JP2019056041A - Thermosetting resin composition - Google Patents

Thermosetting resin composition Download PDF

Info

Publication number
JP2019056041A
JP2019056041A JP2017180121A JP2017180121A JP2019056041A JP 2019056041 A JP2019056041 A JP 2019056041A JP 2017180121 A JP2017180121 A JP 2017180121A JP 2017180121 A JP2017180121 A JP 2017180121A JP 2019056041 A JP2019056041 A JP 2019056041A
Authority
JP
Japan
Prior art keywords
resin composition
inorganic filler
less
curing agent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017180121A
Other languages
Japanese (ja)
Inventor
哲理 三田村
Tetsutoshi Mitamura
哲理 三田村
省三 高田
Shozo Takada
省三 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017180121A priority Critical patent/JP2019056041A/en
Publication of JP2019056041A publication Critical patent/JP2019056041A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a thermosetting resin composition having sufficient tolerance in a heat cycle test and/or a power cycle test, a sealant made of the thermosetting resin composition, and a semiconductor device using the sealant.SOLUTION: A resin composition includes an epoxy resin (A), a hardening agent (B), and an inorganic filler (C), and satisfies the following condition: the resin composition has a lowest modulus of 10MPa or less evaluated at 200°C after the resin composition is heated from 23°C to 200°C at the rate of 50°C/min and a final modulus of 10MPa or more after 10 min. from initiation of heating.SELECTED DRAWING: Figure 1

Description

本発明は耐熱性、放熱性及び低熱膨張性に優れた硬化物を与える熱硬化性樹脂組成物、該硬化性樹脂組成物を用いた封止材及び車載用部材、該封止材を用いた半導体装置、及び該半導体装置を封止する製造方法に関する。   The present invention uses a thermosetting resin composition that gives a cured product excellent in heat resistance, heat dissipation, and low thermal expansion, a sealing material using the curable resin composition, an in-vehicle member, and the sealing material. The present invention relates to a semiconductor device and a manufacturing method for sealing the semiconductor device.

熱硬化性樹脂組成物のうちエポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、自動車用材料、接着剤、塗料等の分野で幅広く用いられている。   Among thermosetting resin compositions, epoxy resin compositions are used for electrical and electronic parts, structural materials, and automobiles due to workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. Widely used in fields such as materials, adhesives and paints.

電子デバイス製品においては、衝撃、圧力、湿度、熱等の外部環境から半導体素子などの電子部品を保護するために、封止材が用いられている。封止材としては、主剤がエポキシ樹脂であり、硬化剤がフェノール樹脂であるエポキシ/フェノール系封止材が広く用いられている。   In electronic device products, sealing materials are used to protect electronic components such as semiconductor elements from external environments such as impact, pressure, humidity, and heat. As the sealing material, an epoxy / phenol-based sealing material in which the main agent is an epoxy resin and the curing agent is a phenol resin is widely used.

電子デバイス製品のうち車載用パワーモジュールに代表されるパワー半導体は、電気・電子機器における省エネルギー化の鍵を握る重要な技術であり、パワー半導体の更なる大電流化、小型化や高効率化に伴い、従来のシリコン(Si)半導体から高効率が期待されるワイドバンドギャップ半導体と称される炭化ケイ素(SiC)、ガリウムナイトライド(GaN)、ダイアモンド(C)半導体への移行が進められている。SiC半導体の利点はより高温条件下での動作が可能な点にあり、従って、半導体封止材にはこれまで以上に高い耐熱性が要求される。   Power semiconductors typified by in-vehicle power modules among electronic device products are important technologies that hold the key to energy saving in electrical and electronic equipment. To further increase the power current, size, and efficiency of power semiconductors Along with this, the transition from conventional silicon (Si) semiconductors to silicon carbide (SiC), gallium nitride (GaN), and diamond (C) semiconductors, which are called wide band gap semiconductors that are expected to be highly efficient, is being promoted. . The advantage of the SiC semiconductor is that it can be operated under higher temperature conditions. Therefore, the semiconductor encapsulant is required to have higher heat resistance than ever before.

パワー半導体の場合、高耐圧仕様のものになると使用電圧が数百〜数千ボルトに達する。このような高電圧条件下においては部分放電という現象により欠陥が生じることが報告されている。部分放電とは、電極と絶縁物表面の間の局部放電(表面コロナ)や絶縁物内部の隙間(ボイド)中での放電(ボイドコロナ)等によって絶縁物が侵食される現象を指す。   In the case of power semiconductors, the working voltage reaches several hundred to several thousand volts when it comes to high breakdown voltage specifications. It has been reported that defects occur due to the phenomenon of partial discharge under such high voltage conditions. Partial discharge refers to a phenomenon in which an insulator is eroded by a local discharge (surface corona) between an electrode and the surface of an insulator, a discharge (void corona) in a gap (void) inside the insulator, or the like.

架橋性高分子においては架橋密度が高くなるほど、電界によって加速された電子による破壊を防げ、また、微細空孔が発生し難くなるため絶縁特性は向上すると考えられる。また、トランスファーモールド成形等の樹脂成型工程において硬化物中の微細空孔が発生し難くなれば、同様に絶縁特性は向上すると考えられる。   In the crosslinkable polymer, it is considered that the higher the crosslink density is, the more the breakdown due to the electrons accelerated by the electric field can be prevented, and the finer vacancies are less likely to be generated. In addition, it is considered that the insulation characteristics are similarly improved if it becomes difficult for microvoids in the cured product to be generated in a resin molding process such as transfer molding.

耐熱性に優れた材料として、マレイミド化合物とポリアミンとが配合された耐熱性樹脂組成物(特許文献1参照)、ポリベンゾオキサジンで変性したビスマレイミド樹脂(特許文献2参照)などが報告されている。このような耐熱性樹脂組成物は、その硬化物が優れた耐熱性を示すことができる。
加えて、自動車などに用いられる電気・電子樹脂部品は、近年、小型化および高出力化され単位体積当たりに発生する熱量が増加傾向にある。これに伴って樹脂部品の耐熱性、放熱性及び低熱膨張性が重要な要素になっている。これまでにカーボンやアルミナや窒化ホウ素のナノファイバーを充填剤として放熱性が向上することが開示されている(特許文献3参照)。
As materials having excellent heat resistance, heat-resistant resin compositions containing maleimide compounds and polyamines (see Patent Document 1), bismaleimide resins modified with polybenzoxazine (see Patent Document 2), and the like have been reported. . Such a heat resistant resin composition can exhibit excellent heat resistance.
In addition, electrical and electronic resin parts used in automobiles and the like have recently been downsized and increased in output, and the amount of heat generated per unit volume tends to increase. Accordingly, heat resistance, heat dissipation and low thermal expansion of resin parts are important factors. So far, it has been disclosed that heat dissipation is improved by using carbon, alumina, or boron nitride nanofibers as a filler (see Patent Document 3).

特開2014−177584号公報JP 2014-177484 A 特開2012−97207号公報JP 2012-97207 A 特開2010−100837号公報JP 2010-1000083 A

しかしながら、上記のような高耐熱性の樹脂を用いた場合でも、実際の高温動作デバイスを想定した加熱−冷却を繰り返すヒートサイクル試験や、素子の高温動作状態を模擬したパワーサイクル試験においては十分な耐性を得られることが出来ていないのが実情である。
また、耐熱性を有した上で、十分な放熱性及び低熱膨張性を有する樹脂が得られていないのも実情である。
However, even in the case of using a heat-resistant resin as described above, it is sufficient in a heat cycle test that repeats heating-cooling assuming an actual high-temperature operation device or a power cycle test that simulates the high-temperature operation state of the element. The fact is that we have not been able to gain tolerance.
In addition, it is a fact that a resin having sufficient heat dissipation and low thermal expansion has not been obtained while having heat resistance.

本発明は、かかる背景に鑑みてなされたものであり、ヒートサイクル試験及び/又はパワーサイクル試験において十分な耐性を得られることが出来る硬化性樹脂組成物、該硬化性樹脂組成物を用いた封止材、該封止材を用いた半導体装置、及び該半導体装置の製造方法を提供しようとするものである。   The present invention has been made in view of such a background, and a curable resin composition capable of obtaining sufficient resistance in a heat cycle test and / or a power cycle test, and a sealing using the curable resin composition It is an object of the present invention to provide a stopper, a semiconductor device using the sealing material, and a method for manufacturing the semiconductor device.

本発明者は前記したような実情に鑑み、鋭意検討した結果、本発明を完成させるに至った。すなわち本発明は、以下のとおりのものである。
[1]
(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填剤とを含む樹脂組成物であって、以下の条件:
(I−I)レオメーター評価で23℃から50℃/minで200℃まで昇温後、200℃固定で評価した際の最低モジュラスが10MPa以下であり、昇温開始から10min後の到達モジュラスが10MPa以上である;
を満たす、前記樹脂組成物。
[2]
前記樹脂組成物が、以下の条件:
(I−II)前記(A)エポキシ樹脂の軟化点が35℃以上である;
をさらに満たす[1]に記載の樹脂組成物。
[3]
前記樹脂組成物が、以下の条件:
(I−III)前記樹脂組成物の残溶媒が0.1重量%未満である;
をさらに満たす[1]又はまたは[2]に記載の樹脂組成物。
[4]
前記樹脂組成物が、以下の条件:
(I−IV)前記(B)硬化剤の当量が90g/eq以下であり、かつ軟化点が105℃以上である;
をさらに満たす[1]から[3]のいずれかに記載の樹脂組成物。
[5]
(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填剤とを含む樹脂組成物であって、以下の条件:
(II−I)前記樹脂組成物中の前記(C)無機充填剤の表面において、EDX測定における前記(A)エポキシ樹脂又は前記(B)硬化剤由来のC原子と前記(C)無機充填剤由来のX原子の存在比がC/X=1以上であり、前記X原子は、前記(C)無機充填剤の主成分(1〜95mol%の範囲で含有される成分)のうちC原子、O原子、H原子及びN原子以外の原子であり、そして前記Xは、前記X原子のモル濃度として定義される;
をさらに満たす、前記樹脂組成物。
[6]
前記樹脂組成物が、以下の条件:
(II−II)前記樹脂組成物中の前記(C)無機充填剤の重量分率が95重量%以下である;
をさらに満たす[5]に記載の樹脂組成物。
[7]
前記樹脂組成物が、以下の条件:
(II−III)前記(C)無機充填剤が少なくともナノファイバーを含有している;
をさらに満たす[5]又は[6]に記載の樹脂組成物。
[8]
前記樹脂組成物が、以下の条件:
(II−IV)前記(C)無機充填剤の前記樹脂組成物全体に対する比表面積が3mm/g超、1000m/g以下である;
をさらに満たす[5]〜[7]のいずれかに記載の樹脂組成物。
[9]
前記樹脂組成物が、以下の条件:
(II−V)前記(A)エポキシ樹脂の軟化点が35℃以上である;
をさらに満たす[5]〜[8]のいずれかに記載の樹脂組成物。
[10]
前記樹脂組成物が、以下の条件:
(II−VI)前記樹脂組成物の残溶媒が0.1重量%未満である;
をさらに満たす[5]〜[9]のいずれかに記載の樹脂組成物。
[11]
前記樹脂組成物が、以下の条件:
(II−VII)前記(B)硬化剤の当量が90g/eq以下であり、かつ軟化点が105℃以上である;
をさらに満たす[5]〜[10]のいずれか1項に記載の樹脂組成物。
[12]
(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填剤とを含む樹脂組成物であって、以下の条件:
(II−I)前記樹脂組成物中の前記(C)無機充填剤の表面において、EDX測定における前記(A)エポキシ樹脂又は前記(B)硬化剤由来のC原子と前記(C)無機充填剤由来のX原子の存在比がC/X=1以上であり、前記X原子は、前記(C)無機充填剤の主成分(1〜95mol%の範囲で含有される成分)のうちC原子、O原子、H原子及びN原子以外の原子であり、そして前記Xは、前記X原子のモル濃度として定義される;
(II−II)前記樹脂組成物中の前記(C)無機充填剤の重量分率が95重量%以下である;
(II−III)前記(C)無機充填剤が、少なくともナノファイバーを含有している;
(II−IV)前記(C)無機充填剤の前記樹脂組成物全体に対する比表面積が3mm/g超、1000m/g以下である;
(II−V)前記(A)エポキシ樹脂の軟化点が35℃以上である;
(II−VI)前記樹脂組成物の残溶媒が0.1重量%未満である;及び
(II−VII)前記(B)硬化剤の当量が90g/eq以下であり、かつ軟化点が105℃以上である;
を満たす、前記樹脂組成物。
[13]
前記(B)硬化剤が、アミノ基を有する化合物である、[1]〜[12]のいずれかに記載の樹脂組成物。
[14]
前記(C)無機充填剤に少なくとも含まれるナノファイバーの直径が1nm以上990nm以下であって、アスペクト比(ナノファイバーの長さ/ナノファイバーの径)が10以上1000以下である、[1]〜[13]のいずれか1項に記載の樹脂組成物。
[15]
[1]〜[14]のいずれかに記載の樹脂組成物の硬化物を含む封止材または車載用部材。
[16]
[1]〜[14]のいずれかに記載の樹脂組成物の硬化物により半導体素子が封止されている、半導体装置。
[17]
[1]〜[14]のいずれかに記載の樹脂組成物の硬化物を用いて、圧縮成形により、半導体素子を封止する工程を含む、半導体装置の製造方法。
As a result of intensive studies in view of the above circumstances, the present inventor has completed the present invention. That is, the present invention is as follows.
[1]
(A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the following conditions:
(II) After the temperature was raised from 23 ° C. to 50 ° C./200° C. by rheometer evaluation, the lowest modulus when evaluated at 200 ° C. was 10 4 MPa or less, and reached 10 minutes after the start of temperature rise. The modulus is 10 5 MPa or more;
The said resin composition satisfy | fills.
[2]
The resin composition has the following conditions:
(I-II) The softening point of the epoxy resin (A) is 35 ° C. or higher;
[1] The resin composition according to [1].
[3]
The resin composition has the following conditions:
(I-III) The residual solvent of the resin composition is less than 0.1% by weight;
The resin composition according to [1] or [2], further satisfying
[4]
The resin composition has the following conditions:
(I-IV) The equivalent of the (B) curing agent is 90 g / eq or less, and the softening point is 105 ° C. or more;
The resin composition according to any one of [1] to [3], further satisfying:
[5]
(A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the following conditions:
(II-I) On the surface of the (C) inorganic filler in the resin composition, the C atom derived from the (A) epoxy resin or the (B) curing agent in the EDX measurement and the (C) inorganic filler The abundance ratio of the derived X atom is C / X = 1 or more, and the X atom is a C atom in the main component (component contained in the range of 1 to 95 mol%) of the (C) inorganic filler, Atoms other than O, H and N atoms, and said X is defined as the molar concentration of said X atoms;
The resin composition further satisfying
[6]
The resin composition has the following conditions:
(II-II) The weight fraction of the (C) inorganic filler in the resin composition is 95% by weight or less;
[5] The resin composition according to [5].
[7]
The resin composition has the following conditions:
(II-III) The inorganic filler (C) contains at least nanofibers;
The resin composition according to [5] or [6], further satisfying
[8]
The resin composition has the following conditions:
(II-IV) The specific surface area of the (C) inorganic filler relative to the entire resin composition is more than 3 mm 2 / g and 1000 m 2 / g or less;
The resin composition according to any one of [5] to [7].
[9]
The resin composition has the following conditions:
(II-V) The softening point of the epoxy resin (A) is 35 ° C. or higher;
The resin composition according to any one of [5] to [8], further satisfying
[10]
The resin composition has the following conditions:
(II-VI) The residual solvent of the resin composition is less than 0.1% by weight;
The resin composition according to any one of [5] to [9].
[11]
The resin composition has the following conditions:
(II-VII) The equivalent of the (B) curing agent is 90 g / eq or less, and the softening point is 105 ° C. or more;
The resin composition according to any one of [5] to [10], further satisfying:
[12]
(A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the following conditions:
(II-I) On the surface of the (C) inorganic filler in the resin composition, the C atom derived from the (A) epoxy resin or the (B) curing agent in the EDX measurement and the (C) inorganic filler The abundance ratio of the derived X atom is C / X = 1 or more, and the X atom is a C atom in the main component (component contained in the range of 1 to 95 mol%) of the (C) inorganic filler, Atoms other than O, H and N atoms, and said X is defined as the molar concentration of said X atoms;
(II-II) The weight fraction of the (C) inorganic filler in the resin composition is 95% by weight or less;
(II-III) The (C) inorganic filler contains at least nanofibers;
(II-IV) The specific surface area of the (C) inorganic filler relative to the entire resin composition is more than 3 mm 2 / g and 1000 m 2 / g or less;
(II-V) The softening point of the epoxy resin (A) is 35 ° C. or higher;
(II-VI) The residual solvent of the resin composition is less than 0.1% by weight; and (II-VII) The equivalent of the (B) curing agent is 90 g / eq or less and the softening point is 105 ° C. Or more;
The said resin composition satisfy | fills.
[13]
The resin composition according to any one of [1] to [12], wherein the (B) curing agent is a compound having an amino group.
[14]
The diameter of the nanofiber contained in the inorganic filler (C) is 1 nm or more and 990 nm or less, and the aspect ratio (the length of the nanofiber / the diameter of the nanofiber) is 10 or more and 1000 or less, [1]- [13] The resin composition according to any one of [13].
[15]
The sealing material or vehicle-mounted member containing the hardened | cured material of the resin composition in any one of [1]-[14].
[16]
A semiconductor device in which a semiconductor element is sealed with a cured product of the resin composition according to any one of [1] to [14].
[17]
The manufacturing method of a semiconductor device including the process of sealing a semiconductor element by compression molding using the hardened | cured material of the resin composition in any one of [1]-[14].

本発明の樹脂組成物は、硬化物が十分な化学的耐熱性及び架橋密度を持つと共に、十分な成形性を維持する。このため、トランスファーモールド工程に適用する際、封止する素子や配線に過度の圧力を掛け難くなり、封止した素子が欠陥を生じ難くなる。また硬化物自身も耐熱性を持つとともに、トランスファーモールド工程において欠陥を生じる原因となる微細空孔が発生し難くなり、ヒートサイクル試験及び/又はパワーサイクル試験において優れた性能を示す。
また、本発明の樹脂組成物は、ナノファイバーを含有することで、耐熱性を有した上で、優れた放熱性及び低熱膨張性を示す。
In the resin composition of the present invention, the cured product has sufficient chemical heat resistance and crosslinking density, and maintains sufficient moldability. For this reason, when applying to a transfer mold process, it becomes difficult to apply an excessive pressure to the element and wiring to seal, and the sealed element becomes difficult to produce a defect. Further, the cured product itself has heat resistance, and it becomes difficult to generate microscopic voids that cause defects in the transfer molding process, and exhibits excellent performance in heat cycle tests and / or power cycle tests.
Moreover, the resin composition of the present invention exhibits excellent heat dissipation and low thermal expansibility after having heat resistance by containing nanofibers.

本発明の樹脂組成物の硬化物から成る封止材は、その優れた耐熱性を発揮することができる。そのため、例えばSiC基板を用いた電子デバイス製品向けの封止材として好適である。
本発明の樹脂組成物の硬化物から成る車載用部材は、耐熱性を有した上で、優れた放熱性及び低熱膨張性を発揮することができる。そのため、例えば、車載用の電気・電子樹脂部品に好適である。
The sealing material which consists of the hardened | cured material of the resin composition of this invention can exhibit the outstanding heat resistance. Therefore, it is suitable as a sealing material for electronic device products using a SiC substrate, for example.
The vehicle-mounted member made of the cured product of the resin composition of the present invention can exhibit excellent heat dissipation and low thermal expansion while having heat resistance. Therefore, for example, it is suitable for electric / electronic resin parts for vehicles.

また、本発明の封止材を用いた電子デバイス製品は、例えば使用温度が200℃の高温環境下においても封止材がその機能を充分に発揮することができる。そのため、高温での信頼性に優れた電子デバイス製品として利用することができる。
また、本発明の車載用部材を用いた電気・電子樹脂製品は、例えば電子部品からの発熱量が多く使用温度が高温環境下においても放熱性が高く、低熱膨張性のため、車載用部材としての機能を充分に発揮することができる。そのため、高温での信頼性に優れた電気・電子樹脂製品として利用することができる。
In addition, in the electronic device product using the sealing material of the present invention, the sealing material can sufficiently exhibit its function even in a high temperature environment where the use temperature is 200 ° C., for example. Therefore, it can be used as an electronic device product having excellent reliability at high temperatures.
In addition, the electric / electronic resin product using the vehicle-mounted member of the present invention has a large heat generation amount from, for example, an electronic component, has high heat dissipation even in a high temperature environment, and has low thermal expansion. This function can be fully demonstrated. Therefore, it can be used as an electrical / electronic resin product having excellent reliability at high temperatures.

図1は、実施例1及び比較例1で得られた樹脂組成物のタブレットについて、温度と損失弾性率の関係を示すグラフである。FIG. 1 is a graph showing the relationship between temperature and loss modulus for the resin composition tablets obtained in Example 1 and Comparative Example 1. 図2(2−a)は、実施例1で得られた樹脂組成物のタブレットの走査型電子顕微鏡(SEM)による表面観察像であり、図2(2−b)は、タブレットの無機充填剤表面(Pt2−1)のエネルギー分散型X線(EDX)分析による元素分布を示し、かつ図2(2−c)は、タブレットの無機充填剤の脱離部(Pt2−2)のEDX分析による元素分布を示す。Fig. 2 (2-a) is a surface observation image of the tablet of the resin composition obtained in Example 1 by a scanning electron microscope (SEM), and Fig. 2 (2-b) is an inorganic filler of the tablet. The element distribution by energy dispersive X-ray (EDX) analysis of the surface (Pt2-1) is shown, and FIG. 2 (2-c) is by EDX analysis of the desorption part (Pt2-2) of the inorganic filler of the tablet Element distribution is shown. 図3(3−a)は、比較例1で得られた樹脂組成物のタブレットのSEMによる表面観察像であり、図3(3−b)及び図3(3−c)は、それぞれタブレットの無機充填剤表面(Pt3−1)及び(Pt3−2)のEDXによる元素分布を示す。Fig. 3 (3-a) is a surface observation image by SEM of the tablet of the resin composition obtained in Comparative Example 1, and Fig. 3 (3-b) and Fig. 3 (3-c) are respectively the tablets. The element distribution by EDX of the inorganic filler surface (Pt3-1) and (Pt3-2) is shown. 図4は、本実施形態で使用されるパワー半導体装置の模式図である。FIG. 4 is a schematic diagram of a power semiconductor device used in this embodiment.

本発明においては、以下のような樹脂組成物を本発明の一態様として示すことができる。すなわち、
(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填剤とを含む樹脂組成物であって、以下の条件:
(I−I)レオメーター評価で23℃から50℃/minで200℃まで昇温後、200℃固定で評価した際の最低モジュラスが10MPa以下であり、昇温開始から10min後の到達モジュラスが10MPa以上である;
を満たす、樹脂組成物。
In the present invention, the following resin composition can be shown as one embodiment of the present invention. That is,
(A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the following conditions:
(II) After the temperature was raised from 23 ° C. to 50 ° C./200° C. by rheometer evaluation, the lowest modulus when evaluated at 200 ° C. was 10 4 MPa or less, and reached 10 minutes after the start of temperature rise. The modulus is 10 5 MPa or more;
A resin composition satisfying

本発明の樹脂組成物は、最低モジュラス値を10MPa以下とすることでトランスファーモールド工程における成形時に十分な流動性を持つため、封止する素子や配線へ過度の圧力をかけず、また硬化物も組成および十分な架橋密度に起因した耐熱性を持つため、ヒートサイクル試験及び/又はパワーサイクル試験に十分な耐性を得られることが出来る。具体的には、最低モジュラス値を10MPa以下にすることで、トランスファーモールド工程における成形時に、封止する素子や配線に過度の圧力を掛け難くなり、また封止後の硬化物に微細空孔が発生し難い状態で樹脂をモールドへ充填することが出来るため、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。最低モジュラスがこれより高いと上手く充填することが困難となり、ヒートサイクル試験及び/又はパワーサイクル試験において欠陥を生じ易くなる。到達モジュラスが10MPa以下であると硬化が不十分となり、成型体の変形などの問題が発生する。 Since the resin composition of the present invention has sufficient fluidity at the time of molding in the transfer molding process by setting the minimum modulus value to 10 4 MPa or less, it does not apply excessive pressure to the elements and wirings to be sealed and is cured. Since the product also has heat resistance due to the composition and sufficient crosslinking density, sufficient resistance can be obtained in the heat cycle test and / or power cycle test. Specifically, by setting the minimum modulus value to 10 4 MPa or less, it becomes difficult to apply excessive pressure to the elements and wirings to be sealed at the time of molding in the transfer molding process, and the cured product after sealing has a fine void. Since the resin can be filled into the mold in a state in which holes are not easily generated, heat cycle test and / or power cycle test resistance can be improved. If the minimum modulus is higher than this, it is difficult to fill the material well, and defects are likely to occur in the heat cycle test and / or the power cycle test. When the reaching modulus is 10 5 MPa or less, the curing becomes insufficient and problems such as deformation of the molded body occur.

このような樹脂組成物は、さらに、以下の条件を満たすことが好ましい。
(I−II)(A)エポキシ樹脂の軟化点が35℃以上である;
(A)エポキシ樹脂の軟化点が35℃以上であることで、硬化物の耐熱性を確保し、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。
Such a resin composition preferably further satisfies the following conditions.
(I-II) (A) The softening point of the epoxy resin is 35 ° C. or higher;
(A) When the softening point of an epoxy resin is 35 degreeC or more, the heat resistance of hardened | cured material can be ensured and a heat cycle test and / or a power cycle test tolerance can be improved.

(I−III)樹脂組成物の残溶媒が0.1重量%未満である;
樹脂組成物中の残溶媒が0.1質量%未満であることで、成型時における残溶剤を起因とする膨れなどの欠陥を抑制し、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。
(I-III) The residual solvent of the resin composition is less than 0.1% by weight;
By reducing the residual solvent in the resin composition to less than 0.1% by mass, defects such as swelling caused by the residual solvent at the time of molding are suppressed, and heat cycle test and / or power cycle test resistance is improved. I can do it.

(I−IV)(B)硬化剤の当量が90g/eq以下であり、かつ軟化点が105℃以上である;
(B)硬化剤の当量を90g/eq以下とすることで、硬化物の架橋密度を確保し、硬化物の耐熱性を確保することが出来るため、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。同様に(B)硬化剤の軟化点が105℃以上であることで、硬化物の耐熱性を確保し、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。
(I-IV) (B) The equivalent of the curing agent is 90 g / eq or less, and the softening point is 105 ° C. or more;
(B) By setting the equivalent of the curing agent to 90 g / eq or less, the crosslinking density of the cured product can be ensured and the heat resistance of the cured product can be ensured, so that the heat cycle test and / or power cycle test resistance can be achieved. Can be improved. Similarly, when the softening point of (B) the curing agent is 105 ° C. or higher, the heat resistance of the cured product can be secured, and the heat cycle test and / or power cycle test resistance can be improved.

本発明においては、以下のような樹脂組成物を本発明の一態様として示すこともできる。すなわち、
(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填剤とを含む樹脂組成物であって、以下の条件:
(II−I)樹脂組成物中の(C)無機充填剤の表面において、EDX測定における(A)エポキシ樹脂又は(B)硬化剤由来のC原子と(C)無機充填剤由来のX原子の存在比がC/X=1以上である樹脂組成物。
{式中、X原子は、(C)無機充填剤成分の主成分(1〜95mol%の範囲で含有される成分)のうちC原子、O原子、H原子及びN原子以外の原子であり、かつXは、X原子のモル濃度として定義される};
を満たす、樹脂組成物。
(A)エポキシ樹脂又は(B)硬化剤由来のC原子と(C)無機充填剤由来のX原子の存在比がC/X=1以上にすることで、成形時に(C)無機充填剤の滑りが良好となり、封止する素子や配線に過度の圧力を掛け難くなり、また封止後の硬化物に微細空孔が発生し難い状態で樹脂をモールドへ充填することが出来るため、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。
In the present invention, the following resin composition can also be shown as one embodiment of the present invention. That is,
(A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the following conditions:
(II-I) On the surface of the (C) inorganic filler in the resin composition, (A) epoxy resin or (B) curing agent-derived C atom and (C) inorganic filler-derived X atom in EDX measurement A resin composition having an abundance ratio of C / X = 1 or more.
{In the formula, X atom is an atom other than C atom, O atom, H atom and N atom in the main component (component contained in the range of 1 to 95 mol%) of (C) inorganic filler component, And X is defined as the molar concentration of X atoms};
A resin composition satisfying
(A) When the abundance ratio of C atom derived from epoxy resin or (B) curing agent and X atom derived from (C) inorganic filler is C / X = 1 or more, at the time of molding, (C) inorganic filler Since the sliding is good, it is difficult to apply excessive pressure to the elements and wirings to be sealed, and the resin can be filled into the mold in a state where fine voids are hardly generated in the cured product after sealing. Test and / or power cycle test resistance can be improved.

このような樹脂組成物は、さらに、以下の条件を満たすことが好ましい。
(II−II)樹脂組成物中の(C)無機充填剤の重量分率が95重量%以下である;
(C)無機充填剤の重量分率を95重量%以下にすることで、成型時における組成物の流動性が良好となり、成形性が向上し、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。(C)無機充填剤量が多すぎると、成型時に組成物の流動性が悪くなり、成型不良が発生し、ヒートサイクル試験及び/又はパワーサイクル試験において欠陥を生じ易くなる。
Such a resin composition preferably further satisfies the following conditions.
(II-II) The weight fraction of (C) inorganic filler in the resin composition is 95% by weight or less;
(C) By making the weight fraction of the inorganic filler 95% by weight or less, the fluidity of the composition at the time of molding is improved, the moldability is improved, and the heat cycle test and / or power cycle test resistance is improved. It can be made. (C) When there is too much inorganic filler amount, the fluidity | liquidity of a composition will worsen at the time of shaping | molding, a shaping | molding defect will generate | occur | produce, and it will become easy to produce a defect in a heat cycle test and / or a power cycle test.

(II−III)(C)無機充填剤が、少なくともナノファイバーを含有している;
(C)無機充填剤が、少なくともナノファイバーを含有していることで、成型体が耐熱性を維持し且つ、放熱性が高く、低熱膨張性を発揮することができる。(C)無機充填剤にナノファイバーが含有されていない又は、ナノファイバーの替わりにマイクロファイバーが含有されている場合は、放熱性が低くなる、または熱膨張性が大きくなり、車載用部材としての機能を充分に発揮できなくなり信頼性に欠ける。
(II-III) (C) the inorganic filler contains at least nanofibers;
(C) Since the inorganic filler contains at least nanofibers, the molded body maintains heat resistance, has high heat dissipation, and can exhibit low thermal expansion. (C) When the inorganic filler does not contain nanofibers or contains microfibers instead of nanofibers, the heat dissipation becomes low or the thermal expansibility increases, Unable to fully perform functions and lack reliability.

(II−IV)(C)無機充填剤の樹脂組成物全体に対する比表面積が3mm/g超、1000m/g以下である;
同様に(C)無機充填剤の樹脂組成物全体に対する比表面積が3mm/g超、1000m/g以下であることで、成型体が耐熱性を維持し且つ、放熱性が高く、低熱膨張性を発揮することができる。(C)無機充填剤の樹脂組成物全体に対する比表面積が3mm/gより小さい場合は、放熱性が低くなる、熱膨張性が大きくなり、車載用部材としての機能を充分に発揮できなくなり信頼性に欠ける。(C)無機充填剤の樹脂組成物全体に対する比表面積が1000m/gより大きい場合は、成型時に流動性が悪化して、成型不良が発生しやすくなる。
(II-IV) (C) The specific surface area of the inorganic filler relative to the entire resin composition is more than 3 mm 2 / g and not more than 1000 m 2 / g;
Similarly, (C) the specific surface area of the inorganic filler with respect to the entire resin composition is more than 3 mm 2 / g and 1000 m 2 / g or less, so that the molded body maintains heat resistance and has high heat dissipation and low thermal expansion. Can demonstrate its sexuality. (C) If the specific surface area of the inorganic filler relative to the entire resin composition is less than 3 mm 2 / g, the heat dissipation will be low, the thermal expansion will be large, and the function as an in-vehicle member will not be fully exerted and reliable. Lack of sex. (C) When the specific surface area with respect to the whole resin composition of an inorganic filler is larger than 1000 m < 2 > / g, fluidity | liquidity will deteriorate at the time of shaping | molding and it will become easy to generate | occur | produce a molding defect.

(II−V)(A)エポキシ樹脂の軟化点が35℃以上である;
(A)エポキシ樹脂の軟化点が35℃以上であることで、硬化物の耐熱性を確保し、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。
(II-V) (A) The softening point of the epoxy resin is 35 ° C. or higher;
(A) When the softening point of an epoxy resin is 35 degreeC or more, the heat resistance of hardened | cured material can be ensured and a heat cycle test and / or a power cycle test tolerance can be improved.

(II−VI)樹脂組成物の残溶媒が0.1重量%未満である;
樹脂組成物中の残溶媒が0.1質量%未満であることで、成型時における残溶剤を起因とする膨れなどの欠陥を抑制し、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。
(II-VI) the residual solvent of the resin composition is less than 0.1% by weight;
By reducing the residual solvent in the resin composition to less than 0.1% by mass, defects such as swelling caused by the residual solvent at the time of molding are suppressed, and heat cycle test and / or power cycle test resistance is improved. I can do it.

(II−VII)(B)硬化剤の当量が90g/eq以下であり、かつ軟化点が105℃以上である;
(B)硬化剤の当量を90g/eq以下とすることで、硬化物の架橋密度を確保し、硬化物の耐熱性を確保することが出来るため、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。同様に(B)硬化剤の軟化点が105℃以上であることで、硬化物の耐熱性を確保し、ヒートサイクル試験及び/又はパワーサイクル試験耐性を向上させることが出来る。
(II-VII) (B) The equivalent of the curing agent is 90 g / eq or less, and the softening point is 105 ° C. or more;
(B) By setting the equivalent of the curing agent to 90 g / eq or less, the crosslinking density of the cured product can be ensured and the heat resistance of the cured product can be ensured, so that the heat cycle test and / or power cycle test resistance can be achieved. Can be improved. Similarly, when the softening point of (B) the curing agent is 105 ° C. or higher, the heat resistance of the cured product can be secured, and the heat cycle test and / or power cycle test resistance can be improved.

本発明においては、以下のような樹脂組成物を本発明の一態様として示すこともできる。すなわち、
(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填剤とを含む樹脂組成物であって、以下の条件:
(II−I)樹脂組成物中の(C)無機充填剤の表面において、EDX測定における(A)エポキシ樹脂又は(B)硬化剤由来のC原子と(C)無機充填剤由来のX原子の存在比がC/X=1以上であり、X原子は、(C)無機充填剤の主成分(1〜95mol%の範囲で含有される成分)のうちC原子、O原子、H原子及びN原子以外の原子であり、そしてXは、X原子のモル濃度として定義される;
(II−II)樹脂組成物中の(C)無機充填剤の重量分率が95重量%以下である;
(II−III)(C)無機充填剤が、少なくともナノファイバーを含有している;
(II−IV)(C)無機充填剤の樹脂組成物全体に対する比表面積が3mm/g超、1000m/g以下である;
(II−V)(A)エポキシ樹脂の軟化点が35℃以上である;
(II−VI)樹脂組成物の残溶媒が0.1重量%未満である;及び
(II−VII)(B)硬化剤の当量が90g/eq以下であり、かつ軟化点が105℃以上である;
を満たす、樹脂組成物。
In the present invention, the following resin composition can also be shown as one embodiment of the present invention. That is,
(A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the following conditions:
(II-I) On the surface of the (C) inorganic filler in the resin composition, (A) epoxy resin or (B) curing agent-derived C atom and (C) inorganic filler-derived X atom in EDX measurement The abundance ratio is C / X = 1 or more, and the X atom is a C atom, an O atom, an H atom and an N atom among the main components (components contained in the range of 1 to 95 mol%) of the (C) inorganic filler. An atom other than an atom, and X is defined as the molar concentration of the X atom;
(II-II) The weight fraction of (C) inorganic filler in the resin composition is 95% by weight or less;
(II-III) (C) the inorganic filler contains at least nanofibers;
(II-IV) (C) The specific surface area of the inorganic filler relative to the entire resin composition is more than 3 mm 2 / g and not more than 1000 m 2 / g;
(II-V) (A) The softening point of the epoxy resin is 35 ° C. or higher;
(II-VI) The residual solvent of the resin composition is less than 0.1% by weight; and (II-VII) (B) The equivalent of the curing agent is 90 g / eq or less and the softening point is 105 ° C. or more. is there;
A resin composition satisfying

本発明の樹脂組成物は、(A)エポキシ樹脂と(B)硬化剤と、(C)無機充填剤とを必須成分として含むが、他の成分をさらに含んでいてもよい。   The resin composition of the present invention contains (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler as essential components, but may further contain other components.

本発明の樹脂組成物において、熱硬化処理前の23〜200℃における最低モジュラスは10MPa以下であることが好ましく、10MPa以下がより好ましく、10MPa以下がさらに好ましい。モジュラス値を上記範囲にすることで、半導体素子、及び素子中の配線等が圧力を受けることによるダメージの発生や、トランスファーモールド工程における流動性の不足に起因した硬化物中のボイドの発生を防止することができる。 In the resin composition of the present invention, the minimum modulus at 23 to 200 ° C. before the thermosetting treatment is preferably 10 4 MPa or less, more preferably 10 3 MPa or less, and further preferably 10 2 MPa or less. By setting the modulus value within the above range, it is possible to prevent the occurrence of damage due to pressure on the semiconductor element and the wiring in the element, and the generation of voids in the cured product due to insufficient fluidity in the transfer molding process. can do.

また、上記条件における昇温開始から、10min経過後のモジュラスは10MPa以上になることが好ましく、10MPa以上になることがより好ましく、10MPa以上になることがさらに好ましい。モジュラス値を上記範囲にすることで、トランスファーモールド工程における成形時に樹脂を十分に硬化させることが出来る。 Further, the modulus after 10 minutes has elapsed since the start of temperature rise under the above conditions is preferably 10 5 MPa or more, more preferably 10 6 MPa or more, and even more preferably 10 7 MPa or more. By setting the modulus value within the above range, the resin can be sufficiently cured at the time of molding in the transfer molding process.

なお、上記モジュラスの測定は、レオメーター(TAインスツルメント社製、DHR−2)を用いて、パラレルプレート法により測定した損失弾性率の値である。より詳細には、ギャップ2000μm、回転プレート直径8mm、Frequency 1.0HZ、Strain 0.1%、23℃から昇温速度50℃/minで200℃まで昇温し200℃でホールドし、その範囲でのモジュラスを測定し、最低モジュラス及び10min後のモジュラスを求めることが出来る。   In addition, the measurement of the said modulus is the value of the loss elastic modulus measured by the parallel plate method using the rheometer (TA Instruments company make, DHR-2). More specifically, the gap is 2000 μm, the diameter of the rotating plate is 8 mm, the frequency is 1.0 HZ, the strain is 0.1%, the temperature is raised from 23 ° C. to 200 ° C. at a heating rate of 50 ° C./min, and held at 200 ° C. The minimum modulus and the modulus after 10 minutes can be obtained.

以下、本発明の樹脂組成物の各成分について具体的に説明する。   Hereinafter, each component of the resin composition of this invention is demonstrated concretely.

[(A)エポキシ樹脂]
(A)エポキシ樹脂の例は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂、アルコキシナフタレン骨格含有フェノールアラルキルエポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂;リン原子含有エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
これらの化合物の中で、トリフェノールメタン型エポキシ樹脂である、例えばEPPN501H、EPPN501、EPPN501HY、EPPN502、EPPN502H(日本化薬株式会社製)等が、ジシクロペンタジエン型である、例えば、XD−1000 2L、XD−1000(以上、日本化薬株式会社製)、HP−7200、HP−7200H(以上、DIC株式会社製)等が好ましい。
[(A) Epoxy resin]
Examples of (A) epoxy resins are monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited. For example, bisphenol A type epoxy resin Bisphenol type epoxy resin such as bisphenol F type epoxy resin and tetramethyl bisphenol F type epoxy resin, biphenyl type epoxy resin such as biphenyl type epoxy resin and tetramethylbiphenyl type epoxy resin, stilbene type epoxy resin, hydroquinone type epoxy resin, etc. Crystalline epoxy resins; cresol novolac type epoxy resins, phenol novolac type epoxy resins, naphthol novolac type epoxy resins and other novolak type epoxy resins; phenylene skeleton-containing phenol aralkyl type epoxy resins, Phenolic aralkyl type epoxy resins such as phenolic aralkyl type epoxy resins containing eneylene skeletons, naphthol aralkyl type epoxy resins containing phenylene skeletons, phenol aralkyl epoxy resins containing alkoxynaphthalene skeletons; triphenolmethane type epoxy resins, alkyl-modified triphenolmethane type epoxy resins Trifunctional epoxy resins; modified phenolic epoxy resins such as dicyclopentadiene-modified phenolic epoxy resins and terpene-modified phenolic epoxy resins; heterocyclic-containing epoxy resins such as triazine nucleus-containing epoxy resins; phosphorus atom-containing epoxy resins These may be used alone or in combination of two or more.
Among these compounds, triphenolmethane type epoxy resins such as EPPN501H, EPPN501, EPPN501HY, EPPN502, EPPN502H (manufactured by Nippon Kayaku Co., Ltd.) and the like are dicyclopentadiene types, such as XD-1000 2L. XD-1000 (manufactured by Nippon Kayaku Co., Ltd.), HP-7200, HP-7200H (manufactured by DIC Corporation) and the like are preferable.

ここで、リン原子含有エポキシ樹脂としては、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(以下、「HCA」と略記する。)のエポキシ化物、HCAとキノン類とを反応させて得られるフェノール樹脂のエポキシ化物、フェノールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、クレゾールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、また、ビスフェノールA型エポキシ樹脂を、HCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂等が挙げられる。   Here, as the phosphorus atom-containing epoxy resin, epoxidized product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as “HCA”), HCA and quinones Epoxy product of phenol resin obtained by reacting phenolic resin, epoxy resin obtained by modifying phenol novolac type epoxy resin with HCA, epoxy resin obtained by modifying cresol novolac type epoxy resin with HCA, and bisphenol A type epoxy resin using HCA and quinone An epoxy resin obtained by modification with a phenol resin obtained by reacting with a resin.

エポキシ樹脂(A)の軟化点は硬化物の耐熱性の観点から35℃以上の樹脂を用いることが好ましく、50℃以上であることがより好ましく、60℃以上であることがさらに好ましい。エポキシ樹脂の軟化点の上限については特に限定されないが、エポキシ樹脂の反応性を確保する観点からは130℃以下であることが好ましい。   The softening point of the epoxy resin (A) is preferably a resin having a temperature of 35 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 60 ° C. or higher from the viewpoint of the heat resistance of the cured product. The upper limit of the softening point of the epoxy resin is not particularly limited, but is preferably 130 ° C. or lower from the viewpoint of ensuring the reactivity of the epoxy resin.

ここで言う軟化点とは、例えば、JISK2351に基づく環球法により測定されることが出来る。   The softening point mentioned here can be measured, for example, by the ring and ball method based on JISK2351.

エポキシ樹脂全体の配合割合の下限値については、特に限定されないが、全樹脂組成物中に、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、17質量%以上であることがさらに好ましい。配合割合の下限値が上記範囲内であると、流動性の低下等を引き起こす恐れが少ない。また、エポキシ樹脂全体の配合割合の上限値については特に限定されないが、全樹脂組成物中に、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、周囲部材との熱膨張率のマッチングが行い易い。また樹脂の融け性を向上させるため、用いるエポキシ樹脂の種類に応じて配合割合を適宜調整することが望ましい。   Although it does not specifically limit about the lower limit of the compounding ratio of the whole epoxy resin, It is preferable that it is 5 mass% or more in all the resin compositions, It is more preferable that it is 10 mass% or more, 17 mass% or more More preferably it is. When the lower limit of the blending ratio is within the above range, there is little possibility of causing a decrease in fluidity. In addition, the upper limit of the blending ratio of the entire epoxy resin is not particularly limited, but is preferably 50% by mass or less, and more preferably 40% by mass or less in the total resin composition. When the upper limit value of the blending ratio is within the above range, it is easy to match the thermal expansion coefficient with the surrounding members. Moreover, in order to improve the meltability of the resin, it is desirable to appropriately adjust the blending ratio according to the type of epoxy resin used.

[(B)硬化剤]
(B)硬化剤としては、エポキシ樹脂と反応して硬化させるものであれば特に限定されず、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数2〜20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジシクロヘキサン、ビス(4−アミノフェニル)フェニルメタン、1,5−ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1−ビス(4−アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミン類;アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂等のフェノールアラルキル樹脂;ナフタレン骨格やアントラセン骨格のような縮合多環構造を有するフェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物等;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類が例示される。これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
[(B) Curing agent]
(B) The curing agent is not particularly limited as long as it is cured by reacting with an epoxy resin. For example, a straight chain having 2 to 20 carbon atoms such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine and the like. Aliphatic diamine, metaphenylenediamine, paraphenylenediamine, paraxylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 4,4'-diaminodicyclohexane, bis (4-aminophenyl) phenylmethane, 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, dicyanodiamide, etc. Amines; Anili Resol type phenol resins such as modified resole resins and dimethyl ether resole resins; Novolak type phenol resins such as phenol novolac resins, cresol novolac resins, tert-butylphenol novolac resins, nonylphenol novolac resins; phenylene skeleton-containing phenol aralkyl resins, biphenylene skeleton-containing phenol aralkyls Phenol aralkyl resins such as resins; phenol resins having a condensed polycyclic structure such as naphthalene skeleton and anthracene skeleton; polyoxystyrenes such as polyparaoxystyrene; hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), etc. Alicyclic acid anhydride, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic Acid anhydrides including aromatic acid anhydrides such as acids (BTDA); Polymercaptan compounds such as polysulfides, thioesters and thioethers; Isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; Organics such as carboxylic acid-containing polyester resins Acids are exemplified. These may be used alone or in combination of two or more.

上記の硬化剤の当量は硬化物の耐熱性の観点から90g/eq以下であることが好ましく、80g/eqであることがより好ましく、70g/eq以下であることがさらに好ましい。硬化物の当量が上記の範囲内にあると、硬化物に十分な架橋密度が確保され、物理的な耐熱性を得ることが出来る。   The equivalent of the above curing agent is preferably 90 g / eq or less, more preferably 80 g / eq, and further preferably 70 g / eq or less from the viewpoint of the heat resistance of the cured product. When the equivalent of the cured product is within the above range, a sufficient crosslinking density is ensured in the cured product, and physical heat resistance can be obtained.

ここで言う硬化剤の当量とは、硬化剤中の活性水素1当量を含むグラム数で定義される。   The equivalent of the curing agent here is defined as the number of grams including 1 equivalent of active hydrogen in the curing agent.

上記の硬化剤のうち、軟化点は硬化物の耐熱性の観点から105℃以上であることが好ましく、140℃以上であることがより好ましく、170℃以上であることがさらに好ましい。硬化剤の軟化点が上記の範囲にあると、硬化物が化学的に十分な耐熱性を得ることが出来る。
(B)硬化剤は、アミノ基を有する化合物であることが好ましい。好ましい硬化剤としては、4,4’−ジアミノジフェニルスルホン(DDS)、3,3’−ジアミノジフェニルスルホン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4、4,4’−ジアミノジフェニルエーテル、1,3−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン、α,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン、パラフェニレンジアミンが挙げられる。
Among the above curing agents, the softening point is preferably 105 ° C. or higher, more preferably 140 ° C. or higher, and further preferably 170 ° C. or higher from the viewpoint of the heat resistance of the cured product. When the softening point of the curing agent is in the above range, the cured product can obtain sufficient heat resistance.
(B) The curing agent is preferably a compound having an amino group. Preferred curing agents include 4,4′-diaminodiphenyl sulfone (DDS), 3,3′-diaminodiphenyl sulfone, 1,3-bis (3-aminophenoxy) benzene, 4,4,4′-diaminodiphenyl ether, Examples include 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene, α, α′-bis (4-aminophenyl) -1,4-diisopropylbenzene, and paraphenylenediamine.

また、これらの内、半導体封止材料に用いる硬化剤としては、架橋密度の確保、信頼性等の点から、アミン系、アミノ系の化合物が好ましく、芳香族ジアミン化合物、芳香族ビスアミノフェノール化合物、脂環式ジアミン、直鎖脂肪族ジアミン又はシロキサンジアミンから成る群から選ばれる少なくとも1つのジアミン化合物がより好ましい。   Of these, the curing agent used for the semiconductor encapsulating material is preferably an amine-based or amino-based compound from the viewpoint of ensuring the crosslinking density, reliability, etc., and is preferably an aromatic diamine compound or aromatic bisaminophenol compound. More preferred is at least one diamine compound selected from the group consisting of alicyclic diamine, linear aliphatic diamine or siloxane diamine.

芳香族ビスアミノフェノール化合物としては、3,3’−ジヒドロキシベンジジン、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、3,3’−ジヒドロキシ−4,4’−ジアミノジフェニルスルホン、ビス−(3−アミノ−4−ヒドロキシフェニル)メタン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス−(3−ヒドロキシ−4−アミノフェニル)ヘキサフルオロプロパン、ビス−(3−ヒドロキシ−4−アミノフェニル)メタン、2,2−ビス−(3−ヒドロキシ−4−アミノフェニル)プロパン、3,3’−ジヒドロキシ−4,4’−ジアミノベンゾフェノン、3,3’−ジヒドロキシ−4,4’−ジアミノジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジアミノジフェニルエーテル、2,5−ジヒドロキシ−1,4−ジアミノベンゼン、4,6−ジアミノレゾルシノール、1,1−ビス(3−アミノ−4−ヒドロキシフェニル)シクロヘキサン、4,4−(α−メチルベンジリデン)−ビス(2−アミノフェノール)などが挙げられる。   Aromatic bisaminophenol compounds include 3,3′-dihydroxybenzidine, 3,3′-diamino-4,4′-dihydroxybiphenyl, 3,3′-dihydroxy-4,4′-diaminodiphenylsulfone, bis- (3-amino-4-hydroxyphenyl) methane, 2,2-bis- (3-amino-4-hydroxyphenyl) propane, 2,2-bis- (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis- (3-hydroxy-4-aminophenyl) hexafluoropropane, bis- (3-hydroxy-4-aminophenyl) methane, 2,2-bis- (3-hydroxy-4-aminophenyl) Propane, 3,3′-dihydroxy-4,4′-diaminobenzophenone, 3,3′-dihydroxy-4,4′-di Minodiphenyl ether, 4,4′-dihydroxy-3,3′-diaminodiphenyl ether, 2,5-dihydroxy-1,4-diaminobenzene, 4,6-diaminoresorcinol, 1,1-bis (3-amino-4- Hydroxyphenyl) cyclohexane, 4,4- (α-methylbenzylidene) -bis (2-aminophenol) and the like.

脂環式ジアミン化合物としては、1,3−ジアミノシクロペンタン、1,3−ジアミノシクロヘキサン、1,3−ジアミノ−1−メチルシクロヘキサン、3,5−ジアミノ−1,1−ジメチルシクロヘキサン、1,5−ジアミノ−1,3−ジメチルシクロヘキサン、1,3−ジアミノ−1−メチル−4−イソプロピルシクロヘキサン、1,2−ジアミノ−4−メチルシクロヘキサン、1,4−ジアミノシクロヘキサン、1,4−ジアミノ−2,5−ジエチルシクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、2−(3−アミノシクロペンチル)−2−プロピルアミン、メンセンジアミン、イソホロンジアミン、ノルボルナンジアミン、1−シクロヘプテン−3,7−ジアミン、4,4’−メチレンビス(シクロヘキシルアミン)、4,4’−メチレンビス(2−メチルシクロヘキシルアミン)、1,4−ビス(3−アミノプロピル)ピペラジン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ−[5,5]−ウンデカンなどが挙げられる。   Examples of the alicyclic diamine compound include 1,3-diaminocyclopentane, 1,3-diaminocyclohexane, 1,3-diamino-1-methylcyclohexane, 3,5-diamino-1,1-dimethylcyclohexane, 1,5 -Diamino-1,3-dimethylcyclohexane, 1,3-diamino-1-methyl-4-isopropylcyclohexane, 1,2-diamino-4-methylcyclohexane, 1,4-diaminocyclohexane, 1,4-diamino-2 , 5-diethylcyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 2- (3-aminocyclopentyl) -2-propylamine, mensendiamine, isophoronediamine, norbornane Diamine, 1-cycloheptene-3,7-diamine, , 4′-methylenebis (cyclohexylamine), 4,4′-methylenebis (2-methylcyclohexylamine), 1,4-bis (3-aminopropyl) piperazine, 3,9-bis (3-aminopropyl) -2 4,8,10-tetraoxaspiro- [5,5] -undecane and the like.

直鎖脂肪族ジアミン化合物としては、1,2−ジアミノエタン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン、1,10−ジアミノデカン、1,12−ジアミノドデカンなどの炭化水素型ジアミン、又は2−(2−アミノエトキシ)エチルアミン、2,2’−(エチレンジオキシ)ジエチルアミン、ビス[2−(2−アミノエトキシ)エチル]エーテルなどのアルキレンオキサイド型ジアミンなどが挙げられる。   Examples of linear aliphatic diamine compounds include 1,2-diaminoethane, 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane, 1,10-diaminodecane, and 1,12-diaminododecane. Hydrocarbon type diamines such as, or alkylene oxide type diamines such as 2- (2-aminoethoxy) ethylamine, 2,2 ′-(ethylenedioxy) diethylamine, bis [2- (2-aminoethoxy) ethyl] ether, etc. Is mentioned.

シロキサンジアミン化合物としては、ジメチル(ポリ)シロキサンジアミン、例えば、信越化学工業製、商標名PAM−E、KF−8010、X−22−161Aなどが挙げられる。   Examples of the siloxane diamine compound include dimethyl (poly) siloxane diamine, for example, trade names PAM-E, KF-8010, and X-22-161A manufactured by Shin-Etsu Chemical Co., Ltd.

また、硬化剤を用いる場合において、エポキシ樹脂全体と硬化剤全体との配合比率としては、エポキシ樹脂全体のエポキシ基数(EP)硬化剤全体の当量との当量比が0.8以上、1.3以下であることが好ましい。当量比がこの範囲内であると、樹脂組成物の成形時に充分な硬化性を得ることができる。また、当量比がこの範囲内であると、樹脂硬化物における良好な物性を得ることができる。また、樹脂組成物の耐熱性という面を考慮すると、樹脂組成物の硬化性及び樹脂硬化物のガラス転移温度又は熱時弾性率を高めることができるように、当量比を1.0に近づけることが望ましい。   In the case where a curing agent is used, the mixing ratio of the entire epoxy resin and the entire curing agent is such that the equivalent ratio of the total number of epoxy groups (EP) of the entire epoxy resin to the equivalent of the entire curing agent is 0.8 or more, 1.3 The following is preferable. When the equivalent ratio is within this range, sufficient curability can be obtained during molding of the resin composition. Moreover, when the equivalent ratio is within this range, good physical properties in the cured resin can be obtained. In consideration of the heat resistance of the resin composition, the equivalent ratio is brought close to 1.0 so that the curability of the resin composition and the glass transition temperature or the thermal elastic modulus of the resin cured product can be increased. Is desirable.

[(C)無機充填剤]
(C)無機充填剤としては、少なくともナノフィラーを含有していることが特徴である。本発明の無機充填剤としてのナノファイラーは、有機材料、無機材料又は、無機材料と有機材料の混合材料のいずれでも適用することができ、放熱性、熱膨張性の観点で適宜選択することができる。
有機材料としては、多糖類としてセルロース、バクテリアセルロース、デンプン、グリコーゲン、キトサンなど、たんぱく質としてコラーゲン、ケラチンなど、熱可塑性樹脂としてポリオレフィン、ポリスチレン、ポリエステル、ポリカーボネート、ABS樹脂、ポリ塩化ビニル、ポリ(メタ)アクリル酸、ポリアミド、ポリアクリロニトリル、ポリエーテルスルフォン、ポリビニルアルコール、ポリアセタール、ポリエチレンオキサイド、ポリフッ化ビニリデン、熱硬化性樹脂としてポリウレタン、ポリイミド、フェノール樹脂、メラミン樹脂、ポリベンゾイミダゾールなど、カーボン材料としてカーボンナノファイバー、カーボンナノチューブ(単層)、カーボンナノチューブ(多層)、カーボンナノホーン、カーボンナノコーン、カーボンナノコイル、カーボンナノツイスト、カーボンナノバルーン、カーボンナノウォール、カーボンナノチャプレット、グラフェン、ナノグラフェン、グラフェンナノリボンが挙げられる。
[(C) inorganic filler]
(C) The inorganic filler is characterized by containing at least a nanofiller. The nanofiler as the inorganic filler of the present invention can be applied to any of organic materials, inorganic materials, or mixed materials of inorganic materials and organic materials, and can be appropriately selected from the viewpoints of heat dissipation and thermal expansion. it can.
Organic materials include polysaccharides such as cellulose, bacterial cellulose, starch, glycogen, and chitosan, proteins such as collagen and keratin, thermoplastic resins such as polyolefin, polystyrene, polyester, polycarbonate, ABS resin, polyvinyl chloride, and poly (meth). Acrylic acid, polyamide, polyacrylonitrile, polyether sulfone, polyvinyl alcohol, polyacetal, polyethylene oxide, polyvinylidene fluoride, polyurethane as thermosetting resin, polyimide, phenol resin, melamine resin, polybenzimidazole, carbon nanofiber as carbon material , Carbon nanotube (single wall), carbon nanotube (multilayer), carbon nanohorn, carbon nanocone, car N'nanokoiru, carbon nano-twist, carbon nano-balloon, carbon nano-wall, carbon nano-chapters toilet, graphene, nanographene, include the graphene nanoribbons.

無機材料としては、酸化物、窒化物、炭化物が好ましく、具体的にはSiC、AlN、Al、Si、TiN、ZrO、Y、MgO、BN、SiO、Al・SiO、MgO・SiO、ZrN、NbN、TaN、TaCなどが挙げられる。特に、高放熱性、低熱膨張性の観点から炭素材料及び無機材料が好ましく、具体的にはカーボンナノファイバー、カーボンナノチューブ、SiC、AlN、Al、Siであり、さらに好ましくは、高放熱性の観点で無機材料からなるSiC、AlN、Al、Siである。 As the inorganic material, oxides, nitrides, and carbides are preferable. Specifically, SiC, AlN, Al 2 O 3 , Si 3 N 4 , TiN, ZrO 2 , Y 2 O 3 , MgO, BN, SiO 2 , al 2 O 3 · SiO 2, MgO · SiO 2, ZrN, NbN, TaN, TaC , and the like. In particular, carbon materials and inorganic materials are preferable from the viewpoints of high heat dissipation and low thermal expansion, and specifically, carbon nanofibers, carbon nanotubes, SiC, AlN, Al 2 O 3 , and Si 3 N 4 , and more preferably SiC, AlN, Al 2 O 3 , and Si 3 N 4 made of an inorganic material from the viewpoint of high heat dissipation.

ナノファイバーの製造方法は特に限定はしないが、有機材料の場合は、溶融紡糸、電解紡糸、メルトブロー、遠心紡糸、フラッシュ紡糸、自己組織化、物理的解繊、化学的解繊などが好適であり、カーボンナノファイバーは、化学的気相成長、自己組織化、超臨界、紡糸、カーボンナノチューブは、化学的気相成長、アーク放電、レーザー蒸着、プラズマ蒸着などを用いることができる。無機材料の場合は、電解紡糸、自己組織化などが好適であり、アルコキシド金属や錯体を形成した金属などを用いて実施することが好ましい。なお、有機材料から成るナノファイバーの表面に該ナノファイバーとは異なる有機材料又は無機材料をコーティングしたもの、無機材料からなるナノファイバーの表面に該ナノファイバーとは異なる有機材料又は無機材料をコーティングしたものも本発明のナノファイバーに含まれる。   The method for producing the nanofiber is not particularly limited, but in the case of organic materials, melt spinning, electrospinning, melt blowing, centrifugal spinning, flash spinning, self-organization, physical defibration, chemical defibration, etc. are suitable. For the carbon nanofiber, chemical vapor deposition, self-organization, supercritical, spinning, and for the carbon nanotube, chemical vapor deposition, arc discharge, laser deposition, plasma deposition and the like can be used. In the case of an inorganic material, electrospinning, self-assembly, and the like are preferable, and it is preferable to use an alkoxide metal, a metal with a complex, or the like. In addition, the surface of the nanofiber made of organic material is coated with an organic material or inorganic material different from the nanofiber, and the surface of the nanofiber made of inorganic material is coated with an organic material or inorganic material different from the nanofiber. Are also included in the nanofibers of the present invention.

このようなナノファイバーの平均直径としては特に制限はないが、1nm以上990nm以下が好ましく、500nm以下がより好ましく、300nm以下がさらに好ましく、200nm以下が特に好ましく、100nm以下が最も好ましい。ナノファイバーの平均直径が前記上限を超えると、放熱性、熱膨張性が十分に向上しにくい傾向にある。   The average diameter of such nanofibers is not particularly limited, but is preferably 1 nm or more and 990 nm or less, more preferably 500 nm or less, further preferably 300 nm or less, particularly preferably 200 nm or less, and most preferably 100 nm or less. When the average diameter of the nanofibers exceeds the upper limit, the heat dissipation and thermal expansion tend to be difficult to improve sufficiently.

また、ナノファイバーのアスペクト比(長さ/直径)としては特に制限はないが、放熱性、熱膨張性及び樹脂と混合した際の粘度の観点から、10以上1000以下が好ましく、30以上800以下がより好ましく、50以上500以下がさらに好ましく、80以上500以下が特に好ましく、100以上400以下が最も好ましい。   Further, the aspect ratio (length / diameter) of the nanofiber is not particularly limited, but is preferably 10 or more and 1000 or less, and preferably 30 or more and 800 or less from the viewpoint of heat dissipation, thermal expansibility, and viscosity when mixed with a resin. Is more preferably 50 or more and 500 or less, particularly preferably 80 or more and 500 or less, and most preferably 100 or more and 400 or less.

上記条件にて無機充填剤を選択することで、樹脂中にて無機充填剤がパーコレーション構造を形成しやすく、高放熱性、低熱膨張性を発現し優れたエポキシ樹脂組成物が得られる。
本発明の無機充填剤において、ナノファイラー以外の無機充填剤としては、樹脂組成物としたとき融け性が良好であれば特に制限はなく、例えば、溶融破砕シリカ、溶融球状シリカ、結晶性シリカ、2次凝集シリカ等のシリカ;アルミナ、窒化ケイ素、窒化アルミニウム、窒化ホウ素、酸化チタン、炭化ケイ素、水酸化アルミニウム、水酸化マグネシウム、チタンホワイト、タルク、クレー、マイカ、ガラス繊維等が挙げられる。これらの中でも、特に溶融球状シリカが好ましい。また、粒子形状は限りなく真球状であることが好ましく、また、粒子の大きさの異なるものを混合することにより充填量を多くすることができる。また、樹脂組成物の融け性を向上させるため、溶融球状シリカを用いるのが好ましい。
By selecting the inorganic filler under the above conditions, the inorganic filler can easily form a percolation structure in the resin, and an excellent epoxy resin composition exhibiting high heat dissipation and low thermal expansion can be obtained.
In the inorganic filler of the present invention, the inorganic filler other than the nanofiler is not particularly limited as long as the resin composition has good meltability. For example, fused crushed silica, fused spherical silica, crystalline silica, Silica such as secondary agglomerated silica; alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, silicon carbide, aluminum hydroxide, magnesium hydroxide, titanium white, talc, clay, mica, glass fiber and the like. Among these, fused spherical silica is particularly preferable. Further, the shape of the particles is preferably infinitely spherical, and the amount of filling can be increased by mixing particles having different particle sizes. Moreover, in order to improve the meltability of the resin composition, it is preferable to use fused spherical silica.

本発明の無機充填剤の熱伝導率としては特に制限はないが、0.5W/m・K以上が好ましく、1W/m・K以上がより好ましく、5W/m・K以上がさらに好ましく、20W/m・K以上が特に好ましく、30W/m・K以上が最も好ましい。熱伝導率が30W/m・K以上の観点から、SiC、AlN、Al、Siなどが好適な材料として挙げられる。このようにして得られた本発明の樹脂組成物は、高耐熱性を維持し且つ、放熱性、熱膨張性を高水準でバランスよく備えるものである。
本実施形態の成形体の熱伝導率は、0.5〜70W/mKであることが好ましく、より好ましくは、5〜70W/mKである。これにより、放熱特性をより高めることができる。なお、熱伝導率は、25mm×25mm×1mmサイズの樹脂組成物を定常法熱伝導率測定装置(アルバック理工(株)製「GH−1」)を用い、40℃で試料(1mm厚の部分)の厚さ方向の熱伝導率(W/mK)を測定した。
Although there is no restriction | limiting in particular as thermal conductivity of the inorganic filler of this invention, 0.5 W / m * K or more is preferable, 1 W / m * K or more is more preferable, 5 W / m * K or more is more preferable, 20 W / M · K or more is particularly preferable, and 30 W / m · K or more is most preferable. From the viewpoint of a thermal conductivity of 30 W / m · K or more, SiC, AlN, Al 2 O 3 , Si 3 N 4 and the like are mentioned as suitable materials. The resin composition of the present invention thus obtained maintains high heat resistance, and has a high level of heat dissipation and thermal expansion in a well-balanced manner.
It is preferable that the heat conductivity of the molded object of this embodiment is 0.5-70 W / mK, More preferably, it is 5-70 W / mK. Thereby, a heat dissipation characteristic can be improved more. The thermal conductivity is a sample (1 mm thick part) at 40 ° C. using a resin composition having a size of 25 mm × 25 mm × 1 mm using a steady-state thermal conductivity measuring device (“GH-1” manufactured by ULVAC-RIKO Co., Ltd.). ) Was measured in the thickness direction (W / mK).

(C)無機充填剤の含有割合の上限値としては、本発明の樹脂組成物全体を基準として95質量%以下であることが好ましく、90質量%以下であることがより好ましく、83質量%以下であることがさらに好ましい。無機充填剤の含有割合の上限値が上記範囲内であると、樹脂組成物の流動性が低下することがなく、硬化後のヒートサイクル試験性において良好な結果を得ることが出来る。また、無機充填剤の含有割合の下限値としては特に限定されないが、全樹脂組成物中に、50質量%以上であることが好ましく、60質量%以上であることがより好ましい。配合割合の上限値が上記範囲内であると、周囲部材との熱膨張率のマッチングが行い易い。   (C) As an upper limit of the content rate of an inorganic filler, it is preferable that it is 95 mass% or less on the basis of the whole resin composition of this invention, It is more preferable that it is 90 mass% or less, 83 mass% or less More preferably. When the upper limit value of the content ratio of the inorganic filler is within the above range, the fluidity of the resin composition does not decrease, and good results can be obtained in the heat cycle testability after curing. Moreover, it does not specifically limit as a lower limit of the content rate of an inorganic filler, However, It is preferable that it is 50 mass% or more in all the resin compositions, and it is more preferable that it is 60 mass% or more. When the upper limit value of the blending ratio is within the above range, it is easy to match the thermal expansion coefficient with the surrounding members.

(C)無機充填剤充填剤の平均粒径(D50)の下限値は、0.5μm以上が好ましく、1μm以上がより好ましく、4μm以上がさらに好ましい。また、無機充填剤の平均粒径の上限値は特に規定されるわけではないが、50μm以下が好ましく、40μm以下がさらに好ましい。また、最大粒径が105μm以下であることが好ましい。平均粒径が0.5μm未満では、樹脂組成物の流動性が低下し、成形性が損なわれるおそれがある。一方、平均粒径が40μmを超えると、成形品に反りが発生したり、寸法精度が低下したりするおそれがある。また、最大粒径が105μmを超えると、成形性が低下するおそれがある。   (C) The lower limit of the average particle diameter (D50) of the inorganic filler is preferably 0.5 μm or more, more preferably 1 μm or more, and further preferably 4 μm or more. The upper limit of the average particle size of the inorganic filler is not particularly defined, but is preferably 50 μm or less, and more preferably 40 μm or less. The maximum particle size is preferably 105 μm or less. When the average particle size is less than 0.5 μm, the fluidity of the resin composition is lowered and the moldability may be impaired. On the other hand, if the average particle diameter exceeds 40 μm, the molded product may be warped or the dimensional accuracy may be reduced. On the other hand, if the maximum particle size exceeds 105 μm, the moldability may be reduced.

ここで言う(C)無機充填剤充填剤の平均粒径(D50)とは、例えば、レーザー回折式粒度分布測定装置(Sympatec製Helos&Rodos)により求めることができ、平均粒径は、同装置で測定された粒度分布において積算体積が50%になる粒径(D50)である。   Here, the average particle diameter (D50) of the inorganic filler (C) can be determined by, for example, a laser diffraction particle size distribution measuring device (Helos & Rodos manufactured by Sympatec), and the average particle size is measured by the same device. The particle size distribution (D50) at which the integrated volume is 50% in the obtained particle size distribution.

無機充填剤としては、比表面積(SSA)及び/又は平均粒径(D50)が異なる2種以上の無機充填剤を用いることもできる。   As the inorganic filler, two or more inorganic fillers having different specific surface areas (SSA) and / or average particle diameters (D50) can be used.

(C)無機充填剤は1種または2種以上を混合していてもよく、その組成物全体に対する比表面積(SSA)は、3mm/g超、1000m/g以下であることが好ましい。組成物全体に対する比表面積(SSA)が上記範囲内であると、樹脂組成物の流動性が確保し易い。比表面積の上限としては1000m/g以下であると好ましく、800m/g以下がより好ましく、700m/g以下がさらに好ましい。 (C) One or two or more inorganic fillers may be mixed, and the specific surface area (SSA) relative to the entire composition is preferably more than 3 mm 2 / g and 1000 m 2 / g or less. When the specific surface area (SSA) with respect to the entire composition is within the above range, the fluidity of the resin composition is easily secured. Preferably the upper limit of the specific surface area is less than 1000 m 2 / g, more preferably not more than 800 m 2 / g, more preferably 700 meters 2 / g or less.

ここで言う(C)無機充填剤の比表面積(SSA:specific surface area)とは、例えば比表面積測定装置を用いてBET法により求めることができる。   The specific surface area (SSA: specific surface area) of (C) inorganic filler mentioned here can be determined by the BET method using a specific surface area measuring device, for example.

ここで言う(C)無機充填剤の(D)組成物全体に対する比表面積(SSA)とは、例えば、比表面積Am/g、添加量Xwt%の無機充填剤と、比表面積Bm/g、添加量Ywt%の無機充填剤との2種類の無機充填剤が混合されている場合、下記式:
組成物全体に対する比表面積(SSA)=A×X+B×Y
により求めることが出来る。
Here, the specific surface area (SSA) of (C) inorganic filler to (D) the entire composition is, for example, an inorganic filler having a specific surface area Am 2 / g and an addition amount X wt%, and a specific surface area Bm 2 / g. In the case where two types of inorganic fillers are mixed with an inorganic filler having an addition amount of Y wt%, the following formula:
Specific surface area (SSA) of the entire composition = A × X + B × Y
Can be obtained.

本発明の樹脂組成物には、上記の成分以外に、必要に応じて硬化促進剤を配合することが出来る。硬化促進剤としては、エポキシ基と硬化剤との硬化反応を促進させるものであればよく、一般に封止材料に使用するものを用いることができる。具体例としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8−ジアザビシクロ(5,4,0)ウンデセン−7、イミダゾールなどのアミジン系化合物;ベンジルジメチルアミンなどの3級アミンや前記化合物の4級オニウム塩であるアミジニウム塩、アンモニウム塩、アミン錯塩などに代表される窒素原子含有化合物;ホウ素化合物、有機酸金属塩、ルイス酸等が挙げられる。   In addition to the above components, the resin composition of the present invention may contain a curing accelerator as necessary. As a hardening accelerator, what is necessary is just to accelerate | stimulate the hardening reaction of an epoxy group and a hardening | curing agent, and what is generally used for a sealing material can be used. Specific examples include phosphorus-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; 1,8-diazabicyclo (5 , 4,0) Undecene-7, amidine compounds such as imidazole; tertiary amines such as benzyldimethylamine and quaternary onium salts of the above compounds, such as amidinium salts, ammonium salts, and amine complexes containing nitrogen atoms Compounds; boron compounds, organic acid metal salts, Lewis acids and the like.

硬化促進剤全体の配合割合の下限値は特に限定されないが、全樹脂組成物中0.1質量%以上であることが好ましい。硬化促進剤全体の配合割合の下限値が上記範囲内であると、充分な硬化性を得ることができる。また、硬化促進剤全体の配合割合の上限値は特に限定されないが、全樹脂組成物中1質量%以下であることが好ましい。硬化促進剤全体の配合割合の上限値が上記範囲内であると、充分な流動性を得ることができる。また、融け性を向上させるため、用いる硬化促進剤の種類に応じて配合割合を適宜調整することが望ましい。   Although the lower limit of the mixture ratio of the whole hardening accelerator is not specifically limited, It is preferable that it is 0.1 mass% or more in all the resin compositions. Sufficient curability can be obtained when the lower limit of the blending ratio of the entire curing accelerator is within the above range. Moreover, although the upper limit of the mixture ratio of the whole hardening accelerator is not specifically limited, It is preferable that it is 1 mass% or less in all the resin compositions. Sufficient fluidity can be obtained when the upper limit of the blending ratio of the entire curing accelerator is within the above range. In order to improve the meltability, it is desirable to adjust the blending ratio as appropriate according to the type of curing accelerator used.

本発明の樹脂組成物には、上記の成分以外に、必要に応じてカップリング剤を配合することが出来る。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を用いることができる。これらを例示すると、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシランビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルメチルジメトキシシラン、γ−[ビス(β−ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルジメトキシメチルシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−トリエトキシリル−N−(1,3−ジメチルーブチリデン)プロピルアミンの加水分解物等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。   In addition to the above components, a coupling agent can be blended in the resin composition of the present invention as necessary. As the coupling agent, various known silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane and vinyl silane, titanium based compounds, aluminum chelates, aluminum / zirconium based compounds and the like are used. be able to. Examples of these include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxy. Silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane Vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropylmethyldimethoxysilane, γ [Bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, N -Β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl) Ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ-chloro Propyl trimeth Sisilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-triethoxylyl-N- (1,3-dimethyl) Silane coupling agents such as hydrolyzate of rubylidene) propylamine, isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis ( Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxy Siacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tric Examples include titanate coupling agents such as milphenyl titanate and tetraisopropyl bis (dioctyl phosphite) titanate, and these may be used alone or in combination of two or more.

カップリング剤の配合量は特に限定されないが、(C)無機充填剤に対して0.05質量%以上3質量%以下であることが好ましく、0.1質量%以上2.5質量%以下がより好ましい。0.05質量%以上とすることで、フレームを良好に接着することができ、3質量%以下とすることで、成形性を向上させることができる。   Although the compounding quantity of a coupling agent is not specifically limited, It is preferable that it is 0.05 to 3 mass% with respect to (C) inorganic filler, and 0.1 to 2.5 mass% is preferable. More preferred. By setting it as 0.05 mass% or more, a flame | frame can be adhere | attached favorably, and a moldability can be improved by setting it as 3 mass% or less.

本発明の樹脂組成物には、上記の成分以外に、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、カーボンブラックや酸化チタン等の着色剤;天然ワックス、合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン、脂肪族エステル、酸化ポリエチレン等の離型剤;シリコーンオイル、シリコーンゴム、オレフィンゴム等の低応力剤;ハイドロタルサイト等のイオン捕捉剤;水酸化アルミニウム、三酸化アンチモン等の無機系難燃剤、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、有機金属塩系難燃剤等の難燃剤;酸化防止剤、硬化助剤、乳化剤等の各種添加剤を配合することができる。   In addition to the above components, the resin composition of the present invention may contain known additives as necessary. Specific examples of additives that can be used include colorants such as carbon black and titanium oxide; mold release agents such as natural wax, synthetic wax, higher fatty acids or metal salts thereof, paraffin, aliphatic esters, and oxidized polyethylene; silicone oil, Low stress agent such as silicone rubber and olefin rubber; ion scavenger such as hydrotalcite; inorganic flame retardant such as aluminum hydroxide and antimony trioxide, phosphorus flame retardant, nitrogen flame retardant, silicone flame retardant, organic Flame retardants such as metal salt flame retardants; various additives such as antioxidants, curing aids, and emulsifiers can be blended.

本発明の樹脂組成物は、通常、粉末状もしくは必要に応じてこれを打錠したタブレット状になっており、各成分を均一に分散混合できる従来公知のいかなる手法を用いても製造することができる。例えば各成分を全て粉砕して粉砕化しヘンシェルミキサーなどで混合後、加熱ロールによる溶融混練、ニーダーによる溶融混練、特殊混合機による混合、あるいはこれら各方法の適切な組み合わせを用いることで調製される。また、本発明の半導体装置はリードフレームなどに搭載された半導体素子を、本発明の樹脂組成物を用いてトランスファー成形などにより樹脂封止することで製造することができる。   The resin composition of the present invention is usually in the form of a powder or a tablet obtained by compressing it as necessary, and can be produced using any conventionally known technique capable of uniformly dispersing and mixing each component. it can. For example, all the components are pulverized and pulverized, mixed with a Henschel mixer, etc., then melt kneaded with a heating roll, melt kneaded with a kneader, mixed with a special mixer, or an appropriate combination of these methods. The semiconductor device of the present invention can be manufactured by resin-sealing a semiconductor element mounted on a lead frame or the like by transfer molding or the like using the resin composition of the present invention.

上記樹脂組成物の調整の際に溶剤を用いることもできるが、硬化物中に溶剤に起因するボイドが発生し、外観不良や信頼性劣化が生じる懸念点があるため、無溶媒系で調整が行われることが多い。   Although a solvent can be used in the adjustment of the resin composition, voids resulting from the solvent are generated in the cured product, and there is a concern that appearance defects and reliability deterioration may occur. Often done.

樹脂組成物の残留溶媒は0.1wt%以下が好ましく、0.05wt%以下がより好ましく、0.01wt%以下がさらに好ましい。残留溶媒の定量は、例えば、ガスクロマトグラフィーを用いて行うことが出来る。   The residual solvent of the resin composition is preferably 0.1 wt% or less, more preferably 0.05 wt% or less, and further preferably 0.01 wt% or less. The quantification of the residual solvent can be performed, for example, using gas chromatography.

本発明の樹脂組成物は、粉末状、または打錠したタブレット状の状態で(C)無機充填剤の表面が(A)エポキシ樹脂、(B)硬化剤等で十分に被覆されることにより、より高い流動性を示すことが出来る。   In the resin composition of the present invention, the surface of the (C) inorganic filler is sufficiently covered with (A) an epoxy resin, (B) a curing agent, etc. in a powdered or tableted state, Higher fluidity can be shown.

熱硬化処理前の(C)無機充填剤成分表面において、EDX測定における(A)エポキシ樹脂成分または(B)硬化剤成分由来のC原子と(C)無機充填剤成分由来のX原子の存在比はC/X=1以上であることが好ましく、C/X=1.5以上であることがより好ましく、C/X=2以上であることがさらに好ましい。C/Xの値を上記範囲にすることで、樹脂組成物はより高い流動性を示すことが出来る。X原子は、(C)無機充填剤成分の主成分(1〜95mol%の範囲で含有される成分として定義される)のうちC原子、O原子、H原子及びN原子以外の原子であり、Xは該主成分を構成するX原子のモル濃度で定義される。X原子の種類は特に限定されないが、軽元素、軽金属、金属であることが好ましい。X原子は無機充填剤の種類により異なり、例えばアルミナの場合Al原子、窒化ホウ素の場合B原子、水酸化マグネシウムの場合Mg原子、シリカの場合Si原子が挙げられる。
尚、上記のCは該(A)エポキシ樹脂成分又は(B)硬化剤成分中に含まれる炭素原子のモル濃度であり、上記(C)無機充填剤成分の主成分とは、該無機充填剤中に1〜95mol%含まれる成分をいう。
The abundance ratio of (A) epoxy resin component or (B) curing agent component-derived C atom and (C) inorganic filler component-derived X atom in EDX measurement on the surface of (C) inorganic filler component before thermosetting treatment Is preferably C / X = 1 or more, more preferably C / X = 1.5 or more, and further preferably C / X = 2 or more. By setting the value of C / X within the above range, the resin composition can exhibit higher fluidity. X atom is an atom other than C atom, O atom, H atom and N atom in the main component of (C) inorganic filler component (defined as a component contained in the range of 1 to 95 mol%), X is defined by the molar concentration of X atoms constituting the main component. Although the kind of X atom is not specifically limited, It is preferable that they are a light element, a light metal, and a metal. X atoms vary depending on the type of inorganic filler, and examples include Al atoms in the case of alumina, B atoms in the case of boron nitride, Mg atoms in the case of magnesium hydroxide, and Si atoms in the case of silica.
In addition, said C is the molar concentration of the carbon atom contained in this (A) epoxy resin component or (B) hardening | curing agent component, The main component of said (C) inorganic filler component is this inorganic filler. The component contained in 1-95 mol% inside.

なお、上記C/Xの測定は、例えばSEM−EDXによる元素定量を行い、ピーク積分値から「スタンダードレス法(簡易定量法)」により元素に応じた補正を計算することにより行うことが出来る。   The C / X can be measured by, for example, elemental quantification by SEM-EDX and calculating a correction according to the element from the peak integral value by the “standardless method (simple quantification method)”.

本発明は、上述した実施形態の樹脂組成物の硬化物を含む封止材または車載用部材;上述した実施形態の樹脂組成物の硬化物により半導体素子が封止されている、半導体装置;および、上述した実施形態の樹脂組成物の硬化物を用いて、圧縮成形により、半導体素子を封止する工程を含む、半導体装置の製造方法;についても適用される。
本発明の樹脂組成物を用いた封止材は、半導体封止材料やプリント配線板用絶縁材料等の電気・電子分野で幅広く用いることができる。電気・電子分野のうち、より高温条件下での使用が想定される、例えば車載用パワーモジュールに代表されるパワー半導体の封止材として用いた場合、信頼性の高い電子デバイス製品を実現することが出来る。
The present invention provides a sealing material or a vehicle-mounted member containing a cured product of the resin composition of the above-described embodiment; a semiconductor device in which a semiconductor element is sealed with a cured product of the resin composition of the above-described embodiment; and The present invention is also applicable to a method for manufacturing a semiconductor device, which includes a step of sealing a semiconductor element by compression molding using a cured product of the resin composition of the above-described embodiment.
The sealing material using the resin composition of the present invention can be widely used in the electrical and electronic fields such as semiconductor sealing materials and printed wiring board insulating materials. Realize highly reliable electronic device products when used under the higher temperature conditions in the electrical / electronic field, for example, as a sealing material for power semiconductors represented by in-vehicle power modules. I can do it.

以下に本発明を、実施例及び比較例に基づき詳細に説明する。ただし、本発明はこれらによってなんら限定されるものではない。
実施例、比較例で用いた成分について下記に示す。
Below, this invention is demonstrated in detail based on an Example and a comparative example. However, the present invention is not limited by these.
It shows below about the component used by the Example and the comparative example.

(エポキシ樹脂(A))
エポキシ樹脂1:軟化点67℃のトリスフェノールメタン型エポキシ樹脂(日本化薬(株)製EPPN−502H)
エポキシ樹脂2:軟化点52℃のトリスフェノールメタン型エポキシ樹脂(日本化薬(株)製EPPN−501H)
エポキシ樹脂3:軟化点73℃のジシクロペンタジエン変性エポキシ樹脂(日本化薬(株)製XD−1000)
エポキシ樹脂4:室温(約23℃)で液状のトリグリシジルアミノフェノール(三菱化学社製JER630)
(Epoxy resin (A))
Epoxy resin 1: Trisphenol methane type epoxy resin having a softening point of 67 ° C. (EPPN-502H manufactured by Nippon Kayaku Co., Ltd.)
Epoxy resin 2: Trisphenol methane type epoxy resin having a softening point of 52 ° C. (EPPN-501H manufactured by Nippon Kayaku Co., Ltd.)
Epoxy resin 3: dicyclopentadiene-modified epoxy resin having a softening point of 73 ° C. (XD-1000 manufactured by Nippon Kayaku Co., Ltd.)
Epoxy resin 4: Triglycidylaminophenol which is liquid at room temperature (about 23 ° C.) (JER630 manufactured by Mitsubishi Chemical Corporation)

(硬化剤(B))
硬化剤1:軟化点175−180℃、当量62.1g/eqの4,4’−ジアミノジフェニルスルホン(DDS)(和光純薬)
硬化剤2:軟化点100℃、当量105g/eqのノボラック型フェノール樹脂 (群栄化学製レジトップPSM−4324)
硬化剤3:軟化点106.5−110℃、当量73g/eqの1,3−ビス(3−アミノフェノキシ)ベンゼン(和光純薬)
硬化剤4:軟化点186−187℃、当量50.6g/eqの4,4’−ジアミノジフェニルエーテル(和光純薬)
硬化剤5:軟化点115℃、当量86.1g/eqの1,3−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン(東京化成)
硬化剤6:軟化点165℃、当量86.1g/eqのα,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン(東京化成)
(Curing agent (B))
Curing agent 1: 4,4′-diaminodiphenylsulfone (DDS) with a softening point of 175 to 180 ° C. and an equivalent weight of 62.1 g / eq (Wako Pure Chemical Industries, Ltd.)
Curing agent 2: Novolac type phenolic resin having a softening point of 100 ° C. and an equivalent of 105 g / eq (Resist Top PSM-4324 manufactured by Gunei Chemical Co., Ltd.)
Curing agent 3: 1,3-bis (3-aminophenoxy) benzene (Wako Pure Chemical Industries) with a softening point of 106.5-110 ° C. and an equivalent weight of 73 g / eq
Curing agent 4: 4,4′-diaminodiphenyl ether having a softening point of 186 to 187 ° C. and an equivalent weight of 50.6 g / eq (Wako Pure Chemical Industries, Ltd.)
Curing agent 5: 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene (Tokyo Kasei) having a softening point of 115 ° C. and an equivalent weight of 86.1 g / eq.
Curing agent 6: α, α′-bis (4-aminophenyl) -1,4-diisopropylbenzene (Tokyo Kasei) having a softening point of 165 ° C. and an equivalent weight of 86.1 g / eq.

(無機充填剤(C))
球状無機充填剤1:球状溶融シリカ(平均粒径32μm、比表面積1.3m/g)
球状無機充填剤2:球状溶融シリカ(平均粒径4.2μm、比表面積1.5m/g)
球状無機充填剤3:球状溶融シリカ(平均粒径4.2μm、比表面積3.5m/g)
球状無機充填剤4:球状溶融シリカ(平均粒径4.2μm、比表面積4.5m/g)
球状無機充填剤5:球状溶融シリカ(平均粒径2.7μm、比表面積2.1m/g)
球状無機充填剤6:球状溶融シリカ(平均粒径0.4μm、比表面積7.3m/g)
無機充填剤7:ナノファイバーSiC(平均直径230nm、アスペクト比110、比表面積150m/g)
無機充填剤8:ナノファイバーAlN(平均直径400nm、アスペクト比150、比表面積50m/g)
無機充填剤9:ナノファイバーAl(平均直径50nm、アスペクト比200、比面積500m/g)
(Inorganic filler (C))
Spherical inorganic filler 1: Spherical fused silica (average particle size 32 μm, specific surface area 1.3 m 2 / g)
Spherical inorganic filler 2: spherical fused silica (average particle size 4.2 μm, specific surface area 1.5 m 2 / g)
Spherical inorganic filler 3: spherical fused silica (average particle size 4.2 μm, specific surface area 3.5 m 2 / g)
Spherical inorganic filler 4: Spherical fused silica (average particle size 4.2 μm, specific surface area 4.5 m 2 / g)
Spherical inorganic filler 5: Spherical fused silica (average particle size 2.7 μm, specific surface area 2.1 m 2 / g)
Spherical inorganic filler 6: spherical fused silica (average particle size 0.4 μm, specific surface area 7.3 m 2 / g)
Inorganic filler 7: nanofiber SiC (average diameter 230 nm, aspect ratio 110, specific surface area 150 m 2 / g)
Inorganic filler 8: nanofiber AlN (average diameter 400 nm, aspect ratio 150, specific surface area 50 m 2 / g)
Inorganic filler 9: nanofiber Al 2 O 3 (average diameter 50 nm, aspect ratio 200, specific area 500 m 2 / g)

(その他の成分)
硬化促進剤:トリフェニルホスフィン(東京化成)
MEK(和光純薬)
(Other ingredients)
Curing accelerator: Triphenylphosphine (Tokyo Kasei)
MEK (Wako Pure Chemical Industries)

<実施例1−7及び比較例2−3,5>
表1で示す配合の樹脂組成物の原材料をスーパーミキサーにより5分間粉砕混合したのち、ミキシングロールを用いて均一に混合・混練し、本発明及び比較用の封止用エポキシ樹脂組成物を得た。この樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。組成物の残留溶媒の定量はガスクロマトグラフィー(SHIMADZU,GC−2014)を用いて行った。
<Examples 1-7 and Comparative Examples 2-3, 5>
After the raw materials of the resin composition having the composition shown in Table 1 were pulverized and mixed for 5 minutes with a super mixer, they were uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition for sealing of the present invention and comparison. . This resin composition was pulverized with a mixer and further tableted with a tablet machine. The residual solvent of the composition was quantified using gas chromatography (SHIMADZU, GC-2014).

モジュラスの測定は以下の方法に基づいて行った。圧力20MPaの条件で1cmφ、厚み2mmになるようタブレット化した樹脂組成物を、レオメーター(TAインスツルメント社製、DHR−2)を用いて、パラレルプレート法により測定した。ギャップ2000μm、回転プレート直径8mm、Frequency 1.0HZ、Strain 0.1%の条件において、測定部の温度を23℃に安定させた後、23℃から昇温速度50℃/minで200℃まで昇温し200℃でホールドし、その範囲でのモジュラスを測定し、損失弾性率における最低モジュラス及び昇温開始から10min後のモジュラスを求めた。一例として、実施例1と比較例1のレオメーター結果を図1に示す。図1より最低モジュラスの値は実施例1が1.0×10MPa、比較例1が2.0×10MPaと求められ、10min後のモジュラスは実施例1が1.0×10MPa、比較例1が2.0×10MPaと求められる。 The modulus was measured based on the following method. The resin composition tableted so as to have a diameter of 1 cmφ and a thickness of 2 mm under a pressure of 20 MPa was measured by a parallel plate method using a rheometer (TA Instruments, DHR-2). Under the conditions of a gap of 2000 μm, a rotating plate diameter of 8 mm, a frequency of 1.0 HZ, and a strain of 0.1%, the temperature of the measurement part was stabilized at 23 ° C., and then increased from 23 ° C. to 200 ° C. at a heating rate of 50 ° C./min. The sample was heated and held at 200 ° C., and the modulus in the range was measured, and the minimum modulus in loss elastic modulus and the modulus after 10 minutes from the start of temperature increase were obtained. As an example, the rheometer results of Example 1 and Comparative Example 1 are shown in FIG. From FIG. 1, the value of the lowest modulus is 1.0 × 10 2 MPa in Example 1 and 2.0 × 10 4 MPa in Comparative Example 1, and the modulus after 10 minutes is 1.0 × 10 7 in Example 1. MPa and Comparative Example 1 are determined to be 2.0 × 10 7 MPa.

C/Siの測定は、以下の方法に基づいて行った。圧力20MPaの条件で1cmφ、厚み1cm,になるようタブレット化した樹脂組成物を常温下において割断、試料内部の割断面を作製した。次いで、SEM試料台に固定の後、導電化処理を実施、これを検鏡試料とした。SEM本体として超高分解能電界放出形走査電子顕微鏡(日立ハイテクノロジーズ製 SU8220)、EDX装置としてエネルギー分散型X線分析装置(サーモフィッシャー社製 NORAN System Seven)を用い、加速電圧条件5kV、プローブ電流条件High、WD(ワーキングディスタンス) 15mm、EDX測定モード、約10μm領域のエリア分析の条件において、活断面の無機充填剤表面にターゲットを定め、測定時間60秒で行った。元素定量値はピーク積分値から「スタンダードレス法(簡易定量法)」により元素に応じた補正を計算して実施した。実施例1における結果の一例を図2及び表7に、比較例1における結果の一例を図3及び表8に示す。SEM写真の陰影、及びEDXの結果により図2、表7のPt2−1は無機充填剤表面であり、Pt2−2は無機充填剤が脱離した痕跡と確認される。図2および表7のEDXの結果に着目すると、Pt2−1は無機充填剤表面のため無機充填剤由来のSiのピークが観測されるが、Pt2−2は無機充填剤が脱離した跡であり、無機充填剤由来のSiのピークはほとんど観測されない。   C / Si was measured based on the following method. The resin composition tableted so as to have a diameter of 1 cmφ and a thickness of 1 cm under a pressure of 20 MPa was cleaved at room temperature to prepare a cut section inside the sample. Next, after fixing to the SEM sample stage, a conductive treatment was performed, and this was used as a speculum sample. Using an ultra-high resolution field emission scanning electron microscope (SU8220 manufactured by Hitachi High-Technologies) as the SEM body, an energy dispersive X-ray analyzer (NORAN System Seven manufactured by Thermo Fisher) as the EDX apparatus, acceleration voltage condition 5 kV, probe current condition High, WD (working distance) 15 mm, EDX measurement mode, in the condition of area analysis of about 10 μm region, a target was set on the surface of the inorganic filler in the active section, and the measurement time was 60 seconds. The elemental quantitative value was calculated by calculating a correction according to the element from the peak integral value by the “standardless method (simplified quantitative method)”. An example of the result in Example 1 is shown in FIG. 2 and Table 7, and an example of the result in Comparative Example 1 is shown in FIG. 3 and Table 8. The shadow of the SEM photograph and the result of EDX confirm that Pt2-1 in FIG. 2 and Table 7 is the surface of the inorganic filler, and Pt2-2 is a trace of the inorganic filler being detached. Paying attention to the results of EDX in FIG. 2 and Table 7, the peak of Si derived from the inorganic filler is observed because Pt2-1 is the surface of the inorganic filler, but Pt2-2 is a trace of the desorption of the inorganic filler. There is almost no Si peak derived from the inorganic filler.

常法に従い、パワー半導体素子が搭載されたモジュールを作製した。タブレット化した樹脂組成物を、トランスファーモールド法により前記モジュール全体を被覆し、250℃で8時間加熱硬化して、樹脂封止しパワー半導体装置を作製した。   In accordance with a conventional method, a module on which a power semiconductor element was mounted was produced. The tableted resin composition was coated on the entire module by a transfer molding method, and was heat-cured at 250 ° C. for 8 hours, followed by resin sealing to produce a power semiconductor device.

作製されたパワー半導体装置の模式図を図4に示す。パワー半導体装置4において、パワー半導体素子41の下面側電極は、接合材42を介してリード部材43に電気的に接続されている。パワー半導体素子41の主電極は、ワイヤ44を介して、リード部材43に電気的に接続されている。リード部材43の下面側は、伝熱シート45を介しパワー半導体素子41で発生した熱を外部に逃がすための放熱板46が設けられている。そして、リード部材43及び放熱板46の一部がそれぞれ露出した状態で、パワー半導体素子41の周囲が封止部材47で封止されている。封止部材47は、前記手順で作製された樹脂組成物を含む。   A schematic diagram of the manufactured power semiconductor device is shown in FIG. In the power semiconductor device 4, the lower surface side electrode of the power semiconductor element 41 is electrically connected to the lead member 43 through the bonding material 42. The main electrode of the power semiconductor element 41 is electrically connected to the lead member 43 via the wire 44. On the lower surface side of the lead member 43, a heat radiating plate 46 for releasing heat generated in the power semiconductor element 41 through the heat transfer sheet 45 to the outside is provided. The periphery of the power semiconductor element 41 is sealed with a sealing member 47 with the lead member 43 and a part of the heat radiating plate 46 exposed. The sealing member 47 contains the resin composition produced by the above procedure.

作製したパワー半導体装置を用い、パワーサイクル試験(ΔTc=125℃ 75℃−200℃)により、実施例1−7、及び比較例1−5のパワー半導体装置のサイクル寿命を評価した。   Using the produced power semiconductor device, the cycle life of the power semiconductor devices of Example 1-7 and Comparative Example 1-5 was evaluated by a power cycle test (ΔTc = 125 ° C. 75 ° C.-200 ° C.).

<比較例1>
表1で示す比較例1は、スーパーミキサーにより5分間粉砕混合後、ミキシングロールを用いて均一に混合・混練を行わずスーパーミキサーによりさらに25分間粉砕混合した以外は実施例1と同様の方法で行った。
<Comparative Example 1>
Comparative Example 1 shown in Table 1 is the same as Example 1 except that after mixing and grinding for 5 minutes with a super mixer, mixing and kneading were not performed uniformly using a mixing roll, but were further ground and mixed for 25 minutes with a super mixer. went.

<比較例4>
表1で示す比較例4は、無機充填剤を事前に特許文献WO2015−125760に準拠した方法で、MEKを有機溶媒として処理した以外は実施例1と同様の方法で行った。
<Comparative example 4>
Comparative Example 4 shown in Table 1 was performed in the same manner as in Example 1 except that the inorganic filler was treated in advance in accordance with Patent Document WO2015-125760 and MEK was treated as an organic solvent.

表1に結果を示す。実施例1−7と比較例1−5の間でパワーサイクル試験の結果に明確な差が見られた。比較例1では混合方法の相違のため、比較例2では無機充填剤の重量分率が多すぎるため、比較例3では組成物全体に対する無機充填剤の比表面積が大きすぎるため、比較例4では無機充填剤の粒径が小さすぎるため無機充填剤が十分に樹脂成分で被覆されず、パワーサイクル試験における不良が発生し易いと考えられる。比較例5については、10min後のモジュラスの値に示されるように組成物の硬化が不完全なためパワーサイクル試験における不良が発生し易いと考えられる。また実施例7については組成物が溶媒を含むため硬化物に欠陥が発生し易く、パワーサイクル試験における不良が発生し易いと考えられる。   Table 1 shows the results. A clear difference was found in the results of the power cycle test between Example 1-7 and Comparative Example 1-5. In Comparative Example 1, because of the difference in mixing method, in Comparative Example 2, the weight fraction of the inorganic filler is too large. In Comparative Example 3, the specific surface area of the inorganic filler with respect to the entire composition is too large. Since the particle size of the inorganic filler is too small, the inorganic filler is not sufficiently coated with the resin component, and it is considered that defects in the power cycle test are likely to occur. In Comparative Example 5, it is considered that defects in the power cycle test are likely to occur because the composition is not completely cured as indicated by the modulus value after 10 minutes. Moreover, about Example 7, since a composition contains a solvent, it is easy to generate | occur | produce a defect in hardened | cured material and it is thought that the defect in a power cycle test is easy to generate | occur | produce.

<実施例8,9、10>
表3で示す実施例1および実施例8,9、10は、実施例1におけるパワーサイクル試験の代わりに200℃〜−50℃のヒートサイクル試験を行うこと以外は実施例1と同様の方法で行った。以下ヒートサイクル試験の詳細を示す。
<Examples 8, 9, and 10>
Example 1 and Examples 8, 9, and 10 shown in Table 3 are the same as Example 1 except that a heat cycle test at 200 ° C. to −50 ° C. is performed instead of the power cycle test in Example 1. went. Details of the heat cycle test are shown below.

エスペック社製冷熱衝撃装置TSE−11を用いて、200℃で30分、−50℃で30分を1サイクルとし、500回後にサンプルを取り出し、硬化物にクラック、剥がれが生じていないか目視で確認した。   Using a thermal shock device TSE-11 manufactured by ESPEC Corporation, one cycle is 30 minutes at 200 ° C. and 30 minutes at −50 ° C., and a sample is taken out after 500 times, and the cured product is visually checked for cracks and peeling. confirmed.

表3に結果を示す。実施例1,8,9ではヒートサイクル試験後にクラックは見られず、実施例10ではヒートサイクル試験後にクラックが見られた。実施例10はエポキシ樹脂の軟化点が低すぎるため、ヒートサイクル試験後に不良が発生し易いと考えられる。   Table 3 shows the results. In Examples 1, 8, and 9, no crack was observed after the heat cycle test, and in Example 10, a crack was observed after the heat cycle test. In Example 10, since the softening point of the epoxy resin is too low, it is considered that defects are likely to occur after the heat cycle test.

<実施例11〜15>
表5で示す実施例1および実施例11〜15は、ヒートサイクル試験の温度条件を180℃〜−50℃で行うこと以外は表3と同様の方法で行った。
<Examples 11 to 15>
Example 1 and Examples 11 to 15 shown in Table 5 were performed in the same manner as in Table 3 except that the temperature condition of the heat cycle test was performed at 180 ° C. to −50 ° C.

表5に結果を示す。実施例1,9−14ではヒートサイクル試験後にクラックは見られず、実施例15ではヒートサイクル試験後にクラックが見られた。実施例15は硬化剤の軟化点が低すぎるため硬化物の耐熱性が不十分であり、また硬化剤の当量も大きすぎるため硬化物の架橋密度が不十分であり、ヒートサイクル試験後に不良が発生し易いと考えられる。   Table 5 shows the results. In Examples 1 and 9-14, no crack was observed after the heat cycle test, and in Example 15, a crack was observed after the heat cycle test. In Example 15, the heat resistance of the cured product is insufficient because the softening point of the curing agent is too low, and the crosslinking density of the cured product is insufficient because the equivalent of the curing agent is too large. It is thought that it is easy to generate.

上記元素定量値は図2(2−b)及び図2(2−c)のEDXチャートのピーク積分値から「スタンダードレス法(簡易定量法)」により元素に応じた補正を計算した値である。 The element quantitative value is a value obtained by calculating a correction according to the element by the “standardless method (simplified quantitative method)” from the peak integrated values of the EDX charts of FIG. 2 (2-b) and FIG. 2 (2-c). .

上記元素定量値は図3(3−b)及び図3(3−c)のEDXチャートのピーク積分値から「スタンダードレス法(簡易定量法)」により元素に応じた補正を計算した値である。 The element quantitative value is a value obtained by calculating a correction according to the element by the “standardless method (simple quantitative method)” from the peak integrated values of the EDX charts of FIGS. 3 (3-b) and 3 (3-c). .

これらの結果から、本発明の樹脂組成物を用いた封止材により封止したパワー半導体装置は、それぞれ優れたパワーサイクル試験耐性、ヒートサイクル試験耐性を示した。   From these results, the power semiconductor device encapsulated by the encapsulant using the resin composition of the present invention exhibited excellent power cycle test resistance and heat cycle test resistance, respectively.

<実施例16〜18>
表9で示す配合の樹脂組成物の原材料をスーパーミキサーにより5分間粉砕混合したのち、ミキシングロールを用いて均一に混合・混練し、本発明及び比較用の封止用エポキシ樹脂組成物を得た。この樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。組成物の残留溶媒の定量はガスクロマトグラフィー(SHIMADZU,GC−2014)を用いて行った。
<Examples 16 to 18>
The raw materials of the resin composition having the composition shown in Table 9 were pulverized and mixed for 5 minutes with a super mixer, and then uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition for sealing according to the present invention and for comparison. . This resin composition was pulverized with a mixer and further tableted with a tablet machine. The residual solvent of the composition was quantified using gas chromatography (SHIMADZU, GC-2014).

モジュラスの測定は以下の方法に基づいて行った。圧力20MPaの条件で1cmφ、厚み2mmになるようタブレット化した樹脂組成物を、レオメーター(TAインスツルメント社製、DHR−2)を用いて、パラレルプレート法により測定した。ギャップ2000μm、回転プレート直径8mm、Frequency 1.0HZ、Strain 0.1%の条件において、測定部の温度を23℃に安定させた後、23℃から昇温速度50℃/minで200℃まで昇温し200℃でホールドし、その範囲でのモジュラスを測定し、損失弾性率における最低モジュラス及び昇温開始から10min後のモジュラスを求めた。全ての組成において、最低モジュラスが10MPa以下であり、昇温開始から10min後の到達モジュラスが10MPa以上であることを確認した。結果を表9に示す。 The modulus was measured based on the following method. The resin composition tableted so as to have a diameter of 1 cmφ and a thickness of 2 mm under a pressure of 20 MPa was measured by a parallel plate method using a rheometer (TA Instruments, DHR-2). Under the conditions of a gap of 2000 μm, a rotating plate diameter of 8 mm, a frequency of 1.0 HZ, and a strain of 0.1%, the temperature of the measurement part was stabilized at 23 ° C., and then increased from 23 ° C. to 200 ° C. at a heating rate of 50 ° C./min. The sample was heated and held at 200 ° C., and the modulus in the range was measured, and the minimum modulus in loss elastic modulus and the modulus after 10 minutes from the start of temperature increase were obtained. In all the compositions, it was confirmed that the lowest modulus was 10 4 MPa or less and the ultimate modulus after 10 minutes from the start of temperature increase was 10 5 MPa or more. The results are shown in Table 9.

C/X(X=Si又はAl)の測定は、以下の方法に基づいて行った。圧力20MPaの条件で1cmφ、厚み1cm,になるようタブレット化した樹脂組成物を常温下において割断、試料内部の割断面を作製した。次いで、SEM試料台に固定の後、導電化処理を実施、これを検鏡試料とした。SEM本体として超高分解能電界放出形走査電子顕微鏡(日立ハイテクノロジーズ製 SU8220)、EDX装置としてエネルギー分散型X線分析装置(サーモフィッシャー社製 NORAN System Seven)を用い、加速電圧条件5kV、プローブ電流条件High、WD(ワーキングディスタンス) 15mm、EDX測定モード、約10μm領域のエリア分析の条件において、活断面の無機充填剤表面にターゲットを定め、測定時間60秒で行った。元素定量値はピーク積分値から「スタンダードレス法(簡易定量法)」により元素に応じた補正を計算して実施した。全ての組成において、C/(X=Si又はAl)=1以上であることを確認した。結果を表9に示す。   C / X (X = Si or Al) was measured based on the following method. The resin composition tableted so as to have a diameter of 1 cmφ and a thickness of 1 cm under a pressure of 20 MPa was cleaved at room temperature to prepare a cut section inside the sample. Next, after fixing to the SEM sample stage, a conductive treatment was performed, and this was used as a speculum sample. Using an ultra-high resolution field emission scanning electron microscope (SU8220 manufactured by Hitachi High-Technologies) as the SEM body, an energy dispersive X-ray analyzer (NORAN System Seven manufactured by Thermo Fisher) as the EDX apparatus, acceleration voltage condition 5 kV, probe current condition High, WD (working distance) 15 mm, EDX measurement mode, in the condition of area analysis of about 10 μm region, a target was set on the surface of the inorganic filler in the active section, and the measurement time was 60 seconds. The elemental quantitative value was calculated by calculating a correction according to the element from the peak integral value by the “standardless method (simplified quantitative method)”. It was confirmed that C / (X = Si or Al) = 1 or more in all compositions. The results are shown in Table 9.

熱伝導率の測定は、以下の方法に基づいて行った。25mm×25mm×1mmサイズの樹脂組成物を定常法熱伝導率測定装置(アルバック理工(株)製「GH−1」)を用い、40℃で試料(1mm厚の部分)の厚さ方向の熱伝導率(W/mK)を測定した。全ての組成において、熱伝導率は0.5〜70W/mKの範囲であった。結果を表9に示す。   The measurement of thermal conductivity was performed based on the following method. Using a resin composition having a size of 25 mm × 25 mm × 1 mm with a steady-state thermal conductivity measuring device (“GH-1” manufactured by ULVAC-RIKO), heat in the thickness direction of the sample (1 mm thick portion) at 40 ° C. Conductivity (W / mK) was measured. In all compositions, the thermal conductivity ranged from 0.5 to 70 W / mK. The results are shown in Table 9.

これらの結果から、本発明の樹脂組成物は、良好な熱電度率すなわち放熱性を示すことが確認された。   From these results, it was confirmed that the resin composition of the present invention exhibits a good thermoelectric power rate, that is, heat dissipation.

本発明の樹脂組成物を用いた封止材は、半導体封止材料やプリント配線板用絶縁材料等の電気・電子分野で幅広く用いることができる。電気・電子分野のうち、より高温条件下での使用が想定される、例えば車載用パワーモジュールに代表されるパワー半導体の封止材として用いた場合、信頼性の高い電子デバイス製品を実現することが出来る。   The sealing material using the resin composition of the present invention can be widely used in the electrical and electronic fields such as semiconductor sealing materials and printed wiring board insulating materials. Realize highly reliable electronic device products when used under the higher temperature conditions in the electrical / electronic field, for example, as a sealing material for power semiconductors represented by in-vehicle power modules. I can do it.

4 パワー半導体装置
41 パワー半導体素子
42 接合材
43 リード部材
44 ワイヤ
45 伝熱シート
46 放熱板
47 封止部材
4 Power Semiconductor Device 41 Power Semiconductor Element 42 Bonding Material 43 Lead Member 44 Wire 45 Heat Transfer Sheet 46 Heat Dissipation Plate 47 Sealing Member

Claims (17)

(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填剤とを含む樹脂組成物であって、以下の条件:
(I−I)レオメーター評価で23℃から50℃/minで200℃まで昇温後、200℃固定で評価した際の最低モジュラスが10MPa以下であり、昇温開始から10min後の到達モジュラスが10MPa以上である;
を満たす、前記樹脂組成物。
(A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the following conditions:
(II) After the temperature was raised from 23 ° C. to 50 ° C./200° C. by rheometer evaluation, the lowest modulus when evaluated at 200 ° C. was 10 4 MPa or less, and reached 10 minutes after the start of temperature rise. The modulus is 10 5 MPa or more;
The said resin composition satisfy | fills.
前記樹脂組成物が、以下の条件:
(I−II)前記(A)エポキシ樹脂の軟化点が35℃以上である;
をさらに満たす請求項1に記載の樹脂組成物。
The resin composition has the following conditions:
(I-II) The softening point of the epoxy resin (A) is 35 ° C. or higher;
The resin composition according to claim 1, further satisfying
前記樹脂組成物が、以下の条件:
(I−III)前記樹脂組成物の残溶媒が0.1重量%未満である;
をさらに満たす請求項1または2に記載の樹脂組成物。
The resin composition has the following conditions:
(I-III) The residual solvent of the resin composition is less than 0.1% by weight;
The resin composition according to claim 1 or 2, further satisfying:
前記樹脂組成物が、以下の条件:
(I−IV)前記(B)硬化剤の当量が90g/eq以下であり、かつ軟化点が105℃以上である;
をさらに満たす請求項1から3のいずれか1項に記載の樹脂組成物。
The resin composition has the following conditions:
(I-IV) The equivalent of the (B) curing agent is 90 g / eq or less, and the softening point is 105 ° C. or more;
The resin composition according to any one of claims 1 to 3, further satisfying:
(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填剤とを含む樹脂組成物であって、以下の条件:
(II−I)前記樹脂組成物中の前記(C)無機充填剤の表面において、EDX測定における前記(A)エポキシ樹脂又は前記(B)硬化剤由来のC原子と前記(C)無機充填剤由来のX原子の存在比がC/X=1以上であり、前記X原子は、前記(C)無機充填剤の主成分(1〜95mol%の範囲で含有される成分)のうちC原子、O原子、H原子及びN原子以外の原子であり、そして前記Xは、前記X原子のモル濃度として定義される;
を満たす、前記樹脂組成物。
(A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the following conditions:
(II-I) On the surface of the (C) inorganic filler in the resin composition, the C atom derived from the (A) epoxy resin or the (B) curing agent in the EDX measurement and the (C) inorganic filler The abundance ratio of the derived X atom is C / X = 1 or more, and the X atom is a C atom in the main component (component contained in the range of 1 to 95 mol%) of the (C) inorganic filler, Atoms other than O, H and N atoms, and said X is defined as the molar concentration of said X atoms;
The said resin composition satisfy | fills.
前記樹脂組成物が、以下の条件:
(II−II)前記樹脂組成物中の前記(C)無機充填剤の重量分率が95重量%以下である;
をさらに満たす請求項5に記載の樹脂組成物。
The resin composition has the following conditions:
(II-II) The weight fraction of the (C) inorganic filler in the resin composition is 95% by weight or less;
The resin composition according to claim 5, further satisfying
前記樹脂組成物が、以下の条件:
(II−III)前記(C)無機充填剤が少なくともナノファイバーを含有している;
をさらに満たす請求項5又は6に記載の樹脂組成物。
The resin composition has the following conditions:
(II-III) The inorganic filler (C) contains at least nanofibers;
The resin composition according to claim 5 or 6, further satisfying
前記樹脂組成物が、以下の条件:
(II−IV)前記(C)無機充填剤の前記樹脂組成物全体に対する比表面積が3mm/g超、1000m/g以下である;
をさらに満たす請求項5〜7のいずれか1項に記載の樹脂組成物。
The resin composition has the following conditions:
(II-IV) The specific surface area of the (C) inorganic filler with respect to the entire resin composition is more than 3 mm 2 / g and 1000 m 2 / g or less;
The resin composition according to any one of claims 5 to 7, further satisfying
前記樹脂組成物が、以下の条件:
(II−V)前記(A)エポキシ樹脂の軟化点が35℃以上である;
をさらに満たす請求項5〜8のいずれか1項に記載の樹脂組成物。
The resin composition has the following conditions:
(II-V) The softening point of the epoxy resin (A) is 35 ° C. or higher;
The resin composition according to any one of claims 5 to 8, further satisfying
前記樹脂組成物が、以下の条件:
(II−VI)前記樹脂組成物の残溶媒が0.1重量%未満である;
をさらに満たす請求項5〜9のいずれか1項に記載の樹脂組成物。
The resin composition has the following conditions:
(II-VI) The residual solvent of the resin composition is less than 0.1% by weight;
The resin composition according to any one of claims 5 to 9, further satisfying
前記樹脂組成物が、以下の条件:
(II−VII)前記(B)硬化剤の当量が90g/eq以下であり、かつ軟化点が105℃以上である;
をさらに満たす請求項5〜10のいずれか1項に記載の樹脂組成物。
The resin composition has the following conditions:
(II-VII) The equivalent of the (B) curing agent is 90 g / eq or less, and the softening point is 105 ° C. or more;
The resin composition according to any one of claims 5 to 10, further satisfying
(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填剤とを含む樹脂組成物であって、以下の条件:
(II−I)前記樹脂組成物中の前記(C)無機充填剤の表面において、EDX測定における前記(A)エポキシ樹脂又は前記(B)硬化剤由来のC原子と前記(C)無機充填剤由来のX原子の存在比がC/X=1以上であり、前記X原子は、前記(C)無機充填剤の主成分(1〜95mol%の範囲で含有される成分)のうちC原子、O原子、H原子及びN原子以外の原子であり、そして前記Xは、前記X原子のモル濃度として定義される;
(II−II)前記樹脂組成物中の前記(C)無機充填剤の重量分率が95重量%以下である;
(II−III)前記(C)無機充填剤が、少なくともナノファイバーを含有している;
(II−IV)前記(C)無機充填剤の前記樹脂組成物全体に対する比表面積が3mm/g超、1000m/g以下である;
(II−V)前記(A)エポキシ樹脂の軟化点が35℃以上である;
(II−VI)前記樹脂組成物の残溶媒が0.1重量%未満である;及び
(II−VII)前記(B)硬化剤の当量が90g/eq以下であり、かつ軟化点が105℃以上である;
を満たす、前記樹脂組成物。
(A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the following conditions:
(II-I) On the surface of the (C) inorganic filler in the resin composition, the C atom derived from the (A) epoxy resin or the (B) curing agent in the EDX measurement and the (C) inorganic filler The abundance ratio of the derived X atom is C / X = 1 or more, and the X atom is a C atom in the main component (component contained in the range of 1 to 95 mol%) of the (C) inorganic filler, Atoms other than O, H and N atoms, and said X is defined as the molar concentration of said X atoms;
(II-II) The weight fraction of the (C) inorganic filler in the resin composition is 95% by weight or less;
(II-III) The (C) inorganic filler contains at least nanofibers;
(II-IV) The specific surface area of the (C) inorganic filler with respect to the entire resin composition is more than 3 mm 2 / g and 1000 m 2 / g or less;
(II-V) The softening point of the epoxy resin (A) is 35 ° C. or higher;
(II-VI) The residual solvent of the resin composition is less than 0.1% by weight; and (II-VII) The equivalent of the (B) curing agent is 90 g / eq or less and the softening point is 105 ° C. Or more;
The said resin composition satisfy | fills.
前記(B)硬化剤が、アミノ基を有する化合物である、請求項1〜12のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 12, wherein the (B) curing agent is a compound having an amino group. 前記(C)無機充填剤に少なくとも含まれるナノファイバーの直径が1nm以上990nm以下であって、アスペクト比(ナノファイバーの長さ/ナノファイバーの径)が10以上1000以下である、請求項1〜13のいずれか1項に記載の樹脂組成物。   The diameter of the nanofiber contained at least in the (C) inorganic filler is 1 nm or more and 990 nm or less, and the aspect ratio (length of nanofiber / diameter of nanofiber) is 10 or more and 1000 or less. 14. The resin composition according to any one of items 13. 請求項1〜14のいずれか1項に記載の樹脂組成物の硬化物を含む封止材または車載用部材。   The sealing material or vehicle-mounted member containing the hardened | cured material of the resin composition of any one of Claims 1-14. 請求項1〜14のいずれか1項に記載の樹脂組成物の硬化物により半導体素子が封止されている、半導体装置。   The semiconductor device with which the semiconductor element is sealed with the hardened | cured material of the resin composition of any one of Claims 1-14. 請求項1〜14のいずれか1項に記載の樹脂組成物の硬化物を用いて、圧縮成形により、半導体素子を封止する工程を含む、半導体装置の製造方法。   The manufacturing method of a semiconductor device including the process of sealing a semiconductor element by compression molding using the hardened | cured material of the resin composition of any one of Claims 1-14.
JP2017180121A 2017-09-20 2017-09-20 Thermosetting resin composition Pending JP2019056041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180121A JP2019056041A (en) 2017-09-20 2017-09-20 Thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180121A JP2019056041A (en) 2017-09-20 2017-09-20 Thermosetting resin composition

Publications (1)

Publication Number Publication Date
JP2019056041A true JP2019056041A (en) 2019-04-11

Family

ID=66107044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180121A Pending JP2019056041A (en) 2017-09-20 2017-09-20 Thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP2019056041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220098455A1 (en) * 2020-08-19 2022-03-31 Lg Chem, Ltd. Resin composition for bonding semiconductor and adhesive film for semiconductor using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279667A (en) * 1997-03-31 1998-10-20 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JP2002261202A (en) * 2001-02-28 2002-09-13 Sumitomo Bakelite Co Ltd Liquid-sealing resin composition and semiconductor device
JP2007126637A (en) * 2005-10-03 2007-05-24 Toray Ind Inc Resin composition, cured product of resin, prepreg and fiber-reinforced composite material
JP2012058109A (en) * 2010-09-09 2012-03-22 Fujikura Ltd Method for evaluating water absorption deterioration degree of resin composition and method for evaluating water resistance of resin composition using the same
JP2014062230A (en) * 2012-09-03 2014-04-10 Ajinomoto Co Inc Cured body, laminate, printed circuit board and semiconductor device
JP2015183093A (en) * 2014-03-24 2015-10-22 三菱化学株式会社 Composition suitable to interlaminar filler for lamination type semiconductor device, lamination type semiconductor device, and method for producing lamination type semiconductor device
JP2016079404A (en) * 2014-10-14 2016-05-16 三菱化学株式会社 Interlayer filler composition for semiconductor device, and method for manufacturing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279667A (en) * 1997-03-31 1998-10-20 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JP2002261202A (en) * 2001-02-28 2002-09-13 Sumitomo Bakelite Co Ltd Liquid-sealing resin composition and semiconductor device
JP2007126637A (en) * 2005-10-03 2007-05-24 Toray Ind Inc Resin composition, cured product of resin, prepreg and fiber-reinforced composite material
JP2012058109A (en) * 2010-09-09 2012-03-22 Fujikura Ltd Method for evaluating water absorption deterioration degree of resin composition and method for evaluating water resistance of resin composition using the same
JP2014062230A (en) * 2012-09-03 2014-04-10 Ajinomoto Co Inc Cured body, laminate, printed circuit board and semiconductor device
JP2015183093A (en) * 2014-03-24 2015-10-22 三菱化学株式会社 Composition suitable to interlaminar filler for lamination type semiconductor device, lamination type semiconductor device, and method for producing lamination type semiconductor device
JP2016079404A (en) * 2014-10-14 2016-05-16 三菱化学株式会社 Interlayer filler composition for semiconductor device, and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220098455A1 (en) * 2020-08-19 2022-03-31 Lg Chem, Ltd. Resin composition for bonding semiconductor and adhesive film for semiconductor using the same
US11939494B2 (en) * 2020-08-19 2024-03-26 Lg Chem, Ltd. Resin composition for bonding semiconductor and adhesive film for semiconductor using the same

Similar Documents

Publication Publication Date Title
CN107266857B (en) Thermosetting resin composition
JP6583278B2 (en) Semiconductor sealing resin composition, semiconductor device and structure
JP2020094092A (en) Resin composition for stator core insulation
KR20180013751A (en) Epoxy resin composition for encapsulating semiconductor device, and semiconductor device
JP2020023643A (en) Resin composition for sealing, wafer level package, panel level package and electronic equipment
JP2022003130A (en) Sealing resin composition, semiconductor device, and method for manufacturing semiconductor device
JP2018024734A (en) Epoxy resin composition and ignition coil
JP6398167B2 (en) Resin composition for sealing, semiconductor device, and method for manufacturing semiconductor device
JP2019056041A (en) Thermosetting resin composition
EP3876273B1 (en) Encapsulating resin composition for power device and power device
JP6628010B2 (en) Resin composition for sealing and semiconductor device
KR102264524B1 (en) Resin composition for encapsulation, semiconductor device and method for manufacturing semiconductor device
JP2022098698A (en) Resin composition and power module
JP2018150456A (en) Resin composition for sealing and semiconductor device
JP3649540B2 (en) Epoxy resin composition
JP7302300B2 (en) Sealing resin composition and aluminum electrolytic capacitor
JP6115451B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003138097A (en) Epoxy resin composition for semiconductor encapsulation, and semiconductor device using it
JP2000345009A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2022117398A (en) Sealing resin composition, method for manufacturing semiconductor device, and method for detecting hollow inorganic filler
JP2023118508A (en) power module
JP2021063145A (en) Resin composition for sealing, semiconductor device and power device
JP2023081757A (en) Stator and rotary electric machine
JP6605190B2 (en) Resin composition for sealing, and semiconductor device
JP2023019588A (en) Thermosetting resin composition and structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210928