WO2015146805A1 - Light projection device and light projection method - Google Patents

Light projection device and light projection method Download PDF

Info

Publication number
WO2015146805A1
WO2015146805A1 PCT/JP2015/058337 JP2015058337W WO2015146805A1 WO 2015146805 A1 WO2015146805 A1 WO 2015146805A1 JP 2015058337 W JP2015058337 W JP 2015058337W WO 2015146805 A1 WO2015146805 A1 WO 2015146805A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light projecting
light
shake
projection
Prior art date
Application number
PCT/JP2015/058337
Other languages
French (fr)
Japanese (ja)
Inventor
柴谷 一弘
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015146805A1 publication Critical patent/WO2015146805A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics

Definitions

  • the present invention relates to a light projecting device that projects light of a predetermined shape onto the surface of an object.
  • Projection mapping is a video technique that synchronizes the real and the video, so there is an attractive world view created by the fusion of the real and the video.
  • Patent Document 1 there is a technique in which image blur control is performed when the projection apparatus is suspended from a ceiling (see Patent Document 1).
  • Patent Document 2 there is a technology in which the image stabilization mode of the projection display device can be switched between a mode for performing a normal image stabilization function and a mode for performing a weaker image stabilization function according to the usage situation (Patent Document 2). reference).
  • Patent Document 1 is assumed to be suspended from the projector, and the technique of Patent Document 2 is assumed to be held by the projector with one hand.
  • the document anti-vibration technology may not be able to quickly respond to the vibration (movement) of the projector itself, and the image may be blurred.
  • a light projecting device is a light projecting device mounted on a moving unit that changes the position or the light projecting direction of its own device, and includes a light projecting optical system that projects light, and is used as a light projecting object.
  • a light projecting unit that projects light of a predetermined shape, a vibration detection unit that detects a shake amount of the device itself, and the light projection direction of the light projecting unit is changed according to the shake amount detected by the vibration detection unit.
  • a light projecting direction changing unit that projects light onto the light projecting object. Therefore, even when the device itself vibrates, it is possible to project light with less blur on the projecting object to be moved.
  • the light projecting device 100 includes a shake detection sensor 2 to be described later.
  • FIGS. 1 to 3 show a case where the shake detection sensor 2 is attached to the outside of the light projection device 100.
  • FIG. 1 is a diagram illustrating an example in which the light projecting device 100 is mounted on an articulated robot (moving device).
  • An articulated robot 200 shown in FIG. 1 is a vertical articulated robot, and is connected to a support base 201, an arm part 202 connected to the support base 201 so as to be capable of turning and bending, and connected to the arm part 202 so as to be able to swing. And the mounting portion 203.
  • the light projecting device 100 and the shake detection sensor 2 are fixed to the mounting unit 203.
  • a servo motor (not shown) for driving the joint is built in the arm unit 202 of the multi-joint robot 200, and the drive of the servo motor is controlled by a controller (not shown).
  • the wheel 302 of the mobile robot rotates to move the vehicle body 301, and the position and direction of the light projector 100 mounted is changed.
  • FIG. 3 is a diagram showing an example in which the light projecting device 100 is mounted on a pan / tilt head (moving device).
  • a pan / tilt head 400 shown in FIG. 3 includes a pan driving unit 401 and a tilt driving unit 402.
  • the pan driving unit 401 rotates in the pan direction (see an arrow) about the pan rotation axis AX401.
  • the tilt driving unit 402 rotates in the tilt direction (see an arrow) about the tilt rotation axis AX402 orthogonal to the pan rotation axis AX401.
  • the light projecting device 100 is fixed to the tilt driving unit 402 so that the optical axis thereof is orthogonal to the tilt rotation axis AX 402, and the shake detection sensor 2 is fixed to the upper part of the light projecting device 100.
  • Each of the pan driving unit 401 and the tilt driving unit 402 has a built-in rotation mechanism, and the driving of these rotation mechanisms is controlled by a controller (not shown).
  • the pan driving unit 401 and the tilt driving unit 402 are rotated, and the position and the light projecting direction of the mounted light projecting device 100 are changed.
  • the user operates the controller.
  • the light projecting device 100 includes a device that detects the position of the light projecting object, and projects light at the detected position without the user.
  • the controller may be automatically controlled so that the light projecting direction of the apparatus 100 is directed.
  • the projection object moves at a high speed
  • the moving speed of 100 changes, that is, when acceleration occurs, the light projecting device 100 may vibrate.
  • the light projecting device 100 when the light projecting device 100 is mounted on the pan / tilt head 400, the light projecting device 100 is rotated in the direction of light projection by rotating the pan driving unit 401 and the tilt driving unit 402. It is possible to continue projecting images by following the moving projection object, and can follow even if the range that can be projected, that is, the range in which the projection object moves is expanded. It becomes possible.
  • the light projecting device 100 corrects shake due to movement and posture change (change in orientation) of the light projecting device 100 by optical correction processing or image processing.
  • FIG. 4 is an external view of the light projecting device 100 and shows an example in which the shake detection sensor 2 is attached inside.
  • the light projecting device 100 includes a light projecting main body 1 and a light projecting unit 3, and a shake detection sensor 2 inside the light projecting main body. 1 to 3 may also include the shake detection sensor 2.
  • rotation about the X axis that coincides with the optical axis of the light projecting device 100 is rotation (rolling) and rotation about the Y axis is the rotation axis.
  • the pitch (pitching) and the rotation with the Z axis as the rotation axis are referred to as yaw (yawing), respectively.
  • FIG. 8 is a diagram illustrating an example of functional blocks of the light projecting device 100a.
  • the light projecting device 100a includes a light projecting main body 1a, a shake detection sensor 2a, a light projecting unit 3, and an optical correcting unit 4.
  • the light projecting device 100a is a device that acquires a video from an external video content storage unit (not shown) and projects a video based on the acquired video to the projection target Ob.
  • the shake detection sensor 2a detects a shake (change in posture) of the light projecting device 100a.
  • the shake detection sensor 2a includes a gyro sensor, detects the angular velocity of pitching and the angular velocity of yawing at a predetermined cycle, and outputs the detected angular velocity to the floodlight main body 1a.
  • the shake detection sensor 2 a includes a pitch shake detection unit 21 that detects a pitching angular velocity and a yaw shake detection unit 22 that detects a yawing angular velocity.
  • the light projecting main unit 1a performs overall control of the light projecting device 100a, and includes a shake detection unit 11, a shake amount calculation unit 12a, and a video display unit 13a.
  • the shake amount calculation unit 12a performs necessary processing such as integration calculation processing from the angular velocity input from the shake detection unit 11, and calculates pitching and yawing angles (change amount, shake amount). When the shake amount is equal to or greater than a predetermined threshold value, the shake amount calculation unit 12a determines that the shake has occurred and outputs the shake amount to the optical correction unit 4.
  • the video display unit 13 a outputs the video to the light projecting unit 3.
  • the video output to the light projecting unit 3 is read out from a portable recording medium such as a USB (Universal Serial Bus) memory via a connection unit (not shown) according to the recording medium.
  • the video display unit 13 a includes, for example, a transmissive liquid crystal panel and a light source, displays video on the liquid crystal panel, transmits irradiation light from the light source, and outputs the transmitted light to the light projecting unit 3.
  • the light projecting unit 3 has a light projecting optical system 31 and projects an image input from the image display unit 13a of the light projecting main body unit 1a onto the light projecting object Ob.
  • the light projecting optical system 31 includes one or a plurality of lens groups that are one or a plurality of optical lenses along the optical axis, and may further include a mirror or the like as necessary.
  • the optical correction unit 4 changes (corrects) the light projecting direction of the light projecting unit 3 according to the shake amount input from the shake amount calculating unit 12a of the light projecting main body unit 1a.
  • the optical correction unit 4 includes a pitch correction unit 41 and a yaw correction unit 42, and each of the pitch correction unit 41 and the yaw correction unit 42 cancels the shake according to the shake amount input from the shake amount calculation unit 12a.
  • the projection direction is changed by shifting the image stabilizing lens group in a direction orthogonal to the optical axis (performs image stabilization).
  • the pitch correction unit 41 and the yaw correction unit 42 that have input the shake amount from the shake amount calculation unit 12a obtain an instruction value (target value) for correcting the axis where the shake has occurred, and the deviation between the instruction value and the current value. From this, a drive signal optimal for the actuator is generated and output to the actuator of each axis. That is, the pitch correction unit 41 and the yaw correction unit 42 are drive control units of the respective actuators, and the drive device itself such as an actuator is built in the light projecting unit 3.
  • the lens barrel 3a itself which is an example of the light projecting unit 3 has two horizontal directions or vertical directions in the direction of the arrow (perpendicular to the optical axis of the light projecting unit 3 and perpendicular to each other).
  • the projection direction is changed by shifting to (direction).
  • the light projecting unit 3a itself is shifted by a driving device such as an actuator using a piezoelectric element or an actuator using a voice coil.
  • the shift direction of the lens barrel 3a is not limited to the arrow direction, and may be a direction orthogonal to the optical axis of the light projecting unit 3.
  • the lens group (projection optical system 31) in the lens barrel (projection unit 3) is orthogonal to the optical axis of the projection optical system 31 and to each other.
  • the light projection direction is changed by shifting in two orthogonal directions (horizontal direction or vertical direction).
  • the lens barrel 3b in FIG. 6A includes three lens groups GP1, GP2, and GP3 each including one optical lens as the light projecting optical system 31, and the lens group GP2 is shifted as necessary.
  • the lens groups GP1 and G3 are each composed of one optical lens
  • the lens group GP2 ′ is composed of a plurality of optical lenses
  • the lens group GP2 ′ is for each lens group.
  • the lens group is shifted by a driving device such as an actuator using a piezoelectric element or an actuator using a voice coil.
  • the shift direction of the lens groups GP2 and GP2 ′ is not limited to the arrow direction, and may be a direction orthogonal to the optical axis of the light projecting optical system 31.
  • FIG. 7A is a front view of the lens barrel 3d including the mirror M1 and the mirror M2 as the light projecting optical system 31 as viewed from the light projecting object Ob side.
  • FIG. 7B is a perspective view of the lens barrel 3d.
  • the lens barrel 3d is formed by connecting three cylindrical portions, a first cylindrical portion, a second cylindrical portion, and a third cylindrical portion.
  • the other end of the first cylindrical portion and the one end of the second cylindrical portion are connected by the first connecting portion so that the central axes of the respective cylindrical portions are orthogonal to each other.
  • the other end of the second cylindrical portion and the one end of the third cylindrical portion are perpendicular to the central axis of each cylindrical portion, and the central axis of the third cylindrical portion is the central axis of the first cylindrical portion and the second cylinder. They are connected by the second connecting part so as to coincide with the normal line of the plane constituted by the central axis of the part.
  • the first connecting portion is provided with a mirror M1 having a rotation axis AX1 in a direction coinciding with a normal line of a plane formed by the central axis of the first cylindrical portion and the central axis of the second cylindrical portion, and the second connecting portion.
  • a mirror M2 having a rotation axis AX2 in a direction coinciding with a normal line of a plane constituted by the central axis of the second cylindrical part and the central axis of the third cylindrical part is installed in the part.
  • the light beam L is incident from one end of the first cylindrical portion, is reflected by the mirror M1, is incident on the mirror M2, is reflected by the mirror 2, and is emitted from the other end of the third cylindrical portion.
  • the emission direction of the light beam L is changed.
  • the mirror is rotated by a driving device such as an actuator using a piezoelectric element or an actuator using a voice coil.
  • Each functional unit of the light projecting main body unit 1a is configured by, for example, a microcomputer including a microprocessor, a memory, and peripheral circuits thereof.
  • the memory includes a program for performing image processing and the entire light projecting device 100a.
  • Various programs such as control programs for controlling and various data such as data necessary for program execution are stored, and a microprocessor such as a so-called CPU (Central Processing Unit) is stored in a memory. By executing, all or part of each functional unit is realized.
  • a microcomputer including a microprocessor, a memory, and peripheral circuits thereof.
  • the memory includes a program for performing image processing and the entire light projecting device 100a.
  • Various programs such as control programs for controlling and various data such as data necessary for program execution are stored, and a microprocessor such as a so-called CPU (Central Processing Unit) is stored in a memory.
  • CPU Central Processing Unit
  • FIG. 9 is a flowchart of shake correction processing.
  • the user inputs a command for instructing the start of the light projection process via an interface unit (not shown).
  • the light projecting main unit 1a that has detected that a command for instructing the start of the light projection process is input via the interface unit instructs the video display unit 13a to start projecting a video. Receiving the instruction, the video display unit 13a starts outputting the video to the light projecting unit 3.
  • the light projecting main body 1a instructs the shake detection sensor 2a to start detecting vibrations.
  • the shake detection sensor 2a that has received the instruction outputs the angular velocities detected periodically by the pitch shake detection unit 21 and the yaw shake detection unit 22 to the shake detection unit 11 (step S11).
  • the shake amount calculation unit 12a calculates a pitching angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and when the shake amount is equal to or greater than a predetermined threshold value, the pitching is calculated. It is determined that a direction shake has occurred (step S12: Yes).
  • the shake amount calculation unit 12a that has determined that the shake has occurred outputs the calculated shake amount to the pitch correction unit 41 via the optical correction unit 4, and the pitch correction unit 41 generates an actuator drive signal from the input shake amount. Generate (step S13).
  • the shake amount calculation unit 12a calculates the yawing angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and the shake amount is equal to or greater than a predetermined threshold value. Determines that a shake in the yawing direction has occurred (step S14: Yes).
  • the shake amount calculation unit 12a that has determined that the shake has occurred outputs the calculated shake amount to the yaw correction unit 42 via the optical correction unit 4, and the yaw correction unit 42 receives the drive signal of the actuator from the input shake amount.
  • Generate step S15).
  • step S16 the pitch correction unit 41 and the yaw correction unit 42 of the optical correction unit 4 output the generated drive signal to each actuator.
  • Each actuator receives a drive signal and drives according to the input signal (step S16). If the pitching shake amount is below the threshold value (step S12: No) and the yawing shake amount is below the threshold value (step S14: No), the actuator is not driven.
  • the image stabilization is performed by changing the light projecting direction of the light projecting device 100 by shifting the lens group (FIGS. 5 and 6) or rotating the mirror (FIG. 7), it is assumed that the device vibrates at a high frequency.
  • the light projecting device 100a can project a blur-free image onto the light projecting object Ob that moves at high speed. That is, the light projecting device 100a can prevent vibrations such as camera shake as well as high-frequency vibrations.
  • the light projecting device 100a includes a moving device (moving unit), a light projecting main body unit 1, a light projecting unit 3, and an optical correcting unit 4 (light projecting direction changing unit) even if the projection object Ob is a moving object. ) Can be projected onto the projection object Ob.
  • a moving device moving unit
  • a light projecting main body unit 1 a light projecting unit 3
  • an optical correcting unit 4 light projecting direction changing unit
  • the drive signal for the actuator for pitching is generated and then the drive signal for the actuator for yawing is generated.
  • Each functional unit may be provided and processed in parallel. The same applies to Embodiments 2 and 3 described later.
  • shakes in pitching and yawing are detected, and the light projecting direction of the light projecting device 100a is optically corrected to eliminate image blurring.
  • the second embodiment 100b corrects rolling shake as well as pitching and yawing shake.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the light projecting device 100b.
  • the light projecting device 100b differs from the light projecting device 100a shown in FIG. 8 in the following three points.
  • the first point is that the shake detection sensor 2 b includes a roll shake detection unit 23 that detects the angular velocity of rolling in addition to the pitch shake detection unit 21 and the yaw shake detection unit 22.
  • the second point is that the shake amount calculation unit 12b calculates the rolling shake amount in addition to the pitching shake amount and the yawing shake amount, and outputs the calculated shake amount to the video display unit 13b.
  • the third point is that the video display unit 13b includes a roll correction image generation unit 131 for correcting an image according to the shake amount input from the shake amount calculation unit 12b.
  • the roll correction image generation unit 131 generates an image that is rotated from the original image in a direction that cancels the shake, with the optical axis of the light projecting device 100 as the rotation axis, according to the amount of shake in the roll direction.
  • FIG. 11 is a flowchart of shake correction processing according to the second embodiment.
  • the process of the same step number as the flowchart of FIG. 8 shows the same process as FIG.
  • the light projecting main body 1b which has detected that a command for instructing the start of the light projection process is input by the user via the interface unit (not shown), instructs the video display unit 13b to start video projection. Upon receiving the instruction, the video display unit 13b starts outputting the video to the light projecting unit 3.
  • the light projecting main body 1b instructs the shake detection sensor 2b to start detection.
  • the shake detection sensor 2b Upon receiving the instruction, the shake detection sensor 2b outputs the angular velocities detected periodically by the pitch shake detection unit 21, the yaw shake detection unit 22, and the roll shake detection unit 23 to the shake detection unit 11 (step). S21).
  • the shake detection unit 11 that has acquired the angular velocity outputs the acquired angular velocity, that is, the pitching angular velocity, the yawing angular velocity, and the rolling angular velocity to the shake amount calculation unit 12b.
  • the shake amount calculation unit 12b calculates a pitching angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and when the shake amount is equal to or greater than a predetermined threshold value, the pitching is calculated. It is determined that a direction shake has occurred (step S12: Yes).
  • the shake amount calculation unit 12 that has determined that the shake has occurred outputs the calculated shake amount to the pitch correction unit 41 via the optical correction unit 4, and the pitch correction unit 41 generates an actuator drive signal from the input shake amount. Generate (step S13).
  • the shake amount calculation unit 12b calculates the yawing angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and the shake amount is equal to or greater than a predetermined threshold value. Determines that a shake in the yawing direction has occurred (step S14: Yes).
  • the shake amount calculation unit 12 that has determined that the shake has occurred outputs the calculated shake amount to the yaw correction unit 42 via the optical correction unit 4, and the yaw correction unit 42 receives an actuator drive signal from the input shake amount.
  • Generate step S15).
  • the shake amount calculation unit 12b calculates a rolling angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and the shake amount is equal to or greater than a predetermined threshold value. Determines that a shake in the rolling direction has occurred (step S22: Yes).
  • the shake amount calculation unit 12 that has determined that the shake has occurred outputs the calculated shake amount to the video display unit 13b.
  • the video display unit 13b that has input the shake amount from the shake amount calculation unit 12b passes the shake amount to the roll correction image generation unit 131 to create an image corresponding to the shake amount, that is, the created image, that is, rolling correction is performed.
  • the formed image is output to the light projecting unit 3 (step S23).
  • the pitch correction unit 41 and the yaw correction unit 42 of the optical correction unit 4 output the generated drive signal to each actuator. If the shake amount is equal to or less than the predetermined threshold, the pitch correction unit 41 and the yaw correction unit 42 output a signal with a correction value of zero.
  • Each actuator receives a drive signal and drives according to the input signal (step S16).
  • the shake in pitching and yawing is corrected by an optical system shift type or the like, and the shake in rolling is corrected by image processing, so that even if the own apparatus vibrates, the light projector 100b. Makes it possible to project a blur-free image on the projection object Ob moving at high speed.
  • the light projecting main body 1 of the light projecting devices 100 a and 100 b includes the shake detection unit 11, the shake amount calculation unit 12, the shake detection sensor 2, and the optical correction unit 4.
  • the light projecting device 100c of the second embodiment is configured.
  • the light projecting main body unit 1 can be reduced in size and cost.
  • FIG. 12 shows an example of a light projecting unit (lens barrel) 3e with a built-in shake correction function.
  • a shake detection sensor 2 and a chip 321 in which a predetermined functional unit is housed are mounted, and are connected to the light projecting main unit 1 by a communication line Nw.
  • the lens group of the light projecting optical system 31 is shifted or the mirror is rotated so that the pitching and yawing are shaken. Be changed. Further, the shake due to rolling is such that the shake amount is sent to the light projecting body 1c via the communication line Nw, and an image in which the rolling shake is corrected by the video display unit 13b is output to the light projecting unit 3e. is there.
  • FIG. 13 shows an example of a functional configuration of the light projecting device 100c according to the third embodiment.
  • the light projecting device 100c differs from the light projecting device 100b shown in FIG. 10 in the following three points.
  • the first point is that the shake detection sensor 2b is provided in the light projecting section 3e, not in the light projecting main body section 1b.
  • the second point is that the shake detection unit 11 and the shake amount calculation unit 12b are provided in the light projecting unit 3e, not the light projecting main body unit 1c.
  • the third point is that the light projecting main body 1c and the light projecting unit 3e communicate via the communication line Nw.
  • the communication line Nw may be wired or wireless.
  • the light projecting unit 3e and the light projecting main body unit 1c include a communication unit 24 and a communication unit 14 in order to communicate with each other. Note that power is supplied to the shake detection sensor 2 and the chip 321 on the substrate 32 from the light projecting main body 1 via the power supply line.
  • FIG. 14 is a flowchart of shake correction processing according to the third embodiment.
  • the left side is a flowchart of shake correction processing of the light projecting unit 3e
  • the right side is a flowchart of shake correction processing of the light projecting main body 1c.
  • the process of the same step number as the flowchart of FIG. 11 shows the same process as FIG.
  • the light projecting main body unit 1c which has detected that a command for instructing the start of the light projection process is input by the user via the interface unit (not shown), instructs the video display unit 13b to start video projection. Receiving the instruction, the video display unit 13b acquires the video and starts output to the light projecting unit 3e (Step S41, Step S42: No, Step S44).
  • the light projecting main body 1c notifies the light projecting unit 3e of the start of shake correction processing via the communication unit 14.
  • the communication unit 24 of the light projecting unit 3e instructs the shake detection sensor 2b to start detection.
  • the shake detection sensor 2b outputs the angular velocities detected periodically by the pitch shake detection unit 21, the yaw shake detection unit 22, and the roll shake detection unit 23 to the shake detection unit 11 (step). S21).
  • the shake amount calculation unit 12b calculates a rolling angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and the shake amount is equal to or greater than a predetermined threshold value. Determines that a shake in the rolling direction has occurred (step S22: Yes). The shake amount calculation unit 12b that has determined that the shake has occurred transmits the calculated shake amount to the light projecting main body unit 1c via the communication unit 24 (step S31).
  • the pitch correction unit 41 and the yaw correction unit 42 of the optical correction unit 4 output the generated drive signal to each actuator.
  • Each actuator receives a drive signal and drives according to the input signal (step S16).
  • the video display unit 13b of the light projecting main body unit 1c that has input the shake amount via the communication unit 14 passes the shake amount to the roll correction image generation unit 131 to create an image corresponding to the shake amount. Then, the created image, that is, the image subjected to the rolling correction is output to the light projecting unit 3 (step S44).
  • shakes in pitching and yawing are corrected by an optical system shift type or the like, and shakes in rolling are corrected by image processing. It is possible to project a blur-free image on the light projecting object Ob moving at high speed only by replacing the cylinder 3e.
  • the light projecting device 100c corrects only the shake amount in rolling by image processing.
  • the actuator (drive device) for pitch correction or yaw correction has some reason such as failure.
  • the correction that should have been performed by the drive device that can no longer be used may be switched to be performed by image processing.
  • the shake amount calculation unit 12b calculates the correction shake amount that cannot be performed due to the failure or the like, and the calculated shake amount Is output to the video display unit 13b.
  • the video display unit 13 b creates an image that has been corrected so as to cancel out the shake amount input from the shake amount calculation unit 12 b and outputs the image to the light projecting unit 3.
  • the light projecting device 100c may be provided with an interface unit that allows the user to give an instruction to perform pitching shake or yawing shake by image processing.
  • the shake detection sensor 2 includes a gyro sensor.
  • the shake detection sensor 2 includes a three-axis acceleration sensor, and is detected as an axial component of each of the three axes (x, y, z) of the coordinate system in the acceleration sensor.
  • An amount of change (amount of shake) in the direction of the light projecting device 100 may be obtained from the acceleration of each axis.
  • a light projecting device is a light projecting device mounted on a moving unit that changes a position or a light projecting direction of the device, and includes a light projecting optical system that projects light, A light projecting unit that projects light of a predetermined shape onto an object, a vibration detection unit that detects a shake amount of the device itself, and the light projection of the light projecting unit according to the shake amount detected by the vibration detection unit A light projecting direction changing unit that changes the direction and projects light onto the light projecting object.
  • a light projecting method includes a light projecting optical system that is mounted on a moving unit that changes the position or the light projecting direction of its own device, and projects light of a predetermined shape onto a light projecting object.
  • the light projecting device changes the light projecting direction of the light projecting unit according to the shake amount of the device itself, and projects the light onto the projecting object. Even in this case, it is possible to project light without blurring onto the projecting object to be moved.
  • the shape calculation unit that calculates the shape of the light projected on the surface of the projection object and the shape calculation unit that calculates the shape obtained by correcting the shake amount detected by the vibration detection unit are calculated.
  • the light projecting device can easily change the light (video) having no blur to the moving light projecting object by replacing the lens barrel when shake correction of the device itself is necessary. It is possible to project light.
  • the light projecting optical system includes one or a plurality of lens groups including one or a plurality of optical lenses
  • the light projecting direction changing unit includes at least one lens group
  • the projection direction of the projection unit is changed by moving the projection unit in a direction orthogonal to the optical axis of the projection optical system.
  • the light projecting direction changing unit moves the light projecting unit in a direction orthogonal to the optical axis of the light projecting optical system, thereby changing the light projecting direction of the light projecting unit. change.
  • the light projecting device can easily change the light projecting direction of the light projecting unit, and project light having no blur (image) onto a moving light projecting object. Is possible.
  • the moving unit is any of an articulated robot, a mobile robot, and a pan / tilt head.
  • the light projecting device can continue to project an image following the moving light projecting object, and the range that can be projected, that is, the range in which the light projecting object moves is expanded. Even if it follows, it becomes possible to follow.
  • the vibration detection unit detects the respective tilts of the pitch direction, yaw direction, and roll direction of the own device as respective shake amounts
  • the light projecting direction changing unit detects the pitch direction. According to the shake amount or the shake amount in the yaw direction, the light projecting direction of the light projecting unit is changed, and the light projecting control unit corrects the shake amount in the roll direction to the shape calculating unit. And the light having the shape calculated by the shape calculation unit is projected onto the light projecting unit.
  • the light projecting device can easily correct the shake in the pitch direction and the yaw direction of its own device by changing the light projecting direction, and correct the shake in the roll direction by image processing. Therefore, it becomes possible to project light (video) having a non-blurred shape onto a moving projection object.
  • the vibration detection unit detects the respective tilts of the pitch direction, yaw direction, and roll direction of the own device as respective shake amounts
  • the light projecting direction changing unit detects the pitch direction.
  • the light projection direction of the light projecting unit is changed according to one of the shake amount and the shake amount of the yaw direction, and the light projection control unit
  • the shape calculation unit calculates the shape in which the projection direction change unit has corrected the shake amount in the direction not used for the change of the projection direction, and the shape calculation unit calculates the light of the shape, Light is projected to the light projecting unit.
  • the light projecting device when the light projecting device cannot correct the shake in the pitch direction or the yaw direction of its own device by changing the light projecting direction, the light projecting device corrects the shake in the direction that cannot be corrected by image processing. Therefore, it is possible to project light (video) having a shape without blurring onto a moving projection object.
  • the light projecting object is a moving body.
  • the light projecting device it is possible for the light projecting device to continue projecting an image following the light projecting object even when the light projecting object is a moving object.
  • light (video) having a predetermined shape can be projected onto a moving object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

A light projection device (100a) is mounted on a mobile unit for varying the position of the light projection device or the direction in which light is projected, the light projection device including: a light projection unit (3) which has a light projection optical system (31) for projecting light and which projects a light beam in a predetermined shape to a light-projected object (Ob); a shake detection unit (2a) for detecting the amount of shake of the light projection device (100a); and a light projection direction varying unit (4) for varying the direction of light projection of the light projection unit (3) depending on the amount of shake detected by the shake detection unit (2a) so as to project light to the light-projected object (Ob).

Description

投光装置、及び、投光方法Floodlighting device and floodlighting method
 本発明は、物体表面に所定形状の光を投影する投光装置に関するものである。 The present invention relates to a light projecting device that projects light of a predetermined shape onto the surface of an object.
 近年、建築物や家具などの立体物、又は、凹凸のある面に、映像やコンピュータグラフィックス等を投影する、いわゆる、プロジェクションマッピングが行われている。プロジェクションマッピングは、実物と映像とをシンクロさせる映像手法であることから、実物と映像との融合が生み出す魅力的な世界観がある。 In recent years, so-called projection mapping has been performed in which images, computer graphics, and the like are projected onto a three-dimensional object such as a building or furniture, or an uneven surface. Projection mapping is a video technique that synchronizes the real and the video, so there is an attractive world view created by the fusion of the real and the video.
 プロジェクションマッピングでは、映像を投影した際に、投影した映像が投影対象物である立体物にぴたりと重なる映像となるように、投影対象物である立体物の表面形状等に応じて、投影する映像が変更される。投影対象物である立体物と重なっている映像に動きや変化が生じることで、その立体物が動いたり、変形したり、又は、自ら光を放つように見る者に感じさせる、幻想的で錯覚的な映像が表現される。 In projection mapping, a projected image is projected according to the surface shape of the three-dimensional object that is the projection target so that when the image is projected, the projected image is exactly superimposed on the three-dimensional object that is the projection target Is changed. Fantastic and illusion that makes the viewer feel as if the three-dimensional object moves, deforms, or emits light by moving or changing the image that overlaps the three-dimensional object that is the projection target. Realistic images are expressed.
 そして、より効果的な映像表現を行うべく、投影対象物として、建築物や家具等の、いわゆる静的な物体にとどまらず、動的な(移動する)物体にも、プロジェクションマッピングを行いたいという要望が出てきている。 And to perform more effective video expression, he wants to perform projection mapping not only on so-called static objects such as buildings and furniture, but also on dynamic (moving) objects as projection objects. Requests are coming out.
 ここで、投影装置自体のブレにより、投影される映像がブレてしまうことを防ぐための、様々な技術が提案されている。例えば、投写装置が天吊りされている場合には、画像ブレ制御が行われる技術がある(特許文献1参照)。また、利用状況に応じて、投射型表示装置の防振モードが、通常の防振機能を行うモードと、より弱い防振機能を行うモードとのいずれかに切り替えられる技術がある(特許文献2参照)。 Here, various techniques have been proposed to prevent the projected image from blurring due to the blurring of the projection apparatus itself. For example, there is a technique in which image blur control is performed when the projection apparatus is suspended from a ceiling (see Patent Document 1). In addition, there is a technology in which the image stabilization mode of the projection display device can be switched between a mode for performing a normal image stabilization function and a mode for performing a weaker image stabilization function according to the usage situation (Patent Document 2). reference).
 しかし、移動する対象物にプロジェクションマッピングが行われる場合、移動する対象物に追従して映像が迅速に投影される必要があることから、プロジェクタ自体の動きは予想がつきにくい。上記特許文献1の技術は、プロジェクタが天吊りされている場合が想定されたものであり、特許文献2の技術は、プロジェクタが片手で持たれている場合が想定されたものであるので、これら文献の防振技術がプロジェクタ自体の振動(動き)に迅速に対応し難い場合が生じ得、映像にブレが生じる場合が発生し得る。 However, when projection mapping is performed on a moving object, it is difficult to predict the movement of the projector itself because it is necessary to quickly project an image following the moving object. The technique of Patent Document 1 is assumed to be suspended from the projector, and the technique of Patent Document 2 is assumed to be held by the projector with one hand. The document anti-vibration technology may not be able to quickly respond to the vibration (movement) of the projector itself, and the image may be blurred.
特開2011-154073号公報JP 2011-154073 A 特開2012-47850号公報JP 2012-47850 A
 本発明は、移動する対象物に、ブレの少ない所定形状の光(映像)を投光することができる投光装置及び該方法を提供することを目的とする。 It is an object of the present invention to provide a light projecting apparatus and a method for projecting light (video) having a predetermined shape with less blur to a moving object.
 本発明に係る投光装置は、自装置の位置又は投光方向を変更する移動部に搭載された投光装置であって、光を投光する投光光学系を備え、投光対象物に所定形状の光を投光する投光部と、自装置の振れ量を検出する振動検出部と、前記振動検出部が検出した振れ量に応じて、前記投光部の前記投光方向を変更して、前記投光対象物に光を投光させる投光方向変更部とを備える。そのため、自装置が振動した場合であっても、移動する投光対象物に、ブレの少ない光を投光対象物に投光することが可能となる。 A light projecting device according to the present invention is a light projecting device mounted on a moving unit that changes the position or the light projecting direction of its own device, and includes a light projecting optical system that projects light, and is used as a light projecting object. A light projecting unit that projects light of a predetermined shape, a vibration detection unit that detects a shake amount of the device itself, and the light projection direction of the light projecting unit is changed according to the shake amount detected by the vibration detection unit. And a light projecting direction changing unit that projects light onto the light projecting object. Therefore, even when the device itself vibrates, it is possible to project light with less blur on the projecting object to be moved.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の実施形態の投光装置の使用態様(多関節ロボットに搭載)を説明するための図である。It is a figure for demonstrating the usage condition (mounted in an articulated robot) of the light projection apparatus of embodiment of this invention. 本発明の実施形態の投光装置の使用態様(移動ロボットに搭載)を説明するための図である。It is a figure for demonstrating the usage condition (mounted in a mobile robot) of the light projector of embodiment of this invention. 本発明の実施形態の投光装置の使用態様(パンチルト雲台に搭載)を説明するための図である。It is a figure for demonstrating the usage condition (mounted in a pan-tilt pan head) of the light projector of embodiment of this invention. 本発明の実施形態の投光装置の外観図である。It is an external view of the light projection apparatus of embodiment of this invention. 本発明の実施形態の投光装置の投光部のシフトを説明するための図である。It is a figure for demonstrating the shift of the light projection part of the light projection apparatus of embodiment of this invention. 本発明の実施形態の投光装置の投光部の例(レンズ群のシフト)を示す図である。It is a figure which shows the example (shift of a lens group) of the light projection part of the light projection apparatus of embodiment of this invention. 本発明の実施形態の投光装置の投光部の例(ミラーの回転)を示す図である。It is a figure which shows the example (mirror rotation) of the light projection part of the light projector of embodiment of this invention. 本発明の実施形態1の投光装置の機能ブロックの例を示す図である。It is a figure which shows the example of the functional block of the light projector of Embodiment 1 of this invention. 図8に示す投光装置の振れ補正処理のフローチャートである。It is a flowchart of the shake correction process of the light projector shown in FIG. 本発明の実施形態2の投光装置の機能ブロックの例を示す図である。It is a figure which shows the example of the functional block of the light projector of Embodiment 2 of this invention. 図10に示す投光装置の振れ補正処理のフローチャートであるIt is a flowchart of the shake correction process of the light projector shown in FIG. 実施形態3の投光部の例を示す図である。It is a figure which shows the example of the light projection part of Embodiment 3. 本発明の実施形態3の投光装置の機能ブロックの例を示す図である。It is a figure which shows the example of the functional block of the light projector of Embodiment 3 of this invention. 図13に示す投光装置の振れ補正処理のフローチャートである。It is a flowchart of the shake correction process of the light projector shown in FIG.
<実施形態1>
 以下、本発明の一実施の形態における投光装置について説明する。尚、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
<Embodiment 1>
Hereinafter, a projector according to an embodiment of the present invention will be described. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix.
 図1~4は、実施形態の投光装置100の使用態様を説明するための図である。図5~7は、投光装置100の投光部3の例を説明するための図である。図8は、実施形態の投光装置100aの機能ブロックの例を示す図である。 FIGS. 1 to 4 are diagrams for explaining a usage mode of the light projecting device 100 according to the embodiment. 5 to 7 are diagrams for explaining an example of the light projecting unit 3 of the light projecting device 100. FIG. FIG. 8 is a diagram illustrating an example of functional blocks of the light projecting device 100a according to the embodiment.
 投光装置100の機能ブロックを説明する前に、図1~3を用いて、投光装置100の使用態様が説明される。投光装置100は、後述する振れ検出センサ2を備え、図1~3では、振れ検出センサ2が投光装置100の外部に取り付けられている場合を示す。 Before describing the functional blocks of the light projecting device 100, the usage mode of the light projecting device 100 will be described with reference to FIGS. The light projecting device 100 includes a shake detection sensor 2 to be described later. FIGS. 1 to 3 show a case where the shake detection sensor 2 is attached to the outside of the light projection device 100.
 図1は、投光装置100が多関節ロボット(移動装置)に搭載されている例を示す図である。図1に示す多関節ロボット200は、垂直多関節ロボットであり、支持台201と、旋回可能および屈伸可能に支持台201に連結されたアーム部202と、首振り可能にアーム部202に連結された搭載部203とを含んで構成される。投光装置100及び振れ検出センサ2は、搭載部203に固定される。この多関節ロボット200のアーム部202には、関節を駆動するためのサーボモータ(不図示)が内蔵されており、このサーボモータの駆動は、コントローラ(不図示)によって制御される。 FIG. 1 is a diagram illustrating an example in which the light projecting device 100 is mounted on an articulated robot (moving device). An articulated robot 200 shown in FIG. 1 is a vertical articulated robot, and is connected to a support base 201, an arm part 202 connected to the support base 201 so as to be capable of turning and bending, and connected to the arm part 202 so as to be able to swing. And the mounting portion 203. The light projecting device 100 and the shake detection sensor 2 are fixed to the mounting unit 203. A servo motor (not shown) for driving the joint is built in the arm unit 202 of the multi-joint robot 200, and the drive of the servo motor is controlled by a controller (not shown).
 コントローラがユーザによって操作され、多関節ロボットのアーム部202が屈伸し又旋回することで、搭載されている投光装置100の位置及び投光方向が変更され、投光対象物である移動体に投光を行うことが可能となる。 When the controller is operated by the user and the arm unit 202 of the articulated robot bends, extends, and turns, the position and the light projecting direction of the light projecting device 100 that is mounted are changed, and the mobile object that is the light projecting object is changed. It is possible to perform light projection.
 図2は、投光装置100が移動ロボット(移動装置)に搭載されている例を示す図である。図2Aは、側面図であり、図2Bは、上面図である。図2に示す移動ロボット300は、車体本体301と、車体本体301の地面側に設置された2つの動輪302と、車体本体301の地面側に設置された4つの補助輪303とを備える。車体本体301には動輪302を駆動する回転機構が内蔵され、この回転機構の駆動は、コントローラ(不図示)によって制御される。投光装置100及び振れ検出センサ2は、車体本体301の上面に固定される。 FIG. 2 is a diagram illustrating an example in which the light projecting device 100 is mounted on a mobile robot (mobile device). FIG. 2A is a side view, and FIG. 2B is a top view. A mobile robot 300 shown in FIG. 2 includes a vehicle body 301, two moving wheels 302 installed on the ground side of the vehicle body 301, and four auxiliary wheels 303 installed on the ground side of the vehicle body 301. The vehicle body 301 has a built-in rotation mechanism for driving the moving wheels 302, and the drive of the rotation mechanism is controlled by a controller (not shown). The light projecting device 100 and the shake detection sensor 2 are fixed to the upper surface of the vehicle body 301.
 コントローラがユーザによって操作されて移動ロボットの車輪302が回転して車体本体301が移動し、搭載されている投光装置100の位置及び投光方向が変更される。 When the controller is operated by the user, the wheel 302 of the mobile robot rotates to move the vehicle body 301, and the position and direction of the light projector 100 mounted is changed.
 図3は、投光装置100がパンチルト雲台(移動装置)に搭載されている例を示す図である。図3に示すパンチルト雲台400は、パン駆動部401とチルト駆動部402とから成る。パン駆動部401は、パン回転軸AX401を軸中心としてパン方向(矢印参照)に回動する。チルト駆動部402は、パン回転軸AX401に直交するチルト回転軸AX402を軸中心としてチルト方向(矢印参照)に回動する。投光装置100は、その光軸がチルト回転軸AX402と直交するようにチルト駆動部402に固定され、振れ検出センサ2は投光装置100の上部に固定されている。パン駆動部401及びチルト駆動部402は、それぞれ回動機構が内蔵され、これらの回動機構の駆動は、コントローラ(不図示)によって制御される。 FIG. 3 is a diagram showing an example in which the light projecting device 100 is mounted on a pan / tilt head (moving device). A pan / tilt head 400 shown in FIG. 3 includes a pan driving unit 401 and a tilt driving unit 402. The pan driving unit 401 rotates in the pan direction (see an arrow) about the pan rotation axis AX401. The tilt driving unit 402 rotates in the tilt direction (see an arrow) about the tilt rotation axis AX402 orthogonal to the pan rotation axis AX401. The light projecting device 100 is fixed to the tilt driving unit 402 so that the optical axis thereof is orthogonal to the tilt rotation axis AX 402, and the shake detection sensor 2 is fixed to the upper part of the light projecting device 100. Each of the pan driving unit 401 and the tilt driving unit 402 has a built-in rotation mechanism, and the driving of these rotation mechanisms is controlled by a controller (not shown).
 コントローラがユーザによって操作されてパン駆動部401及びチルト駆動部402が回動し、搭載されている投光装置100の位置及び投光方向が変更される。 When the controller is operated by the user, the pan driving unit 401 and the tilt driving unit 402 are rotated, and the position and the light projecting direction of the mounted light projecting device 100 are changed.
 尚、図1~3では、ユーザがコントローラを操作することとしたが、投光装置100が投光対象物の位置を検出する装置を備え、ユーザを介さずに、検出された位置に投光装置100の投光方向が向くように、自動でコントローラが制御されることとしてもよい。 In FIGS. 1 to 3, the user operates the controller. However, the light projecting device 100 includes a device that detects the position of the light projecting object, and projects light at the detected position without the user. The controller may be automatically controlled so that the light projecting direction of the apparatus 100 is directed.
 図1、2に示されるように、投光装置100が多関節ロボット200又は移動ロボット300に搭載された場合には、多関節ロボット200及び移動ロボット300が駆動されることで、投光装置100は、移動する投光対象物に追従して、映像を投影し続けることが可能となる。また、投光装置100は、投影できる範囲、つまり、投光対象物が移動する範囲が拡大しても追従することが可能となる。 As shown in FIGS. 1 and 2, when the light projecting device 100 is mounted on the articulated robot 200 or the mobile robot 300, the light projecting device 100 is driven by driving the articulated robot 200 and the mobile robot 300. Can follow the moving projection object and continue to project the image. In addition, the light projecting device 100 can follow even if the range that can be projected, that is, the range in which the light projecting object moves increases.
 しかし、投光対象物が高速に移動した場合には、多関節ロボット200及び移動ロボット300を高速で動作させることで、投光対象物に映像を投影することは可能となるが、投光装置100の移動速度が変化するとき、つまり、加速度が生じるときに、投光装置100が振動することが発生し得る。 However, when the projection object moves at a high speed, it is possible to project an image on the projection object by operating the articulated robot 200 and the mobile robot 300 at a high speed. When the moving speed of 100 changes, that is, when acceleration occurs, the light projecting device 100 may vibrate.
 図3に示すように、投光装置100をパンチルト雲台400に搭載した場合には、パン駆動部401及びチルト駆動部402が回動されることで、投光装置100は、その投光方向を変えて、移動する投光対象物に追従して、映像を投影し続けることが可能となり、また、投影できる範囲、つまり、投光対象物が移動する範囲が拡大しても追従することが可能となる。 As shown in FIG. 3, when the light projecting device 100 is mounted on the pan / tilt head 400, the light projecting device 100 is rotated in the direction of light projection by rotating the pan driving unit 401 and the tilt driving unit 402. It is possible to continue projecting images by following the moving projection object, and can follow even if the range that can be projected, that is, the range in which the projection object moves is expanded. It becomes possible.
 しかし、投光対象物が高速に移動した場合には、多関節ロボット200及び移動ロボット300の場合と同様に、投光装置100の向きが変化するときに加速度が生じることから、投光装置100の振動が発生し得る。 However, when the light projecting object moves at high speed, acceleration occurs when the direction of the light projecting device 100 changes, as in the case of the articulated robot 200 and the mobile robot 300. Vibration may occur.
 投光装置100に振動が生じると、映像が振れてしまうこととなり、投影品質の劣化を招くこととなりかねない。そこで、実施形態の投光装置100は、投光装置100の移動及び姿勢変化(向きの変更)による振れを、光学的な補正処理又は画像処理により補正する。 If vibration occurs in the light projecting device 100, the image will be shaken, which may cause deterioration in projection quality. Therefore, the light projecting device 100 according to the embodiment corrects shake due to movement and posture change (change in orientation) of the light projecting device 100 by optical correction processing or image processing.
 次に、図4は、投光装置100の外観図であり、振れ検出センサ2が内部に取り付けられた例を示す。投光装置100は、投光本体部1と投光部3を備え、投光本体部内部に振れ検出センサ2を備える。尚、図1~3の投光装置100も、振れ検出センサ2を内蔵してもよい。実施形態では、図4の座標系に示すように、投光装置100の光軸と一致するX軸を回転軸とした回転は、ロール(ローリング)と、Y軸を回転軸とした回転は、ピッチ(ピッチング)と、Z軸を回転軸とした回転は、ヨー(ヨーイング)とそれぞれ呼称する。 Next, FIG. 4 is an external view of the light projecting device 100 and shows an example in which the shake detection sensor 2 is attached inside. The light projecting device 100 includes a light projecting main body 1 and a light projecting unit 3, and a shake detection sensor 2 inside the light projecting main body. 1 to 3 may also include the shake detection sensor 2. In the embodiment, as shown in the coordinate system of FIG. 4, rotation about the X axis that coincides with the optical axis of the light projecting device 100 is rotation (rolling) and rotation about the Y axis is the rotation axis. The pitch (pitching) and the rotation with the Z axis as the rotation axis are referred to as yaw (yawing), respectively.
 図8は、投光装置100aの機能ブロックの例を示す図である。 FIG. 8 is a diagram illustrating an example of functional blocks of the light projecting device 100a.
 投光装置100aは、投光本体部1a、振れ検出センサ2a、投光部3、及び、光学補正部4を備える。投光装置100aは、例えば、外部の映像コンテンツ記憶部(不図示)から映像を取得して、投光対象物Obに対して、取得した映像に基づく映像を投光する装置である。 The light projecting device 100a includes a light projecting main body 1a, a shake detection sensor 2a, a light projecting unit 3, and an optical correcting unit 4. For example, the light projecting device 100a is a device that acquires a video from an external video content storage unit (not shown) and projects a video based on the acquired video to the projection target Ob.
 振れ検出センサ2aは、投光装置100aの振れ(姿勢の変化)を検出する。実施形態では、振れ検出センサ2aは、ジャイロセンサを備え、ピッチングの角速度、及び、ヨーイングの角速度を、所定周期で検出して投光本体部1aに出力する。振れ検出センサ2aは、ピッチングの角速度を検出するピッチ振れ検出部21、及び、ヨーイングの角速度を検出するヨー振れ検出部22を備える。 The shake detection sensor 2a detects a shake (change in posture) of the light projecting device 100a. In the embodiment, the shake detection sensor 2a includes a gyro sensor, detects the angular velocity of pitching and the angular velocity of yawing at a predetermined cycle, and outputs the detected angular velocity to the floodlight main body 1a. The shake detection sensor 2 a includes a pitch shake detection unit 21 that detects a pitching angular velocity and a yaw shake detection unit 22 that detects a yawing angular velocity.
 投光本体部1aは、投光装置100aの全体制御を行うものであり、振れ検出部11、振れ量算出部12a、映像表示部13aを備える。 The light projecting main unit 1a performs overall control of the light projecting device 100a, and includes a shake detection unit 11, a shake amount calculation unit 12a, and a video display unit 13a.
 振れ検出部11は、所定周期で、振れ検出センサ2aから角速度、つまり、ピッチングの角速度、及び、ヨーイングの角速度を入力し、入力した角速度を振れ量算出部12aに出力する。 The shake detection unit 11 inputs an angular velocity, that is, a pitching angular velocity and a yawing angular velocity from the shake detection sensor 2a in a predetermined cycle, and outputs the input angular velocity to the shake amount calculation unit 12a.
 振れ量算出部12aは、振れ検出部11から入力した角速度から、積分演算処理等の必要な処理を行い、ピッチング及びヨーイングの角度(変化量、振れ量)を算出する。振れ量が、予め定められた所定の閾値以上である場合には、振れ量算出部12aは、振れが生じたと判断し、振れ量を光学補正部4に出力する。 The shake amount calculation unit 12a performs necessary processing such as integration calculation processing from the angular velocity input from the shake detection unit 11, and calculates pitching and yawing angles (change amount, shake amount). When the shake amount is equal to or greater than a predetermined threshold value, the shake amount calculation unit 12a determines that the shake has occurred and outputs the shake amount to the optical correction unit 4.
 映像表示部13aは、映像を、投光部3に出力する。投光部3に出力する映像は、例えば、USB(Universal Serial Bus)メモリ等の可搬性の記録媒体から、記録媒体に応じた接続部(不図示)を介して読み出される。また、映像表示部13aは、例えば、透過型の液晶パネルと光源を有し、液晶パネルに映像を表示し、光源からの照射光を透過させ、透過光を投光部3に出力する。 The video display unit 13 a outputs the video to the light projecting unit 3. The video output to the light projecting unit 3 is read out from a portable recording medium such as a USB (Universal Serial Bus) memory via a connection unit (not shown) according to the recording medium. The video display unit 13 a includes, for example, a transmissive liquid crystal panel and a light source, displays video on the liquid crystal panel, transmits irradiation light from the light source, and outputs the transmitted light to the light projecting unit 3.
 投光部3は、投光光学系31を有し、投光本体部1aの映像表示部13aから入力した映像を投光対象物Obに投影する。投光光学系31は、光軸に沿って1又は複数の光学レンズであるレンズ群を、1又は複数備えて構成され、更に、必要に応じて、ミラー等を有してもよい。 The light projecting unit 3 has a light projecting optical system 31 and projects an image input from the image display unit 13a of the light projecting main body unit 1a onto the light projecting object Ob. The light projecting optical system 31 includes one or a plurality of lens groups that are one or a plurality of optical lenses along the optical axis, and may further include a mirror or the like as necessary.
 光学補正部4は、投光部3の投光方向を、投光本体部1aの振れ量算出部12aから入力した振れ量に応じて変更(補正)する。光学補正部4は、ピッチ補正部41及びヨー補正部42を備え、ピッチ補正部41及びヨー補正部42は、それぞれ、振れ量算出部12aから入力した振れ量に応じて、振れを打ち消すように、防振レンズ群を光軸に直交する方向にシフトすることで投光方向を変更する(防振を行う)。例えば、振れ量算出部12aから振れ量を入力したピッチ補正部41及びヨー補正部42は、振れが生じた軸を補正するための指示値(目標値)を求め、指示値と現在値の偏差から、アクチュエータに最適な駆動信号を生成し、各軸のアクチュエータに出力する。つまり、ピッチ補正部41及びヨー補正部42は、それぞれのアクチュエータの駆動制御部であり、アクチュエータ等の駆動装置自体は、投光部3に内蔵されている。 The optical correction unit 4 changes (corrects) the light projecting direction of the light projecting unit 3 according to the shake amount input from the shake amount calculating unit 12a of the light projecting main body unit 1a. The optical correction unit 4 includes a pitch correction unit 41 and a yaw correction unit 42, and each of the pitch correction unit 41 and the yaw correction unit 42 cancels the shake according to the shake amount input from the shake amount calculation unit 12a. The projection direction is changed by shifting the image stabilizing lens group in a direction orthogonal to the optical axis (performs image stabilization). For example, the pitch correction unit 41 and the yaw correction unit 42 that have input the shake amount from the shake amount calculation unit 12a obtain an instruction value (target value) for correcting the axis where the shake has occurred, and the deviation between the instruction value and the current value. From this, a drive signal optimal for the actuator is generated and output to the actuator of each axis. That is, the pitch correction unit 41 and the yaw correction unit 42 are drive control units of the respective actuators, and the drive device itself such as an actuator is built in the light projecting unit 3.
 実施形態では、以下の3つの方法で光学的に投光方向を変更する。 In the embodiment, the light projection direction is optically changed by the following three methods.
 1つは、図5に示すように、投光部3の一例である鏡胴3a自体が、矢印方向(投光部3の光軸に対し直交するとともに互いに直交する2方向の水平方向又は垂直方向)にシフトされることで投光方向が変更される。投光部3a自体は、圧電素子を用いたアクチュエータやボイスコイルを用いたアクチュエータ等の駆動装置によりシフトされる。尚、鏡胴3aのシフト方向は、矢印方向に限られず、投光部3の光軸に対し直交する方向であればよい。 First, as shown in FIG. 5, the lens barrel 3a itself, which is an example of the light projecting unit 3, has two horizontal directions or vertical directions in the direction of the arrow (perpendicular to the optical axis of the light projecting unit 3 and perpendicular to each other). The projection direction is changed by shifting to (direction). The light projecting unit 3a itself is shifted by a driving device such as an actuator using a piezoelectric element or an actuator using a voice coil. The shift direction of the lens barrel 3a is not limited to the arrow direction, and may be a direction orthogonal to the optical axis of the light projecting unit 3.
 2つ目は、図6に示すように、鏡胴(投光部3)内のレンズ群(投光光学系31)が、矢印方向(投光光学系31の光軸に対し直交するとともに互いに直交する2方向の水平方向又は垂直方向)にシフトされることで投光方向が変更される。図6Aの鏡胴3bは、投光光学系31として、それぞれ1つの光学レンズから成る3つのレンズ群GP1、GP2、GP3を備え、レンズ群GP2が必要に応じてシフトされる。図6Bの鏡胴3cは、3つのレンズ群のうちレンズ群GP1、G3は、1つの光学レンズから成り、レンズ群GP2´は、複数の光学レンズから成り、レンズ群GP2´は、レンズ群ごとシフトされる。レンズ群は、圧電素子を用いたアクチュエータやボイスコイルを用いたアクチュエータ等の駆動装置によりシフトさせる。尚、レンズ群GP2、GP2´のシフト方向は、矢印方向に限られず、投光光学系31の光軸に対し直交する方向であればよい。 Second, as shown in FIG. 6, the lens group (projection optical system 31) in the lens barrel (projection unit 3) is orthogonal to the optical axis of the projection optical system 31 and to each other. The light projection direction is changed by shifting in two orthogonal directions (horizontal direction or vertical direction). The lens barrel 3b in FIG. 6A includes three lens groups GP1, GP2, and GP3 each including one optical lens as the light projecting optical system 31, and the lens group GP2 is shifted as necessary. In the lens barrel 3c of FIG. 6B, among the three lens groups, the lens groups GP1 and G3 are each composed of one optical lens, the lens group GP2 ′ is composed of a plurality of optical lenses, and the lens group GP2 ′ is for each lens group. Shifted. The lens group is shifted by a driving device such as an actuator using a piezoelectric element or an actuator using a voice coil. The shift direction of the lens groups GP2 and GP2 ′ is not limited to the arrow direction, and may be a direction orthogonal to the optical axis of the light projecting optical system 31.
 3つ目は、図7に示すように、鏡胴(投光部3)内のミラー(投光光学系31)が回転されることで投光方向が変更される。図7Aは、投光光学系31として、ミラーM1とミラーM2とを備える鏡胴3dを、投光対象物Ob側から見た正面図である。図7Bは、鏡胴3dの斜視図である。 Third, as shown in FIG. 7, the light projection direction is changed by rotating the mirror (light projection optical system 31) in the lens barrel (light projection unit 3). FIG. 7A is a front view of the lens barrel 3d including the mirror M1 and the mirror M2 as the light projecting optical system 31 as viewed from the light projecting object Ob side. FIG. 7B is a perspective view of the lens barrel 3d.
 鏡胴3dは、第1円筒部、第2円筒部、第3円筒部の3つの円筒部が連結して成る。第1円筒部の他方端と第2円筒部の一方端とが、各円筒部の中心軸が直交するように第1連結部で連結される。第2円筒部の他方端と第3円筒部の一方端とが、各円筒部の中心軸が直交し、かつ、第3円筒部の中心軸が、第1円筒部の中心軸と第2円筒部の中心軸とで構成される平面の法線と一致するように、第2連結部で連結される。第1連結部には、第1円筒部の中心軸と第2円筒部の中心軸とで構成される平面の法線と一致する方向の回転軸AX1を持つミラーM1が設置され、第2連結部には、第2円筒部の中心軸と第3円筒部の中心軸とで構成される平面の法線と一致する方向の回転軸AX2を持つミラーM2が設置される。光束Lは、第1円筒部の一方端から入射し、ミラーM1で反射されてミラーM2に入射し、ミラー2で反射されて、第3円筒部の他方端から出射する。ミラーM1、M2が、それぞれの回転軸AX1、AX2を中心として所定角度で回転されることで、光束Lの出射方向が変更される。ミラーは、圧電素子を用いたアクチュエータやボイスコイルを用いたアクチュエータ等の駆動装置により回転させられる。 The lens barrel 3d is formed by connecting three cylindrical portions, a first cylindrical portion, a second cylindrical portion, and a third cylindrical portion. The other end of the first cylindrical portion and the one end of the second cylindrical portion are connected by the first connecting portion so that the central axes of the respective cylindrical portions are orthogonal to each other. The other end of the second cylindrical portion and the one end of the third cylindrical portion are perpendicular to the central axis of each cylindrical portion, and the central axis of the third cylindrical portion is the central axis of the first cylindrical portion and the second cylinder. They are connected by the second connecting part so as to coincide with the normal line of the plane constituted by the central axis of the part. The first connecting portion is provided with a mirror M1 having a rotation axis AX1 in a direction coinciding with a normal line of a plane formed by the central axis of the first cylindrical portion and the central axis of the second cylindrical portion, and the second connecting portion. A mirror M2 having a rotation axis AX2 in a direction coinciding with a normal line of a plane constituted by the central axis of the second cylindrical part and the central axis of the third cylindrical part is installed in the part. The light beam L is incident from one end of the first cylindrical portion, is reflected by the mirror M1, is incident on the mirror M2, is reflected by the mirror 2, and is emitted from the other end of the third cylindrical portion. As the mirrors M1 and M2 are rotated by a predetermined angle about the respective rotation axes AX1 and AX2, the emission direction of the light beam L is changed. The mirror is rotated by a driving device such as an actuator using a piezoelectric element or an actuator using a voice coil.
 図5、6に示すような光学系シフト式の防振は、例えば、特開2007-150996号公報、及び、特開2010-136269号公報に開示されている。 5 and 6 are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2007-150996 and 2010-136269.
 尚、投光本体部1aの各機能部は、例えば、マイクロプロセッサ、メモリおよびその周辺回路を備えるマイクロコンピュータによって構成され、メモリには、画像処理を行うためのプログラムや、投光装置100a全体を制御するための制御プログラム等の各種のプログラム、プログラムの実行に必要なデータ等の各種のデータが記憶され、いわゆるCPU(Central Processing Unit)等であるマイクロプロセッサが、メモリに記憶されているプログラムを実行することにより、各機能部の全部又は一部を実現する。 Each functional unit of the light projecting main body unit 1a is configured by, for example, a microcomputer including a microprocessor, a memory, and peripheral circuits thereof. The memory includes a program for performing image processing and the entire light projecting device 100a. Various programs such as control programs for controlling and various data such as data necessary for program execution are stored, and a microprocessor such as a so-called CPU (Central Processing Unit) is stored in a memory. By executing, all or part of each functional unit is realized.
<動作>
 実施形態の投光装置100aが行う、振れ補正処理について説明する。図9は振れ補正処理のフローチャートである。
<Operation>
The shake correction process performed by the light projecting device 100a according to the embodiment will be described. FIG. 9 is a flowchart of shake correction processing.
 ユーザは、インタフェース部(不図示)を介して、投光処理の開始を指示するコマンドを入力する。 The user inputs a command for instructing the start of the light projection process via an interface unit (not shown).
 インタフェース部を介して、投光処理の開始を指示するコマンドが入力されたことを検知した投光本体部1aは、映像表示部13aに映像の投影開始を指示する。指示を受けた映像表示部13aは、映像の投光部3への出力を開始する。 The light projecting main unit 1a that has detected that a command for instructing the start of the light projection process is input via the interface unit instructs the video display unit 13a to start projecting a video. Receiving the instruction, the video display unit 13a starts outputting the video to the light projecting unit 3.
 また、投光本体部1aは、振れ検出センサ2aに振動の検出開始を指示する。指示を受けた振れ検出センサ2aは、ピッチ振れ検出部21及びヨー振れ検出部22が周期的に検出するそれぞれの角速度を、振れ検出部11に出力する(ステップS11)。 Further, the light projecting main body 1a instructs the shake detection sensor 2a to start detecting vibrations. The shake detection sensor 2a that has received the instruction outputs the angular velocities detected periodically by the pitch shake detection unit 21 and the yaw shake detection unit 22 to the shake detection unit 11 (step S11).
 角速度を取得した振れ検出部11は、取得した角速度、つまり、ピッチングの角速度、及び、ヨーイングの角速度を、振れ量算出部12aに出力する。 The shake detection unit 11 that has acquired the angular velocity outputs the acquired angular velocity, that is, the pitching angular velocity and the yawing angular velocity to the shake amount calculation unit 12a.
 振れ量算出部12aは、振れ検出部11から入力した角速度から、ピッチングの角度(変化量、振れ量)を算出し、振れ量が、予め定められた所定の閾値以上である場合には、ピッチング方向の振れが生じたと判断する(ステップS12:Yes)。振れが生じたと判断した振れ量算出部12aは、算出した振れ量を、光学補正部4を介してピッチ補正部41に出力し、ピッチ補正部41は、入力した振れ量からアクチュエータの駆動信号を生成する(ステップS13)。 The shake amount calculation unit 12a calculates a pitching angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and when the shake amount is equal to or greater than a predetermined threshold value, the pitching is calculated. It is determined that a direction shake has occurred (step S12: Yes). The shake amount calculation unit 12a that has determined that the shake has occurred outputs the calculated shake amount to the pitch correction unit 41 via the optical correction unit 4, and the pitch correction unit 41 generates an actuator drive signal from the input shake amount. Generate (step S13).
 次に、振れ量算出部12aは、振れ検出部11から入力した角速度から、ヨーイングの角度(変化量、振れ量)を算出し、振れ量が、予め定められた所定の閾値以上である場合には、ヨーイング方向の振れが生じたと判断する(ステップS14:Yes)。振れが生じたと判断した振れ量算出部12aは、算出した振れ量を、光学補正部4を介してヨー補正部42に出力し、ヨー補正部42は、入力した振れ量からアクチュエータの駆動信号を生成する(ステップS15)。 Next, the shake amount calculation unit 12a calculates the yawing angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and the shake amount is equal to or greater than a predetermined threshold value. Determines that a shake in the yawing direction has occurred (step S14: Yes). The shake amount calculation unit 12a that has determined that the shake has occurred outputs the calculated shake amount to the yaw correction unit 42 via the optical correction unit 4, and the yaw correction unit 42 receives the drive signal of the actuator from the input shake amount. Generate (step S15).
 そして、光学補正部4のピッチ補正部41及びヨー補正部42は、生成した駆動信号を各アクチュエータに出力する。各アクチュエータは、駆動信号を入力し、入力した信号に応じて駆動する(ステップS16)。尚、ピッチングの振れ量が閾値を下回り(ステップS12:No)、かつ、ヨーイングの振れ量が閾値を下回る場合(ステップS14:No)は、アクチュエータは駆動されない。 Then, the pitch correction unit 41 and the yaw correction unit 42 of the optical correction unit 4 output the generated drive signal to each actuator. Each actuator receives a drive signal and drives according to the input signal (step S16). If the pitching shake amount is below the threshold value (step S12: No) and the yawing shake amount is below the threshold value (step S14: No), the actuator is not driven.
 このように、レンズ群のシフト(図5、6)やミラーの回転(図7)により投光装置100の投光方向を変更することで防振を行うので、自装置が高周波で振動したとしても、投光装置100aは、高速に移動する投光対象物Obに、ブレの無い映像を投影することが可能となる。つまり、投光装置100aは、手振れのような振動のみならず、高周波振動に対する防振が可能である。 As described above, since the image stabilization is performed by changing the light projecting direction of the light projecting device 100 by shifting the lens group (FIGS. 5 and 6) or rotating the mirror (FIG. 7), it is assumed that the device vibrates at a high frequency. In addition, the light projecting device 100a can project a blur-free image onto the light projecting object Ob that moves at high speed. That is, the light projecting device 100a can prevent vibrations such as camera shake as well as high-frequency vibrations.
 また、投光装置100aは、投光対象物Obが移動体であっても、移動装置(移動部)と、投光本体部1、投光部3及び光学補正部4(投光方向変更部)とを動作させることで、投光対象物Obに映像を投影することが可能となる。 Further, the light projecting device 100a includes a moving device (moving unit), a light projecting main body unit 1, a light projecting unit 3, and an optical correcting unit 4 (light projecting direction changing unit) even if the projection object Ob is a moving object. ) Can be projected onto the projection object Ob.
 尚、実施形態1の図9に示すフローチャートでは、説明の便宜上、ピッチング用のアクチュエータの駆動信号を生成してから、ヨーイング用のアクチュエータの駆動信号を生成することとしているが、投光装置100aが、それぞれの機能部を備え、並行に処理することとしてもよい。後述の実施形態2、3でも同様である。 In the flowchart shown in FIG. 9 of the first embodiment, for convenience of explanation, the drive signal for the actuator for pitching is generated and then the drive signal for the actuator for yawing is generated. Each functional unit may be provided and processed in parallel. The same applies to Embodiments 2 and 3 described later.
<実施形態2>
 実施形態1では、ピッチングとヨーイングにおける振れを検出して、投光装置100aの投光方向を光学的に補正して、映像のブレをなくした。実施形態2の100bは、ピッチングとヨーイングにおける振れに加え、ローリングにおける振れも、補正するものである。
<Embodiment 2>
In the first embodiment, shakes in pitching and yawing are detected, and the light projecting direction of the light projecting device 100a is optically corrected to eliminate image blurring. The second embodiment 100b corrects rolling shake as well as pitching and yawing shake.
 図10に、投光装置100bの機能的構成の例を示す図である。投光装置100bは、図8に示す投光装置100aと比べて、以下の3点が異なる。1点目は、振れ検出センサ2bが、ピッチ振れ検出部21及びヨー振れ検出部22に加え、ローリングの角速度を検出するロール振れ検出部23を備える点である。2点目は、振れ量算出部12bが、ピッチングの振れ量とヨーイングの振れ量に加えて、ローリングの振れ量も算出し、算出した振れ量を映像表示部13bに出力する点である。3点目は、映像表示部13bは、振れ量算出部12bから入力した振れ量に応じて画像を補正するための、ロール補正画像生成部131を備える点である。ロール補正画像生成部131は、元の画像から、ロール方向の振れ量に応じて、投光装置100の光軸を回転軸として、振れを打ち消す方向に回転させた画像を生成する。 FIG. 10 is a diagram illustrating an example of a functional configuration of the light projecting device 100b. The light projecting device 100b differs from the light projecting device 100a shown in FIG. 8 in the following three points. The first point is that the shake detection sensor 2 b includes a roll shake detection unit 23 that detects the angular velocity of rolling in addition to the pitch shake detection unit 21 and the yaw shake detection unit 22. The second point is that the shake amount calculation unit 12b calculates the rolling shake amount in addition to the pitching shake amount and the yawing shake amount, and outputs the calculated shake amount to the video display unit 13b. The third point is that the video display unit 13b includes a roll correction image generation unit 131 for correcting an image according to the shake amount input from the shake amount calculation unit 12b. The roll correction image generation unit 131 generates an image that is rotated from the original image in a direction that cancels the shake, with the optical axis of the light projecting device 100 as the rotation axis, according to the amount of shake in the roll direction.
<動作>
 投光装置100bが行う振れ補正処理を、図11を用いて説明する。図11は、第2実施形態の振れ補正処理のフローチャートである。図8のフローチャートと同じステップ番号の処理は、図8と同じ処理を示す。
<Operation>
The shake correction process performed by the light projecting device 100b will be described with reference to FIG. FIG. 11 is a flowchart of shake correction processing according to the second embodiment. The process of the same step number as the flowchart of FIG. 8 shows the same process as FIG.
 インタフェース部(不図示)を介して、投光処理の開始を指示するコマンドがユーザによって入力されたことを検知した投光本体部1bは、映像表示部13bに映像の投影開始を指示する。指示を受けた映像表示部13bは、映像の投光部3への出力を開始する。 The light projecting main body 1b, which has detected that a command for instructing the start of the light projection process is input by the user via the interface unit (not shown), instructs the video display unit 13b to start video projection. Upon receiving the instruction, the video display unit 13b starts outputting the video to the light projecting unit 3.
 また、投光本体部1bは、振れ検出センサ2bに検出の開始を指示する。指示を受けた振れ検出センサ2bは、ピッチ振れ検出部21、ヨー振れ検出部22、及び、ロール振れ検出部23が、周期的に検出するそれぞれの角速度を、振れ検出部11に出力する(ステップS21)。 Also, the light projecting main body 1b instructs the shake detection sensor 2b to start detection. Upon receiving the instruction, the shake detection sensor 2b outputs the angular velocities detected periodically by the pitch shake detection unit 21, the yaw shake detection unit 22, and the roll shake detection unit 23 to the shake detection unit 11 (step). S21).
 角速度を取得した振れ検出部11は、取得した角速度、つまり、ピッチングの角速度、ヨーイングの角速度、及び、ローリングの角速度を、振れ量算出部12bに出力する。 The shake detection unit 11 that has acquired the angular velocity outputs the acquired angular velocity, that is, the pitching angular velocity, the yawing angular velocity, and the rolling angular velocity to the shake amount calculation unit 12b.
 振れ量算出部12bは、振れ検出部11から入力した角速度から、ピッチングの角度(変化量、振れ量)を算出し、振れ量が、予め定められた所定の閾値以上である場合には、ピッチング方向の振れが生じたと判断する(ステップS12:Yes)。振れが生じたと判断した振れ量算出部12は、算出した振れ量を、光学補正部4を介してピッチ補正部41に出力し、ピッチ補正部41は、入力した振れ量からアクチュエータの駆動信号を生成する(ステップS13)。 The shake amount calculation unit 12b calculates a pitching angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and when the shake amount is equal to or greater than a predetermined threshold value, the pitching is calculated. It is determined that a direction shake has occurred (step S12: Yes). The shake amount calculation unit 12 that has determined that the shake has occurred outputs the calculated shake amount to the pitch correction unit 41 via the optical correction unit 4, and the pitch correction unit 41 generates an actuator drive signal from the input shake amount. Generate (step S13).
 次に、振れ量算出部12bは、振れ検出部11から入力した角速度から、ヨーイングの角度(変化量、振れ量)を算出し、振れ量が、予め定められた所定の閾値以上である場合には、ヨーイング方向の振れが生じたと判断する(ステップS14:Yes)。振れが生じたと判断した振れ量算出部12は、算出した振れ量を、光学補正部4を介してヨー補正部42に出力し、ヨー補正部42は、入力した振れ量からアクチュエータの駆動信号を生成する(ステップS15)。 Next, the shake amount calculation unit 12b calculates the yawing angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and the shake amount is equal to or greater than a predetermined threshold value. Determines that a shake in the yawing direction has occurred (step S14: Yes). The shake amount calculation unit 12 that has determined that the shake has occurred outputs the calculated shake amount to the yaw correction unit 42 via the optical correction unit 4, and the yaw correction unit 42 receives an actuator drive signal from the input shake amount. Generate (step S15).
 次に、振れ量算出部12bは、振れ検出部11から入力した角速度から、ローリングの角度(変化量、振れ量)を算出し、振れ量が、予め定められた所定の閾値以上である場合には、ローリング方向の振れが生じたと判断する(ステップS22:Yes)。振れが生じたと判断した振れ量算出部12は、算出した振れ量を、映像表示部13bに出力する。振れ量算出部12bから振れ量を入力した映像表示部13bは、振れ量をロール補正画像生成部131に渡して、振れ量に応じた画像を作成させ、作成された画像、つまり、ローリング補正が成された画像を、投光部3に出力する(ステップS23)。 Next, the shake amount calculation unit 12b calculates a rolling angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and the shake amount is equal to or greater than a predetermined threshold value. Determines that a shake in the rolling direction has occurred (step S22: Yes). The shake amount calculation unit 12 that has determined that the shake has occurred outputs the calculated shake amount to the video display unit 13b. The video display unit 13b that has input the shake amount from the shake amount calculation unit 12b passes the shake amount to the roll correction image generation unit 131 to create an image corresponding to the shake amount, that is, the created image, that is, rolling correction is performed. The formed image is output to the light projecting unit 3 (step S23).
 光学補正部4のピッチ補正部41及びヨー補正部42は、生成した駆動信号を各アクチュエータに出力する。尚、振れ量が所定の閾値以下であれば、ピッチ補正部41及びヨー補正部42は、補正値ゼロの信号を出力する。各アクチュエータは、駆動信号を入力し、入力した信号に応じて駆動する(ステップS16)。 The pitch correction unit 41 and the yaw correction unit 42 of the optical correction unit 4 output the generated drive signal to each actuator. If the shake amount is equal to or less than the predetermined threshold, the pitch correction unit 41 and the yaw correction unit 42 output a signal with a correction value of zero. Each actuator receives a drive signal and drives according to the input signal (step S16).
 このように、ピッチング及びヨーイングにおける振れは、光学系シフト式等によって補正を行い、ローリングにおける振れは、画像処理により補正を行うことで、自装置が振動した場合であっても、投光装置100bは、高速に移動する投光対象物Obにブレの無い映像を投影することが可能となる。 As described above, the shake in pitching and yawing is corrected by an optical system shift type or the like, and the shake in rolling is corrected by image processing, so that even if the own apparatus vibrates, the light projector 100b. Makes it possible to project a blur-free image on the projection object Ob moving at high speed.
<実施形態3>
 実施形態1、2では、投光装置100に、鏡胴(投光部)3の投光方向を変更する機能を持たせることで、ピッチング及びヨーイングの防振を行った。実施形態3では、投光装置100が備える鏡胴(投光部)3に、ピッチング及びヨーイングの振れ補正機能に必要な機能を内蔵させるものである。
<Embodiment 3>
In the first and second embodiments, the light projecting device 100 is provided with a function of changing the light projecting direction of the lens barrel (light projecting unit) 3 to thereby prevent the pitching and yawing from being shaken. In the third embodiment, a lens barrel (light projecting unit) 3 included in the light projecting device 100 is provided with functions required for pitching and yawing shake correction functions.
 具体的には、投光装置100a、100bの投光本体部1が有している振れ検出部11及び振れ量算出部12、振れ検出センサ2、並びに、光学補正部4が、投光部3に備えられ、実施形態2の投光装置100cが構成される。 Specifically, the light projecting main body 1 of the light projecting devices 100 a and 100 b includes the shake detection unit 11, the shake amount calculation unit 12, the shake detection sensor 2, and the optical correction unit 4. The light projecting device 100c of the second embodiment is configured.
 このように、投光方向を変更するのに必要な機能を鏡胴に格納することにより、投光装置が交換レンズ式である場合には、自装置が振動し、防振が必要な場合にのみ、振れ補正機能が付加された鏡胴に交換すれば、ブレの無い映像を投影することが可能となる。つまり、ユーザの機器利用の選択肢の幅が広がることになる。投光本体部1に、振れ補正に必要な処理部を備える必要が無いので、投光本体部1の小型化とコストダウンにつながることになる。 In this way, by storing the function necessary for changing the light projecting direction in the lens barrel, when the light projecting device is an interchangeable lens type, the device itself vibrates and vibration isolation is necessary. However, if the lens barrel is replaced with a shake correction function, a blur-free image can be projected. That is, the range of options for the user's use of the device is expanded. Since it is not necessary for the light projecting main body unit 1 to include a processing unit necessary for shake correction, the light projecting main body unit 1 can be reduced in size and cost.
 図12に、振れ補正機能を内蔵した投光部(鏡胴)3eの例を示す。基板32上に、振れ検出センサ2、及び、所定の機能部が収納されたチップ321が搭載され、投光本体部1と通信線Nwで接続されている。 FIG. 12 shows an example of a light projecting unit (lens barrel) 3e with a built-in shake correction function. On the substrate 32, a shake detection sensor 2 and a chip 321 in which a predetermined functional unit is housed are mounted, and are connected to the light projecting main unit 1 by a communication line Nw.
 実施形態3の投光装置100cは、ピッチングとヨーイングにおける振れは、実施形態1、2と同様に、投光光学系31のレンズ群がシフトされ、又は、ミラーが回転されて、投光方向が変更される。また、ローリングによる振れは、振れ量が通信線Nwを介して投光本体部1cに送られ、映像表示部13bによってローリングの振れが補正された画像が、投光部3eに出力されるものである。 In the light projecting device 100c according to the third embodiment, as in the first and second embodiments, the lens group of the light projecting optical system 31 is shifted or the mirror is rotated so that the pitching and yawing are shaken. Be changed. Further, the shake due to rolling is such that the shake amount is sent to the light projecting body 1c via the communication line Nw, and an image in which the rolling shake is corrected by the video display unit 13b is output to the light projecting unit 3e. is there.
 図13に、実施形態3の投光装置100cの機能的構成の例を示す。投光装置100cは、図10に示す投光装置100bと比べて、以下の3点が異なる。1点目は、振れ検出センサ2bが、投光本体部1bではなく投光部3eに備えられている点である。2点目は、振れ検出部11及び振れ量算出部12bが、投光本体部1cではなく投光部3eに備えられている点である。3点目は、投光本体部1cと投光部3eとが、通信線Nwを介して通信を行う点である。通信線Nwは、有線であっても、無線であってもよい。投光部3eと投光本体部1cは、互いに通信を行うために、それぞれ通信部24、通信部14を備える。尚、基板32上の振れ検出センサ2及びチップ321には、投光本体部1から電力供給ラインを介して電力が供給される。 FIG. 13 shows an example of a functional configuration of the light projecting device 100c according to the third embodiment. The light projecting device 100c differs from the light projecting device 100b shown in FIG. 10 in the following three points. The first point is that the shake detection sensor 2b is provided in the light projecting section 3e, not in the light projecting main body section 1b. The second point is that the shake detection unit 11 and the shake amount calculation unit 12b are provided in the light projecting unit 3e, not the light projecting main body unit 1c. The third point is that the light projecting main body 1c and the light projecting unit 3e communicate via the communication line Nw. The communication line Nw may be wired or wireless. The light projecting unit 3e and the light projecting main body unit 1c include a communication unit 24 and a communication unit 14 in order to communicate with each other. Note that power is supplied to the shake detection sensor 2 and the chip 321 on the substrate 32 from the light projecting main body 1 via the power supply line.
<動作>
 投光装置100cが行う振れ補正処理を、図14を用いて説明する。図14は、第3実施形態の振れ補正処理のフローチャートである。左側が、投光部3eの振れ補正処理のフローチャートであり、右側が、投光本体部1cの振れ補正処理のフローチャートである。尚、図11のフローチャートと同じステップ番号の処理は、図11と同じ処理を示す。
<Operation>
The shake correction process performed by the light projecting device 100c will be described with reference to FIG. FIG. 14 is a flowchart of shake correction processing according to the third embodiment. The left side is a flowchart of shake correction processing of the light projecting unit 3e, and the right side is a flowchart of shake correction processing of the light projecting main body 1c. In addition, the process of the same step number as the flowchart of FIG. 11 shows the same process as FIG.
 インタフェース部(不図示)を介して、投光処理の開始を指示するコマンドがユーザによって入力されたことを検知した投光本体部1cは、映像表示部13bに映像の投影開始を指示する。指示を受けた映像表示部13bは、映像を取得し、投光部3eに出力を開始する(ステップS41、ステップS42:No、ステップS44)。 The light projecting main body unit 1c, which has detected that a command for instructing the start of the light projection process is input by the user via the interface unit (not shown), instructs the video display unit 13b to start video projection. Receiving the instruction, the video display unit 13b acquires the video and starts output to the light projecting unit 3e (Step S41, Step S42: No, Step S44).
 また、投光本体部1cは、通信部14を介して、振れ補正処理の開始を投光部3eに通知する。通知を受けた投光部3eの通信部24は、振れ検出センサ2bに検出の開始を指示する。指示を受けた振れ検出センサ2bは、ピッチ振れ検出部21、ヨー振れ検出部22、及び、ロール振れ検出部23が、周期的に検出するそれぞれの角速度を、振れ検出部11に出力する(ステップS21)。 Also, the light projecting main body 1c notifies the light projecting unit 3e of the start of shake correction processing via the communication unit 14. Upon receiving the notification, the communication unit 24 of the light projecting unit 3e instructs the shake detection sensor 2b to start detection. Upon receiving the instruction, the shake detection sensor 2b outputs the angular velocities detected periodically by the pitch shake detection unit 21, the yaw shake detection unit 22, and the roll shake detection unit 23 to the shake detection unit 11 (step). S21).
 角速度を取得した振れ検出部11は、取得した角速度、つまり、ピッチングの角速度、ヨーイングの角速度、及び、ローリングの角速度を、振れ量算出部12bに出力する。 The shake detection unit 11 that has acquired the angular velocity outputs the acquired angular velocity, that is, the pitching angular velocity, the yawing angular velocity, and the rolling angular velocity to the shake amount calculation unit 12b.
 振れ量算出部12bは、振れ検出部11から入力した角速度から、ピッチングの角度(変化量、振れ量)を算出し、振れ量が、予め定められた所定の閾値以上である場合には、ピッチング方向の振れが生じたと判断する(ステップS12:Yes)。振れが生じたと判断した振れ量算出部12bは、算出した振れ量を、光学補正部4を介してピッチ補正部41に出力し、ピッチ補正部41は、入力した振れ量からアクチュエータの駆動信号を生成する(ステップS13)。 The shake amount calculation unit 12b calculates a pitching angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and when the shake amount is equal to or greater than a predetermined threshold value, the pitching is calculated. It is determined that a direction shake has occurred (step S12: Yes). The shake amount calculation unit 12b that has determined that the shake has occurred outputs the calculated shake amount to the pitch correction unit 41 via the optical correction unit 4, and the pitch correction unit 41 generates an actuator drive signal from the input shake amount. Generate (step S13).
 次に、振れ量算出部12bは、振れ検出部11から入力した角速度から、ヨーイングの角度(変化量、振れ量)を算出し、振れ量が、予め定められた所定の閾値以上である場合には、ヨーイング方向の振れが生じたと判断する(ステップS14:Yes)。振れが生じたと判断した振れ量算出部12bは、算出した振れ量を、光学補正部4を介してヨー補正部42に出力し、ヨー補正部42は、入力した振れ量からアクチュエータの駆動信号を生成する(ステップS15)。 Next, the shake amount calculation unit 12b calculates the yawing angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and the shake amount is equal to or greater than a predetermined threshold value. Determines that a shake in the yawing direction has occurred (step S14: Yes). The shake amount calculation unit 12b that has determined that the shake has occurred outputs the calculated shake amount to the yaw correction unit 42 via the optical correction unit 4, and the yaw correction unit 42 obtains an actuator drive signal from the input shake amount. Generate (step S15).
 次に、振れ量算出部12bは、振れ検出部11から入力した角速度から、ローリングの角度(変化量、振れ量)を算出し、振れ量が、予め定められた所定の閾値以上である場合には、ローリング方向の振れが生じたと判断する(ステップS22:Yes)。振れが生じたと判断した振れ量算出部12bは、算出した振れ量を、通信部24を介して、投光本体部1cに送信する(ステップS31)。 Next, the shake amount calculation unit 12b calculates a rolling angle (change amount, shake amount) from the angular velocity input from the shake detection unit 11, and the shake amount is equal to or greater than a predetermined threshold value. Determines that a shake in the rolling direction has occurred (step S22: Yes). The shake amount calculation unit 12b that has determined that the shake has occurred transmits the calculated shake amount to the light projecting main body unit 1c via the communication unit 24 (step S31).
 光学補正部4のピッチ補正部41及びヨー補正部42は、生成した駆動信号を各アクチュエータに出力する。各アクチュエータは、駆動信号を入力し、入力した信号に応じて駆動する(ステップS16)。 The pitch correction unit 41 and the yaw correction unit 42 of the optical correction unit 4 output the generated drive signal to each actuator. Each actuator receives a drive signal and drives according to the input signal (step S16).
 通信部14を介して振れ量を入力した投光本体部1cの映像表示部13bは(ステップS42:Yes)、振れ量をロール補正画像生成部131に渡して、振れ量に応じた画像を作成させ(ステップS43)、作成された画像、つまり、ローリング補正が成された画像を、投光部3に出力する(ステップS44)。 The video display unit 13b of the light projecting main body unit 1c that has input the shake amount via the communication unit 14 (Step S42: Yes) passes the shake amount to the roll correction image generation unit 131 to create an image corresponding to the shake amount. Then, the created image, that is, the image subjected to the rolling correction is output to the light projecting unit 3 (step S44).
 このように、ピッチング及びヨーイングにおける振れは、光学系シフト式等によって補正が行われ、ローリングにおける振れは、画像処理により補正を行われるので、自装置が振動する場合には、投光部(鏡胴)3eを取り替えるだけで、高速に移動する投光対象物Obにブレの無い映像を投影することが可能となる。 In this way, shakes in pitching and yawing are corrected by an optical system shift type or the like, and shakes in rolling are corrected by image processing. It is possible to project a blur-free image on the light projecting object Ob moving at high speed only by replacing the cylinder 3e.
 尚、実施形態では、投光装置100cは、ローリングにおける振れ量のみを、画像処理によって補正することとしているが、ピッチ補正用又はヨー補正用のアクチュエータ(駆動装置)が、故障等の何らかの理由で使用できなくなった場合には、使用できなくなった駆動装置で行うはずであった補正を、画像処理で行うように、切り替えるようにしてもよい。この場合には、例えば、投光本体部1が駆動装置の故障等を検出した場合、振れ量算出部12bに、この故障等により行えなくなった補正の振れ量を算出させ、算出された振れ量を映像表示部13bに出力させる。映像表示部13bは、振れ量算出部12bから入力された振れ量を打ち消すような補正を行った画像を作成し、投光部3に出力する。尚、ピッチングの振れ、又は、ヨーイングの振れを画像処理で行う指示を、ユーザが指示できるようなインタフェース部を、投光装置100cが設けることとしてもよい。 In the embodiment, the light projecting device 100c corrects only the shake amount in rolling by image processing. However, the actuator (drive device) for pitch correction or yaw correction has some reason such as failure. When it becomes impossible to use, the correction that should have been performed by the drive device that can no longer be used may be switched to be performed by image processing. In this case, for example, when the light projecting main body unit 1 detects a failure or the like of the drive device, the shake amount calculation unit 12b calculates the correction shake amount that cannot be performed due to the failure or the like, and the calculated shake amount Is output to the video display unit 13b. The video display unit 13 b creates an image that has been corrected so as to cancel out the shake amount input from the shake amount calculation unit 12 b and outputs the image to the light projecting unit 3. Note that the light projecting device 100c may be provided with an interface unit that allows the user to give an instruction to perform pitching shake or yawing shake by image processing.
 実施形態では、振れ検出センサ2がジャイロセンサを有することとしているが、3軸加速度センサを備え、加速度センサ内の座標系の3軸(x、y、z)それぞれの軸方向成分として検出される各軸の加速度から、投光装置100の向きの変化量(振れ量)を求めてもよい。 In the embodiment, the shake detection sensor 2 includes a gyro sensor. However, the shake detection sensor 2 includes a three-axis acceleration sensor, and is detected as an axial component of each of the three axes (x, y, z) of the coordinate system in the acceleration sensor. An amount of change (amount of shake) in the direction of the light projecting device 100 may be obtained from the acceleration of each axis.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一態様に係る投光装置は、自装置の位置又は投光方向を変更する移動部に搭載された投光装置であって、光を投光する投光光学系を備え、投光対象物に所定形状の光を投光する投光部と、自装置の振れ量を検出する振動検出部と、前記振動検出部が検出した振れ量に応じて、前記投光部の前記投光方向を変更して、前記投光対象物に光を投光させる投光方向変更部とを備える。 A light projecting device according to an aspect of the present invention is a light projecting device mounted on a moving unit that changes a position or a light projecting direction of the device, and includes a light projecting optical system that projects light, A light projecting unit that projects light of a predetermined shape onto an object, a vibration detection unit that detects a shake amount of the device itself, and the light projection of the light projecting unit according to the shake amount detected by the vibration detection unit A light projecting direction changing unit that changes the direction and projects light onto the light projecting object.
 他の一態様に係る投光方法は、自装置の位置又は投光方向を変更する移動部に搭載され、光を投光する投光光学系を有する、投光対象物に所定形状の光を投光する投光部を備えた投光装置で用いられる投光方法であって、自装置の振れ量を検出する振動検出ステップと、前記振動検出ステップで検出した振れ量に応じて、前記投光部の前記投光方向を変更して、前記投光対象物に光を投光させる投光方向変更ステップとを備える。 A light projecting method according to another aspect includes a light projecting optical system that is mounted on a moving unit that changes the position or the light projecting direction of its own device, and projects light of a predetermined shape onto a light projecting object. A light projecting method used in a light projecting device having a light projecting unit for projecting, wherein a vibration detecting step for detecting a shake amount of the own device, and the light projecting amount according to the shake amount detected in the vibration detecting step. A projecting direction changing step of changing the projecting direction of the light unit to project light onto the projecting object.
 この構成によれば、投光装置は、自装置の振れ量に応じて、投光部の投光方向を変更して、投光対象物に投光するので、自装置が振動した場合であっても、移動する投光対象物に、ブレの無い光を投光対象物に投光することが可能となる。 According to this configuration, the light projecting device changes the light projecting direction of the light projecting unit according to the shake amount of the device itself, and projects the light onto the projecting object. Even in this case, it is possible to project light without blurring onto the projecting object to be moved.
 上述の投光装置において、前記投光対象物の表面に投光する光の形状を算出する形状算出部と、前記振動検出部が検出した振れ量を補正した形状を前記形状算出部に算出させ、前記形状算出部が算出した形状の光を、前記投光部に投光させる投光制御部とを、更に備える。 In the above-described light projecting device, the shape calculation unit that calculates the shape of the light projected on the surface of the projection object and the shape calculation unit that calculates the shape obtained by correcting the shake amount detected by the vibration detection unit are calculated. A light projecting control unit that causes the light projecting unit to project light having the shape calculated by the shape calculating unit.
 この構成によれば、投光装置は、自装置の振れに応じて、画像処理で補正した形状の光(映像)を、移動する投光対象物に投光することが可能となる。 According to this configuration, the light projecting device can project light (video) having a shape corrected by image processing onto a moving light projecting object in accordance with the shake of the device itself.
 上述の投光装置において、前記投光部は鏡胴であり、前記振動検出部、及び、投光方向変更部は、鏡胴に内蔵されている。 In the above-described light projecting device, the light projecting unit is a lens barrel, and the vibration detecting unit and the light projecting direction changing unit are built in the lens barrel.
 この構成によれば、投光装置は、自装置の振れ補正が必要な場合に、鏡胴を取り替えることで、容易に、ブレの無い形状の光(映像)を、移動する投光対象物に投光することが可能となる。 According to this configuration, the light projecting device can easily change the light (video) having no blur to the moving light projecting object by replacing the lens barrel when shake correction of the device itself is necessary. It is possible to project light.
 上述の投光装置において、前記投光光学系は、1又は複数の光学レンズから成るレンズ群を、1又は複数有しており、前記投光方向変更部は、少なくとも1つの前記レンズ群を、前記投光光学系の光軸に対し直交する方向に移動させることで、前記投光部の前記投光方向を変更する。 In the above-described light projecting device, the light projecting optical system includes one or a plurality of lens groups including one or a plurality of optical lenses, and the light projecting direction changing unit includes at least one lens group, The projection direction of the projection unit is changed by moving the projection unit in a direction orthogonal to the optical axis of the projection optical system.
 上述の投光装置において、前記投光光学系は、1又は複数のミラーを有しており、前記投光方向変更部は、前記ミラーを回転させることで、前記投光部の前記投光方向を変更する。 In the above-described light projecting device, the light projecting optical system includes one or a plurality of mirrors, and the light projecting direction changing unit rotates the mirror, thereby causing the light projecting direction of the light projecting unit to be the light projecting direction. To change.
 上述の投光装置において、前記投光方向変更部は、前記投光部を、前記投光光学系の光軸に対し直交する方向に移動させることで、前記投光部の前記投光方向を変更する。 In the above-described light projecting device, the light projecting direction changing unit moves the light projecting unit in a direction orthogonal to the optical axis of the light projecting optical system, thereby changing the light projecting direction of the light projecting unit. change.
 この構成によれば、投光装置は、投光部の投光方向を、容易に変更することができ、ブレの無い形状の光(映像)を、移動する投光対象物に投光することが可能となる。 According to this configuration, the light projecting device can easily change the light projecting direction of the light projecting unit, and project light having no blur (image) onto a moving light projecting object. Is possible.
 上述の投光装置において、前記移動部は、多関節ロボット、移動ロボット、パンチルト雲台のいずれかである。 In the above projector, the moving unit is any of an articulated robot, a mobile robot, and a pan / tilt head.
 この構成によれば、投光装置は、移動する投光対象物に追従して、映像を投影し続けることが可能となり、また、投影できる範囲、つまり、投光対象物が移動する範囲が拡大しても追従することが可能となる。 According to this configuration, the light projecting device can continue to project an image following the moving light projecting object, and the range that can be projected, that is, the range in which the light projecting object moves is expanded. Even if it follows, it becomes possible to follow.
 上述の投光装置において、前記振動検出部は、自装置のピッチ方向、ヨー方向、ロール方向のそれぞれの傾きを、それぞれの振れ量として検出し、前記投光方向変更部は、前記ピッチ方向の振れ量、又は、前記ヨー方向の振れ量に応じて、前記投光部の前記投光方向を変更し、前記投光制御部は、前記ロール方向の振れ量を補正した形状を前記形状算出部に算出させ、前記形状算出部が算出した形状の光を、前記投光部に投光させる。 In the above-described light projecting device, the vibration detection unit detects the respective tilts of the pitch direction, yaw direction, and roll direction of the own device as respective shake amounts, and the light projecting direction changing unit detects the pitch direction. According to the shake amount or the shake amount in the yaw direction, the light projecting direction of the light projecting unit is changed, and the light projecting control unit corrects the shake amount in the roll direction to the shape calculating unit. And the light having the shape calculated by the shape calculation unit is projected onto the light projecting unit.
 この構成によれば、投光装置は、自装置のピッチ方向及びヨー方向の振れを、投光方向を変更することで容易に補正することができ、ロール方向の振れを画像処理によって補正することができるので、ブレの無い形状の光(映像)を、移動する投光対象物に投光することが可能となる。 According to this configuration, the light projecting device can easily correct the shake in the pitch direction and the yaw direction of its own device by changing the light projecting direction, and correct the shake in the roll direction by image processing. Therefore, it becomes possible to project light (video) having a non-blurred shape onto a moving projection object.
 上述の投光装置において、前記振動検出部は、自装置のピッチ方向、ヨー方向、ロール方向のそれぞれの傾きを、それぞれの振れ量として検出し、前記投光方向変更部は、前記ピッチ方向の振れ量、及び、前記ヨー方向の振れ量のうちのいずれか一方の振れ量に応じて、前記投光部の前記投光方向を変更し、前記投光制御部は、前記ロール方向の振れ量、及び、前記投光方向変更部が前記投光方向の変更に用いなかった方向の振れ量を補正した形状を前記形状算出部に算出させ、前記形状算出部が算出した形状の光を、前記投光部に投光させる。 In the above-described light projecting device, the vibration detection unit detects the respective tilts of the pitch direction, yaw direction, and roll direction of the own device as respective shake amounts, and the light projecting direction changing unit detects the pitch direction. The light projection direction of the light projecting unit is changed according to one of the shake amount and the shake amount of the yaw direction, and the light projection control unit And, the shape calculation unit calculates the shape in which the projection direction change unit has corrected the shake amount in the direction not used for the change of the projection direction, and the shape calculation unit calculates the light of the shape, Light is projected to the light projecting unit.
 この構成によれば、投光装置は、自装置のピッチ方向又はヨー方向の振れを、投光方向を変更することで補正することができない場合には、補正できない方向の振れを画像処理によって補正することができるので、ブレの無い形状の光(映像)を、移動する投光対象物に投光することが可能となる。 According to this configuration, when the light projecting device cannot correct the shake in the pitch direction or the yaw direction of its own device by changing the light projecting direction, the light projecting device corrects the shake in the direction that cannot be corrected by image processing. Therefore, it is possible to project light (video) having a shape without blurring onto a moving projection object.
 上述の投光装置において、前記投光対象物は、移動体である。 In the above-described light projecting device, the light projecting object is a moving body.
 この構成によれば、投光装置は、投光対象物が移動体である場合にも、追従して、映像を投影し続けることが可能となる。 According to this configuration, it is possible for the light projecting device to continue projecting an image following the light projecting object even when the light projecting object is a moving object.
 本発明によれば、移動する対象物に、所定形状の光(映像)を投光することができる。 According to the present invention, light (video) having a predetermined shape can be projected onto a moving object.
 この出願は、2014年3月25日に出願された日本国特許出願特願2014-061701を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2014-061701 filed on Mar. 25, 2014, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、投光装置、及び、投光方法を提供することができる。 According to the present invention, it is possible to provide a light projecting device and a light projecting method.

Claims (11)

  1.  自装置の位置又は投光方向を変更する移動部に搭載された投光装置であって、
     光を投光する投光光学系を備え、投光対象物に所定形状の光を投光する投光部と、
     自装置の振れ量を検出する振動検出部と、
     前記振動検出部が検出した振れ量に応じて、前記投光部の前記投光方向を変更して、前記投光対象物に光を投光させる投光方向変更部と
     を備える投光装置。
    A light projection device mounted on a moving unit that changes the position or light projection direction of the device itself,
    A light projecting optical system that projects light, and a light projecting unit that projects light of a predetermined shape onto the projecting object;
    A vibration detection unit for detecting the shake amount of the own device;
    A light projecting device comprising: a light projecting direction changing unit that changes the light projecting direction of the light projecting unit according to a shake amount detected by the vibration detecting unit, and projects light onto the light projecting object.
  2.  前記投光対象物の表面に投光する光の形状を算出する形状算出部と、
     前記振動検出部が検出した振れ量を補正した形状を前記形状算出部に算出させ、前記形状算出部が算出した形状の光を、前記投光部に投光させる投光制御部とを、更に備える、
     請求項1に記載の投光装置。
    A shape calculating unit for calculating the shape of light projected on the surface of the light projecting object;
    A projection control unit that causes the shape calculation unit to calculate a shape obtained by correcting the shake amount detected by the vibration detection unit, and causes the light projection unit to project light having the shape calculated by the shape calculation unit; Prepare
    The light projecting device according to claim 1.
  3.  前記投光部は鏡胴であり、前記振動検出部、及び、投光方向変更部は、鏡胴に内蔵されている、
     請求項1又は2に記載の投光装置。
    The light projecting unit is a lens barrel, and the vibration detecting unit and the light projecting direction changing unit are built in the lens barrel.
    The light projection device according to claim 1.
  4.  前記投光光学系は、1又は複数の光学レンズから成るレンズ群を、1又は複数有しており、
     前記投光方向変更部は、少なくとも1つの前記レンズ群を、前記投光光学系の光軸に対し直交する方向に移動させることで、前記投光部の前記投光方向を変更する、
     請求項1に記載の投光装置。
    The projection optical system has one or a plurality of lens groups each including one or a plurality of optical lenses,
    The light projecting direction changing unit changes the light projecting direction of the light projecting unit by moving at least one lens group in a direction orthogonal to the optical axis of the light projecting optical system.
    The light projecting device according to claim 1.
  5.  前記投光光学系は、1又は複数のミラーを有しており、
     前記投光方向変更部は、前記ミラーを回転させることで、前記投光部の前記投光方向を変更する、
     請求項1に記載の投光装置。
    The projection optical system has one or a plurality of mirrors,
    The light projecting direction changing unit changes the light projecting direction of the light projecting unit by rotating the mirror.
    The light projecting device according to claim 1.
  6.  前記投光方向変更部は、前記投光部を、前記投光光学系の光軸に対し直交する方向に移動させることで、前記投光部の前記投光方向を変更する、
     請求項1に記載の投光装置。
    The light projecting direction changing unit changes the light projecting direction of the light projecting unit by moving the light projecting unit in a direction orthogonal to the optical axis of the light projecting optical system.
    The light projecting device according to claim 1.
  7.  前記移動部は、多関節ロボット、移動ロボット、パンチルト雲台のいずれかである、
     請求項1に記載の投光装置。
    The moving unit is any of an articulated robot, a mobile robot, and a pan / tilt head.
    The light projecting device according to claim 1.
  8.  前記振動検出部は、自装置のピッチ方向、ヨー方向、ロール方向のそれぞれの傾きを、それぞれの振れ量として検出し、
     前記投光方向変更部は、前記ピッチ方向の振れ量、又は、前記ヨー方向の振れ量に応じて、前記投光部の前記投光方向を変更し、
     前記投光制御部は、前記ロール方向の振れ量を補正した形状を前記形状算出部に算出させ、前記形状算出部が算出した形状の光を、前記投光部に投光させる、
     請求項2に記載の投光装置。
    The vibration detection unit detects respective inclinations of the pitch direction, yaw direction, and roll direction of the own device as respective shake amounts,
    The light projecting direction changing unit changes the light projecting direction of the light projecting unit according to the amount of shake in the pitch direction or the amount of shake in the yaw direction,
    The light projection control unit causes the shape calculation unit to calculate a shape in which the amount of shake in the roll direction is corrected, and causes the light projection unit to project light having the shape calculated by the shape calculation unit.
    The light projection device according to claim 2.
  9.  前記振動検出部は、自装置のピッチ方向、ヨー方向、ロール方向のそれぞれの傾きを、それぞれの振れ量として検出し、
     前記投光方向変更部は、前記ピッチ方向の振れ量、及び、前記ヨー方向の振れ量のうちのいずれか一方の振れ量に応じて、前記投光部の前記投光方向を変更し、
     前記投光制御部は、前記ロール方向の振れ量、及び、前記投光方向変更部が前記投光方向の変更に用いなかった方向の振れ量を補正した形状を前記形状算出部に算出させ、前記形状算出部が算出した形状の光を、前記投光部に投光させる、
     請求項2に記載の投光装置。
    The vibration detection unit detects respective inclinations of the pitch direction, yaw direction, and roll direction of the own device as respective shake amounts,
    The light projecting direction changing unit changes the light projecting direction of the light projecting unit according to any one of the shake amount in the pitch direction and the shake amount in the yaw direction,
    The light projection control unit causes the shape calculation unit to calculate a shake amount in the roll direction and a shape in which the light projection direction change unit corrects a shake amount in a direction not used for changing the light projection direction, Causing the light projecting unit to project the light of the shape calculated by the shape calculating unit;
    The light projection device according to claim 2.
  10.  前記投光対象物は、移動体である、
     請求項1ないし9のいずれか一項に記載の投光装置。
    The projecting object is a moving object.
    The light projecting device according to claim 1.
  11.  自装置の位置又は投光方向を変更する移動部に搭載され、光を投光する投光光学系を有する、投光対象物に所定形状の光を投光する投光部を備えた投光装置で用いられる投光方法であって、
     自装置の振れ量を検出する振動検出ステップと、
     前記振動検出ステップで検出した振れ量に応じて、前記投光部の前記投光方向を変更して、前記投光対象物に光を投光させる投光方向変更ステップと
     を備える投光方法。
    Light projection provided with a light projection unit that is mounted on a moving unit that changes the position or the light projection direction of the device itself and that has a light projection optical system that projects light, and projects light of a predetermined shape onto a light projection object A light projection method used in the apparatus,
    A vibration detection step for detecting a shake amount of the own device;
    A light projecting method comprising: a light projecting direction changing step of projecting light onto the light projecting object by changing the light projecting direction of the light projecting unit according to the shake amount detected in the vibration detecting step.
PCT/JP2015/058337 2014-03-25 2015-03-19 Light projection device and light projection method WO2015146805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014061701 2014-03-25
JP2014-061701 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015146805A1 true WO2015146805A1 (en) 2015-10-01

Family

ID=54195325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058337 WO2015146805A1 (en) 2014-03-25 2015-03-19 Light projection device and light projection method

Country Status (1)

Country Link
WO (1) WO2015146805A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047355A1 (en) * 2016-09-12 2018-03-15 株式会社アイオイ・システム Picking assistance device
JP2018194609A (en) * 2017-05-15 2018-12-06 株式会社荏原製作所 Video display system and video display method
WO2019181233A1 (en) * 2018-03-19 2019-09-26 ソニー株式会社 Image display system, information processing device, information processing method, program, and moving body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099680A (en) * 2003-03-26 2005-04-14 Matsushita Electric Ind Co Ltd Image display system
JP2008209470A (en) * 2007-02-23 2008-09-11 Nikon Corp Projection system
JP2010102064A (en) * 2008-10-23 2010-05-06 Sony Ericsson Mobilecommunications Japan Inc Front projection type video display apparatus, projection image correcting method, and projection image correcting program
JP2012047850A (en) * 2010-08-25 2012-03-08 Canon Inc Projection type display device
US20130120547A1 (en) * 2011-11-16 2013-05-16 Autofuss System and method for 3d projection mapping with robotically controlled objects
JP2013178368A (en) * 2012-02-28 2013-09-09 Nikon Corp Projector
JP2013225040A (en) * 2012-04-23 2013-10-31 Rohm Co Ltd Projector
JP2014030897A (en) * 2012-08-03 2014-02-20 Toyota Motor Engineering & Manufacturing North America Inc Robot including projector for projecting image on identified projection surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099680A (en) * 2003-03-26 2005-04-14 Matsushita Electric Ind Co Ltd Image display system
JP2008209470A (en) * 2007-02-23 2008-09-11 Nikon Corp Projection system
JP2010102064A (en) * 2008-10-23 2010-05-06 Sony Ericsson Mobilecommunications Japan Inc Front projection type video display apparatus, projection image correcting method, and projection image correcting program
JP2012047850A (en) * 2010-08-25 2012-03-08 Canon Inc Projection type display device
US20130120547A1 (en) * 2011-11-16 2013-05-16 Autofuss System and method for 3d projection mapping with robotically controlled objects
JP2013178368A (en) * 2012-02-28 2013-09-09 Nikon Corp Projector
JP2013225040A (en) * 2012-04-23 2013-10-31 Rohm Co Ltd Projector
JP2014030897A (en) * 2012-08-03 2014-02-20 Toyota Motor Engineering & Manufacturing North America Inc Robot including projector for projecting image on identified projection surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047355A1 (en) * 2016-09-12 2018-03-15 株式会社アイオイ・システム Picking assistance device
JPWO2018047355A1 (en) * 2016-09-12 2018-09-06 株式会社アイオイ・システム Picking support device
TWI641545B (en) * 2016-09-12 2018-11-21 日商相生系統股份有限公司 Pick Support Device
US10504199B2 (en) 2016-09-12 2019-12-10 Aioi Systems Co., Ltd. Picking assistant system
JP2018194609A (en) * 2017-05-15 2018-12-06 株式会社荏原製作所 Video display system and video display method
JP7149689B2 (en) 2017-05-15 2022-10-07 株式会社荏原製作所 Video display system and video display method
WO2019181233A1 (en) * 2018-03-19 2019-09-26 ソニー株式会社 Image display system, information processing device, information processing method, program, and moving body
US11232769B2 (en) 2018-03-19 2022-01-25 Sony Corporation Image display system, information processing apparatus, information processing method, program, and mobile object

Similar Documents

Publication Publication Date Title
JP5354168B2 (en) Projector and control method
US8731720B1 (en) Remotely controlled self-balancing robot including kinematic image stabilization
JP6623059B2 (en) Adjusting the tilt of the movable body
WO2015146805A1 (en) Light projection device and light projection method
WO2020074900A1 (en) Actuator assemblies and methods of controlling the same
JP2009139827A (en) Image blur correction device
JP2018072657A (en) Optical unit
EP2706408B1 (en) Image stabilization system for handheld devices equipped with pico-projector
WO2019227464A1 (en) Rotation angle control method, pan-tilt device and computer-readable recording medium
KR20190069801A (en) Device of driving camera, driving method thereof and jimbal apparatus
JP7076988B2 (en) Imaging device and control method
JP4649938B2 (en) Blur correction device, lens barrel, camera system
JP6988887B2 (en) Lens barrel, camera body, camera system
WO2021014673A1 (en) Device, method, and program for controlling image display
JP2020144257A (en) Observation optical system
JP7455558B2 (en) Imaging device and its spatial stabilization method
JP2008227807A (en) Image stabilizer
JP2001091858A (en) Image stabilizer
JP2021092667A (en) Control device, control method, program, method, and recording medium
WO2015137341A1 (en) Light projection device and light projection method
JP2001100106A (en) Image stabilizer
JP2001075014A (en) Image stabilizing device
JPH06118342A (en) Light beam pointer
JP6576722B2 (en) Imaging device
JP2021092696A (en) Imaging apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15767877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP