WO2015037370A1 - Electrolytic capacitor and epoxy resin composition - Google Patents

Electrolytic capacitor and epoxy resin composition Download PDF

Info

Publication number
WO2015037370A1
WO2015037370A1 PCT/JP2014/070822 JP2014070822W WO2015037370A1 WO 2015037370 A1 WO2015037370 A1 WO 2015037370A1 JP 2014070822 W JP2014070822 W JP 2014070822W WO 2015037370 A1 WO2015037370 A1 WO 2015037370A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
epoxy resin
resin composition
capacitor element
mold
Prior art date
Application number
PCT/JP2014/070822
Other languages
French (fr)
Japanese (ja)
Inventor
君光 鵜木
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2015536490A priority Critical patent/JPWO2015037370A1/en
Priority to KR1020167009258A priority patent/KR20160055206A/en
Priority to CN201480049812.3A priority patent/CN105531779A/en
Publication of WO2015037370A1 publication Critical patent/WO2015037370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • H01G9/151Solid electrolytic capacitors with wound foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires

Definitions

  • the present invention relates to an electrolytic capacitor and an epoxy resin composition.
  • Patent Documents 1 and 2 relate to an electrolytic capacitor including a capacitor element in which an electrode foil is wound through a separator.
  • Patent Document 1 describes a solid electrolytic capacitor including a capacitor element and an outer shell made of an insulating resin that covers the capacitor element.
  • Patent Document 2 describes a method for manufacturing a solid electrolytic capacitor including a step of placing a capacitor element in a mold and injecting a mold resin into the mold to mold the mold.
  • an electrolytic capacitor element formed by winding a laminated film in which a cathode foil, a separator, and an anode foil are laminated in this order; Mold resin that is composed of a cured product of an epoxy resin composition and covers at least a part of the electrolytic capacitor element; With The epoxy resin composition is Epoxy resin (A), Crystalline silica (B); An electrolytic capacitor is provided.
  • an epoxy resin composition comprising an epoxy resin (A) and crystalline silica (B) is provided.
  • the reliability of the electrolytic capacitor can be improved.
  • FIG. 2 is a perspective view schematically showing the electrolytic capacitor element shown in FIG. 1.
  • FIG. 1 is a cross-sectional view schematically showing an electrolytic capacitor 100 according to this embodiment.
  • FIG. 2 is a perspective view schematically showing the electrolytic capacitor element 10 shown in FIG.
  • the electrolytic capacitor 100 according to the present embodiment includes an electrolytic capacitor element 10 and a mold resin 20.
  • the electric field capacitor element 10 is formed by winding a laminated film in which a cathode foil 12, a separator 16, and an anode foil 14 are laminated in this order.
  • the mold resin 20 is made of a cured product of an epoxy resin composition and covers at least a part of the electrolytic capacitor element 10.
  • the said epoxy resin composition contains an epoxy resin (A) and crystalline silica (B).
  • a mold resin covering the electrolytic capacitor element is used as crystalline silica. It was newly found out that the temperature resistance cycle characteristics of the electrolytic capacitor can be improved by comprising a cured product of the epoxy resin composition containing, thereby reaching the constitution of the present embodiment.
  • the mold resin 20 that covers the electrolytic capacitor element 10 is constituted by a cured product of an epoxy resin composition that includes an epoxy resin (A) and crystalline silica (B). For this reason, the temperature cycle resistance characteristics of the electrolytic capacitor 100 can be improved.
  • a temperature-resistant cycle characteristic for example, an equivalent series resistance (ESR (Equivalent Series Resistance)) caused by peeling between the capacitor element 10 and the mold resin 20 due to the temperature cycle, damage of the electrolytic capacitor element 10, or the like. It is possible to suppress an increase or a decrease in lifetime. Therefore, the reliability of the electrolytic capacitor can be improved.
  • ESR Equivalent Series Resistance
  • the electrolytic capacitor 100 is, for example, an electrolytic capacitor or a conductive polymer electrolytic capacitor.
  • the electrolytic capacitor 100 includes an electrolytic capacitor element 10 and a mold resin 20 that covers at least a part of the electrolytic capacitor element 10.
  • an aluminum case, sealing rubber, a pedestal or the like for protecting the electrolytic capacitor element 10 becomes unnecessary. Therefore, it is possible to realize the electrolytic capacitor 100 that is excellent from the viewpoint of volume efficiency and low profile.
  • Electrolytic capacitor element 10 includes an anode, a cathode provided opposite to the anode, and a dielectric provided between the anode and the cathode.
  • the electrolytic capacitor element 10 according to the present embodiment is a wound electrolytic capacitor element formed by winding a laminated film in which, for example, a cathode foil 12, a separator 16, and an anode foil 14 are laminated in this order. Thereby, the capacity and size of the electrolytic capacitor element 10 can be reduced.
  • FIG. 2 illustrates a case where the electrolytic capacitor element 10 is formed by winding a laminated film in which the cathode foil 12, the separator 16, the anode foil 14, and the separator 16 are laminated in this order. In the example shown in FIG. 2, the laminated film is wound so that the cathode foil 12 is positioned on the outermost layer, but the structure of the electrolytic capacitor element 10 is not limited to this.
  • the cathode foil 12 and the anode foil 14 are made of, for example, a metal material mainly composed of Al.
  • the electrolytic capacitor element 10 is an aluminum electrolytic capacitor.
  • a metal material which comprises an anode and a cathode the alloy containing 2 or more types selected from Ta, Nb or Al, Ta, and Nb is also mentioned, for example.
  • the surface of the cathode foil 12 and the anode foil 14 is subjected to, for example, an etching process for increasing the surface area.
  • an insulating layer or a semiconductor layer constituting a dielectric of the electrolytic capacitor element 10 is formed on the surface of the anode foil 14.
  • a dielectric layer made of, for example, Al 2 O 3 is formed on the surface of the anode foil 14 by a chemical conversion process.
  • the separator 16 is impregnated with an electrolytic solution, thereby forming an electrolyte layer.
  • the solvent in the electrolytic solution is not particularly limited, and for example, a protonic solvent such as alcohols, an aprotic solvent such as lactones, or water can be used. These may be used alone or in combination of two or more.
  • solute in the electrolytic solution examples include adipic acid, glutaric acid, succinic acid, benzoic acid, isophthalic acid, phthalic acid, terephthalic acid, maleic acid, toluic acid, enanthic acid, malonic acid, formic acid, decanedicarboxylic acid, Organic acids such as octanedicarboxylic acid, azelaic acid or sebacic acid, inorganic acids such as boric acid, phosphoric acid, carbonic acid or silicic acid, or ammonium salts, amine salts, quaternary ammonium salts, amidines containing these conjugate bases as anionic components Examples thereof include system salts.
  • the electrolyte layer may be a solid electrolyte layer formed by, for example, immersing a polymerizable monomer solution in the separator 16 and polymerizing the monomer in the solution.
  • the monomer solution include those containing thiophene, aniline, pyrrole, furan, acetylene, or derivatives thereof. Among these, it is particularly preferable to use those containing thiophene derivatives such as 3,4-ethylenedioxythiophene.
  • the electrolytic capacitor 100 may further include an external terminal 30 connected to the anode or the cathode of the electrolytic capacitor element 10.
  • the mold resin 20 is provided so as to cover at least a part of the external terminal 30.
  • FIG. 1 the case where the mold resin 20 is provided so as to cover one end side of the external terminal 30 connected to the anode or the cathode and to expose the other end side is illustrated.
  • the external terminal 30 is constituted by a lead wire, for example.
  • the external terminal 30 is made of, for example, a metal material whose main component is Al.
  • the mold resin 20 that covers the electrolytic capacitor element 10 is constituted by a cured product of an epoxy resin composition that includes an epoxy resin (A) and crystalline silica (B).
  • the temperature cycle characteristics of the electrolytic capacitor 100 can be improved also from such a viewpoint.
  • the mold resin 20 covers at least a part of the electrolytic capacitor element 10. In the present embodiment, it is preferable that the entire electrolytic capacitor element 10 is covered with the mold resin 20 from the viewpoint of improving reliability.
  • a mold resin 20 is provided so as to seal the entire electrolytic capacitor element 10.
  • the mold resin 20 is provided so as to cover at least a part of the external terminal 30 as described above, for example.
  • the external terminal 30 is provided so as to cover only a part of the external terminal 30 while sealing the entire electrolytic capacitor element 10.
  • Mold resin 20 is composed of a cured product of an epoxy resin composition.
  • the epoxy resin composition includes an epoxy resin (A) and crystalline silica (B).
  • A epoxy resin
  • B crystalline silica
  • epoxy resin (A) Epoxy resin
  • monomers, oligomers and polymers generally having two or more epoxy groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
  • the epoxy resin (A) for example, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as tetramethylbisphenol F type epoxy resin, stilbene type epoxy resin, Crystalline epoxy resins such as hydroquinone type epoxy resins; Novolak type epoxy resins such as cresol novolak type epoxy resins, phenol novolak type epoxy resins, naphthol novolak type epoxy resins; Epoxy resins, naphthol aralkyl-type epoxy resins containing a phenylene skeleton, phenol aralkyl epoxy resins containing an alkoxynaphthalene skeleton, etc.
  • Lukyle-type epoxy resin Trifunctional epoxy resin such as triphenolmethane-type epoxy resin and alkyl-modified triphenolmethane-type epoxy resin; Modified phenol-type epoxy resin such as dicyclopentadiene-modified phenol-type epoxy resin and terpene-modified phenol-type epoxy resin A heterocyclic ring-containing epoxy resin such as a triazine nucleus-containing epoxy resin. These may be used alone or in combination of two or more. Among these, it is more preferable to use at least one of a novolac-type epoxy resin and an aralkyl-type epoxy resin from the viewpoint of improving the balance between the temperature cycle characteristics, moisture resistance, and moldability of the electrolytic capacitor 100.
  • an aralkyl type epoxy resin from the viewpoint of improving the moisture resistance of the electrolytic capacitor 100, it is particularly preferable to use an aralkyl type epoxy resin, and it is more preferable to use a phenol aralkyl type epoxy resin having a biphenylene skeleton.
  • the aralkyl type epoxy resin used as an epoxy resin (A) can be represented by the following general formula (1), for example.
  • X represents any one of a phenylene group, a biphenylene group, or a naphthylene group
  • Y represents a phenylene group or a naphthylene group
  • R 1 and R 2 each independently represent 1 to 10 carbon atoms.
  • g is an integer of 0 to 8
  • h is an integer of 0 to 5
  • n is an integer of 1 to 5 indicating the degree of polymerization
  • content of the epoxy resin (A) in an epoxy resin composition is not specifically limited, For example, it is preferable that it is 1 to 50 weight% with respect to the whole epoxy resin composition, and is 2 to 30 weight%. More preferably, it is more preferably 5% by weight or less and 20% by weight or less.
  • content of an epoxy resin (A) more than the said lower limit, the fluidity
  • the content of the epoxy resin (A) to be equal to or less than the above upper limit value, the moisture resistance reliability and temperature cycle resistance characteristics of the electrolytic capacitor 100 can be more effectively improved.
  • the average particle diameter D 50 of the crystalline silica is preferably 0.2 ⁇ m or more 50 ⁇ m or less, more preferably 0.5 ⁇ m or 30 ⁇ m or less.
  • the average particle diameter D 50 is a commercially available laser particle size distribution analyzer (e.g., manufactured by Shimadzu Corporation, SALD-7000) was defined as the average particle diameter at. The same applies to fused silica (C).
  • the content of the crystalline silica (B) in the epoxy resin composition is not particularly limited, but for example, it is preferably 50% by weight or more and 95% by weight or less, and 60% by weight or more with respect to the entire epoxy resin composition. It is more preferably 95% by weight or less, and particularly preferably 70% by weight or more and 90% by weight or less.
  • the temperature cycle characteristics and moisture resistance of the electrolytic capacitor 100 can be more effectively improved.
  • liquidity of an epoxy resin composition can be made favorable, and it becomes possible to improve a moldability more effectively.
  • the epoxy resin composition may further contain fused silica (C).
  • fused silica (C) those known to those skilled in the art can be used.
  • the fluidity in the epoxy resin composition can be easily improved and the moldability can be further improved.
  • it can also contribute to improvement of moisture resistance reliability.
  • fused silica (C) for example, fused spherical silica or fused crushed silica can be used. These may be used alone or in combination. Among these, from the viewpoint of ease of improvement in fluidity, it is more preferable to use fused spherical silica.
  • the average particle diameter D 50 of the fused silica (C) is preferably 0.2 ⁇ m or more and 50 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 30 ⁇ m or less.
  • the average particle diameter D 50 of less than the above lower limit the fluidity of the epoxy resin composition is made excellent, it is possible to improve the formability more effectively. Further, by the average particle diameter D 50 and more than the above upper limit can reliably prevent the gate clogging occurs.
  • the content of the fused silica (C) in the epoxy resin composition is not particularly limited, but is preferably 0.5% by weight or more and 30% by weight or less, for example, based on the entire epoxy resin composition, and preferably 1% by weight.
  • the content is more preferably 25% by weight or less and particularly preferably 2% by weight or more and 20% by weight or less.
  • the epoxy resin composition may further contain a filler in addition to the crystalline silica (B) and the fused silica (C).
  • a filler in addition to the crystalline silica (B) and the fused silica (C).
  • examples of such fillers include silica, alumina, kaolin, talc, clay, mica, rock wool, wollastonite, glass powder, glass flakes, glass beads, glass fibers, silicon carbide, and silicon nitride obtained by the sol-gel method.
  • a pulverized pulverized powder is exemplified.
  • the epoxy resin composition can contain a curing agent (D), for example.
  • the curing agent (D) is not particularly limited as long as it can be cured by reacting with the epoxy resin (A), but for example, ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine and the like having 2 to 20 carbon atoms.
  • Organic acids These may be used alone or in combination of two or more.
  • at least one of a novolac type phenol resin or a phenol aralkyl resin is used. More preferred. From the viewpoint of improving the moisture resistance of the electrolytic capacitor 100, it is particularly preferable to use a phenol aralkyl resin.
  • curing agent (D) in an epoxy resin composition is not specifically limited, For example, it is preferable that it is 1 to 10 weight% with respect to the whole epoxy resin composition, and is 3 to 8 weight%. It is particularly preferable that the amount is not more than% by weight.
  • An epoxy resin composition can contain a coupling agent (E), for example.
  • a coupling agent (E) known cups such as various silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, titanium compounds, aluminum chelates, aluminum / zirconium compounds, etc.
  • a ring agent can be used. Examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • the content of the coupling agent (E) in the epoxy resin composition is not particularly limited.
  • the content is preferably 0.1% by weight or more and 3% by weight or less with respect to the entire epoxy resin composition. It is particularly preferable that the content is 2% by weight or more and 2% by weight or less.
  • content of a coupling agent (E) more than the said lower limit, the dispersibility of filler components, such as crystalline silica (B) in a epoxy resin composition, and fused silica (C), shall be favorable. can do.
  • content of a coupling agent (E) below into the said upper limit the fluidity
  • the epoxy resin composition is, for example, an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, or an addition of a phosphonium compound and a silane compound.
  • a phosphorus atom-containing compound such as 1,8-diazabicyclo (5,4,0) undecene-7, an amidine compound such as imidazole, a tertiary amine such as benzyldimethylamine, or a quaternary onium salt of the compound.
  • Curing accelerators such as nitrogen atom-containing compounds typified by amidinium salts or ammonium salts; Colorants such as carbon black; Release agents such as natural wax, synthetic wax, higher fatty acids or metal salts thereof, paraffin, polyethylene oxide, etc. ; Silicone oil, silicone rubber, etc. Low stress agents; ion scavengers such as hydrotalcite; flame retardants such as aluminum hydroxide; various additives such as antioxidants.
  • the flow length of the epoxy resin composition measured by spiral flow measurement is preferably 30 cm or more and 150 cm or less, more preferably 40 cm or more and 130 cm or less, and particularly preferably 50 cm or more and 110 cm or less. Thereby, the improvement of the moldability of an epoxy resin composition can be aimed at.
  • the spiral flow measurement of the epoxy resin composition is performed using a low-pressure transfer molding machine, for example, a mold temperature of 175 ° C. and an injection pressure of 6. An epoxy resin composition is injected under conditions of 9 MPa and a curing time of 120 seconds, and the flow length is measured.
  • the epoxy resin composition preferably has a gel time at 175 ° C. of, for example, 15 seconds to 60 seconds, more preferably 20 seconds to 55 seconds, and particularly preferably 25 seconds to 50 seconds. .
  • a gel time at 175 ° C. of, for example, 15 seconds to 60 seconds, more preferably 20 seconds to 55 seconds, and particularly preferably 25 seconds to 50 seconds.
  • the epoxy resin composition preferably has a glass transition temperature (Tg) of a cured product that is thermally cured at 175 ° C. for 4 hours, for example, 130 ° C. or more and 200 ° C. or less, and 140 ° C. or more and 180 ° C. or less. Is more preferable, and it is particularly preferably 145 ° C. or higher and 170 ° C. or lower.
  • the linear expansion coefficient ( ⁇ 1 ) at the glass transition temperature or lower of the cured product is preferably, for example, from 5 ppm / ° C. to 40 ppm / ° C., more preferably from 8 ppm / ° C.
  • the linear expansion coefficient ( ⁇ 2 ) at the glass transition temperature or higher of the cured product is preferably, for example, 30 ppm / ° C. or higher and 90 ppm / ° C. or lower, more preferably 40 ppm / ° C. or higher and 80 ppm / ° C. or lower, It is particularly preferably 45 ppm / ° C. or more and 75 ppm / ° C. or less.
  • Tg, ⁇ 1 , and ⁇ 2 of the cured product of the epoxy resin composition can be measured as follows, for example. First, an epoxy resin composition is injection-molded using a low-pressure transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds to obtain a 10 mm ⁇ 4 mm ⁇ 4 mm test piece. Next, the obtained test piece is post-cured at 175 ° C.
  • the glass transition temperature (Tg), the linear expansion coefficient ( ⁇ 1 ) below the glass transition temperature, and the linear expansion coefficient ( ⁇ 2 ) above the glass transition temperature can be calculated.
  • the epoxy resin composition preferably has a differential boiling water absorption of, for example, 0.3% by mass or less, more preferably 0.26% by mass or less, after being cured at 175 ° C. for 4 hours. It is preferably 0.24% by mass or less.
  • the reliability in the electrolytic capacitor 100 such as moisture resistance reliability can be improved.
  • the differential boiling water absorption of the cured product can be measured, for example, as follows. First, using a low-pressure transfer molding machine, a disk-shaped test piece having a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 120 seconds and a diameter of 50 mm and a thickness of 3 mm is molded.
  • the mass of the test piece before boiling treatment and the mass after boiling treatment in pure water for 24 hours are measured.
  • the boiling water absorption rate of the test piece is obtained as a percentage.
  • the electrolytic capacitor 100 according to the present embodiment is manufactured as follows, for example. First, after connecting the external terminal 30 to the cathode foil 12 and the anode foil 14, these electrode foils are wound through the separator 16.
  • the electrolytic capacitor element 10 thus obtained is encapsulated with an epoxy resin composition. Examples of the molding method include a transfer molding method and a compression molding method. Next, the epoxy resin composition is thermally cured to form the mold resin 20. Thereby, the electrolytic capacitor 100 according to the present embodiment is obtained.
  • the mold resin 20 that covers the electrolytic capacitor element 10 is constituted by a cured product of an epoxy resin composition that includes an epoxy resin (A) and crystalline silica (B). For this reason, the temperature cycle resistance characteristics of the electrolytic capacitor 100 can be improved. Therefore, the reliability of the electrolytic capacitor can be improved.
  • epoxy resin compositions were prepared as follows. First, each component blended according to Table 1 was mixed at 15 to 28 ° C. using a mixer. Next, the obtained mixture was roll kneaded at 70 to 100 ° C., cooled and pulverized to obtain an epoxy resin composition. The details of each component in Table 1 are as follows. Moreover, the unit in Table 1 is mass%.
  • Epoxy resin Epoxy resin 1 phenol aralkyl type epoxy resin containing biphenylene skeleton (NC-3000P, manufactured by Nippon Kayaku Co., Ltd.)
  • Epoxy resin 2 Orthocresol novolac type epoxy resin (EOCN-1020-75, manufactured by Nippon Kayaku Co., Ltd.)
  • B Crystalline silica crystallite SKS, manufactured by Tatsumori Co., Ltd. (average particle size: 23 ⁇ m)
  • C Fused silica FB-950, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • electrolytic capacitors were produced as follows. First, lead wires as external terminals were connected to the anode foil and the cathode foil, and both electrode foils were wound through a separator to form an electrolytic capacitor element.
  • the anode foil used was an aluminum foil that was subjected to surface expansion treatment by etching, and then subjected to chemical conversion treatment in an aqueous solution of ammonium adipate to form an oxide film layer on the surface.
  • the cathode foil an aluminum foil etched and expanded was used.
  • the lead wire one formed of a metal material containing 99% or more of aluminum was used.
  • the electrolytic capacitor element was impregnated with an electrolytic solution composed of a mixed solution of ⁇ -butyrolactone and ethyldimethylimidazolinium phthalate.
  • the obtained electrolytic capacitor element and lead wire were molded using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.) with a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. Seal molding was performed with an epoxy resin composition under conditions. Thereafter, the epoxy resin composition was post-cured at 175 ° C. for 4 hours to obtain an electrolytic capacitor coated with a mold resin.
  • KTS-15 low-pressure transfer molding machine
  • Glass transition temperature (Tg), linear expansion coefficient ( ⁇ 1 , ⁇ 2 ) About each Example and the comparative example, the glass transition temperature (Tg) and linear expansion coefficient ((alpha) 1 , (alpha) 2 ) of the hardened
  • KTS-15 low-pressure transfer molding machine
  • thermomechanical analyzer manufactured by Seiko Denshi Kogyo Co., Ltd., TMA100
  • TMA100 thermomechanical analyzer
  • the measurement was performed under the condition of 5 ° C./min. From this measurement result, the glass transition temperature (Tg), the linear expansion coefficient ( ⁇ 1 ) below the glass transition temperature, and the linear expansion coefficient ( ⁇ 2 ) above the glass transition temperature were calculated.
  • Tg glass transition temperature
  • ⁇ 1 and ⁇ 2 is ppm / ° C.
  • Tg the unit of Tg is ° C.
  • cured material of the obtained epoxy resin composition was measured as follows. First, using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.), a disk-shaped test having a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 120 seconds and a diameter of 50 mm and a thickness of 3 mm A piece was molded. Next, after the obtained test piece was post-cured at 175 ° C. for 4 hours, the mass of the test piece before boiling treatment and the mass after boiling treatment in pure water for 24 hours were measured. From the result of calculating the mass change before and after the boiling treatment based on this measurement result, the boiling water absorption rate of the test piece was obtained as a percentage. The unit in Table 1 is mass%.
  • ESR Equivalent series resistance
  • the electrolytic capacitor was left in an atmosphere of 65 ° C. and RH (relative humidity) 95% for 500 hours.
  • ESR Equivalent series resistance
  • ESR Equivalent series resistance
  • Examples 1 to 3 all showed good results in the temperature cycle test. Among these, Examples 1 and 2 showed particularly excellent results in the moisture resistance test. In addition, Examples 1 and 3 showed particularly excellent results in the moldability test as compared with Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

This electrolytic capacitor (100) comprises: an electrolytic capacitor element (10) that is formed by winding up a multilayer film obtained by sequentially laminating a negative electrode foil, a separator and a positive electrode foil in this order; and a mold resin (20) that is configured of a cured product of an epoxy resin composition and covers at least a part of the electrolytic capacitor element (10). The epoxy resin composition contains (A) an epoxy resin and (B) crystalline silica.

Description

電解コンデンサおよびエポキシ樹脂組成物Electrolytic capacitor and epoxy resin composition
 本発明は、電解コンデンサおよびエポキシ樹脂組成物に関する。 The present invention relates to an electrolytic capacitor and an epoxy resin composition.
 電解コンデンサについては、様々な技術が検討されている。たとえば特許文献1および2に記載の技術は、電極箔を、セパレータを介して巻回したコンデンサ素子を備える電解コンデンサに関するものである。特許文献1には、コンデンサ素子と、該コンデンサ素子を被覆する絶縁性樹脂製の外殻とを具える固体電解コンデンサが記載されている。特許文献2には、コンデンサ素子を成形型に設置し成形型にモールド樹脂を注入して成型する工程を含む固体電解コンデンサの製造方法が記載されている。 Various technologies have been studied for electrolytic capacitors. For example, the techniques described in Patent Documents 1 and 2 relate to an electrolytic capacitor including a capacitor element in which an electrode foil is wound through a separator. Patent Document 1 describes a solid electrolytic capacitor including a capacitor element and an outer shell made of an insulating resin that covers the capacitor element. Patent Document 2 describes a method for manufacturing a solid electrolytic capacitor including a step of placing a capacitor element in a mold and injecting a mold resin into the mold to mold the mold.
特開2003-272962号公報Japanese Patent Laid-Open No. 2003-272966 特開2013-89782号公報Japanese Patent Application Laid-Open No. 2013-89782
 電解コンデンサ素子と、これを被覆するモールド樹脂と、を備える電解コンデンサについて、その信頼性を向上させることが求められている。 It is required to improve the reliability of an electrolytic capacitor including an electrolytic capacitor element and a mold resin covering the electrolytic capacitor element.
 本発明によれば、陰極箔、セパレータ、および陽極箔をこの順に積層した積層膜を巻回することにより形成される電解コンデンサ素子と、
 エポキシ樹脂組成物の硬化物により構成され、かつ前記電解コンデンサ素子の少なくとも一部を被覆するモールド樹脂と、
 を備え、
 前記エポキシ樹脂組成物は、
  エポキシ樹脂(A)と、
  結晶性シリカ(B)と、
 を含む電解コンデンサが提供される。
According to the present invention, an electrolytic capacitor element formed by winding a laminated film in which a cathode foil, a separator, and an anode foil are laminated in this order;
Mold resin that is composed of a cured product of an epoxy resin composition and covers at least a part of the electrolytic capacitor element;
With
The epoxy resin composition is
Epoxy resin (A),
Crystalline silica (B);
An electrolytic capacitor is provided.
 また、本発明によれば、陰極箔、セパレータ、および陽極箔をこの順に積層した積層膜を巻回することにより形成される電解コンデンサ素子の少なくとも一部を被覆するモールド樹脂を形成するために用いられるエポキシ樹脂組成物であって、エポキシ樹脂(A)と、結晶性シリカ(B)と、を含むエポキシ樹脂組成物が提供される。 In addition, according to the present invention, it is used to form a mold resin that covers at least a part of an electrolytic capacitor element formed by winding a laminated film in which a cathode foil, a separator, and an anode foil are laminated in this order. An epoxy resin composition comprising an epoxy resin (A) and crystalline silica (B) is provided.
 本発明によれば、電解コンデンサの信頼性を向上させることができる。 According to the present invention, the reliability of the electrolytic capacitor can be improved.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本実施形態に係る電解コンデンサを模式的に示す断面図である。It is sectional drawing which shows typically the electrolytic capacitor which concerns on this embodiment. 図1に示す電解コンデンサ素子を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the electrolytic capacitor element shown in FIG. 1.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、本実施形態に係る電解コンデンサ100を模式的に示す断面図である。図2は、図1に示す電解コンデンサ素子10を模式的に示す斜視図である。
 本実施形態に係る電解コンデンサ100は、電解コンデンサ素子10と、モールド樹脂20と、を備えている。電界コンデンサ素子10は、陰極箔12、セパレータ16、および陽極箔14をこの順に積層した積層膜を巻回することにより形成されている。モールド樹脂20は、エポキシ樹脂組成物の硬化物により構成され、かつ電解コンデンサ素子10の少なくとも一部を被覆する。また、上記エポキシ樹脂組成物は、エポキシ樹脂(A)と、結晶性シリカ(B)と、を含む。
(First embodiment)
FIG. 1 is a cross-sectional view schematically showing an electrolytic capacitor 100 according to this embodiment. FIG. 2 is a perspective view schematically showing the electrolytic capacitor element 10 shown in FIG.
The electrolytic capacitor 100 according to the present embodiment includes an electrolytic capacitor element 10 and a mold resin 20. The electric field capacitor element 10 is formed by winding a laminated film in which a cathode foil 12, a separator 16, and an anode foil 14 are laminated in this order. The mold resin 20 is made of a cured product of an epoxy resin composition and covers at least a part of the electrolytic capacitor element 10. Moreover, the said epoxy resin composition contains an epoxy resin (A) and crystalline silica (B).
 本発明者は、陰極箔、セパレータ、および陽極箔をこの順に積層した積層膜を巻回することにより形成される巻回型電解コンデンサ素子において、電解コンデンサ素子を被覆するモールド樹脂を、結晶性シリカを含むエポキシ樹脂組成物の硬化物によって構成することにより、電解コンデンサの耐温度サイクル特性を向上させることができることを新たに知見し、本実施形態の構成に至った。
 本実施形態によれば、電解コンデンサ素子10を被覆するモールド樹脂20は、エポキシ樹脂(A)と、結晶性シリカ(B)と、を含むエポキシ樹脂組成物の硬化物により構成される。このため、電解コンデンサ100の耐温度サイクル特性を向上させることができる。このような耐温度サイクル特性としては、たとえば、温度サイクルによるコンデンサ素子10とモールド樹脂20との間における剥離や電解コンデンサ素子10の破損等に起因した等価直列抵抗(ESR(Equivalent Series Resistance))の増大や寿命の低下を抑制することが挙げられる。したがって、電解コンデンサの信頼性を向上させることが可能となる。
The present inventor, in a wound electrolytic capacitor element formed by winding a laminated film in which a cathode foil, a separator, and an anode foil are laminated in this order, a mold resin covering the electrolytic capacitor element is used as crystalline silica. It was newly found out that the temperature resistance cycle characteristics of the electrolytic capacitor can be improved by comprising a cured product of the epoxy resin composition containing, thereby reaching the constitution of the present embodiment.
According to this embodiment, the mold resin 20 that covers the electrolytic capacitor element 10 is constituted by a cured product of an epoxy resin composition that includes an epoxy resin (A) and crystalline silica (B). For this reason, the temperature cycle resistance characteristics of the electrolytic capacitor 100 can be improved. As such a temperature-resistant cycle characteristic, for example, an equivalent series resistance (ESR (Equivalent Series Resistance)) caused by peeling between the capacitor element 10 and the mold resin 20 due to the temperature cycle, damage of the electrolytic capacitor element 10, or the like. It is possible to suppress an increase or a decrease in lifetime. Therefore, the reliability of the electrolytic capacitor can be improved.
 以下、本実施形態に係る電解コンデンサ100の構成ついて詳細に説明する。 Hereinafter, the configuration of the electrolytic capacitor 100 according to the present embodiment will be described in detail.
 本実施形態に係る電解コンデンサ100は、たとえば電解コンデンサまたは導電性高分子電解コンデンサである。電解コンデンサ100は、電解コンデンサ素子10と、電解コンデンサ素子10の少なくとも一部を被覆するモールド樹脂20と、を含む。モールド樹脂20により電解コンデンサ素子10を被覆することにより、電解コンデンサ素子10を保護するためのアルミケースや封止ゴム、台座等が不要となる。したがって、体積効率や低背化の観点から優れた電解コンデンサ100を実現することができる。 The electrolytic capacitor 100 according to the present embodiment is, for example, an electrolytic capacitor or a conductive polymer electrolytic capacitor. The electrolytic capacitor 100 includes an electrolytic capacitor element 10 and a mold resin 20 that covers at least a part of the electrolytic capacitor element 10. By covering the electrolytic capacitor element 10 with the mold resin 20, an aluminum case, sealing rubber, a pedestal or the like for protecting the electrolytic capacitor element 10 becomes unnecessary. Therefore, it is possible to realize the electrolytic capacitor 100 that is excellent from the viewpoint of volume efficiency and low profile.
 電解コンデンサ素子10は、陽極と、陽極に対向して設けられる陰極と、陽極および陰極の間に設けられる誘電体と、により構成される。
 本実施形態に係る電解コンデンサ素子10は、たとえば陰極箔12、セパレータ16、および陽極箔14をこの順に積層した積層膜を巻回することにより形成される巻回型電解コンデンサ素子である。これにより、電解コンデンサ素子10の大容量化や小型化を図ることができる。図2では、電解コンデンサ素子10が、陰極箔12、セパレータ16、陽極箔14、およびセパレータ16をこの順に積層した積層膜を巻回することにより形成される場合が例示されている。図2に示す例では、最外層に陰極箔12が位置するように積層膜が巻回されているが、電解コンデンサ素子10の構造はこれに限定されない。
Electrolytic capacitor element 10 includes an anode, a cathode provided opposite to the anode, and a dielectric provided between the anode and the cathode.
The electrolytic capacitor element 10 according to the present embodiment is a wound electrolytic capacitor element formed by winding a laminated film in which, for example, a cathode foil 12, a separator 16, and an anode foil 14 are laminated in this order. Thereby, the capacity and size of the electrolytic capacitor element 10 can be reduced. FIG. 2 illustrates a case where the electrolytic capacitor element 10 is formed by winding a laminated film in which the cathode foil 12, the separator 16, the anode foil 14, and the separator 16 are laminated in this order. In the example shown in FIG. 2, the laminated film is wound so that the cathode foil 12 is positioned on the outermost layer, but the structure of the electrolytic capacitor element 10 is not limited to this.
 陰極箔12および陽極箔14は、たとえばAlを主成分とする金属材料により構成される。この場合、電解コンデンサ素子10は、アルミ電解コンデンサとなる。なお、陽極および陰極を構成する金属材料としては、たとえばTa、Nb、またはAl、TaおよびNbから選択される2種以上を含む合金も挙げられる。また、陰極箔12および陽極箔14の表面には、たとえば表面積を拡大するためのエッチング処理が施される。
 陽極箔14の表面には、たとえば電解コンデンサ素子10の誘電体を構成する絶縁層または半導体層が形成されている。陽極箔14がAlにより構成される場合、陽極箔14表面には、たとえばAlにより構成される誘電体層が化成工程によって形成される。
The cathode foil 12 and the anode foil 14 are made of, for example, a metal material mainly composed of Al. In this case, the electrolytic capacitor element 10 is an aluminum electrolytic capacitor. In addition, as a metal material which comprises an anode and a cathode, the alloy containing 2 or more types selected from Ta, Nb or Al, Ta, and Nb is also mentioned, for example. Further, the surface of the cathode foil 12 and the anode foil 14 is subjected to, for example, an etching process for increasing the surface area.
On the surface of the anode foil 14, for example, an insulating layer or a semiconductor layer constituting a dielectric of the electrolytic capacitor element 10 is formed. When the anode foil 14 is made of Al, a dielectric layer made of, for example, Al 2 O 3 is formed on the surface of the anode foil 14 by a chemical conversion process.
 セパレータ16には、電解液が含浸されており、これにより電解質層が形成される。上記電解液における溶媒としては、とくに限定されないが、たとえばアルコール類等のプロトン系溶媒、ラクトン類等の非プロトン系溶媒、または水を用いることができる。これらは単独で用いても、2種以上を併用して用いてもよい。また、上記電解液における溶質としては、たとえばアジピン酸、グルタル酸、コハク酸、安息香酸、イソフタル酸、フタル酸、テレフタル酸、マレイン酸、トルイル酸、エナント酸、マロン酸、蟻酸、デカンジカルボン酸、オクタンジカルボン酸、アゼライン酸もしくはセバシン酸等の有機酸、硼酸、りん酸、炭酸もしくはけい酸等の無機酸、またはこれらの共役塩基をアニオン成分とするアンモニウム塩、アミン塩、四級アンモニウム塩、アミジン系塩等が挙げられる。
 なお、上記電解質層は、たとえばセパレータ16に重合性モノマー溶液を浸漬し、当該溶液中のモノマーを重合させることにより形成される固体電解質層であってもよい。上記モノマー溶液としては、たとえばチオフェン、アニリン、ピロール、フラン、もしくはアセチレン、またはこれらの誘導体を含むものが挙げられる。これらの中でも、3,4-エチレンジオキシチオフェン等のチオフェン誘導体を含むものを用いることが特に好ましい。
The separator 16 is impregnated with an electrolytic solution, thereby forming an electrolyte layer. The solvent in the electrolytic solution is not particularly limited, and for example, a protonic solvent such as alcohols, an aprotic solvent such as lactones, or water can be used. These may be used alone or in combination of two or more. Examples of the solute in the electrolytic solution include adipic acid, glutaric acid, succinic acid, benzoic acid, isophthalic acid, phthalic acid, terephthalic acid, maleic acid, toluic acid, enanthic acid, malonic acid, formic acid, decanedicarboxylic acid, Organic acids such as octanedicarboxylic acid, azelaic acid or sebacic acid, inorganic acids such as boric acid, phosphoric acid, carbonic acid or silicic acid, or ammonium salts, amine salts, quaternary ammonium salts, amidines containing these conjugate bases as anionic components Examples thereof include system salts.
The electrolyte layer may be a solid electrolyte layer formed by, for example, immersing a polymerizable monomer solution in the separator 16 and polymerizing the monomer in the solution. Examples of the monomer solution include those containing thiophene, aniline, pyrrole, furan, acetylene, or derivatives thereof. Among these, it is particularly preferable to use those containing thiophene derivatives such as 3,4-ethylenedioxythiophene.
 電解コンデンサ100は、電解コンデンサ素子10の陽極または陰極に接続される外部端子30をさらに備えていてもよい。この場合、モールド樹脂20は、外部端子30の少なくとも一部を被覆するように設けられる。図1においては、外部端子30のうち陽極または陰極に接続される一端側を被覆し、他端側を露出させるようにモールド樹脂20が設けられる場合が例示されている。外部端子30は、たとえばリード線により構成される。また、外部端子30は、たとえばAlを主成分とする金属材料により構成される。
 本実施形態によれば、電解コンデンサ素子10を被覆するモールド樹脂20は、エポキシ樹脂(A)と、結晶性シリカ(B)と、を含むエポキシ樹脂組成物の硬化物により構成される。これにより、温度サイクルによる外部端子30とモールド樹脂20との間における剥離や外部端子30の破損等に起因した等価直列抵抗の増大を抑制することができる。本実施形態においては、このような観点からも、電解コンデンサ100の耐温度サイクル特性を向上させることができる。
The electrolytic capacitor 100 may further include an external terminal 30 connected to the anode or the cathode of the electrolytic capacitor element 10. In this case, the mold resin 20 is provided so as to cover at least a part of the external terminal 30. In FIG. 1, the case where the mold resin 20 is provided so as to cover one end side of the external terminal 30 connected to the anode or the cathode and to expose the other end side is illustrated. The external terminal 30 is constituted by a lead wire, for example. The external terminal 30 is made of, for example, a metal material whose main component is Al.
According to this embodiment, the mold resin 20 that covers the electrolytic capacitor element 10 is constituted by a cured product of an epoxy resin composition that includes an epoxy resin (A) and crystalline silica (B). Thereby, an increase in equivalent series resistance due to peeling between the external terminal 30 and the mold resin 20 due to a temperature cycle, damage to the external terminal 30, or the like can be suppressed. In this embodiment, the temperature cycle characteristics of the electrolytic capacitor 100 can be improved also from such a viewpoint.
 モールド樹脂20は、電解コンデンサ素子10の少なくとも一部を被覆する。本実施形態においては、信頼性を向上させる観点から、電解コンデンサ素子10の全体がモールド樹脂20によって被覆されていることが好ましい。図1に示す例においては、電解コンデンサ素子10の全体を封止するようモールド樹脂20が設けられている。
 また、電解コンデンサ素子10に接続する外部端子30が設けられる場合、モールド樹脂20は、たとえば上述するように外部端子30の少なくとも一部を被覆するように設けられる。図1に示す例においては、電解コンデンサ素子10の全体を封止しつつ、外部端子30の一部のみを被覆するよう外部端子30が設けられる場合が例示されている。
The mold resin 20 covers at least a part of the electrolytic capacitor element 10. In the present embodiment, it is preferable that the entire electrolytic capacitor element 10 is covered with the mold resin 20 from the viewpoint of improving reliability. In the example shown in FIG. 1, a mold resin 20 is provided so as to seal the entire electrolytic capacitor element 10.
When the external terminal 30 connected to the electrolytic capacitor element 10 is provided, the mold resin 20 is provided so as to cover at least a part of the external terminal 30 as described above, for example. In the example illustrated in FIG. 1, the external terminal 30 is provided so as to cover only a part of the external terminal 30 while sealing the entire electrolytic capacitor element 10.
 モールド樹脂20は、エポキシ樹脂組成物の硬化物により構成される。エポキシ樹脂組成物は、エポキシ樹脂(A)と、結晶性シリカ(B)と、を含む。これにより、電解コンデンサ100の耐温度サイクル特性を向上させ、ESRの増大や寿命の低下、漏れ電流の上昇等を抑制する観点から優れた電解コンデンサ100を実現することができる。また、電解コンデンサ100の耐温度サイクル特性および耐湿性、ならびにエポキシ樹脂組成物の成形性におけるバランスを向上させることもできる。 Mold resin 20 is composed of a cured product of an epoxy resin composition. The epoxy resin composition includes an epoxy resin (A) and crystalline silica (B). As a result, it is possible to improve the temperature cycle characteristics of the electrolytic capacitor 100 and realize an excellent electrolytic capacitor 100 from the viewpoint of suppressing an increase in ESR, a decrease in life, an increase in leakage current, and the like. Moreover, the balance in the temperature cycle characteristics and moisture resistance of the electrolytic capacitor 100 and the moldability of the epoxy resin composition can be improved.
(A)エポキシ樹脂
 エポキシ樹脂(A)としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は特に限定されない。本実施形態においては、エポキシ樹脂(A)として、たとえばビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂、アルコキシナフタレン骨格含有フェノールアラルキルエポキシ樹脂等のアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、電解コンデンサ100の耐温度サイクル特性、耐湿性、および成形性のバランスを向上させる観点からは、ノボラック型エポキシ樹脂およびアラルキル型エポキシ樹脂のうちの少なくとも一方を用いることがより好ましい。また、電解コンデンサ100の耐湿性を向上させる観点からは、アラルキル型エポキシ樹脂を用いることがとくに好ましく、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂を用いることがさらに好ましい。なお、エポキシ樹脂(A)として用いられるアラルキル型エポキシ樹脂は、たとえば下記一般式(1)により表すことができる。
(A) Epoxy resin As the epoxy resin (A), monomers, oligomers and polymers generally having two or more epoxy groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited. In the present embodiment, as the epoxy resin (A), for example, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as tetramethylbisphenol F type epoxy resin, stilbene type epoxy resin, Crystalline epoxy resins such as hydroquinone type epoxy resins; Novolak type epoxy resins such as cresol novolak type epoxy resins, phenol novolak type epoxy resins, naphthol novolak type epoxy resins; Epoxy resins, naphthol aralkyl-type epoxy resins containing a phenylene skeleton, phenol aralkyl epoxy resins containing an alkoxynaphthalene skeleton, etc. Lukyle-type epoxy resin; Trifunctional epoxy resin such as triphenolmethane-type epoxy resin and alkyl-modified triphenolmethane-type epoxy resin; Modified phenol-type epoxy resin such as dicyclopentadiene-modified phenol-type epoxy resin and terpene-modified phenol-type epoxy resin A heterocyclic ring-containing epoxy resin such as a triazine nucleus-containing epoxy resin. These may be used alone or in combination of two or more. Among these, it is more preferable to use at least one of a novolac-type epoxy resin and an aralkyl-type epoxy resin from the viewpoint of improving the balance between the temperature cycle characteristics, moisture resistance, and moldability of the electrolytic capacitor 100. Further, from the viewpoint of improving the moisture resistance of the electrolytic capacitor 100, it is particularly preferable to use an aralkyl type epoxy resin, and it is more preferable to use a phenol aralkyl type epoxy resin having a biphenylene skeleton. In addition, the aralkyl type epoxy resin used as an epoxy resin (A) can be represented by the following general formula (1), for example.
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Xはフェニレン基、ビフェニレン基またはナフチレン基のうちのいずれかを示し、Yはフェニレン基またはナフチレン基を示し、RおよびRは互いに独立して炭素数1~10の炭化水素基を示し、gは0~8の整数であり、hは0~5の整数であり、nは重合度を示す1~5の整数である)
Figure JPOXMLDOC01-appb-C000001
(In the formula (1), X represents any one of a phenylene group, a biphenylene group, or a naphthylene group, Y represents a phenylene group or a naphthylene group, and R 1 and R 2 each independently represent 1 to 10 carbon atoms. And g is an integer of 0 to 8, h is an integer of 0 to 5, and n is an integer of 1 to 5 indicating the degree of polymerization)
 エポキシ樹脂組成物中におけるエポキシ樹脂(A)の含有量は、とくに限定されないが、たとえばエポキシ樹脂組成物全体に対して、1重量%以上50重量%以下であることが好ましく、2重量%以上30重量%以下であることがより好ましく、5重量%以上20重量%以下であることがとくに好ましい。エポキシ樹脂(A)の含有量を上記下限値以上とすることにより、エポキシ樹脂組成物の流動性や成型性をより効果的に向上させることができる。また、エポキシ樹脂(A)の含有量を上記上限値以下とすることにより、電解コンデンサ100の耐湿信頼性や耐温度サイクル特性をより効果的に向上させることができる。 Although content of the epoxy resin (A) in an epoxy resin composition is not specifically limited, For example, it is preferable that it is 1 to 50 weight% with respect to the whole epoxy resin composition, and is 2 to 30 weight%. More preferably, it is more preferably 5% by weight or less and 20% by weight or less. By making content of an epoxy resin (A) more than the said lower limit, the fluidity | liquidity and moldability of an epoxy resin composition can be improved more effectively. Further, by setting the content of the epoxy resin (A) to be equal to or less than the above upper limit value, the moisture resistance reliability and temperature cycle resistance characteristics of the electrolytic capacitor 100 can be more effectively improved.
(B)結晶性シリカ
 結晶性シリカ(B)は、当業者にて公知のものを用いることができる。
 結晶性シリカの平均粒径D50は、0.2μm以上50μm以下であることが好ましく、0.5μm以上30μm以下であることがより好ましい。平均粒径D50を上記下限値以上とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。また、平均粒径D50を上記上限値以下とすることにより、ゲート詰まり等が生じることを確実に抑制できる。なお、平均粒径D50は、市販のレーザー式粒度分布計(たとえば、(株)島津製作所製、SALD-7000)での平均粒径とした。以下、溶融シリカ(C)について同様である。
(B) Crystalline silica As the crystalline silica (B), those known to those skilled in the art can be used.
The average particle diameter D 50 of the crystalline silica is preferably 0.2μm or more 50μm or less, more preferably 0.5μm or 30μm or less. By the average particle diameter D 50 of less than the above lower limit, the fluidity of the epoxy resin composition is made excellent, it is possible to improve the formability more effectively. Further, by the average particle diameter D 50 and more than the above upper limit can reliably prevent the gate clogging occurs. The average particle diameter D 50 is a commercially available laser particle size distribution analyzer (e.g., manufactured by Shimadzu Corporation, SALD-7000) was defined as the average particle diameter at. The same applies to fused silica (C).
 エポキシ樹脂組成物中における結晶性シリカ(B)の含有量は、とくに限定されないが、たとえばエポキシ樹脂組成物全体に対して、50重量%以上95重量%以下であることが好ましく、60重量%以上95重量%以下であることがより好ましく、70重量%以上90重量%以下であることがとくに好ましい。結晶性シリカ(B)の含有量を上記下限値以上とすることにより、電解コンデンサ100の耐温度サイクル特性や耐湿性をより効果的に向上させることができる。また、結晶性シリカ(B)の含有量を上記上限値以下とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。 The content of the crystalline silica (B) in the epoxy resin composition is not particularly limited, but for example, it is preferably 50% by weight or more and 95% by weight or less, and 60% by weight or more with respect to the entire epoxy resin composition. It is more preferably 95% by weight or less, and particularly preferably 70% by weight or more and 90% by weight or less. By setting the content of the crystalline silica (B) to the above lower limit value or more, the temperature cycle characteristics and moisture resistance of the electrolytic capacitor 100 can be more effectively improved. Moreover, by making content of crystalline silica (B) below the said upper limit, the fluidity | liquidity of an epoxy resin composition can be made favorable, and it becomes possible to improve a moldability more effectively.
(C)溶融シリカ
 エポキシ樹脂組成物は、溶融シリカ(C)をさらに含んでいてもよい。溶融シリカ(C)は、当業者にて公知のものを用いることができる。エポキシ樹脂組成物中に結晶性シリカ(B)および溶融シリカ(C)を共に含有させることにより、エポキシ樹脂組成物における流動性の向上を容易とし、成形性をさらに向上させることが可能となる。また、耐湿信頼性の向上に寄与することもできる。溶融シリカ(C)としては、たとえば溶融球状シリカまたは溶融破砕シリカを用いることができる。これらは、単独で用いても併用してもよい。これらの中でも、流動性向上の容易さの観点からは、溶融球状シリカを用いることがより好ましい。
(C) Fused silica The epoxy resin composition may further contain fused silica (C). As the fused silica (C), those known to those skilled in the art can be used. When both the crystalline silica (B) and the fused silica (C) are contained in the epoxy resin composition, the fluidity in the epoxy resin composition can be easily improved and the moldability can be further improved. Moreover, it can also contribute to improvement of moisture resistance reliability. As the fused silica (C), for example, fused spherical silica or fused crushed silica can be used. These may be used alone or in combination. Among these, from the viewpoint of ease of improvement in fluidity, it is more preferable to use fused spherical silica.
 溶融シリカ(C)の平均粒径D50は、0.2μm以上50μm以下であることが好ましく、0.5μm以上30μm以下であることがより好ましい。平均粒径D50を上記下限値以上とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。また、平均粒径D50を上記上限値以下とすることにより、ゲート詰まり等が生じることを確実に抑制できる。 The average particle diameter D 50 of the fused silica (C) is preferably 0.2 μm or more and 50 μm or less, and more preferably 0.5 μm or more and 30 μm or less. By the average particle diameter D 50 of less than the above lower limit, the fluidity of the epoxy resin composition is made excellent, it is possible to improve the formability more effectively. Further, by the average particle diameter D 50 and more than the above upper limit can reliably prevent the gate clogging occurs.
 エポキシ樹脂組成物中における溶融シリカ(C)の含有量は、とくに限定されないが、たとえばエポキシ樹脂組成物全体に対して、0.5重量%以上30重量%以下であることが好ましく、1重量%以上25重量%以下であることがより好ましく、2重量%以上20重量%以下であることがとくに好ましい。溶融シリカ(C)の含有量を上記範囲内とすることにより、エポキシ樹脂組成物の成形性、ならびに電解コンデンサ100の耐温度サイクル特性および耐湿信頼性についてのバランスをさらに向上させることができる。 The content of the fused silica (C) in the epoxy resin composition is not particularly limited, but is preferably 0.5% by weight or more and 30% by weight or less, for example, based on the entire epoxy resin composition, and preferably 1% by weight. The content is more preferably 25% by weight or less and particularly preferably 2% by weight or more and 20% by weight or less. By adjusting the content of the fused silica (C) within the above range, the balance of the moldability of the epoxy resin composition, the temperature cycle characteristics of the electrolytic capacitor 100 and the moisture resistance reliability can be further improved.
 なお、エポキシ樹脂組成物は、結晶性シリカ(B)および溶融シリカ(C)の他に、充填材をさらに含んでいてもよい。このような充填材としては、たとえばゾルゲル法により得られるシリカ、アルミナ、カオリン、タルク、クレイ、マイカ、ロックウール、ウォラストナイト、ガラスパウダー、ガラスフレーク、ガラスビーズ、ガラスファイバー、炭化ケイ素、窒化ケイ素、窒化アルミ、カーボンブラック、グラファイト、二酸化チタン、炭酸カルシウム、硫酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、硫酸バリウム、セルロース、アラミド、木材、またはフェノール樹脂成形材料やエポキシ樹脂成形材料の硬化物を粉砕した粉砕粉が挙げられる。 In addition, the epoxy resin composition may further contain a filler in addition to the crystalline silica (B) and the fused silica (C). Examples of such fillers include silica, alumina, kaolin, talc, clay, mica, rock wool, wollastonite, glass powder, glass flakes, glass beads, glass fibers, silicon carbide, and silicon nitride obtained by the sol-gel method. , Aluminum nitride, carbon black, graphite, titanium dioxide, calcium carbonate, calcium sulfate, barium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, cellulose, aramid, wood, or hardened phenolic resin molding material or epoxy resin molding material A pulverized pulverized powder is exemplified.
(D)硬化剤
 エポキシ樹脂組成物は、たとえば硬化剤(D)を含むことができる。硬化剤(D)としては、エポキシ樹脂(A)と反応して硬化させるものであればとくに限定されないが、たとえばエチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数2~20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミン類;アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂等のフェノールアラルキル樹脂;ナフタレン骨格やアントラセン骨格のような縮合多環構造を有するフェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物等;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、電解コンデンサ100の耐温度サイクル特性および耐湿性、ならびにエポキシ樹脂組成物の成形性のバランスを向上させる観点からは、ノボラック型フェノール樹脂またはフェノールアラルキル樹脂のうちの少なくとも一方を用いることがより好ましい。また、電解コンデンサ100の耐湿性を向上させる観点からは、フェノールアラルキル樹脂を用いることがとくに好ましい。
(D) Curing Agent The epoxy resin composition can contain a curing agent (D), for example. The curing agent (D) is not particularly limited as long as it can be cured by reacting with the epoxy resin (A), but for example, ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine and the like having 2 to 20 carbon atoms. Linear aliphatic diamine, metaphenylenediamine, paraphenylenediamine, paraxylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl Sulfone, 4,4′-diaminodicyclohexane, bis (4-aminophenyl) phenylmethane, 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, dicyano Ami such as diamide Resol type phenol resins such as aniline-modified resole resin and dimethyl ether resole resin; Novolak type phenol resins such as phenol novolak resin, cresol novolak resin, tert-butylphenol novolak resin, nonylphenol novolak resin; phenylene skeleton-containing phenol aralkyl resin, biphenylene skeleton Phenol aralkyl resins such as a phenol aralkyl resin containing; phenol resins having a condensed polycyclic structure such as naphthalene skeleton and anthracene skeleton; polyoxystyrenes such as polyparaoxystyrene; hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride ( MTHPA) and other alicyclic acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone Acid anhydrides including aromatic acid anhydrides such as tracarboxylic acid (BTDA); Polymercaptan compounds such as polysulfides, thioesters and thioethers; Isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; Carboxylic acid-containing polyester resins, etc. Organic acids. These may be used alone or in combination of two or more. Among these, from the viewpoint of improving the balance between the temperature cycle characteristics and moisture resistance of the electrolytic capacitor 100 and the moldability of the epoxy resin composition, at least one of a novolac type phenol resin or a phenol aralkyl resin is used. More preferred. From the viewpoint of improving the moisture resistance of the electrolytic capacitor 100, it is particularly preferable to use a phenol aralkyl resin.
 エポキシ樹脂組成物中における硬化剤(D)の含有量は、とくに限定されないが、たとえばエポキシ樹脂組成物全体に対して、1重量%以上10重量%以下であることが好ましく、3重量%以上8重量%以下であることがとくに好ましい。硬化剤(D)の含有量を上記下限値以上とすることにより、エポキシ樹脂組成物の流動性をより効果的に向上させることができる。また、硬化剤(D)の含有量を上記上限値以下とすることにより、電解コンデンサ100の耐湿信頼性の向上を図ることができる。 Although content of the hardening | curing agent (D) in an epoxy resin composition is not specifically limited, For example, it is preferable that it is 1 to 10 weight% with respect to the whole epoxy resin composition, and is 3 to 8 weight%. It is particularly preferable that the amount is not more than% by weight. By making content of a hardening | curing agent (D) more than the said lower limit, the fluidity | liquidity of an epoxy resin composition can be improved more effectively. Moreover, the moisture resistance reliability of the electrolytic capacitor 100 can be improved by setting the content of the curing agent (D) to the upper limit value or less.
(E)カップリング剤
 エポキシ樹脂組成物は、たとえばカップリング剤(E)を含むことができる。カップリング剤(E)としては、たとえばエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を用いることができる。これらを例示すると、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミンの加水分解物等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(E) Coupling agent An epoxy resin composition can contain a coupling agent (E), for example. As the coupling agent (E), known cups such as various silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, titanium compounds, aluminum chelates, aluminum / zirconium compounds, etc. A ring agent can be used. Examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxy. Silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane Vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropylmethyldimethoxysilane, -[Bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl) ) Ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ- Chloropropyltrime Xysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl) Silane coupling agents such as rubylidene) propylamine hydrolyzate, isopropyl triisostearoyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis ( Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) Oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tric Examples include titanate coupling agents such as milphenyl titanate and tetraisopropyl bis (dioctyl phosphite) titanate. These may be used individually by 1 type and may be used in combination of 2 or more type.
 エポキシ樹脂組成物中におけるカップリング剤(E)の含有量は、とくに限定されないが、たとえばエポキシ樹脂組成物全体に対して、0.1重量%以上3重量%以下であることが好ましく、0.2重量%以上2重量%以下であることがとくに好ましい。カップリング剤(E)の含有量を上記下限値以上とすることにより、エポキシ樹脂組成物中における結晶性シリカ(B)や溶融シリカ(C)等の充填剤成分の分散性を良好なものとすることができる。また、カップリング剤(E)の含有量を上記上限値以下とすることにより、エポキシ樹脂組成物の流動性を良好なものとし、成形性の向上を図ることができる。 The content of the coupling agent (E) in the epoxy resin composition is not particularly limited. For example, the content is preferably 0.1% by weight or more and 3% by weight or less with respect to the entire epoxy resin composition. It is particularly preferable that the content is 2% by weight or more and 2% by weight or less. By making content of a coupling agent (E) more than the said lower limit, the dispersibility of filler components, such as crystalline silica (B) in a epoxy resin composition, and fused silica (C), shall be favorable. can do. Moreover, by making content of a coupling agent (E) below into the said upper limit, the fluidity | liquidity of an epoxy resin composition can be made favorable and the improvement of a moldability can be aimed at.
(F)その他の成分
 エポキシ樹脂組成物は、上記成分の他に、たとえば有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、もしくはホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物、または1,8-ジアザビシクロ(5,4,0)ウンデセン-7、イミダゾールなどのアミジン系化合物、ベンジルジメチルアミンなどの3級アミンや前記化合物の4級オニウム塩であるアミジニウム塩、もしくはアンモニウム塩などに代表される窒素原子含有化合物等の硬化促進剤;カーボンブラック等の着色剤;天然ワックス、合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン、酸化ポリエチレン等の離型剤;シリコーンオイル、シリコーンゴム等の低応力剤;ハイドロタルサイト等のイオン捕捉剤;水酸化アルミニウム等の難燃剤;酸化防止剤等の各種添加剤を含むことができる。
(F) Other components In addition to the above-mentioned components, the epoxy resin composition is, for example, an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, or an addition of a phosphonium compound and a silane compound. A phosphorus atom-containing compound such as 1,8-diazabicyclo (5,4,0) undecene-7, an amidine compound such as imidazole, a tertiary amine such as benzyldimethylamine, or a quaternary onium salt of the compound. Curing accelerators such as nitrogen atom-containing compounds typified by amidinium salts or ammonium salts; Colorants such as carbon black; Release agents such as natural wax, synthetic wax, higher fatty acids or metal salts thereof, paraffin, polyethylene oxide, etc. ; Silicone oil, silicone rubber, etc. Low stress agents; ion scavengers such as hydrotalcite; flame retardants such as aluminum hydroxide; various additives such as antioxidants.
 エポキシ樹脂組成物は、スパイラルフロー測定により測定される流動長が、たとえば30cm以上150cm以下であることが好ましく、40cm以上130cm以下であることがより好ましく、50cm以上110cm以下であることがとくに好ましい。これにより、エポキシ樹脂組成物の成形性の向上を図ることができる。本実施形態において、エポキシ樹脂組成物のスパイラルフロー測定は、たとえば低圧トランスファー成形機を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件でエポキシ樹脂組成物を注入し、流動長を測定することにより行われる。 The flow length of the epoxy resin composition measured by spiral flow measurement is preferably 30 cm or more and 150 cm or less, more preferably 40 cm or more and 130 cm or less, and particularly preferably 50 cm or more and 110 cm or less. Thereby, the improvement of the moldability of an epoxy resin composition can be aimed at. In the present embodiment, the spiral flow measurement of the epoxy resin composition is performed using a low-pressure transfer molding machine, for example, a mold temperature of 175 ° C. and an injection pressure of 6. An epoxy resin composition is injected under conditions of 9 MPa and a curing time of 120 seconds, and the flow length is measured.
 エポキシ樹脂組成物は、175℃におけるゲルタイムが、たとえば15秒以上60秒以下であることが好ましく、20秒以上55秒以下であることがより好ましく、25秒以上50秒以下であることがとくに好ましい。これにより、エポキシ樹脂組成物の成形性の向上を図りつつ、成形サイクルを早くすることができる。 The epoxy resin composition preferably has a gel time at 175 ° C. of, for example, 15 seconds to 60 seconds, more preferably 20 seconds to 55 seconds, and particularly preferably 25 seconds to 50 seconds. . As a result, the molding cycle can be accelerated while improving the moldability of the epoxy resin composition.
 エポキシ樹脂組成物は、175℃、4時間の条件により熱硬化した硬化物のガラス転移温度(Tg)が、たとえば130℃以上200℃以下であることが好ましく、140℃以上180℃以下であることがより好ましく、145℃以上170℃以下であることがとくに好ましい。また、上記硬化物のガラス転移温度以下における線膨張係数(α)は、たとえば5ppm/℃以上40ppm/℃以下であることが好ましく、8ppm/℃以上35ppm/℃以下であることがより好ましく、11ppm/℃以上30ppm/℃以下であることがとくに好ましい。また、上記硬化物のガラス転移温度以上における線膨張係数(α)は、たとえば30ppm/℃以上90ppm/℃以下であることが好ましく、40ppm/℃以上80ppm/℃以下であることがより好ましく、45ppm/℃以上75ppm/℃以下であることがとくに好ましい。エポキシ樹脂組成物の硬化物のTg、α、αをそれぞれ上記範囲とすることにより、耐温度サイクル特性等の電解コンデンサ100における信頼性の向上を図ることができる。
 本実施形態において、上記硬化物のTg、α、αは、たとえば次のように測定することができる。まず、低圧トランスファー成形機を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒でエポキシ樹脂組成物を注入成形し、10mm×4mm×4mmの試験片を得る。次いで、得られた試験片を175℃、4時間で後硬化した後、熱機械分析装置を用いて、測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行う。この測定結果から、ガラス転移温度(Tg)、ガラス転移温度以下における線膨張係数(α)、ガラス転移温度以上における線膨張係数(α)を算出することができる。
The epoxy resin composition preferably has a glass transition temperature (Tg) of a cured product that is thermally cured at 175 ° C. for 4 hours, for example, 130 ° C. or more and 200 ° C. or less, and 140 ° C. or more and 180 ° C. or less. Is more preferable, and it is particularly preferably 145 ° C. or higher and 170 ° C. or lower. Further, the linear expansion coefficient (α 1 ) at the glass transition temperature or lower of the cured product is preferably, for example, from 5 ppm / ° C. to 40 ppm / ° C., more preferably from 8 ppm / ° C. to 35 ppm / ° C., It is particularly preferably 11 ppm / ° C. or more and 30 ppm / ° C. or less. Further, the linear expansion coefficient (α 2 ) at the glass transition temperature or higher of the cured product is preferably, for example, 30 ppm / ° C. or higher and 90 ppm / ° C. or lower, more preferably 40 ppm / ° C. or higher and 80 ppm / ° C. or lower, It is particularly preferably 45 ppm / ° C. or more and 75 ppm / ° C. or less. By setting Tg, α 1 , and α 2 of the cured product of the epoxy resin composition within the above ranges, it is possible to improve the reliability of the electrolytic capacitor 100 such as temperature cycle resistance.
In the present embodiment, Tg, α 1 , and α 2 of the cured product can be measured as follows, for example. First, an epoxy resin composition is injection-molded using a low-pressure transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds to obtain a 10 mm × 4 mm × 4 mm test piece. Next, the obtained test piece is post-cured at 175 ° C. for 4 hours, and then measured using a thermomechanical analyzer under conditions of a measurement temperature range of 0 ° C. to 320 ° C. and a temperature increase rate of 5 ° C./min. . From this measurement result, the glass transition temperature (Tg), the linear expansion coefficient (α 1 ) below the glass transition temperature, and the linear expansion coefficient (α 2 ) above the glass transition temperature can be calculated.
 エポキシ樹脂組成物は、175℃、4時間の条件により後硬化した硬化物の差沸吸水率が、たとえば0.3質量%以下であることが好ましく、0.26質量%以下であることがより好ましく、0.24質量%以下であることがとくに好ましい。これにより、耐湿信頼性等の電解コンデンサ100における信頼性の向上を図ることができる。
 本実施形態において、上記硬化物の差沸吸水率は、たとえば次のように測定することができる。まず、低圧トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で直径50mm、厚さ3mmの円盤状試験片を成形する。次いで、得られた試験片を175℃、4時間で後硬化した後、この試験片の煮沸処理前の質量と24時間純水中で煮沸処理後の質量を測定する。次いで、この測定結果に基づいて煮沸処理前後における質量変化を算出した結果から、試験片の煮沸吸水率を百分率で得る。
The epoxy resin composition preferably has a differential boiling water absorption of, for example, 0.3% by mass or less, more preferably 0.26% by mass or less, after being cured at 175 ° C. for 4 hours. It is preferably 0.24% by mass or less. Thereby, the reliability in the electrolytic capacitor 100 such as moisture resistance reliability can be improved.
In the present embodiment, the differential boiling water absorption of the cured product can be measured, for example, as follows. First, using a low-pressure transfer molding machine, a disk-shaped test piece having a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 120 seconds and a diameter of 50 mm and a thickness of 3 mm is molded. Next, after the obtained test piece is post-cured at 175 ° C. for 4 hours, the mass of the test piece before boiling treatment and the mass after boiling treatment in pure water for 24 hours are measured. Next, from the result of calculating the mass change before and after the boiling treatment based on the measurement result, the boiling water absorption rate of the test piece is obtained as a percentage.
 本実施形態に係る電解コンデンサ100は、たとえば次のように製造される。
 まず、陰極箔12と陽極箔14に外部端子30を接続した後、これらの電極箔を、セパレータ16を介して巻回する。これにより得られた電解コンデンサ素子10を、エポキシ樹脂組成物により封止成形する。成形法としては、たとえばトランスファー成形法や圧縮成型法が挙げられる。次いで、エポキシ樹脂組成物を熱硬化させ、モールド樹脂20を形成する。これにより、本実施形態に係る電解コンデンサ100が得られることとなる。
The electrolytic capacitor 100 according to the present embodiment is manufactured as follows, for example.
First, after connecting the external terminal 30 to the cathode foil 12 and the anode foil 14, these electrode foils are wound through the separator 16. The electrolytic capacitor element 10 thus obtained is encapsulated with an epoxy resin composition. Examples of the molding method include a transfer molding method and a compression molding method. Next, the epoxy resin composition is thermally cured to form the mold resin 20. Thereby, the electrolytic capacitor 100 according to the present embodiment is obtained.
 次に、本実施形態の効果を説明する。
 本実施形態によれば、電解コンデンサ素子10を被覆するモールド樹脂20は、エポキシ樹脂(A)と、結晶性シリカ(B)と、を含むエポキシ樹脂組成物の硬化物により構成される。このため、電解コンデンサ100の耐温度サイクル特性を向上させることができる。したがって、電解コンデンサの信頼性を向上させることが可能となる。
Next, the effect of this embodiment will be described.
According to this embodiment, the mold resin 20 that covers the electrolytic capacitor element 10 is constituted by a cured product of an epoxy resin composition that includes an epoxy resin (A) and crystalline silica (B). For this reason, the temperature cycle resistance characteristics of the electrolytic capacitor 100 can be improved. Therefore, the reliability of the electrolytic capacitor can be improved.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
(エポキシ樹脂組成物の調整)
 実施例1~3および比較例1のそれぞれについて、以下のようにエポキシ樹脂組成物を調整した。まず、表1に従い配合された各成分を、ミキサーを用いて15~28℃で混合した。次いで、得られた混合物を、70~100℃でロール混練後、冷却、粉砕してエポキシ樹脂組成物を得た。なお、表1中における各成分の詳細は下記のとおりである。また、表1中の単位は、質量%である。
(Adjustment of epoxy resin composition)
For each of Examples 1 to 3 and Comparative Example 1, epoxy resin compositions were prepared as follows. First, each component blended according to Table 1 was mixed at 15 to 28 ° C. using a mixer. Next, the obtained mixture was roll kneaded at 70 to 100 ° C., cooled and pulverized to obtain an epoxy resin composition. The details of each component in Table 1 are as follows. Moreover, the unit in Table 1 is mass%.
(A)エポキシ樹脂
エポキシ樹脂1:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(NC-3000P、日本化薬(株)製)
エポキシ樹脂2:オルソクレゾールノボラック型エポキシ樹脂(EOCN-1020-75、日本化薬(株)製)
(B)結晶性シリカ
クリスタライトSKS、(株)龍森製(平均粒径23μm)
(C)溶融シリカ
FB-950、電気化学工業(株)製(球状溶融シリカ、平均粒径23μm)
(D)硬化剤
硬化剤1:ビフェニレン骨格含有フェノールアラルキル樹脂(MEH-7851SS、明和化成(株)製)
硬化剤2:フェニレン骨格含有フェノールアラルキル樹脂(MEH-7800-4L、明和化成(株)製)
硬化剤3:フェノールノボラック樹脂(PR-HF-3、住友ベークライト(株)製)
(E)カップリング剤
カップリング剤1:γ-メルカプトプロピルトリメトキシシラン(信越化学工業(株)製、KBM-803)
カップリング剤2:γ-グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製、KBM-403)
カップリング剤3:N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業(株)製、KBM-573)
(F)その他の成分
硬化促進剤:トリフェニルホスフィン
難燃剤:水酸化アルミニウム
着色剤:カーボンブラック
離型剤:カルナバワックス
イオン捕捉剤:ハイドロタルサイト
(A) Epoxy resin Epoxy resin 1: phenol aralkyl type epoxy resin containing biphenylene skeleton (NC-3000P, manufactured by Nippon Kayaku Co., Ltd.)
Epoxy resin 2: Orthocresol novolac type epoxy resin (EOCN-1020-75, manufactured by Nippon Kayaku Co., Ltd.)
(B) Crystalline silica crystallite SKS, manufactured by Tatsumori Co., Ltd. (average particle size: 23 μm)
(C) Fused silica FB-950, manufactured by Denki Kagaku Kogyo Co., Ltd. (spherical fused silica, average particle size 23 μm)
(D) Curing agent Curing agent 1: Phenol aralkyl resin containing biphenylene skeleton (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
Curing agent 2: Phenol aralkyl resin containing phenylene skeleton (MEH-7800-4L, manufactured by Meiwa Kasei Co., Ltd.)
Curing agent 3: Phenol novolac resin (PR-HF-3, manufactured by Sumitomo Bakelite Co., Ltd.)
(E) Coupling agent Coupling agent 1: γ-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803)
Coupling agent 2: γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403)
Coupling agent 3: N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573)
(F) Other component curing accelerator: triphenylphosphine flame retardant: aluminum hydroxide colorant: carbon black mold release agent: carnauba wax ion scavenger: hydrotalcite
(電解コンデンサの製造)
 実施例1~3および比較例1のそれぞれについて、以下のように電解コンデンサを製造した。まず、陽極箔と陰極箔に外部端子であるリード線を接続し、両電極箔をセパレータを介して巻回することにより電解コンデンサ素子を形成した。陽極箔は、アルミニウム箔をエッチングして拡面処理した後、アジピン酸アンモニウムの水溶液中で化成処理を行い表面に酸化皮膜層を形成したものを用いた。陰極箔としては、アルミニウム箔をエッチングして拡面処理したものを用いた。リード線としては、99%以上のアルミニウムを含む金属材料により形成されるものを用いた。次いで、電解コンデンサ素子を、γ-ブチロラクトン、フタル酸エチルジメチルイミダゾリニウムの混合液からなる電解液に含浸した。
 次いで、得られた電解コンデンサ素子およびリード線を、低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件でエポキシ樹脂組成物により封止成形した。その後、175℃、4時間の条件でエポキシ樹脂組成物を後硬化することにより、モールド樹脂により被覆された電解コンデンサを得た。
(Manufacture of electrolytic capacitors)
For each of Examples 1 to 3 and Comparative Example 1, electrolytic capacitors were produced as follows. First, lead wires as external terminals were connected to the anode foil and the cathode foil, and both electrode foils were wound through a separator to form an electrolytic capacitor element. The anode foil used was an aluminum foil that was subjected to surface expansion treatment by etching, and then subjected to chemical conversion treatment in an aqueous solution of ammonium adipate to form an oxide film layer on the surface. As the cathode foil, an aluminum foil etched and expanded was used. As the lead wire, one formed of a metal material containing 99% or more of aluminum was used. Next, the electrolytic capacitor element was impregnated with an electrolytic solution composed of a mixed solution of γ-butyrolactone and ethyldimethylimidazolinium phthalate.
Next, the obtained electrolytic capacitor element and lead wire were molded using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.) with a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. Seal molding was performed with an epoxy resin composition under conditions. Thereafter, the epoxy resin composition was post-cured at 175 ° C. for 4 hours to obtain an electrolytic capacitor coated with a mold resin.
(スパイラルフロー)
 実施例1~3および比較例1について、次のようにエポキシ樹脂組成物のスパイラルフロー測定を行った。低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件でエポキシ樹脂組成物を注入し、流動長を測定した。表1における単位はcmである。
(Spiral flow)
For Examples 1 to 3 and Comparative Example 1, the spiral flow measurement of the epoxy resin composition was performed as follows. Using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66, mold temperature 175 ° C., injection pressure 6.9 MPa, curing The epoxy resin composition was injected under the condition of time 120 seconds, and the flow length was measured. The unit in Table 1 is cm.
(ゲルタイム)
 実施例1~3および比較例1について、次のようにエポキシ樹脂組成物のゲルタイムを測定した。175℃に加熱した熱板上でエポキシ樹脂組成物を溶融した後、へらで練りながら硬化するまでの時間(ゲルタイム)を測定した。表1における単位は秒である。
(Geltime)
For Examples 1 to 3 and Comparative Example 1, the gel time of the epoxy resin composition was measured as follows. After the epoxy resin composition was melted on a hot plate heated to 175 ° C., the time until it was cured while being kneaded with a spatula (gel time) was measured. The unit in Table 1 is seconds.
(ガラス転移温度(Tg)、線膨張係数(α、α))
 各実施例および比較例について、得られたエポキシ樹脂組成物の硬化物のガラス転移温度(Tg)、線膨張係数(α、α)を、以下のように測定した。まず、低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒でエポキシ樹脂組成物を注入成形し、10mm×4mm×4mmの試験片を得た。次いで、得られた試験片を175℃、4時間で後硬化した後、熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行った。この測定結果から、ガラス転移温度(Tg)、ガラス転移温度以下における線膨張係数(α)、ガラス転移温度以上における線膨張係数(α)を算出した。表1中、αとαの単位はppm/℃であり、Tgの単位は℃である。
(Glass transition temperature (Tg), linear expansion coefficient (α 1 , α 2 ))
About each Example and the comparative example, the glass transition temperature (Tg) and linear expansion coefficient ((alpha) 1 , (alpha) 2 ) of the hardened | cured material of the obtained epoxy resin composition were measured as follows. First, an epoxy resin composition was injection molded using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. A test piece of 4 mm × 4 mm was obtained. Subsequently, the obtained test piece was post-cured at 175 ° C. for 4 hours, and then measured using a thermomechanical analyzer (manufactured by Seiko Denshi Kogyo Co., Ltd., TMA100) at a measurement temperature range of 0 ° C. to 320 ° C. The measurement was performed under the condition of 5 ° C./min. From this measurement result, the glass transition temperature (Tg), the linear expansion coefficient (α 1 ) below the glass transition temperature, and the linear expansion coefficient (α 2 ) above the glass transition temperature were calculated. In Table 1, the unit of α 1 and α 2 is ppm / ° C., and the unit of Tg is ° C.
(煮沸吸水率)
 各実施例および比較例について、得られたエポキシ樹脂組成物の硬化物の煮沸吸水率を、以下のように測定した。まず、低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で直径50mm、厚さ3mmの円盤状試験片を成形した。次いで、得られた試験片を175℃、4時間で後硬化した後、この試験片の煮沸処理前の質量と24時間純水中で煮沸処理後の質量を測定した。この測定結果に基づいて煮沸処理前後における質量変化を算出した結果から、試験片の煮沸吸水率を百分率で得た。表1における単位は質量%である。
(Boiling water absorption)
About each Example and the comparative example, the boiling water absorption rate of the hardened | cured material of the obtained epoxy resin composition was measured as follows. First, using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.), a disk-shaped test having a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 120 seconds and a diameter of 50 mm and a thickness of 3 mm A piece was molded. Next, after the obtained test piece was post-cured at 175 ° C. for 4 hours, the mass of the test piece before boiling treatment and the mass after boiling treatment in pure water for 24 hours were measured. From the result of calculating the mass change before and after the boiling treatment based on this measurement result, the boiling water absorption rate of the test piece was obtained as a percentage. The unit in Table 1 is mass%.
(温度サイクル試験)
 各実施例および比較例について、得られた電解コンデンサに対し-55℃から105℃の温度サイクル試験を100サイクル行い、電解コンデンサ素子またはリード線と、モールド樹脂と、の間における剥離の有無を観察した。電解コンデンサ素子とモールド樹脂との間およびリード線とモールド樹脂との間に剥離が生じなかったものを○とし、電解コンデンサ素子またはリード線とモールド樹脂との間に剥離が生じたものを×とした。
(Temperature cycle test)
For each example and comparative example, the obtained electrolytic capacitor was subjected to a temperature cycle test of −55 ° C. to 105 ° C. for 100 cycles, and the presence or absence of peeling between the electrolytic capacitor element or the lead wire and the mold resin was observed. did. The case where no separation occurred between the electrolytic capacitor element and the mold resin and between the lead wire and the mold resin was marked as ◯, and the case where separation occurred between the electrolytic capacitor element or the lead wire and the mold resin was marked as x. did.
(耐湿性試験1)
 各実施例および比較例について、得られた電解コンデンサの周波数100kHzにおけるESR(等価直列抵抗)を、LCRメータを用いて測定し、これを初期ESRとした。次いで、電解コンデンサを40℃、RH(相対湿度)95%の雰囲気下で500時間放置した。次いで、LCRメータを用いて周波数100kHzにおけるESR(等価直列抵抗)を測定し、これを試験後ESRとした。試験後ESRが初期ESRに対して2倍未満のものを◎とし、2倍以上10倍以下のものを○とし、10倍を超えるものを×とした。
(Moisture resistance test 1)
About each Example and the comparative example, ESR (equivalent series resistance) in the frequency of 100 kHz of the obtained electrolytic capacitor was measured using the LCR meter, and this was made into initial stage ESR. Next, the electrolytic capacitor was left in an atmosphere of 40 ° C. and RH (relative humidity) 95% for 500 hours. Next, ESR (equivalent series resistance) at a frequency of 100 kHz was measured using an LCR meter, and this was taken as ESR after the test. When the ESR after the test was less than 2 times the initial ESR, ◎, 2 to 10 times less than ◯, and more than 10 times more than ×.
(耐湿性試験2)
 各実施例および比較例について、得られた電解コンデンサの周波数100kHzにおけるESR(等価直列抵抗)を、LCRメータを用いて測定し、これを初期ESRとした。次いで、電解コンデンサを65℃、RH(相対湿度)95%の雰囲気下で500時間放置した。次いで、LCRメータを用いて周波数100kHzにおけるESR(等価直列抵抗)を測定し、これを試験後ESRとした。試験後ESRが初期ESRに対して2倍未満のものを◎とし、2倍以上10倍以下のものを○とし、10倍を超えるものを×とした。
(Moisture resistance test 2)
About each Example and the comparative example, ESR (equivalent series resistance) in the frequency of 100 kHz of the obtained electrolytic capacitor was measured using the LCR meter, and this was made into initial stage ESR. Next, the electrolytic capacitor was left in an atmosphere of 65 ° C. and RH (relative humidity) 95% for 500 hours. Next, ESR (equivalent series resistance) at a frequency of 100 kHz was measured using an LCR meter, and this was taken as ESR after the test. When the ESR after the test was less than 2 times the initial ESR, ◎, 2 to 10 times less than ◯, and more than 10 times more than ×.
(成形性試験)
 各実施例および比較例のそれぞれについて、得られた電解コンデンサのモールド樹脂表面におけるボイドの有無を確認した。ピンホールボイドが観察されなかったものを◎とし、製品上問題がない程度のピンホールボイドが観察されたものを○とし、製品上問題となる未充填ボイドが観察されたものを×とした。
(Formability test)
For each example and comparative example, the presence or absence of voids on the surface of the mold resin of the obtained electrolytic capacitor was confirmed. The case where no pinhole void was observed was marked by ◎, the case where pinhole voids were observed to the extent that there was no problem on the product was marked by ◯, and the case where an unfilled void causing a problem on the product was observed was marked by ×.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~3は、いずれも温度サイクル試験において良好な結果を示した。これらの中でも実施例1、2は、耐湿性試験においてとくに優れた結果を示した。また、実施例1、3は、実施例2と比較して成形性試験においてとくに優れた結果を示した。 Examples 1 to 3 all showed good results in the temperature cycle test. Among these, Examples 1 and 2 showed particularly excellent results in the moisture resistance test. In addition, Examples 1 and 3 showed particularly excellent results in the moldability test as compared with Example 2.
 この出願は、2013年9月10日に出願された日本出願特願2013-187358号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-187358 filed on September 10, 2013, the entire disclosure of which is incorporated herein.

Claims (9)

  1.  陰極箔、セパレータ、および陽極箔をこの順に積層した積層膜を巻回することにより形成される電解コンデンサ素子と、
     エポキシ樹脂組成物の硬化物により構成され、かつ前記電解コンデンサ素子の少なくとも一部を被覆するモールド樹脂と、
     を備え、
     前記エポキシ樹脂組成物は、
      エポキシ樹脂(A)と、
      結晶性シリカ(B)と、
     を含む電解コンデンサ。
    An electrolytic capacitor element formed by winding a laminated film in which a cathode foil, a separator, and an anode foil are laminated in this order; and
    Mold resin that is composed of a cured product of an epoxy resin composition and covers at least a part of the electrolytic capacitor element;
    With
    The epoxy resin composition is
    Epoxy resin (A),
    Crystalline silica (B);
    Including electrolytic capacitor.
  2.  請求項1に記載の電解コンデンサにおいて、
     前記エポキシ樹脂組成物中における前記結晶性シリカ(B)の含有量は、前記エポキシ樹脂組成物全体に対して50重量%以上である電解コンデンサ。
    The electrolytic capacitor according to claim 1,
    The electrolytic capacitor in which the content of the crystalline silica (B) in the epoxy resin composition is 50% by weight or more with respect to the entire epoxy resin composition.
  3.  請求項1または2に記載の電解コンデンサにおいて、
     前記エポキシ樹脂組成物は、溶融シリカ(C)をさらに含む電解コンデンサ。
    The electrolytic capacitor according to claim 1 or 2,
    The epoxy resin composition is an electrolytic capacitor further comprising fused silica (C).
  4.  請求項3に記載の電解コンデンサにおいて、
     前記エポキシ樹脂組成物中における前記溶融シリカ(C)の含有量は、前記エポキシ樹脂組成物全体に対して0.5重量%以上30重量%以下である電解コンデンサ。
    The electrolytic capacitor according to claim 3,
    The electrolytic capacitor in which the content of the fused silica (C) in the epoxy resin composition is 0.5 wt% or more and 30 wt% or less with respect to the entire epoxy resin composition.
  5.  請求項1~4いずれか一項に記載の電解コンデンサにおいて、
     前記エポキシ樹脂(A)は、ノボラック型エポキシ樹脂、およびアラルキル型エポキシ樹脂の少なくとも一方を含む電解コンデンサ。
    The electrolytic capacitor according to any one of claims 1 to 4,
    The epoxy resin (A) is an electrolytic capacitor including at least one of a novolac type epoxy resin and an aralkyl type epoxy resin.
  6.  請求項1~5いずれか一項に記載の電解コンデンサにおいて、
     前記電解コンデンサ素子の陽極または陰極に接続された外部端子を備え、
     前記モールド樹脂は、前記外部端子の少なくとも一部を被覆する電解コンデンサ。
    The electrolytic capacitor according to any one of claims 1 to 5,
    An external terminal connected to the anode or cathode of the electrolytic capacitor element;
    The mold resin is an electrolytic capacitor that covers at least a part of the external terminal.
  7.  請求項6に記載の電解コンデンサにおいて、
     前記外部端子は、Alを主成分とする金属材料により構成される電解コンデンサ。
    The electrolytic capacitor according to claim 6,
    The external terminal is an electrolytic capacitor made of a metal material mainly composed of Al.
  8.  請求項1~7いずれか一項に記載の電解コンデンサにおいて、
     前記陰極箔および前記陽極箔は、Alを主成分とする金属材料により構成される電解コンデンサ。
    The electrolytic capacitor according to any one of claims 1 to 7,
    The cathode foil and the anode foil are electrolytic capacitors made of a metal material mainly composed of Al.
  9.  陰極箔、セパレータ、および陽極箔をこの順に積層した積層膜を巻回することにより形成される電解コンデンサ素子の少なくとも一部を被覆するモールド樹脂を形成するために用いられるエポキシ樹脂組成物であって、
     エポキシ樹脂(A)と、
     結晶性シリカ(B)と、
     を含むエポキシ樹脂組成物。
    An epoxy resin composition used for forming a mold resin covering at least a part of an electrolytic capacitor element formed by winding a laminated film in which a cathode foil, a separator, and an anode foil are laminated in this order. ,
    Epoxy resin (A),
    Crystalline silica (B);
    An epoxy resin composition comprising:
PCT/JP2014/070822 2013-09-10 2014-08-07 Electrolytic capacitor and epoxy resin composition WO2015037370A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015536490A JPWO2015037370A1 (en) 2013-09-10 2014-08-07 Electrolytic capacitor and epoxy resin composition
KR1020167009258A KR20160055206A (en) 2013-09-10 2014-08-07 Electrolytic capacitor and epoxy resin composition
CN201480049812.3A CN105531779A (en) 2013-09-10 2014-08-07 Electrolytic capacitor and epoxy resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-187358 2013-09-10
JP2013187358 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037370A1 true WO2015037370A1 (en) 2015-03-19

Family

ID=52665489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070822 WO2015037370A1 (en) 2013-09-10 2014-08-07 Electrolytic capacitor and epoxy resin composition

Country Status (5)

Country Link
JP (1) JPWO2015037370A1 (en)
KR (1) KR20160055206A (en)
CN (1) CN105531779A (en)
TW (1) TW201512295A (en)
WO (1) WO2015037370A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6293318B1 (en) * 2017-01-20 2018-03-14 株式会社トーキン Solid electrolytic capacitor
EP3811389A4 (en) * 2018-06-21 2022-03-23 AVX Corporation Solid electrolytic capacitor
EP3811390A4 (en) * 2018-06-21 2022-05-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor with stable electrical properties at high temperatures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164591B (en) * 2020-10-09 2023-03-10 福建国光新业科技股份有限公司 Manufacturing method for improving high-temperature high-humidity tolerance of laminated aluminum electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239518A (en) * 1991-01-23 1992-08-27 Nec Corp Epoxy resin composition for sealing electronic part and its production
JP2003249423A (en) * 2001-12-20 2003-09-05 Toyota Motor Corp Storage element and manufacturing method
WO2008108089A1 (en) * 2007-03-08 2008-09-12 Panasonic Corporation Case-molded capacitor and method for using the same
JP2011054726A (en) * 2009-09-01 2011-03-17 Kyocera Chemical Corp Electric double-layer capacitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329951B (en) * 2008-05-23 2011-05-04 电子科技大学 High-frequency nonpolarity solid tantalum electrolytic capacitor with lead wire and manufacturing method thereof
CN102030968B (en) * 2009-09-30 2012-02-01 北京科化新材料科技有限公司 Epoxy resin composition for encapsulating semiconductor device and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239518A (en) * 1991-01-23 1992-08-27 Nec Corp Epoxy resin composition for sealing electronic part and its production
JP2003249423A (en) * 2001-12-20 2003-09-05 Toyota Motor Corp Storage element and manufacturing method
WO2008108089A1 (en) * 2007-03-08 2008-09-12 Panasonic Corporation Case-molded capacitor and method for using the same
JP2011054726A (en) * 2009-09-01 2011-03-17 Kyocera Chemical Corp Electric double-layer capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6293318B1 (en) * 2017-01-20 2018-03-14 株式会社トーキン Solid electrolytic capacitor
JP2018117078A (en) * 2017-01-20 2018-07-26 株式会社トーキン Solid electrolytic capacitor
EP3811389A4 (en) * 2018-06-21 2022-03-23 AVX Corporation Solid electrolytic capacitor
EP3811390A4 (en) * 2018-06-21 2022-05-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor with stable electrical properties at high temperatures
US11342129B2 (en) 2018-06-21 2022-05-24 KYOCERA AVX Components Corporation Solid electrolytic capacitor with stable electrical properties at high temperatures

Also Published As

Publication number Publication date
JPWO2015037370A1 (en) 2017-03-02
TW201512295A (en) 2015-04-01
CN105531779A (en) 2016-04-27
KR20160055206A (en) 2016-05-17

Similar Documents

Publication Publication Date Title
JP6658508B2 (en) Epoxy resin composition and capacitance type fingerprint sensor
WO2015037370A1 (en) Electrolytic capacitor and epoxy resin composition
JP7259750B2 (en) Semiconductor device and its manufacturing method
KR20180013751A (en) Epoxy resin composition for encapsulating semiconductor device, and semiconductor device
WO2017110373A1 (en) Sealing resin composition, and semiconductor device
US10301517B2 (en) Thermosetting resin composition
US20210384573A1 (en) Encapsulating resin composition for power device and power device
JP2022003130A (en) Sealing resin composition, semiconductor device, and method for manufacturing semiconductor device
JP7302300B2 (en) Sealing resin composition and aluminum electrolytic capacitor
US20230298962A1 (en) Power module
JP2022123984A (en) Manufacturing method for circuit board
JP7494612B2 (en) module
JP7468792B2 (en) Thermosetting resin composition and stator
JP2019056041A (en) Thermosetting resin composition
EP4262059A1 (en) Stator, rotating electric machine, and method for manufacturing stator
JP6750659B2 (en) Sealing resin composition and semiconductor device
TWI666260B (en) Resin composition for encapsulation and semiconductor device
JP2022114048A (en) power module
JP2023081757A (en) Stator and rotary electric machine
CN115340750A (en) Resin composition for encapsulation and semiconductor device
JP2021063146A (en) Resin composition for sealing, semiconductor device and power device
TW201634515A (en) Resin composition for encapsulation, semiconductor device and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480049812.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009258

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14843592

Country of ref document: EP

Kind code of ref document: A1