WO2015146927A1 - 半導体素子及び絶縁層形成用組成物 - Google Patents

半導体素子及び絶縁層形成用組成物 Download PDF

Info

Publication number
WO2015146927A1
WO2015146927A1 PCT/JP2015/058776 JP2015058776W WO2015146927A1 WO 2015146927 A1 WO2015146927 A1 WO 2015146927A1 JP 2015058776 W JP2015058776 W JP 2015058776W WO 2015146927 A1 WO2015146927 A1 WO 2015146927A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
represented
compound
insulating layer
Prior art date
Application number
PCT/JP2015/058776
Other languages
English (en)
French (fr)
Inventor
裕三 永田
滝沢 裕雄
土村 智孝
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015146927A1 publication Critical patent/WO2015146927A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • C08F212/24Phenols or alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to a semiconductor element and a composition for forming an insulating layer.
  • Display devices such as liquid crystal displays, organic EL displays, and electrophoretic displays are provided with semiconductor elements such as thin film transistors (TFTs).
  • TFTs thin film transistors
  • the TFT has a structure in which a gate electrode, a gate insulating layer, a source electrode, and a drain electrode are connected, and the source electrode and the drain electrode are connected by a semiconductor layer.
  • a voltage is applied to the gate electrode, a current flow channel (channel) is formed at the interface between the semiconductor layer between the source electrode and the drain electrode and the gate insulating layer adjacent to the semiconductor layer. That is, the current flowing between the source electrode and the drain electrode is controlled according to the input voltage applied to the gate electrode.
  • the gate insulating layer provided adjacent to the semiconductor layer has a function of forming a current flow path together with the semiconductor layer.
  • Patent Document 1 states that “a part of the hydroxyl group of polyvinylphenol is substituted with an alkyl group and a part or all of the hydroxyl group not substituted with an alkyl group is crosslinked.
  • Organic insulating film used for organic transistor is described.
  • the insulating layer and the material forming the insulating layer are important for improving the performance is not limited to the TFT as long as it is a semiconductor element having an insulating layer provided adjacent to the semiconductor layer. Also common to.
  • Patent Document 1 even when a gate insulating layer is formed of polyvinylphenol in which a part of hydroxyl groups is substituted with an alkyl group and the remaining hydroxyl groups are crosslinked, the characteristics of the thin film transistor are not yet sufficient. There was room for improvement in carrier mobility and on / off ratio.
  • An object of the present invention is to provide a semiconductor element having high carrier mobility and excellent on / off ratio. Moreover, this invention makes it a subject to provide the composition for insulating layer formation which can form the insulating layer excellent in the insulation characteristic and surface smoothness.
  • the present inventors examined materials for forming the gate insulating layer. As a result, it has been found that a gate insulating layer having a smooth surface and high insulating performance can be formed by using a polymer compound having a component obtained by converting a phenolic hydroxyl group of vinylphenol into an acyloxy group. Furthermore, it has also been found that a TFT having a gate insulating layer formed of this polymer compound exhibits high carrier mobility and excellent on / off ratio. Further, the present inventors have found that the composition containing the polymer compound can form an insulating layer having excellent insulating properties and surface smoothness, and is excellent as a composition for forming an insulating layer (gate insulating layer) of a TFT. The present invention has been completed based on these findings.
  • a semiconductor element having a semiconductor layer and an insulating layer adjacent to the semiconductor layer, wherein the insulating layer contains a polymer compound having a repeating structure represented by the following general formula (1).
  • R 1 represents a hydrogen atom or methyl.
  • Ar represents an aromatic ring.
  • X represents an acyl group.
  • m represents an integer of 1 to 5, and when m is 2 or more, the m Xs may be the same or different from each other.
  • A represents a monovalent organic group.
  • R 1 represents a hydrogen atom or methyl.
  • Ar represents an aromatic ring.
  • X represents an acyl group.
  • m represents an integer of 1 to 5, and when m is 2 or more, the m Xs may be the same or different from each other.
  • each substituent, etc. Means the same or different. The same applies to the definition of the number of substituents and the like. Further, when there are repetitions of a plurality of partial structures represented by the same indication in the formula, each partial structure or repeating unit may be the same or different. Even when not particularly specified, when a plurality of substituents and the like are close (particularly adjacent), they may be connected to each other or condensed to form a ring.
  • the term “compound” (including resin) is used to mean not only the compound itself but also its salt and its ion. In addition, it means that a part of the structure is changed as long as the desired effect is achieved.
  • a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent as long as a desired effect is achieved. . This is also synonymous for compounds that do not specify substitution / non-substitution.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the semiconductor element of the present invention has high carrier mobility and excellent on / off ratio. Moreover, the composition for forming an insulating layer of the present invention can form an insulating layer having excellent insulating properties and surface smoothness.
  • the semiconductor element of the present invention is not particularly limited as long as it is an element having a semiconductor layer and an insulating layer adjacent to the semiconductor layer, and examples thereof include a TFT.
  • TFTs are preferable from the viewpoint of improving the carrier mobility and the on / off ratio, and organic thin film transistors (OTFTs) formed of an organic material are particularly preferable.
  • TFT a TFT will be described as a preferred semiconductor element of the present invention, but the semiconductor element of the present invention is not limited to this.
  • the TFT of the present invention is provided on a substrate, in contact with the gate electrode, the semiconductor layer, the gate insulating layer provided between the gate electrode and the semiconductor layer, and the semiconductor layer, and is connected through the semiconductor layer.
  • a semiconductor layer and a gate insulating layer are usually provided adjacent to each other. In such a TFT, the current flowing between the source electrode and the drain electrode is controlled as described above.
  • TFT shown in each drawing is a schematic diagram for facilitating the understanding of the present invention, and the size or relative size relationship of each member may be changed for convenience of explanation. Is not shown as it is. Moreover, it is not limited to the external shape and shape shown by these drawings except the matter prescribed
  • the gate electrode 5 does not necessarily cover all of the substrate 6, and a form provided in the central portion of the substrate 6 is also preferable as a form of the TFT of the present invention. .
  • 1A to 1D are longitudinal sectional views each schematically showing a typical preferable embodiment of a TFT.
  • 1A to 1D 1 is a semiconductor layer
  • 2 is a gate insulating layer
  • 3 is a source electrode
  • 4 is a drain electrode
  • 5 is a gate electrode
  • 6 is a substrate.
  • 1A is a bottom gate-bottom contact configuration
  • FIG. 1B is a bottom gate-top contact configuration
  • FIG. 1C is a top gate-bottom contact configuration
  • FIG. 1D is a top configuration.
  • a gate-top contact type TFT is shown. All of the above four forms are included in the TFT of the present invention.
  • an overcoat layer may be formed on the top of each TFT in the drawing (the top on the side opposite to the substrate 6).
  • a gate electrode 5, a gate insulating layer 2, and a semiconductor layer 1 are arranged in this order on a substrate 6.
  • the semiconductor layer 1, the gate insulating layer 2, and the gate electrode 5 are arranged in this order on the substrate 6.
  • the source electrode 3 and the drain electrode 4 are arranged on the substrate 6 side (that is, the lower side in FIG. 1) with respect to the semiconductor layer 1.
  • the source electrode 3 and the drain electrode 4 are arranged on the opposite side of the substrate 6 with respect to the semiconductor layer 1.
  • the substrate may be any substrate that can support the TFT and the display panel or the like produced thereon.
  • the substrate is not particularly limited as long as the surface is insulative, has a sheet shape, and has a flat surface.
  • An inorganic material may be used as the material for the substrate.
  • substrates made of inorganic materials include various glass substrates such as soda lime glass and quartz glass, various glass substrates having an insulating film formed on the surface, silicon substrates having an insulating film formed on the surface, sapphire substrates, and stainless steel.
  • Metal substrates made of various alloys such as aluminum and nickel, various metals, metal foil, paper, and the like.
  • a conductive or semiconducting material such as stainless steel sheet, aluminum foil, copper foil or silicon wafer, an insulating polymer material or metal oxide is usually applied or laminated on the surface. Used.
  • an organic material may be used as the material of the substrate.
  • polymethyl methacrylate polymethyl methacrylate, PMMA
  • polyvinyl alcohol PVA
  • polyvinyl phenol PVP
  • polyethersulfone PES
  • polyimide polyamide
  • polyacetal polycarbonate
  • PC polyethylene terephthalate
  • flexible plastic substrate also referred to as a plastic film or a plastic sheet
  • an organic polymer exemplified by polyethylene naphthalate (PEN), polyethyl ether ketone, polyolefin, and polycycloolefin.
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PEN polyethyl ether ketone
  • polyolefin polycycloolefin
  • the thing formed with the mica can also be mentioned. If such a flexible plastic substrate or the like is used, for example, a TFT can be incorporated or integrated into a display device or electronic device having a curved shape
  • the glass transition point is preferably high and the glass transition point is preferably 40 ° C. or higher.
  • the coefficient of linear expansion is small from the viewpoint that the dimensional change is hardly caused by the heat treatment at the time of manufacture and the transistor performance is stable.
  • a material having a linear expansion coefficient of 25 ⁇ 10 ⁇ 5 cm / cm ⁇ ° C. or less is preferable, and a material having a coefficient of 10 ⁇ 10 ⁇ 5 cm / cm ⁇ ° C. or less is more preferable.
  • the organic material constituting the substrate is preferably a material having resistance to a solvent used at the time of TFT fabrication, and a material excellent in adhesion to the gate insulating layer and the electrode is preferable.
  • a plastic substrate made of an organic polymer having a high gas barrier property. It is also preferable to provide a dense silicon oxide film or the like on at least one surface of the substrate, or to deposit or laminate an inorganic material.
  • a conductive substrate (a substrate made of a metal such as gold or aluminum, a substrate made of highly oriented graphite, a stainless steel substrate, etc.) can also be mentioned.
  • a functional layer such as a buffer layer for improving adhesion and flatness, a barrier film for improving gas barrier properties, and a surface treatment layer such as an easy adhesion layer may be formed on the surface. Further, surface treatment such as corona treatment, plasma treatment, UV / ozone treatment may be performed.
  • the thickness of the substrate is preferably 10 mm or less, more preferably 2 mm or less, and particularly preferably 1 mm or less. On the other hand, it is preferably 0.01 mm or more, and more preferably 0.05 mm or more. In particular, in the case of a plastic substrate, the thickness is preferably about 0.05 to 0.1 mm. In the case of a substrate made of an inorganic material, the thickness is preferably about 0.1 to 10 mm.
  • a conductive material (also referred to as an electrode material) constituting the gate electrode is not particularly limited.
  • metals such as platinum, gold, silver, aluminum, chromium, nickel, copper, molybdenum, titanium, magnesium, calcium, barium, sodium, palladium, iron, manganese; InO 2 , SnO 2 , indium / tin oxide (ITO ), Conductive metal oxides such as fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO); polyaniline, polypyrrole, polythiophene, polyacetylene, poly (3,4-ethylenedioxy) Conductive polymers such as thiophene) / polystyrene sulfonic acid (PEDOT / PSS); acids such as hydrochloric acid, sulfuric acid,
  • the method of forming the gate electrode there is no limitation on the method of forming the gate electrode.
  • a film formed by physical vapor deposition (PVD) such as vacuum vapor deposition, chemical vapor deposition (CVD), sputtering, printing (coating), transfer, sol-gel, or plating is necessary.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • sputtering sputtering
  • printing coating
  • sol-gel sol-gel
  • plating sol-gel
  • a solution, paste, or dispersion of the above material can be prepared and applied, and a film can be formed or an electrode can be directly formed by drying, baking, photocuring, aging, or the like.
  • patterning can be performed in combination with the following photolithography method or the like.
  • Examples of the photolithography method include a method in which a patterning of a photoresist is combined with etching such as wet etching with an etchant or dry etching with reactive plasma, a lift-off method, or the like.
  • etching such as wet etching with an etchant or dry etching with reactive plasma, a lift-off method, or the like.
  • a method of irradiating the material with an energy beam such as a laser or an electron beam to polish the material or changing the conductivity of the material may be used.
  • substrate is also mentioned.
  • the thickness of the gate electrode is arbitrary, but is preferably 1 nm or more, particularly preferably 10 nm or more. Moreover, 500 nm or less is preferable and 200 nm or less is especially preferable.
  • the gate insulating layer is not particularly limited as long as it is an insulating layer, and may be a single layer or a multilayer.
  • the gate insulating layer contains one or more polymer compounds having a repeating structure represented by the following general formula (1).
  • R 1 represents a hydrogen atom or methyl.
  • Ar represents an aromatic ring.
  • X represents an acyl group.
  • m represents an integer of 1 to 5.
  • the polymer compound having a repeating structure represented by the general formula (1) is preferably a compound containing vinylphenol as a constituent component, and is a compound in which this phenolic hydroxyl group is acyloxylated.
  • the gate insulating layer When the gate insulating layer is formed of the polymer compound having the above repeating structure into which an acyloxy group is introduced, the surface becomes smooth. The details are not yet clear, but in the absence of an acyloxy group, the presence of a phenolic hydroxyl group increases the surface energy and reduces the surface smoothness. It is thought that energy is lowered and surface smoothness is improved. As described above, when the surface of the gate insulating layer becomes smooth, the semiconductor is easily aligned on the surface of the gate insulating layer, and a carrier path is efficiently formed in the semiconductor layer provided adjacent to the gate insulating layer. As a result, it is considered that the carrier mobility of the TFT is increased.
  • a TFT having a gate insulating layer formed of the above polymer compound has a high on / off ratio and has excellent characteristics.
  • the details are not yet clear, it is thought as follows. That is, when the phenolic hydroxyl group is protected with an acyl group, the hydrophobicity of the polymer compound is improved, and the hygroscopicity of the gate insulating layer is suppressed. Thereby, the volume resistivity of the gate insulating layer increases, and the gate insulating layer exhibits high insulation performance. As a result, it is considered that the on / off ratio of the TFT increases.
  • R 1 is preferably a hydrogen atom.
  • Ar is an aromatic ring group, it may be an aromatic hydrocarbon ring group or an aromatic heterocyclic group. Further, it may be monocyclic or polycyclic, and in the case of polycyclic, it may be a condensed ring.
  • the aromatic hydrocarbon ring serving as the aromatic hydrocarbon ring group is not particularly limited, but preferably has 6 to 18 carbon atoms. Examples thereof include a benzene ring, naphthalene ring, anthracene ring, fluorene ring, phenanthrene ring and the like.
  • the aromatic heterocyclic ring to be an aromatic heterocyclic group is not particularly limited, for example, thiophene ring, furan ring, pyrrole ring, benzothiophene ring, benzofuran ring, benzopyrrole ring, triazine ring, imidazole ring, benzimidazole ring, A heterocyclic ring such as a triazole ring, a thiadiazole ring, a thiazole ring, or a ring including these rings can be given.
  • the aromatic ring that becomes Ar is preferably a benzene ring or a naphthalene ring, and particularly preferably a benzene ring.
  • Ar may have a substituent other than the OX group described later.
  • a substituent is not particularly limited as long as it is other than the OX group.
  • the substituent include an alkyl group (preferably 1 to 6 carbon atoms), a cycloalkyl group (preferably 3 to 10 carbon atoms), an aryl group (preferably 6 to 15 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group ( Preferred are C 1-6), carboxyl group and alkoxycarbonyl group (preferably C 2-7). Of these, an alkyl group, an alkoxy group, and an alkoxycarbonyl group are preferable, and an alkoxy group is more preferable.
  • X represents an acyl group.
  • the acyl group is not particularly limited, and examples thereof include an alkylcarbonyl group, a monocyclic alicyclic hydrocarbon group (cycloalkyl group), a group composed of a carbonyl group (also referred to as a cycloalkylcarbonyl group), a polycyclic alicyclic hydrocarbon.
  • the alkyl group forming the alkylcarbonyl group may be linear or branched, but is preferably linear.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 to 20 and more preferably 4 to 12 in view of hydrophobicity.
  • Examples of such an alkyl group include linear or branched methyl, ethyl, propyl, butyl, hexyl, octyl, decyl, dodecyl and the like. Of these, n-hexyl, n-octyl, and n-dodecyl are preferable in terms of hydrophobicity.
  • the cycloalkyl group forming the cycloalkylcarbonyl group is not particularly limited, but is preferably a saturated hydrocarbon group, more preferably a cycloalkyl group having 3 to 8 carbon atoms. Examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl and the like, and cyclohexyl is preferred.
  • the polycyclic alicyclic hydrocarbon group forming a group consisting of a polycyclic alicyclic hydrocarbon group and a carbonyl group is preferably a group having two or more cycloalkyl groups and one or more carbons. Examples thereof include a hydrocarbon group in which an atom is a constituent atom of two or more rings.
  • the cycloalkyl group is as described above, and the number thereof is preferably 2 to 4, and more preferably 2.
  • the group having two or more cycloalkyl groups includes a group having a plurality of cyclohexyl groups, a group having a plurality of cycloheptyl groups, a group having a plurality of cyclooctyl groups, a group having a plurality of cyclodecanyl groups, and a group having a plurality of cyclododecanyl groups.
  • the hydrocarbon group in which one or more carbon atoms are constituent atoms of two or more rings is not particularly limited.
  • a spiro structure a condensed ring structure, a bridged structure (bicyclo structure, tricyclo structure, A hydrocarbon group having a structure such as a tetracyclo structure) and a cage structure.
  • This hydrocarbon group preferably has a total carbon number of 5 to 40, more preferably 7 to 30.
  • hydrocarbon groups examples include hydrogen atoms from hydrocarbons such as adamantane, decalin, norbornane, norbornene, cedrol, isobornane, bornane, dicyclopentane, ⁇ -pinene, tricyclodecane, tetracyclododecane, and androstane. And a group obtained by removing one of them.
  • hydrocarbons such as adamantane, decalin, norbornane, norbornene, cedrol, isobornane, bornane, dicyclopentane, ⁇ -pinene, tricyclodecane, tetracyclododecane, and androstane.
  • a group in which one hydrogen atom is removed from each hydrocarbon of adamantane, decalin, norbornane, norbornene, cedrol, and tricyclodecane is preferable, and adamantyl in which one hydrogen atom is removed from
  • a part of carbon atoms forming it may be substituted with a hetero atom such as an oxygen atom.
  • polycyclic alicyclic hydrocarbon groups and the like are shown below, but are not limited thereto.
  • the aryl group that forms the arylcarbonyl group has the same meaning as the aryl group described above for Ar, and preferred ones are also the same.
  • the heteroaryl group which forms a heteroarylcarbonyl group is synonymous with the aromatic heterocyclic group demonstrated by said Ar, and its preferable thing is also the same.
  • X is preferably a group consisting of a cycloalkylcarbonyl group, a polycyclic alicyclic hydrocarbon group and a carbonyl group, more preferably a group consisting of a polycyclic alicyclic hydrocarbon group and a carbonyl group, and particularly preferably adamantylcarbonyl.
  • X is a group composed of a polycyclic alicyclic hydrocarbon group and a carbonyl group or adamantylcarbonyl, the glass transition point of the polymer compound is increased, and the solvent resistance of the gate insulating layer can be improved. .
  • the acyl group X may have a substituent.
  • substituent T include an alkyl group (preferably 1 to 6 carbon atoms), a cycloalkyl group (preferably 3 to 10 carbon atoms), an aryl group (preferably 6 to 15 carbon atoms), a halogen atom A hydroxyl group, an alkoxy group (preferably having 1 to 6 carbon atoms), a carboxyl group, a carbonyl group, a thiocarbonyl group, an alkoxycarbonyl group (preferably having a carbon number of 2 to 7), an oxo group ( ⁇ O) and a combination thereof.
  • Group preferably having a total carbon number of 1 to 30, more preferably a total carbon number of 1 to 15).
  • n represents an integer of 1 to 5 and is preferably 1. When m is 2 or more, m Xs may be the same as or different from each other.
  • the substitution position of the —Ar— (OX) group is not particularly limited.
  • Ar is a benzene ring and m is 1, the substitution position may be any of the ortho, meta, and para positions relative to the bond position of the benzene ring to the main chain of the polymer compound. Is preferred.
  • the repeating unit represented by the general formula (1) is preferably a repeating unit represented by the following general formula (2), and more preferably a repeating unit represented by the following general formula (3).
  • A represents a monovalent organic group.
  • A is preferably an alkyl group, a cycloalkyl group, a polycyclic alicyclic hydrocarbon group, an aryl group or a heteroaryl group, more preferably a cycloalkyl group or a polycyclic alicyclic hydrocarbon group, A polycyclic alicyclic hydrocarbon group is preferable, and adamantyl is particularly preferable.
  • the alkyl group, cycloalkyl group, polycyclic alicyclic hydrocarbon group, aryl group and heteroaryl group have the same meanings as those described for the acyl group X, and the preferred ones are also the same.
  • the substitution position of the AC ( ⁇ O) —O— group is the ortho, meta, and para positions relative to the bond position of the benzene ring to the main chain of the polymer compound. Any of the positions may be used, but the para position is preferred.
  • substitution position of the adamantylcarbonyloxy group is synonymous with the substitution position of the AC ( ⁇ O) —O— group in the general formula (2), and the preferred substitution positions are also the same.
  • repeating units represented by the general formulas (1) to (3) are shown below, but are not limited thereto.
  • * shows the coupling
  • the polymer compound used in the present invention preferably has a repeating unit represented by the following general formula (4) in addition to the repeating unit represented by the general formulas (1) to (3).
  • R 2 represents a hydrogen atom or a methyl, hydrogen atom is preferable.
  • the bonding position of the hydroxyl group to the benzene ring is relative to the bonding position of the benzene ring to the main chain of the polymer compound.
  • Any of the para-position, meta-position and ortho-position may be used, but the para-position or meta-position is preferred, and the para-position is more preferred.
  • the benzene ring substituted with a hydroxyl group may have a substituent other than the hydroxyl group, but preferably does not have a substituent. Examples of the substituent that the benzene ring may have include the above substituent T.
  • hydroxystyrene repeating units are shown below, but the hydroxystyrene repeating units are not limited thereto.
  • the content of the repeating units represented by the general formulas (1) to (3) with respect to all the repeating units constituting the polymer compound is preferably 10 to 90 mol%, and preferably 30 to 80 mol%. Is more preferably 40 to 70 mol%.
  • the content of the hydroxystyrene repeating unit relative to all repeating units constituting the polymer compound is not particularly limited, but is preferably 10 to 90 mol%. 20 to 70 mol% is more preferable, and 30 to 60 mol% is particularly preferable.
  • the content of the hydroxystyrene repeating unit is preferably 10 to 80 mol%, more preferably 20 to 60 mol%, and more preferably 30 to 50 mol%. More preferably.
  • the polymer compound used in the present invention may have a repeating unit other than the above repeating unit.
  • each repeating unit consisting of (meth) acrylic acid ester, (meth) acrylic acid, N-substituted maleimide, acrylonitrile, (meth) acrylonitrile, vinylnaphthalene, vinylanthracene, indene and the like can be mentioned.
  • the content of these repeating units in the polymer compound is preferably 1 to 20 mol% with respect to all repeating units constituting the polymer compound, and preferably 2 to 10 mol% is more preferable.
  • the polymer compound can be synthesized by a known radical polymerization method, anion polymerization method, or living radical polymerization method (such as an iniferter method).
  • a vinyl monomer can be dissolved in a suitable organic solvent, and a polymer can be obtained by usually reacting under a cooling condition using a metal compound (such as butyl lithium) as an initiator.
  • a metal compound such as butyl lithium
  • the polymer compound include polyphenol compounds produced by condensation reaction of aromatic ketones or aromatic aldehydes and compounds containing 1 to 3 phenolic hydroxyl groups (for example, JP-A-2008-145539), calixarene Derivatives (for example, Japanese Patent Application Laid-Open No.
  • the polymer compound is preferably synthesized by radical polymerization or anion polymerization and then modified by polymer reaction.
  • the weight average molecular weight (Mw) of the polymer compound used in the present invention is preferably 1,000 to 200,000, more preferably 2,000 to 50,000, and particularly preferably 2,000 to 10,000.
  • the dispersity (molecular weight distribution) (Mw / Mn) of the polymer compound is preferably 1.7 or less, more preferably 1.0 to 1.35, and particularly preferably 1.0 to 1.2. is there.
  • Living polymerization such as living anionic polymerization is preferable because the degree of dispersion of the polymer compound becomes uniform.
  • the weight average molecular weight and the degree of dispersion of the polymer compound are defined as polystyrene converted values by GPC measurement.
  • the polymer compound is preferably crosslinked and cured to form a crosslinked structure for the purpose of increasing the solvent resistance and insulation resistance of the gate insulating layer. That is, the gate insulating layer preferably contains a crosslinked product of a polymer compound.
  • the cross-linked structure of the cross-linked product is not generally determined depending on the type of cross-linking agent used, but is preferably a cross-linked structure formed by reaction using a hydroxymethyl group or an alkoxymethyl group as a crosslinkable group. Including group residues (both methyleneoxy groups).
  • a crosslinking agent may be used independently and may use 2 or more types together.
  • Preferred cross-linking agents for forming a cross-linked structure in the polymer compound include those having a functional group that reacts with hydroxystyrene of the hydroxystyrene repeating unit.
  • Examples of such a crosslinking agent include a compound containing a methylol group (referred to as a methylol compound), an epoxy compound, an oxetane compound, a (meth) acrylic acid compound, a (meth) acrylic acid ester compound, and a styrene compound.
  • a methylol compound a compound containing a methylol group
  • an epoxy compound an oxetane compound
  • a (meth) acrylic acid compound a (meth) acrylic acid ester compound
  • styrene compound a compound containing a methylol group
  • methylol compound having a hydroxymethyl group or an alkoxymethyl group are preferred.
  • the number of functional groups of the crosslinking agent is not particularly limited, but is preferably 2 to 6 because the degree of crosslinking increases as the number of functional groups increases.
  • the methylol compound preferably has two or more crosslinking groups, and at least one of these crosslinking groups is a methylol group or an alkoxymethyl group. It is also preferable to have at least one methylol group or alkoxymethyl group and —NH— group.
  • the methylol group reacts with the polymer compound by heating to form a covalent bond.
  • examples of such a methylol group include a hydroxymethyl group bonded directly to a benzene ring or an amino group of a melamine ring.
  • protons are easily eliminated from the methylol group, the proton can also take the role of allowing the crosslinking group to react with the hydroxyl group of the polymer compound by removing the protecting group of the other crosslinking group. it can.
  • Alkoxymethyl group like the methylol group, reacts with the polymer compound by heating to form a covalent bond.
  • alkoxy group include an alkoxymethyl group bonded directly to a benzene ring or an amino group of a melamine ring.
  • —NH group— plays the role of donating a proton for removing the protecting group of other crosslinking groups, as well as the methylol group, and forms a covalent bond by reacting with the polymer compound or the crosslinking group. It is.
  • —NH— groups include NH groups in which one of the hydrogen atoms on the amino group of the melamine skeleton is substituted with a bridging group.
  • the amino group (—NH 2 ) of the melamine skeleton can also be expressed as H—NH—, —NH— in the amino group is also included in the —NH— group in this specification.
  • a compound containing —NH— group is more preferably a group represented by —N ⁇ CR 20 —NH— (R 20 is an organic group other than a hydrogen atom, and —N ⁇ CR 20 represents a ring structure. Which may be formed). This is because H in such a structure is very easily desorbed.
  • Examples of the methylol compound include compounds represented by the following general formulas I-1 to I-4.
  • R A1 and R A3 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, a thiol group, an amino group, a nitro group, a cyano group, a carboxylic acid group, an amide group, an aryl group, or an aryl group having 1 to 12 carbon atoms.
  • R A2 and R A4 each independently represents an alkoxymethyl group having 1 to 6 carbon atoms, which represents at least one selected from an alkyl group, an alkenyl group, an alkynyl group, an alkoxyl group, an alkylthio group, a hydroxyalkyl group, and an acyl group And at least one selected from an acyloxymethyl group.
  • R A5 is a u-valent organic group, u is an integer of 1 to 5, n is an integer of 1 to 6, m is an integer of 0 to 5, 2 ⁇ n + m ⁇ 6, and s Is an integer from 1 to 5, t is an integer from 0 to 4, and 2 ⁇ s + t ⁇ 5. All of R A3 , R A4 , s, and t of u groups bonded to R A5 may be different from each other.
  • R A6 to R A11 are each independently —CH 2 OH, —H, —CH 2 OR A16 , an alkyl group having 1 to 12 carbon atoms, an alkenyl group, an alkynyl group, an alkoxyl group, an alkylthio group, or a hydroxyalkyl group. And at least one selected from a group and an acyl group. However, at least one of R A6 to R A11 is —CH 2 OH or —H, and at least two of R A6 to R A11 are —CH 2 OH, —H, or —CH 2 OR A16 .
  • R A12 to R A15 are each independently —CH 2 OH, —H or —CH 2 OR A18 , an alkyl group having 1 to 12 carbon atoms, an alkenyl group, an alkynyl group, an alkoxyl group, an alkylthio group, a hydroxyalkyl group, At least one selected from acyl groups.
  • at least one of RAR A12 to R A15 is —CH 2 OH, —H
  • at least two of R A12 to R A15 are —CH 2 OH, —H, or —CH 2 OR A18 .
  • R A16 and R A18 each independently represents at least one selected from an alkoxymethyl group having 1 to 6 carbon atoms and an acyloxymethyl group.
  • the plurality of R A16 may be different from each other, and the plurality of R A18 may be different from each other.
  • Preferred examples of the compound having one or more methylol groups among the crosslinking agents are given below, but the present invention is not limited to the following compounds.
  • methylol compound having one or more —NH— groups among the crosslinking agents are listed below, but the present invention is not limited to the exemplified compounds.
  • the alkali metal in the crosslinking agent is preferably removed.
  • the content of sodium in the crosslinking agent is preferably 20 ppm or less, and more preferably 5 ppm or less, based on the total amount of the crosslinking agent.
  • carboxylic acids such as formic acid, acetic acid and oxalic acid
  • sulfonic acids such as p-toluenesulfonic acid and camphorsulfonic acid
  • sulfonic acids such as p-toluenesulfonic acid, camphorsulfonic acid, trifluoromethanesulfonic acid and the like.
  • a sulfonic acid amine salt can also be used.
  • the sulfonic acid amine salt include p-toluenesulfonic acid pyridine salt.
  • a photoacid catalyst can be used.
  • photoacid catalysts include diallyl iodonium salts such as trifluoromethanesulfonic acid, hexafluorophosphoric acid and 9,10-dimethoxyanthracenesulfonic acid, triallylsulfonium salts and o-nitrobenzyl esters, or bistrichloromethyl-s-triazine Compounds and the like.
  • diallyl iodonium salts such as trifluoromethanesulfonic acid, hexafluorophosphoric acid and 9,10-dimethoxyanthracenesulfonic acid, triallylsulfonium salts and o-nitrobenzyl esters, or bistrichloromethyl-s-triazine Compounds and the like.
  • light irradiation and heating are required after film formation.
  • compound (C) a compound having two or more hydroxymethyl groups or alkoxymethyl groups in the molecule
  • compound (C) a compound having two or more hydroxymethyl groups or alkoxymethyl groups in the molecule
  • Examples of such compounds (C) include hydroxymethylated or alkoxymethylated phenol compounds, alkoxymethylated melamine compounds, alkoxymethylglycoluril compounds, and alkoxymethylated urea compounds.
  • Particularly preferred compounds (C) include phenol derivatives having 3 to 5 benzene rings in the molecule, and having two or more hydroxymethyl groups or alkoxymethyl groups, and having a molecular weight of 1200 or less, and at least two Melamine-formaldehyde derivatives and alkoxymethylglycoluril derivatives having a free N-alkoxymethyl group.
  • the alkoxymethyl group a methoxymethyl group and an ethoxymethyl group are preferable.
  • a phenol derivative having a hydroxymethyl group can be obtained by reacting a corresponding phenol compound having no hydroxymethyl group with formaldehyde under a base catalyst.
  • a phenol derivative having an alkoxymethyl group can be obtained by reacting a corresponding phenol derivative having a hydroxymethyl group with an alcohol in the presence of an acid catalyst.
  • a phenol derivative having an alkoxymethyl group is particularly preferable from the viewpoint of sensitivity and storage stability.
  • Examples of other preferable compounds (C) include compounds having an N-hydroxymethyl group or an N-alkoxymethyl group, such as alkoxymethylated melamine compounds, alkoxymethylglycoluril compounds, and alkoxymethylated urea compounds. Can be mentioned.
  • Examples of such a compound (C) include hexamethoxymethyl melamine, hexaethoxymethyl melamine, tetramethoxymethyl glycoluril, 1,3-bismethoxymethyl-4,5-bismethoxyethylene urea, bismethoxymethyl urea and the like.
  • EP 0,133,216A West German Patent No. 3,634,671, No. 3,711,264, EP 0,212,482A. Particularly preferred among these crosslinking agents are listed below.
  • L 1 ⁇ L 8 are each independently represents a hydrogen atom, a hydroxymethyl group, a methoxymethyl group, an ethoxymethyl group or an alkyl group having 1 to 6 carbon atoms.
  • the compound (C) may be used alone or in combination of two kinds.
  • cross-linking agents other than the above compounds for example, cross-linking agents described in JP-A-2005-354012 [0032] to [0033], in particular, bifunctional or higher epoxy compounds and oxetane compounds are also preferably used. Is preferably incorporated herein.
  • Crosslinking with a crosslinking agent can be performed by generating an acid or radical using light, heat, or both.
  • crosslinking by acid, crosslinking by cationic polymerization, crosslinking by radical polymerization and the like can be mentioned.
  • radical generator that generates radicals by light or heat
  • thermal polymerization initiators (H1) described in [0182] to [0186] of JP2013-214649A and photopolymerization initiation Agent (H2) photo radical generators described in JP-A-2011-186069, [0046] to [0051], photo-radical polymerization initiation described in JP-A 2010-285518, [0042] to [0056]
  • An agent or the like can be suitably used, and the contents thereof are preferably incorporated in the present specification.
  • “Number average molecular weight (Mn) is 140 to 5,000, described in JP2013-214649A [0167] to [0177], has a crosslinkable functional group, and does not have a fluorine atom. It is also preferred to use “compound (G)”, the contents of which are preferably incorporated herein.
  • a photoacid generator for generating an acid by light for example, a photocationic polymerization initiator described in JP-A 2010-285518, [0033] to [0034]
  • acid generators described in JP-A-2012-163946, [0120] to [0136] particularly sulfonium salts, iodonium salts, and the like can be preferably used, and the contents thereof are preferably incorporated herein. .
  • thermal acid generator that generates an acid by heat
  • thermal cationic polymerization initiators described in JP-A 2010-285518, [0035] to [0038], particularly onium salts, and JP-A 2005
  • the catalysts described in [0034] to [0035] of Japanese Patent No. 354012 can be preferably used, particularly sulfonic acids and sulfonic acid amine salts, and the contents thereof are preferably incorporated herein.
  • the gate insulating layer can be formed by applying a composition for forming an insulating layer containing a polymer compound having a repeating structure represented by the general formula (1), and preferably by performing a crosslinking reaction.
  • the polymer compound is as described above.
  • the composition for forming an insulating layer preferably contains a crosslinking agent and a catalyst.
  • the crosslinking agent and the catalyst are as described above.
  • a surfactant and a coupling agent can be contained to such an extent that electrical properties such as insulation are not impaired.
  • the composition for forming an insulating layer may contain a solvent.
  • the solvent include, but are not limited to, ethylene glycol monomethyl ether, methyl cellosolve acetate, diethylene glycol monomethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, toluene, xylene, methyl ethyl ketone, methyl Isobutyl ketone, cyclohexanone, ethyl 2-hydroxypropionate, butyl acetate, ethyl lactate, butyl lactate, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol and the like can be used.
  • These organic solvents can be used alone or in combination of two or more.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, cyclohexanone, ethanol, and 1-butanol are preferable from the viewpoint of improving leveling properties.
  • the content of the polymer compound is preferably 60 to 100% by mass, more preferably 80 to 100% by mass, and particularly preferably 80 to 95% by mass with respect to the total solid content of the composition.
  • the content of the crosslinking agent is preferably 1 to 40% by mass and more preferably 5 to 20% by mass with respect to the polymer compound.
  • Examples of the method for applying the insulating layer forming composition include a spin casting method, a dipping method, a die coating method, a slit coating method, a dropping method, a printing method such as an offset or screen or offset, and an ink jet method.
  • a spin casting method a dipping method, a die coating method, a slit coating method, a dropping method, a printing method such as an offset or screen or offset, and an ink jet method.
  • the conditions for curing the insulating layer forming composition are not particularly limited. Moreover, when using a crosslinking agent, in order to bridge
  • a methylol compound is used as a crosslinking agent, for example, as a crosslinking condition, the heating temperature is preferably 40 to 300 ° C., more preferably 60 to 200 ° C., the heating time is preferably 10 minutes to 3 hours, and 5 minutes to 2 hours. More preferred.
  • the gate insulating layer may be subjected to surface treatment such as corona treatment, plasma treatment, UV / ozone treatment, etc. In this case, it is preferable that the surface roughness due to the treatment is not roughened.
  • the arithmetic mean roughness of the surface of the gate insulating layer Ra or root mean square roughness R MS is 0.5nm or less.
  • a self-assembled monolayer may be formed on the gate insulating layer.
  • the compound that forms the self-assembled monolayer is not particularly limited as long as it is a compound that self-assembles.
  • one or more compounds represented by the following formula 1S are used as the compound that self-assembles. be able to.
  • R 1S represents any of an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, or a heterocyclic group (thienyl, pyrrolyl, pyridyl, fluorenyl, etc.).
  • X S represents an adsorptive or reactive substituent, specifically, —SiX 4 X 5 X 6 group (X 4 represents a halide group or an alkoxy group, and X 5 and X 6 are each independently a halide group.
  • X 4 , X 5 , and X 6 are preferably the same, more preferably a chloro group, a methoxy group, and an ethoxy group, and a phosphonic acid group (— PO 3 H 2 ), phosphinic acid group (—PRO 2 H, R is an alkyl group), phosphoric acid group, phosphorous acid group, amino group, halide group, carboxy group, sulfonic acid group, boric acid group (—B ( OH) 2 ), a hydroxy group, a thiol group, an ethynyl group, a vinyl group, a nitro group, or a cyano group.
  • R 1S is preferably not branched, for example, a linear normal alkyl (n-alkyl) group, a ter-phenyl group in which three phenyl groups are arranged in series, or a para-position of the phenyl group.
  • n-alkyl groups are arranged on both sides.
  • the alkyl chain may have an ether bond, and may have a carbon-carbon double bond or a triple bond.
  • Self-assembled monolayer layer, adsorptive or reactive substituent X S is, interacting with the reactive sites (e.g., -OH groups) of the corresponding surface of the gate insulating layer, by forming the adsorption or reaction bonded Formed on the gate insulating layer.
  • the reactive sites e.g., -OH groups
  • the surface of the self-assembled monolayer provides a smoother surface with a lower surface energy. Therefore, the main skeleton of the compound represented by the above formula 1S is linear. It is preferable that the molecular length is uniform.
  • alkyl such as methyltrichlorosilane, ethyltrichlorosilane, butyltrichlorosilane, octyltrichlorosilane, decyltrichlorosilane, octadecyltrichlorosilane, and phenethyltrichlorosilane
  • alkyltrialkoxysilane compounds such as trichlorosilane compounds, methyltrimethoxysilane, ethyltrimethoxysilane, butyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, alkylphosphonic acid, arylphosphonic acid, alkyl Examples thereof include carboxylic acid, arylphosphonic acid, alkylboric
  • the self-assembled monolayer may be formed using a method in which the above compound is deposited on the gate insulating layer under vacuum, a method in which the gate insulating layer is immersed in a solution of the above compound, a Langmuir-Blodgett method, or the like. it can. Further, for example, the gate insulating layer can be formed by treating the alkyl chlorosilane compound or the alkylalkoxysilane compound with a solution of 1 to 10% by mass in an organic solvent. In the present invention, the method for forming the self-assembled monolayer is not limited to these. For example, as a preferable method for obtaining a denser self-assembled monolayer, Langmuir 19, 1159 (2003) and J. Org. Phys. Chem. B 110, 21101 (2006) etc. are mentioned.
  • the gate insulating layer is immersed in a highly volatile dehydrating solvent in which the above compound is dispersed to form a film, the gate insulating layer is taken out, and if necessary, the above compound such as annealing and the gate insulating layer
  • the film can be washed with a dehydrated solvent and then dried to form a self-assembled monolayer.
  • a dehydrating solvent For example, chloroform, a trichloroethylene, anisole, diethyl ether, hexane, toluene etc. can be used individually or in mixture.
  • an inert gas such as nitrogen as the dry gas.
  • the semiconductor layer is a layer that exhibits semiconductor properties and can accumulate carriers.
  • the semiconductor layer is formed of a semiconductor material.
  • an organic semiconductor compound also simply referred to as an organic semiconductor
  • an inorganic semiconductor compound also referred to simply as an inorganic semiconductor
  • it may be an organic semiconductor layer or an inorganic semiconductor layer.
  • Each of the organic semiconductor and inorganic semiconductor described below may be used alone or in combination of two or more, or an organic semiconductor and an inorganic semiconductor may be used in combination.
  • the organic semiconductor layer may be a layer containing an organic semiconductor. It does not specifically limit as an organic semiconductor, An organic polymer, its derivative (s), a low molecular weight compound, etc. are mentioned.
  • the low molecular compound means a compound other than the organic polymer and its derivative. That is, it refers to a compound having no repeating unit. As long as the low molecular weight compound is such a compound, the molecular weight is not particularly limited.
  • the molecular weight of the low molecular weight compound is preferably 300 to 2000, more preferably 400 to 1000.
  • Examples of the low molecular weight compound include condensed polycyclic aromatic compounds.
  • acene such as naphthacene, pentacene (2,3,6,7-dibenzoanthracene), hexacene, heptacene, dibenzopentacene, tetrabenzopentacene, anthradithiophene, pyrene, benzopyrene, dibenzopyrene, chrysene, perylene, coronene, terylene , Ovalene, quaterrylene, circumanthracene, and derivatives obtained by substituting a part of these carbon atoms with atoms such as N, S, O, etc., or at least one hydrogen atom bonded to the carbon atom is a functional group such as a carbonyl group Derivatives substituted with a group (dioxaanthanthrene compounds including perixanthenoxanthene and derivatives thereof, triphenodio
  • metal phthalocyanines represented by copper phthalocyanine, tetrathiapentalene and derivatives thereof, naphthalene-1,4,5,8-tetracarboxylic acid diimide, N, N′-bis (4-trifluoromethylbenzyl) naphthalene— 1,4,5,8-tetracarboxylic acid diimide, N, N′-bis (1H, 1H-perfluorooctyl), N, N′-bis (1H, 1H-perfluorobutyl), N, N′-dioctylnaphthalene -1,4,5,8-tetracarboxylic acid diimide derivatives, naphthalene tetracarboxylic acid diimides such as naphthalene-2,3,6,7-tetracarboxylic acid diimide, anthracene-2,3,6,7-tetracarboxylic acid Condensed ring tetracarboxylic acid di
  • Further examples include polyanthracene, triphenylene, and quinacridone.
  • low molecular weight compound examples include 4,4′-biphenyldithiol (BPDT), 4,4′-diisocyanobiphenyl, 4,4′-diisocyano-p-terphenyl, 2,5-bis (5 '-Thioacetyl-2'-thiophenyl) thiophene, 2,5-bis (5'-thioacetoxyl-2'-thiophenyl) thiophene, 4,4'-diisocyanophenyl, benzidine (biphenyl-4,4'- Diamine), TCNQ (tetracyanoquinodimethane), tetrathiafulvalene (TTF) and its derivatives, tetrathiafulvalene (TTF) -TCNQ complex, bisethylenetetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTF-iodine complex , A charge transfer complex represented by TCNQ-iod
  • the organic semiconductor is preferably a low-molecular compound, and more preferably a condensed polycyclic aromatic compound.
  • the condensed polycyclic aromatic compound has a high effect of improving carrier mobility and durability, and also exhibits an excellent threshold voltage reduction effect.
  • the condensed polycyclic aromatic compound is preferably an acene represented by any one of the general formulas (A1) to (A4) and a compound represented by any one of the following general formulas (C) to (T)
  • a compound represented by any one of the following general formulas (C) to (T) is more preferable in that it tends to be unevenly distributed with (C).
  • a preferable acene as the condensed polycyclic aromatic compound is represented by the following general formula (A1) or (A2).
  • R A1 to R A6 , X A1 and X A2 represent a hydrogen atom or a substituent.
  • Z A1 and Z A2 represent S, O, Se, or Te.
  • nA1 and nA2 represent an integer of 0 to 3. However, nA1 and nA2 are not 0 at the same time.
  • R A1 to R A6 , X A1 and X A2 are not particularly limited, but are alkyl groups (eg, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, tert-pentyl, hexyl).
  • R A7 , R A8 , X A1 and X A2 represent a hydrogen atom or a substituent.
  • R A7 , R A8 , X A1 and X A2 may be the same or different.
  • the substituents represented by R A7 and R A8 are preferably those listed above as the substituents that can be employed as R A1 to R A6 in formulas (A1) and (A2).
  • Z A1 and Z A2 represent S, O, Se, or Te.
  • nA1 and nA2 represent an integer of 0 to 3. However, nA1 and nA2 are not 0 simultaneously.
  • R A7 and R A8 are preferably those represented by the following general formula (SG1).
  • R A9 to R A11 represent substituents.
  • X A represents Si, Ge or Sn.
  • the substituents represented by R A9 to R A11 are preferably those listed above as substituents that can be employed as R A1 to R A6 in formulas (A1) and (A2).
  • acene or acene derivative represented by general formulas (A1) to (A4) are shown below, but are not limited thereto.
  • a C1 and A C2 represent an oxygen atom, a sulfur atom or a selenium atom.
  • both A C1 and A C2 represent an oxygen atom and a sulfur atom, more preferably a sulfur atom.
  • R C1 to R C6 represent a hydrogen atom or a substituent. At least one of R C1 to R C6 is a substituent represented by the following general formula (W).
  • X D1 and X D2 represent NR D9 , an oxygen atom or a sulfur atom.
  • a D1 represents CR D7 or N atom
  • a D2 represents CR D8 or N atom
  • R D9 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group or an acyl group.
  • R D1 to R D8 represent a hydrogen atom or a substituent
  • at least one of R D1 to R D8 is a substituent represented by the following general formula (W).
  • X E1 and X E2 represent an oxygen atom, a sulfur atom or NR E7 .
  • a E1 and A E2 represent CR E8 or a nitrogen atom.
  • R E1 to R E8 represent a hydrogen atom or a substituent. At least one of R E1 to R E8 is a substituent represented by the following general formula (W).
  • XF1 and XF2 represent an oxygen atom, a sulfur atom, or a selenium atom.
  • X F1 and X F2 preferably represent an oxygen atom or a sulfur atom, and more preferably represent a sulfur atom.
  • R F1 to R F10 , R Fa and R Fb represent a hydrogen atom or a substituent. At least one of R F1 to R F10 , R Fa and R Fb is a substituent represented by the general formula (W).
  • p and q each represents an integer of 0-2.
  • X G1 and X G2 represent NR G9 , an oxygen atom, or a sulfur atom.
  • a G1 represents CR G7 or an N atom.
  • a G2 represents CR G8 or an N atom.
  • R G9 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group or a heteroaryl group.
  • R G1 to R G8 represent a hydrogen atom or a substituent. At least one of R G1 to R G8 is a substituent represented by the following general formula (W).
  • X H1 to X H4 represent NR H7 , an oxygen atom or a sulfur atom.
  • X H1 to X H4 preferably represent a sulfur atom.
  • R H7 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group or a heteroaryl group.
  • R H1 to R H6 each represents a hydrogen atom or a substituent. At least one of R H1 to R H6 is a substituent represented by the following general formula (W).
  • X J1 and X J2 represent an oxygen atom, a sulfur atom, a selenium atom, or NR J9 .
  • X J3 and X J4 represent an oxygen atom, a sulfur atom or a selenium atom.
  • X J1 , X J2 , X J3 and X J4 preferably represent a sulfur atom.
  • R J1 to R J9 represent a hydrogen atom or a substituent. At least one of R J1 to R J9 is a substituent represented by the following general formula (W).
  • X K1 and X K2 represent an oxygen atom, a sulfur atom, a selenium atom, or NR K9 .
  • X K3 and X K4 represent an oxygen atom, a sulfur atom or a selenium atom.
  • X K1 , X K2 , X K3 and X K4 preferably represent a sulfur atom.
  • R K1 to R K9 represent a hydrogen atom or a substituent.
  • At least one of R K1 to R K9 is a substituent represented by the following general formula (W).
  • X L1 and X L2 represent an oxygen atom, a sulfur atom or NR L11 .
  • X L1 and X L2 preferably represent an oxygen atom or a sulfur atom.
  • R L1 to R L11 represent a hydrogen atom or a substituent, and at least one of R L1 to R L11 is a substituent represented by the following general formula (W).
  • X M1 and X M2 represent an oxygen atom, a sulfur atom, a selenium atom or NR M9 .
  • X M1 and X M2 preferably represent a sulfur atom.
  • R M1 to R M9 represent a hydrogen atom or a substituent.
  • At least one of R M1 to R M9 is a substituent represented by the following general formula (W).
  • XN1 and XN2 represent an oxygen atom, a sulfur atom, a selenium atom, or NRN13 .
  • X N1 and X N2 preferably represent a sulfur atom.
  • R N1 to R N13 each represent a hydrogen atom or a substituent.
  • At least one of R N1 to R N13 is a substituent represented by the following general formula (W).
  • X P1 and X P2 represent an oxygen atom, a sulfur atom, a selenium atom, or NRP13 .
  • X P1 and X P2 preferably represent a sulfur atom.
  • R P1 to R P13 each represents a hydrogen atom or a substituent.
  • At least one of R P1 to R P13 is a substituent represented by the following general formula (W).
  • X Q1 and X Q2 represent an oxygen atom, a sulfur atom, a selenium atom, or NR Q13 .
  • X Q1 and X Q2 preferably represent a sulfur atom.
  • R Q1 to R Q13 each represents a hydrogen atom or a substituent.
  • At least one of R Q1 to R Q13 is a substituent represented by the following general formula (W).
  • X R1 , X R2 and X R3 represent an oxygen atom, a sulfur atom, a selenium atom or NR R9 .
  • X R1 , X R2 and X R3 preferably represent a sulfur atom.
  • R R1 to R R9 represent a hydrogen atom or a substituent.
  • At least one of R R1 to R R9 is a substituent represented by the following general formula (W).
  • X S1 , X S2 , X S3 and X S4 represent an oxygen atom, a sulfur atom, a selenium atom or NR S7 .
  • X S1 , X S2 , X S3 and X S4 preferably represent a sulfur atom.
  • R S1 to R S7 represent a hydrogen atom or a substituent. At least one of R S1 to R S7 is a substituent represented by the following general formula (W).
  • X T1 , X T2 , X T3 , and X T4 represent an oxygen atom, a sulfur atom, a selenium atom, or NR T7 .
  • X T1 , X T2 , X T3 and X T4 preferably represent a sulfur atom.
  • R T1 to R T7 each represents a hydrogen atom or a substituent. At least one of R T1 to R T7 is a substituent represented by the following general formula (W).
  • Substituents R C to R T can be a halogen atom, an alkyl group (methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl Alkyl groups having 1 to 40 carbon atoms such as 2,6-dimethyloctyl, 2-decyltetradecyl, 2-hexyldecyl, 2-ethyloctyl, 2-decyltetradecyl, 2-butyldecyl, 1-octylnonyl , 2-ethyloctyl, 2-octyltetradecyl, 2-ethylhexyl, cycloalkyl, bicycloalkyl, tricycloalkyl, etc.),
  • the substituents that the substituents R C to R T can take include an alkyl group, an aryl group, an alkenyl group, an alkynyl group, a heterocyclic group, an alkoxy group, an alkylthio group, and a general formula (W) described later.
  • the alkyl group, alkenyl group, alkynyl group, acyl group, and aryl group of R D9 , R G9, and R H7 are the alkyl groups and alkenyl groups described above for the substituents that R C to R T can take.
  • the heteroaryl group has the same meaning as the heteroaryl group described for the substituents of R A1 to R A6 .
  • L is a divalent linking group represented by any one of the following general formulas (L-1) to (L-25) or 2 or more (preferably 2 to 10, more preferably 2).
  • R W is a substituted or unsubstituted alkyl group, a cyano group, a vinyl group, an ethynyl group, an oxyethylene group, repetition number v of oxyethylene units is more than one oligo oxyethylene group, a siloxane group, the number of silicon atoms is more than one It represents an oligosiloxane group or a substituted or unsubstituted trialkylsilyl group.
  • the wavy line represents the bonding position with any ring forming each skeleton represented by the general formulas (C) to (T).
  • L represents a divalent linking group in which two or more divalent linking groups represented by any of the general formulas (L-1) to (L-25) are bonded
  • the moiety is a bonding position with any ring forming each skeleton represented by the general formulas (C) to (T) and a divalent group represented by the general formulas (L-1) to (L-25).
  • R LZ in the general formulas (L-1), (L-2), (L-6) and (L-13) to (L-24) each independently represents a hydrogen atom or a substituent
  • the general formula (L -1) and (L-2) R LZ may form a condensed ring by combining with R W adjacent L respectively in.
  • R N represents a hydrogen atom or a substituent
  • R si each independently represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • the divalent linking groups represented by the general formulas (L-17) to (L-21), (L-23) and (L-24) are represented by the following general formulas (L-17A) to (L It is more preferably a divalent linking group represented by -21A), (L-23A) and (L-24A).
  • a substituted or unsubstituted alkyl group an oxyethylene group, an oligooxyethylene group having a repeating number v of 2 or more, a siloxane group, an oligosiloxane group having 2 or more silicon atoms, or a substituted or unsubstituted group. If a trialkylsilyl group substitutions present on the end of the substituent of the general formula (W) -R W alone and can also be interpreted in, be interpreted as -L-R W in the general formula (W) it can.
  • two (2) R LZ is a hydrogen atom (L-1) and n-heptyl having 7 carbon atoms.
  • the substituent represented by the general formula (W) is an alkoxy group having 8 carbon atoms
  • one linking group represented by the general formula (L-4) which is —O— and two R This is interpreted as a substituent in which one linking group represented by (L-1), in which LZ is a hydrogen atom, and an n-heptyl group having 7 carbon atoms are bonded.
  • an oxyethylene group an oligooxyethylene group having a repeating number v of 2 or more, a siloxane group, an oligosiloxane group having 2 or more silicon atoms, or a substituted or unsubstituted trialkylsilyl group. If a group is present at the end of the substituents on including a linking group as possible from the end of the substituent, it is interpreted as R W alone in the general formula (W).
  • the substituent R LZ in the general formulas (L-1), (L-2), (L-6) and (L-13) to (L-24) is represented by the general formulas (C) to (T). It may be mentioned those exemplified as the substituents of the substituents R C ⁇ R T can be taken.
  • substituents R LZ of the general formula (L-6) in among them is an alkyl group, if (L-6) in the R LZ is an alkyl group, number of carbon atoms in the alkyl group 1-9 It is preferably 4 to 9, more preferably 5 to 9, and more preferably 5 to 9 from the viewpoints of chemical stability and carrier transportability.
  • R LZ in (L-6) is an alkyl group
  • the alkyl group is preferably a linear alkyl group from the viewpoint of increasing carrier mobility.
  • the R N may be mentioned those exemplified as the substituents which may take the substituents R C ⁇ R T. Among them a hydrogen atom or a methyl group is preferable as also R N.
  • R si is preferably an alkyl group. There are no particular limitations on the alkyl group R si can take, the preferred range of the alkyl group R si can take is the same as the preferred ranges of the alkyl group can take silyl group when R W is a silyl group.
  • the alkenyl group that R si can take is not particularly limited, but is preferably a substituted or unsubstituted alkenyl group, more preferably a branched alkenyl group, and the alkenyl group preferably has 2 to 3 carbon atoms.
  • the alkynyl group that R si can take is not particularly limited, but is preferably a substituted or unsubstituted alkynyl group, more preferably a branched alkynyl group, and the alkynyl group preferably has 2 to 3 carbon atoms. .
  • L is a divalent linking group represented by any one of the general formulas (L-1) to (L-5), (L-13), (L-17) or (L-18), or A divalent linkage in which two or more divalent linking groups represented by any one of (L-1) to (L-5), (L-13), (L-17) or (L-18) are bonded.
  • divalent divalent linking group represented by the linking group and formula (L-1) of that is a divalent linking group attached is particularly preferred.
  • There divalent linking group bonded is preferably a divalent linking group represented by formula (L-1) binds to R W side.
  • a divalent linking group including a divalent linking group represented by the general formula (L-1) is particularly preferred, represented by the general formula (L-1).
  • L is a divalent linking group represented by the general formulas (L-18) and (L-1), and (L-1) bonded to R W, more particularly preferably more that R W is a substituted or unsubstituted alkyl group, a divalent linking group L is represented by the general formula (L-18A) and (L-1) Yes, (L-1) via bonded to R W, it is even more particularly preferred R W is a substituted or unsubstituted alkyl group.
  • R W may be a substituted or unsubstituted alkyl group.
  • R W represents a substituted or unsubstituted alkyl group, an oxyethylene group, It is preferably an oligooxyethylene group having 2 or more repeating oxyethylene units, a siloxane group, or an oligosiloxane group having 2 or more silicon atoms, more preferably a substituted or unsubstituted alkyl group.
  • R W when L adjacent to R W is a divalent linking group represented by formula (L-2) and (L-4) ⁇ (L -25) is, R W is It is more preferably a substituted or unsubstituted alkyl group.
  • R W when L adjacent to R W is a divalent linking group represented by the general formula (L-3) is, R W represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted The silyl group is preferable.
  • R W is a substituted or unsubstituted alkyl group, it preferably has a carbon number of 4-17, it is chemically stable is 6 to 14, more preferably from the viewpoint of carrier transportability, 6-12 More preferably it is. It R W are long-chain alkyl group having the above-mentioned range, and particularly a straight-chain alkyl group of chain increases the linearity of the molecule, from the viewpoint of capable of enhancing the carrier mobility.
  • R W represents an alkyl group, a straight-chain alkyl group, even branched alkyl group, it may be a cyclic alkyl group, a straight-chain alkyl groups, increases the linearity of the molecules, to increase the carrier mobility
  • a divalent linking group L in formula (C) ⁇ (T) is represented by formula (L-1), and either an alkyl group R W is 1-4 carbon atoms, straight-chain 17; or, L is the general formula (L-3), any one Tsudehyo of (L-13) or (L-18) a divalent divalent divalent linking group linking group is attached, which is represented by the linking group and formula (L-1) that are, and that R W is a straight chain alkyl group, This is preferable from the viewpoint of increasing carrier mobility.
  • L is a divalent linking group represented by formula (L-1), and, if R W is an alkyl group having a carbon number of 4 to 17 linear, carbon atoms R W is a linear 6 From the viewpoint of increasing carrier mobility, a linear alkyl group having 6 to 12 carbon atoms is particularly preferable.
  • L is a divalent linking group represented by any one of general formulas (L-3), (L-13) or (L-18) and a divalent linking group represented by general formula (L-1).
  • a divalent linking group of the linking group is bonded, and, if R W is a straight chain alkyl group, more preferably R W is an alkyl group having a carbon number of 4 to 17 linear, straight-chain
  • the alkyl group having 6 to 14 carbon atoms is more preferable from the viewpoints of chemical stability and carrier transport properties, and the straight chain alkyl group having 6 to 12 carbon atoms is particularly preferable from the viewpoint of increasing carrier mobility. preferable.
  • R W is a branched alkyl group.
  • R W is an alkyl group having a substituent
  • a fluorine atom is preferred. It is also possible if R W is an alkyl group having a fluorine atom is substituted for all the hydrogen atoms of the alkyl group fluorine atom to form a perfluoroalkyl group. However, it is preferred that R W is an unsubstituted alkyl group.
  • R W is ethylene group or an oligo ethylene group, and represented by R W "oligooxyethylene group" herein, - (OCH 2 CH 2) v refers to the group represented by OY (
  • the repeating number v of the oxyethylene unit represents an integer of 2 or more, and Y at the terminal represents a hydrogen atom or a substituent.
  • Y at the terminal of the oligooxyethylene group is a hydrogen atom, it becomes a hydroxy group.
  • the number of repeating oxyethylene units v is preferably 2 to 4, and more preferably 2 to 3.
  • the terminal hydroxy group of the oligooxyethylene group is preferably sealed, that is, Y represents a substituent.
  • the hydroxy group is preferably sealed with an alkyl group having 1 to 3 carbon atoms, that is, Y is preferably an alkyl group having 1 to 3 carbon atoms, and Y is a methyl group or an ethyl group. Is more preferable, and a methyl group is particularly preferable.
  • R W is, for siloxane group or an oligosiloxane groups, the number of repetitions of the siloxane units is preferably from 2 to 4, more preferably 2-3. Further, it is preferable that a hydrogen atom or an alkyl group is bonded to the Si atom. When an alkyl group is bonded to the Si atom, the alkyl group preferably has 1 to 3 carbon atoms, and for example, a methyl group or an ethyl group is preferably bonded. The same alkyl group may be bonded to the Si atom, or different alkyl groups or hydrogen atoms may be bonded thereto. Moreover, although all the siloxane units which comprise an oligosiloxane group may be the same or different, it is preferable that all are the same.
  • R W is a substituted or unsubstituted silyl group. If R W is a substituted or unsubstituted silyl group Among them, it is preferred that R W is a substituted silyl group. Although there is no restriction
  • R W is a trialkylsilyl group
  • the carbon number of the alkyl group bonded to the Si atom is 1-3, for example, it is preferable to bind a methyl group or an ethyl group or an isopropyl group.
  • the same alkyl group may be bonded to the Si atom, or different alkyl groups may be bonded thereto.
  • the substituent when R W is a trialkylsilyl group having a substituent on the alkyl group is not particularly limited.
  • the total number of carbon atoms contained in L and R W is 5 to 18. If the total number of carbon atoms contained in L and R W is at least the lower limit within the above range, the carrier mobility is high, lower the driving voltage. If the total number of carbon atoms contained in L and R W is not more than the upper limit of the above range, solubility in an organic solvent is increased. Preferably the total number of carbon atoms contained in L and R W is 5 to 14, more preferably 6 to 14, particularly preferably from 6 to 12, in particular more to be 8-12 preferable.
  • the number of the groups represented by the general formula (W) is 1 to 4, and the carrier mobility is It is preferable from the viewpoint of increasing the solubility in an organic solvent, more preferably 1 or 2, and particularly preferably 2.
  • the position of the group represented by the general formula (W) is not particularly limited.
  • any one of R C1 , R C2 , R C3 and R C6 is preferably a group represented by the general formula (W), and R C1 and R C2 It is more preferable that both or both R C3 and R C6 are groups represented by the general formula (W).
  • R D6 is preferably a group represented by the general formula (W), and both R D5 and R D6 are represented by the general formula (W). More preferably, it is a group.
  • R E6 is preferably a group represented by the general formula (W), and both R E5 and R E6 are represented by the general formula (W). More preferably, it is a group. Further, when R E5 and R E6 are substituents other than the group represented by the general formula (W), it is also preferable that two R E7 are groups represented by the general formula (W).
  • R F2 , R F3 , R F8 and R F9 is a substituent represented by the general formula (W).
  • R G5 or R G6 is a group represented by the general formula (W) from the viewpoint of increasing carrier mobility and increasing solubility in an organic solvent. preferable.
  • R H4 or R H6 is preferably a group represented by the general formula (W), and R H4 or R H6 and R H3 or R H5 are generally used. The group represented by the formula (W) is more preferable.
  • R J8 is preferably a group represented by the general formula (W), and both R J8 and R J4 are represented by the general formula (W). More preferably, it is a group.
  • R K7 is preferably a group represented by the general formula (W), and both R K7 and R K3 are represented by the general formula (W). More preferably, it is a group.
  • R L2 , R L3 , R L6 and R L7 is a group represented by the general formula (W).
  • R M2 is preferably a group represented by the general formula (W), and both R M2 and R M6 are represented by the general formula (W). More preferably, it is a group.
  • R N3 is represented by the general formula (W)
  • both R N3 and R N9 are represented by formula (W) More preferably, it is a group.
  • R P2 or R P3 is preferably a group represented by the general formula (W), and both R P2 and R P8 or both R P3 and R P9 It is more preferable that both are groups represented by the general formula (W).
  • R Q3 is preferably a group represented by the general formula (W), and both R Q3 and R Q9 are represented by the general formula (W). More preferably, it is a group.
  • R R2 is preferably a group represented by the general formula (W), and both R R2 and R R7 are represented by the general formula (W). More preferably, it is a group.
  • R S2 is preferably a group represented by the general formula (W), and both R S2 and R S5 are represented by the general formula (W). More preferably, it is a group.
  • R T2 is preferably a group represented by the general formula (W), and both R T2 and R T5 are represented by the general formula (W). More preferably, it is a group.
  • the number of substituents other than the group represented by the general formula (W) is preferably 0 to 4, more preferably 0 to 2.
  • the compound represented by the general formula (C) preferably has a molecular weight of 3000 or less, more preferably 2000 or less, further preferably 1000 or less, and particularly preferably 850 or less.
  • the molecular weight is within the above range, solubility in a solvent can be enhanced.
  • the molecular weight is preferably 300 or more, more preferably 350 or more, and further preferably 400 or more.
  • the molecular weight of the compound represented by the general formula (D) is preferably the same as that of the compound represented by the general formula (C) because the solubility in a solvent can be increased.
  • the molecular weight is preferably 400 or more, more preferably 450 or more, and further preferably 500 or more.
  • the molecular weights of the compound E, the compound F, the compound G, and the compound H are preferably the same as the compound C whose upper limit is represented by the general formula (C), so that the solubility in a solvent can be improved. .
  • the lower limit of the molecular weight is the same as the compound represented by the general formula (D).
  • the upper limit of the molecular weights of the compound J and the compound K is the same as that of the compound C represented by the general formula (C), so that the solubility in a solvent can be improved.
  • the lower limit of the molecular weight is the same as the compound represented by the general formula (D).
  • the molecular weights of the compound L, the compound M, the compound N, the compound P, and the compound Q are the same as those of the compound C represented by the general formula (C) in the upper limit, which increases the solubility in a solvent. It is possible and preferable.
  • the lower limit of the molecular weight is the same as the compound represented by the general formula (D).
  • the molecular weights of the compound R, the compound S, and the compound T are preferably the same as those of the compound C represented by the general formula (C), because the solubility in the solvent can be improved.
  • the lower limit of the molecular weight is the same as the compound represented by the general formula (D).
  • organic polymer and derivatives thereof examples include polypyrrole and substituted products thereof, polydiketopyrrole and substituted products thereof, polythiophene and derivatives thereof, isothianaphthene such as polyisothianaphthene, thienylene vinylene such as polythienylene vinylene, poly Poly (p-phenylene vinylene) such as (p-phenylene vinylene), polyaniline and its derivatives, polyacetylene, polydiacetylene, polyazulene, polypyrene, polycarbazole, polyselenophene, polyfuran, poly (p-phenylene), polyindole, poly Examples thereof include polymers such as pyridazine, polytellurophene, polynaphthalene, polyvinylcarbazole, polyphenylene sulfide, and polyvinylene sulfide, and polymers of condensed polycyclic aromatic compounds.
  • the polythiophene and derivatives thereof are not particularly limited.
  • poly-3-hexylthiophene (P3HT) in which hexyl group is introduced into polythiophene, polyethylenedioxythiophene, poly (3,4-ethylenedioxythiophene) / polystyrenesulfone An acid (PEDOT / PSS) etc. are mentioned.
  • the oligomer for example, oligothiophene which has the same repeating unit as these polymers can also be mentioned.
  • Examples of the organic polymer include polymer compounds in which compounds represented by the following general formulas (C) to (T) have a repeating structure.
  • a compound represented by the general formulas (C) to (T) has a ⁇ -conjugated structure in which a repeating structure is formed via at least one arylene group or heteroarylene group (thiophene, bithiophene, etc.).
  • Examples thereof include a polymer and a pendant polymer in which compounds represented by the general formulas (C) to (T) are bonded to a polymer main chain via a side chain.
  • the polymer main chain is preferably polyacrylate, polyvinyl, polysiloxane or the like, and the side chain is preferably an alkylene group or a polyethylene oxide group.
  • the polymer main chain may be formed by polymerizing at least one of the substituents R C to R T having a group derived from a polymerizable group.
  • These organic polymers preferably have a weight average molecular weight of 30,000 or more, more preferably 50,000 or more, and even more preferably 100,000 or more.
  • the weight average molecular weight is not less than the above lower limit value, the intermolecular interaction can be enhanced and high mobility can be obtained.
  • the resin (D) include polystyrene, poly ⁇ -methylstyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysilsesquioxane, polysulfone, polymethacrylate represented by polymethylmethacrylate, Insulating polymers such as polyacrylates typified by polymethyl acrylate, celluloses typified by triacetyl cellulose, polyethylene, polypropylene, polyvinyl phenol, polyvinyl alcohol, polyvinyl butyral, etc., and two or more of these components are copolymerized. And a copolymer obtained in the above manner.
  • the mass ratio of the organic polymer to the total amount of the organic polymer and the resin (D) is preferably 10% by mass or more and less than 100% by mass, and preferably 20% by mass or more and less than 100% by mass. More preferred.
  • the total content of the organic polymer and the resin (D) is preferably 1 to 80% by mass, more preferably 5 to 60% by mass, and further preferably 10 to 50% by mass.
  • the wet method is preferable as the method for forming the organic semiconductor layer.
  • the wet method is not particularly limited.
  • the wet method is formed by applying a semiconductor material by spin coating, ink jet printing, nozzle printing, stamp printing, screen printing, gravure printing, electrospray deposition, and the like, and then drying it. can do.
  • the organic semiconductor layer is preferably crystallized by heating or laser irradiation because the OTFT tends to have high performance. It is particularly preferred that the treatment has been performed.
  • the method for the crystallization treatment is not particularly limited, and examples thereof include heating with a hot plate and an oven or laser irradiation.
  • the heating temperature a high temperature is preferable from the viewpoint of easy crystallization, and a low temperature is preferable from the viewpoint of hardly affecting the substrate or the like.
  • 50 ° C. or higher is preferable, 100 ° C. or higher is particularly preferable, and on the other hand, 300 ° C. or lower is preferable, and 250 ° C. or lower is particularly preferable.
  • the inorganic semiconductor material for forming the semiconductor layer is not particularly limited, but a coating type semiconductor is preferable, and an oxide semiconductor is given as a preferable example.
  • the oxide semiconductor is not particularly limited as long as it is made of a metal oxide.
  • the semiconductor layer made of an oxide semiconductor is preferably formed using an oxide semiconductor precursor, that is, a material that is converted into a semiconductor material made of a metal oxide by a conversion process such as thermal oxidation.
  • the oxide semiconductor is not particularly limited.
  • InGaZnO x , InGaO x , InSnZnO x , GaZnO x , InSnO x , InZnO x , SnZnO x (all x> 0), ZnO, and SnO 2 can be given.
  • oxide semiconductor precursor examples include metal nitrates, metal halides, and alkoxides.
  • metal contained in the oxide semiconductor precursor include Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr, Examples thereof include at least one selected from the group consisting of Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • oxide semiconductor precursor examples include, for example, indium nitrate, zinc nitrate, gallium nitrate, tin nitrate, aluminum nitrate, indium chloride, zinc chloride, tin chloride (divalent), tin chloride (tetravalent), and gallium chloride.
  • Aluminum chloride tri-i-propoxy indium, diethoxy zinc, bis (dipivaloylmethanato) zinc, tetraethoxy tin, tetra-i-propoxy tin, tri-i-propoxy gallium, tri-i-propoxy aluminum It is done.
  • the inorganic semiconductor layer can be provided by a known method.
  • the film thickness of the semiconductor layer is arbitrary, but is preferably 1 nm or more, and more preferably 10 nm or more. Further, it is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 500 nm or less.
  • the source electrode is an electrode through which current flows from the outside through the wiring.
  • the drain electrode is an electrode that sends current to the outside through wiring, and is usually provided in contact with the semiconductor layer.
  • a conductive material used in a conventional organic thin film transistor can be used, and examples thereof include the conductive material described for the gate electrode.
  • the source electrode and the drain electrode can be formed by a method similar to the method for forming the gate electrode, respectively.
  • a lift-off method or an etching method can be employed.
  • the source electrode and the drain electrode can be preferably formed by an etching method.
  • the etching method is a method of removing unnecessary portions by etching after forming a conductive material.
  • the conductive material remaining on the base when the resist is removed can be peeled off, and the resist residue or the removed conductive material can be prevented from reattaching to the base, and the shape of the electrode edge portion is excellent. This is preferable to the lift-off method.
  • a resist is applied to a part of the base, a conductive material is formed thereon, and the resist is removed together with the solvent by elution or peeling with a solvent.
  • This is a method of forming a film of a conductive material only on a portion where no is applied.
  • a source electrode and a drain electrode is arbitrary, 1 nm or more is preferable respectively and 10 nm or more is especially preferable. Moreover, 500 nm or less is preferable and 300 nm or less is especially preferable.
  • the interval (channel length) between the source electrode and the drain electrode is arbitrary, but is preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the channel width is preferably 5000 ⁇ m or less, and particularly preferably 1000 ⁇ m or less.
  • the TFT of the present invention may have an overcoat layer.
  • the overcoat layer is usually a layer formed as a protective layer on the surface of the TFT.
  • a single layer structure or a multilayer structure may be used.
  • the overcoat layer may be an organic overcoat layer or an inorganic overcoat layer.
  • the material for forming the organic overcoat layer is not particularly limited, and examples thereof include organic polymers such as polystyrene, acrylic resin, polyvinyl alcohol, polyolefin, polyimide, polyurethane, polyacetylene, and epoxy resin, and these organic polymers. Derivatives in which a crosslinkable group or a water repellent group is introduced may be mentioned.
  • organic polymers and derivatives thereof can be used in combination with a crosslinking component, a fluorine compound, a silicon compound, and the like.
  • the material for forming the inorganic overcoat layer is not particularly limited, and examples thereof include metal oxides such as silicon oxide and aluminum oxide, and metal nitrides such as silicon nitride. These materials may be used alone or in combination of two or more in any combination and ratio.
  • the organic overcoat layer is, for example, a solution containing a material to be an overcoat layer is applied and dried on the underlying layer, a solution containing a material to be an overcoat layer is applied, and exposure is performed after drying. It can be formed by a method such as development and patterning. The patterning of the overcoat layer can also be directly formed by a printing method, an inkjet method, or the like. The overcoat layer may be crosslinked by exposure or heating after the patterning of the overcoat layer.
  • the inorganic overcoat layer can be formed by a dry method such as a sputtering method or a vapor deposition method or a wet method such as a sol-gel method.
  • the TFT of the present invention may be provided with layers and members other than those described above.
  • Examples of other layers or members include banks.
  • the bank is used for the purpose of blocking the discharge liquid at a predetermined position when a semiconductor layer, an overcoat layer, or the like is formed by an inkjet method or the like. For this reason, the bank usually has liquid repellency.
  • Examples of the bank forming method include a method of performing liquid repellency treatment such as a fluorine plasma method after patterning by a photolithography method or the like, a method of curing a photosensitive composition containing a liquid repellent component such as a fluorine compound, and the like.
  • the method of curing the photosensitive composition containing the latter liquid repellent component may cause the gate insulating layer to be affected by the liquid repellent treatment.
  • a technique may be used in which a liquid repellent contrast is given to the base without using the bank so as to have the same role as the bank.
  • the TFT of the present invention can be manufactured by forming or providing a gate electrode, a gate insulating layer, a semiconductor layer, a source electrode, a drain electrode, and the like on a substrate by the method described above.
  • a TFT exhibiting excellent characteristics can be manufactured while taking advantage of the solution coating method.
  • a semiconductor element having an insulating layer excellent in insulating characteristics and surface smoothness, particularly having high carrier mobility and excellent on / off ratio can be applied by solution coating. Can be manufactured by the method.
  • Display panel A display panel is mentioned as an example of the use of the organic thin-film transistor of this invention.
  • Examples of the display panel include a liquid crystal panel, an organic EL panel, and an electronic paper panel.
  • the polymer compounds AP1 to AP9 used in each example are shown below.
  • Each polymer compound was synthesized by the above method.
  • gel permeation chromatography (GPC, manufactured by Tosoh Corporation; HLC-8120; Tskel Multipore HXL-M) was used, and the weight average molecular weight (Mw, standard polystyrene conversion) was measured using THF as a solvent. did.
  • Mw weight average molecular weight
  • the composition ratio (mol%) of each polymer compound was calculated by 1 H-NMR or 13 C-NMR using an NMR measuring apparatus (Bruker Biospin Corporation; AVANCEIII400 type). The description of the composition ratio corresponds to the description of the repeating unit represented by the chemical formula. The obtained results are shown below.
  • cross-linking agents CA1 to CA8 used in each example are shown below.
  • compound A6 TIPS-pentacene
  • compound A26 compound C1
  • compound C16 compound C16
  • compound L9 compound M3
  • compound A6 TIPS-pentacene
  • compound C1 was synthesized by the following synthesis method
  • Compound C16 was synthesized according to the following synthesis method.
  • Compound A6, Compound A26, Compound L9 and Compound M3 were synthesized according to known methods.
  • Example 1 Manufacture of bottom gate type OTFT
  • the bottom gate-top contact type OTFT shown in FIG. 1B was manufactured.
  • a glass substrate with an ITO electrode in which an indium tin oxide (ITO) film having a thickness of 100 nm was formed on a glass substrate having a thickness of 0.7 mm was washed with acetone and isopropyl alcohol and dried. This was used as the substrate 6.
  • An insulating layer forming composition was prepared when forming the gate insulating layer 2.
  • an organic semiconductor shown in Table 1 below was dissolved in 1 mL of toluene to prepare an application liquid having a compound concentration of 1% by mass.
  • Each of the coating solutions was applied on the gate insulating layer 2 by spin coating (rotation speed: 500 rpm) at 25 ° C. so that the layer thickness after drying was 150 nm. Thereafter, the organic semiconductor layer 1 was formed by heating on a hot plate at 150 ° C. for 30 minutes.
  • OTFTs Sample Nos. 1-1 to 1-16 and c1-1 to c1-3 for comparison
  • a gold electrode having a thickness of 100 nm was formed by vacuum deposition on each gate insulating layer formed by the same method as each of the above samples. Using this as a sample, the dielectric constant was measured using a dielectric measurement system 126096W type (manufactured by Solartron).
  • volume resistivity A gold electrode having a thickness of 100 nm was formed by vacuum deposition on each gate insulating layer formed by the same method as each of the above samples. Using this as a sample, volume resistivity ( ⁇ ⁇ cm) was measured using a 6517B type electrometer / insulation resistance meter (manufactured by Keithley).
  • the composition for forming an insulating layer used for each of the above samples was spin-coated on a silicon wafer and then pre-baked at 90 ° C. for 2 minutes using a hot plate to form a film having a thickness of 300 nm. Subsequently, the sample which consists of a silicon wafer in which the insulating layer was formed was obtained by heating in air at 130 degreeC for 1 hour. The surface of the insulating layer of the obtained sample was observed with an atomic force microscope (AMF), and the surface roughness (arithmetic average roughness Ra) was measured. The measured Ra was evaluated according to the following evaluation criteria. The evaluation result of the sample was used as the evaluation of the gate insulating layer of the OTFT.
  • AMF atomic force microscope
  • the evaluation is required to be A or B, and is preferably A.
  • the glass substrate on which each gate insulating layer was formed was immersed in toluene for 12 hours, and the layer thickness before and after the immersion of the gate insulating layer was measured.
  • the layer thickness change rate before and after the immersion was calculated from the following formula and evaluated according to the following evaluation criteria. In this test, the evaluation is required to be A, B, or C, preferably A or B, and more preferably A.
  • Film thickness change rate before and after immersion (%) film thickness after immersion ( ⁇ m) / film thickness before immersion ( ⁇ m) ⁇ 100 A: Over 90%, 100% or less B: Over 80%, 90% or less C: Over 60%, 80% or less D: 60% or less
  • a voltage of ⁇ 40 V is applied between the source electrode 3 and the drain electrode 4 of each OTFT, the gate voltage Vg is changed in the range of 40 V to ⁇ 40 V, and the carrier mobility ⁇ (cm 2 / Vs) was calculated and evaluated according to the following evaluation criteria.
  • the evaluation is required to be A, A ⁇ , B, or B ⁇ , preferably A, A ⁇ , or B, more preferably A or A ⁇ , and A Even more preferred.
  • Id (w / 2L) ⁇ Ci (Vg ⁇ Vth) 2
  • L represents a gate length
  • w represents a gate width
  • Ci represents a capacitance per unit area of the gate insulating layer 2
  • Vg represents a gate voltage
  • Vth represents a threshold voltage.
  • TsOH represents p-toluenesulfonic acid
  • perbutyl 0 represents t-butylperoxy-2-ethylhexanoate.
  • the gate insulating layer 2 As shown in Table 1, when the insulating layer forming composition containing the polymer compounds AP1 to AP6 having the repeating structure represented by the general formula (1) is used, the gate insulating layer 2 having excellent surface smoothness. could be formed. Furthermore, the gate insulating layer 2 has a high volume resistivity and a high insulating property while maintaining a small relative dielectric constant. It also showed excellent solvent resistance. Thus, the gate insulating layer 2 formed with the composition for forming an insulating layer of the present invention has both high surface smoothness and insulating properties.
  • each of the OTFTs of the present invention in which the gate insulating layer 2 is provided adjacent to the semiconductor layer has a gate insulating layer formed of a polymer compound not having a repeating structure represented by the general formula (1).
  • the carrier mobility ⁇ and the on / off ratio were high, and it had excellent performance.
  • the performance improvement effect of the OTFT according to the present invention was found to increase in the order of aryl group ⁇ alkyl group ⁇ polycyclic alicyclic hydrocarbon group in the organic group A forming the acyl group. It was also found that when the polymer compound having the repeating structure represented by the general formula (1) is crosslinked with a crosslinking agent (the polymer compound has a crosslinked structure), the performance improvement effect is increased.
  • Example 2 [Manufacture and evaluation of bottom-gate OTFTs with modified organic semiconductors]
  • a bottom gate type OTFT was manufactured using an organic semiconductor other than the organic semiconductor, and its characteristics and the like were evaluated. That is, in Example 1, as the organic semiconductor, C4, C7, D1, E2, F2, F5, F10, G12, G14, H10, H11, J2, J3, K2, K3, L2, L5, L6, L8,
  • the OTFTs shown in FIG. 1B were produced in the same manner as in Example 1 except that each compound of L15, M8, N4, P3, Q3, R1, S1, or T1 was used.
  • Example 1 About each provided gate insulating layer, it carried out similarly to Example 1, measured the dielectric constant and the volume resistivity, and evaluated surface smoothness and solvent resistance. For each of the manufactured OTFTs, the carrier mobility ⁇ and the on / off ratio were measured in the same manner as in Example 1. As a result, all the TFTs had excellent characteristics as in Example 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 半導体層とこの半導体層に隣接する絶縁層とを有する半導体素子において、前記絶縁層が下記一般式(1)で表される繰り返し構造を有する高分子化合物を含有する半導体素子、及び、半導体素子の絶縁層を形成するための絶縁層形成用組成物であって、下記一般式(1)で表される繰り返し構造を有する高分子化合物を含有する絶縁層形成用組成物。 一般式(1)中、Rは水素原子又はメチルを表す。Arは芳香族環を表す。Xはアシル基を表す。mは1~5の整数を表し、mが2以上の場合、m個のXは互いに同一でも異なっていてもよい。

Description

半導体素子及び絶縁層形成用組成物
 本発明は、半導体素子及び絶縁層形成用組成物に関する。
 液晶ディスプレイ、有機ELディスプレイ及び電気泳動型ディスプレイ等の表示装置等は、薄膜トランジスタ(TFTという)等の半導体素子を備えている。
 TFTは、ゲート電極、ゲート絶縁層、ソース電極及びドレイン電極を有し、ソース電極-ドレイン電極間が半導体層で連結された構造を有している。
 ゲート電極に電圧が印加されると、ソース電極-ドレイン電極間の半導体層と、この半導体層に隣接するゲート絶縁層との界面に電流の流路(チャネル)が形成される。すなわち、ゲート電極に印加される入力電圧に応じてソース電極とドレイン電極との間を流れる電流が制御される。このように半導体層に隣接して設けられるゲート絶縁層は、半導体層とともに電流の流路を形成する機能を有する。
 したがって、TFTの性能を向上させるためには、ゲート絶縁層やゲート絶縁層を形成する材料が重要になっている。
 例えば、特許文献1には、「ポリビニルフェノールのヒドロキシル基の一部がアルキル基で置換されており、かつアルキル基で置換されていない前記ヒドロキシル基の一部もしくはすべてが架橋されている構造を有する有機トランジスタに用いる有機絶縁膜」が、記載されている。
 上記の、絶縁層や絶縁層を形成する材料が性能向上に重要であることは、半導体層に隣接して設けられた絶縁層を有する半導体素子であれば、TFTに限られず、TFT以外の場合にも共通する。
特許5217317号公報
 しかし、特許文献1のように、ヒドロキシル基の一部をアルキル基で置換し、かつ残りのヒドロキシル基を架橋したポリビニルフェノールでゲート絶縁層を形成しても、薄膜トランジスタの特性はまだ十分ではなく、キャリア移動度及びon/off比において改善の余地があった。
 本発明は、キャリア移動度が高く、on/off比にも優れた半導体素子を提供することを課題とする。
 また、本願発明は、絶縁特性及び表面平滑性が優れた絶縁層を形成できる絶縁層形成用組成物を提供することを課題とする。
 本発明者らは、ゲート絶縁層を形成する材料について検討した。その結果、ビニルフェノールのフェノール性水酸基をアシルオキシ基に変換してなる構成成分を有する高分子化合物を用いることにより、表面が平滑でしかも高い絶縁性能を示すゲート絶縁層を形成できることを見出した。さらに、この高分子化合物で形成されたゲート絶縁層を有するTFTが高いキャリア移動度を示し、on/off比にも優れることも見出した。また、上記高分子化合物を含有する組成物が絶縁特性及び表面平滑性に優れた絶縁層を形成でき、TFTの絶縁層(ゲート絶縁層)を形成する組成物として優れることを見出した。本発明は、これらの知見に基づいて完成された。
 上記の課題は以下の手段により解決された。
[1]半導体層とこの半導体層に隣接する絶縁層とを有する半導体素子において、絶縁層が下記一般式(1)で表される繰り返し構造を有する高分子化合物を含有する半導体素子。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、Rは水素原子又はメチルを表す。Arは芳香族環を表す。Xはアシル基を表す。mは1~5の整数を表し、mが2以上の場合、m個のXは互いに同一でも異なっていてもよい。
[2]上記繰り返し構造が、下記一般式(2)で表される繰り返し構造である[1]に記載の半導体素子。
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、Aは1価の有機基を表す。
[3]有機基Aが、アルキル基、シクロアルキル基、多環脂環式炭化水素基、アリール基又はヘテロアリール基である[2]に記載の半導体素子。
[4]有機基Aが、シクロアルキル基又は多環脂環式炭化水素基である[2]又は[3]に記載の半導体素子。
[5]一般式(1)又は(2)で表される繰り返し構造が、下記一般式(3)で表される繰り返し構造である[1]~[4]のいずれかに記載の半導体素子。
Figure JPOXMLDOC01-appb-C000007
[6]高分子化合物が、架橋構造を有する[1]~[5]のいずれかに記載の半導体素子。
[7]架橋構造が、ヒドロキシメチル基又はアルコキシメチル基を有する架橋剤によって形成されてなる[6]に記載の半導体素子。
[8]半導体層が、有機半導体を含有する[1]~[7]のいずれかに記載の半導体素子。
[9]半導体素子の絶縁層を形成するための絶縁層形成用組成物であって、下記一般式(1)で表される繰り返し構造を有する高分子化合物を含有する絶縁層形成用組成物。
Figure JPOXMLDOC01-appb-C000008
 一般式(1)中、Rは水素原子又はメチルを表す。Arは芳香族環を表す。Xはアシル基を表す。mは1~5の整数を表し、mが2以上の場合、m個のXは互いに同一でも異なっていてもよい。
 本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、又は複数の置換基等を同時に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。また、式中に同一の表示で表された複数の部分構造の繰り返しがある場合は、各部分構造ないし繰り返し単位は同一でも異なっていてもよい。また、特に断らない場合であっても、複数の置換基等が近接(特に隣接)するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい。
 本明細書において化合物(樹脂を含む)の表示については、当該化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させたものを含む意味である。
 本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、所望の効果を奏する範囲で、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明の半導体素子は、キャリア移動度が高く、on/off比にも優れる。
 また、本発明の絶縁層形成用組成物は、絶縁特性及び表面平滑性が優れた絶縁層を形成できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の半導体素子の一例である有機薄膜トランジスタの形態を模式的に示す図である。
[半導体素子]
 本発明の半導体素子は、半導体層とこの半導体層に隣接する絶縁層とを有する素子であれば、特に限定されず、例えば、TFTが挙げられる。
 なかでも、キャリア移動度及びon/off比の改善効果の点で、TFTが好ましく、特に有機材料により形成される有機薄膜トランジスタ(OTFTという)が好ましい。
 以下に、本発明の好ましい半導体素子としてTFTについて説明するが、本発明の半導体素子はこれに限定されるものではない。
 本発明のTFTは、基板上に、ゲート電極と、半導体層と、ゲート電極及び半導体層の間に設けられたゲート絶縁層と、半導体層に接して設けられ、半導体層を介して連結されたソース電極及びドレイン電極とを有する。TFTにおいては、通常、半導体層とゲート絶縁層が隣接して設けられる。このようなTFTでは、上記のようにしてソース電極とドレイン電極との間を流れる電流が制御される。
 本発明のTFTの好ましい形態を図面に基づいて説明する。各図面に示されるTFTは、本発明の理解を容易にするための模式図であり、各部材のサイズないし相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。また、本発明で規定する事項以外はこれらの図面に示された外形、形状に限定されるものでもない。例えば、図1(A)及び(B)において、ゲート電極5は必ずしも基板6のすべてを覆っている必要はなく、基板6の中央部分に設けられた形態も、本発明のTFTの形態として好ましい。
 図1(A)~(D)は、各々、TFTの代表的な好ましい形態を模式的に表わす縦断面図である。図1(A)~(D)において、1は半導体層、2はゲート絶縁層、3はソース電極、4はドレイン電極、5はゲート電極、6は基板を示す。
 また、図1(A)は、ボトムゲート-ボトムコンタクト形態、図1(B)は、ボトムゲート-トップコンタクト形態、図1(C)はトップゲート-ボトムコンタクト形態、図1(D)はトップゲート-トップコンタクト形態のTFTを示している。
 本発明のTFTには上記4つの形態のすべてが包含される。図示を省略するが、各TFTの図面最上部(基板6に対して反対側の最上部)には、オーバーコート層が形成されている場合もある。
 ボトムゲート形態は、基板6上にゲート電極5、ゲート絶縁層2及び半導体層1がこの順で配置されたものである。一方、トップゲート形態は、基板6上に半導体層1、ゲート絶縁層2及びゲート電極5がこの順で配置されたものである。
 また、ボトムコンタクト形態は、半導体層1に対して基板6側(すなわち、図1において下方)にソース電極3及びドレイン電極4が配置されたものである。一方、トップコンタクト形態は、半導体層1に対して基板6の反対側にソース電極3及びドレイン電極4が配置されたものである。
 [基板]
 基板は、TFT及びその上に作製される表示パネル等を支持できるものであればよい。基板は、表面に絶縁性があり、シート状で、表面が平坦であれば特に限定されない。
 基板の材料として、無機材料を用いてもよい。無機材料からなる基板として、例えば、ソーダライムガラス、石英ガラス等の各種ガラス基板や、表面に絶縁膜が形成された各種ガラス基板、表面に絶縁膜が形成されたシリコン基板、サファイヤ基板、ステンレス鋼、アルミニウム、ニッケル等の各種合金や各種金属からなる金属基板、金属箔、紙等を挙げることができる。
 基板がステンレスシート、アルミ箔、銅箔又はシリコンウェハ等の導電性あるいは半導体性の材料で形成されている場合、通常は、表面に絶縁性の高分子材料あるいは金属酸化物等を塗布又は積層して用いられる。
 また、基板の材料として、有機材料を用いてもよい。例えば、ポリメチルメタクリレート(ポリメタクリル酸メチル、PMMA)やポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリエーテルスルホン(PES)、ポリイミド、ポリアミド、ポリアセタール、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチルエーテルケトン、ポリオレフィン、ポリシクロオレフィンに例示される有機ポリマーから構成された可撓性を有するプラスチック基板(プラスチックフィルム、プラスチックシートともいう)を挙げることができる。また雲母で形成したものも挙げることができる。
 このような可撓性を有するプラスチック基板等を使用すれば、例えば曲面形状を有するディスプレイ装置や電子機器へのTFTの組込みあるいは一体化が可能となる。
 基板を形成する有機材料は、他の層の積層時や加熱時に軟化し難いことから、ガラス転移点が高いことが好ましく、ガラス転移点が40℃以上であるのが好ましい。また、製造時の熱処理により寸法変化を起こし難く、トランジスタ性能の安定性に優れる点から、線膨張係数が小さいことが好ましい。例えば、線膨張係数が25×10-5cm/cm・℃以下である材料が好ましく、10×10-5cm/cm・℃以下である材料がさらに好ましい。
 また、基板を構成する有機材料は、TFT作製時に用いる溶媒に対する耐性を有する材料が好ましく、また、ゲート絶縁層及び電極との密着性に優れる材料が好ましい。
 さらに、ガスバリア性の高い有機ポリマーからなるプラスチック基板を用いることも好ましい。
 基板の少なくとも片面に緻密なシリコン酸化膜等を設けたり、無機材料を蒸着又は積層したりすることも好ましい。
 基板として、上記の他に、導電性基板(金やアルミニウム等の金属からなる基板、高配向性グラファイトからなる基板、ステンレス鋼製基板等)も挙げることができる。
 基板には、密着性や平坦性を改善するためのバッファー層、ガスバリア性を向上させるためのバリア膜等の機能性膜、また表面に易接着層等の表面処理層を形成してもよいし、コロナ処理、プラズマ処理、UV/オゾン処理等の表面処理を施してもよい。
 基板の厚みは、10mm以下であるのが好ましく、2mm以下であるのがさらに好ましく、1mm以下であるのが特に好ましい。また、一方で、0.01mm以上であるのが好ましく、0.05mm以上であるのがさらに好ましい。特に、プラスチック基板の場合は、厚みが0.05~0.1mm程度であるのが好ましい。また、無機材料からなる基板の場合は、厚みが0.1~10mm程度であるのが好ましい。
 [ゲート電極]
 ゲート電極は、TFTのゲート電極として用いられている従来公知の電極を用いることができる。ゲート電極を構成する導電性材料(電極材料ともいう)としては、特に限定されない。例えば、白金、金、銀、アルミニウム、クロム、ニッケル、銅、モリブデン、チタン、マグネシウム、カルシウム、バリウム、ナトリウム、パラジウム、鉄、マンガン等の金属;InO、SnO、インジウム・錫酸化物(ITO)、フッ素ドープ酸化錫(FTO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)等の導電性金属酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS)等の導電性高分子;塩酸、硫酸、スルホン酸等の酸、PF、AsF、FeCl等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子等のドーパントを添加した上記導電性高分子、並びに、カーボンブラック、グラファイト粉、金属微粒子等を分散した導電性の複合材料等が挙げられる。これらの材料は、1種のみを用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 また、ゲート電極は、上記導電性材料からなる1層でもよく、2層以上を積層してもよい。
 ゲート電極の形成方法に制限はない。例えば、真空蒸着法等の物理蒸着法(PVD)、化学蒸着法(CVD法)、スパッタ法、印刷法(塗布法)、転写法、ゾルゲル法、メッキ法等により形成された膜を、必要に応じて所望の形状にパターンニングする方法が挙げられる。
 塗布法では、上記材料の溶液、ペースト又は分散液を調製、塗布し、乾燥、焼成、光硬化又はエージング等により、膜を形成し、又は直接電極を形成できる。
 また、インクジェット印刷、スクリーン印刷、(反転)オフセット印刷、凸版印刷、凹版印刷、平版印刷、熱転写印刷、マイクロコンタクトプリンティング法等は、所望のパターニングが可能であり、工程の簡素化、コスト低減、高速化の点で好ましい。
 スピンコート法、ダイコート法、マイクログラビアコート法、ディップコート法を採用する場合も、下記フォトリソグラフィー法等と組み合わせてパターニングすることができる。
 フォトリソグラフィー法としては、例えば、フォトレジストのパターニングと、エッチング液によるウェットエッチングや反応性のプラズマによるドライエッチング等のエッチングやリフトオフ法等とを組み合わせる方法等が挙げられる。
 他のパターニング方法として、上記材料に、レーザーや電子線等のエネルギー線を照射して、研磨し、又は材料の導電性を変化させる方法も挙げられる。
 さらに、基板以外の支持体に印刷したゲート電極用組成物を基板等の下地層の上に転写させる方法も挙げられる。
 ゲート電極の厚みは、任意であるが、1nm以上が好ましく、10nm以上が特に好ましい。また、500nm以下が好ましく、200nm以下が特に好ましい。
 [ゲート絶縁層]
 ゲート絶縁層は、絶縁性を有する層であれば特に限定されず、単層であってもよいし、多層であってもよい。
 ゲート絶縁層は、下記一般式(1)で表される繰り返し構造を有する高分子化合物を1種又は2種以上含有している。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)中、Rは水素原子又はメチルを表す。Arは芳香族環を表す。Xはアシル基を表す。mは1~5の整数を表す。
 一般式(1)で表される繰り返し構造を有する高分子化合物は、好ましくはビニルフェノールを構成成分とする化合物であり、このフェノール性水酸基がアシルオキシ化された化合物である。
 アシルオキシ基を導入した上記繰り返し構造を有する高分子化合物でゲート絶縁層を形成すると、その表面は平滑になる。その詳細についてはまだ定かではないが、アシルオキシ基がない場合には、フェノール性水酸基の存在によって、表面エネルギーが高まり、表面の平滑性が低下してしまうのに対し、アシルオキシ基を有すると、表面エネルギーが低下し、表面の平滑性が良化すると考えている。このように、ゲート絶縁層の表面が平滑になると、その上に半導体が均一に整列しやすくなってゲート絶縁層に隣接して設けられる半導体層にキャリアパスが効率よく形成される。その結果、TFTのキャリア移動度が高くなると考えられる。
 また、上記高分子化合物で形成したゲート絶縁層を有するTFTはon/off比が高くなり、優れた特性を有する。その詳細についてはまだ定かではないが、次のように考えられる。すなわち、フェノール性水酸基をアシル基で保護すると、高分子化合物の疎水性が向上して、ゲート絶縁層の吸湿性が抑えられる。これにより、ゲート絶縁層の体積抵抗率が増大して、ゲート絶縁層が高い絶縁性能を発揮する。その結果、TFTのon/off比が増大すると考えられる。
 一般式(1)において、Rは、水素原子が好ましい。
 Arは、芳香族環基であれば、芳香族炭化水素環基であってもよく、芳香族ヘテロ環基であってもよい。また、単環でも多環でもよく、多環の場合は縮合環であってもよい。
 芳香族炭化水素環基となる芳香族炭化水素環は、特に限定されないが、炭素数6~18のものが好ましい。例えば、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環、フェナントレン環等が挙げられる。
 芳香族ヘテロ環基となる芳香族ヘテロ環は、特に限定されず、例えば、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、チアジアゾール環、チアゾール環等のヘテロ環、又は、これらを含む環が挙げられる。
 Arとなる芳香族環は、ベンゼン環、ナフタレン環からなるものが好ましく、ベンゼン環が特に好ましい。
 Arは、後述するOX基以外の置換基を有していてもよい。このような置換基としては、OX基以外のものであれば特に限定されない。置換基としては、アルキル基(好ましくは炭素数1~6)、シクロアルキル基(好ましくは炭素数3~10)、アリール基(好ましくは炭素数6~15)、ハロゲン原子、水酸基、アルコキシ基(好ましくは炭素数1~6)、カルボキシル基、アルコキシカルボニル基(好ましくは炭素数2~7)が挙げられる。なかでも、アルキル基、アルコキシ基、アルコキシカルボニル基が好ましく、アルコキシ基がより好ましい。
 Xはアシル基を表す。アシル基は、特に限定されず、例えば、アルキルカルボニル基、単環脂環式炭化水素基(シクロアルキル基)及びカルボニル基からなる基(シクロアルキルカルボニル基ともいう)、多環脂環式炭化水素基及びカルボニル基からなる基、アリールカルボニル基、ヘテロアリールカルボニル基等が挙げられる。
 アルキルカルボニル基を形成するアルキル基は、直鎖状でも分岐状でもよいが、直鎖状が好ましい。アルキル基の炭素数は、特に限定されないが、疎水性の点で、1~20であるのが好ましく、4~12であるのがより好ましい。このようなアルキル基として、例えば、直鎖状又は分岐状の、メチル、エチル、プロピル、ブチル、ヘキシル、オクチル、デシル、ドデシル等が挙げられる。なかでも、疎水性の点で、n-ヘキシル、n-オクチル、n-ドデシルが好ましい。
 シクロアルキルカルボニル基を形成するシクロアルキル基は、特に限定されないが、飽和炭化水素基が好ましく、炭素数3~8のシクロアルキル基がより好ましい。例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロオクチル等が挙げられ、シクロヘキシルが好ましい。
 多環脂環式炭化水素基及びカルボニル基からなる基を形成する多環脂環式炭化水素基は、好ましくは、2以上のシクロアルキル基を有する基、及び、1個又は1個以上の炭素原子が2つ以上の環の構成原子になっている炭化水素基が挙げられる。
 2以上のシクロアルキル基を有する基において、シクロアルキル基は上記した通りであり、その数は2~4個が好ましく、2個がより好ましい。2以上のシクロアルキル基を有する基としては、シクロヘキシル基を複数有する基、シクロヘプチル基を複数有する基、シクロオクチル基を複数有する基、シクロデカニル基を複数有する基及びシクロドデカニル基を複数有する基等が挙げられる。
 1個又は1個以上の炭素原子が2つ以上の環の構成原子になっている炭化水素基は、特に限定されず、例えば、スピロ構造、縮合環構造、架橋構造(ビシクロ構造、トリシクロ構造、テトラシクロ構造等)、かご型構造等の各構造を持つ炭化水素基が挙げられる。この炭化水素基は、総炭素数が5~40であることが好ましく、7~30であることがより好ましい。このような炭化水素基としては、例えば、アダマンタン、デカリン、ノルボルナン、ノルボルネン、セドロール、イソボルナン、ボルナン、ジシクロペンタン、α-ピネン、トリシクロデカン、テトラシクロドデカン、アンドロスタンの各炭化水素から水素原子を1つ取り除いた基が挙げられる。なかでも、アダマンタン、デカリン、ノルボルナン、ノルボルネン、セドロール、トリシクロデカンの各炭化水素から水素原子を1つ取り除いた基が好ましく、アダマンタンから水素原子を1つ取り除いたアダマンチルが特に好ましい。
 本発明において、多環脂環式炭化水素基は、それを形成する炭素原子の一部が酸素原子等のヘテロ原子に置換されていてもよい。
 以下に多環脂環式炭化水素基等の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000010
 アリールカルボニル基を形成するアリール基は、上記Arで説明したアリール基と同義であり、好ましいものも同じである。
 ヘテロアリールカルボニル基を形成するヘテロアリール基は、上記Arで説明した芳香族ヘテロ環基と同義であり、好ましいものも同じである。
 Xは、シクロアルキルカルボニル基、多環脂環式炭化水素基及びカルボニル基からなる基が好ましく、さらに多環脂環式炭化水素基及びカルボニル基からなる基が好ましく、特にアダマンチルカルボニルが好ましい。Xが、多環脂環式炭化水素基及びカルボニル基からなる基、又は、アダマンチルカルボニルであると、高分子化合物のガラス転移点が高くなり、ゲート絶縁層の耐溶剤性を向上させることができる。
 アシル基Xは置換基を有してもよい。このような置換基Tとしては、例えば、アルキル基(好ましくは炭素数1~6)、シクロアルキル基(好ましくは炭素数3~10)、アリール基(好ましくは炭素数6~15)、ハロゲン原子、水酸基、アルコキシ基(好ましくは炭素数1~6)、カルボキシル基、カルボニル基、チオカルボニル基、アルコキシカルボニル基(好ましくは炭素数2~7)、オキソ基(=O)及びこれら基を組み合わせてなる基(好ましくは総炭素数1~30、より好ましくは総炭素数1~15)が挙げられる。
 mは、1~5の整数を表し、1が好ましい。
 mが2以上である場合、m個のXは互いに同一でも異なっていてもよい。
 一般式(1)において、-Ar-(OX)基の置換位置は、特に限定されない。
 Arがベンゼン環で、mが1である場合、置換位置は、ベンゼン環の、高分子化合物の主鎖との結合位置に対して、オルト位、メタ位及びパラ位のいずれでもよいが、パラ位が好ましい。
 一般式(1)で表される繰り返し単位は、好ましくは下記一般式(2)で表される繰り返し単位であり、さらに好ましくは下記一般式(3)で表される繰り返し単位である。
Figure JPOXMLDOC01-appb-C000011
 一般式(2)中、Aは1価の有機基を表す。Aは、好ましくは、アルキル基、シクロアルキル基、多環脂環式炭化水素基、アリール基又はヘテロアリール基であり、より好ましくはシクロアルキル基又は多環脂環式炭化水素基であり、さらに好ましくは多環脂環式炭化水素基であり、特に好ましくはアダマンチルである。
 アルキル基、シクロアルキル基、多環脂環式炭化水素基、アリール基及びヘテロアリール基は、それぞれ、上記アシル基Xで説明したものと同義であり、好ましいものも同じである。
 なお、一般式(2)において、A-C(=O)-O-基の置換位置は、ベンゼン環の、高分子化合物の主鎖との結合位置に対して、オルト位、メタ位及びパラ位のいずれでもよいが、パラ位が好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(3)において、アダマンチルカルボニルオキシ基の置換位置は、一般式(2)のA-C(=O)-O-基の置換位置と同義であり、好ましい置換位置も同じである。
 一般式(1)~(3)で示される繰り返し単位の具体例を示すが、これらに限定されるものではない。なお、*は繰り返し単位の結合位置を示す。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本発明に用いる高分子化合物は、一般式(1)~(3)で表される繰り返し単位の他に、下記一般式(4)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(4)中、Rは水素原子又はメチルを表し、水素原子が好ましい。
 一般式(4)で表される繰り返し単位(ヒドロキシスチレン繰り返し単位ということがある)において、水酸基のベンゼン環に対する結合位置は、ベンゼン環の、高分子化合物の主鎖との結合位置に対して、パラ位、メタ位及びオルト位のいずれでもよいが、パラ位又はメタ位が好ましく、パラ位がさらに好ましい。
 水酸基が置換しているベンゼン環は、水酸基以外の置換基を有していてもよいが、有していないことが好ましい。ベンゼン環が有していてもよい置換基としては上記置換基Tが挙げられる。
 ヒドロキシスチレン繰り返し単位の好ましいもの具体例を以下に示すが、ヒドロキシスチレン繰り返し単位はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
 一般式(1)~(3)で表される繰り返し単位の、高分子化合物を構成する全繰り返し単位に対する含有率は、10~90モル%であることが好ましく、30~80モル%であることがより好ましく、40~70モル%であることが特に好ましい。
 本発明に用いる高分子化合物がヒドロキシスチレン繰り返し単位を有する場合、高分子化合物を構成する全繰り返し単位に対するヒドロキシスチレン繰り返し単位の含有率は、特に限定されないが、10~90モル%であることが好ましく、20~70モル%であることがより好ましく、30~60モル%であることが特に好ましい。
 本発明において、後述する架橋剤を用いる場合、ヒドロキシスチレン繰り返し単位の上記含有率は、10~80モル%であることが好ましく、20~60モル%であることがより好ましく、30~50モル%であることがさらに好ましい。
 本発明に用いる高分子化合物は、上記繰り返し単位以外の繰り返し単位を有していてもよい。例えば、(メタ)アクリル酸エステル、(メタ)アクリル酸、N-置換マレイミド、アクリロニトリル、(メタ)アクリロニトリル、ビニルナフタレン、ビニルアントラセン、インデン等からなる各繰り返し単位が挙げられる。
 高分子化合物がこれらの繰り返し単位を含有する場合、これらの繰り返し単位の高分子化合物中の含有率は、高分子化合物を構成する全繰り返し単位に対して、1~20モル%が好ましく、2~10モル%がより好ましい。
 高分子化合物は、公知のラジカル重合法やアニオン重合法やリビングラジカル重合法(イニファーター法等)により合成することができる。例えば、アニオン重合法では、ビニルモノマーを適当な有機溶媒に溶解し、金属化合物(ブチルリチウム等)を開始剤として、通常、冷却条件化で反応させて重合体を得ることができる。
 高分子化合物としては、芳香族ケトン又は芳香族アルデヒド、及び1~3個のフェノール性水酸基を含有する化合物の縮合反応により製造されたポリフェノール化合物(例えば、特開2008-145539号公報)、カリックスアレーン誘導体(例えば特開2004-18421号公報)、Noria誘導体(例えば特開2009-222920号公報)、ポリフェノール誘導体(例えば特開2008-94782号公報)も適用でき、高分子反応で修飾して合成してもよい。
 また、高分子化合物は、ラジカル重合法やアニオン重合法で合成した後に高分子反応で修飾して、合成することが好ましい。
 本発明に用いる高分子化合物の重量平均分子量(Mw)は、好ましくは1000~200000であり、より好ましくは2000~50000であり、特に好ましくは2000~10000である。
 高分子化合物の分散度(分子量分布)(Mw/Mn)は、好ましくは1.7以下であり、より好ましくは1.0~1.35であり、特に好ましくは1.0~1.2である。リビングアニオン重合等のリビング重合によると、高分子化合物の分散度が均一となり、好ましい。高分子化合物の重量平均分子量及び分散度は、GPC測定によるポリスチレン換算値として定義される。
 以下に、高分子化合物の具体例を示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 高分子化合物は、ゲート絶縁層の耐溶媒性や絶縁耐性を増す目的等で、架橋、硬化させて、架橋構造を形成していることが好ましい。すなわちゲート絶縁層は高分子化合物の架橋物を含有するのが好ましい。
 架橋物の架橋構造は、用いる架橋剤の種類等によって、一概には決定されないが、好ましくは、ヒドロキシメチル基又はアルコキシメチル基を架橋基として反応形成した架橋構造であり、ヒドロキシメチル基又はアルコキシメチル基の残基(いずれもメチレンオキシ基)を含む。
 本発明において、架橋剤は、単独で用いてもよいし、2種以上を併用してもよい。
 高分子化合物に架橋構造を形成するための好ましい架橋剤としては、ヒドロキシスチレン繰り返し単位のヒドロキシスチレンと反応する官能基を有しているものが挙げられる。
 このような架橋剤としては、メチロール基を含有する化合物(メチロール化合物という)、エポキシ化合物、オキセタン化合物、(メタ)アクリル酸化合物、(メタ)アクリル酸エステル化合物、スチレン化合物等が挙げられる。なかでも、ヒドロキシメチル基又はアルコキシメチル基を有するメチロール化合物が好ましい。
 架橋剤の官能基数は、特に限定されないが、官能基数が多いほど架橋度が上がるため、好ましくは2~6である。
 メチロール化合物は、2個以上の架橋基を有し、これら架橋基の少なくとも一つがメチロール基又はアルコキシメチル基であるものが好ましい。また、少なくとも一つのメチロール基又はアルコキシメチル基と-NH-基とを有するのも好ましい。
 メチロール基は、加熱によって上記高分子化合物と反応して共有結合を形成するものである。このようなメチロール基としては、ベンゼン環に直接又はメラミン環のアミノ基等に結合したヒドロキシメチル基が挙げられる。さらに、メチロール基からはプロトンが脱離しやすいため、当該プロトンが他の架橋基の保護基を外すことによって当該架橋基が上記高分子化合物の水酸基等と反応できるようにするという役割を担うこともできる。
 アルコキシメチル基は、メチロール基と同様に、加熱によって上記高分子化合物と反応して共有結合を形成するものである。このようなアルコキシ基としては、ベンゼン環に直接又はメラミン環のアミノ基等に結合したアルコキシメチル基が挙げられる。
 一方、-NH基-は、メチロール基と同様に他の架橋基の保護基を外すためのプロトンを供与する役割を担うともに、上記高分子化合物や架橋基と反応して共有結合を形成すものである。このような-NH-基としては、例えば、メラミン骨格のアミノ基上の水素原子の片方が架橋基で置換されたNH基が挙げられる。また、メラミン骨格のアミノ基(-NH)もH-NH-と表現することができるため、アミノ基中の-NH-も本明細書でいう-NH-基に含まれる。なお、-NH-基を含む化合物としてより好ましいものは、-N=CR20-NH-で表される基(R20は水素原子以外の有機基であり、-N=CR20は環構造を形成していてもよい)を含むものである。かかる構造中のHは極めて脱離しやすいからである。
 メチロール化合物物としては下記一般式I-1~I-4で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 式中、RA1及びRA3は、それぞれ独立に、水素原子、ハロゲン原子、水酸基、チオール基、アミノ基、ニトロ基、シアノ基、カルボン酸基、アミド基、アリール基及び炭素数1~12のアルキル基、アルケニル基、アルキニル基、アルコキシル基、アルキルチオ基、ヒドロキシアルキル基、アシル基から選ばれる少なくとも1種を示す、RA2及びRA4は、それぞれ独立に、炭素数1~6のアルコキシメチル基及びアシロキシメチル基より選ばれる少なくとも1種を示す。RA5はu価の有機基であり、uは1~5の整数であり、nは1~6の整数であり、mは0~5の整数であり、2≦n+m≦6であり、sは1~5の整数であり、tは0~4の整数であり、2≦s+t≦5である。RA5に結合しているu個の基のRA3、RA4、s、tは、いずれも、それぞれ互いに異なっていてもよい。
 また、RA6~RA11は、それぞれ独立に、-CHOH、-H、-CHORA16、炭素数1~12のアルキル基、アルケニル基、アルキニル基、アルコキシル基、アルキルチオ基、ヒドロキシアルキル基、アシル基より選ばれる少なくとも1種である。ただし、RA6~RA11のうち少なくとも一つは-CHOH又は-Hであり、RA6~RA11のうち少なくとも二つは-CHOH、-H又は-CHORA16である。
 RA12~RA15は、それぞれ独立に、-CHOH、-H又は-CHORA18、炭素数1~12のアルキル基、アルケニル基、アルキニル基、アルコキシル基、アルキルチオ基、ヒドロキシアルキル基、アシル基より選ばれる少なくとも1種である。ただし、RARA12~RA15のうち少なくとも一つは-CHOH、-Hであり、RA12~RA15のうち少なくとも二つは-CHOH、-H又は-CHORA18である。
 RA16及びRA18は、それぞれ独立に、炭素数1~6のアルコキシメチル基、アシロキシメチル基より選ばれる少なくとも1種を示す。複数のRA16は互いに異なっていてもよいし、複数のRA18は互いに異なっていてもよい。
 上記架橋剤のうち、1個以上のメチロール基を有する化合物として好ましい例を以下に挙げるが、本発明は下記化合物に限定されるない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 また、架橋剤のうち、1個以上の-NH-基を有するメチロール化合物として好ましい例を以下に挙げるが、本発明は例示された化合物に限定されない。
Figure JPOXMLDOC01-appb-C000026
 上記メチロール基の一般的な合成方法は、ホルマリンをアルカリ存在下、フェノール化合物と縮合する方法や、エステルを水素化リチウムアルミニウムで還元する方法が知られている。これらの方法で合成したメチロール化合物中にはナトリウム等のアルカリ金属が残存する場合がある。残存したアルカリ金属は、架橋剤を硬化して絶縁層とした後に半導体層を汚染する可能性があるため、架橋剤中のアルカリ金属は除去されていることが好ましい。具体的には架橋剤中のナトリウムの含有量は架橋剤の総量に対して20ppm以下であることが好ましく、より好ましくは5ppm以下である。
 架橋剤を反応させるのに適した触媒としては、ギ酸、酢酸、シュウ酸等のカルボン酸類やp-トルエンスルホン酸、カンファースルホン酸等のスルホン酸類が好ましく用いられる。その中でより好ましいものは、p-トルエンスルホン酸、カンファースルホン酸、トリフルオロメタンスルホン酸等のスルホン酸類である。溶液中での安定性を高めるためには、スルホン酸アミン塩を用いることもできる。スルホン酸アミン塩としてはp-トルエンスルホン酸ピリジン塩が挙げられる。
 また、光酸触媒を用いることもできる。光酸触媒の例としてはトリフルオロメタンスルホン酸、ヘキサフルオロリン酸や9,10-ジメトキシアントラセンスルホン酸等のジアリルヨードニウム塩、トリアリルスルホニウム塩やo-ニトロベンジルエステル、又はビストリクロロメチル-s-トリアジン化合物等が挙げられる。ただし、光触媒を用いる場合は製膜後に光照射と加熱が必要である。
 また、本発明の架橋剤としては、ヒドロキシメチル基又はアルコキシメチル基を分子内に2個以上有する化合物(以下、化合物(C)という)も、好ましく用いることができるい。
 このような化合物(C)としては、ヒドロキシメチル化又はアルコキシメチル化系フェノール化合物、アルコキシメチル化メラミン系化合物、アルコキシメチルグリコールウリル系化合物類及びアルコキシメチル化ウレア系化合物が挙げられる。特に好ましい化合物(C)としては、分子内にベンゼン環を3~5個含み、さらにヒドロキシメチル基又はアルコキシメチル基を合わせて2個以上有し、分子量が1200以下のフェノール誘導体や、少なくとも2個の遊離N-アルコキシメチル基を有するメラミン-ホルムアルデヒド誘導体やアルコキシメチルグリコールウリル誘導体が挙げられる。
 アルコキシメチル基としては、メトキシメチル基、エトキシメチル基が好ましい。
 化合物(C)のうち、ヒドロキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有さないフェノール化合物とホルムアルデヒドを塩基触媒下で反応させることによって得ることができる。また、アルコキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有するフェノール誘導体とアルコールを酸触媒下で反応させることによって得ることができる。
 このようにして合成されたフェノール誘導体のうち、アルコキシメチル基を有するフェノール誘導体が感度、保存安定性の点から特に好ましい。
 別の好ましい化合物(C)の例として、さらにアルコキシメチル化メラミン系化合物、アルコキシメチルグリコールウリル系化合物類及びアルコキシメチル化ウレア系化合物のようなN-ヒドロキシメチル基又はN-アルコキシメチル基を有する化合物を挙げることができる。
 このような化合物(C)としては、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、テトラメトキシメチルグリコールウリル、1,3-ビスメトキシメチル-4,5-ビスメトキシエチレンウレア、ビスメトキシメチルウレア等が挙げられ、EP0,133,216A、西独特許第3,634,671号、同第3,711,264号、EP0,212,482A号に開示されている。
 これら架橋剤の中で特に好ましいものを以下に挙げる。
Figure JPOXMLDOC01-appb-C000027
 式中、L~Lは、各々独立に、水素原子、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基又は炭素数1~6のアルキル基を示す。
 本発明において、化合物(C)は単独で用いてもよいし、2種を併用してもよい。
 上記化合物以外の架橋剤としては、例えば、特開2005-354012号公報の[0032]~[0033]に記載の架橋剤、特に二官能以上のエポキシ化合物、オキセタン化合物を用いることも好ましく、この内容は好ましくは本願明細書に組み込まれる。
 架橋剤による架橋は、光、熱又はこれら双方を用いて酸又はラジカルを発生させることにより、行うことができる。例えば、酸による架橋、カチオン重合による架橋、ラジカル重合による架橋等が挙げられる。
 ラジカルにより架橋する場合、光又は熱によりラジカルを発生させるラジカル発生剤として、例えば、特開2013-214649号公報の[0182]~[0186]に記載の熱重合開始剤(H1)及び光重合開始剤(H2)、特開2011-186069号公報の[0046]~[0051]に記載の光ラジカル発生剤、特開2010-285518号公報の[0042]~[0056]に記載の光ラジカル重合開始剤等を好適に用いることができ、好ましくはこれらの内容は本願明細書に組み込まれる。
 また、特開2013-214649号公報の[0167]~[0177]に記載の「数平均分子量(Mn)が140~5,000であり、架橋性官能基を有し、フッ素原子を有さない化合物(G)」を用いることも好ましく、これらの内容は好ましくは本願明細書に組み込まれる。
 酸により架橋する場合、上記したものの他にも、光により酸を発生させる光酸発生剤として、例えば、特開2010-285518号公報の[0033]~[0034]に記載の光カチオン重合開始剤、特開2012-163946号公報の[0120]~[0136]に記載の酸発生剤、特にスルホニウム塩、ヨードニウム塩等を好ましく使用することができ、好ましくはこれらの内容は本願明細書に組み込まれる。
 熱により酸を発生させる熱酸発生剤(触媒)として、例えば、特開2010-285518号公報の[0035]~[0038]に記載の熱カチオン重合開始剤、特にオニウム塩等や、特開2005-354012号公報の[0034]~[0035]に記載の触媒、特にスルホン酸類及びスルホン酸アミン塩等を好ましく使用することができ、好ましくはこれらの内容は本願明細書に組み込まれる。
 ゲート絶縁層は、上記一般式(1)で表される繰り返し構造を有する高分子化合物を含有する絶縁層形成用組成物を塗布し、好ましくは架橋反応させて、形成できる。
 高分子化合物は、上記した通りである。
 絶縁層形成用組成物は、架橋剤及び触媒を含有するのが好ましい。架橋剤及び触媒は上記した通りである。
 絶縁層形成用組成物の基板や電極への濡れ性や密着性を向上させるために、絶縁性等の電気特性を損なわない程度に、界面活性剤やカップリング剤を含有させることもできる。
 絶縁層形成用組成物は、溶媒を含有していてもよい。溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテル、メチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール等を用いることができる。これらの有機溶剤は単独で、又は二種以上を併用できる。
 なかでも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、シクロヘキサノン、エタノール、1-ブタノールが、レベリング性の向上の観点から好ましい。
 高分子化合物の含有率は、組成物の全固形分に対して、好ましくは60~100質量%、より好ましくは80~100質量%、特に好ましくは80~95質量%で用いられる。
 架橋剤を使用する場合、架橋剤の含有率は、高分子化合物に対して、1~40質量%が好ましく、5~20質量%がより好ましい。このようにすることで、高分子化合物の架橋が速やかに進行して表面平滑性優れ、また、未反応の架橋剤によるキャリア移動度の低下をもたらすことなく、架橋密度を高めてゲート絶縁層の耐溶剤性を向上させることができる。
 絶縁層形成用組成物を塗布する方法は、例えば、スピンキャスト法、ディッピング法、ダイコーティング法、スリットコーティング法、滴下法、オフセット又はスクリーンやオフセット等の印刷法、インクジェット法等が挙げられる。また、得られた膜の表面平滑性を保つために不純物等の混入を防止することが好ましく、塗布前にメンブランフィルタ等でろ過することが好ましい。
 絶縁層形成用組成物を硬化させる条件は、特に限定されない。
 また、架橋剤を用いる場合には、高分子化合物を架橋させるため、上記の適宜の手段を行うのが好ましい。架橋剤としてメチロール化合物を用いる場合、例えば、架橋条件として、加熱温度は40~300℃が好ましく、60~200℃がより好ましく、加熱時間は10分~3時間が好ましく、5分~2時間がより好ましい。
 ゲート絶縁層は、コロナ処理、プラズマ処理、UV/オゾン処理等の表面処理を施してもよいが、この場合、処理による表面粗さが粗くしないのが好ましい。好ましくは、ゲート絶縁層表面の算術平均粗さRa又は二乗平均粗さRMSは0.5nm以下である。
 [自己組織化単分子膜層(SAM)]
 ゲート絶縁層上には、自己組織化単分子膜層を形成することもできる。
 自己組織化単分子膜層を形成する化合物としては、自己組織化する化合物であれば特に限定されず、例えば、自己組織化する化合物として、下記式1Sで表される一種類以上の化合物を用いることができる。
  式1S:R1S-X
 式1S中、R1Sは、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基、又は、ヘテロ環基(チエニル、ピロリル、ピリジル、フルオレニル等)のいずれかを表す。
 Xは吸着性又は反応性置換基を表し、具体的には、-SiX基(Xは、ハライド基又はアルコキシ基を表し、X、Xはそれぞれ独立にハライド基、アルコキシ基、アルキル基、アリール基を表す。X、X、Xはそれぞれ同じであることが好ましく、クロロ基、メトキシ基、エトキシ基であることがより好ましい)、ホスホン酸基(-PO)、ホスフィン酸基(-PROH、Rはアルキル基)、リン酸基、亜リン酸基、アミノ基、ハライド基、カルボキシ基、スルホン酸基、ホウ酸基(-B(OH))、ヒドロキシ基、チオール基、エチニル基、ビニル基、ニトロ基又はシアノ基のいずれかを表す。
 R1Sは、好ましくは分岐しておらず、例えば、直鎖状のノルマルアルキル(n-アルキル)基や、フェニル基が三個直列に配置されたter-フェニル基や、フェニル基のパラ位の両側にn-アルキル基が配置されたような構造が好ましい。また、アルキル鎖の中にエーテル結合を有していてもよく、炭素-炭素の二重結合や三重結合を有していてもよい。
 自己組織化単分子膜層は、吸着性又は反応性置換基Xが、対応するゲート絶縁層表面の反応性部位(例えば-OH基)と相互作用、吸着又は反応し結合を形成することにより、ゲート絶縁層上に形成される。分子がより緻密に充填されることにより、自己組織化単分子膜層の表面は、より平滑で表面エネルギーの低い表面を与えることから、上記式1Sで表される化合物は、主骨格が直線状であり、分子長が揃っていることが好ましい。
 式1Sで表される化合物の特に好ましい例として具体的には、例えば、メチルトリクロロシラン、エチルトリクロロシラン、ブチルトリクロロシラン、オクチルトリクロロシラン、デシルトリクロロシラン、オクタデシルトリクロロシラン、フェネチルトリクロロシラン、等のアルキルトリクロロシラン化合物、メチルトリメトキシシラン、エチルトリメトキシシラン、ブチルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン等のアルキルトリアルコキシシラン化合物、アルキルホスホン酸、アリールホスホン酸、アルキルカルボン酸、アリールホスホン酸、アルキルホウ酸基、アリールホウ酸基、アルキルチオール基、アリールチオール基等が挙げられる。
 自己組織化単分子膜層は、上記化合物を真空下でゲート絶縁層に蒸着する方法、上記化合物の溶液中にゲート絶縁層を浸漬する方法、Langmuir-Blodgett法等を用いて、形成することができる。また、例えば、アルキルクロロシラン化合物又はアルキルアルコキシシラン化合物を有機溶媒中に1~10質量%溶解した溶液でゲート絶縁層を処理することにより形成できる。本発明において、自己組織化単分子膜層を形成する方法はこれらに限るものではない。
 例えば、より緻密な自己組織化単分子膜層を得る好ましい方法として、Langmuir 19, 1159 (2003)及びJ. Phys. Chem. B 110, 21101 (2006)等に記載の方法が挙げられる。
 具体的には、上記化合物を分散させた揮発性の高い脱水溶媒中にゲート絶縁層を浸漬させて膜を形成し、ゲート絶縁層を取り出し、必要に応じてアニール等の上記化合物とゲート絶縁層の反応工程を行った後、脱水溶媒で洗い流してから、乾燥させて自己組織化単分子膜層を形成できる。
 脱水溶媒としては、特に限定されないが、例えば、クロロホルム、トリクロロエチレン、アニソール、ジエチルエーテル、ヘキサン、トルエン等を単独又は混合して用いることかできる。
 さらに、乾燥雰囲気中又は乾燥気体の噴きつけによって、膜を乾燥させることが好ましい。乾燥気体には窒素等の不活性気体を用いるのが好ましい。このような自己組織化単分子膜層の製造方法を用いることにより、緻密で凝集や欠損のない自己組織化単分子膜層が形成されることから、自己組織化単分子膜層の表面粗さを0.3nm以下に抑えることができる。
 [半導体層]
 半導体層は、半導体性を示し、キャリアを蓄積可能な層である。
 半導体層は、半導体材料により形成される。有機半導体化合物(単に有機半導体ともいう)で形成される場合、有機半導体層といい、無機半導体化合物(単に無機半導体ともいう)で形成される場合、無機半導体層という。本発明においては、有機半導体層であってもよく、無機半導体層であってもよい。
 以下に説明する有機半導体及び無機半導体は、ぞれぞれ、1種を用いても2種以上を併用してもよく、また、有機半導体と無機半導体を併用してもよい。
 <有機半導体層>
 有機半導体層は、有機半導体を含有する層であればよい。
 有機半導体としては、特に限定されず、有機ポリマー及びその誘導体、低分子化合物等が挙げられる。
 本発明において、低分子化合物は、有機ポリマー及びその誘導体以外の化合物を意味する。すなわち、繰り返し単位を有さない化合物をいう。低分子化合物は、このような化合物である限り、分子量は特に限定されるものではない。低分子化合物の分子量は、好ましくは300~2000であり、さらに好ましくは400~1000である。
 低分子化合物としては、縮合多環芳香族化合物が挙げられる。例えば、ナフタセン、ペンタセン(2,3,6,7-ジベンゾアントラセン)、ヘキサセン、ヘプタセン、ジベンゾペンタセン、テトラベンゾペンタセン等のアセン、アントラジチオフェン、ピレン、ベンゾピレン、ジベンゾピレン、クリセン、ペリレン、コロネン、テリレン、オバレン、クオテリレン、サーカムアントラセン、及び、これらの炭素原子の一部をN、S、O等の原子で置換した誘導体又は上記炭素原子に結合している少なくとも1つの水素原子をカルボニル基等の官能基で置換した誘導体(ペリキサンテノキサンテン及びその誘導体を含むジオキサアンタントレン系化合物、トリフェノジオキサジン、トリフェノジチアジン、ヘキサセン-6,15-キノン等)、並びに、上記水素原子を他の官能基で置換した誘導体を挙げることができる。
 また、銅フタロシアニンで代表される金属フタロシアニン、テトラチアペンタレン及びその誘導体、ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(4-トリフルオロメチルベンジル)ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(1H,1H-ペルフルオロオクチル)、N,N’-ビス(1H,1H-ペルフルオロブチル)、N,N’-ジオクチルナフタレン-1,4,5,8-テトラカルボン酸ジイミド誘導体、ナフタレン-2,3,6,7-テトラカルボン酸ジイミド等のナフタレンテトラカルボン酸ジイミド、アントラセン-2,3,6,7-テトラカルボン酸ジイミド等のアントラセンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド、C60、C70、C76、C78、C84等のフラーレン及びこれらの誘導体、SWNT(Single-wall nanotubes)等のカーボンナノチューブ、メロシアニン色素、ヘミシアニン色素等の色素とこれらの誘導体等を挙げることもできる。
 さらに、ポリアントラセン、トリフェニレン、キナクリドンを挙げることができる。
 また、低分子化合物としては、例えば、4,4’-ビフェニルジチオール(BPDT)、4,4’-ジイソシアノビフェニル、4,4’-ジイソシアノ-p-テルフェニル、2,5-ビス(5’-チオアセチル-2’-チオフェニル)チオフェン、2,5-ビス(5’-チオアセトキシル-2’-チオフェニル)チオフェン、4,4’-ジイソシアノフェニル、ベンジジン(ビフェニル-4,4’-ジアミン)、TCNQ(テトラシアノキノジメタン)、テトラチアフルバレン(TTF)及びその誘導体、テトラチアフルバレン(TTF)-TCNQ錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、BEDTTTF-ヨウ素錯体、TCNQ-ヨウ素錯体に代表される電荷移動錯体、ビフェニル-4,4’-ジカルボン酸、1,4-ジ(4-チオフェニルアセチリニル)-2-エチルベンゼン、1,4-ジ(4-イソシアノフェニルアセチリニル)-2-エチルベンゼン、1,4-ジ(4-チオフェニルエチニル)-2-エチルベンゼン、2,2”-ジヒドロキシ-1,1’:4’,1”-テルフェニル、4,4’-ビフェニルジエタナール、4,4’-ビフェニルジオール、4,4’-ビフェニルジイソシアネート、1,4-ジアセチニルベンゼン、ジエチルビフェニル-4,4’-ジカルボキシレート、ベンゾ[1,2-c;3,4-c’;5,6-c”]トリス[1,2]ジチオール-1,4,7-トリチオン、α-セキシチオフェン、テトラチアテトラセン、テトラセレノテトラセン、テトラテルルテトラセン、ポリ(3-アルキルチオフェン)、ポリ(3-チオフェン-β-エタンスルホン酸)、ポリ(N-アルキルピロール)ポリ(3-アルキルピロール)、ポリ(3,4-ジアルキルピロール)、ポリ(2,2’-チエニルピロール)、ポリ(ジベンゾチオフェンスルフィド)を例示することができる。
 有機半導体は、低分子化合物が好ましく、なかでも、縮合多環芳香族化合物が好ましい。縮合多環芳香族化合物はキャリア移動度及び耐久性の向上効果が高く、さらには優れた閾値電圧の低減効果をも示す。
 縮合多環芳香族化合物は、一般式(A1)~(A4)のいずれかで表されるアセン、及び、下記一般式(C)~(T)のいずれかで表される化合物が好ましく、樹脂(C)と偏在しやすい点で、下記一般式(C)~(T)のいずれかで表される化合物がより好ましい。
 縮合多環芳香族化合物として好ましいアセンは、下記一般式(A1)又は(A2)で表されるものである。
Figure JPOXMLDOC01-appb-C000028
 式中、RA1~RA6、XA1及びXA2は、水素原子又は置換基を表す。
 ZA1及びZA2は、S、O、Se又はTeを表す。
 nA1及びnA2は0~3の整数を表す。ただし、nA1及びnA2が同時に0になることはない。
 RA1~RA6、XA1及びXA2で各々表される置換基としては、特に限定されないが、アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、tert-ブチル、ペンチル、tert-ペンチル、ヘキシル、オクチル、tert-オクチル、ドデシル、トリデシル、テトラデシル、ペンタデシル等)、シクロアルキル基(例えば、シクロペンチル、シクロヘキシル等)、アルケニル基(例えば、ビニル、アリル、1-プロペニル、2-ブテニル、1,3-ブタジエニル、2-ペンテニル、イソプロペニル等)、アルキニル基(例えば、エチニル、プロパルギル等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル、p-クロロフェニル、メシチル、トリル、キシリル、ナフチル、アントリル、アズレニル、アセナフテニル、フルオレニル、フェナントリル、インデニル、ピレニル、ビフェニリル等)、芳香族複素環基(ヘテロアリール基ともいい、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(ヘテロアリール環基等ともいい、例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ、エトキシ、プロピルオキシ、ペンチルオキシ、ヘキシルオキシ、オクチルオキシ、ドデシルオキシ等)、シクロアルコキシ基(例えば、シクロペンチルオキシ、シクロヘキシルオキシ等)、アリールオキシ基(例えば、フェノキシ、ナフチルオキシ等)、アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオ、ペンチルチオ、ヘキシルチオ、オクチルチオ、ドデシルチオ等)、シクロアルキルチオ基(例えば、シクロペンチルチオ、シクロヘキシルチオ等)、アリールチオ基(例えば、フェニルチオ、ナフチルチオ等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル、エチルオキシカルボニル、ブチルオキシカルボニル、オクチルオキシカルボニル、ドデシルオキシカルボニル等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等)、スルファモイル基(例えば、アミノスルホニル、メチルアミノスルホニル、ジメチルアミノスルホニル、ブチルアミノスルホニル、ヘキシルアミノスルホニル、シクロヘキシルアミノスルホニル、オクチルアミノスルホニル、ドデシルアミノスルホニル、フェニルアミノスルホニル、ナフチルアミノスルホニル、2-ピリジルアミノスルホニル等)、アシル基(例えば、アセチル、エチルカルボニル、プロピルカルボニル、ペンチルカルボニル、シクロヘキシルカルボニル、オクチルカルボニル、2-エチルヘキシルカルボニル、ドデシルカルボニル、フェニルカルボニル、ナフチルカルボニル、ピリジルカルボニル等)、アシルオキシ基(例えば、アセチルオキシ、エチルカルボニルオキシ、ブチルカルボニルオキシ、オクチルカルボニルオキシ、ドデシルカルボニルオキシ、フェニルカルボニルオキシ等)、アミド基(例えば、メチルカルボニルアミノ、エチルカルボニルアミノ、ジメチルカルボニルアミノ、プロピルカルボニルアミノ、ペンチルカルボニルアミノ、シクロヘキシルカルボニルアミノ、2-エチルヘキシルカルボニルアミノ、オクチルカルボニルアミノ、ドデシルカルボニルアミノ、フェニルカルボニルアミノ、ナフチルカルボニルアミノ等)、カルバモイル基(例えば、アミノカルボニル、メチルアミノカルボニル、ジメチルアミノカルボニル、プロピルアミノカルボニル、ペンチルアミノカルボニル、シクロヘキシルアミノカルボニル、オクチルアミノカルボニル、2-エチルヘキシルアミノカルボニル、ドデシルアミノカルボニル、フェニルアミノカルボニル、ナフチルアミノカルボニル、2-ピリジルアミノカルボニル等)、ウレイド基(例えば、メチルウレイド、エチルウレイド、ペンチルウレイド、シクロヘキシルウレイド、オクチルウレイド、ドデシルウレイド、フェニルウレイド、ナフチルウレイド、2-ピリジルアミノウレイド等)、スルフィニル基(例えば、メチルスルフィニル、エチルスルフィニル、ブチルスルフィニル、シクロヘキシルスルフィニル、2-エチルヘキシルスルフィニル、ドデシルスルフィニル、フェニルスルフィニル、ナフチルスルフィニル、2-ピリジルスルフィニル等)、アルキルスルホニル基(例えば、メチルスルホニル、エチルスルホニル、ブチルスルホニル、シクロヘキシルスルホニル、2-エチルヘキシルスルホニル、ドデシルスルホニル等)、アリールスルホニル基(フェニルスルホニル、ナフチルスルホニル、2-ピリジルスルホニル等)、アミノ基(例えば、アミノ、エチルアミノ、ジメチルアミノ、ブチルアミノ、シクロペンチルアミノ、2-エチルヘキシルアミノ、ドデシルアミノ、アニリノ、ナフチルアミノ、2-ピリジルアミノ等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル、トリフルオロメチル、ペンタフルオロエチル、ペンタフルオロフェニル等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル、トリイソプロピルシリル、トリフェニルシリル、フェニルジエチルシリル等)、下記一般式(SG1)で表される基(ただし、XはGe又はSn)等が挙げられる。
 これらの置換基は、さらに置換基を複数有していてもよい。複数有していてもよい置換基としては、上記、RA1~RA6で表される置換基が挙げられる。
 上記アセンの中でも、下記一般式(A3)又は(A4)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000029
 式中、RA7、RA8、XA1及びXA2は、水素原子又は置換基を表す。RA7、RA8、XA1及びXA2は同じであっても異なっていてもよい。RA7及びRA8で表される置換基は一般式(A1)及び(A2)のRA1~RA6として採用しうる置換基として上記で列挙したものが好ましい。
 ZA1及びZA2は、S、O、Se又はTeを表す。
 nA1及びnA2は0~3の整数を表す。ただし、nA1とnA2が同時に0になることはない。
 一般式(A3)又は(A4)において、RA7及びRA8は、下記一般式(SG1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000030
 式中、RA9~RA11は置換基を表す。XはSi、Ge又はSnを表す。RA9~RA11で表される置換基は、一般式(A1)及び(A2)のRA1~RA6として採用しうる置換基として上記で列挙したものであることが好ましい。
 以下に、一般式(A1)~(A4)で表されるアセン又はアセン誘導体の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 縮合多環芳香族化合物としては、さらに、下記一般式(C)~(T)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000035
 一般式(C)中、AC1、AC2は酸素原子、硫黄原子又はセレン原子を表す。好ましくはAC1、AC2共に酸素原子、硫黄原子を表し、より好ましくは硫黄原子を表す。RC1~RC6は水素原子又は置換基を表す。RC1~RC6のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(D)中、XD1及びXD2はNRD9、酸素原子又は硫黄原子を表す。AD1はCRD7又はN原子を表し、AD2はCRD8又はN原子を表し、RD9は水素原子、アルキル基、アルケニル基、アルキニル基又はアシル基を表す。RD1~RD8は水素原子又は置換基を表し、RD1~RD8のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(E)中、XE1及びXE2は酸素原子、硫黄原子又はNRE7を表す。AE1及びAE2はCRE8又は窒素原子を表す。RE1~RE8は水素原子又は置換基を表す。RE1~RE8のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(F)中、XF1及びXF2は酸素原子、硫黄原子又はセレン原子を表す。好ましくはXF1及びXF2は酸素原子、硫黄原子を表し、より好ましくは、硫黄原子を表す。RF1~RF10、RFa及びRFbは水素原子又は置換基を表す。RF1~RF10、RFa及びRFbのうち少なくとも一つは一般式(W)で表される置換基である。p及びqは0~2の整数を表す。
 一般式(G)中、XG1及びXG2はNRG9、酸素原子又は硫黄原子を表す。AG1はCRG7又はN原子を表す。AG2はCRG8又はN原子を表す。RG9は水素原子、アルキル基、アルケニル基、アルキニル基、アシル基、アリール基又はヘテロアリール基を表す。RG1~RG8は水素原子又は置換基を表す。RG1~RG8のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(H)中、XH1~XH4は、NRH7、酸素原子又は硫黄原子を表す。XH1~XH4は、好ましくは硫黄原子を表す。RH7は水素原子、アルキル基、アルケニル基、アルキニル基、アシル基、アリール基又はヘテロアリール基を表す。RH1~RH6は水素原子又は置換基を表す。RH1~RH6のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(J)中、XJ1及びXJ2は酸素原子、硫黄原子、セレン原子又はNRJ9を表す。XJ3及びXJ4は酸素原子、硫黄原子又はセレン原子を表す。XJ1、XJ2、XJ3及びXJ4は好ましくは硫黄原子を表す。RJ1~RJ9は水素原子又は置換基を表す。RJ1~RJ9のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(K)中、XK1及びXK2は酸素原子、硫黄原子、セレン原子又はNRK9を表す。XK3及びXK4は酸素原子、硫黄原子又はセレン原子を表す。XK1、XK2、XK3及びXK4は好ましくは硫黄原子を表す。RK1~RK9は水素原子又は置換基を表す。RK1~RK9のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(L)中、XL1及びXL2は酸素原子、硫黄原子又はNRL11を表す。XL1及びXL2は好ましくは酸素原子又は硫黄原子を表す。RL1~RL11は水素原子又は置換基を表し、RL1~RL11のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(M)中、XM1及びXM2は酸素原子、硫黄原子、セレン原子又はNRM9を表す。XM1及びXM2は好ましくは硫黄原子を表す。RM1~RM9は水素原子又は置換基を表す。RM1~RM9のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(N)中、XN1及びXN2は酸素原子、硫黄原子、セレン原子又はNRN13を表す。XN1及びXN2は好ましくは硫黄原子を表す。RN1~RN13は水素原子又は置換基を表す。RN1~RN13のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(P)中、XP1及びXP2は酸素原子、硫黄原子、セレン原子又はNRP13を表す。XP1及びXP2は好ましくは硫黄原子を表す。RP1~RP13は水素原子又は置換基を表す。RP1~RP13のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(Q)中、XQ1及びXQ2は酸素原子、硫黄原子、セレン原子又はNRQ13を表す。XQ1及びXQ2は好ましくは硫黄原子を表す。RQ1~RQ13は水素原子又は置換基を表す。RQ1~RQ13のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(R)中、XR1、XR2及びXR3は酸素原子、硫黄原子、セレン原子又はNRR9を表す。XR1、XR2及びXR3は好ましくは硫黄原子を表す。RR1~RR9は水素原子又は置換基を表す。RR1~RR9のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(S)中、XS1、XS2、XS3及びXS4は酸素原子、硫黄原子、セレン原子又はNRS7を表す。XS1、XS2、XS3及びXS4は好ましくは硫黄原子を表す。RS1~RS7は水素原子又は置換基を表す。RS1~RS7のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(T)中、XT1、XT2、XT3、及びXT4は酸素原子、硫黄原子、セレン原子又はNRT7を表す。XT1、XT2、XT3及びXT4は好ましくは硫黄原子を表す。RT1~RT7は水素原子又は置換基を表す。RT1~RT7のうち少なくとも1つは下記一般式(W)で表される置換基である。
 以下に、上記一般式(C)~(T)において、水素原子又は置換基を表す、RC1~RC6、RD1~RD8、RE1~RE8、RF1~RF10、RFa及びRFb、RG1~RG8、RH1~RH6、RJ1~RJ9、RK1~RK9、RL1~RL11、RM1~RM9、RN1~RN13、RP1~RP13、RQ1~RQ13、RR1~RR9、RS1~RS7及びRT1~RT7(以下、置換基R~Rという)について、説明する。
 置換基R~Rが、とりうる置換基として、ハロゲン原子、アルキル基(メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル等の炭素数1~40のアルキル基、ただし、2,6-ジメチルオクチル、2-デシルテトラデシル、2-ヘキシルドデシル、2-エチルオクチル、2-デシルテトラデシル、2-ブチルデシル、1-オクチルノニル、2-エチルオクチル、2-オクチルテトラデシル、2-エチルヘキシル、シクロアルキル、ビシクロアルキル、トリシクロアルキル等を含む)、アルケニル基(1-ペンテニル、シクロアルケニル、ビシクロアルケニル等を含む)、アルキニル基(1-ペンチニル、トリメチルシリルエチニル、トリエチルシリルエチニル、トリ-i-プロピルシリルエチニル、2-p-プロピルフェニルエチニル等を含む)、アリール基(フェニル、ナフチル、p-ペンチルフェニル、3,4-ジペンチルフェニル、p-ヘプトキシフェニル、3,4-ジヘプトキシフェニルの炭素数6~20のアリール基等を含む)、複素環基(ヘテロ環基といってもよい。2-ヘキシルフラニル等を含む)、シアノ基、ヒドロキシ基、ニトロ基、アシル基(ヘキサノイル、ベンゾイル等を含む。)、アルコキシ基(ブトキシ等を含む)、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基(ウレイド基含む)、アルコキシ及びアリールオキシカルボニルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキル及びアリールチオ基(メチルチオ、オクチルチオ等を含む)、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルホニル基、アルキル及びアリールオキシカルボニル基、カルバモイル基、アリール及びヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基(ジトリメチルシロキシメチルブトキシ基等)、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、その他の公知の置換基が挙げられる。
 これら置換基は、さらに上記置換基を有していてもよい。
 これらの中でも、置換基R~Rがとりうる置換基として、アルキル基、アリール基、アルケニル基、アルキニル基、複素環基、アルコキシ基、アルキルチオ基、後述の一般式(W)で表される基が好ましく、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数1~11のアルコキシ基、炭素数5~12の複素環基、炭素数1~12のアルキルチオ基、後述の一般式(W)で表される基がより好ましく、後述の一般式(W)で表される基が特に好ましく、後述の一般式(W)で表される基がより特に好ましい。
 上記RD9、RG9及びRH7の、アルキル基、アルケニル基、アルキニル基、アシル基、アリール基は、それぞれ、置換基R~Rがとりうる置換基で説明した、アルキル基、アルケニル基、アルキニル基、アシル基、アリール基と同義である。
 また、ヘテロアリール基は、RA1~RA6の置換基で説明したヘテロアリール基と同義である。
 一般式(W):-L-R で表される基について説明する。
 一般式(W)中、Lは下記一般式(L-1)~(L-25)のいずれかで表される2価の連結基又は2以上(好ましくは2~10個、より好ましくは2~6個、さらに好ましくは2又は3個)の下記一般式(L-1)~(L-25)のいずれかで表される2価の連結基が結合した2価の連結基を表す。Rは置換又は無置換のアルキル基、シアノ基、ビニル基、エチニル基、オキシエチレン基、オキシエチレン単位の繰り返し数vが2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、あるいは、置換又は無置換のトリアルキルシリル基を表す。
Figure JPOXMLDOC01-appb-C000036
 一般式(L-1)~(L-25)中、波線部分は上記一般式(C)~(T)で表される各骨格を形成するいずれかの環との結合位置を表す。なお、本明細書中、Lが一般式(L-1)~(L-25)のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表わす場合、波線部分は上記一般式(C)~(T)で表される各骨格を形成するいずれかの環との結合位置及び一般式(L-1)~(L-25)で表される2価の連結基のいずれかとの結合位置を表してもよい。
 *はRwとの結合位置又は一般式(L-1)~(L-25)の波線部分との結合位置を表す。
 一般式(L-13)におけるmは4を表し、一般式(L-14)及び(L-15)におけるmは3を表し、一般式(L-16)~(L-20)におけるmは2を表し、(L-22)におけるmは6を表す。
 一般式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)におけるRLZはそれぞれ独立に水素原子又は置換基を表し、一般式(L-1)及び(L-2)中のRLZはそれぞれLに隣接するRと結合して縮合環を形成してもよい。
 Rは水素原子又は置換基を表し、Rsiはそれぞれ独立に水素原子、アルキル基、アルケニル基又はアルキニル基を表す。
 この中でも、一般式(L-17)~(L-21)、(L-23)及び(L-24)で表される2価の連結基は、下記一般式(L-17A)~(L-21A)、(L-23A)及び(L-24A)で表される2価の連結基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000037
 ここで、置換又は無置換のアルキル基、オキシエチレン基、オキシエチレン単位の繰り返し数vが2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、あるいは、置換又は無置換のトリアルキルシリル基が置換基の末端に存在する場合は、一般式(W)における-R単独と解釈することもでき、一般式(W)における-L-Rと解釈することもできる。
 本発明では、主鎖が炭素数N個の置換又は無置換のアルキル基が置換基の末端に存在する場合は、置換基の末端から可能な限りの連結基を含めた上で一般式(W)における-L-Rと解釈することとし、一般式(W)における-R単独とは解釈しない。具体的には「一般式(W)におけるLに相当する(L-1)1個」と「一般式(W)におけるRに相当する主鎖が炭素数N-1個の置換又は無置換のアルキル基」とが結合した置換基として解釈する。例えば、炭素数8のアルキル基であるn-オクチル基が置換基の末端に存在する場合、2個のRLZが水素原子である(L-1)1個と、炭素数7のn-ヘプチル基とが結合した置換基として解釈する。また、一般式(W)で表される置換基が炭素数8のアルコキシ基である場合、-O-である一般式(L-4)で表される連結基1個と、2個のRLZが水素原子である(L-1)で表される連結基1個と、炭素数7のn-ヘプチル基とが結合した置換基として解釈する。
 一方、本発明では、オキシエチレン基、オキシエチレン単位の繰り返し数vが2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、あるいは、置換又は無置換のトリアルキルシリル基が置換基の末端に存在する場合は、置換基の末端から可能な限りの連結基を含めた上で、一般式(W)におけるR単独と解釈する。例えば、-(OCHCH)-(OCHCH)-(OCHCH)-OCH基が置換基の末端に存在する場合、オキシエチレン単位の繰り返し数vが3のオリゴオキシエチレン基単独の置換基として解釈する。
 Lが一般式(L-1)~(L-25)のいずれかで表される2価の連結基が結合した連結基を形成する場合、一般式(L-1)~(L-25)のいずれかで表される2価の連結基の結合数は2~4であることが好ましく、2又は3であることがより好ましい。
 一般式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中の置換基RLZとしては、一般式(C)~(T)の置換基R~Rが採りうる置換基として例示したものを挙げることができる。その中でも一般式(L-6)中の置換基RLZはアルキル基であることが好ましく、(L-6)中のRLZがアルキル基である場合は、アルキル基の炭素数は1~9であることが好ましく、4~9であることが化学的安定性、キャリア輸送性の観点からより好ましく、5~9であることがさらに好ましい。(L-6)中のRLZがアルキル基である場合は、アルキル基は直鎖アルキル基であることが、キャリア移動度を高めることができる観点から好ましい。
 Rとしては、置換基R~Rが採りうる置換基として例示したものを挙げることができる。その中でもRとしては水素原子又はメチル基が好ましい。
 Rsiは、アルキル基であることが好ましい。Rsiがとり得るアルキル基としては特に制限はないが、Rsiがとり得るアルキル基の好ましい範囲はRがシリル基である場合にシリル基がとり得るアルキル基の好ましい範囲と同様である。Rsiがとり得るアルケニル基としては特に制限はないが、置換又は無置換のアルケニル基が好ましく、分枝アルケニル基であることがより好ましく、アルケニル基の炭素数は2~3であることが好ましい。Rsiがとり得るアルキニル基としては特に制限はないが、置換又は無置換のアルキニル基が好ましく、分枝アルキニル基であることがより好ましく、アルキニル基の炭素数は2~3であることが好ましい。
 Lは、一般式(L-1)~(L-5)、(L-13)、(L-17)もしくは(L-18)のいずれかで表される2価の連結基、又は一般式(L-1)~(L-5)、(L-13)、(L-17)もしくは(L-18)のいずれかで表される2価の連結基が2以上結合した2価の連結基であることが好ましく、一般式(L-1)、(L-3)、(L-13)もしくは(L-18)のいずれかで表される2価の連結基又は一般式(L-1)、(L-3)、(L-13)もしくは(L-18)で表される2価の連結基が2以上結合した2価の連結基であることがより好ましく、(L-1)、(L-3)、(L-13)もしくは(L-18)で表される2価の連結基、あるいは一般式(L-3)、(L-13)又は(L-18)のいずれか1つで表される2価の連結基と一般式(L-1)で表される2価の連結基が結合した2価の連結基であることが特に好ましい。一般式(L-3)、(L-13)又は(L-18)のいずれか1つで表される2価の連結基と一般式(L-1)で表される2価の連結基が結合した2価の連結基は、一般式(L-1)で表される2価の連結基がR側に結合することが好ましい。
 化学的安定性、キャリア輸送性の観点から一般式(L-1)で表される2価の連結基を含む2価の連結基であることが特に好ましく、一般式(L-1)で表される2価の連結基であることがより特に好ましく、Lが一般式(L-18)及び(L-1)で表される2価の連結基であり、(L-1)を介してRと結合し、Rが置換又は無置換のアルキル基であることがさらにより特に好ましく、Lが一般式(L-18A)及び(L-1)で表される2価の連結基であり、(L-1)を介してRと結合し、Rが置換又は無置換のアルキル基であることがさらにより特に好ましい。
 一般式(W)において、Rは、好ましくは、置換又は無置換のアルキル基である。一般式(W)において、Rに隣接するLが一般式(L-1)で表される2価の連結基である場合は、Rは置換又は無置換のアルキル基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基であることが好ましく、置換又は無置換のアルキル基であることがより好ましい。
 一般式(W)において、Rに隣接するLが一般式(L-2)及び(L-4)~(L-25)で表される2価の連結基である場合は、Rは置換又は無置換のアルキル基であることがより好ましい。
 一般式(W)において、Rに隣接するLが一般式(L-3)で表される2価の連結基である場合は、Rは置換又は無置換のアルキル基、置換又は無置換のシリル基であることが好ましい。
 Rが置換又は無置換のアルキル基の場合、炭素数は4~17であることが好ましく、6~14であることが化学的安定性、キャリア輸送性の観点からより好ましく、6~12であることがさらに好ましい。Rが上記の範囲の長鎖アルキル基であること、特に長鎖の直鎖アルキル基であることが、分子の直線性が高まり、キャリア移動度を高めることができる観点から好ましい。
 Rがアルキル基を表わす場合、直鎖アルキル基でも、分枝アルキル基でも、環状アルキル基でもよいが、直鎖アルキル基であることが、分子の直線性が高まり、キャリア移動度を高めることができる観点から好ましい。
 これらの中でも、一般式(W)におけるRとLの組み合わせとしては、一般式(C)~(T)のLが一般式(L-1)で表される2価の連結基であり、かつ、Rが直鎖の炭素数4~17のアルキル基であるか;あるいは、Lが一般式(L-3)、(L-13)又は(L-18)のいずれか1つで表される2価の連結基と一般式(L-1)で表される2価の連結基が結合した2価の連結基であり、かつ、Rが直鎖のアルキル基であることが、キャリア移動度を高める観点から好ましい。
 Lが一般式(L-1)で表される2価の連結基であり、かつ、Rが直鎖の炭素数4~17のアルキル基である場合、Rが直鎖の炭素数6~14のアルキル基であることがキャリア移動度を高める観点からより好ましく、直鎖の炭素数6~12のアルキル基であることが特に好ましい。
 Lが一般式(L-3)、(L-13)又は(L-18)のいずれか1つで表される2価の連結基と一般式(L-1)で表される2価の連結基が結合した2価の連結基であり、かつ、Rが直鎖のアルキル基である場合、Rが直鎖の炭素数4~17のアルキル基であることがより好ましく、直鎖の炭素数6~14のアルキル基であることが化学的安定性、キャリア輸送性の観点からより好ましく、直鎖の炭素数6~12のアルキル基であることがキャリア移動度を高める観点から特に好ましい。
 一方、有機溶媒への溶解度を高める観点からは、Rが分枝アルキル基であることが好ましい。
 Rが置換基を有するアルキル基である場合の置換基としては、ハロゲン原子等を挙げることができ、フッ素原子が好ましい。なお、Rがフッ素原子を有するアルキル基である場合はアルキル基の水素原子が全てフッ素原子で置換されてパーフルオロアルキル基を形成してもよい。ただし、Rは無置換のアルキル基であることが好ましい。
 Rがエチレンオキシ基又はオリゴエチレンオキシ基の場合、Rが表す「オリゴオキシエチレン基」とは本明細書中、-(OCHCHOYで表される基のことをいう(オキシエチレン単位の繰り返し数vは2以上の整数を表し、末端のYは水素原子又は置換基を表す)。なお、オリゴオキシエチレン基の末端のYが水素原子である場合はヒドロキシ基となる。オキシエチレン単位の繰り返し数vは2~4であることが好ましく、2~3であることがさらに好ましい。オリゴオキシエチレン基の末端のヒドロキシ基は封止されていること、すなわちYが置換基を表わすことが好ましい。この場合、ヒドロキシ基は、炭素数が1~3のアルキル基で封止されること、すなわちYが炭素数1~3のアルキル基であることが好ましく、Yがメチル基やエチル基であることがより好ましく、メチル基であることが特に好ましい。
 Rが、シロキサン基又はオリゴシロキサン基の場合、シロキサン単位の繰り返し数は2~4であることが好ましく、2~3であることがさらに好ましい。また、Si原子には、水素原子やアルキル基が結合することが好ましい。Si原子にアルキル基が結合する場合、アルキル基の炭素数は1~3であることが好ましく、例えば、メチル基やエチル基が結合することが好ましい。Si原子には、同一のアルキル基が結合してもよく、異なるアルキル基又は水素原子が結合してもよい。また、オリゴシロキサン基を構成するシロキサン単位はすべて同一であっても異なっていてもよいが、すべて同一であることが好ましい。
 Rに隣接するLが一般式(L-3)で表される2価の連結基である場合、Rが置換又は無置換のシリル基であることも好ましい。Rが置換又は無置換のシリル基である場合はその中でも、Rが置換シリル基であることが好ましい。シリル基の置換基としては特に制限はないが、置換又は無置換のアルキル基が好ましく、分枝アルキル基であることがより好ましい。Rがトリアルキルシリル基の場合、Si原子に結合するアルキル基の炭素数は1~3であることが好ましく、例えば、メチル基やエチル基やイソプロピル基が結合することが好ましい。Si原子には、同一のアルキル基が結合してもよく、異なるアルキル基が結合してもよい。Rがアルキル基上にさらに置換基を有するトリアルキルシリル基である場合の置換基としては、特に制限はない。
 一般式(W)において、L及びRに含まれる炭素数の合計は5~18であることが好ましい。L及びRに含まれる炭素数の合計が上記範囲の下限値以上であると、キャリア移動度が高くなり、駆動電圧を低くなる。L及びRに含まれる炭素数の合計が上記範囲の上限値以下であると、有機溶媒に対する溶解性が高くなる。
 L及びRに含まれる炭素数の合計は5~14であることが好ましく、6~14であることがより好ましく、6~12であることが特に好ましく、8~12であることがより特に好ましい。
 一般式(C)~(T)で表される各化合物において置換基R~Rのうち、一般式(W)で表される基は1~4個であることが、キャリア移動度を高め、有機溶媒への溶解性を高める観点から好ましく、1又は2個であることがより好ましく、2個であることが特に好ましい。
 置換基R~Rのうち、一般式(W)で表される基の位置に特に制限はない。
 一般式(C)で表される化合物においては、RC1、RC2、RC3、RC6のいずれかが一般式(W)で表される基であることが好ましく、RC1とRC2との両方又はRC3とRC6の両方が一般式(W)で表される基であることがより好ましい。
 一般式(D)で表される化合物においては、RD6が一般式(W)で表される基であることが好ましく、RD5とRD6との両方が一般式(W)で表される基であることがより好ましい。
 一般式(E)で表される化合物においては、RE6が一般式(W)で表される基であることが好ましく、RE5とRE6との両方が一般式(W)で表される基であることがより好ましい。また、RE5及びRE6が一般式(W)で表される基以外の置換基である場合、2つのRE7が一般式(W)で表される基であるのも好ましい。
 一般式(F)で表される化合物においては、RF2、RF3、RF8及びRF9のうち少なくとも一つは一般式(W)で表される置換基であるのが好ましい。
 一般式(G)で表される化合物においては、RG5又はRG6が一般式(W)で表される基であることが、キャリア移動度を高め、有機溶媒への溶解性を高める観点から好ましい。
 一般式(H)で表される化合物においては、RH4又はRH6が一般式(W)で表される基であるのが好ましく、RH4又はRH6、及び、RH3又はRH5が一般式(W)で表される基であるのがより好ましい。
 一般式(J)で表される化合物においては、RJ8が一般式(W)で表される基であるのが好ましく、RJ8とRJ4との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(K)で表される化合物においては、RK7が一般式(W)で表される基であるのが好ましく、RK7とRK3との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(L)で表される化合物においては、RL2、RL3、RL6及びRL7のうち少なくとも一つが一般式(W)で表される基であるのがより好ましい。
 一般式(M)で表される化合物においては、RM2が一般式(W)で表される基であるのが好ましく、RM2とRM6との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(N)で表される化合物においては、RN3が一般式(W)で表される基であるのが好ましく、RN3とRN9との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(P)で表される化合物においては、RP2又はRP3が一般式(W)で表される基であるのが好ましく、RP2とRP8との両方又はRP3とRP9との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(Q)で表される化合物においては、RQ3が一般式(W)で表される基であるのが好ましく、RQ3とRQ9との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(R)で表される化合物においては、RR2が一般式(W)で表される基であるのが好ましく、RR2とRR7との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(S)で表される化合物においては、RS2が一般式(W)で表される基であるのが好ましく、RS2とRS5との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(T)で表される化合物においては、RT2が一般式(W)で表される基であるのが好ましく、RT2とRT5との両方が一般式(W)で表される基であるのがより好ましい。
 置換基R~Rのうち、一般式(W)で表される基以外の置換基は、0~4個であることが好ましく、0~2個であることがより好ましい。
 以下に、一般式(C)~一般式(T)で表される各化合物の具体例を以下に示すが、本発明に用いることができる化合物は、これらの具体例により限定的に解釈されるべきものではない。
 一般式(C)で表される化合物Cの具体例を示す。
Figure JPOXMLDOC01-appb-C000038
 一般式(C)で表される化合物は、分子量が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることがさらに好ましく、850以下であることが特に好ましい。分子量が上記範囲内にあると、溶媒への溶解性を高めることができる。
 一方で、薄膜の膜質安定性の観点からは、分子量は300以上であることが好ましく、350以上であることがより好ましく、400以上であることがさらに好ましい。
 一般式(D)で表される化合物Dの具体例を示す。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 一般式(D)で表される化合物の分子量は、上限が一般式(C)で表される化合物と同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点からは、分子量は400以上であることが好ましく、450以上であることがより好ましく、500以上であることがさらに好ましい。
 一般式(E)で表される化合物E、一般式(F)で表される化合物F、一般式(G)で表される化合物G及び一般式(H)で表される化合物Hそれぞれの具体例を、順に示す。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 上記化合物E、化合物F、化合物G及び化合物Hの分子量は、それぞれ、上限が一般式(C)で表される化合物Cと同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点から、分子量の下限は一般式(D)で表される化合物と同じである。
 一般式(J)及び一般式(K)で表される化合物J及び化合物Kの具体例を示す。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 上記化合物J及び化合物Kの分子量は、それぞれ、上限が一般式(C)で表される化合物Cと同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点から、分子量の下限は一般式(D)で表される化合物と同じである。
 一般式(L)で表される化合物L、一般式(M)で表される化合物M、一般式(N)で表される化合物N、一般式(P)で表される化合物P及び一般式(Q)で表される化合物Qそれぞれの具体例を、順に示す。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 上記化合物L、化合物M、化合物N、化合物P及び化合物Qの分子量は、それぞれ、上限が一般式(C)で表される化合物Cと同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点から、分子量の下限は一般式(D)で表される化合物と同じである。
 一般式(R)で表される化合物R、一般式(S)で表される化合物S及び一般式(T)で表される化合物Tそれぞれの具体例を、順に示す。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 上記化合物R、化合物S及び化合物Tの分子量は、それぞれ、上限が一般式(C)で表される化合物Cと同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点から、分子量の下限は一般式(D)で表される化合物と同じである。
 有機ポリマー及びその誘導体としては、例えば、ポリピロール及びその置換体、ポリジケトピロール及びその置換体、ポリチオフェン及びその誘導体、ポリイソチアナフテン等のイソチアナフテン、ポリチエニレンビニレン等のチエニレンビニレン、ポリ(p-フェニレンビニレン)等のポリ(p-フェニレンビニレン)、ポリアニリン及びその誘導体、ポリアセチレン、ポリジアセチレン、ポリアズレン、ポリピレン、ポリカルバゾール、ポリセレノフェン、ポリフラン、ポリ(p-フェニレン)、ポリインドール、ポリピリダジン、ポリテルロフェン、ポリナフタレン、ポリビニルカルバゾール、ポリフェニレンスルフィド、ポリビニレンスルフィド等のポリマー及び縮合多環芳香族化合物の重合体等を挙げることができる。
 ポリチオフェン及びその誘導体としては、特に限定されないが、例えば、ポリチオフェンにヘキシル基を導入したポリ-3-ヘキシルチオフェン(P3HT)、ポリエチレンジオキシチオフェン、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS)等が挙げられる。
 また、これらのポリマーと同じ繰り返し単位を有するオリゴマー(例えば、オリゴチオフェン)を挙げることもできる。
 また、有機ポリマーとして、下記一般式(C)~(T)で表される化合物が繰り返し構造を有する高分子化合物が挙げられる。
 このような高分子化合物としては、一般式(C)~(T)で表される化合物が少なくとも1つ以上のアリーレン基、ヘテロアリーレン基(チオフェン、ビチオフェン等)を介して繰り返し構造を示すπ共役ポリマーや、一般式(C)~(T)で表される化合物が高分子主鎖に側鎖を介して結合したペンダント型ポリマーが挙げられる。高分子主鎖としては、ポリアクリレート、ポリビニル、ポリシロキサン等が好ましく、側鎖としては、アルキレン基、ポリエチレンオキシド基等が好ましい。ペンダント型ポリマーの場合、高分子主鎖は置換基R~Rの少なくとも1つが重合性基由来の基を有し、これが重合してなるものであってもよい。
 これらの有機ポリマーは、重量平均分子量が3万以上であることが好ましく、5万以上であることがより好ましく、10万以上であることがさらに好ましい。重量平均分子量が上記下限値以上とすることにより、分子間相互作用を高めることができ、高い移動度が得られる。
 上記有機ポリマーに加えて、さらにそれ以外の樹脂(D)を用いることも好ましい。樹脂(D)としては、ポリスチレン、ポリα-メチルスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリシルセスキオキサン、ポリスルフォン、ポリメチルメタクリレートに代表されるポリメタクリレート、ポリメチルアクリレートに代表されるポリアクリレート、トリアセチルセルロースに代表されるセルロース、ポリエチレン、ポリプロピレン、ポリビニルフェノール、ポリビニルアルコール、ポリビニルブチラールなどの絶縁性ポリマー、及び、これらの構成成分を2種以上共重合して得られる共重合体を挙げることができる。
 樹脂(D)を用いる場合、有機ポリマーと樹脂(D)の総量に対する有機ポリマーの質量割合は10質量%以上100質量%未満であることが好ましく、20質量%以上100質量%未満であることがより好ましい。
 有機半導体層中、有機ポリマー及び樹脂(D)の合計含有率は、1~80質量%が好ましく、5~60質量%がより好ましく、10~50質量%がさらに好ましい。
 有機半導体層はゲート絶縁層上に湿式法(ウエットコーティング法)で形成されると、簡便で低コストに高性能なOTFTを得やすいうえに、大面積化にも適している。したがって、有機半導体層の形成方法は湿式法が好ましい。
 湿式法としては、特に限定されないが、例えば、スピンコート法、インクジェット法、ノズルプリント、スタンプ印刷、スクリーン印刷、グラビア印刷、エレクトロスプレイデポジション法等により半導体材料を塗布した後、乾燥させることにより形成することができる。
 ゲート絶縁層上に有機半導体層をウエットコーティング法により形成する場合、OTFTが高性能になりやすいことから、有機半導体層は結晶化処理が施されているのが好ましく、加熱やレーザー照射による結晶化処理が施されているのが特に好ましい。
 結晶化処理の方法としては、特に限定されないが、ホットプレート、オーブン等による加熱又はレーザー照射等が挙げられる。加熱温度については、結晶化が進行しやすい点では高温が好ましく、また、一方で、基板等に熱の影響を与え難い点では低温が好ましい。具体的には、50℃以上が好ましく、100℃以上が特に好ましく、また、一方で、300℃以下が好ましく、250℃以下が特に好ましい。
<無機半導体層>
 半導体層を形成する無機半導体材料としては、特に限定されないが、塗布型半導体が好ましく、その好ましい例として酸化物半導体が挙げられる。
 酸化物半導体としては、金属酸化物からなるものであれば特に限定されない。酸化物半導体からなる半導体層は、酸化物半導体前駆体、すなわち熱酸化等の変換処理によって金属酸化物からなる半導体材料に変換される材料を用いて形成するのが好ましい。
 酸化物半導体は特に限定されるものではないが、例えば、酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、酸化スズ、例えば、InGaZnO、InGaO、InSnZnO、GaZnO、InSnO、InZnO、SnZnO(いずれもx>0)、ZnO、SnOが挙げられる。
 上記酸化物半導体前駆体としては、例えば、金属の硝酸塩、金属のハロゲン化物、アルコキシドが挙げられる。上記酸化物半導体前駆体が含有する金属は、例えば、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる少なくとも1種が挙げられる。
 酸化物半導体前駆体の具体例としては、例えば、硝酸インジウム、硝酸亜鉛、硝酸ガリウム、硝酸スズ、硝酸アルミニウム、塩化インジウム、塩化亜鉛、塩化スズ(2価)、塩化スズ(4価)、塩化ガリウム、塩化アルミニウム、トリ-i-プロポキシインジウム、ジエトキシ亜鉛、ビス(ジピバロイルメタナト)亜鉛、テトラエトキシスズ、テトラ-i-プロポキシスズ、トリ-i-プロポキシガリウム、トリ-i-プロポキシアルミニウムが挙げられる。
 無機半導体層は、公知の方法により、設けることができる。
 半導体層の膜厚は、任意であるが、1nm以上が好ましく、10nm以上がさらに好ましい。また、10μm以下が好ましく、1μm以下がさらに好ましく、500nm以下が特に好ましい。
 [ソース電極、ドレイン電極]
 本発明のTFTにおいて、ソース電極は、配線を通じて外部から電流が流入する電極である。また、ドレイン電極は、配線を通じて外部に電流を送り出す電極であり、通常、上記半導体層に接して設けられる。
 ソース電極及びドレイン電極の材料としては、従来の有機薄膜トランジスタに用いられている導電性材料を用いることができ、例えば、上記ゲート電極で説明した導電性材料等が挙げられる。
 ソース電極及びドレイン電極は、それぞれ、上記ゲート電極の形成方法と同様の方法により形成することができる。
 上記フォトリソグラフィー法としては、リフトオフ法又はエッチング法を採用できる。
 特に、ゲート絶縁層がエッチング液や剥離液に対する耐性に優れていることから、ソース電極及びドレイン電極はエッチング法でも好適に形成することができる。エッチング法は、導電性材料を成膜した後に不要部分をエッチングにより除去する方法である。エッチング法によりパターニングすると、レジスト除去時に下地に残った導電性材料の剥がれ、レジスト残渣や除去された導電性材料の下地への再付着を防止でき、電極エッジ部の形状に優れる。この点で、リフトオフ法よりも好ましい。
 リフトオフ法は、下地の一部にレジストを塗布し、この上に導電性材料を成膜し、レジスト等を溶媒により溶出又は剥離等することにより、レジスト上の導電性材料ごと除去して、レジストが塗布されていなかった部分にのみ導電性材料の膜を形成する方法である。
 ソース電極及びドレイン電極の厚みは、任意であるが、それぞれ、1nm以上が好ましく、10nm以上が特に好ましい。また、500nm以下が好ましく、300nm以下が特に好ましい。
 ソース電極とドレイン電極との間の間隔(チャネル長)は、任意であるが、100μm以下が好ましく、50μm以下が特に好ましい。また、チャネル幅は、5000μm以下が好ましく、1000μm以下が特に好ましい。
 [オーバーコート層]
 本発明のTFTは、オーバーコート層を有していてもよい。オーバーコート層は、通常、TFTの表面に保護層として形成される層である。単層構造でも多層構造でもよい。
 オーバーコート層は、有機系のオーバーコート層でも無機系のオーバーコート層でもよい。
 有機系のオーバーコート層を形成する材料としては、特に限定されないが、例えば、ポリスチレン、アクリル樹脂、ポリビニルアルコール、ポリオレフィン、ポリイミド、ポリウレタン、ポリアセナチレン、エポキシ樹脂等の有機ポリマー、及び、これらの有機ポリマーに架橋性基や撥水基等を導入した誘導体等が挙げられる。これらの有機ポリマーやその誘導体は、架橋成分、フッ素化合物、シリコン化合物等と併用することもできる。
 無機系のオーバーコート層を形成する材料としては、特に限定されないが、酸化ケイ素、酸化アルミニウム等の金属酸化物、窒化ケイ素等の金属窒化物等が挙げられる。
 これらの材料は、1種を用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 オーバーコート層の形成方法に制限はなく、公知の各種の方法により形成することができる。
 例えば、有機系のオーバーコート層は、例えば、その下地となる層に、オーバーコート層となる材料を含む溶液を塗布後に乾燥させる、オーバーコート層となる材料を含む溶液を塗布、乾燥後に露光、現像してパターニングする等の方法により形成することができる。なお、オーバーコート層のパターニングは、印刷法やインクジェット法等により直接形成することもできる。また、オーバーコート層のパターニング後に、露光や加熱することにより、オーバーコート層を架橋させてもよい。
 一方、無機系のオーバーコート層は、スパッタリング法、蒸着法等の乾式法やゾルゲル法のような湿式法により形成することができる。
 [その他の層]
 本発明のTFTは、上記以外の層や部材を設けてもよい。
 その他の層又は部材としては、例えば、バンク等が挙げられる。バンクは、インクジェット法等により半導体層やオーバーコート層等を形成するときに、吐出液を所定の位置に塞き止める目的等で用いられる。このため、バンクには、通常、撥液性がある。バンクの形成方法としては、フォトリソグラフィー法等によりパターニングした後にフッ素プラズマ法等の撥液処理を施す方法、フッ素化合物等の撥液成分を含む感光性組成物等を硬化させる方法等が挙げられる。
 本発明の有機薄膜トランジスタの場合、ゲート絶縁層が有機層であることから、後者の撥液成分を含む感光性組成物を硬化させる方法が、ゲート絶縁層が撥液処理の影響を受ける可能性がなく、好ましい。なお、バンクを用いずに下地に撥液性のコントラストを持たせてバンクと同じ役割を持たせる技術を用いてもよい。
 [製造方法]
 本発明のTFTは、ゲート電極、ゲート絶縁層、半導体層、ソース電極及びドレイン電極等を、上記した方法により、基板上に成膜又は設けて、製造できる。
 特に、ゲート絶縁層や半導体層を形成する材料として有機材料を用いると、溶液塗布法の利点を生かしつつ、優れた特性を発揮するTFTを製造することができる。
 さらに、本発明の絶縁層形成用組成物を用いると、絶縁特性及び表面平滑性に優れた絶縁層を備え、特にキャリア移動度が高く、on/off比にも優れた半導体素子を、溶液塗布法にて製造できる。
[表示パネル]
 本発明の有機薄膜トランジスタの用途の一例として表示パネルが挙げられる。表示パネルとしては、例えば、液晶パネル、有機ELパネル、電子ペーパーパネル等が挙げられる。
 以下に実施例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 各例に用いた高分子化合物AP1~AP9を以下に示す。各高分子化合物は上記方法により合成した。
 各高分子化合物について、ゲル浸透クロマトグラフィー(GPC、東ソー社製;HLC-8120;Tskgel Multipore HXL-M)を用い、溶媒としてTHFを使用して、重量平均分子量(Mw、標準ポリスチレン換算)を測定した。
 また、NMR測定装置(ブルカー・バイオスピン社製;AVANCEIII400型)を用い、H-NMR又は13C-NMRにより、各高分子化合物の組成比(モル%)を算出した。なお、組成比の記載は化学式で示した繰り返し単位の記載に対応する。
 得られた結果を以下に示す。
Figure JPOXMLDOC01-appb-C000057
 各例に用いた架橋剤CA1~CA8を以下に示す。
Figure JPOXMLDOC01-appb-C000058
 各例において、有機半導体として、化合物A6(TIPS-ペンタセン)、化合物A26、化合物C1、化合物C16、化合物L9及び化合物M3(C8BTBT)を用いた。
 化合物C1は下記合成方法により合成し、化合物C16は下記合成方法に準じて合成した。化合物A6、化合物A26、化合物L9及び化合物M3は、公知の方法に準じて、合成した。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 (化合物C1aの合成)
 1,5-ジアミノナフタレン(10g)のピリジン溶液(125mL)に、p-トルエンスルホニルクロリド(34g)をゆっくりと添加し、室温で2時間撹拌した。反応液を氷水に注ぎ、析出物を減圧ろ過した。得られた粗結晶をメタノールで洗浄し、化合物C1a(29g)を得た。
 (化合物C1bの合成)
 化合物C1a(10g)の氷酢酸溶液を95℃で加熱撹拌し、そこに氷酢酸10mLで希釈した臭素(2mL)をゆっくりと滴下した。10分間反応させ、放冷後にろ過することで粗結晶を灰色固体として得た。粗結晶をニトロベンゼン中で再結晶することで化合物C1b(6.8g)を得た。
 (化合物C1cの合成)
 化合物C1b(5g)の濃硫酸溶液を室温で24時間撹拌した。反応液を氷水に注ぎ、析出している固体をろ過して回収した。その固体を氷水中に再度分散し、アンモニア水で中和し、化合物C1c(0.5g)を得た。
 (化合物C1dの合成)
 室温下、化合物C1c(2g)のピリジン溶液にペンタノイルクロリド(バレリン酸クロリド)(2.6mL)を滴下して2時間撹拌した。氷水に反応液を注ぎ、固体を減圧ろ過した。メタノール中に分散し1時間撹拌した後、固体をろ過することで化合物C1d(1.39g)を得た。
 (化合物C1eの合成)
 THF(360mL)及びトルエン(72mL)の混合溶液中に化合物C1d(1.2g)とローソン試薬(1.48g)を添加した後、加熱還流しながら3時間撹拌した。エバポレーションでTHFのみ除去してトルエン溶液とした後、60℃で1時間撹拌した。その後、不溶物をろ過することで化合物C1e(0.5g)を得た。
 (化合物C1の合成)
 化合物C1e(0.4g)と炭酸セシウム(1.33g)をジメチルアセトアミド中、120℃で2時間反応させた。反応液を水に注ぎ析出物をろ過した。ろ過した固体をTHF中で再結晶を繰り返し、目的化合物C1(0.12g)を合成した。得られた化合物C1の同定は、H-NMR及びMassスペクトルにより行った。
[実施例1]
 [ボトムゲート形態のOTFTの製造]
 図1(B)に示すボトムゲート-トップコンタクト形態のOTFTを製造した。
 厚さ0.7mmのガラス基板上に膜厚100nmの酸化インジウムスズ(ITO)膜を形成したITO電極付きガラス基板をアセトン、イソプロピルアルコールで洗浄し、乾燥させた。これを基板6として、用いた。
 ゲート絶縁層2の形成に際して絶縁層形成用組成物を調製した。すなわち、下記表1に示す高分子化合物5gと、下記表1に記載の含有量の下記表1に示す架橋剤と、下記表1に示す添加剤0.1gとを、1-ブタノール/エタノール=1/1(体積比)の混合溶媒に溶解させた。この溶解液をφ0.2μmのポリテトラフルオロエチレン(PTFE)メンブランフィルタでろ過して、絶縁層形成用組成物を調製した。
 上記ガラス基板6のITO電極(ゲート電極5)上に絶縁層形成用組成物をスピンコート法で塗布し、送風乾燥機により180℃で30分加熱して、層厚300nmのゲート絶縁層2を設けた。
 有機半導体層を形成する塗布液として、下記表1に示す有機半導体をトルエン1mLに溶解して、化合物濃度が1質量%の塗布液を調製した。この塗布液を、ぞれぞれ、ゲート絶縁層2上に、乾燥後の層厚が150nmとなるように、25℃でスピンコート法(回転数500rpm)により塗布した。その後、ホットプレート上にて150℃で30分加熱して、有機半導体層1を成膜した。
 次いで、図1(B)に示すようにソース電極3及びドレイン電極4として、くし型に配置されたクロム/金からなる電極(ゲート幅W=100mm、ゲート長L=100μm)を、金属蒸着マスクを用いて真空蒸着法にて、形成した。
 このようにして、図1(B)に示されるOTFT(試料No.1-1~1-16及び比較のためのc1-1~c1-3)を、それぞれ、製造した。
 [ゲート絶縁層の評価]
 上記試料それぞれと同じ方法により形成したゲート絶縁層又は下記方法により形成した絶縁層について、その特性を評価した。その結果を表1に示す。
(比誘電率の測定)
 上記試料それぞれと同じ方法により形成した各ゲート絶縁層上に厚さ100nmの金電極を真空蒸着により形成した。これをサンプルとして、誘電体測定システム126096W型(ソーラトロン社製)を用いて、比誘電率を測定した。
(体積抵抗率の測定)
 上記試料それぞれと同じ方法により形成した各ゲート絶縁層上に厚さ100nmの金電極を真空蒸着により形成した。これをサンプルとして、6517B型エレクトロメータ/絶縁抵抗計(Keithley社製)を用いて、体積抵抗率(Ω・cm)を測定した。
(表面平滑性の評価)
 上記試料それぞれに用いた絶縁層形成用組成物をシリコンウェハ上にスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、厚さ300nmの膜を形成した。次いで、空気中において130℃で1時間加熱することにより、絶縁層が形成されシリコンウェハからなるサンプルを得た。
 得られたサンプルの絶縁層の表面を原子間力顕微鏡(AMF)にて観察し、表面粗さ(算術平均粗さRa)を測定した。測定されたRaを下記評価基準により評価した。上記サンプルの評価結果をOTFTのゲート絶縁層の評価とした。本試験において、評価がA又はBであることが求められ、Aであることが好ましい。
 A:0.5nm以下
 B:0.5nmを超え、1.0nm以下
 C:1.0nmを超え、1.5nm以下
 D:1.5nmを超える
(耐溶剤性の評価)
 上記試料それぞれと同じ方法により、各ゲート絶縁層を形成したガラス基板を、トルエン中に12時間浸漬させ、ゲート絶縁層の浸漬前後の層厚を測定した。浸漬前後の層厚変化率を下記式から算出し、下記評価基準により評価した。本試験において、評価がA、B、又はCであることが求められ、A又はBであることが好ましく、Aであることがより好ましい。
 浸漬前後の膜厚変化率(%)=浸漬後の膜厚(μm)/浸漬前の膜厚(μm)×100
 A:90%を超え、100%以下
 B:80%を超え、90%以下
 C:60%を超え、80%以下
 D:60%以下
 [TFTの評価]
 製造した各OTFTの特性について、下記評価をした。その結果を表1に示す。
(キャリア移動度μの測定)
 各OTFTのソース電極3及びドレイン電極4間に-40Vの電圧を印加し、ゲート電圧Vgを40V~-40Vの範囲で変化させ、ドレイン電流Idを表わす下記式を用いてキャリア移動度μ(cm/Vs)を算出し、下記評価基準により、評価した。本試験において、評価がA、A、B、またはBであることが求められ、A、A、又はBであることが好ましく、A又はAであることがより好ましく、Aであることがさらにより好ましい。
  Id=(w/2L)μCi(Vg-Vth)
 式中、Lはゲート長、wはゲート幅、Ciはゲート絶縁層2の単位面積当たりの容量、Vgはゲート電圧、Vthは閾値電圧を、それぞれ、表す。
 A:0.7cm/Vsを超え、0.8cm/Vs以下
 A:0.5cm/Vsを超え、0.7cm/Vs以下
 B:0.3cm/Vsを超え、0.5cm/Vs以下
 B:0.10cm/Vsを超え、0.3cm/Vs以下
 C:0.05cm/Vsを超え、0.10cm/Vs以下
 D:0.01cm/Vs以上、0.05cm/Vs以下
(on/off比の測定)
 各OTFTのソース電極3及びドレイン電極4間にかかる電圧を-40Vに固定し、ゲート電圧Vgを40V~-40Vまで変化させた時の(|Id|の最大値)/(|Id|の最小値)をon/off比とした。本試験において、評価がA、A、B、またはBであることが求められ、A、A、又はBであることが好ましく、A又はAであることがより好ましく、Aであることがさらにより好ましい。
 A:1×10以上
 A:5×10以上1×10未満
 B:1×10以上5×10未満
 B:5×10以上1×10未満
 C:1×10以上5×10未満
 D:1×10未満
 表1において、TsOHはp-トルエンスルホン酸を表し、パーブチル0はt-ブチルパーオキシ-2-エチルヘキサノエートを表す。
Figure JPOXMLDOC01-appb-T000061
 表1に示されるように、一般式(1)で表される繰り返し構造を有する高分子化合物AP1~AP6を含有する絶縁層形成用組成物を用いると、表面平滑性が優れたゲート絶縁層2を形成できた。さらには、ゲート絶縁層2は、小さな比誘電率を保持しつつも、体積抵抗率が大きくなって高い絶縁性を示した。また、優れた耐溶剤性をも示した。
 このように本発明の絶縁層形成用組成物で形成したゲート絶縁層2は、高い表面平滑性及び絶縁性を両立していた。したがって、このゲート絶縁層2を半導体層に隣接して設けた本発明のOTFTは、いずれも、一般式(1)で表される繰り返し構造を有しない高分子化合物で形成されたゲート絶縁層を備えた比較のOTFTに比べて、キャリア移動度μ及びon/off比が高く、優れた性能を有していた。
 本発明によるOTFTの上記性能向上効果は、アシル基を形成する上記有機基Aが、アリール基<アルキル基<多環脂環式炭化水素基の順で、増大することが分かった。
 また、一般式(1)で表される繰り返し構造を有する高分子化合物を架橋剤によって架橋させる(高分子化合物が架橋構造を有する)と、上記性能向上効果が増大することも分かった。
[実施例2]
 [有機半導体を変更したボトムゲート形態のOTFTの製造及び評価]
 実施例2では、上記有機半導体以外の有機半導体を用いて、ボトムゲート形態のOTFTを製造し、その特性等を評価した。
 すなわち、実施例1において、有機半導体として、上記C4、C7、D1、E2、F2、F5、F10、G12、G14、H10、H11、J2、J3、K2、K3、L2、L5、L6、L8、L15、M8、N4、P3、Q3、R1、S1又はT1の各化合物を用いたこと以外は実施例1と同様にして、図1(B)に示されるOTFTを、それぞれ、製造した。
 設けたゲート絶縁層それぞれについて、実施例1と同様にして、比誘電率及び体積抵抗率を測定し、表面平滑性及び耐溶剤性を評価した。また、製造したOTFTそれぞれについて、実施例1と同様にして、キャリア移動度μ及びon/off比を測定した。その結果、いずれのTFTも、実施例1と同様に優れた特性を有していた。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年3月26日に日本国で特許出願された特願2014-64560に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 半導体層(有機半導体層)
2 ゲート絶縁層
3 ソース電極
4 ドレイン電極
5 ゲート電極
6 基板

Claims (9)

  1.  半導体層と該半導体層に隣接する絶縁層とを有する半導体素子において、前記絶縁層が下記一般式(1)で表される繰り返し構造を有する高分子化合物を含有する半導体素子。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、Rは水素原子又はメチルを表す。Arは芳香族環を表す。Xはアシル基を表す。mは1~5の整数を表し、mが2以上の場合、m個のXは互いに同一でも異なっていてもよい。
  2.  前記繰り返し構造が、下記一般式(2)で表される繰り返し構造である請求項1に記載の半導体素子。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、Aは1価の有機基を表す。
  3.  前記有機基Aが、アルキル基、シクロアルキル基、多環脂環式炭化水素基、アリール基又はヘテロアリール基である請求項2に記載の半導体素子。
  4.  前記有機基Aが、シクロアルキル基又は多環脂環式炭化水素基である請求項2又は3に記載の半導体素子。
  5.  前記一般式(1)又は(2)で表される繰り返し構造が、下記一般式(3)で表される繰り返し構造である請求項1~4のいずれか1項に記載の半導体素子。
    Figure JPOXMLDOC01-appb-C000003
  6.  前記高分子化合物が、架橋構造を有する請求項1~5のいずれか1項に記載の半導体素子。
  7.  前記架橋構造が、ヒドロキシメチル基又はアルコキシメチル基を有する架橋剤によって形成されてなる請求項6に記載の半導体素子。
  8.  前記半導体層が、有機半導体を含有する請求項1~7のいずれか1項に記載の半導体素子。
  9.  半導体素子の絶縁層を形成するための絶縁層形成用組成物であって、下記一般式(1)で表される繰り返し構造を有する高分子化合物を含有する絶縁層形成用組成物。
    Figure JPOXMLDOC01-appb-C000004
     一般式(1)中、Rは水素原子又はメチルを表す。Arは芳香族環を表す。Xはアシル基を表す。mは1~5の整数を表し、mが2以上の場合、m個のXは互いに同一でも異なっていてもよい。
PCT/JP2015/058776 2014-03-26 2015-03-23 半導体素子及び絶縁層形成用組成物 WO2015146927A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014064560A JP6034326B2 (ja) 2014-03-26 2014-03-26 半導体素子及び絶縁層形成用組成物
JP2014-064560 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146927A1 true WO2015146927A1 (ja) 2015-10-01

Family

ID=54195440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058776 WO2015146927A1 (ja) 2014-03-26 2015-03-23 半導体素子及び絶縁層形成用組成物

Country Status (2)

Country Link
JP (1) JP6034326B2 (ja)
WO (1) WO2015146927A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112739677A (zh) * 2018-09-18 2021-04-30 Dic株式会社 酚化合物、活性酯树脂及其制造方法、以及热固性树脂组合物及其固化物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170045241A (ko) * 2014-08-21 2017-04-26 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 전자 장치용 산소 치환된 벤조클로부텐 유도 조성물
WO2018207294A1 (ja) * 2017-05-10 2018-11-15 日立化成株式会社 ポジ型感光性樹脂組成物、ポジ型感光性樹脂用熱架橋剤、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイス
EP3651223A4 (en) * 2017-07-04 2021-03-17 Hitachi Chemical Company, Ltd. ORGANIC ELECTRONIC MATERIAL AND ORGANIC ELECTRONIC ELEMENT

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115805A (ja) * 2002-09-28 2004-04-15 Samsung Electronics Co Ltd 有機ゲート絶縁膜およびこれを用いた有機薄膜トランジスタ
JP2006303465A (ja) * 2005-03-25 2006-11-02 Canon Inc 有機半導体素子、電界効果型トランジスタおよびそれらの製造方法
JP2009203437A (ja) * 2008-02-29 2009-09-10 Fujifilm Corp
JP2010511094A (ja) * 2006-11-28 2010-04-08 ポリエラ コーポレイション フォトポリマーベースの誘電材料ならびにその調製方法および使用方法
JP2012510149A (ja) * 2008-11-24 2012-04-26 ビーエーエスエフ ソシエタス・ヨーロピア 光硬化性ポリマー性誘電体、及びその製造方法、及びその使用方法
US20120108697A1 (en) * 2010-10-27 2012-05-03 Industrial Technology Research Institute Composition and Polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115805A (ja) * 2002-09-28 2004-04-15 Samsung Electronics Co Ltd 有機ゲート絶縁膜およびこれを用いた有機薄膜トランジスタ
JP2006303465A (ja) * 2005-03-25 2006-11-02 Canon Inc 有機半導体素子、電界効果型トランジスタおよびそれらの製造方法
JP2010511094A (ja) * 2006-11-28 2010-04-08 ポリエラ コーポレイション フォトポリマーベースの誘電材料ならびにその調製方法および使用方法
JP2009203437A (ja) * 2008-02-29 2009-09-10 Fujifilm Corp
JP2012510149A (ja) * 2008-11-24 2012-04-26 ビーエーエスエフ ソシエタス・ヨーロピア 光硬化性ポリマー性誘電体、及びその製造方法、及びその使用方法
US20120108697A1 (en) * 2010-10-27 2012-05-03 Industrial Technology Research Institute Composition and Polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112739677A (zh) * 2018-09-18 2021-04-30 Dic株式会社 酚化合物、活性酯树脂及其制造方法、以及热固性树脂组合物及其固化物
CN112739677B (zh) * 2018-09-18 2024-05-31 Dic株式会社 酚化合物、活性酯树脂及其制造方法、以及热固性树脂组合物及其固化物

Also Published As

Publication number Publication date
JP2015188011A (ja) 2015-10-29
JP6034326B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
US9799832B2 (en) Organic thin-film transistor and method for manufacturing same
JP6204580B2 (ja) 薄膜トランジスタ及び絶縁層形成用組成物
JP6255651B2 (ja) 薄膜トランジスタ
WO2015133376A1 (ja) 有機薄膜トランジスタ及びその製造方法
EP3116018B1 (en) Organic thin film transistor
JP6034326B2 (ja) 半導体素子及び絶縁層形成用組成物
EP3116029A1 (en) Organic thin film transistor
JP6118287B2 (ja) 半導体素子及び半導体素子の絶縁層形成用組成物
JP6110802B2 (ja) 薄膜トランジスタ
JPWO2016117389A1 (ja) 有機薄膜トランジスタ及びその製造方法
JP6140625B2 (ja) 有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768210

Country of ref document: EP

Kind code of ref document: A1