16 富士フイルム株式会社 Reflection film, windshield glass, and head-up display system
WO2023054324A1 (en) 2021-09-30 2023-04-06 富士フイルム株式会社 Head-up display system and transport

Similar Documents

Publication Publication Date Title
JP6080884B2 (en) Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projected image display
WO2015147243A1 (en) Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projection image display
JP6086884B2 (en) Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projected image display
JP6343349B2 (en) Polymerizable composition containing polymerizable compound, film, and half mirror for projected image display
JP6343348B2 (en) Polymerizable compound, polymer, polymerizable composition, and film
JP6553708B2 (en) Polymerizable composition, film, and half mirror for projection image display
US10519374B2 (en) Polymerizable composition containing polymerizable compound, film, half mirror for displaying projection image, and polymerizable compound
US10858589B2 (en) Polymerizable liquid crystal compound, polymerizable composition, and film
US10883048B2 (en) Polymerizable composition including polymerizable liquid crystal compound, film, and method of manufacturing film
WO2016143884A1 (en) Polymerizable composition, film, and half mirror for projected image display
JP2017154986A (en) Polymerizable compound, polymerizable composition, and film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167026768

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15768241

Country of ref document: EP

Kind code of ref document: A1