WO2015146816A1 - Epoxy resin composition and electrostatic-capacitance-type fingerprint sensor - Google Patents

Epoxy resin composition and electrostatic-capacitance-type fingerprint sensor Download PDF

Info

Publication number
WO2015146816A1
WO2015146816A1 PCT/JP2015/058413 JP2015058413W WO2015146816A1 WO 2015146816 A1 WO2015146816 A1 WO 2015146816A1 JP 2015058413 W JP2015058413 W JP 2015058413W WO 2015146816 A1 WO2015146816 A1 WO 2015146816A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
composition according
fingerprint sensor
less
Prior art date
Application number
PCT/JP2015/058413
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 野嵜
昌治 伊東
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN201580015950.4A priority Critical patent/CN106461366A/en
Priority to KR1020167029258A priority patent/KR101827668B1/en
Priority to JP2016510292A priority patent/JP6658508B2/en
Publication of WO2015146816A1 publication Critical patent/WO2015146816A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1172Identification of persons based on the shapes or appearances of their bodies or parts thereof using fingerprinting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the present invention relates to an epoxy resin composition and a capacitive fingerprint sensor.
  • Patent Document 1 discusses a semiconductor fingerprint sensor that detects fingerprint information by a capacitance method.
  • Patent Document 1 describes a fingerprint reading sensor in which electrodes are arranged in an array on a substrate such as silicon via an interlayer film, and the upper surface thereof is overcoated with an insulating film.
  • a capacitive fingerprint sensor including a substrate, a detection electrode provided on the substrate, and an insulating film that seals the detection electrode.
  • the sensitivity of the capacitive fingerprint sensor can be improved.
  • FIG. 1 is a cross-sectional view schematically showing a capacitive fingerprint sensor 100 according to the present embodiment.
  • the capacitive fingerprint sensor 100 according to this embodiment includes a substrate 101, a detection electrode 103 provided on the substrate 101, and an insulating film 105 that seals the detection electrode 103.
  • the insulating film 105 is formed of a cured product of an epoxy resin composition.
  • the said epoxy resin composition contains an epoxy resin (A) and an inorganic filler (B).
  • the present inventor forms a capacitive fingerprint sensor by forming an insulating film for sealing a detection electrode with a cured product of an epoxy resin composition containing an epoxy resin (A) and an inorganic filler (B). It has been newly found that the sensitivity of can be improved, and the configuration of the present embodiment has been achieved.
  • the insulating film 105 that seals the detection electrode 103 is configured by a cured product of an epoxy resin composition that includes an epoxy resin (A) and an inorganic filler (B).
  • a cured product has excellent dielectric properties. For this reason, the sensitivity of the capacitive fingerprint sensor 100 can be improved.
  • being excellent in dielectric characteristics means that, for example, the relative permittivity and the dielectric loss tangent are high and the capacitance is large.
  • the epoxy resin composition is used to form an insulating film 105 that seals the detection electrode 103 provided on the substrate 101.
  • the sealing molding using the epoxy resin composition is not particularly limited, but can be performed by, for example, a transfer molding method or a compression molding method.
  • the epoxy resin composition is, for example, a tablet or a granular material.
  • the epoxy resin composition can be molded using, for example, a transfer molding method.
  • an epoxy resin composition is a granular material
  • an epoxy resin composition can be shape
  • the term “epoxy resin composition is in the form of a granular material” refers to a powder or granule.
  • epoxy resin (A) As the epoxy resin (A), monomers, oligomers and polymers generally having two or more epoxy groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
  • the epoxy resin (A) for example, biphenyl type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbisphenol F type epoxy resin; stilbene type epoxy resin; Novolak type epoxy resins such as phenol novolac type epoxy resins and cresol novolak type epoxy resins; polyfunctional epoxy resins such as triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins; phenol aralkyl type epoxy resins having a phenylene skeleton; Aralkyl-type epoxy resins such as phenol aralkyl-type epoxy resins having a biphenylene skeleton; dihydroxynaphthalene-type epoxy resin, dihydroxynaphthalene-type epoxy resin, di
  • bisphenol type epoxy resin novolac type epoxy resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin, and triphenolmethane type epoxy resin More preferably, it contains at least one, and particularly preferably contains at least one of a biphenyl type epoxy resin and a phenol aralkyl type epoxy resin.
  • the epoxy resin (A) is selected from the group consisting of an epoxy resin represented by the following formula (1), an epoxy resin represented by the following formula (2), and an epoxy resin represented by the following formula (3). It is particularly preferable to use a material containing at least one kind.
  • Ar 1 represents a phenylene group or a naphthylene group, and when Ar 1 is a naphthylene group, the glycidyl ether group may be bonded to either the ⁇ -position or the ⁇ -position.
  • Ar 2 is a phenylene group.
  • R a and R b each independently represents a hydrocarbon group having 1 to 10 carbon atoms, g is an integer of 0 to 5 and h represents a group selected from the group consisting of a biphenylene group and a naphthylene group. Is an integer from 0 to 8.
  • n 3 represents the degree of polymerization, and the average value is from 1 to 3.
  • R c s each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • N 5 represents a degree of polymerization, and an average value thereof is 0 to 4)
  • R d and R e each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • N 6 represents the degree of polymerization, and the average value thereof is 0 to 4)
  • the content of the epoxy resin (A) in the epoxy resin composition is preferably 2% by mass or more, preferably 3% by mass or more when the entire epoxy resin composition is 100% by mass. It is more preferable that the content is 4% by mass or more.
  • the content of an epoxy resin (A) more than the said lower limit sufficient fluidity
  • the content of the epoxy resin (A) in the epoxy resin composition is preferably 30% by mass or less and more preferably 20% by mass or less when the entire epoxy resin composition is 100% by mass. More preferred is 10% by mass or less.
  • the moisture resistance reliability and the reflow resistance of the capacitive fingerprint sensor 100 using the cured product of the epoxy resin composition as the insulating film 105 is improved. be able to.
  • the constituent material of the inorganic filler (B) is not particularly limited.
  • the relative dielectric constant (1 MHz) is an inorganic filler of 5 or more.
  • titanium oxide, alumina, pentoxide From the viewpoint of particularly improving the relative dielectric constant of the cured product of the resulting epoxy resin composition, titanium oxide, alumina, pentoxide. It is more preferable to use one or more selected from tantalum, niobium pentoxide, and barium titanate, and more preferable to use one or more selected from alumina, titanium oxide, and barium titanate, and oxidation. It is more preferable to use one or more selected from titanium and barium titanate, and it is particularly preferable to use rutile titanium oxide from the viewpoint of suppressing oxidative degradation of the resin.
  • content of the inorganic filler (B) in an epoxy resin composition is 50 mass% or more with respect to the whole epoxy resin composition when the whole epoxy resin composition is 100 mass%. Is more preferably 70% by mass or more, and particularly preferably 80% by mass or more.
  • the content of the inorganic filler (B) in the epoxy resin composition is preferably 97% by mass or less and 95% by mass or less when the entire epoxy resin composition is 100% by mass. Is more preferable.
  • the average particle diameter D 50 of the inorganic filler (B) is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the average particle diameter D 50 of less than the above lower limit the fluidity of the epoxy resin composition is made excellent, it is possible to improve the formability more effectively. Further, by the average particle diameter D 50 and more than the above upper limit can reliably prevent the gate clogging occurs.
  • the thickness D of the insulating film 105 on the substrate 101 for example, silicon chip
  • the average particle size D 50 of the inorganic filler (B) is 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the average particle diameter D 50 is a commercially available laser particle size distribution analyzer (e.g., manufactured by Shimadzu Corporation, SALD-7000) was used to measure the particle size distribution of the particles on a volume basis, the median diameter (D can be 50) and the average particle diameter D 50.
  • titanium oxide those known to those skilled in the art can be used.
  • content of the titanium oxide in an inorganic filler (B) is not specifically limited, For example, it is preferable that it is 1 mass% or more and 100 mass% or less with respect to the whole inorganic filler (B), and 2 mass% or more. It is more preferably 80% by mass or less, and particularly preferably 5% by mass or more and 50% by mass or less.
  • the average particle diameter D 50 of the titanium oxide is preferably 0.01 ⁇ m or more 20 ⁇ m or less, more preferably 0.1 ⁇ m or 15 ⁇ m or less.
  • the average particle diameter D 50 of less than the above lower limit the fluidity of the epoxy resin composition is made excellent, it is possible to improve the formability more effectively. Further, by the average particle diameter D 50 and more than the above upper limit can reliably prevent the gate clogging occurs.
  • the average particle diameter D 50 of titanium oxide is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • barium titanate those known to those skilled in the art can be used.
  • content of barium titanate in an inorganic filler (B) is not specifically limited, For example, it is preferable that it is 10 to 100 mass% with respect to the whole inorganic filler (B), and is 25 mass%. It is more preferably 90% by mass or less and particularly preferably 40% by mass or more and 75% by mass or less.
  • the average particle diameter D 50 of barium titanate is preferably 0.01 ⁇ m or more and 20 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 15 ⁇ m or less.
  • the average particle diameter D 50 of less than the above lower limit the fluidity of the epoxy resin composition is made excellent, it is possible to improve the formability more effectively. Further, by the average particle diameter D 50 and more than the above upper limit can reliably prevent the gate clogging occurs.
  • the average particle diameter D 50 of barium titanate is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the inorganic filler (B) is selected from titanium oxide, alumina, tantalum pentoxide, niobium pentoxide, and barium titanate.
  • One or two or more inorganic fillers are preferably used in combination with silica, and one or more inorganic fillers selected from alumina, titanium oxide and barium titanate are used in combination with silica particles. More preferably, it is particularly preferable to use one or more inorganic fillers selected from titanium oxide and barium titanate in combination with silica particles.
  • the inorganic filler (B) contains finely divided silica having an average particle diameter of 1 ⁇ m or less from the viewpoint of improving the filling property of the epoxy resin composition and from the viewpoint of suppressing the warpage of the fingerprint sensor. Can be mentioned as one of preferred embodiments.
  • the epoxy resin composition can contain, for example, a curing agent (C).
  • the curing agent (C) is not particularly limited as long as it can be cured by reacting with the epoxy resin (A), but for example, ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine and the like having 2 to 20 carbon atoms.
  • curing agent (C) in an epoxy resin composition is not specifically limited, For example, when the whole epoxy resin composition is 100 mass%, it may be 0.5 mass% or more and 20 mass% or less. It is preferably 1.5% by mass or more and 20% by mass or less, more preferably 2% by mass or more and 15% by mass or less, and particularly preferably 2% by mass or more and 10% by mass or less.
  • An epoxy resin composition can contain a coupling agent (D), for example.
  • a coupling agent (D) known cups such as various silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, titanium compounds, aluminum chelates, aluminum / zirconium compounds, etc.
  • a ring agent can be used.
  • Examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • content of the coupling agent (D) in an epoxy resin composition is not specifically limited, For example, when the whole epoxy resin composition is 100 mass%, it may be 0.01 mass% or more and 3 mass% or less. It is particularly preferably 0.1% by mass or more and 2% by mass or less.
  • content of a coupling agent (D) more than the said lower limit, the dispersibility of the inorganic filler (B) in an epoxy resin composition can be made favorable.
  • content of a coupling agent (D) below into the said upper limit the fluidity
  • the epoxy resin composition contains a phosphorus atom such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, or an adduct of a phosphonium compound and a silane compound.
  • a phosphorus atom such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, or an adduct of a phosphonium compound and a silane compound.
  • 1,8-diazabicyclo (5.4.0) undecene-7 amidine compounds such as imidazole, tertiary amines such as benzyldimethylamine and amidinium salts or quaternary onium salts of the above compounds, or ammonium salts
  • Curing accelerators such as nitrogen atom-containing compounds typified by; colorants such as carbon black; polybutadiene compounds, acrylonitrile butadiene copolymer compounds, natural waxes, synthetic waxes, higher fatty acids or their metal salts, paraffin, oxidized polyethylene, etc.
  • Type agents can contain various additives such as antioxidants; ion scavenger, such as hydrotalcite,; flame retardants such as aluminum hydroxide silicone oil, low-stress agent such as silicone rubber.
  • the relative dielectric constant ( ⁇ r ) at 1 MHz of the cured product of the epoxy resin composition is preferably 5 or more, more preferably 7 or more, and particularly preferably 8 or more.
  • the relative dielectric constant ( ⁇ r ) is equal to or higher than the lower limit, the dielectric properties of the epoxy resin composition can be further improved, and the sensitivity of the capacitive fingerprint sensor 100 can be further improved.
  • the epoxy resin composition is in a tablet form, the cured product of the epoxy resin composition is, for example, using a transfer molding machine under the conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. It can be obtained by injection molding an epoxy resin composition.
  • the cured body has, for example, a diameter of 50 mm and a thickness of 3 mm. Further, when the epoxy resin composition is a granular material, the cured product of the epoxy resin composition is, for example, using a compression molding machine, a mold temperature of 175 ° C., a molding pressure of 9.8 MPa, and a curing time of 300 seconds. The above epoxy resin composition is obtained by injection molding under the conditions described above. The cured body has, for example, a diameter of 50 mm and a thickness of 3 mm.
  • the relative dielectric constant ( ⁇ r ) of the cured product can be measured by, for example, Q-METER 4342A manufactured by YOKOGAWA-HEWRET PACKARD.
  • the upper limit of the relative dielectric constant ( ⁇ r ) is not particularly limited, but is, for example, 300 or less.
  • the dielectric loss tangent (tan ⁇ ) at 1 MHz of the cured epoxy resin composition is preferably 0.005 or more, more preferably 0.006 or more, and further preferably 0.007 or more.
  • the dielectric loss tangent (tan ⁇ ) is equal to or higher than the lower limit, the dielectric properties of the epoxy resin composition can be further improved, and the sensitivity of the capacitive fingerprint sensor 100 can be further improved.
  • the epoxy resin composition is in a tablet form
  • the cured product of the epoxy resin composition is, for example, using a transfer molding machine under the conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. It can be obtained by injection molding an epoxy resin composition.
  • the cured body has, for example, a diameter of 50 mm and a thickness of 3 mm. Further, when the epoxy resin composition is a granular material, the cured product of the epoxy resin composition is, for example, using a compression molding machine, a mold temperature of 175 ° C., a molding pressure of 9.8 MPa, and a curing time of 300 seconds. The above epoxy resin composition is obtained by injection molding under the conditions described above.
  • the cured body has, for example, a diameter of 50 mm and a thickness of 3 mm.
  • the dielectric loss tangent (tan ⁇ ) of the cured product can be measured by, for example, Q-METER 4342A manufactured by YOKOGAWA-HEWRET PACKARD.
  • the upper limit of the dielectric loss tangent (tan ⁇ ) is not particularly limited, but is 0.07 or less, for example.
  • the relative dielectric constant ( ⁇ r ) and the dielectric loss tangent (tan ⁇ ) can be controlled by appropriately adjusting the type and blending ratio of each component constituting the epoxy resin composition.
  • the more the inorganic filler having a large dielectric constant is used, the more the dielectric constant ( ⁇ r ) and the dielectric loss tangent (tan ⁇ ) of the cured epoxy resin composition can be improved.
  • the epoxy resin composition preferably has a flow length measured by spiral flow measurement of, for example, 30 cm or more and 200 cm or less, and more preferably 40 cm or more and 150 cm or less. Thereby, the improvement of the moldability of an epoxy resin composition can be aimed at.
  • the spiral flow measurement of the epoxy resin composition is performed by using, for example, a transfer molding machine and applying a mold temperature of 175 ° C. and an injection pressure of 9.8 MPa to a spiral flow measurement mold according to EMMI-1-66.
  • the epoxy resin composition is injected under the conditions of an injection time of 15 seconds and a curing time of 120 to 180 seconds, and the flow length is measured.
  • the glass transition temperature of the cured product of the epoxy resin composition is preferably 100 ° C. or higher, and more preferably 120 ° C. or higher. Thereby, the heat resistance of a fingerprint sensor can be improved more effectively.
  • the upper limit value of the glass transition temperature is not particularly limited, but can be, for example, 250 ° C.
  • the cured product of the epoxy resin composition preferably has a coefficient of linear expansion (CTE1) of 3 ppm / ° C. or higher, more preferably 6 ppm / ° C. or higher, at a glass transition temperature or lower.
  • the linear expansion coefficient (CTE1) below the glass transition temperature is, for example, preferably 50 ppm / ° C. or less, and more preferably 30 ppm / ° C. or less.
  • the cured product of the epoxy resin composition has a linear expansion coefficient (CTE2) of 10 ppm / ° C. or higher when the glass transition temperature is exceeded.
  • the linear expansion coefficient (CTE2) in excess of a glass transition temperature is 100 ppm / degrees C or less, for example.
  • the glass transition temperature and the linear expansion coefficient (CTE1, CTE2) of the cured product of the epoxy resin composition can be measured, for example, as follows. First, when the epoxy resin composition is in a tablet form, the cured product of the epoxy resin composition is, for example, using a transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. It is obtained by injection molding the above epoxy resin composition.
  • the cured body has a length of 10 mm, a width of 4 mm, and a thickness of 4 mm.
  • the cured product of the epoxy resin composition is, for example, using a compression molding machine, a mold temperature of 175 ° C., a molding pressure of 9.8 MPa, and a curing time of 300 seconds.
  • the above epoxy resin composition is obtained by injection molding under the conditions described above.
  • the cured body has a length of 10 mm, a width of 4 mm, and a thickness of 4 mm.
  • the obtained cured product was post-cured at 175 ° C. for 4 hours, and then measured using a thermomechanical analyzer (manufactured by Seiko Denshi Kogyo Co., Ltd., TMA100) at a measurement temperature range of 0 ° C. to 320 ° C. Measurement is performed at 5 ° C./min. From this measurement result, the coefficient of linear expansion (CTE1) below the glass transition temperature, the glass transition temperature, and the coefficient of linear expansion (CTE2) above the glass transition temperature are calculated.
  • CTE1 coefficient of linear expansion
  • CTE2 coefficient of linear expansion
  • the above-mentioned glass transition temperature, linear expansion coefficient (CTE1) below the glass transition temperature, and linear expansion coefficient (CTE2) when the glass transition temperature is exceeded should appropriately adjust the type and blending ratio of each component constituting the epoxy resin composition. It is possible to control by.
  • selecting an appropriate type of inorganic filler (B) is a factor for controlling CTE1 and CTE2.
  • CTE1 and CTE2 of the hardening body of an epoxy resin composition can be reduced by using a silica particle with a small linear expansion coefficient as an inorganic filler (B).
  • the capacitive fingerprint sensor 100 is a fingerprint sensor that reads fingerprint information by, for example, a capacitive method that senses the capacitance with a finger.
  • the fingerprint sensor reads the unevenness of the finger placed on the fingerprint sensor.
  • the capacitive fingerprint sensor 100 is provided with a detection electrode 103 that is finer than the unevenness of the fingerprint. Then, a two-dimensional image representing the fingerprint irregularities is created by the capacitance accumulated between the fingerprint irregularities and the detection electrode 103.
  • a two-dimensional image representing the concave and convex portions of the fingerprint can be created from the difference in the electrostatic capacitance. Fingerprint information can be read from this two-dimensional image.
  • FIG. 1 is a cross-sectional view schematically showing a capacitive fingerprint sensor 100 according to the present embodiment.
  • the capacitive fingerprint sensor 100 according to this embodiment includes a substrate 101, a detection electrode 103 provided on the substrate 101, and an insulating film 105 that seals the detection electrode 103.
  • the insulating film 105 is formed of a cured product of an epoxy resin composition.
  • the epoxy resin composition for example, the above-mentioned components are mixed by a known means, further melt-kneaded with a kneader such as a roll, kneader or extruder, cooled and pulverized, and pulverized into a tablet.
  • a kneader such as a roll, kneader or extruder
  • cooled and pulverized and pulverized into a tablet.
  • a tablet-molded product, or a product whose dispersity, fluidity, etc. are appropriately adjusted as necessary can be used.
  • the thickness D of the insulating film 105 on the substrate 101 is, for example, 100 ⁇ m or less, more preferably 75 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the substrate 101 is, for example, a chip-shaped silicon substrate.
  • the detection electrode 103 is formed of an Al film, for example, and is arranged on the substrate 101 in a one-dimensional or two-dimensional array via an interlayer film 107.
  • the interlayer film 107 is formed of, for example, SiO 2 .
  • the upper surface of the detection electrode 103 is covered with an insulating film 105.
  • the detection electrode 103 is subjected to wire bonding, for example.
  • the capacitive fingerprint sensor 100 according to the present embodiment can be manufactured based on known information. For example, it is manufactured as follows. First, after providing the interlayer film 107 on the substrate 101, the detection electrode 103 is formed on the interlayer film 107. Next, the detection electrode 103 is encapsulated with an epoxy resin composition. Examples of the molding method include a transfer molding method, a compression molding method, and casting. Next, the epoxy resin composition is thermally cured to form the insulating film 105. Thereby, the capacitive fingerprint sensor 100 according to the present embodiment is obtained.
  • the insulating film 105 that seals the detection electrode 103 is configured by a cured product of an epoxy resin composition that includes an epoxy resin (A) and an inorganic filler (B). Since the cured product of the epoxy resin composition has excellent dielectric characteristics, the sensitivity of the capacitive fingerprint sensor 100 can be improved.
  • epoxy resin compositions were prepared as follows. First, each component mix
  • the details of each component in Table 1 are as follows.
  • Epoxy resin Epoxy resin 1 Biphenyl type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YX-4000K)
  • Curing accelerator 2 Curing accelerator represented by the following formula (5)
  • Low stress agent 1 Acrylonitrile butadiene rubber (manufactured by Ube Industries, carboxyl group-terminated butadiene acrylic rubber, CTBN1008SP)
  • Low stress agent 2 Silicone oil Colorant: Carbon black Release agent: Carnauba wax ion scavenger: Hydrotalcite
  • the relative dielectric constant and dielectric loss tangent of the epoxy resin composition were measured as follows. Using the low pressure transfer molding machine (“KTS-30” manufactured by Kotaki Seiki Co., Ltd.), the above epoxy resin composition was applied to the mold under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. A cured product of the epoxy resin composition was obtained by injection molding. This cured body had a diameter of 50 mm and a thickness of 3 mm.
  • Glass transition temperature, linear expansion coefficient About each Example, the glass transition temperature (Tg) and the linear expansion coefficient (CTE1, CTE2) of the hardening body of the epoxy resin composition were measured as follows. Using the low pressure transfer molding machine (“KTS-30” manufactured by Kotaki Seiki Co., Ltd.), the above epoxy resin composition was applied to the mold under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. A cured product of the epoxy resin composition was obtained by injection molding. The cured body had a length of 10 mm, a width of 4 mm, and a thickness of 4 mm. Subsequently, the obtained cured product was post-cured at 175 ° C.
  • KTS-30 low pressure transfer molding machine
  • thermomechanical analyzer manufactured by Seiko Denshi Kogyo Co., Ltd., TMA100
  • Tg glass transition temperature
  • CTE1 linear expansion coefficient
  • CTE2 linear expansion coefficient
  • Each of the capacitive fingerprint sensors obtained in Examples 1 to 9 clearly displayed a two-dimensional image of a fingerprint and showed a good sensitivity.
  • Examples 2 to 9 which are particularly excellent in dielectric characteristics, showed clearer two-dimensional images of fingerprints than Example 1 and showed excellent sensitivity.
  • Examples 1 to 3, 6 to 7, and 9 showed excellent results in the moldability test.
  • the electrostatic capacitance type fingerprint sensors obtained by Examples 1 to 9 were all prevented from warping.
  • the CTE1 of the cured products of the epoxy resin compositions obtained in Examples 1 to 9 were all in the range of 3 ppm / ° C. to 50 ppm / ° C.
  • the CTE2 of the cured products of the epoxy resin compositions obtained in Examples 1 to 9 were all in the range of 10 ppm / ° C. to 100 ppm / ° C.
  • using an inorganic filler (B) that is obtained by cutting coarse particles can suppress unfilling during molding. This is preferable because it is possible.
  • the epoxy resin compositions of Examples 7 to 9 could be molded without filling the fingerprint sensor even when the thickness D of the insulating film 105 was 50 ⁇ m, and were excellent in moldability as compared with the epoxy resin compositions of Examples 1 to 6.
  • the epoxy resin compositions of Examples 7 to 9 did not warp the fingerprint sensor even when the thickness D of the insulating film 105 was 50 ⁇ m. That is, the epoxy resin compositions of Examples 7 to 9 clearly displayed two-dimensional images of fingerprints, and exhibited better moldability while exhibiting good sensitivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

This epoxy resin composition is used to form an insulating film (105) which constitutes an electrostatic-capacitance-type fingerprint sensor (100) that comprises a substrate (101), detection electrodes (103) provided on the substrate (101), and the insulating film (105) which seals the detection electrodes (103). This epoxy resin composition includes an epoxy resin (A) and an inorganic filler (B).

Description

エポキシ樹脂組成物および静電容量型指紋センサーEpoxy resin composition and capacitive fingerprint sensor
 本発明は、エポキシ樹脂組成物および静電容量型指紋センサーに関する。 The present invention relates to an epoxy resin composition and a capacitive fingerprint sensor.
 指紋センサーについては、様々な技術が検討されている。たとえば特許文献1では、静電容量方式によって指紋情報を検出する半導体指紋センサーについて検討されている。
 特許文献1には、シリコンなどの基板上に、層間膜を介して、電極がアレイ状に配置され、その上面を絶縁膜でオーバーコートした指紋読み取りセンサーが記載されている。
Various technologies have been studied for fingerprint sensors. For example, Patent Document 1 discusses a semiconductor fingerprint sensor that detects fingerprint information by a capacitance method.
Patent Document 1 describes a fingerprint reading sensor in which electrodes are arranged in an array on a substrate such as silicon via an interlayer film, and the upper surface thereof is overcoated with an insulating film.
特開2004-234245号公報JP 2004-234245 A
 基板と、上記基板上に設けられた検出電極と、上記検出電極を封止する絶縁膜と、を備える静電容量型指紋センサーについて、その感度を向上させることが求められている。 It is required to improve the sensitivity of a capacitive fingerprint sensor including a substrate, a detection electrode provided on the substrate, and an insulating film that seals the detection electrode.
 本発明によれば、
 基板と、
 上記基板上に設けられた検出電極と、
 上記検出電極を封止する絶縁膜と、
を備える静電容量型指紋センサーを構成する上記絶縁膜の形成に用いるエポキシ樹脂組成物であって、
 エポキシ樹脂(A)と、
 無機充填剤(B)と、
 を含むエポキシ樹脂組成物が提供される。
According to the present invention,
A substrate,
A detection electrode provided on the substrate;
An insulating film for sealing the detection electrode;
An epoxy resin composition used for forming the insulating film constituting a capacitive fingerprint sensor comprising:
Epoxy resin (A),
An inorganic filler (B);
An epoxy resin composition is provided.
 また、本発明によれば、
 基板と、
 上記基板上に設けられた検出電極と、
 上記検出電極を封止し、かつ、上記エポキシ樹脂組成物の硬化物により形成された絶縁膜と、
を備える静電容量型指紋センサーが提供される。
Moreover, according to the present invention,
A substrate,
A detection electrode provided on the substrate;
Sealing the detection electrode, and an insulating film formed of a cured product of the epoxy resin composition;
A capacitive fingerprint sensor is provided.
 本発明によれば、静電容量型指紋センサーの感度を向上させることができる。 According to the present invention, the sensitivity of the capacitive fingerprint sensor can be improved.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本実施形態に係る静電容量型指紋センサーを模式的に示す断面図である。It is sectional drawing which shows typically the electrostatic capacitance type fingerprint sensor which concerns on this embodiment.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1は、本実施形態に係る静電容量型指紋センサー100を模式的に示す断面図である。
 本実施形態に係る静電容量型指紋センサー100は、基板101と、基板101上に設けられた検出電極103と、検出電極103を封止する絶縁膜105と、を備えている。絶縁膜105は、エポキシ樹脂組成物の硬化物により形成されている。また、上記エポキシ樹脂組成物は、エポキシ樹脂(A)と、無機充填剤(B)と、を含む。
FIG. 1 is a cross-sectional view schematically showing a capacitive fingerprint sensor 100 according to the present embodiment.
The capacitive fingerprint sensor 100 according to this embodiment includes a substrate 101, a detection electrode 103 provided on the substrate 101, and an insulating film 105 that seals the detection electrode 103. The insulating film 105 is formed of a cured product of an epoxy resin composition. Moreover, the said epoxy resin composition contains an epoxy resin (A) and an inorganic filler (B).
 本発明者は、検出電極を封止する絶縁膜を、エポキシ樹脂(A)と、無機充填剤(B)とを含むエポキシ樹脂組成物の硬化物によって構成することにより、静電容量型指紋センサーの感度を向上させることができることを新たに知見し、本実施形態の構成に至った。
 本実施形態によれば、検出電極103を封止する絶縁膜105は、エポキシ樹脂(A)と、無機充填剤(B)と、を含むエポキシ樹脂組成物の硬化物により構成される。このような硬化物は誘電特性に優れている。このため、静電容量型指紋センサー100の感度を向上させることができる。ここで、本実施形態において、誘電特性に優れるとは、たとえば、比誘電率および誘電正接が高く、静電容量が大きいことを意味する。
The present inventor forms a capacitive fingerprint sensor by forming an insulating film for sealing a detection electrode with a cured product of an epoxy resin composition containing an epoxy resin (A) and an inorganic filler (B). It has been newly found that the sensitivity of can be improved, and the configuration of the present embodiment has been achieved.
According to this embodiment, the insulating film 105 that seals the detection electrode 103 is configured by a cured product of an epoxy resin composition that includes an epoxy resin (A) and an inorganic filler (B). Such a cured product has excellent dielectric properties. For this reason, the sensitivity of the capacitive fingerprint sensor 100 can be improved. Here, in the present embodiment, being excellent in dielectric characteristics means that, for example, the relative permittivity and the dielectric loss tangent are high and the capacitance is large.
 以下、本実施形態に係るエポキシ樹脂組成物について詳細に説明する。
 エポキシ樹脂組成物は、基板101上に設けられた検出電極103を封止する絶縁膜105を形成するために用いられる。エポキシ樹脂組成物を用いた封止成形は、とくに限定されないが、たとえばトランスファー成形法、または圧縮成形法により行うことができる。エポキシ樹脂組成物は、たとえばタブレット状または粉粒体である。エポキシ樹脂組成物がタブレット状である場合、たとえばトランスファー成形法を用いてエポキシ樹脂組成物を成形することができる。また、エポキシ樹脂組成物が粉粒体である場合には、たとえば圧縮成形法を用いてエポキシ樹脂組成物を成形することができる。エポキシ樹脂組成物が粉粒体であるとは、粉末状または顆粒状のいずれかである場合を指す。
Hereinafter, the epoxy resin composition according to the present embodiment will be described in detail.
The epoxy resin composition is used to form an insulating film 105 that seals the detection electrode 103 provided on the substrate 101. The sealing molding using the epoxy resin composition is not particularly limited, but can be performed by, for example, a transfer molding method or a compression molding method. The epoxy resin composition is, for example, a tablet or a granular material. When the epoxy resin composition is tablet-like, the epoxy resin composition can be molded using, for example, a transfer molding method. Moreover, when an epoxy resin composition is a granular material, an epoxy resin composition can be shape | molded, for example using a compression molding method. The term “epoxy resin composition is in the form of a granular material” refers to a powder or granule.
(エポキシ樹脂(A))
 エポキシ樹脂(A)としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は特に限定されない。
 本実施形態において、エポキシ樹脂(A)としては、たとえばビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
 これらのうち、耐湿信頼性と成形性のバランスを向上させる観点からは、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、およびトリフェノールメタン型エポキシ樹脂のうちの少なくとも一つを含むことがより好ましく、ビフェニル型エポキシ樹脂およびフェノールアラルキル型エポキシ樹脂のうちの少なくとも一方を含むことがとくに好ましい。
(Epoxy resin (A))
As the epoxy resin (A), monomers, oligomers and polymers generally having two or more epoxy groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
In the present embodiment, as the epoxy resin (A), for example, biphenyl type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbisphenol F type epoxy resin; stilbene type epoxy resin; Novolak type epoxy resins such as phenol novolac type epoxy resins and cresol novolak type epoxy resins; polyfunctional epoxy resins such as triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins; phenol aralkyl type epoxy resins having a phenylene skeleton; Aralkyl-type epoxy resins such as phenol aralkyl-type epoxy resins having a biphenylene skeleton; dihydroxynaphthalene-type epoxy resin, dihydroxynaphthalene Naphthol type epoxy resins such as epoxy resins obtained by glycidyl ether conversion; triazine nucleus-containing epoxy resins such as triglycidyl isocyanurate and monoallyl diglycidyl isocyanurate; bridged cyclic hydrocarbons such as dicyclopentadiene modified phenol type epoxy resins Compound-modified phenol type epoxy resins may be mentioned, and these may be used alone or in combination of two or more.
Among these, from the viewpoint of improving the balance between moisture resistance reliability and moldability, among bisphenol type epoxy resin, novolac type epoxy resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin, and triphenolmethane type epoxy resin More preferably, it contains at least one, and particularly preferably contains at least one of a biphenyl type epoxy resin and a phenol aralkyl type epoxy resin.
 エポキシ樹脂(A)としては、下記式(1)で表されるエポキシ樹脂、下記式(2)で表されるエポキシ樹脂、および下記式(3)で表されるエポキシ樹脂からなる群から選択される少なくとも1種を含有するものを用いることがとくに好ましい。 The epoxy resin (A) is selected from the group consisting of an epoxy resin represented by the following formula (1), an epoxy resin represented by the following formula (2), and an epoxy resin represented by the following formula (3). It is particularly preferable to use a material containing at least one kind.
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Arはフェニレン基またはナフチレン基を表し、Arがナフチレン基の場合、グリシジルエーテル基はα位、β位のいずれに結合していてもよい。Arはフェニレン基、ビフェニレン基またはナフチレン基のうちのいずれか1つの基を表す。RおよびRは、それぞれ独立に炭素数1~10の炭化水素基を表す。gは0~5の整数であり、hは0~8の整数である。nは重合度を表し、その平均値は1~3である)
Figure JPOXMLDOC01-appb-C000001
(In Formula (1), Ar 1 represents a phenylene group or a naphthylene group, and when Ar 1 is a naphthylene group, the glycidyl ether group may be bonded to either the α-position or the β-position. Ar 2 is a phenylene group. R a and R b each independently represents a hydrocarbon group having 1 to 10 carbon atoms, g is an integer of 0 to 5 and h represents a group selected from the group consisting of a biphenylene group and a naphthylene group. Is an integer from 0 to 8. n 3 represents the degree of polymerization, and the average value is from 1 to 3.
Figure JPOXMLDOC01-appb-C000002
(式(2)中、複数存在するRは、それぞれ独立に水素原子または炭素数1~4の炭化水素基を表す。nは重合度を表し、その平均値は0~4である)
Figure JPOXMLDOC01-appb-C000002
(In the formula (2), a plurality of R c s each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. N 5 represents a degree of polymerization, and an average value thereof is 0 to 4)
Figure JPOXMLDOC01-appb-C000003
(式(3)中、複数存在するRおよびRは、それぞれ独立に水素原子又は炭素数1~4の炭化水素基を表す。nは重合度を表し、その平均値は0~4である)
Figure JPOXMLDOC01-appb-C000003
(In Formula (3), a plurality of R d and R e each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. N 6 represents the degree of polymerization, and the average value thereof is 0 to 4) Is)
 本実施形態において、エポキシ樹脂組成物中におけるエポキシ樹脂(A)の含有量は、エポキシ樹脂組成物全体を100質量%としたとき、2質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることがとくに好ましい。エポキシ樹脂(A)の含有量を上記下限値以上とすることにより、成形時において、十分な流動性を実現し、充填性や成形性の向上を図ることができる。
 一方で、エポキシ樹脂組成物中におけるエポキシ樹脂(A)の含有量は、エポキシ樹脂組成物全体を100質量%としたとき、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがとくに好ましい。エポキシ樹脂(A)の含有量を上記上限値以下とすることにより、エポキシ樹脂組成物の硬化物を絶縁膜105として用いる静電容量型指紋センサー100について、耐湿信頼性や耐リフロー性を向上させることができる。
In the present embodiment, the content of the epoxy resin (A) in the epoxy resin composition is preferably 2% by mass or more, preferably 3% by mass or more when the entire epoxy resin composition is 100% by mass. It is more preferable that the content is 4% by mass or more. By making content of an epoxy resin (A) more than the said lower limit, sufficient fluidity | liquidity can be implement | achieved at the time of shaping | molding, and the improvement of a fillability or a moldability can be aimed at.
On the other hand, the content of the epoxy resin (A) in the epoxy resin composition is preferably 30% by mass or less and more preferably 20% by mass or less when the entire epoxy resin composition is 100% by mass. More preferred is 10% by mass or less. By making the content of the epoxy resin (A) not more than the above upper limit value, the moisture resistance reliability and the reflow resistance of the capacitive fingerprint sensor 100 using the cured product of the epoxy resin composition as the insulating film 105 is improved. be able to.
(無機充填剤(B))
 無機充填剤(B)の構成材料としては、とくに限定されないが、たとえば酸化チタン、五酸化タンタル、五酸化ニオブ、チタン酸バリウム、シリカ、アルミナ、カオリン、タルク、クレイ、マイカ、ロックウール、ウォラストナイト、ガラスパウダー、ガラスフレーク、ガラスビーズ、ガラスファイバー、炭化ケイ素、窒化ケイ素、窒化アルミ、カーボンブラック、グラファイト、二酸化チタン、炭酸カルシウム、硫酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、硫酸バリウム、セルロース、アラミド、木材、またはフェノール樹脂成形材料やエポキシ樹脂成形材料の硬化物を粉砕した粉砕粉等が挙げられ、これらのうちいずれか1種以上を使用できる。
 これらの中でも、比誘電率(1MHz)が5以上の無機充填剤であることが好ましく、得られるエポキシ樹脂組成物の硬化体の比誘電率を特に向上できる観点から、酸化チタン、アルミナ、五酸化タンタル、五酸化ニオブ、チタン酸バリウムから選択される一種または二種以上を用いることがより好ましく、アルミナ、酸化チタンおよびチタン酸バリウムから選択される一種または二種以上を用いることがさらに好ましく、酸化チタンおよびチタン酸バリウムから選択される一種または二種以上を用いることがさらに好ましく、樹脂の酸化劣化を抑制する観点から、ルチル型の酸化チタンを用いることがとくに好ましい。
(Inorganic filler (B))
The constituent material of the inorganic filler (B) is not particularly limited. For example, titanium oxide, tantalum pentoxide, niobium pentoxide, barium titanate, silica, alumina, kaolin, talc, clay, mica, rock wool, wollast. Knight, glass powder, glass flake, glass beads, glass fiber, silicon carbide, silicon nitride, aluminum nitride, carbon black, graphite, titanium dioxide, calcium carbonate, calcium sulfate, barium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, cellulose Aramid, wood, or a pulverized powder obtained by pulverizing a cured product of a phenol resin molding material or an epoxy resin molding material, and any one or more of these can be used.
Among these, it is preferable that the relative dielectric constant (1 MHz) is an inorganic filler of 5 or more. From the viewpoint of particularly improving the relative dielectric constant of the cured product of the resulting epoxy resin composition, titanium oxide, alumina, pentoxide. It is more preferable to use one or more selected from tantalum, niobium pentoxide, and barium titanate, and more preferable to use one or more selected from alumina, titanium oxide, and barium titanate, and oxidation. It is more preferable to use one or more selected from titanium and barium titanate, and it is particularly preferable to use rutile titanium oxide from the viewpoint of suppressing oxidative degradation of the resin.
 本実施形態において、エポキシ樹脂組成物中における無機充填剤(B)の含有量は、エポキシ樹脂組成物全体を100質量%としたとき、エポキシ樹脂組成物全体に対して50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが特に好ましい。無機充填剤(B)の含有量を上記下限値以上とすることにより、エポキシ樹脂組成物の誘電特性をより一層向上させ、静電容量型指紋センサー100の感度をより一層向上させることができる。
 一方で、エポキシ樹脂組成物中における無機充填剤(B)の含有量は、エポキシ樹脂組成物全体を100質量%としたとき、97質量%以下であることが好ましく、95質量%以下であることがより好ましい。無機充填剤(B)の含有量を上記上限値以下とすることにより、エポキシ樹脂組成物の成形時における流動性や充填性をより効果的に向上させることが可能となる。
In this embodiment, content of the inorganic filler (B) in an epoxy resin composition is 50 mass% or more with respect to the whole epoxy resin composition when the whole epoxy resin composition is 100 mass%. Is more preferably 70% by mass or more, and particularly preferably 80% by mass or more. By setting the content of the inorganic filler (B) to the above lower limit value or more, the dielectric properties of the epoxy resin composition can be further improved, and the sensitivity of the capacitive fingerprint sensor 100 can be further improved.
On the other hand, the content of the inorganic filler (B) in the epoxy resin composition is preferably 97% by mass or less and 95% by mass or less when the entire epoxy resin composition is 100% by mass. Is more preferable. By making content of an inorganic filler (B) below the said upper limit, it becomes possible to improve the fluidity | liquidity and filling property at the time of shaping | molding of an epoxy resin composition more effectively.
 無機充填剤(B)の平均粒径D50は、0.01μm以上50μm以下であることが好ましく、0.1μm以上30μm以下であることがより好ましい。平均粒径D50を上記下限値以上とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。また、平均粒径D50を上記上限値以下とすることにより、ゲート詰まり等が生じることを確実に抑制できる。また、指紋センサーの感度を向上させるために、基板101(例えば、シリコンチップ)上の絶縁膜105の厚みDを50μm以下のような薄いものにした場合、エポキシ樹脂組成物の未充填不良を抑制するために、無機充填剤(B)の平均粒径D50は10μm以下であることが好ましく、5μm以下であることがより好ましい。なお、平均粒径D50は、市販のレーザー式粒度分布計(たとえば、(株)島津製作所製、SALD-7000)を用いて、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒径D50とすることができる。 The average particle diameter D 50 of the inorganic filler (B) is preferably 0.01 μm or more and 50 μm or less, and more preferably 0.1 μm or more and 30 μm or less. By the average particle diameter D 50 of less than the above lower limit, the fluidity of the epoxy resin composition is made excellent, it is possible to improve the formability more effectively. Further, by the average particle diameter D 50 and more than the above upper limit can reliably prevent the gate clogging occurs. In addition, in order to improve the sensitivity of the fingerprint sensor, when the thickness D of the insulating film 105 on the substrate 101 (for example, silicon chip) is made as thin as 50 μm or less, the unfilled defect of the epoxy resin composition is suppressed. to, it is preferable that the average particle size D 50 of the inorganic filler (B) is 10μm or less, more preferably 5μm or less. The average particle diameter D 50 is a commercially available laser particle size distribution analyzer (e.g., manufactured by Shimadzu Corporation, SALD-7000) was used to measure the particle size distribution of the particles on a volume basis, the median diameter (D can be 50) and the average particle diameter D 50.
 酸化チタンは、当業者にて公知のものを用いることができる。
 無機充填剤(B)中における酸化チタンの含有量は、とくに限定されないが、たとえば無機充填剤(B)全体に対して、1質量%以上100質量%以下であることが好ましく、2質量%以上80質量%以下であることがより好ましく、5質量%以上50質量%以下であることがとくに好ましい。
 酸化チタンの含有量を上記下限値以上とすることにより、エポキシ樹脂組成物の誘電特性をより一層向上させ、静電容量型指紋センサー100の感度をより一層向上させることができる。また、酸化チタンの含有量を上記上限値以下とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。
 酸化チタンの平均粒径D50は、0.01μm以上20μm以下であることが好ましく、0.1μm以上15μm以下であることがより好ましい。平均粒径D50を上記下限値以上とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。また、平均粒径D50を上記上限値以下とすることにより、ゲート詰まり等が生じることを確実に抑制できる。また、指紋センサーの感度を向上させるために、基板101(例えば、シリコンチップ)上の絶縁膜105の厚みDを50μm以下のような薄いものにした場合、エポキシ樹脂組成物の未充填不良を抑制するために、酸化チタンの平均粒径D50は10μm以下であることが好ましく、5μm以下であることがより好ましい。
As the titanium oxide, those known to those skilled in the art can be used.
Although content of the titanium oxide in an inorganic filler (B) is not specifically limited, For example, it is preferable that it is 1 mass% or more and 100 mass% or less with respect to the whole inorganic filler (B), and 2 mass% or more. It is more preferably 80% by mass or less, and particularly preferably 5% by mass or more and 50% by mass or less.
By setting the content of titanium oxide to the above lower limit value or more, the dielectric properties of the epoxy resin composition can be further improved, and the sensitivity of the capacitive fingerprint sensor 100 can be further improved. Moreover, by making content of titanium oxide below the said upper limit, the fluidity | liquidity of an epoxy resin composition can be made favorable, and it becomes possible to improve a moldability more effectively.
The average particle diameter D 50 of the titanium oxide is preferably 0.01μm or more 20μm or less, more preferably 0.1μm or 15μm or less. By the average particle diameter D 50 of less than the above lower limit, the fluidity of the epoxy resin composition is made excellent, it is possible to improve the formability more effectively. Further, by the average particle diameter D 50 and more than the above upper limit can reliably prevent the gate clogging occurs. In addition, in order to improve the sensitivity of the fingerprint sensor, when the thickness D of the insulating film 105 on the substrate 101 (for example, silicon chip) is made as thin as 50 μm or less, the unfilled defect of the epoxy resin composition is suppressed. Therefore, the average particle diameter D 50 of titanium oxide is preferably 10 μm or less, and more preferably 5 μm or less.
 チタン酸バリウムは、当業者にて公知のものを用いることができる。
 無機充填剤(B)中におけるチタン酸バリウムの含有量は、とくに限定されないが、たとえば無機充填剤(B)全体に対して、10質量%以上100質量%以下であることが好ましく、25質量%以上90質量%以下であることがより好ましく、40質量%以上75質量%以下であることがとくに好ましい。
 チタン酸バリウムの含有量を上記下限値以上とすることにより、エポキシ樹脂組成物の誘電特性をより一層向上させ、静電容量型指紋センサー100の感度をより一層向上させることができる。また、チタン酸バリウムの含有量を上記上限値以下とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。
 チタン酸バリウムの平均粒径D50は、0.01μm以上20μm以下であることが好ましく、0.1μm以上15μm以下であることがより好ましい。平均粒径D50を上記下限値以上とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。また、平均粒径D50を上記上限値以下とすることにより、ゲート詰まり等が生じることを確実に抑制できる。また、指紋センサーの感度を向上させるために、基板101(例えば、シリコンチップ)上の絶縁膜105の厚みDを50μm以下のような薄いものにした場合、エポキシ樹脂組成物の未充填不良を抑制するために、チタン酸バリウムの平均粒径D50は10μm以下であることが好ましく、5μm以下であることがより好ましい。
As the barium titanate, those known to those skilled in the art can be used.
Although content of barium titanate in an inorganic filler (B) is not specifically limited, For example, it is preferable that it is 10 to 100 mass% with respect to the whole inorganic filler (B), and is 25 mass%. It is more preferably 90% by mass or less and particularly preferably 40% by mass or more and 75% by mass or less.
By setting the content of barium titanate to the above lower limit value or more, the dielectric properties of the epoxy resin composition can be further improved, and the sensitivity of the capacitive fingerprint sensor 100 can be further improved. Moreover, by setting the content of barium titanate to the upper limit value or less, it is possible to improve the flowability of the epoxy resin composition and improve the moldability more effectively.
The average particle diameter D 50 of barium titanate is preferably 0.01 μm or more and 20 μm or less, and more preferably 0.1 μm or more and 15 μm or less. By the average particle diameter D 50 of less than the above lower limit, the fluidity of the epoxy resin composition is made excellent, it is possible to improve the formability more effectively. Further, by the average particle diameter D 50 and more than the above upper limit can reliably prevent the gate clogging occurs. In addition, in order to improve the sensitivity of the fingerprint sensor, when the thickness D of the insulating film 105 on the substrate 101 (for example, silicon chip) is made as thin as 50 μm or less, the unfilled defect of the epoxy resin composition is suppressed. Therefore, the average particle diameter D 50 of barium titanate is preferably 10 μm or less, and more preferably 5 μm or less.
 また、得られる指紋センサーの感度を向上させつつ、指紋センサーの反りを抑制する観点から、無機充填剤(B)は酸化チタン、アルミナ、五酸化タンタル、五酸化ニオブ、チタン酸バリウムから選択される一種または二種以上の無機充填剤と、シリカとを併用することが好ましく、アルミナ、酸化チタンおよびチタン酸バリウムから選択される一種または二種以上の無機充填剤と、とシリカ粒子とを併用することがより好ましく、酸化チタンおよびチタン酸バリウムから選択される一種または二種以上の無機充填剤と、とシリカ粒子とを併用することが特に好ましい。
 また、本実施形態においては、無機充填剤(B)が平均粒径1μm以下の微粉シリカを含むことが、エポキシ樹脂組成物の充填性を向上させる観点や、指紋センサーの反りを抑制する観点から、好ましい態様の一つとして挙げられる。
Further, from the viewpoint of suppressing the warpage of the fingerprint sensor while improving the sensitivity of the obtained fingerprint sensor, the inorganic filler (B) is selected from titanium oxide, alumina, tantalum pentoxide, niobium pentoxide, and barium titanate. One or two or more inorganic fillers are preferably used in combination with silica, and one or more inorganic fillers selected from alumina, titanium oxide and barium titanate are used in combination with silica particles. More preferably, it is particularly preferable to use one or more inorganic fillers selected from titanium oxide and barium titanate in combination with silica particles.
In the present embodiment, the inorganic filler (B) contains finely divided silica having an average particle diameter of 1 μm or less from the viewpoint of improving the filling property of the epoxy resin composition and from the viewpoint of suppressing the warpage of the fingerprint sensor. Can be mentioned as one of preferred embodiments.
(硬化剤(C))
 エポキシ樹脂組成物は、たとえば硬化剤(C)を含むことができる。硬化剤(C)としては、エポキシ樹脂(A)と反応して硬化させるものであればとくに限定されないが、たとえばエチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数2~20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミン類;アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂、トリスフェノールメタン型フェノールノボラック樹脂等のノボラック型フェノール樹脂;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂等のフェノールアラルキル樹脂;ナフタレン骨格やアントラセン骨格のような縮合多環構造を有するフェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物等;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(Curing agent (C))
The epoxy resin composition can contain, for example, a curing agent (C). The curing agent (C) is not particularly limited as long as it can be cured by reacting with the epoxy resin (A), but for example, ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine and the like having 2 to 20 carbon atoms. Linear aliphatic diamine, metaphenylenediamine, paraphenylenediamine, paraxylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl Sulfone, 4,4′-diaminodicyclohexane, bis (4-aminophenyl) phenylmethane, 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, dicyano Ami such as diamide Resol type phenol resins such as aniline-modified resole resin and dimethyl ether resole resin; Novolak type phenol resins such as phenol novolak resin, cresol novolak resin, tert-butylphenol novolak resin, nonylphenol novolak resin, trisphenolmethane type phenol novolak resin; phenylene Phenol aralkyl resins such as skeleton-containing phenol aralkyl resins and biphenylene skeleton-containing phenol aralkyl resins; phenol resins having a condensed polycyclic structure such as naphthalene skeleton and anthracene skeleton; polyoxystyrenes such as polyparaoxystyrene; hexahydrophthalic anhydride (HHPA) ), Alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride (MTHPA), trimellitic anhydride (TMA) , Acid anhydrides including aromatic acid anhydrides such as pyromellitic anhydride (PMDA) and benzophenone tetracarboxylic acid (BTDA); polymercaptan compounds such as polysulfides, thioesters, thioethers; isocyanate prepolymers, blocked isocyanates, etc. Isocyanate compounds; organic acids such as carboxylic acid-containing polyester resins. These may be used alone or in combination of two or more.
 エポキシ樹脂組成物中における硬化剤(C)の含有量は、とくに限定されないが、たとえば、エポキシ樹脂組成物全体を100質量%としたとき、0.5質量%以上20質量%以下であることが好ましく、1.5質量%以上20質量%以下であることがより好ましく、2質量%以上15質量%以下であることがさらに好ましく、2質量%以上10質量%以下であることがとくに好ましい。 Although content of the hardening | curing agent (C) in an epoxy resin composition is not specifically limited, For example, when the whole epoxy resin composition is 100 mass%, it may be 0.5 mass% or more and 20 mass% or less. It is preferably 1.5% by mass or more and 20% by mass or less, more preferably 2% by mass or more and 15% by mass or less, and particularly preferably 2% by mass or more and 10% by mass or less.
(カップリング剤(D))
 エポキシ樹脂組成物は、たとえばカップリング剤(D)を含むことができる。カップリング剤(D)としては、たとえばエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を用いることができる。
 これらを例示すると、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンの加水分解物等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Coupling agent (D))
An epoxy resin composition can contain a coupling agent (D), for example. As the coupling agent (D), known cups such as various silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, titanium compounds, aluminum chelates, aluminum / zirconium compounds, etc. A ring agent can be used.
Examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxy. Silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane Vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropylmethyldimethoxysilane, -[Bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl) ) Ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ- Chloropropyltrime Xysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl) Silane coupling agents such as hydrolysates of butylidene) propylamine, isopropyl triisostearoyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditri) Decylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) Oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tric Examples include titanate coupling agents such as milphenyl titanate and tetraisopropyl bis (dioctyl phosphite) titanate. These may be used individually by 1 type and may be used in combination of 2 or more type.
 エポキシ樹脂組成物中におけるカップリング剤(D)の含有量は、とくに限定されないが、たとえばエポキシ樹脂組成物全体を100質量%としたとき、0.01質量%以上3質量%以下であることが好ましく、0.1質量%以上2質量%以下であることがとくに好ましい。カップリング剤(D)の含有量を上記下限値以上とすることにより、エポキシ樹脂組成物中における無機充填剤(B)の分散性を良好なものとすることができる。また、カップリング剤(D)の含有量を上記上限値以下とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性の向上を図ることができる。 Although content of the coupling agent (D) in an epoxy resin composition is not specifically limited, For example, when the whole epoxy resin composition is 100 mass%, it may be 0.01 mass% or more and 3 mass% or less. It is particularly preferably 0.1% by mass or more and 2% by mass or less. By making content of a coupling agent (D) more than the said lower limit, the dispersibility of the inorganic filler (B) in an epoxy resin composition can be made favorable. Moreover, by making content of a coupling agent (D) below into the said upper limit, the fluidity | liquidity of an epoxy resin composition can be made favorable and the improvement of a moldability can be aimed at.
(その他の成分(E))
 エポキシ樹脂組成物は、上記成分の他に、たとえば有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、もしくはホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物、または1,8-ジアザビシクロ(5.4.0)ウンデセン-7、イミダゾールなどのアミジン系化合物、ベンジルジメチルアミンなどの3級アミンや上記化合物の4級オニウム塩であるアミジニウム塩、もしくはアンモニウム塩などに代表される窒素原子含有化合物等の硬化促進剤;カーボンブラック等の着色剤;ポリブタジエン化合物、アクリロニトリルブタジエン共重合化合物、天然ワックス、合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン、酸化ポリエチレン等の離型剤;シリコーンオイル、シリコーンゴム等の低応力剤;ハイドロタルサイト等のイオン捕捉剤;水酸化アルミニウム等の難燃剤;酸化防止剤等の各種添加剤を含むことができる。
(Other ingredients (E))
In addition to the above components, the epoxy resin composition contains a phosphorus atom such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, or an adduct of a phosphonium compound and a silane compound. 1,8-diazabicyclo (5.4.0) undecene-7, amidine compounds such as imidazole, tertiary amines such as benzyldimethylamine and amidinium salts or quaternary onium salts of the above compounds, or ammonium salts Curing accelerators such as nitrogen atom-containing compounds typified by; colorants such as carbon black; polybutadiene compounds, acrylonitrile butadiene copolymer compounds, natural waxes, synthetic waxes, higher fatty acids or their metal salts, paraffin, oxidized polyethylene, etc. Type agents; can contain various additives such as antioxidants; ion scavenger, such as hydrotalcite,; flame retardants such as aluminum hydroxide silicone oil, low-stress agent such as silicone rubber.
 エポキシ樹脂組成物の硬化体の1MHzにおける比誘電率(ε)は、好ましくは5以上であり、より好ましくは7以上であり、特に好ましくは8以上である。比誘電率(ε)が上記下限値以上であることにより、エポキシ樹脂組成物の誘電特性をより一層向上させ、静電容量型指紋センサー100の感度をより一層向上させることができる。
 エポキシ樹脂組成物がタブレット状である場合、エポキシ樹脂組成物の硬化体は、例えば、トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間300秒の条件で、上記エポキシ樹脂組成物を注入成形することにより得られる。この硬化体は、例えば、直径50mm、厚さ3mmである。
 また、エポキシ樹脂組成物が粉粒体である場合には、エポキシ樹脂組成物の硬化体は、例えば、圧縮成形機を用いて、金型温度175℃、成形圧力9.8MPa、硬化時間300秒の条件で、上記エポキシ樹脂組成物を注入成形することにより得られる。この硬化体は、例えば、直径50mm、厚さ3mmである。
 硬化体の比誘電率(ε)は、例えば、YOKOGAWA-HEWLETT PACKARD社製Q-METER 4342Aにより測定できる。
 比誘電率(ε)の上限は特に限定されないが、例えば、300以下である。
The relative dielectric constant (ε r ) at 1 MHz of the cured product of the epoxy resin composition is preferably 5 or more, more preferably 7 or more, and particularly preferably 8 or more. When the relative dielectric constant (ε r ) is equal to or higher than the lower limit, the dielectric properties of the epoxy resin composition can be further improved, and the sensitivity of the capacitive fingerprint sensor 100 can be further improved.
When the epoxy resin composition is in a tablet form, the cured product of the epoxy resin composition is, for example, using a transfer molding machine under the conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. It can be obtained by injection molding an epoxy resin composition. The cured body has, for example, a diameter of 50 mm and a thickness of 3 mm.
Further, when the epoxy resin composition is a granular material, the cured product of the epoxy resin composition is, for example, using a compression molding machine, a mold temperature of 175 ° C., a molding pressure of 9.8 MPa, and a curing time of 300 seconds. The above epoxy resin composition is obtained by injection molding under the conditions described above. The cured body has, for example, a diameter of 50 mm and a thickness of 3 mm.
The relative dielectric constant (ε r ) of the cured product can be measured by, for example, Q-METER 4342A manufactured by YOKOGAWA-HEWRET PACKARD.
The upper limit of the relative dielectric constant (ε r ) is not particularly limited, but is, for example, 300 or less.
 また、エポキシ樹脂組成物の硬化体の1MHzにおける誘電正接(tanδ)は、好ましくは0.005以上であり、より好ましくは0.006以上であり、さらに好ましくは0.007以上である。
 誘電正接(tanδ)が上記下限値以上であることにより、エポキシ樹脂組成物の誘電特性をより一層向上させ、静電容量型指紋センサー100の感度をより一層向上させることができる。
 エポキシ樹脂組成物がタブレット状である場合、エポキシ樹脂組成物の硬化体は、例えば、トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間300秒の条件で、上記エポキシ樹脂組成物を注入成形することにより得られる。この硬化体は、例えば、直径50mm、厚さ3mmである。
 また、エポキシ樹脂組成物が粉粒体である場合には、エポキシ樹脂組成物の硬化体は、例えば、圧縮成形機を用いて、金型温度175℃、成形圧力9.8MPa、硬化時間300秒の条件で、上記エポキシ樹脂組成物を注入成形することにより得られる。この硬化体は、例えば、直径50mm、厚さ3mmである。
 硬化体の誘電正接(tanδ)は、例えば、YOKOGAWA-HEWLETT PACKARD社製Q-METER 4342Aにより測定できる。
 誘電正接(tanδ)の上限は特に限定されないが、例えば、0.07以下である。
The dielectric loss tangent (tan δ) at 1 MHz of the cured epoxy resin composition is preferably 0.005 or more, more preferably 0.006 or more, and further preferably 0.007 or more.
When the dielectric loss tangent (tan δ) is equal to or higher than the lower limit, the dielectric properties of the epoxy resin composition can be further improved, and the sensitivity of the capacitive fingerprint sensor 100 can be further improved.
When the epoxy resin composition is in a tablet form, the cured product of the epoxy resin composition is, for example, using a transfer molding machine under the conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. It can be obtained by injection molding an epoxy resin composition. The cured body has, for example, a diameter of 50 mm and a thickness of 3 mm.
Further, when the epoxy resin composition is a granular material, the cured product of the epoxy resin composition is, for example, using a compression molding machine, a mold temperature of 175 ° C., a molding pressure of 9.8 MPa, and a curing time of 300 seconds. The above epoxy resin composition is obtained by injection molding under the conditions described above. The cured body has, for example, a diameter of 50 mm and a thickness of 3 mm.
The dielectric loss tangent (tan δ) of the cured product can be measured by, for example, Q-METER 4342A manufactured by YOKOGAWA-HEWRET PACKARD.
The upper limit of the dielectric loss tangent (tan δ) is not particularly limited, but is 0.07 or less, for example.
 上記比誘電率(εr)および上記誘電正接(tanδ)は、エポキシ樹脂組成物を構成する各成分の種類や配合割合を適切に調節することにより制御することが可能である。本実施形態においては、とくに無機充填剤(B)の種類を適切に選択することが、上記比誘電率(εr)および上記誘電正接(tanδ)を制御するための因子として挙げられる。例えば、誘電率が大きい無機充填剤を多く使用するほど、エポキシ樹脂組成物の硬化体の上記比誘電率(εr)および上記誘電正接(tanδ)を向上させることができる。 The relative dielectric constant (ε r ) and the dielectric loss tangent (tan δ) can be controlled by appropriately adjusting the type and blending ratio of each component constituting the epoxy resin composition. In the present embodiment, it is particularly possible to appropriately select the type of the inorganic filler (B) as a factor for controlling the relative dielectric constant (ε r ) and the dielectric loss tangent (tan δ). For example, the more the inorganic filler having a large dielectric constant is used, the more the dielectric constant (ε r ) and the dielectric loss tangent (tan δ) of the cured epoxy resin composition can be improved.
 エポキシ樹脂組成物は、スパイラルフロー測定により測定される流動長が、たとえば30cm以上200cm以下であることが好ましく、40cm以上150cm以下であることがより好ましい。これにより、エポキシ樹脂組成物の成形性の向上を図ることができる。本実施形態において、エポキシ樹脂組成物のスパイラルフロー測定は、たとえばトランスファー成形機を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力9.8MPa、注入時間15秒、硬化時間120~180秒の条件でエポキシ樹脂組成物を注入し、流動長を測定することにより行われる。 The epoxy resin composition preferably has a flow length measured by spiral flow measurement of, for example, 30 cm or more and 200 cm or less, and more preferably 40 cm or more and 150 cm or less. Thereby, the improvement of the moldability of an epoxy resin composition can be aimed at. In this embodiment, the spiral flow measurement of the epoxy resin composition is performed by using, for example, a transfer molding machine and applying a mold temperature of 175 ° C. and an injection pressure of 9.8 MPa to a spiral flow measurement mold according to EMMI-1-66. The epoxy resin composition is injected under the conditions of an injection time of 15 seconds and a curing time of 120 to 180 seconds, and the flow length is measured.
 本実施形態においては、エポキシ樹脂組成物の硬化体のガラス転移温度が、100℃以上であることが好ましく、120℃以上であることがより好ましい。これにより、指紋センサーの耐熱性をより効果的に向上させることができる。一方で、上記ガラス転移温度の上限値は、とくに限定されないが、たとえば250℃とすることができる。 In the present embodiment, the glass transition temperature of the cured product of the epoxy resin composition is preferably 100 ° C. or higher, and more preferably 120 ° C. or higher. Thereby, the heat resistance of a fingerprint sensor can be improved more effectively. On the other hand, the upper limit value of the glass transition temperature is not particularly limited, but can be, for example, 250 ° C.
 本実施形態においては、エポキシ樹脂組成物の硬化体の、ガラス転移温度以下における線膨張係数(CTE1)が、3ppm/℃以上であることが好ましく、6ppm/℃以上であることがより好ましい。また、ガラス転移温度以下における線膨張係数(CTE1)は、たとえば50ppm/℃以下であることが好ましく、30ppm/℃以下であることがより好ましい。CTE1をこのように制御することによって、基板101(例えば、シリコンチップ)と絶縁膜105の線膨張係数の差に起因した指紋センサーの反りを、より確実に抑制することができる。 In this embodiment, the cured product of the epoxy resin composition preferably has a coefficient of linear expansion (CTE1) of 3 ppm / ° C. or higher, more preferably 6 ppm / ° C. or higher, at a glass transition temperature or lower. Moreover, the linear expansion coefficient (CTE1) below the glass transition temperature is, for example, preferably 50 ppm / ° C. or less, and more preferably 30 ppm / ° C. or less. By controlling the CTE 1 in this way, warping of the fingerprint sensor due to the difference in linear expansion coefficient between the substrate 101 (for example, silicon chip) and the insulating film 105 can be more reliably suppressed.
 本実施形態においては、エポキシ樹脂組成物の硬化体の、ガラス転移温度超過における線膨張係数(CTE2)が、10ppm/℃以上であることが好ましい。また、ガラス転移温度超過における線膨張係数(CTE2)は、たとえば100ppm/℃以下であることが好ましい。CTE2をこのように制御することによって、とくに高温環境下において、基板101(例えば、シリコンチップ)と絶縁膜105の線膨張係数の差に起因した指紋センサーの反りを、より確実に抑制することができる。 In the present embodiment, it is preferable that the cured product of the epoxy resin composition has a linear expansion coefficient (CTE2) of 10 ppm / ° C. or higher when the glass transition temperature is exceeded. Moreover, it is preferable that the linear expansion coefficient (CTE2) in excess of a glass transition temperature is 100 ppm / degrees C or less, for example. By controlling the CTE 2 in this manner, warping of the fingerprint sensor due to the difference in linear expansion coefficient between the substrate 101 (for example, silicon chip) and the insulating film 105 can be more reliably suppressed, particularly in a high temperature environment. it can.
 エポキシ樹脂組成物の硬化体の上記ガラス転移温度、および上記線膨張係数(CTE1、CTE2)は、たとえば次のように測定することができる。
 まず、エポキシ樹脂組成物がタブレット状である場合、エポキシ樹脂組成物の硬化体は、例えば、トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間300秒の条件で、上記エポキシ樹脂組成物を注入成形することにより得られる。この硬化体は、例えば、長さ10mm、幅4mm、厚さ4mmである。
 また、エポキシ樹脂組成物が粉粒体である場合には、エポキシ樹脂組成物の硬化体は、例えば、圧縮成形機を用いて、金型温度175℃、成形圧力9.8MPa、硬化時間300秒の条件で、上記エポキシ樹脂組成物を注入成形することにより得られる。この硬化体は、例えば、長さ10mm、幅4mm、厚さ4mmである。
 次いで、得られた硬化体を175℃、4時間で後硬化した後、熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行う。この測定結果から、ガラス転移温度、ガラス転移温度以下における線膨張係数(CTE1)、ガラス転移温度超過における線膨張係数(CTE2)を算出する。
The glass transition temperature and the linear expansion coefficient (CTE1, CTE2) of the cured product of the epoxy resin composition can be measured, for example, as follows.
First, when the epoxy resin composition is in a tablet form, the cured product of the epoxy resin composition is, for example, using a transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. It is obtained by injection molding the above epoxy resin composition. For example, the cured body has a length of 10 mm, a width of 4 mm, and a thickness of 4 mm.
Further, when the epoxy resin composition is a granular material, the cured product of the epoxy resin composition is, for example, using a compression molding machine, a mold temperature of 175 ° C., a molding pressure of 9.8 MPa, and a curing time of 300 seconds. The above epoxy resin composition is obtained by injection molding under the conditions described above. For example, the cured body has a length of 10 mm, a width of 4 mm, and a thickness of 4 mm.
Subsequently, the obtained cured product was post-cured at 175 ° C. for 4 hours, and then measured using a thermomechanical analyzer (manufactured by Seiko Denshi Kogyo Co., Ltd., TMA100) at a measurement temperature range of 0 ° C. to 320 ° C. Measurement is performed at 5 ° C./min. From this measurement result, the coefficient of linear expansion (CTE1) below the glass transition temperature, the glass transition temperature, and the coefficient of linear expansion (CTE2) above the glass transition temperature are calculated.
 上記ガラス転移温度、ガラス転移温度以下における線膨張係数(CTE1)、ガラス転移温度超過における線膨張係数(CTE2)は、エポキシ樹脂組成物を構成する各成分の種類や配合割合を適切に調節することにより制御することが可能である。本実施形態においては、とくに無機充填剤(B)の種類を適切に選択することが、CTE1、CTE2を制御するための因子として挙げられる。例えば、無機充填剤(B)として線膨張係数が小さいシリカ粒子を使用することで、エポキシ樹脂組成物の硬化体のCTE1およびCTE2を低下させることができる。 The above-mentioned glass transition temperature, linear expansion coefficient (CTE1) below the glass transition temperature, and linear expansion coefficient (CTE2) when the glass transition temperature is exceeded should appropriately adjust the type and blending ratio of each component constituting the epoxy resin composition. It is possible to control by. In the present embodiment, selecting an appropriate type of inorganic filler (B) is a factor for controlling CTE1 and CTE2. For example, CTE1 and CTE2 of the hardening body of an epoxy resin composition can be reduced by using a silica particle with a small linear expansion coefficient as an inorganic filler (B).
 以下、本実施形態に係る静電容量型指紋センサー100の構成ついて詳細に説明する。 Hereinafter, the configuration of the capacitive fingerprint sensor 100 according to the present embodiment will be described in detail.
 本実施形態に係る静電容量型指紋センサー100は、たとえば指との静電容量を感知する静電容量方式によって、指紋情報を読み取る指紋センサーである。ここで、指紋センサーは、当該指紋センサーに載せられた指の凹凸を読み取る。例えば、静電容量型指紋センサー100には、指紋の凹凸よりも細かい検出電極103が設けられている。そして、指紋の凹凸と検出電極103との間に蓄積される静電容量により指紋の凹凸を表した2次元画像を作成する。例えば、指紋の凸部と凹部では検出される静電容量が異なるため、この静電容量の差から指紋の凹凸を表した2次元画像を作成できる。この2次元画像により指紋情報を読み取ることができる。 The capacitive fingerprint sensor 100 according to the present embodiment is a fingerprint sensor that reads fingerprint information by, for example, a capacitive method that senses the capacitance with a finger. Here, the fingerprint sensor reads the unevenness of the finger placed on the fingerprint sensor. For example, the capacitive fingerprint sensor 100 is provided with a detection electrode 103 that is finer than the unevenness of the fingerprint. Then, a two-dimensional image representing the fingerprint irregularities is created by the capacitance accumulated between the fingerprint irregularities and the detection electrode 103. For example, since the detected electrostatic capacitance is different between the convex portion and the concave portion of the fingerprint, a two-dimensional image representing the concave and convex portions of the fingerprint can be created from the difference in the electrostatic capacitance. Fingerprint information can be read from this two-dimensional image.
 図1は、本実施形態に係る静電容量型指紋センサー100を模式的に示す断面図である。
 本実施形態に係る静電容量型指紋センサー100は、基板101と、基板101上に設けられた検出電極103と、検出電極103を封止する絶縁膜105と、を備えている。
FIG. 1 is a cross-sectional view schematically showing a capacitive fingerprint sensor 100 according to the present embodiment.
The capacitive fingerprint sensor 100 according to this embodiment includes a substrate 101, a detection electrode 103 provided on the substrate 101, and an insulating film 105 that seals the detection electrode 103.
 本実施形態において、絶縁膜105は、エポキシ樹脂組成物の硬化物により形成されている。エポキシ樹脂組成物としては、たとえば前述の各成分を、公知の手段で混合し、さらにロール、ニーダーまたは押出機等の混練機で溶融混練し、冷却した後に粉砕したもの、粉砕後にタブレット状に打錠成型したもの、また必要に応じて適宜分散度や流動性等を調整したもの等を用いることができる。 In this embodiment, the insulating film 105 is formed of a cured product of an epoxy resin composition. As the epoxy resin composition, for example, the above-mentioned components are mixed by a known means, further melt-kneaded with a kneader such as a roll, kneader or extruder, cooled and pulverized, and pulverized into a tablet. A tablet-molded product, or a product whose dispersity, fluidity, etc. are appropriately adjusted as necessary can be used.
 指紋センサーの感度を向上させるために、基板101(例えば、シリコンチップ)上の絶縁膜105の厚みDは、例えば、100μm以下、より好ましくは75μm以下、さらに好ましくは50μm以下である。 In order to improve the sensitivity of the fingerprint sensor, the thickness D of the insulating film 105 on the substrate 101 (for example, silicon chip) is, for example, 100 μm or less, more preferably 75 μm or less, and even more preferably 50 μm or less.
 基板101は、たとえば、チップ状のシリコン基板である。検出電極103は、たとえばAl膜により形成され、基板101上に層間膜107を介して一次元または二次元アレイ状に配置されている。層間膜107は、例えば、SiO2等により形成される。
 検出電極103の上面は絶縁膜105により被覆されている。検出電極103は、例えば、ワイヤボンディングが施されている。
The substrate 101 is, for example, a chip-shaped silicon substrate. The detection electrode 103 is formed of an Al film, for example, and is arranged on the substrate 101 in a one-dimensional or two-dimensional array via an interlayer film 107. The interlayer film 107 is formed of, for example, SiO 2 .
The upper surface of the detection electrode 103 is covered with an insulating film 105. The detection electrode 103 is subjected to wire bonding, for example.
 本実施形態に係る静電容量型指紋センサー100は公知の情報に基づいて製造することができる。たとえば次のように製造される。
 まず、基板101上に層間膜107を設けた後、層間膜107上に検出電極103を形成する。次いで、検出電極103を、エポキシ樹脂組成物により封止成形する。成形法としては、たとえばトランスファー成形法や圧縮成型法、注型等が挙げられる。次いで、エポキシ樹脂組成物を熱硬化させ、絶縁膜105を形成する。これにより、本実施形態に係る静電容量型指紋センサー100が得られることとなる。
The capacitive fingerprint sensor 100 according to the present embodiment can be manufactured based on known information. For example, it is manufactured as follows.
First, after providing the interlayer film 107 on the substrate 101, the detection electrode 103 is formed on the interlayer film 107. Next, the detection electrode 103 is encapsulated with an epoxy resin composition. Examples of the molding method include a transfer molding method, a compression molding method, and casting. Next, the epoxy resin composition is thermally cured to form the insulating film 105. Thereby, the capacitive fingerprint sensor 100 according to the present embodiment is obtained.
 次に、本実施形態の効果を説明する。
 本実施形態によれば、検出電極103を封止する絶縁膜105は、エポキシ樹脂(A)と、無機充填剤(B)と、を含むエポキシ樹脂組成物の硬化物により構成される。エポキシ樹脂組成物の硬化物は誘電特性に優れるため、静電容量型指紋センサー100の感度を向上させることができる。
Next, the effect of this embodiment will be described.
According to this embodiment, the insulating film 105 that seals the detection electrode 103 is configured by a cured product of an epoxy resin composition that includes an epoxy resin (A) and an inorganic filler (B). Since the cured product of the epoxy resin composition has excellent dielectric characteristics, the sensitivity of the capacitive fingerprint sensor 100 can be improved.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
(エポキシ樹脂組成物の調製)
 実施例1~9について、以下のようにエポキシ樹脂組成物を調整した。まず、表1に従い配合された各成分を、高速混合機を用いて常温で混合した。次いで、得られた混合物を、ロール混練(高温側ロール表面温度90℃、低温側ロール表面温度25℃)した後、冷却、ブレンダーによる粉砕によりエポキシ樹脂組成物を得た。なお、表1中における各成分の詳細は下記のとおりである。
(Preparation of epoxy resin composition)
For Examples 1 to 9, epoxy resin compositions were prepared as follows. First, each component mix | blended according to Table 1 was mixed at normal temperature using the high speed mixer. Next, the obtained mixture was roll kneaded (high temperature side roll surface temperature 90 ° C., low temperature side roll surface temperature 25 ° C.), and then cooled and ground with a blender to obtain an epoxy resin composition. The details of each component in Table 1 are as follows.
(A)エポキシ樹脂
エポキシ樹脂1:ビフェニル型エポキシ樹脂(三菱化学社製、YX-4000K)
(B)無機充填剤
無機充填剤1:アルミナ(電気化学工業社製、DAB-45SI、D50=17μm)
無機充填剤2:シリカ(電気化学工業社製、FB105、D50=10μm)
無機充填剤3:シリカ(トクヤマ社製、REOLOSIL CP-102、D50=1μm以下)
無機充填剤4:シリカ(アドマテックス社製、SO-25R、D50=0.5μm)
無機充填剤5:酸化チタン(IV)(石原産業社製、PF-726、D50=1μm、ルチル型、粒子径が32μm以上の酸化チタンの含有量5質量%以下)
無機充填剤6:チタン酸バリウム(日本化学工業社製、パルセラムBT-UP2、D50=2μm、粒子径が32μm以上のチタン酸バリウムの含有量5質量%以下)
無機充填剤7:アルミナ(マイクロン社製、AX3-15R、粒子径が15um以上のアルミナの含有量5質量%以下、D50=4μm)
(C)硬化剤
 硬化剤1:トリスフェノールメタン型フェノールノボラック樹脂(MEH-7500、明和化成社製)
 硬化剤2:トリスフェノールメタン型フェノールノボラック樹脂(HE910-20、エア・ウォーター社製)
(D)カップリング剤
カップリング剤1:N-フェニル-γ-アミノプロピルトリメトキシシラン(東レ・ダウコーニング社製、CF4083)
(E)その他の成分
硬化促進剤1:下記式(4)で示される硬化促進剤
(A) Epoxy resin Epoxy resin 1: Biphenyl type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YX-4000K)
(B) Inorganic filler Inorganic filler 1: Alumina (manufactured by Denki Kagaku Kogyo, DAB-45SI, D 50 = 17 μm)
Inorganic filler 2: Silica (manufactured by Denki Kagaku Kogyo Co., Ltd., FB105, D 50 = 10 μm)
Inorganic filler 3: Silica (manufactured by Tokuyama, REOLOSIL CP-102, D 50 = 1 μm or less)
Inorganic filler 4: Silica (manufactured by Admatechs, SO-25R, D 50 = 0.5 μm)
Inorganic filler 5: Titanium oxide (IV) (Ishihara Sangyo Co., Ltd., PF-726, D 50 = 1 μm, rutile type, content of titanium oxide having a particle diameter of 32 μm or more, 5 mass% or less)
Inorganic filler 6: Barium titanate (manufactured by Nippon Chemical Industry Co., Ltd., Parserum BT-UP2, D 50 = 2 μm, content of barium titanate having a particle diameter of 32 μm or more is 5% by mass or less)
Inorganic filler 7: Alumina (manufactured by Micron, AX3-15R, content of alumina having a particle diameter of 15 μm or more, 5 mass% or less, D 50 = 4 μm)
(C) Curing agent Curing agent 1: Trisphenol methane type phenol novolak resin (MEH-7500, manufactured by Meiwa Kasei Co., Ltd.)
Curing agent 2: Trisphenol methane type phenol novolak resin (HE910-20, manufactured by Air Water)
(D) Coupling agent Coupling agent 1: N-phenyl-γ-aminopropyltrimethoxysilane (Toray Dow Corning, CF4083)
(E) Other component curing accelerator 1: Curing accelerator represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[硬化促進剤1の合成方法]
 撹拌装置付きのセパラブルフラスコに4,4'-ビスフェノールS37.5g(0.15モル)、メタノール100mlを仕込み、室温で撹拌溶解し、更に攪拌しながら予め50mlのメタノールに水酸化ナトリウム4.0g(0.1モル)を溶解した溶液を添加した。次いで予め150mlのメタノールにテトラフェニルホスホニウムブロマイド41.9g(0.1モル)を溶解した溶液を加えた。しばらく攪拌を継続し、300mlのメタノールを追加した後、フラスコ内の溶液を大量の水に撹拌しながら滴下し、白色沈殿を得た。沈殿を濾過、乾燥し、白色結晶の硬化促進剤1を得た。
[Method of synthesizing curing accelerator 1]
A separable flask equipped with a stirrer was charged with 37.5 g (0.15 mol) of 4,4′-bisphenol S and 100 ml of methanol, dissolved by stirring at room temperature, and 4.0 g of sodium hydroxide in 50 ml of methanol in advance while stirring. A solution in which (0.1 mol) was dissolved was added. Next, a solution in which 41.9 g (0.1 mol) of tetraphenylphosphonium bromide was previously dissolved in 150 ml of methanol was added. After stirring for a while and adding 300 ml of methanol, the solution in the flask was added dropwise to a large amount of water with stirring to obtain a white precipitate. The precipitate was filtered and dried to obtain white crystal curing accelerator 1.
硬化促進剤2:下記式(5)で示される硬化促進剤
Figure JPOXMLDOC01-appb-C000005
Curing accelerator 2: Curing accelerator represented by the following formula (5)
Figure JPOXMLDOC01-appb-C000005
[硬化促進剤2の合成方法]
 メタノール1800gを入れたフラスコに、フェニルトリメトキシシラン249.5g、2,3-ジヒドロキシナフタレン384.0gを加えて溶かし、次に室温攪拌下28%ナトリウムメトキシド-メタノール溶液231.5gを滴下した。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド503.0gをメタノール600gに溶かした溶液を室温攪拌下滴下すると結晶が析出した。析出した結晶を濾過、水洗、真空乾燥し、桃白色結晶の硬化促進剤2を得た。
[Method of synthesizing curing accelerator 2]
In a flask containing 1800 g of methanol, 249.5 g of phenyltrimethoxysilane and 384.0 g of 2,3-dihydroxynaphthalene were added and dissolved, and then 231.5 g of 28% sodium methoxide-methanol solution was added dropwise with stirring at room temperature. Furthermore, when a solution prepared by dissolving 503.0 g of tetraphenylphosphonium bromide prepared in advance in 600 g of methanol was added dropwise with stirring at room temperature, crystals were deposited. The precipitated crystals were filtered, washed with water, and vacuum dried to obtain a pinky white crystal curing accelerator 2.
低応力剤1:アクリロニトリルブタジエンゴム(宇部興産社製、カルボキシル基末端ブタジエンアクリルゴム、CTBN1008SP)
低応力剤2:シリコーンオイル
着色剤:カーボンブラック
離型剤:カルナバワックス
イオン捕捉剤:ハイドロタルサイト
Low stress agent 1: Acrylonitrile butadiene rubber (manufactured by Ube Industries, carboxyl group-terminated butadiene acrylic rubber, CTBN1008SP)
Low stress agent 2: Silicone oil Colorant: Carbon black Release agent: Carnauba wax ion scavenger: Hydrotalcite
(比誘電率および誘電正接の測定)
 実施例1~9について、次のようにエポキシ樹脂組成物の比誘電率および誘電正接の測定を行った。低圧トランスファー成形機(コータキ精機(株)製「KTS-30」)を用いて、金型に、金型温度175℃、注入圧力9.8MPa、硬化時間300秒の条件で、上記エポキシ樹脂組成物を注入成形することによりエポキシ樹脂組成物の硬化体を得た。この硬化体は、直径50mm、厚さ3mmであった。
 次いで、得られた硬化体について、YOKOGAWA-HEWLETT PACKARD社製Q-METER 4342Aにより、1MHz、室温(25℃)における比誘電率および誘電正接を測定した。結果を表1に示す。
(Measurement of dielectric constant and dielectric loss tangent)
For Examples 1 to 9, the relative dielectric constant and dielectric loss tangent of the epoxy resin composition were measured as follows. Using the low pressure transfer molding machine (“KTS-30” manufactured by Kotaki Seiki Co., Ltd.), the above epoxy resin composition was applied to the mold under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. A cured product of the epoxy resin composition was obtained by injection molding. This cured body had a diameter of 50 mm and a thickness of 3 mm.
Next, the relative permittivity and dielectric loss tangent at 1 MHz and room temperature (25 ° C.) of the obtained cured product were measured by Q-METER 4342A manufactured by YOKOGAWA-HEWLETT PACKARD. The results are shown in Table 1.
(スパイラルフローの測定)
 実施例1~9について、次のようにエポキシ樹脂組成物のスパイラルフロー測定を行った。低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力9.8MPa、注入時間15秒、硬化時間180秒の条件でエポキシ樹脂組成物を注入し、流動長を測定した。表1における単位はcmである。結果を表1に示す。
(Measurement of spiral flow)
For Examples 1 to 9, spiral flow measurement of the epoxy resin composition was performed as follows. Using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.), the mold temperature was 175 ° C., the injection pressure was 9.8 MPa, and the mold was used for spiral flow measurement according to EMMI-1-66. The epoxy resin composition was injected under conditions of a time of 15 seconds and a curing time of 180 seconds, and the flow length was measured. The unit in Table 1 is cm. The results are shown in Table 1.
(ガラス転移温度、線膨張係数)
 各実施例について、エポキシ樹脂組成物の硬化体のガラス転移温度(Tg)、線膨張係数(CTE1、CTE2)を、以下のように測定した。低圧トランスファー成形機(コータキ精機(株)製「KTS-30」)を用いて、金型に、金型温度175℃、注入圧力9.8MPa、硬化時間300秒の条件で、上記エポキシ樹脂組成物を注入成形することによりエポキシ樹脂組成物の硬化体を得た。この硬化体は、長さ10mm、幅4mm、厚さ4mmであった。
 次いで、得られた硬化体を175℃、4時間で後硬化した後、熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行った。この測定結果から、ガラス転移温度(Tg)、ガラス転移温度以下における線膨張係数(CTE1)、ガラス転移温度超過における線膨張係数(CTE2)を算出した。結果を表1に示す。
(Glass transition temperature, linear expansion coefficient)
About each Example, the glass transition temperature (Tg) and the linear expansion coefficient (CTE1, CTE2) of the hardening body of the epoxy resin composition were measured as follows. Using the low pressure transfer molding machine (“KTS-30” manufactured by Kotaki Seiki Co., Ltd.), the above epoxy resin composition was applied to the mold under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. A cured product of the epoxy resin composition was obtained by injection molding. The cured body had a length of 10 mm, a width of 4 mm, and a thickness of 4 mm.
Subsequently, the obtained cured product was post-cured at 175 ° C. for 4 hours, and then measured using a thermomechanical analyzer (manufactured by Seiko Denshi Kogyo Co., Ltd., TMA100) at a measurement temperature range of 0 ° C. to 320 ° C. The measurement was performed under the condition of 5 ° C./min. From this measurement result, the glass transition temperature (Tg), the linear expansion coefficient (CTE1) below the glass transition temperature, and the linear expansion coefficient (CTE2) when the glass transition temperature was exceeded were calculated. The results are shown in Table 1.
(静電容量型指紋センサーの感度測定)
 実施例1~9のそれぞれについて、得られたエポキシ樹脂組成物を用いて図1に示す静電容量型指紋センサーを作製した。次いで、得られた静電容量型指紋センサーを用いて指紋の凹凸を表した2次元画像を作成した。
(Measurement of sensitivity of capacitive fingerprint sensor)
For each of Examples 1 to 9, a capacitive fingerprint sensor shown in FIG. 1 was produced using the obtained epoxy resin composition. Next, a two-dimensional image representing the irregularities of the fingerprint was created using the obtained capacitive fingerprint sensor.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~9により得られた静電容量型指紋センサーは、いずれも指紋の2次元画像が明確に表示され、感度が良好な結果を示した。これらの中でも誘電特性が特に優れる実施例2~9は、実施例1と比較してより鮮明な指紋の2次元画像が得られ、優れた感度を示した。また、実施例1~3、6~7および9は、成形性試験において優れた結果を示した。
 また、実施例1~9により得られた静電容量型指紋センサーは、いずれも反りが抑制されていた。なお、実施例1~9により得られたエポキシ樹脂組成物の硬化体のCTE1は、いずれも3ppm/℃以上50ppm/℃以下の範囲内であった。また、実施例1~9により得られたエポキシ樹脂組成物の硬化体のCTE2は、いずれも10ppm/℃以上100ppm/℃以下の範囲内であった。
 また、絶縁膜105の厚みDを薄くすることが指紋センサーの感度につながるため、無機充填剤(B)は粗粒をカットしたものを使用することが成形時の未充填等を抑制することができるため好ましい。実施例7~9のエポキシ樹脂組成物は絶縁膜105の厚みDを50μmとしても指紋センサーを未充填なく成形でき、実施例1~6のエポキシ樹脂組成物に比べて成形性に優れていた。また、実施例7~9のエポキシ樹脂組成物は絶縁膜105の厚みDを50μmとしても指紋センサーの反りは生じなかった。すなわち、実施例7~9のエポキシ樹脂組成物は指紋の2次元画像が明確に表示され、良好な感度を示しながら、より優れた成形性を示した。
Each of the capacitive fingerprint sensors obtained in Examples 1 to 9 clearly displayed a two-dimensional image of a fingerprint and showed a good sensitivity. Among these, Examples 2 to 9, which are particularly excellent in dielectric characteristics, showed clearer two-dimensional images of fingerprints than Example 1 and showed excellent sensitivity. Examples 1 to 3, 6 to 7, and 9 showed excellent results in the moldability test.
In addition, the electrostatic capacitance type fingerprint sensors obtained by Examples 1 to 9 were all prevented from warping. The CTE1 of the cured products of the epoxy resin compositions obtained in Examples 1 to 9 were all in the range of 3 ppm / ° C. to 50 ppm / ° C. The CTE2 of the cured products of the epoxy resin compositions obtained in Examples 1 to 9 were all in the range of 10 ppm / ° C. to 100 ppm / ° C.
In addition, since reducing the thickness D of the insulating film 105 leads to the sensitivity of the fingerprint sensor, using an inorganic filler (B) that is obtained by cutting coarse particles can suppress unfilling during molding. This is preferable because it is possible. The epoxy resin compositions of Examples 7 to 9 could be molded without filling the fingerprint sensor even when the thickness D of the insulating film 105 was 50 μm, and were excellent in moldability as compared with the epoxy resin compositions of Examples 1 to 6. In addition, the epoxy resin compositions of Examples 7 to 9 did not warp the fingerprint sensor even when the thickness D of the insulating film 105 was 50 μm. That is, the epoxy resin compositions of Examples 7 to 9 clearly displayed two-dimensional images of fingerprints, and exhibited better moldability while exhibiting good sensitivity.
 この出願は、2014年3月25日に出願された日本出願特願2014-062446号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-062446 filed on March 25, 2014, the entire disclosure of which is incorporated herein.

Claims (12)

  1.  基板と、
     前記基板上に設けられた検出電極と、
     前記検出電極を封止する絶縁膜と、
    を備える静電容量型指紋センサーを構成する前記絶縁膜の形成に用いるエポキシ樹脂組成物であって、
     エポキシ樹脂(A)と、
     無機充填剤(B)と、
     を含むエポキシ樹脂組成物。
    A substrate,
    A detection electrode provided on the substrate;
    An insulating film for sealing the detection electrode;
    An epoxy resin composition used for forming the insulating film constituting a capacitive fingerprint sensor comprising:
    Epoxy resin (A),
    An inorganic filler (B);
    An epoxy resin composition comprising:
  2.  請求項1に記載のエポキシ樹脂組成物において、
     前記エポキシ樹脂組成物の硬化体の1MHzにおける比誘電率(εr)が5以上であるエポキシ樹脂組成物。
    The epoxy resin composition according to claim 1,
    An epoxy resin composition having a relative dielectric constant (ε r ) at 1 MHz of a cured product of the epoxy resin composition of 5 or more.
  3.  請求項2に記載の封止用樹脂組成物において、
     前記エポキシ樹脂組成物の硬化体の1MHzにおける比誘電率(εr)が8以上であるエポキシ樹脂組成物。
    In the sealing resin composition according to claim 2,
    The relative dielectric constant at 1MHz of the cured product of the epoxy resin composition (epsilon r) is an epoxy resin composition is 8 or more.
  4.  請求項1乃至3いずれか一項に記載のエポキシ樹脂組成物において、
     前記エポキシ樹脂組成物の硬化体の1MHzにおける誘電正接(tanδ)が0.005以上であるエポキシ樹脂組成物。
    In the epoxy resin composition according to any one of claims 1 to 3,
    An epoxy resin composition, wherein a cured product of the epoxy resin composition has a dielectric loss tangent (tan δ) at 1 MHz of 0.005 or more.
  5.  請求項1乃至4いずれか一項に記載のエポキシ樹脂組成物において、
     前記無機充填剤(B)がアルミナ、酸化チタンおよびチタン酸バリウムから選択される一種または二種以上を含むエポキシ樹脂組成物。
    In the epoxy resin composition according to any one of claims 1 to 4,
    An epoxy resin composition comprising one or more inorganic fillers (B) selected from alumina, titanium oxide and barium titanate.
  6.  請求項5に記載のエポキシ樹脂組成物において、
     前記無機充填剤(B)が前記酸化チタンを含み、
     前記酸化チタンがルチル型であるエポキシ樹脂組成物。
    In the epoxy resin composition according to claim 5,
    The inorganic filler (B) contains the titanium oxide,
    An epoxy resin composition in which the titanium oxide is a rutile type.
  7.  請求項5または6に記載のエポキシ樹脂組成物において、
     前記無機充填剤(B)がシリカ粒子をさらに含むエポキシ樹脂組成物。
    In the epoxy resin composition according to claim 5 or 6,
    The epoxy resin composition in which the inorganic filler (B) further contains silica particles.
  8.  請求項1乃至7いずれか一項に記載のエポキシ樹脂組成物において、
     金型温度175℃、注入圧力9.8MPa、注入時間15秒の条件でのスパイラルフロー測定により測定される流動長が30cm以上200cm以下であるエポキシ樹脂組成物。
    In the epoxy resin composition according to any one of claims 1 to 7,
    An epoxy resin composition having a flow length of 30 cm or more and 200 cm or less as measured by spiral flow measurement under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and an injection time of 15 seconds.
  9.  請求項1乃至8いずれか一項に記載のエポキシ樹脂組成物において、
     前記エポキシ樹脂組成物の硬化体のガラス転移温度が100℃以上であるエポキシ樹脂組成物。
    In the epoxy resin composition according to any one of claims 1 to 8,
    The epoxy resin composition whose glass transition temperature of the hardening body of the said epoxy resin composition is 100 degreeC or more.
  10.  請求項1乃至9いずれか一項に記載のエポキシ樹脂組成物において、
     前記エポキシ樹脂組成物の硬化体の、ガラス転移温度以下における線膨張係数(CTE1)が、3ppm/℃以上50ppm/℃以下であるエポキシ樹脂組成物。
    In the epoxy resin composition according to any one of claims 1 to 9,
    The epoxy resin composition whose linear expansion coefficient (CTE1) in below the glass transition temperature of the hardening body of the said epoxy resin composition is 3 ppm / degrees C or more and 50 ppm / degrees C or less.
  11.  請求項1乃至10いずれか一項に記載のエポキシ樹脂組成物において、
     前記エポキシ樹脂組成物の硬化体の、ガラス転移温度超過における線膨張係数(CTE2)が、10ppm/℃以上100ppm/℃以下であるエポキシ樹脂組成物。
    In the epoxy resin composition according to any one of claims 1 to 10,
    The epoxy resin composition whose linear expansion coefficient (CTE2) in the glass transition temperature excess of the hardening body of the said epoxy resin composition is 10 ppm / degrees C or more and 100 ppm / degrees C or less.
  12.  基板と、
     前記基板上に設けられた検出電極と、
     前記検出電極を封止し、かつ、請求項1乃至11いずれか一項に記載のエポキシ樹脂組成物の硬化物により形成された絶縁膜と、
    を備える静電容量型指紋センサー。
    A substrate,
    A detection electrode provided on the substrate;
    An insulating film that seals the detection electrode and is formed of a cured product of the epoxy resin composition according to any one of claims 1 to 11,
    Capacitive fingerprint sensor with
PCT/JP2015/058413 2014-03-25 2015-03-20 Epoxy resin composition and electrostatic-capacitance-type fingerprint sensor WO2015146816A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580015950.4A CN106461366A (en) 2014-03-25 2015-03-20 Epoxy resin composition and electrostatic-capacitance-type fingerprint sensor
KR1020167029258A KR101827668B1 (en) 2014-03-25 2015-03-20 Epoxy resin composition and electrostatic capacitive fingerprint sensor
JP2016510292A JP6658508B2 (en) 2014-03-25 2015-03-20 Epoxy resin composition and capacitance type fingerprint sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-062446 2014-03-25
JP2014062446 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015146816A1 true WO2015146816A1 (en) 2015-10-01

Family

ID=54195334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058413 WO2015146816A1 (en) 2014-03-25 2015-03-20 Epoxy resin composition and electrostatic-capacitance-type fingerprint sensor

Country Status (5)

Country Link
JP (2) JP6658508B2 (en)
KR (1) KR101827668B1 (en)
CN (1) CN106461366A (en)
TW (1) TWI659058B (en)
WO (1) WO2015146816A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014406A (en) * 2015-07-01 2017-01-19 味の素株式会社 Resin composition
JP2017057268A (en) * 2015-09-16 2017-03-23 住友ベークライト株式会社 High dielectric resin composition and capacitance type sensor
JP2017084164A (en) * 2015-10-29 2017-05-18 王子ホールディングス株式会社 Insulation film for fingerprint authentication device, laminate, and fingerprint authentication device
JP2017129399A (en) * 2016-01-19 2017-07-27 住友ベークライト株式会社 Capacitive sensor and method for manufacturing capacitive sensor
JP2017165876A (en) * 2016-03-16 2017-09-21 味の素株式会社 Resin composition
JP2017528530A (en) * 2014-08-29 2017-09-28 天津徳高化成新材料股▲ふん▼有限公司Tecore Synchem Inc Dielectric composite material for fingerprint sensor detection layer and manufacturing method
WO2017217235A1 (en) * 2016-06-14 2017-12-21 デンカ株式会社 High-purity barium titanate powder, method for producing same, resin composition, and fingerprint sensor
CN107868398A (en) * 2016-09-23 2018-04-03 深圳先进技术研究院 A kind of electric slurry, preparation method and application
CN107868406A (en) * 2016-09-27 2018-04-03 住友电木株式会社 Capacitive type sensor resin composition for encapsulating and capacitive type sensor
CN107868405A (en) * 2016-09-27 2018-04-03 住友电木株式会社 Capacitive type sensor resin composition for encapsulating and capacitive type sensor
EP3367301A1 (en) * 2017-02-22 2018-08-29 Samsung Display Co., Ltd. Fingerprint sensor and method of manufacturing the same
JP2018141052A (en) * 2017-02-27 2018-09-13 京セラ株式会社 Resin composition and resin-sealed type semiconductor device
WO2018186315A1 (en) * 2017-04-04 2018-10-11 デンカ株式会社 Powder mixture
US10657348B2 (en) 2017-03-21 2020-05-19 Samsung Display Co., Ltd. Fingerprint sensor and manufacturing method thereof
CN113861618A (en) * 2020-06-30 2021-12-31 利诺士尖端材料有限公司 Insulating film for manufacturing electronic device
WO2022172752A1 (en) * 2021-02-10 2022-08-18 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, laminate board, metal foil-clad laminate board, and printed wiring board

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190016008A (en) 2017-08-07 2019-02-15 크루셜텍 (주) Fingerprint sensor module including dual-waterproof structure
CN112450917B (en) * 2019-09-09 2022-04-19 中国科学院上海有机化学研究所 Fingerprint fluorescent fuming reagent and fuming method thereof
JP7067576B2 (en) * 2020-02-21 2022-05-16 味の素株式会社 Resin composition
JPWO2023032735A1 (en) 2021-08-31 2023-03-09
TW202323394A (en) 2021-08-31 2023-06-16 日商陶氏東麗股份有限公司 Granular curable silicone composition, cured body therefrom, and manufacturing process for said composition
CN117881747A (en) 2021-08-31 2024-04-12 陶氏东丽株式会社 Curable silicone composition, cured product thereof, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133359A (en) * 1993-11-10 1995-05-23 Hitachi Chem Co Ltd High-permittivity prepreg
JP2003172602A (en) * 2001-12-05 2003-06-20 Sharp Corp Surface-shape detecting element and device
JP2004067889A (en) * 2002-08-07 2004-03-04 Toray Ind Inc Highly dielectric substance composition
JP2007201453A (en) * 2005-12-28 2007-08-09 Sumitomo Bakelite Co Ltd Wiring board and insulating resin composition for solder resist used for same
JP2010114408A (en) * 2008-10-10 2010-05-20 Sumitomo Bakelite Co Ltd Semiconductor device
JP2014033230A (en) * 2008-10-10 2014-02-20 Sumitomo Bakelite Co Ltd Semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014838A (en) * 2004-06-30 2006-01-19 Alps Electric Co Ltd Electrostatic capacity sensor
JP2009212288A (en) * 2008-03-04 2009-09-17 Sony Corp Capacitive element, electronic circuit board and method of manufacturing electronic circuit board
WO2012053522A1 (en) * 2010-10-19 2012-04-26 住友ベークライト株式会社 Sealing resin composition and electronic component device
AU2014217976B2 (en) * 2013-02-12 2017-12-07 E.V.D.S. Bvba Intermediate element for reclosing can
CN105693141B (en) * 2014-08-29 2017-08-04 天津德高化成新材料股份有限公司 A kind of preparation method of dielectric composite material for fingerprint sensor inductive layer
JP6519424B2 (en) * 2015-09-16 2019-05-29 住友ベークライト株式会社 High dielectric resin composition
JP6679944B2 (en) * 2016-01-19 2020-04-15 住友ベークライト株式会社 Capacitive sensor and method of manufacturing electrostatic sensor
JP6854589B2 (en) * 2016-01-29 2021-04-07 住友ベークライト株式会社 High Dielectric Resin Composition, Capacitive Sensor and Capacitive Sensor Manufacturing Method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133359A (en) * 1993-11-10 1995-05-23 Hitachi Chem Co Ltd High-permittivity prepreg
JP2003172602A (en) * 2001-12-05 2003-06-20 Sharp Corp Surface-shape detecting element and device
JP2004067889A (en) * 2002-08-07 2004-03-04 Toray Ind Inc Highly dielectric substance composition
JP2007201453A (en) * 2005-12-28 2007-08-09 Sumitomo Bakelite Co Ltd Wiring board and insulating resin composition for solder resist used for same
JP2010114408A (en) * 2008-10-10 2010-05-20 Sumitomo Bakelite Co Ltd Semiconductor device
JP2014033230A (en) * 2008-10-10 2014-02-20 Sumitomo Bakelite Co Ltd Semiconductor device

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528530A (en) * 2014-08-29 2017-09-28 天津徳高化成新材料股▲ふん▼有限公司Tecore Synchem Inc Dielectric composite material for fingerprint sensor detection layer and manufacturing method
JP2017014406A (en) * 2015-07-01 2017-01-19 味の素株式会社 Resin composition
JP2017057268A (en) * 2015-09-16 2017-03-23 住友ベークライト株式会社 High dielectric resin composition and capacitance type sensor
JP2017084164A (en) * 2015-10-29 2017-05-18 王子ホールディングス株式会社 Insulation film for fingerprint authentication device, laminate, and fingerprint authentication device
JP2017129399A (en) * 2016-01-19 2017-07-27 住友ベークライト株式会社 Capacitive sensor and method for manufacturing capacitive sensor
JP2017165876A (en) * 2016-03-16 2017-09-21 味の素株式会社 Resin composition
CN107200974A (en) * 2016-03-16 2017-09-26 味之素株式会社 Resin combination
CN107200974B (en) * 2016-03-16 2021-06-15 味之素株式会社 Resin composition
KR20220138848A (en) * 2016-03-16 2022-10-13 아지노모토 가부시키가이샤 Resin composition
KR102548004B1 (en) 2016-03-16 2023-06-29 아지노모토 가부시키가이샤 Resin composition
WO2017217235A1 (en) * 2016-06-14 2017-12-21 デンカ株式会社 High-purity barium titanate powder, method for producing same, resin composition, and fingerprint sensor
CN109415222B (en) * 2016-06-14 2022-02-08 电化株式会社 High-purity barium titanate-based powder, method for producing same, resin composition, and fingerprint sensor
JP7038048B2 (en) 2016-06-14 2022-03-17 デンカ株式会社 High-purity barium titanate powder and its manufacturing method, resin composition and fingerprint sensor
JPWO2017217235A1 (en) * 2016-06-14 2019-04-11 デンカ株式会社 High-purity barium titanate-based powder, method for producing the same, resin composition, and fingerprint sensor
CN109415222A (en) * 2016-06-14 2019-03-01 电化株式会社 High-purity barium titanate powder and its manufacturing method and resin combination and fingerprint sensor
US11472716B2 (en) 2016-06-14 2022-10-18 Denka Company Limited High-purity barium titanate powder, method for producing same, resin composition, and fingerprint sensor
CN107868398A (en) * 2016-09-23 2018-04-03 深圳先进技术研究院 A kind of electric slurry, preparation method and application
JP2018053240A (en) * 2016-09-27 2018-04-05 住友ベークライト株式会社 Resin composition for encapsulation of capacitance type sensor and capacitance type sensor
CN107868405B (en) * 2016-09-27 2022-03-11 住友电木株式会社 Resin composition for sealing capacitive sensor and capacitive sensor
JP2018053241A (en) * 2016-09-27 2018-04-05 住友ベークライト株式会社 Resin composition for encapsulation of capacitance type sensor and capacitance type sensor
KR20180034247A (en) * 2016-09-27 2018-04-04 스미토모 베이클리트 컴퍼니 리미티드 Resin composition for encapsulating capacitive sensor, and capacitive sensor
KR102436208B1 (en) * 2016-09-27 2022-08-26 스미토모 베이클리트 컴퍼니 리미티드 Resin composition for encapsulating capacitive sensor, and capacitive sensor
JP7091618B2 (en) 2016-09-27 2022-06-28 住友ベークライト株式会社 Capacitance type sensor encapsulation resin composition and capacitance type sensor
KR20180034246A (en) * 2016-09-27 2018-04-04 스미토모 베이클리트 컴퍼니 리미티드 Resin composition for encapsulating capacitive sensor, and capacitive sensor
CN107868405A (en) * 2016-09-27 2018-04-03 住友电木株式会社 Capacitive type sensor resin composition for encapsulating and capacitive type sensor
KR102352498B1 (en) * 2016-09-27 2022-01-18 스미토모 베이클리트 컴퍼니 리미티드 Resin composition for encapsulating capacitive sensor, and capacitive sensor
CN107868406A (en) * 2016-09-27 2018-04-03 住友电木株式会社 Capacitive type sensor resin composition for encapsulating and capacitive type sensor
CN107868406B (en) * 2016-09-27 2022-03-11 住友电木株式会社 Resin composition for sealing capacitive sensor and capacitive sensor
US10565421B2 (en) 2017-02-22 2020-02-18 Samsung Display Co., Ltd. Fingerprint sensor and method of manufacturing the same
EP3367301A1 (en) * 2017-02-22 2018-08-29 Samsung Display Co., Ltd. Fingerprint sensor and method of manufacturing the same
JP2018141052A (en) * 2017-02-27 2018-09-13 京セラ株式会社 Resin composition and resin-sealed type semiconductor device
US10657348B2 (en) 2017-03-21 2020-05-19 Samsung Display Co., Ltd. Fingerprint sensor and manufacturing method thereof
US11352503B2 (en) 2017-04-04 2022-06-07 Denka Company Limited Powder mixture
JPWO2018186315A1 (en) * 2017-04-04 2020-04-23 デンカ株式会社 Powder mixture
WO2018186315A1 (en) * 2017-04-04 2018-10-11 デンカ株式会社 Powder mixture
CN113861618A (en) * 2020-06-30 2021-12-31 利诺士尖端材料有限公司 Insulating film for manufacturing electronic device
CN113861618B (en) * 2020-06-30 2023-11-07 利诺士尖端材料有限公司 Insulating film for manufacturing electronic device
WO2022172752A1 (en) * 2021-02-10 2022-08-18 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, laminate board, metal foil-clad laminate board, and printed wiring board
JPWO2022172752A1 (en) * 2021-02-10 2022-08-18
JP7223357B2 (en) 2021-02-10 2023-02-16 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
TW201546165A (en) 2015-12-16
JP6658508B2 (en) 2020-03-04
JP2020063459A (en) 2020-04-23
TWI659058B (en) 2019-05-11
JPWO2015146816A1 (en) 2017-04-13
CN106461366A (en) 2017-02-22
KR20160135802A (en) 2016-11-28
KR101827668B1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2015146816A1 (en) Epoxy resin composition and electrostatic-capacitance-type fingerprint sensor
JP6519424B2 (en) High dielectric resin composition
KR102436208B1 (en) Resin composition for encapsulating capacitive sensor, and capacitive sensor
JP6583278B2 (en) Semiconductor sealing resin composition, semiconductor device and structure
JP6854589B2 (en) High Dielectric Resin Composition, Capacitive Sensor and Capacitive Sensor Manufacturing Method
JP2022003130A (en) Sealing resin composition, semiconductor device, and method for manufacturing semiconductor device
WO2015037370A1 (en) Electrolytic capacitor and epoxy resin composition
JP4418165B2 (en) Epoxy resin molding material for sealing and semiconductor device
JP6679944B2 (en) Capacitive sensor and method of manufacturing electrostatic sensor
US20220315695A1 (en) Encapsulating resin composition and electronic component
JP2019001937A (en) Resin composition for semiconductor encapsulation and semiconductor device
JP6939243B2 (en) Capacitive sensor encapsulation resin composition and capacitive sensor
JP7302300B2 (en) Sealing resin composition and aluminum electrolytic capacitor
JP2017088828A (en) Semiconductor sealing resin composition, semiconductor device and structure
US20240240011A1 (en) Sealing resin composition
TWI666260B (en) Resin composition for encapsulation and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167029258

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15767941

Country of ref document: EP

Kind code of ref document: A1