WO2015146803A1 - Driving mode switch control method and vehicle - Google Patents

Driving mode switch control method and vehicle Download PDF

Info

Publication number
WO2015146803A1
WO2015146803A1 PCT/JP2015/058332 JP2015058332W WO2015146803A1 WO 2015146803 A1 WO2015146803 A1 WO 2015146803A1 JP 2015058332 W JP2015058332 W JP 2015058332W WO 2015146803 A1 WO2015146803 A1 WO 2015146803A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
steering
wheels
rack
rack bar
Prior art date
Application number
PCT/JP2015/058332
Other languages
French (fr)
Japanese (ja)
Inventor
石河 智海
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2015146803A1 publication Critical patent/WO2015146803A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1509Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels with different steering modes, e.g. crab-steering, or steering specially adapted for reversing of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/007Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits adjustable by the driver, e.g. sport mode

Definitions

  • the present invention employs a switching control method for a traveling mode of a vehicle including an in-wheel motor that can switch the traveling mode between a normal traveling mode and a special traveling mode such as in-situ rotation, and the switching control method thereof.
  • a traveling mode of a vehicle including an in-wheel motor that can switch the traveling mode between a normal traveling mode and a special traveling mode such as in-situ rotation, and the switching control method thereof.
  • Ackerman-Jantou type is used to steer the wheels using a steering link mechanism that connects the left and right wheels (hereinafter collectively referred to as "wheels” including tires, wheels, hubs, in-wheel motors, etc.)
  • wheels including tires, wheels, hubs, in-wheel motors, etc.
  • This steering mechanism uses a tie rod and a knuckle arm so that the left and right wheels have the same center of rotation when the vehicle rotates.
  • This steering mechanism for example, there is a configuration shown in Patent Document 1 below.
  • This steering mechanism is provided with a steering link mechanism for left and right wheels using tie rods and knuckle arms on at least one of the front wheel side and rear wheel side, and the tie rod length, the distance between the left and right tie rods, or the angle between each wheel and the knuckle arm.
  • the steering mechanism shown in the following Patent Document 2 is disposed between the left and right wheels of the front and rear wheels, and can rotate around the axis, and the rotation of the divided steering shaft between the left and right divided steering shafts.
  • Forward / reverse switching means for switching the direction between forward and reverse directions is provided. This switching means enables a steering angle of 90 degrees, lateral movement, and the like.
  • Patent Document 3 discloses a technology of a four-wheel steered vehicle in which an actuator is operated in accordance with the steering of the front wheels to steer the rear wheels.
  • Patent Document 4 discloses a technique of a steering mechanism in which a toe adjustment of the left and right wheels is performed by moving a rack housing connecting the left and right wheels in the front-rear direction to improve running stability.
  • the front wheels which are the main steered wheels
  • the rear wheels which are the follower steered wheels
  • the rotation center of the front wheel and the rear wheel is not at the same position.
  • the vehicle rotates in a posture in which the rear wheels enter the inside of the rotation circle due to the inner wheel difference
  • the vehicles rotate in a posture in which the front wheels enter the inside of the rotation circle by centrifugal force.
  • Patent Document 1 As a vehicle having a four-wheel steering mechanism (a so-called 4WS vehicle), for example, the technique described in Patent Document 1 allows the vehicle to move in the lateral direction, turn around, and the like. However, in order to change the length of the tie rod, the distance between the left and right tie rods, or the angle between the wheel and the knuckle arm, many actuators are provided, and complicated control of each actuator is required. Further, the technique described in Patent Document 2 has a complicated structure due to its mechanism, and uses a large number of gears to steer the wheels by the rotation of the rack bar. For this reason, rattling is likely to occur between the gears, and it is difficult to smoothly steer the wheels.
  • 4WS vehicle a so-called 4WS vehicle
  • Patent Document 3 is an example of a conventional four-wheel steering mechanism and enables rear wheel steering, but it is difficult to move in the lateral direction only with this mechanism.
  • Patent Document 4 has a problem that it can not adjust to a lateral movement or a small turn of the vehicle while toe adjustment is possible.
  • This steering mechanism has two rack bars that can move independently on the left and right sides, and each of the rack bars is connected to one of the left and right wheels via a tie rod, and is driven by a synchronous gear held in a synchronous gear box.
  • the rack bar is movable opposite to the synchronous gearbox.
  • the two rack bars are each provided with a pinion gear that meshes with the rack bar, and a coupling mechanism is provided between the two pinion gears so that the rotation shafts of both the pinion gears can be coupled or separated.
  • both rack bars When this coupling mechanism is coupled, both rack bars can be moved together in the same direction by the same distance, that is, the left and right wheels can be steered in the same direction.
  • both rack bars can be moved in the opposite direction by the same distance, that is, the left and right wheels can be steered in the opposite direction.
  • This steering mechanism can realize special travel modes such as lateral movement and small turn with a simple configuration. For example, when changing from normal driving mode to in-situ rotation and lateral movement modes, the front ends of the left and right front wheels and the rear ends of the left and right rear wheels approach each other. To steer.
  • a contact point P ′ between the extension line of the kingpin axis P (steering rotation axis) and the ground surface Some have a suspension device designed so that the ground contact center T ′ of the tire T does not coincide (the scrub radius S ⁇ 0). In a vehicle equipped with this suspension device, switching between the normal travel mode and special travel modes such as in-situ rotation and lateral travel is performed by turning the wheel around the kingpin.
  • the inventor prevents the rotation of the rear wheels when turning the front wheels and switches the rear wheels while switching the traveling mode of the vehicle.
  • an object of the present invention is to prevent a large load from being applied to vehicle parts such as a steering device when a vehicle stopped on an inclined ground is steered.
  • the vehicle has a step of turning in accordance with the above operation, and a traveling mode switching control method for a vehicle is configured.
  • the predetermined direction is a left-right reverse direction for the left and right front wheels, a left-right reverse direction for the left and right rear wheels, and a left-right reverse direction for the left and right front wheels. It can be.
  • Such wheel behavior occurs when changing from the normal travel mode to a special travel mode such as the spot rotation mode or the lateral movement mode.
  • a large load is often applied to vehicle components such as a steering device and a suspension.
  • the vehicle inclination direction is calculated from the measurement results of the vehicle body front-rear direction and left-right inclination angles obtained by the inclination angle measurement means, and the measurement results are obtained for each inclination direction.
  • a step of canceling the operation or rejecting the operation can be applied.
  • the predetermined angle predetermined for each inclination direction is compared with the actual inclination angle in the inclination direction so that the steering operation is not performed when the actual inclination angle is equal to or greater than the predetermined angle.
  • the “predetermined angle determined for each inclination direction” means, for example, a state in which the front side of the vehicle is lowered (horizontal state in the left-right direction) is 0 degrees, and a state in which the right side of the vehicle is lowered (front-rear direction) Is 90 degrees, the rear side of the vehicle is low (horizontal in the left-right direction) is 180 degrees, and the left side of the vehicle is low (horizontal in the front-back direction) is 270 degrees.
  • the step of this angle can be, for example, 30 degrees, 45 degrees, or can be continuous (stepless).
  • the predetermined angle can be set to 5 degrees.
  • the angle of 5 degrees is an angle at which the load bias to some of the wheels (front wheels or rear wheels) becomes very significant. Therefore, when the inclination angle becomes 5 degrees or more, it is possible to prevent a major problem of the vehicle parts by controlling to stop the switching of the driving mode.
  • the predetermined angle can be 3 degrees.
  • the angle of 3 degrees is an angle at which the load bias on some of the wheels starts to increase. Therefore, when the inclination angle becomes 3 degrees or more, the vehicle parts can be prevented from malfunctioning by controlling the switching of the driving mode to be stopped.
  • This predetermined angle can be changed as appropriate in accordance with the vehicle configuration (vehicle shape, dimensions, weight, etc.). This is because, depending on the configuration of the vehicle, the bias of the load on the front and rear wheels and the left and right wheels during tilting changes.
  • a mode switching means for switching the driving mode a steering device capable of turning the left and right front and rear wheels in the same direction in the left and right direction or the reverse direction by operation of the mode switching means, and a vehicle body are mounted.
  • a vehicle can be configured.
  • the steering device is connected to the left and right wheels, the tie rods for turning the left and right wheels, the pair of rack bars respectively connected to the tie rods of the left and right wheels, and the pair of rack bars.
  • a synchronous gear that meshes with each other and converts the movement of one rack bar in one direction with respect to the parallel direction of the rack teeth into the other direction of the other rack bar; and a first pinion gear that meshes with the one rack bar
  • a second pinion gear meshing with the other rack bar, and a coupling mechanism for coupling or separating the rotation shafts of the first and second pinion gears, and the pair of rack bars are racks of the respective rack bars.
  • a rack bar operating means that can be moved in the opposite direction along the parallel direction of the teeth.
  • the pair of rack bars By connecting the wheels to the pair of rack bars that can be moved independently from each other via tie rods, the pair of rack bars can be fixed together in normal driving mode to operate without any discomfort from conventional steering operations. By moving the pair of rack bars in different directions, various special driving modes such as small turn, on-site rotation, and lateral movement can be realized. Further, by using a pair of rack bars that can be switched between separation and fixation, a complicated mechanism and control are not required, and the cost can be reduced.
  • the step of operating to steer at least one of the left and right front wheels or the rear wheel in a predetermined direction, and the measurement result of the tilt angle of the vehicle body obtained by the tilt angle measuring means mounted on the vehicle body are provided.
  • a traveling mode switching control method of the vehicle having the above.
  • FIG. 2 is a plan view showing a lateral movement (parallel movement) mode in the vehicle of FIG. Sectional view showing the support state of the wheel
  • the perspective view which shows the external appearance of a steering device The detail of the rack bar operation
  • movement means of a steering device is shown, (a) is a front view of a separation state, (b) is a front view of a coupling state Front view showing the inside of the steering device
  • the inside of a steering device is shown, (a) is a top view in a state where a pair of rack bars are closest, (b) is a plan view in a state where a pair of rack bars is opened
  • FIG. 1 is a micro mobility of a two-seater (horizontally two-seater).
  • the micro mobility will be described as an example, but the present invention is not limited to the micro mobility and can be applied to a normal vehicle.
  • FIG. 2 is a schematic plan view showing a drive system and a control path of the steering mechanism of the vehicle 1.
  • Steering devices 10 and 20 are connected to front left and right wheels FL and FR and rear left and right wheels RL and RR via tie rods 12 and 22, respectively.
  • Each wheel w of the vehicle 1 is provided with an in-wheel motor M, and each wheel w can be directly driven to rotate.
  • Steering devices 10 and 20 are provided on the front and rear wheels, respectively, and the left and right wheels w are moved in the same direction by rotating the steering 2 around the steering shaft 3 axis or driving the steering devices 10 and 20 by an actuator. Or it can steer in the reverse direction.
  • the vehicle 1 is provided with an electronic control unit (ECU) 70 that controls the steering devices 10 and 20.
  • the ECU 70 is connected to an inclination angle measuring means 71 for measuring the inclination angle of the vehicle 1.
  • various sensors such as a gyro sensor and an acceleration sensor can be employed.
  • a gyro sensor and an acceleration sensor can be employed as the tilt angle measuring means 71.
  • FIG. 1 when the vehicle 1 is parked in the front-rear direction (the front is highly inclined), a larger load is applied to the rear wheels RL and RR than the front wheels FL and FR.
  • a large force is applied to vehicle parts such as the steering devices 10 and 20 connected to the wheel, and there is a possibility that a problem occurs in the vehicle part.
  • the inclination angle measuring means 71 detects an inclination greater than a predetermined angle
  • this is notified to the ECU 70, and the mode switching by the driver is performed.
  • the switching control method is configured so that the operation of the means 42 is canceled or the acceptance of the operation of the mode switching means 42 is rejected.
  • the driving mode is not switched when the vehicle 1 is inclined at a predetermined angle or more, and the steering is performed while a large load is applied to some of the wheels, causing a problem in the vehicle parts. Can be prevented.
  • an inclination angle sensor capable of simultaneously measuring the inclination angle of the vehicle 1 in the front-rear direction and the left-right direction is used.
  • the tilt angle sensor by using the tilt angle sensor, the tilt direction of the vehicle 1 can be calculated from the tilt angles in the front-rear direction and the left-right direction.
  • the predetermined angle predetermined for each inclination direction is compared with the actual inclination angle in the inclination direction measured by the inclination angle measuring means 71, and the driving mode is switched when the actual inclination angle is equal to or larger than the predetermined angle.
  • a sensor that can measure only the inclination in the front-rear direction may be employed.
  • any steering device may be used for the vehicle 1 according to the present invention, but in FIGS. 6 to 9 (a) and 9 (b) It is particularly preferable to use the steering devices 10 and 20 described in detail.
  • the configuration and operation of the steering devices 10 and 20 and the behavior of the wheel w in each travel mode will be described in detail for the vehicle 1 employing the steering devices 10 and 20.
  • the vehicle 1 includes a front wheel steering device 10 and a rear wheel steering device 20, and can steer the four wheels w in desired directions.
  • This steering is performed by driving the steering device 10 for the front wheels by operating the steering 2 or an actuator such as a motor, and driving the steering device 20 for the rear wheels by an actuator such as a motor.
  • the tire T is rotated by the driving force of the in-wheel motor M provided on each wheel w to turn the wheel w around the kingpin axis P. It is also possible to assist (see FIG. 5). It is also possible to steer only by the driving force of the in-wheel motor M without operating the steering 2 or the actuator by the driver.
  • the steering device 20 may be provided only on the rear wheel and the front wheel may be provided with a normal general steering device, or the front wheel and the rear wheel may have different types of steering devices. .
  • the front and rear steering devices 10 and 20 are each provided with two rack bars for turning the left and right wheels w.
  • the rack bar connected to the left wheel w with respect to the longitudinal direction of the vehicle 1 is the first rack bar 53
  • the rack bar connected to the right wheel w is the second rack bar 54. Called.
  • the two rack bars 53 and 54 extend in parallel to each other.
  • the direction indicated by the left-pointing arrow in FIG. 2 is the forward direction of the vehicle.
  • the traveling mode of the vehicle can be changed to a special traveling mode such as an in-situ rotation mode shown in FIG. 3 or a lateral movement mode shown in FIG. This special travel mode will be described in detail later.
  • the arrow described in each figure has shown the front direction of the vehicle 1 similarly to the arrow described in FIG.
  • the connecting members 11 and 21 of the rack bars 53 and 54 are connected to the left and right wheels w of the front wheel or the rear wheel via tie rods 12 and 22, respectively.
  • Various members such as a knuckle arm are appropriately interposed between the tie rods 12 and 22 and the wheel w.
  • FIG. 5 shows a connection state between the wheel w in which the in-wheel motor M is accommodated and the tie rods 12 and 22. All the wheels w can be steered with the kingpin axis P connecting the center lines of the ball joints BJ provided at the tips of the upper arm UA and the lower arm LA supported by the vehicle frame, respectively. ing.
  • the motor unit 101, the speed reducer 102, and the wheel bearing 103 are sequentially arranged in series from the inner side of the vehicle body toward the wheel w.
  • the positions of the two do not match (scrub)
  • the tire T can be rotated by the driving force of the in-wheel motor M provided on the wheel w on the condition that the radius S ⁇ 0) to assist the steering of the wheel w around the kingpin axis P.
  • the first rack bar 53 and the second rack bar 54 are rack cases (steering cylinders) that extend in the left-right direction with respect to the straight traveling direction (front-rear direction) of the vehicle 1 in each steering device 10, 20. 50.
  • the rack case 50 is supported by a frame (chassis) (not shown) of the vehicle 1.
  • the attachment of the rack case 50 to the vehicle 1 can be directly or indirectly screwed to the frame of the vehicle 1 via a plurality of flange portions 50a provided in the rack case 50, for example.
  • the first rack bar 53 and the second rack bar 54 can move simultaneously within the rack case 50 by the same distance in the same left-right direction with respect to the straight traveling direction of the vehicle 1. This operation is performed by the operation of the normal steering actuator 31 (see FIG. 2) based on the operation of the steering 2 performed by the driver. By this operation, the left and right wheels w can be simultaneously steered in the same direction in the left and right during normal travel.
  • the pinion shaft 61 is connected to the steering shaft 3 (see FIG. 2) or the actuator 31 (see FIG. 2) such as a motor that is operated by the rotation operation of the steering 2.
  • a first pinion gear 62 is coupled to the pinion shaft 61 so as to be integrally or integrally rotatable, and a second pinion gear 65 is provided coaxially with the first pinion gear 62.
  • the first pinion gear 62 meshes with the first rack bar 53
  • the second pinion gear 65 meshes with the second rack bar 54, respectively.
  • FIG. 7A shows a separated state
  • FIG. 7B shows a joined state
  • Steering devices 10 and 20 are each provided with rack bar operation means 60 as shown in FIG.
  • the rack bar operation means 60 opposes the first rack bar 53 and the second rack bar 54 in the left-right direction with respect to the straight traveling direction of the vehicle 1, that is, along the direction in which the rack extends and contracts (the direction in which the rack teeth are arranged in parallel). It has the function of moving simultaneously in the same direction (the opposite direction) by the same distance.
  • the rack bar operating means 60 is a rack gear of the pair of rack bars 53, 54 facing each other, that is, the synchronization rack gear 53a of the first rack bar 53 and the synchronization rack gear 54a of the second rack bar 54.
  • the rack bar operating means 60 is a rack gear of the pair of rack bars 53, 54 facing each other, that is, the synchronization rack gear 53a of the first rack bar 53 and the synchronization rack gear 54a of the second rack bar 54.
  • the first synchronization gear 55 includes three gears 55a, 55b, and 55c that are arranged in parallel at regular intervals along the parallel direction of the rack teeth of the rack bars 53 and 54.
  • the rack teeth are moved in one direction with respect to the parallel direction of the teeth of the rack, the movement is converted into the movement of the second rack bar 54 in the other direction.
  • a gear 56a constituting a second synchronization gear 56 is provided between the adjacent gears 55a and 55b of the first synchronization gear 55 and between the gears 55b and 55c. , 56b are arranged.
  • the second synchronization gear 56 meshes only with the first synchronization gear 55 without meshing with the synchronization rack gear 53 a of the first rack bar 53 or the synchronization rack gear 54 a of the second rack bar 54.
  • the second synchronization gear 56 is for moving the three gears 55a, 55b, 55c of the first synchronization gear 55 in the same direction by the same angle.
  • the first rack bar 53 and the second rack bar 54 include steering rack gears 53b and 54b, respectively, separately from the synchronization rack gears 53a and 54a. .
  • the first rack bar 53 and the second rack bar 54 are obtained by integrally fixing the synchronizing rack gears 53a and 54a and the steering rack gears 53b and 54b, respectively, by fixing means such as a bolt shaft. As good as
  • the steering rack gears 53b and 54b function as driving force input means for moving the rack bars 53 and 54 along the parallel direction of the rack teeth with respect to the frame of the vehicle 1.
  • the coupling mechanism 63 is separated. After that, the first rack bar 53 is moved in one direction by the input of the driving force from the rack bar operating means 60. Then, the force is transmitted to the second rack bar 54 via the first synchronization gear 55 meshed with both the first rack bar 53 and the second rack bar 54, and the second rack bar 54 receives the first rack bar 54. It moves simultaneously by the same distance in the opposite direction to the one rack bar 53.
  • the first pinion gear 62 and the second pinion gear 65 are rotationally fixed by the coupling mechanism 63 meshing at the tire (rack bar) position in the straight traveling state.
  • the first rack bar 53 and the second rack bar 54 move simultaneously in the same direction in the left-right direction in the rack case 50 attached to the frame.
  • the coupling mechanism 63 is separated, and the first rack bar 53 and the second rack bar 54 mesh with the synchronous gear 55 in the synchronous gear box 66, respectively. ing.
  • the meshing of the synchronization gear 55 causes the rack bars 53 and 54 to move in the opposite direction with respect to the synchronization gear box 66 by the same distance.
  • the rack bar operation means 60 of the front-wheel steering device 10 includes a first rotation shaft (pinion gear shaft) 61 that rotates directly in accordance with the rotation operation of the steering 2 performed by the driver (see FIGS. 7A and 7B). ).
  • a first rotation shaft (pinion gear shaft) 61 that rotates directly in accordance with the rotation operation of the steering 2 performed by the driver (see FIGS. 7A and 7B).
  • the driving of the mode switching actuator 32 that operates in conjunction with the rotation operation of the steering wheel 2 performed by the driver. It is also possible to switch so that rotation is transmitted to the first rotating shaft 61 side by force or by the driving force of the mode switching actuator 32 that operates in conjunction with the operation of the mode switching means 42 provided in the vehicle 1.
  • the rack bar operation means 60 of the steering device 20 for the rear wheels is also the mode switching means provided in the vehicle 1 by the driving force of the mode switching actuator 32 that operates in conjunction with the rotational operation of the steering 2 performed by the driver. And a first pinion gear 62 that is attached to the first rotation shaft 61 so as to be integrally rotatable with the first rotation shaft 61. Rotation is transmitted from the operating shaft of the mode switching actuator 32 to the first rotating shaft 61 side via the steering shaft 3 (see FIGS. 7A and 7B).
  • the rack bar operation means 60 includes a first pinion gear 62 integrated with or coupled to the first rotation shaft 61, a second rotation shaft 64 disposed coaxially with the first rotation shaft 61, and the second rotation shaft 64. Is provided with a second pinion gear 65 attached to be integrally rotatable.
  • FIG. 6 is an external perspective view showing the entire steering devices 10 and 20.
  • a first rack bar 53 and a second rack bar 54 are accommodated between the front cover 52 and the rear cover 51.
  • boots are provided for preventing foreign substances from entering the movable portion from the attachment portions of the tie rods 12 and 22 to the rack case 50 (the case front portion 51 and the case rear portion 52).
  • the first rotating shaft 61 is connected to the operating shaft of the mode switching actuator 32 via a steering joint (not shown).
  • the first pinion gear 62 meshes with the steering rack gear 53 b of the first rack bar 53, and the second pinion gear 65 is the steering rack gear of the second rack bar 54. 54b.
  • the coupling mechanism 63 has a function of switching the first rotating shaft 61 and the second rotating shaft 64 between a state in which relative rotation is possible (separated state) and a state in which relative rotation is not possible (coupled state).
  • the coupling mechanism 63 includes a fixed portion 63b on the second rotating shaft 64 side and a moving portion 63a on the first rotating shaft 61 side.
  • the moving part 63a is pressed against the fixed part 63b side by an elastic member such as a spring (not shown), and the convex part 63c on the moving part 63a side is coupled to the concave part 63d on the fixed part 63b side of the coupling mechanism 63.
  • the shafts 61 and 64 are integrally rotatable. Note that the projections 63c may be provided on the fixed portion 63b side, and the recesses 63d may be provided on the moving portion 63a side, with the concave and convex portions being reversed.
  • FIG. 7A shows a separated state of the coupling mechanism 63
  • FIG. 7B shows a coupled state thereof.
  • the first pinion gear 62 and the second pinion gear 65 are capable of relative rotation due to the separation of the coupling mechanism 63, the first pinion gear 62 is engaged with the first rack bar 53, and the second pinion gear 65 is engaged with the second rack. It meshes with the bar 54. Further, the first rack bar 53 and the second rack bar 54 are engaged with each other by a first synchronization gear 55. At this time, when a rotational force is input to the first pinion gear 62, the first rack bar 53 moves in the lateral direction (one direction) along the parallel direction of the teeth of the rack, that is, the left-right direction of the vehicle.
  • the first rackion gear 62 and the second pinion gear 65 can be switched to the coupled state or the separated state by the coupling mechanism 63 so that the pair of rack bars 53 and 54 move integrally in the left-right direction.
  • the coupling mechanism 63 so that the pair of rack bars 53 and 54 move integrally in the left-right direction.
  • the coupling mechanism 63 is coupled so that the pair of rack bars 53 and 54 move together in the left-right direction, and the driver operates the steering wheel 2 to move the left and right wheels w to the kingpin axis P (see FIG. 5) can be simultaneously steered around in the same direction.
  • the first rack bar 53 and the second rack bar 54 move together, the first synchronization gear 55 does not rotate.
  • the coupling mechanism 63 is separated so that the pair of rack bars 53 and 54 are separately moved in opposite directions, and the driver operates the steering wheel 2 to move the left and right wheels w to the kingpin shaft P (see FIG. 5)) can be simultaneously steered in the opposite directions, i.e. in opposite directions.
  • the driving force of the mode switching actuator 32 (see FIG. 2) is input to the respective rack bars 53 and 54 through the rotation of the pinion gears 62 and 65.
  • the driving force of the mode switching actuator 32 is input to the rack bars 53 and 54 through the rotation of the pinion gear 62, the rotation of the steering shaft 3 may not be transmitted to the steering 2.
  • the transmission may be allowed.
  • the normal steering actuator 31 can also serve as the mode switching actuator 32. That is, the normal steering actuator 31 may input rotation to the first rotating shaft 61 via the steering shaft 3 at the time of mode switching. Further, the role of the mode switching actuator 32 can be substituted by the driving force of the in-wheel motor M provided on each wheel.
  • (Normal driving mode) 2 is a state in which the first rack bar 53 and the second rack bar 54 of the front wheel steering device 10 can be moved integrally, that is, a state where the coupling mechanism 63 is coupled (see FIG. 7B). ).
  • the first rack bar 53 and the second rack bar 54 are integrally moved in the left-right direction within the rack case 50 of the steering device 10.
  • the second rack bar 54 is also integrally moved in the same direction by the same distance.
  • the left and right wheels w of the front wheels are steered by a predetermined angle in the same direction. That is, by completely fixing the two rack bars 53 and 54 together, it is possible to travel equivalent to a normal vehicle, and depending on the situation such as straight turn, right turn, left turn, etc., by the driver's steering 2 operation. Necessary steering can be performed freely.
  • the first rack bar 53 and the second rack bar 54 are moved in opposite directions to each other, and as shown in FIG. 3, the connecting mechanism 63 is coupled and fixed at a position where the central axes of all four front and rear wheels w are substantially directed to the vehicle center. Let Since the central axes of all four wheels w are substantially directed to the vehicle center, the vehicle center does not move from the place (or almost does not move) by the driving force of the in-wheel motor M provided on each wheel w. ), So-called in-situ rotation is possible.
  • the coupling mechanism 63 coupled in this manner, the first rack bar 53 and the second rack bar 54 in the steering devices 10 and 20 are moved straight by the driving force of the normal steering actuator 31 or the operation of the steering 2. It is possible to finely adjust the direction (tire angle) of the wheel w by moving it in the left-right direction integrally with the direction.
  • FIG. 4 shows the positional relationship between the pair of rack bars 53 and 54 of the front and rear wheel steering devices 10 and 20 and the direction of the wheels w in the lateral movement mode.
  • the pair of rack bars 53 and 54 protrude outward, and the connecting portion of the tie rods 12 and 22 to the wheel w is located on the outermost side in the vehicle width direction. Yes.
  • the direction (tire angle) of the wheel w can be finely adjusted by the driving force of the normal steering actuator 31 or the operation of the steering 2.
  • Switching between the above modes can be performed by the driver operating the mode switching means 42 provided in the cab.
  • Travel Mode Switching Control Method As shown in FIG. 1, in the vehicle 1 in a state of stopping on an inclined ground having an inclination angle ⁇ , a normal travel mode and a special travel mode such as in-situ rotation and lateral movement are provided. A flow of the switching control method for switching between the two will be described.
  • the driver operates the mode switching means 42 provided near the driver's seat (S1).
  • the tilt angle is measured by the tilt angle measuring means 71 (S2).
  • ECU 70 determines whether or not the measured inclination angle is equal to or greater than a predetermined angle (for example, 5 degrees or more) (S3).
  • a predetermined angle for example, 5 degrees or more
  • the operation of the mode switching means 42 performed by the driver is canceled (S4).
  • the wheels w are steered while a large load is applied to the rear wheels, and the vehicle components such as the steering device 20 for the rear wheels. It is possible to prevent a malfunction from occurring.
  • the driving mode is switched based on the operation of the mode switching means (S5).
  • FIG. 10 Another example of the flow of this switching control method is shown in FIG. In this flow, first, the tilt angle is measured by the tilt angle measuring means 71 (S6). Next, ECU 70 determines whether or not the measured inclination angle is equal to or greater than a predetermined angle (for example, 5 degrees or more) (S7). When the inclination angle is equal to or larger than the predetermined angle (see the YES arrow in FIG. 11), even if the driver operates the mode switching means, the acceptance of the operation is rejected (S8). In this way, by rejecting the acceptance of the mode switching operation, as shown in FIG. 1, the wheel w is steered while a large load is applied to the rear wheel, and the rear wheel steering device 20 and the like.
  • a predetermined angle for example, 5 degrees or more
  • 10 and 11 can be applied not only when the vehicle 1 is inclined in the front-rear direction but also when the vehicle 1 is inclined in the left-right direction in addition to the front-rear direction.
  • a large load is applied to one of the lower wheels (inclined lower side) of the left and right wheels of the front wheel or the rear wheel. There may be.
  • the steering operation is performed in this state, there is a further possibility that a problem occurs in the wheel w on the lower side (lower tilt side) as compared with the case where the vehicle 1 is simply tilted in the front-rear direction.
  • the predetermined angle predetermined for each inclination direction is compared with the actual inclination angle in the inclination direction so that the steering operation is not performed when the actual inclination angle is equal to or greater than the predetermined angle.
  • the overall configuration of the vehicle 1, the driving mode, and the mode switching control method for the driving mode are merely examples, and vehicle components such as the steering devices 10 and 20 are used when the vehicle 1 stopped on the slope is steered. As long as the problem of the present invention of preventing a large load from being applied can be solved, the entire configuration and the procedure of the mode switching control method can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The invention addresses the issue of safely and surely switching a driving mode when a vehicle is stopped on a slope. First, a driver operates a mode switching means (42) provided nearby a driver's seat (S1). Next, the incline angle is measured by an incline angle measurement means (71) (S2). Further, an ECU (70) determines whether or not the measured incline angle is equal to or greater than a prescribed angle (equal to or greater than 5 degrees, for example) predetermined for each incline direction (S3). If the incline angle is equal to or greater than the prescribed angle, the operation of the mode switching means (42) performed by the driver is cancelled (S4). Conversely, if the incline angle is less than the prescribed angle, the driving mode is switched on the basis of the operation of the mode switching means (S5).

Description

走行モードの切り替え制御方法及び車両Travel mode switching control method and vehicle
 この発明は、通常走行モードとその場回転等の特殊走行モードとの間で走行モードを切り替え可能としたインホイールモータを備えた車両の走行モードの切り替え制御方法、及びその切り替え制御方法を採用した車両に関する。 The present invention employs a switching control method for a traveling mode of a vehicle including an in-wheel motor that can switch the traveling mode between a normal traveling mode and a special traveling mode such as in-situ rotation, and the switching control method thereof. Regarding vehicles.
 左右の車輪(以下、タイヤ、ホイール、ハブ、インホイールモータ等を含めて総合的に「車輪」と称する。)を結ぶステアリングリンク機構を用いて車輪を転舵するものに、アッカーマン・ジャントウ式と呼ばれる転舵機構がある。この転舵機構は、車両の回転時に、左右の車輪が同一回転中心をもつように、タイロッドとナックルアームを用いるものである。 Ackerman-Jantou type is used to steer the wheels using a steering link mechanism that connects the left and right wheels (hereinafter collectively referred to as "wheels" including tires, wheels, hubs, in-wheel motors, etc.) There is a steering mechanism called. This steering mechanism uses a tie rod and a knuckle arm so that the left and right wheels have the same center of rotation when the vehicle rotates.
 この転舵機構として、例えば下記特許文献1に示す構成のものがある。この転舵機構は、タイロッドとナックルアームを用いる左右車輪のステアリングリンク機構を前輪側又は後輪側の少なくとも一方に備え、タイロッド長さ、左右のタイロッド間距離又は各車輪とナックルアームのなす角度のいずれかを変化させるアクチュエータを設けることで、通常走行、平行移動、小回りのすべての走行をスムーズに行い得るようにするとともに、応答性を高めている。 As this steering mechanism, for example, there is a configuration shown in Patent Document 1 below. This steering mechanism is provided with a steering link mechanism for left and right wheels using tie rods and knuckle arms on at least one of the front wheel side and rear wheel side, and the tie rod length, the distance between the left and right tie rods, or the angle between each wheel and the knuckle arm. By providing an actuator that changes any one of them, normal traveling, parallel movement, and all the small travelings can be smoothly performed, and the responsiveness is enhanced.
 下記特許文献2に示す転舵機構は、前後輪の左右車輪間に配置され、軸心周りに回転可能なステアリングシャフトと、このステアリングシャフトを左右2分割した間に、分割されたステアリングシャフトの回転方向を正逆方向で切り替える正逆切り替え手段を備えている。この切り替え手段によって、舵角90度、横方向移動等を可能としている。 The steering mechanism shown in the following Patent Document 2 is disposed between the left and right wheels of the front and rear wheels, and can rotate around the axis, and the rotation of the divided steering shaft between the left and right divided steering shafts. Forward / reverse switching means for switching the direction between forward and reverse directions is provided. This switching means enables a steering angle of 90 degrees, lateral movement, and the like.
 下記特許文献3には、前輪の転舵に応じてアクチュエータが作動して、後輪を転舵するようにした4輪転舵車両の技術について示されている。また、下記特許文献4には、左右車輪間を結ぶラックハウジングを前後方向に移動させることで、左右車輪のトー調整を行い、走行安定性を高めた転舵機構の技術について示されている。 Patent Document 3 below discloses a technology of a four-wheel steered vehicle in which an actuator is operated in accordance with the steering of the front wheels to steer the rear wheels. Patent Document 4 below discloses a technique of a steering mechanism in which a toe adjustment of the left and right wheels is performed by moving a rack housing connecting the left and right wheels in the front-rear direction to improve running stability.
 一般的なアッカーマン・ジャントウ式のステアリングリンク機構によれば、通常走行時には、各車輪の回転ライン(車輪の幅方向中心線)から平面視垂直に延びた線が、車両の回転中心に集まるので、スムーズな走行ができる。しかし、車両の横方向移動(車両が前後方向を向いた状態での横方向への平行移動)を求める場合、車輪を前後方向に対して90度の方向に操舵することは、ステアリングリンクの長さや他部材との干渉から困難である。また、仮に、左右の車輪のうち一方の車輪を90度に操舵した場合でも、他方の車輪は一方の車輪と完全に平行にはならず、スムーズな走行が困難である。 According to a general Ackermann-Jantou type steering link mechanism, during normal driving, lines extending vertically from the rotation line of each wheel (the center line in the width direction of the wheel) gather in the center of rotation of the vehicle. Smooth running is possible. However, when the lateral movement of the vehicle (transverse movement in the lateral direction with the vehicle facing in the front-rear direction) is obtained, steering the wheel in a direction of 90 degrees with respect to the front-rear direction is a problem with the length of the steering link. It is difficult to interfere with other members. Further, even if one of the left and right wheels is steered at 90 degrees, the other wheel is not completely parallel to the one wheel, and smooth running is difficult.
 また、この種の車両では、通常、主転舵車輪である前輪を車両の所定の進行方向に転舵し、従転舵車輪である後輪は、車両の前後方向と平行を保つように設計されている。このため、この車両の前輪を転舵し回転させたときに、前輪と後輪の回転中心が同一位置とならない。このため、低車速時には内輪差により後輪が回転円の内側に入る姿勢で車両が回転し、高車速時には遠心力により前輪が回転円の内側に入る姿勢で車両が回転することになる。すなわち、前輪を車両の進行方向である回転方向に転舵しても、車両の姿勢を回転方向に一致させ操向することができないという問題がある。そこで、前輪のみならず後輪も転舵することにより、走行性を向上させる4輪転舵機構(4輪転舵装置)を有する車両がある。 Also, in this type of vehicle, the front wheels, which are the main steered wheels, are usually steered in a predetermined traveling direction of the vehicle, and the rear wheels, which are the follower steered wheels, are designed to be parallel to the longitudinal direction of the vehicle. Has been. For this reason, when the front wheel of this vehicle is steered and rotated, the rotation center of the front wheel and the rear wheel is not at the same position. For this reason, at low vehicle speeds, the vehicle rotates in a posture in which the rear wheels enter the inside of the rotation circle due to the inner wheel difference, and at high vehicle speeds, the vehicles rotate in a posture in which the front wheels enter the inside of the rotation circle by centrifugal force. That is, there is a problem that even if the front wheels are steered in the rotational direction which is the traveling direction of the vehicle, the vehicle cannot be steered with the posture of the vehicle coincident with the rotational direction. Thus, there is a vehicle having a four-wheel steering mechanism (four-wheel steering device) that improves not only the front wheels but also the rear wheels to improve traveling performance.
 4輪転舵機構を有する車両(いわゆる4WS車)として、例えば、特許文献1に記載の技術では、車両の横方向移動、小回り等が可能である。しかし、タイロッドの長さ、左右タイロッド間の距離、あるいは、車輪とナックルアームのなす角を変化させるために多くのアクチュエータを備え、各アクチュエータの複雑な制御が必要となる。また、特許文献2に記載の技術は、その機構上、構造が複雑であって、ラックバーの回転で車輪を転舵するために、多数の歯車を使用している。このため、各歯車間にガタが発生しやすく、円滑に車輪の転舵をすることが困難である。 As a vehicle having a four-wheel steering mechanism (a so-called 4WS vehicle), for example, the technique described in Patent Document 1 allows the vehicle to move in the lateral direction, turn around, and the like. However, in order to change the length of the tie rod, the distance between the left and right tie rods, or the angle between the wheel and the knuckle arm, many actuators are provided, and complicated control of each actuator is required. Further, the technique described in Patent Document 2 has a complicated structure due to its mechanism, and uses a large number of gears to steer the wheels by the rotation of the rack bar. For this reason, rattling is likely to occur between the gears, and it is difficult to smoothly steer the wheels.
 また、特許文献3の技術は、従来の4輪転舵機構の一例であって後輪転舵を可能としているが、この機構だけでは横方向移動は困難である。さらに、特許文献4の技術は、トー調整が可能である反面、車両の横方向移動、小回り等には対応できないという問題がある。 Further, the technique of Patent Document 3 is an example of a conventional four-wheel steering mechanism and enables rear wheel steering, but it is difficult to move in the lateral direction only with this mechanism. Furthermore, the technique of Patent Document 4 has a problem that it can not adjust to a lateral movement or a small turn of the vehicle while toe adjustment is possible.
 特許文献1から4に記載の転舵機構の諸問題を解決すべく、本願の発明者は、下記特許文献5に示す転舵機構を提案している。この転舵機構は、左右に独立して移動可能な2つのラックバーを持ち、前記ラックバーのそれぞれを左右いずれかの車輪にタイロッドを介して接続し、同期ギアボックスに保持される同期ギアにより、前記ラックバーが、同期ギアボックスに対して反対に移動可能としたものである。この2つのラックバーには、このラックバーに噛み合うピニオンギアがそれぞれ設けられ、両ピニオンギアの間には、両ピニオンギアの回転軸を結合又は分離可能とする連結機構が設けられている。この連結機構を結合すると、両ラックバーを一体として同方向に同距離移動する、すなわち左右の車輪を同方向に転舵することができる。その一方で、この連結機構を分離すると、両ラックバーを反対方向に同距離移動する、すなわち左右の車輪を逆方向に転舵することができる。 In order to solve the problems of the steering mechanism described in Patent Documents 1 to 4, the inventor of the present application has proposed a steering mechanism shown in Patent Document 5 below. This steering mechanism has two rack bars that can move independently on the left and right sides, and each of the rack bars is connected to one of the left and right wheels via a tie rod, and is driven by a synchronous gear held in a synchronous gear box. The rack bar is movable opposite to the synchronous gearbox. The two rack bars are each provided with a pinion gear that meshes with the rack bar, and a coupling mechanism is provided between the two pinion gears so that the rotation shafts of both the pinion gears can be coupled or separated. When this coupling mechanism is coupled, both rack bars can be moved together in the same direction by the same distance, that is, the left and right wheels can be steered in the same direction. On the other hand, when this coupling mechanism is separated, both rack bars can be moved in the opposite direction by the same distance, that is, the left and right wheels can be steered in the opposite direction.
 この転舵機構によると、簡便な構成で横方向移動、小回り等の特殊走行モードを実現することができる。例えば、通常の走行モードからその場回転、横方向移動の各モードに変更する際は、左右の前輪の前端同士が、及び、左右の後輪の後端同士がそれぞれ互いに接近するように各車輪を転舵する。 This steering mechanism can realize special travel modes such as lateral movement and small turn with a simple configuration. For example, when changing from normal driving mode to in-situ rotation and lateral movement modes, the front ends of the left and right front wheels and the rear ends of the left and right rear wheels approach each other. To steer.
 この転舵機構を備えた車両として、図5に示すように、車両の走行・転舵特性を高めるべく、キングピン軸P(操舵の回転軸)の延長線と地表面との接点P’と、タイヤTの接地中心T’とが一致しない(スクラブ半径S≠0)ように設計された懸架装置を備えたものがある。この懸架装置を備えた車両においては、通常走行モードと、その場回転、横方向走行等の特殊走行モードとの間の切り替えは、車輪をキングピン周りに転舵させることによって行われる。この転舵の方法として、ステアリングの回転動作又はその回転動作に連動して作動するアクチュエータ等を用いたラックバー動作手段にてラックバーを相対移動させる方法や(特許文献5の段落0017、0018参照)、インホイールモータに駆動力を発生させタイヤを回転させる方法(特許文献5の段落0025参照)を採用し得る。 As shown in FIG. 5, as a vehicle equipped with this steering mechanism, in order to improve the running / steering characteristics of the vehicle, a contact point P ′ between the extension line of the kingpin axis P (steering rotation axis) and the ground surface, Some have a suspension device designed so that the ground contact center T ′ of the tire T does not coincide (the scrub radius S ≠ 0). In a vehicle equipped with this suspension device, switching between the normal travel mode and special travel modes such as in-situ rotation and lateral travel is performed by turning the wheel around the kingpin. As a method of this steering, a method of relatively moving the rack bar by a rack bar operating means using a rotating operation of the steering or an actuator that operates in conjunction with the rotating operation or the like (see paragraphs 0017 and 0018 of Patent Document 5) ), A method of generating a driving force in the in-wheel motor and rotating the tire (see paragraph 0025 of Patent Document 5) may be employed.
 特許文献5に記載の転舵機構を備えた車両において、走行モードを切り替える際には、ステアリングの回転動作による転舵方法、あるいは、インホイールモータの駆動力を用いた転舵方法のいずれの転舵方法においても、車輪をある程度回転させる必要がある。すなわち、走行モードの切り替えの際には、車輪にブレーキをかけることができない。例えば、車両を傾斜地に停車した状態で走行モードを切り替える際には、一旦ブレーキを緩める必要があり、走行モードの切り替え中(特に、通常走行モードから特殊走行モードへ走行モードを切り替える初期の段階)に、車両が傾斜に沿ってその自重で不用意に移動してしまう恐れがある。このため、スクラブ半径S≠0となるように設計した懸架装置を備えた車両に対し、走行モードの切り替えを安全かつ確実に行うことができる転舵機構の開発が望まれていた。 In a vehicle equipped with the steering mechanism described in Patent Document 5, when switching the travel mode, either a steering method using a steering rotation operation or a steering method using a driving force of an in-wheel motor is used. Also in the rudder method, it is necessary to rotate the wheel to some extent. In other words, the wheels cannot be braked when the travel mode is switched. For example, when switching the travel mode while the vehicle is stopped on an inclined ground, it is necessary to release the brake once and the travel mode is being switched (particularly in the initial stage of switching the travel mode from the normal travel mode to the special travel mode). In addition, the vehicle may move carelessly along its inclination due to its own weight. For this reason, there has been a demand for the development of a steering mechanism capable of switching the driving mode safely and reliably for a vehicle including a suspension device designed so that the scrub radius S ≠ 0.
 そこで、発明者は、下記特許文献6に記載のように、車両の走行モードの切り替えにおいて、前輪を転舵する際には後輪の回転を阻止する一方で、後輪を転舵する際には前輪の回転を阻止し、走行モードの切り替えの際に、車両が傾斜に沿ってその自重で不用意に移動してしまうのを防止する構成をさらに発明した。この構成によると、車両の走行モードの切り替えを安全かつ確実に行うことができる。 Therefore, as described in Patent Document 6 below, the inventor prevents the rotation of the rear wheels when turning the front wheels and switches the rear wheels while switching the traveling mode of the vehicle. Has further invented a configuration that prevents rotation of the front wheels and prevents the vehicle from inadvertently moving along its inclination with its own weight when switching the running mode. According to this configuration, the driving mode of the vehicle can be switched safely and reliably.
特開平04-262971号公報Japanese Patent Laid-Open No. 04-262971 特許第4635754号公報Japanese Patent No. 4635754 実用新案登録第2600374号公報Utility Model Registration No. 2600374 特開2003-127876号公報JP 2003-127876 A 特願2013-158876(未公開)Japanese Patent Application No. 2013-158876 (unpublished) 特願2014-26582(未公開)Japanese Patent Application No. 2014-26582 (unpublished)
 車両が傾斜地に停車している場合、高い方(傾斜上側)の車輪よりも、車両の低い方(傾斜下側)の車輪により大きな荷重が負荷される。例えば、図1に示すように車両の前方が上向きに傾斜している傾斜地に車両が停車している場合、前輪よりも後輪に大きな荷重がかかる。この状態で後輪を転舵しようとすると、車軸やサスペンションに大きな負荷がかかり、ステアリング装置や足回り品等の車両部品に不具合が生じる可能性がある。 When the vehicle is stopped on a sloping ground, a larger load is applied to the lower wheel (lower slope) of the vehicle than the higher wheel (lower slope). For example, as shown in FIG. 1, when the vehicle is stopped on an inclined ground where the front of the vehicle is inclined upward, a larger load is applied to the rear wheels than to the front wheels. If the rear wheels are to be steered in this state, a large load is applied to the axle and the suspension, and there is a possibility that a malfunction may occur in the vehicle parts such as the steering device and the undercarriage.
 そこで、この発明は、傾斜地に停車している車両の転舵の際に、ステアリング装置等の車両部品に大きな負荷がかからないようにすることを課題とする。 Therefore, an object of the present invention is to prevent a large load from being applied to vehicle parts such as a steering device when a vehicle stopped on an inclined ground is steered.
 この課題を解決するために、この発明においては、左右の前輪又は後輪の少なくとも一方を所定方向に転舵するようにモード切替手段を操作するステップと、車体に搭載された傾斜角測定手段によって得られた前記車体の傾斜角度の測定結果が、予め定めた所定角度以上の場合に、前記操作を取り消し、あるいは、前記操作の受け付けを拒否するステップと、前記測定結果が、前記所定角度よりも小さい場合に、前記操作に従って転舵を行うステップと、を有する車両の走行モードの切り替え制御方法を構成した。 In order to solve this problem, in the present invention, a step of operating the mode switching means to steer at least one of the left and right front wheels or the rear wheel in a predetermined direction, and an inclination angle measuring means mounted on the vehicle body Canceling the operation or rejecting the operation when the obtained measurement result of the inclination angle of the vehicle body is equal to or greater than a predetermined angle; and the measurement result is less than the predetermined angle. When it is small, the vehicle has a step of turning in accordance with the above operation, and a traveling mode switching control method for a vehicle is configured.
 このようにすると、傾斜角度が所定角度を越えて、一部の車輪に大きな荷重がかかった状態では転舵動作が行なわれないため、転舵に伴って生じる車両部品の不具合を防止することができる。 In this way, since the turning operation is not performed in a state where the inclination angle exceeds a predetermined angle and a large load is applied to some of the wheels, it is possible to prevent the malfunction of the vehicle parts caused by the turning. it can.
 前記構成においては、全ての車輪で転舵がなされ、前記所定方向が、左右の前輪で左右逆方向であり、左右の後輪で左右逆方向かつ前記左右の前輪と左右それぞれ逆方向である構成とすることができる。 In the above configuration, all the wheels are steered, and the predetermined direction is a left-right reverse direction for the left and right front wheels, a left-right reverse direction for the left and right rear wheels, and a left-right reverse direction for the left and right front wheels. It can be.
 このような車輪の挙動は、通常走行モードから、その場回転モードや横方向移動モード等の特殊走行モードに変更する際に生じる。これらの特殊モードへの転舵の際には、ステアリング装置やサスペンション等の車両部品に大きな負荷がかかることが多い。上記の走行モードの切り替え制御方法を特殊走行モードに適用することにより、車両部品の不具合防止効果が一層高まる。 Such wheel behavior occurs when changing from the normal travel mode to a special travel mode such as the spot rotation mode or the lateral movement mode. When steering to these special modes, a large load is often applied to vehicle components such as a steering device and a suspension. By applying the above travel mode switching control method to the special travel mode, the effect of preventing the malfunction of the vehicle parts is further enhanced.
 前記各構成においては、前記傾斜角測定手段によって得られた前記車体の前後方向及び左右方向の傾斜角度の測定結果から、前記車両の傾斜方向を算出し、前記測定結果が、この傾斜方向ごとに予め定めた前記所定角度以上の場合に、前記操作を取り消し、あるいは、前記操作の受け付けを拒否するステップを適用する構成とすることができる。 In each of the above-described configurations, the vehicle inclination direction is calculated from the measurement results of the vehicle body front-rear direction and left-right inclination angles obtained by the inclination angle measurement means, and the measurement results are obtained for each inclination direction. When the angle is equal to or greater than the predetermined angle, a step of canceling the operation or rejecting the operation can be applied.
 例えば、車両が前後方向に加えて左右方向にも傾斜している場合には、前輪又は後輪の左右車輪のうち、低い方(傾斜下側)の一方の車輪に大きな荷重がかかっている場合がある。この状態で転舵操作を行うと、車両が単に前後方向に傾斜している場合と比較して、この低い方(傾斜下側)の車輪に不具合が生じる恐れがさらに高まる。このように、傾斜方向ごとに予め定めた前記所定角度と、その傾斜方向への実際の傾斜角度を比較して、実際の傾斜角度が前記所定角度以上の場合に転舵操作を行わないように走行モードの切り替え制御を行うことにより、この傾斜方向に対応して、車両部品の不具合を確実に防ぐことができる。 For example, when the vehicle is tilted in the left-right direction in addition to the front-rear direction, a large load is applied to one of the lower wheels (lower tilt side) of the front and rear wheels There is. If the steering operation is performed in this state, there is a further possibility that the lower (inclined lower) wheel will have a problem as compared with the case where the vehicle is simply tilted in the front-rear direction. In this way, the predetermined angle predetermined for each inclination direction is compared with the actual inclination angle in the inclination direction so that the steering operation is not performed when the actual inclination angle is equal to or greater than the predetermined angle. By performing the switching control of the travel mode, it is possible to reliably prevent the malfunction of the vehicle parts corresponding to this inclination direction.
 ここでいう「傾斜方向ごとに定めた所定角度」とは、例えば、車両の前側が低くなっている状態(左右方向は水平状態)を0度、車両の右側が低くなっている状態(前後方向は水平状態)を90度、車両の後側が低くなっている状態(左右方向は水平状態)を180度、車両の左側が低くなっている状態(前後方向は水平状態)を270度とし、この角度ごとに予め定めた所定角度のことを指す。この角度の刻みは、例えば、30度、45度等としたり、連続的(無段階)としたりすることもできる。 Here, the “predetermined angle determined for each inclination direction” means, for example, a state in which the front side of the vehicle is lowered (horizontal state in the left-right direction) is 0 degrees, and a state in which the right side of the vehicle is lowered (front-rear direction) Is 90 degrees, the rear side of the vehicle is low (horizontal in the left-right direction) is 180 degrees, and the left side of the vehicle is low (horizontal in the front-back direction) is 270 degrees. It refers to a predetermined angle predetermined for each angle. The step of this angle can be, for example, 30 degrees, 45 degrees, or can be continuous (stepless).
 前記各構成においては、前記所定角度を5度とすることができる。この5度という角度は、一部の車輪(前輪又は後輪)への負荷の偏りが非常に顕著となる角度である。そこで、傾斜角度が5度以上となった場合に、走行モードの切り替えを中止するように制御することにより、車両部品の大きな不具合を防止することができる。 In each configuration, the predetermined angle can be set to 5 degrees. The angle of 5 degrees is an angle at which the load bias to some of the wheels (front wheels or rear wheels) becomes very significant. Therefore, when the inclination angle becomes 5 degrees or more, it is possible to prevent a major problem of the vehicle parts by controlling to stop the switching of the driving mode.
 あるいは、前記所定角度を3度とすることもできる。この3度という角度は、一部の車輪への負荷の偏りが大きくなり始める角度である。そこで、傾斜角度が3度以上となった場合に、走行モードの切り替えを中止するように制御することにより、車両部品の不具合を未然に防止することができる。 Alternatively, the predetermined angle can be 3 degrees. The angle of 3 degrees is an angle at which the load bias on some of the wheels starts to increase. Therefore, when the inclination angle becomes 3 degrees or more, the vehicle parts can be prevented from malfunctioning by controlling the switching of the driving mode to be stopped.
 この所定角度は、車両の構成(車両の形状、寸法、重量等)に対応して、適宜変更することができる。車両の構成によっては、傾斜時における前後輪、左右輪への負荷の偏りが変化するためである。 This predetermined angle can be changed as appropriate in accordance with the vehicle configuration (vehicle shape, dimensions, weight, etc.). This is because, depending on the configuration of the vehicle, the bias of the load on the front and rear wheels and the left and right wheels during tilting changes.
 また、走行モードを切り替えるモード切替手段と、前記モード切替手段の操作によって、左右の前後輪を左右同方向又は逆方向に転舵可能なステアリング装置と、車体に搭載され、この車体の傾斜角度を測定する傾斜角測定手段と、前記傾斜角測定手段によって得られた測定結果が、傾斜方向ごとに予め定めた所定角度以上の場合に、前記転舵を行わない判断を行う制御装置と、を有する車両を構成することができる。 Further, a mode switching means for switching the driving mode, a steering device capable of turning the left and right front and rear wheels in the same direction in the left and right direction or the reverse direction by operation of the mode switching means, and a vehicle body are mounted. A tilt angle measuring means for measuring, and a control device for determining that the steering is not performed when a measurement result obtained by the tilt angle measuring means is equal to or greater than a predetermined angle for each tilt direction. A vehicle can be configured.
 このように傾斜角測定手段によって、車両の傾斜角度を測定し、この傾斜角度に基づいて転舵の可否を判断することにより、上述したように、ステアリング装置等の車両部品の不具合を防止することができる。この傾斜角測定手段として、車両の前後方向及び左右方向への傾斜を同時に測定できる傾斜角センサを用いることにより、車両の傾斜方向に対応して、より適切な制御を行うことができる。 In this way, by measuring the tilt angle of the vehicle by the tilt angle measuring means and determining whether or not the steering is possible based on this tilt angle, as described above, it is possible to prevent problems of vehicle parts such as the steering device. Can do. By using an inclination angle sensor capable of simultaneously measuring the inclination of the vehicle in the front-rear direction and the left-right direction as the inclination angle measuring means, more appropriate control can be performed in accordance with the inclination direction of the vehicle.
 また、この車両においては、前記ステアリング装置が、左右車輪に接続され、その左右車輪を転舵するタイロッドと、前記左右車輪のタイロッドにそれぞれ接続された対のラックバーと、前記対のラックバーにそれぞれ噛み合い、一方のラックバーのラックの歯の並列方向に対する一方向への動きを他方のラックバーの他方向への動きに変換する同期ギアと、前記一方のラックバーに噛み合う第一ピニオンギアと、前記他方のラックバーに噛み合う第二ピニオンギアと、前記第一及び第二ピニオンギアの回転軸を結合又は分離する連結機構と、を有し、前記対のラックバーをそれぞれのラックバーのラックの歯の並列方向に沿って、左右反対方向へ移動させることが可能なラックバー動作手段と、を備えた構成とすることができる。 Further, in this vehicle, the steering device is connected to the left and right wheels, the tie rods for turning the left and right wheels, the pair of rack bars respectively connected to the tie rods of the left and right wheels, and the pair of rack bars. A synchronous gear that meshes with each other and converts the movement of one rack bar in one direction with respect to the parallel direction of the rack teeth into the other direction of the other rack bar; and a first pinion gear that meshes with the one rack bar A second pinion gear meshing with the other rack bar, and a coupling mechanism for coupling or separating the rotation shafts of the first and second pinion gears, and the pair of rack bars are racks of the respective rack bars. And a rack bar operating means that can be moved in the opposite direction along the parallel direction of the teeth.
 左右に独立して移動可能な対のラックバーに、それぞれタイロッドを介して車輪を接続したことにより、通常走行モードにおいては、対のラックバーを一体に固定して従来のステアリング操作と違和感なく作動させることができ、対のラックバーを別方向に移動することで、小回り、その場回転、横方向移動等、さまざまな特殊走行モードを実現することができる。また、分離、固定の切り替えが可能な対のラックバーを用いたことにより、複雑な機構や制御を必要とせず、低コスト化が可能となる。 By connecting the wheels to the pair of rack bars that can be moved independently from each other via tie rods, the pair of rack bars can be fixed together in normal driving mode to operate without any discomfort from conventional steering operations. By moving the pair of rack bars in different directions, various special driving modes such as small turn, on-site rotation, and lateral movement can be realized. Further, by using a pair of rack bars that can be switched between separation and fixation, a complicated mechanism and control are not required, and the cost can be reduced.
 この発明においては、左右の前輪又は後輪の少なくとも一方を所定方向に転舵するように操作するステップと、車体に搭載された傾斜角測定手段によって得られた前記車体の傾斜角度の測定結果が、予め定めた所定角度以上の場合に、前記操作を取り消し、あるいは、前記操作の受け付けを拒否するステップと、前記測定結果が、前記所定角度よりも小さい場合に、前記操作に従って転舵を行うステップと、を有する車両の走行モードの切り替え制御方法を構成した。 In this invention, the step of operating to steer at least one of the left and right front wheels or the rear wheel in a predetermined direction, and the measurement result of the tilt angle of the vehicle body obtained by the tilt angle measuring means mounted on the vehicle body are provided. A step of canceling the operation or rejecting the operation when the angle is equal to or greater than a predetermined angle, and a step of turning according to the operation when the measurement result is smaller than the predetermined angle. And a traveling mode switching control method of the vehicle having the above.
 このように、車体の傾斜角度を測定して、この傾斜角度が予め定めた所定角度以上の場合に車輪の転舵操作が行われないようにすることにより、転舵に伴う車両部品の不具合を防止することができ、車両の走行モードの切り替えを安全かつ確実に行うことができる。 In this way, by measuring the inclination angle of the vehicle body and preventing the wheel from turning when the inclination angle is equal to or greater than a predetermined angle, it is possible to solve the problem of the vehicle parts accompanying the turning. Therefore, the driving mode of the vehicle can be switched safely and reliably.
この発明に係る車両のイメージ図Image of vehicle according to the present invention この発明に係る車両を示す平面図Plan view showing a vehicle according to the present invention 図2の車両においてその場回転モードを示す平面図The top view which shows the spot rotation mode in the vehicle of FIG. 図2の車両において横方向移動(平行移動)モードを示す平面図FIG. 2 is a plan view showing a lateral movement (parallel movement) mode in the vehicle of FIG. 車輪の支持状態を示す断面図Sectional view showing the support state of the wheel ステアリング装置の外観を示す斜視図The perspective view which shows the external appearance of a steering device ステアリング装置のラックバー動作手段の詳細を示し、(a)は分離状態の正面図、(b)は結合状態の正面図The detail of the rack bar operation | movement means of a steering device is shown, (a) is a front view of a separation state, (b) is a front view of a coupling state ステアリング装置の内部を示す正面図Front view showing the inside of the steering device ステアリング装置の内部を示し、(a)は対のラックバーが最も近接した状態の平面図、(b)は対のラックバーが開いた状態の平面図The inside of a steering device is shown, (a) is a top view in a state where a pair of rack bars are closest, (b) is a plan view in a state where a pair of rack bars is opened この発明に係る走行モードの切り替え制御方法のフローの一例を示す図The figure which shows an example of the flow of the switching control method of the driving mode which concerns on this invention この発明に係る走行モードの切り替え制御方法のフローの他例を示す図The figure which shows the other example of the flow of the switching control method of the driving mode which concerns on this invention
 この発明に係る車両の全体構成及び走行モードについて、図面を用いて一通り説明した後に、その走行モードの切り替え制御方法について説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS After describing the overall configuration and travel mode of a vehicle according to the present invention with reference to the drawings, a travel mode switching control method will be described.
(1)車両の全体構成について
 図1に示す車両1は、2人乗車(横並び二人乗り)の超小型モビリティである。以下においては、この超小型モビリティを例に挙げて説明するが、この発明は、この超小型モビリティに限定されるものではなく、通常車両にも適用可能である。図2は車両1の転舵機構の駆動系及び制御経路を示す平面略図である。前輪の左右輪FL、FR及び後輪の左右輪RL、RRに、タイロッド12、22を介して、ステアリング装置10、20がそれぞれ連結されている。この車両1の各車輪wにはインホイールモータMが設けられていて、各車輪wを直接回転駆動することができる。前後輪には、それぞれステアリング装置10、20が設けられており、ステアリング2のステアリングシャフト3軸周りの回転操作、又はアクチュエータによってステアリング装置10、20を駆動することによって、左右の車輪wを同方向又は逆方向に転舵することができる。
(1) About the whole structure of a vehicle The vehicle 1 shown in FIG. 1 is a micro mobility of a two-seater (horizontally two-seater). In the following, the micro mobility will be described as an example, but the present invention is not limited to the micro mobility and can be applied to a normal vehicle. FIG. 2 is a schematic plan view showing a drive system and a control path of the steering mechanism of the vehicle 1. Steering devices 10 and 20 are connected to front left and right wheels FL and FR and rear left and right wheels RL and RR via tie rods 12 and 22, respectively. Each wheel w of the vehicle 1 is provided with an in-wheel motor M, and each wheel w can be directly driven to rotate. Steering devices 10 and 20 are provided on the front and rear wheels, respectively, and the left and right wheels w are moved in the same direction by rotating the steering 2 around the steering shaft 3 axis or driving the steering devices 10 and 20 by an actuator. Or it can steer in the reverse direction.
 この車両1には、ステアリング装置10、20等の制御を司る電子制御ユニット(ECU)70が設けられている。このECU70には、車両1の傾斜角を測定するための傾斜角測定手段71が接続される。この傾斜角測定手段71として、ジャイロセンサ、加速度センサ等の種々のセンサを採用することができる。図1に示すように、車両1が前後方向に傾斜(前方が高く傾斜)して停車している場合、前輪FL、FRと比較して後輪RL、RRの方により大きな荷重がかかる。この大きな荷重がかかった状態のまま車輪を転舵すると、この車輪に接続されたステアリング装置10、20等の車両部品に大きな力が作用し、この車両部品に不具合が生じる可能性がある。 The vehicle 1 is provided with an electronic control unit (ECU) 70 that controls the steering devices 10 and 20. The ECU 70 is connected to an inclination angle measuring means 71 for measuring the inclination angle of the vehicle 1. As the tilt angle measuring means 71, various sensors such as a gyro sensor and an acceleration sensor can be employed. As shown in FIG. 1, when the vehicle 1 is parked in the front-rear direction (the front is highly inclined), a larger load is applied to the rear wheels RL and RR than the front wheels FL and FR. When a wheel is steered in a state where this large load is applied, a large force is applied to vehicle parts such as the steering devices 10 and 20 connected to the wheel, and there is a possibility that a problem occurs in the vehicle part.
 そこで、後で詳しく説明するように(図10、11参照)、この傾斜角測定手段71が、予め定めた所定角度以上の傾斜を検知すると、そのことがECU70に伝えられ、運転者によるモード切替手段42の操作が取り消され、あるいは、モード切替手段42の操作の受け付けが拒否されるように、切り替え制御方法を構成している。これにより、車両1が所定角度以上傾斜した状態で走行モードの切り替えがなされることはなく、一部の車輪に大きな荷重が負荷された状態のまま転舵がなされて、車両部品に不具合が生じるのを防止することができる。 Therefore, as will be described in detail later (see FIGS. 10 and 11), when the inclination angle measuring means 71 detects an inclination greater than a predetermined angle, this is notified to the ECU 70, and the mode switching by the driver is performed. The switching control method is configured so that the operation of the means 42 is canceled or the acceptance of the operation of the mode switching means 42 is rejected. As a result, the driving mode is not switched when the vehicle 1 is inclined at a predetermined angle or more, and the steering is performed while a large load is applied to some of the wheels, causing a problem in the vehicle parts. Can be prevented.
 この実施形態においては、傾斜角測定手段71として、車両1の前後方向及び左右方向への傾斜角を同時に測定できる傾斜角センサを使用している。このように、傾斜角センサを用いることにより、前後方向及び左右方向への傾斜角から、車両1の傾斜方向を算出することができる。この傾斜方向ごとに予め定めた前記所定角度と、傾斜角測定手段71で測定したその傾斜方向への実際の傾斜角度を比較し、実際の傾斜角度が前記所定角度以上の場合に走行モードの切り替えを行わないように制御することにより、車両部品の不具合の発生を確実に防ぐことができる。なお、前後方向の傾斜のみ測定できればよいのであれば、前後方向の傾斜のみを測定できるタイプのセンサを採用してもよい。 In this embodiment, as the inclination angle measuring means 71, an inclination angle sensor capable of simultaneously measuring the inclination angle of the vehicle 1 in the front-rear direction and the left-right direction is used. Thus, by using the tilt angle sensor, the tilt direction of the vehicle 1 can be calculated from the tilt angles in the front-rear direction and the left-right direction. The predetermined angle predetermined for each inclination direction is compared with the actual inclination angle in the inclination direction measured by the inclination angle measuring means 71, and the driving mode is switched when the actual inclination angle is equal to or larger than the predetermined angle. By performing the control so as not to perform the operation, it is possible to reliably prevent the occurrence of the malfunction of the vehicle parts. In addition, as long as it is only necessary to measure the inclination in the front-rear direction, a sensor that can measure only the inclination in the front-rear direction may be employed.
 この発明に係る車両1には、本願発明に係る走行モードの切り替え制御方法を実施できる限りにおいて、どのようなステアリング装置を用いても構わないが、図6から図9(a)(b)において詳しく説明するステアリング装置10、20を用いるのが特に好ましい。以下、このステアリング装置10、20を採用した車両1について、ステアリング装置10、20の構成及び作用、各走行モードにおける車輪wの挙動について詳しく説明する。 As long as the traveling mode switching control method according to the present invention can be implemented, any steering device may be used for the vehicle 1 according to the present invention, but in FIGS. 6 to 9 (a) and 9 (b) It is particularly preferable to use the steering devices 10 and 20 described in detail. Hereinafter, the configuration and operation of the steering devices 10 and 20 and the behavior of the wheel w in each travel mode will be described in detail for the vehicle 1 employing the steering devices 10 and 20.
 この車両1は、図2に示すように、前輪用のステアリング装置10及び後輪用のステアリング装置20を備えており、4つの車輪wをそれぞれ所望の向きに転舵することができる。この転舵は、前輪用のステアリング装置10をステアリング2の操作又はモータ等のアクチュエータによって、後輪用のステアリング装置20をモータ等のアクチュエータによって、それぞれ駆動することによって行われる。この転舵に際しては、ステアリング2の操作やアクチュエータの動作に加えて、各車輪wに設けたインホイールモータMの駆動力でタイヤTを回転させて、車輪wのキングピン軸P周りの転舵をアシストすることも可能である(図5参照)。なお、運転者によるステアリング2の操作やアクチュエータの作動をさせることなく、インホイールモータMの駆動力のみで転舵することもできる。 As shown in FIG. 2, the vehicle 1 includes a front wheel steering device 10 and a rear wheel steering device 20, and can steer the four wheels w in desired directions. This steering is performed by driving the steering device 10 for the front wheels by operating the steering 2 or an actuator such as a motor, and driving the steering device 20 for the rear wheels by an actuator such as a motor. In this turning, in addition to the operation of the steering wheel 2 and the operation of the actuator, the tire T is rotated by the driving force of the in-wheel motor M provided on each wheel w to turn the wheel w around the kingpin axis P. It is also possible to assist (see FIG. 5). It is also possible to steer only by the driving force of the in-wheel motor M without operating the steering 2 or the actuator by the driver.
 なお、このステアリング装置20を後輪のみに装備し、前輪には通常の一般的なステアリング装置を装備した構成、あるいは、前輪と後輪で異なる形式のステアリング装置を採用した構成とすることもできる。 The steering device 20 may be provided only on the rear wheel and the front wheel may be provided with a normal general steering device, or the front wheel and the rear wheel may have different types of steering devices. .
 前輪と後輪の各ステアリング装置10、20には、左右の車輪wを転舵するために2つのラックバーが備えられている。以下、前輪及び後輪共に、車両1の前後方向に対して左側の車輪wに接続されるラックバーを第一ラックバー53と、右側の車輪wに接続されるラックバーを第二ラックバー54と称する。この2つのラックバー53、54は互いに平行に伸びている。なお、図2において左向きの矢印が示している方向が車両の前方方向になる。この車両の走行モードを、図3に示すその場回転モード、図4に示す横方向移動モード等の特殊走行モードに変更することもできる。この特殊走行モードについては、後ほど詳しく説明する。なお、各図中に記載の矢印は、図2中に記載の矢印と同様、車両1の前方方向を示している。 The front and rear steering devices 10 and 20 are each provided with two rack bars for turning the left and right wheels w. Hereinafter, for both the front wheel and the rear wheel, the rack bar connected to the left wheel w with respect to the longitudinal direction of the vehicle 1 is the first rack bar 53, and the rack bar connected to the right wheel w is the second rack bar 54. Called. The two rack bars 53 and 54 extend in parallel to each other. Note that the direction indicated by the left-pointing arrow in FIG. 2 is the forward direction of the vehicle. The traveling mode of the vehicle can be changed to a special traveling mode such as an in-situ rotation mode shown in FIG. 3 or a lateral movement mode shown in FIG. This special travel mode will be described in detail later. In addition, the arrow described in each figure has shown the front direction of the vehicle 1 similarly to the arrow described in FIG.
 前輪又は後輪の左右車輪wには、それぞれタイロッド12、22を介して各ラックバー53、54の接続用部材11、21が接続されている。タイロッド12、22と車輪wとの間には、適宜ナックルアーム等の各種部材が介在する。 The connecting members 11 and 21 of the rack bars 53 and 54 are connected to the left and right wheels w of the front wheel or the rear wheel via tie rods 12 and 22, respectively. Various members such as a knuckle arm are appropriately interposed between the tie rods 12 and 22 and the wheel w.
 図5は、インホイールモータMが収容された車輪wとタイロッド12、22との接続状態を示す。すべての車輪wは、それぞれ車両のフレームに支持されたアッパーアームUAとロアアームLAの先端にそれぞれ備えられたボールジョイントBJの中心線を結んだキングピン軸Pを中心軸として、転舵が可能となっている。インホイールモータMは、車体内側から車輪wに向かって、モータ部101、減速機102、車輪用軸受103が順番に直列に配置されている。本図中に示すように、キングピン軸P(操舵の回転軸)の地上との接点をP’とタイヤTの接地中心をT’としたときに、両者の位置が一致していないこと(スクラブ半径S≠0であること)を条件として、車輪wに設けたインホイールモータMの駆動力でタイヤTを回転させて、車輪wのキングピン軸P周りの転舵をアシストすることができる。 FIG. 5 shows a connection state between the wheel w in which the in-wheel motor M is accommodated and the tie rods 12 and 22. All the wheels w can be steered with the kingpin axis P connecting the center lines of the ball joints BJ provided at the tips of the upper arm UA and the lower arm LA supported by the vehicle frame, respectively. ing. In the in-wheel motor M, the motor unit 101, the speed reducer 102, and the wheel bearing 103 are sequentially arranged in series from the inner side of the vehicle body toward the wheel w. As shown in this figure, when the contact point of the kingpin shaft P (steering rotation shaft) with the ground is P ′ and the ground contact center of the tire T is T ′, the positions of the two do not match (scrub) The tire T can be rotated by the driving force of the in-wheel motor M provided on the wheel w on the condition that the radius S ≠ 0) to assist the steering of the wheel w around the kingpin axis P.
 第一ラックバー53と第二ラックバー54は、図6に示すように、各ステアリング装置10、20において、車両1の直進方向(前後方向)に対して左右方向に伸びるラックケース(ステアリングシリンダ)50内に収容されている。ラックケース50は車両1の図示しないフレーム(シャーシ)に支持されている。 As shown in FIG. 6, the first rack bar 53 and the second rack bar 54 are rack cases (steering cylinders) that extend in the left-right direction with respect to the straight traveling direction (front-rear direction) of the vehicle 1 in each steering device 10, 20. 50. The rack case 50 is supported by a frame (chassis) (not shown) of the vehicle 1.
 ラックケース50の車両1への取付けは、例えば、ラックケース50に複数設けられたフランジ部50aを介して、車両1のフレームに直接又は間接的にネジ固定とすることができる。 The attachment of the rack case 50 to the vehicle 1 can be directly or indirectly screwed to the frame of the vehicle 1 via a plurality of flange portions 50a provided in the rack case 50, for example.
 第一ラックバー53と第二ラックバー54は、ラックケース50内を車両1の直進方向に対して左右同方向に同距離だけ同時に移動可能である。この動作は、運転者が行うステアリング2の操作に基づく、通常転舵用アクチュエータ31(図2参照)の動作によって行われる。この動作により、通常走行時、左右車輪wを左右同方向に同時に転舵させることができる。 The first rack bar 53 and the second rack bar 54 can move simultaneously within the rack case 50 by the same distance in the same left-right direction with respect to the straight traveling direction of the vehicle 1. This operation is performed by the operation of the normal steering actuator 31 (see FIG. 2) based on the operation of the steering 2 performed by the driver. By this operation, the left and right wheels w can be simultaneously steered in the same direction in the left and right during normal travel.
 図7(a)(b)に示すピニオン軸61は、ステアリングシャフト3(図2参照)、もしくは、ステアリング2の回転動作によって作動するモータ等のアクチュエータ31(図2参照)に接続される。このピニオン軸61には、一体もしくは一体に回転可能に第一ピニオンギア62が結合されるとともに、この第一ピニオンギア62と同軸に第二ピニオンギア65が設けられている。第一ピニオンギア62は第一ラックバー53と、第二ピニオンギア65は第二ラックバー54とそれぞれ噛み合っている。 7 (a) and 7 (b), the pinion shaft 61 is connected to the steering shaft 3 (see FIG. 2) or the actuator 31 (see FIG. 2) such as a motor that is operated by the rotation operation of the steering 2. A first pinion gear 62 is coupled to the pinion shaft 61 so as to be integrally or integrally rotatable, and a second pinion gear 65 is provided coaxially with the first pinion gear 62. The first pinion gear 62 meshes with the first rack bar 53, and the second pinion gear 65 meshes with the second rack bar 54, respectively.
 第一ピニオンギア62と第二ピニオンギア65の間には、両ピニオンギア62、65を回転方向に結合又は分離する連結機構63が設けられている。図7(a)は分離した状態、図7(b)は結合した状態を示している。 Between the first pinion gear 62 and the second pinion gear 65, there is provided a coupling mechanism 63 that couples or separates both pinion gears 62, 65 in the rotational direction. FIG. 7A shows a separated state, and FIG. 7B shows a joined state.
 ステアリング装置10、20は、図8に示すように、それぞれラックバー動作手段60を備えている。ラックバー動作手段60は、車両1の直進方向に対する左右方向、すなわち、ラックの伸縮する方向(ラックの歯の並列する方向)に沿って、第一ラックバー53と第二ラックバー54を互いに反対方向(相反する方向)へ同距離だけ同時に移動させる機能を有する。 Steering devices 10 and 20 are each provided with rack bar operation means 60 as shown in FIG. The rack bar operation means 60 opposes the first rack bar 53 and the second rack bar 54 in the left-right direction with respect to the straight traveling direction of the vehicle 1, that is, along the direction in which the rack extends and contracts (the direction in which the rack teeth are arranged in parallel). It has the function of moving simultaneously in the same direction (the opposite direction) by the same distance.
 ラックバー動作手段60は、図8に示すように、対のラックバー53、54の互いに対向するラックギア、すなわち、第一ラックバー53の同期用ラックギア53aと第二ラックバー54の同期用ラックギア54aにそれぞれ噛み合う第一同期ギア55を備える。 As shown in FIG. 8, the rack bar operating means 60 is a rack gear of the pair of rack bars 53, 54 facing each other, that is, the synchronization rack gear 53a of the first rack bar 53 and the synchronization rack gear 54a of the second rack bar 54. Are provided with first synchronization gears 55 that mesh with each other.
 第一同期ギア55は、ラックバー53、54のラックの歯の並列方向に沿って一定の間隔で並列する三つのギア55a、55b、55cからなる。図7(a)(b)で示した連結機構63による第一及び第二ピニオンギア62、65の連結を分離状態としつつ、第一ラックバー53をラックバー動作手段60から入力された駆動力によって、そのラックの歯の並列方向に対して一方向へ動かすと、その動きが第二ラックバー54の他方向への動きに変換される。 The first synchronization gear 55 includes three gears 55a, 55b, and 55c that are arranged in parallel at regular intervals along the parallel direction of the rack teeth of the rack bars 53 and 54. Driving force input from the rack bar operating means 60 to the first rack bar 53 while the connection of the first and second pinion gears 62 and 65 by the connection mechanism 63 shown in FIGS. Thus, when the rack teeth are moved in one direction with respect to the parallel direction of the teeth of the rack, the movement is converted into the movement of the second rack bar 54 in the other direction.
 図8、図9(a)(b)に示すように、第一同期ギア55の隣り合うギア55a、55b間、ギア55b、55c間には、それぞれ、第二同期ギア56を構成するギア56a、56bが配置されている。第二同期ギア56は、第一ラックバー53の同期用ラックギア53aや第二ラックバー54の同期用ラックギア54aには噛み合わず、第一同期ギア55にのみ噛み合っている。第二同期ギア56は、第一同期ギア55の3つのギア55a、55b、55cを、同方向に同角度だけ動かすためのものである。この第二同期ギア56によって、第一ラックバー53と第二ラックバー54は、スムーズに相対移動することが可能となる。 As shown in FIG. 8, FIG. 9A and FIG. 9B, a gear 56a constituting a second synchronization gear 56 is provided between the adjacent gears 55a and 55b of the first synchronization gear 55 and between the gears 55b and 55c. , 56b are arranged. The second synchronization gear 56 meshes only with the first synchronization gear 55 without meshing with the synchronization rack gear 53 a of the first rack bar 53 or the synchronization rack gear 54 a of the second rack bar 54. The second synchronization gear 56 is for moving the three gears 55a, 55b, 55c of the first synchronization gear 55 in the same direction by the same angle. By the second synchronization gear 56, the first rack bar 53 and the second rack bar 54 can smoothly move relative to each other.
 また、図7(a)(b)に示すように、第一ラックバー53と第二ラックバー54は、同期用ラックギア53a、54aとは別に、それぞれ転舵用ラックギア53b、54bを備えている。 Further, as shown in FIGS. 7A and 7B, the first rack bar 53 and the second rack bar 54 include steering rack gears 53b and 54b, respectively, separately from the synchronization rack gears 53a and 54a. .
 第一ラックバー53と第二ラックバー54は、それぞれ、別体で形成された同期用ラックギア53a、54aと前記転舵用ラックギア53b、54bを、ボルト軸等の固定手段で一体に固定したものとしてよい。 The first rack bar 53 and the second rack bar 54 are obtained by integrally fixing the synchronizing rack gears 53a and 54a and the steering rack gears 53b and 54b, respectively, by fixing means such as a bolt shaft. As good as
 転舵用ラックギア53b、54bは、各ラックバー53、54を、車両1のフレームに対して、前記ラックの歯の並列方向に沿って移動させるための駆動力の入力手段として機能する。 The steering rack gears 53b and 54b function as driving force input means for moving the rack bars 53 and 54 along the parallel direction of the rack teeth with respect to the frame of the vehicle 1.
 図9(a)に示す状態(直進状態)から、図9(b)に示す状態(後で説明する横方向移動モードの状態)へと走行モードを変更するためには、連結機構63を分離した後、ラックバー動作手段60からの駆動力の入力により、第一ラックバー53を一方向に移動する。すると、第二ラックバー54には、第一ラックバー53と第二ラックバー54の両方に噛み合っている第一同期ギア55を介してその力が伝達され、この第二ラックバー54は、第一ラックバー53と逆方向に同距離だけ同時に移動する。 In order to change the travel mode from the state shown in FIG. 9A (straight-ahead state) to the state shown in FIG. 9B (the state of the lateral movement mode described later), the coupling mechanism 63 is separated. After that, the first rack bar 53 is moved in one direction by the input of the driving force from the rack bar operating means 60. Then, the force is transmitted to the second rack bar 54 via the first synchronization gear 55 meshed with both the first rack bar 53 and the second rack bar 54, and the second rack bar 54 receives the first rack bar 54. It moves simultaneously by the same distance in the opposite direction to the one rack bar 53.
 直進状態においては(図9(a)参照)、直進状態のタイヤ(ラックバー)位置で連結機構63が噛み合うことで、第一ピニオンギア62と第二ピニオンギア65が回転固定される。そして、ステアリング2を回転させてステアリングシャフト3を回転すると、第一ラックバー53と第二ラックバー54は、フレームに取り付けられたラックケース50内を左右同方向に同距離だけ同時に移動する。 In the straight traveling state (see FIG. 9A), the first pinion gear 62 and the second pinion gear 65 are rotationally fixed by the coupling mechanism 63 meshing at the tire (rack bar) position in the straight traveling state. When the steering shaft 2 is rotated by rotating the steering 2, the first rack bar 53 and the second rack bar 54 move simultaneously in the same direction in the left-right direction in the rack case 50 attached to the frame.
 また、横方向移動モードの状態においては(図9(b)参照)、連結機構63が分離され第一ラックバー53と第二ラックバー54は、同期ギアボックス66内の同期ギア55にそれぞれ噛合っている。この同期ギア55の噛合によって、それぞれのラックバー53、54は、同期ギアボックス66に対して逆方向に同距離移動する。 Further, in the state of the lateral movement mode (see FIG. 9B), the coupling mechanism 63 is separated, and the first rack bar 53 and the second rack bar 54 mesh with the synchronous gear 55 in the synchronous gear box 66, respectively. ing. The meshing of the synchronization gear 55 causes the rack bars 53 and 54 to move in the opposite direction with respect to the synchronization gear box 66 by the same distance.
 次に、ラックバー動作手段60の作用について説明する。 Next, the operation of the rack bar operation means 60 will be described.
 前輪のステアリング装置10のラックバー動作手段60は、運転者が行うステアリング2の回転動作に伴って直接回転する第一回転軸(ピニオンギア軸)61を備える(図7(a)(b)参照)。このように、運転者が行うステアリング2の回転動作に伴って第一回転軸61を直接回転させる代わりに、運転者が行うステアリング2の回転動作に連動して動作するモード切替用アクチュエータ32の駆動力によって、又は、車両1が備えるモード切替手段42の操作に連動して動作するモード切替用アクチュエータ32の駆動力によって、第一回転軸61側へ回転が伝達されるように切り替えることもできる。 The rack bar operation means 60 of the front-wheel steering device 10 includes a first rotation shaft (pinion gear shaft) 61 that rotates directly in accordance with the rotation operation of the steering 2 performed by the driver (see FIGS. 7A and 7B). ). Thus, instead of directly rotating the first rotating shaft 61 in accordance with the rotation operation of the steering wheel 2 performed by the driver, the driving of the mode switching actuator 32 that operates in conjunction with the rotation operation of the steering wheel 2 performed by the driver. It is also possible to switch so that rotation is transmitted to the first rotating shaft 61 side by force or by the driving force of the mode switching actuator 32 that operates in conjunction with the operation of the mode switching means 42 provided in the vehicle 1.
 後輪のステアリング装置20のラックバー動作手段60は、同じく、運転者が行うステアリング2の回転動作に連動して動作するモード切替用アクチュエータ32の駆動力によって、又は、車両1が備えるモード切替手段42の操作に連動して動作するモード切替用アクチュエータ32の駆動力によって回転する第一回転軸61と、その第一回転軸61に一体回転可能に取り付けられる第一ピニオンギア62とを備える。モード切替用アクチュエータ32の動作軸からステアリングシャフト3を介して、第一回転軸61側へ回転が伝達されるようになっている(図7(a)(b)参照)。 The rack bar operation means 60 of the steering device 20 for the rear wheels is also the mode switching means provided in the vehicle 1 by the driving force of the mode switching actuator 32 that operates in conjunction with the rotational operation of the steering 2 performed by the driver. And a first pinion gear 62 that is attached to the first rotation shaft 61 so as to be integrally rotatable with the first rotation shaft 61. Rotation is transmitted from the operating shaft of the mode switching actuator 32 to the first rotating shaft 61 side via the steering shaft 3 (see FIGS. 7A and 7B).
 ラックバー動作手段60は、第一回転軸61と一体もしくは結合された第一ピニオンギア62と、第一回転軸61と同軸上に配置される第二回転軸64と、その第二回転軸64に一体回転可能に取り付けられた第二ピニオンギア65を備える。 The rack bar operation means 60 includes a first pinion gear 62 integrated with or coupled to the first rotation shaft 61, a second rotation shaft 64 disposed coaxially with the first rotation shaft 61, and the second rotation shaft 64. Is provided with a second pinion gear 65 attached to be integrally rotatable.
 図6は、ステアリング装置10、20の全体を示す外観斜視図である。前部カバー52と後部カバー51との間に、第一ラックバー53や第二ラックバー54が収容されている。なお、図示されていないが、タイロッド12、22取り付け部からラックケース50(ケース前部51、ケース後部52)にかけて、可動部への異物の侵入を防止するためのブーツが備えられている。第一回転軸61は、モード切替用アクチュエータ32の動作軸に、図示しないステアリングジョイントを介して接続される。 FIG. 6 is an external perspective view showing the entire steering devices 10 and 20. A first rack bar 53 and a second rack bar 54 are accommodated between the front cover 52 and the rear cover 51. Although not shown in the drawings, boots are provided for preventing foreign substances from entering the movable portion from the attachment portions of the tie rods 12 and 22 to the rack case 50 (the case front portion 51 and the case rear portion 52). The first rotating shaft 61 is connected to the operating shaft of the mode switching actuator 32 via a steering joint (not shown).
 第一ピニオンギア62は、図7(a)(b)に示すように、第一ラックバー53の転舵用ラックギア53bに噛み合い、第二ピニオンギア65は第二ラックバー54の転舵用ラックギア54bに噛み合うようになっている。 As shown in FIGS. 7A and 7B, the first pinion gear 62 meshes with the steering rack gear 53 b of the first rack bar 53, and the second pinion gear 65 is the steering rack gear of the second rack bar 54. 54b.
 第一ピニオンギア62と第二ピニオンギア65との間には、互いに結合及び分離が可能な連結機構63が設けられている。この連結機構63は、第一回転軸61と第二回転軸64とを相対回転可能な状態(分離状態)と相対回転不能な状態(結合状態)とに切り替える機能を有する。 Between the first pinion gear 62 and the second pinion gear 65, there is provided a coupling mechanism 63 that can be coupled and separated from each other. The coupling mechanism 63 has a function of switching the first rotating shaft 61 and the second rotating shaft 64 between a state in which relative rotation is possible (separated state) and a state in which relative rotation is not possible (coupled state).
 連結機構63は、図7(a)(b)に示すように、第二回転軸64側の固定部63bと、第一回転軸61側の移動部63aを備える。移動部63aは、図示しないバネ等の弾性部材によって固定部63b側へ押し付けられ、連結機構63の固定部63b側の凹部63dに、移動部63a側の凸部63cが結合することで、両回転軸61、64が一体で回転可能となっている。なお、凹凸の形成部位を反対にして、固定部63b側に凸部63cを、移動部63a側に凹部63dを設けてもよい。 7A and 7B, the coupling mechanism 63 includes a fixed portion 63b on the second rotating shaft 64 side and a moving portion 63a on the first rotating shaft 61 side. The moving part 63a is pressed against the fixed part 63b side by an elastic member such as a spring (not shown), and the convex part 63c on the moving part 63a side is coupled to the concave part 63d on the fixed part 63b side of the coupling mechanism 63. The shafts 61 and 64 are integrally rotatable. Note that the projections 63c may be provided on the fixed portion 63b side, and the recesses 63d may be provided on the moving portion 63a side, with the concave and convex portions being reversed.
 図示しないプッシュソレノイドなどの駆動源からの外部入力によって、連結機構63の固定部63bに対して、移動部63aを軸方向に移動させ、固定部63bと移動部63aとの連結を分離することで、第一回転軸61と第二回転軸64は独立して回転する。すなわち、第一ピニオンギア62と第二ピニオンギア65は、それぞれが独立して回転可能となる(前記分離状態)。図7(a)は、連結機構63の分離状態を示し、図7(b)はその結合状態を示している。 By moving the moving part 63a in the axial direction with respect to the fixed part 63b of the connecting mechanism 63 by an external input from a driving source such as a push solenoid (not shown), the connection between the fixed part 63b and the moving part 63a is separated. The first rotating shaft 61 and the second rotating shaft 64 rotate independently. That is, the first pinion gear 62 and the second pinion gear 65 can rotate independently (the separated state). FIG. 7A shows a separated state of the coupling mechanism 63, and FIG. 7B shows a coupled state thereof.
 連結機構63の分離により第一ピニオンギア62、第二ピニオンギア65が相対回転可能なとき、第一ピニオンギア62は第一ラックバー53に噛合しており、第二ピニオンギア65は第二ラックバー54に噛合している。さらに、第一ラックバー53と第二ラックバー54は、第一同期ギア55によって噛合されている。このとき、第一ピニオンギア62に回転力を入力すると、第一ラックバー53がラックの歯の並列方向、すなわち、車両の左右方向に沿って横方向(一方向)へ移動する。第一ラックバー53が横方向に移動すると、第一同期ギア55が回転し、第二ラックバー54が第一ラックバー53と反対方向(他方向)へ同距離だけ同時に移動する。このとき、第二ピニオンギア65は第二ラックバー54の移動により自由に回転している。 When the first pinion gear 62 and the second pinion gear 65 are capable of relative rotation due to the separation of the coupling mechanism 63, the first pinion gear 62 is engaged with the first rack bar 53, and the second pinion gear 65 is engaged with the second rack. It meshes with the bar 54. Further, the first rack bar 53 and the second rack bar 54 are engaged with each other by a first synchronization gear 55. At this time, when a rotational force is input to the first pinion gear 62, the first rack bar 53 moves in the lateral direction (one direction) along the parallel direction of the teeth of the rack, that is, the left-right direction of the vehicle. When the first rack bar 53 moves in the lateral direction, the first synchronization gear 55 rotates, and the second rack bar 54 moves simultaneously in the opposite direction (the other direction) from the first rack bar 53 by the same distance. At this time, the second pinion gear 65 is freely rotated by the movement of the second rack bar 54.
 このように、第一ピニオンギア62と第二ピニオンギア65とを連結機構63により結合状態又は分離状態に切り替え自在とすることで、対のラックバー53、54が、一体に左右方向へ動く状態と、別々に反対方向へ動く状態との切り替えを容易に行うことが可能となる。 As described above, the first rackion gear 62 and the second pinion gear 65 can be switched to the coupled state or the separated state by the coupling mechanism 63 so that the pair of rack bars 53 and 54 move integrally in the left-right direction. Thus, it is possible to easily switch between the state of moving separately in the opposite direction.
 すなわち、連結機構63を結合して、対のラックバー53、54が一体に左右方向へ動く状態とした上で、運転者がステアリング2を操作することにより、左右車輪wをキングピン軸P(図5参照)周りに同方向へ同時に転舵させることができる。なお、このときは、第一ラックバー53と第二ラックバー54が一体に動くため、第一同期ギア55は回転しない。 That is, the coupling mechanism 63 is coupled so that the pair of rack bars 53 and 54 move together in the left-right direction, and the driver operates the steering wheel 2 to move the left and right wheels w to the kingpin axis P (see FIG. 5) can be simultaneously steered around in the same direction. At this time, since the first rack bar 53 and the second rack bar 54 move together, the first synchronization gear 55 does not rotate.
 また、連結機構63を分離して、対のラックバー53、54が別々に反対方向へ動く状態とした上で、運転者がステアリング2を操作することにより、左右車輪wをキングピン軸P(図5参照)周りに逆方向へ、すなわち、互いに相反する方向へ同時に転舵させることができる。 Further, the coupling mechanism 63 is separated so that the pair of rack bars 53 and 54 are separately moved in opposite directions, and the driver operates the steering wheel 2 to move the left and right wheels w to the kingpin shaft P (see FIG. 5)) can be simultaneously steered in the opposite directions, i.e. in opposite directions.
 モード切り替え時には、モード切替用アクチュエータ32(図2参照)の駆動力が、ピニオンギア62、65の回転を通じてそれぞれのラックバー53、54に入力されるようになっている。なお、モード切替用アクチュエータ32の駆動力がピニオンギア62の回転を通じてそれぞれのラックバー53、54に入力される際は、そのステアリングシャフト3の回転がステアリング2に伝達されないようにしてもよいし、その伝達を許容するようにしてもよい。 At the time of mode switching, the driving force of the mode switching actuator 32 (see FIG. 2) is input to the respective rack bars 53 and 54 through the rotation of the pinion gears 62 and 65. When the driving force of the mode switching actuator 32 is input to the rack bars 53 and 54 through the rotation of the pinion gear 62, the rotation of the steering shaft 3 may not be transmitted to the steering 2. The transmission may be allowed.
 さらに、モード切替用アクチュエータ32の役割を、通常転舵用アクチュエータ31が兼ねることも可能である。すなわち、通常転舵用アクチュエータ31が、モード切り替え時において、ステアリングシャフト3を介して第一回転軸61に回転を入力するようにしてもよい。また、モード切替用アクチュエータ32の役割を、各車輪に設けられたインホイールモータMの駆動力によって代用することもできる。 Furthermore, the normal steering actuator 31 can also serve as the mode switching actuator 32. That is, the normal steering actuator 31 may input rotation to the first rotating shaft 61 via the steering shaft 3 at the time of mode switching. Further, the role of the mode switching actuator 32 can be substituted by the driving force of the in-wheel motor M provided on each wheel.
(2)車両の走行モードについて
 以下、上記項目(1)において説明した車両1の主な走行モードについて説明する。
(2) Vehicle Travel Modes Hereinafter, main travel modes of the vehicle 1 described in the item (1) will be described.
(通常走行モード)
 図2に示す直進状態の車輪位置で、前輪のステアリング装置10の第一ラックバー53と第二ラックバー54を一体移動可能な状態、つまり連結機構63が結合した状態(図7(b)参照)とする。この状態でステアリング2を操作すると、ステアリング装置10のラックケース50内で第一ラックバー53と第二ラックバー54が一体になって左右方向に移動する。
(Normal driving mode)
2 is a state in which the first rack bar 53 and the second rack bar 54 of the front wheel steering device 10 can be moved integrally, that is, a state where the coupling mechanism 63 is coupled (see FIG. 7B). ). When the steering 2 is operated in this state, the first rack bar 53 and the second rack bar 54 are integrally moved in the left-right direction within the rack case 50 of the steering device 10.
 ステアリング装置10の第一ラックバー53が、通常転舵用アクチュエータ31の駆動力又はステアリング2の操作によって、左右一方向に動くことで、第二ラックバー54も一体に同方向に同距離動いて、前輪の左右車輪wが同方向に所定の角度だけ転舵される。すなわち、2つのラックバー53、54を完全に一体固定することで、通常の車両と同等の走行が可能となり、運転者のステアリング2の操作により、直進、右折、左折等の各場面に応じた必要な転舵を自在に行うことができる。 When the first rack bar 53 of the steering device 10 is moved in the left and right direction by the driving force of the normal steering actuator 31 or the operation of the steering 2, the second rack bar 54 is also integrally moved in the same direction by the same distance. The left and right wheels w of the front wheels are steered by a predetermined angle in the same direction. That is, by completely fixing the two rack bars 53 and 54 together, it is possible to travel equivalent to a normal vehicle, and depending on the situation such as straight turn, right turn, left turn, etc., by the driver's steering 2 operation. Necessary steering can be performed freely.
(その場回転モード)
 その場回転モードにおける各車輪の転舵状態を図3に示す。連結機構63が分離されることで(図7(a)参照)、第一ラックバー53と第二ラックバー54は別々に動作可能となる。このとき、モード切替用アクチュエータ32から駆動力が第一ピニオンギア62に入力されて、第一ラックバー53と第二ラックバー54は互いに相反する方向に同距離移動する。すなわち、第一ラックバー53と第二ラックバー54との間に第一同期ギア55が介在することによって、第一ラックバー53が左右方向一方向へ移動すれば、第二ラックバー54は他方向へ移動する。
(In-situ rotation mode)
The steered state of each wheel in the spot rotation mode is shown in FIG. By separating the coupling mechanism 63 (see FIG. 7A), the first rack bar 53 and the second rack bar 54 can be operated separately. At this time, the driving force is input from the mode switching actuator 32 to the first pinion gear 62, and the first rack bar 53 and the second rack bar 54 move the same distance in opposite directions. That is, if the first synchronization bar 55 is interposed between the first rack bar 53 and the second rack bar 54 and the first rack bar 53 moves in one direction in the left-right direction, the second rack bar 54 Move in the direction.
 第一ラックバー53と第二ラックバー54を互いに逆方向に移動させ、図3に示すように、前後4つの車輪wすべての中心軸がほぼ車両中心を向く位置で、連結機構63を結合固定させる。4つの車輪wすべての中心軸がほぼ車両中心を向いているため、それぞれの車輪wに備えられたインホイールモータMの駆動力によって、車両中心がその場所から移動しない状態(又はほぼ移動しない状態)を維持しながら車両1の向きを変える、いわゆるその場回転が可能となる。 The first rack bar 53 and the second rack bar 54 are moved in opposite directions to each other, and as shown in FIG. 3, the connecting mechanism 63 is coupled and fixed at a position where the central axes of all four front and rear wheels w are substantially directed to the vehicle center. Let Since the central axes of all four wheels w are substantially directed to the vehicle center, the vehicle center does not move from the place (or almost does not move) by the driving force of the in-wheel motor M provided on each wheel w. ), So-called in-situ rotation is possible.
(横方向移動モード)
 横方向移動モードにおける各車輪の転舵状態を図4に示す。その場回転モードと同様に、連結機構63を分離し(図7(a)参照)、前後4つの車輪wすべてが直進方向に対して90度の方向(車両の直進方向に対する左右方向)へ向くように、モード切替用アクチュエータ32から第一ピニオンギア62への回転の入力によって、ステアリング装置10、20内の第一ラックバー53と第二ラックバー54を反対方向へ移動させる。そして、車輪wが前記90度となった位置で連結機構63を結合させて(図7(b)参照)、対のラックバー53、54を固定する。
(Lateral movement mode)
The steered state of each wheel in the lateral movement mode is shown in FIG. Similarly to the in-situ rotation mode, the coupling mechanism 63 is separated (see FIG. 7A), and all four front and rear wheels w are directed in a direction of 90 degrees with respect to the straight traveling direction (left and right direction with respect to the straight traveling direction of the vehicle). As described above, the first rack bar 53 and the second rack bar 54 in the steering devices 10 and 20 are moved in opposite directions by the rotation input from the mode switching actuator 32 to the first pinion gear 62. Then, the coupling mechanism 63 is coupled at the position where the wheel w becomes 90 degrees (see FIG. 7B), and the pair of rack bars 53 and 54 are fixed.
 このように連結機構63を結合させた状態で、ステアリング装置10、20内の第一ラックバー53と第二ラックバー54を、通常転舵用アクチュエータ31の駆動力又はステアリング2の操作によって、直進方向に対して一体に左右方向へ移動させることで、車輪wの向き(タイヤ角度)を微調整することが可能となる。 With the coupling mechanism 63 coupled in this manner, the first rack bar 53 and the second rack bar 54 in the steering devices 10 and 20 are moved straight by the driving force of the normal steering actuator 31 or the operation of the steering 2. It is possible to finely adjust the direction (tire angle) of the wheel w by moving it in the left-right direction integrally with the direction.
 図4は、横方向移動モードでの前後輪のステアリング装置10、20の対のラックバー53、54の位置関係と、車輪wの向きを示す。その場回転モード時に比べて、さらに、対のラックバー53、54が外側に張り出しており、タイロッド12、22の車輪wへの接続部が、車両の幅方向に対して最も外側に位置している。この横方向移動モードにおいても、通常転舵用アクチュエータ31の駆動力又はステアリング2の操作によって、車輪wの向き(タイヤ角度)を微調整することが可能である。 FIG. 4 shows the positional relationship between the pair of rack bars 53 and 54 of the front and rear wheel steering devices 10 and 20 and the direction of the wheels w in the lateral movement mode. Compared to the in-situ rotation mode, the pair of rack bars 53 and 54 protrude outward, and the connecting portion of the tie rods 12 and 22 to the wheel w is located on the outermost side in the vehicle width direction. Yes. Even in this lateral movement mode, the direction (tire angle) of the wheel w can be finely adjusted by the driving force of the normal steering actuator 31 or the operation of the steering 2.
 上記の各モードの切り替えは、運転者が運転室に設けられたモード切替手段42を操作することによって行うことができる。 Switching between the above modes can be performed by the driver operating the mode switching means 42 provided in the cab.
 (3)走行モードの切り替え制御方法について
 図1に示したように、傾斜角度θの傾斜地に停車した状態の車両1において、通常走行モードと、その場回転や横方向移動等の特殊走行モードとの間の切り替えを行うための切り替え制御方法のフローについて説明する。
(3) Travel Mode Switching Control Method As shown in FIG. 1, in the vehicle 1 in a state of stopping on an inclined ground having an inclination angle θ, a normal travel mode and a special travel mode such as in-situ rotation and lateral movement are provided. A flow of the switching control method for switching between the two will be described.
 この切り替え制御方法では、図10にそのフローの一例を示すように、まず、運転者が、運転席の近傍に設けられたモード切替手段42を操作する(S1)。次に、傾斜角測定手段71によって、傾斜角度が測定される(S2)。さらに、測定された傾斜角度が予め定めた所定角度以上(例えば5度以上)かどうかについてECU70で判断される(S3)。この傾斜角度が所定角度以上の場合(図10中のYESの矢印参照)、運転者が行なったモード切替手段42の操作は取り消される(S4)。このように、モード切替操作を取り消すことによって、図1に示したように、後輪に大きな負荷がかかった状態のまま車輪wの転舵がなされて、後輪のステアリング装置20等の車両部品に不具合が生じるのを防止することができる。その一方で、この傾斜角度が所定角度よりも小さい場合(図10中のNOの矢印参照)、モード切替手段の操作に基づいて、走行モードの切り替えが実行される(S5)。 In this switching control method, as shown in an example of the flow in FIG. 10, first, the driver operates the mode switching means 42 provided near the driver's seat (S1). Next, the tilt angle is measured by the tilt angle measuring means 71 (S2). Further, ECU 70 determines whether or not the measured inclination angle is equal to or greater than a predetermined angle (for example, 5 degrees or more) (S3). When the inclination angle is equal to or larger than the predetermined angle (see YES arrow in FIG. 10), the operation of the mode switching means 42 performed by the driver is canceled (S4). Thus, by canceling the mode switching operation, as shown in FIG. 1, the wheels w are steered while a large load is applied to the rear wheels, and the vehicle components such as the steering device 20 for the rear wheels. It is possible to prevent a malfunction from occurring. On the other hand, when the tilt angle is smaller than the predetermined angle (see NO arrow in FIG. 10), the driving mode is switched based on the operation of the mode switching means (S5).
 この切り替え制御方法のフローの他例を図11に示す。このフローにおいては、まず、傾斜角測定手段71によって、傾斜角度が測定される(S6)。次に、測定された傾斜角度が予め定めた所定角度以上(例えば5度以上)かどうかについてECU70で判断される(S7)。この傾斜角度が所定角度以上の場合(図11中のYESの矢印参照)、運転者がモード切替手段の操作を行っても、その操作の受け付けが拒否される(S8)。このように、モード切替操作の受け付けを拒否することによって、図1に示したように、後輪に大きな負荷がかかった状態のまま車輪wの転舵がなされて、後輪のステアリング装置20等の車両部品に不具合が生じるのを防止することができる。その一方で、この傾斜角度が所定角度よりも小さい場合(図11中のNOの矢印参照)、運転者によるモード切替手段の操作を受け付けて(S9)、走行モードの切り替えが実行される(S10)。 Another example of the flow of this switching control method is shown in FIG. In this flow, first, the tilt angle is measured by the tilt angle measuring means 71 (S6). Next, ECU 70 determines whether or not the measured inclination angle is equal to or greater than a predetermined angle (for example, 5 degrees or more) (S7). When the inclination angle is equal to or larger than the predetermined angle (see the YES arrow in FIG. 11), even if the driver operates the mode switching means, the acceptance of the operation is rejected (S8). In this way, by rejecting the acceptance of the mode switching operation, as shown in FIG. 1, the wheel w is steered while a large load is applied to the rear wheel, and the rear wheel steering device 20 and the like. It is possible to prevent the occurrence of problems in the vehicle parts. On the other hand, when the inclination angle is smaller than the predetermined angle (see NO arrow in FIG. 11), the operation of the mode switching means by the driver is accepted (S9), and the driving mode is switched (S10). ).
 図10及び図11に示すフローは、車両1が前後方向に傾斜している場合だけでなく、前後方向に加えて左右方向に傾斜している場合にも適用できる。例えば、車両1が前後方向に加えて左右方向にも傾斜している場合には、前輪又は後輪の左右車輪のうち、低い方(傾斜下側)の一方の車輪wに大きな荷重がかかっている場合がある。この状態で転舵操作を行うと、車両1が単に前後方向に傾斜している場合と比較して、この低い方(傾斜下側)の車輪wに不具合が生じる恐れがさらに高まる。このように、傾斜方向ごとに予め定めた前記所定角度と、その傾斜方向への実際の傾斜角度を比較して、実際の傾斜角度が前記所定角度以上の場合に転舵操作を行わないように走行モードの切り替え制御を行うことにより、この傾斜方向に対応して、車両部品の不具合を確実に防ぐことができる。 10 and 11 can be applied not only when the vehicle 1 is inclined in the front-rear direction but also when the vehicle 1 is inclined in the left-right direction in addition to the front-rear direction. For example, when the vehicle 1 is inclined in the left-right direction in addition to the front-rear direction, a large load is applied to one of the lower wheels (inclined lower side) of the left and right wheels of the front wheel or the rear wheel. There may be. When the steering operation is performed in this state, there is a further possibility that a problem occurs in the wheel w on the lower side (lower tilt side) as compared with the case where the vehicle 1 is simply tilted in the front-rear direction. In this way, the predetermined angle predetermined for each inclination direction is compared with the actual inclination angle in the inclination direction so that the steering operation is not performed when the actual inclination angle is equal to or greater than the predetermined angle. By performing the switching control of the travel mode, it is possible to reliably prevent the malfunction of the vehicle parts corresponding to this inclination direction.
 これらの切り替え制御は、サイドブレーキをかけて車両1が動かない状態とした場合でも必要である。サイドブレーキをかけることにより、車両1の自重により、モード切替中に車両1が不用意に動くのは防止できるものの、一部の車輪に大きな荷重がかかって、車両部品の不具合が生じ得るためである。 These switching controls are necessary even when the vehicle 1 is not moved by applying a side brake. Although it is possible to prevent the vehicle 1 from inadvertently moving during mode switching due to the weight of the vehicle 1 by applying the side brake, a large load is applied to some of the wheels, which may cause a malfunction of the vehicle parts. is there.
 上記の車両1の全体構成、走行モード、及び走行モードのモード切り替え制御方法はあくまでも一例であって、傾斜地に停車している車両1の転舵の際に、ステアリング装置10、20等の車両部品に大きな負荷がかからないようにする、という本願発明の課題を解決し得る限りにおいて、その全体構成やモード切り替え制御方法の手順は適宜変更することが許容される。 The overall configuration of the vehicle 1, the driving mode, and the mode switching control method for the driving mode are merely examples, and vehicle components such as the steering devices 10 and 20 are used when the vehicle 1 stopped on the slope is steered. As long as the problem of the present invention of preventing a large load from being applied can be solved, the entire configuration and the procedure of the mode switching control method can be appropriately changed.
1 車両
10、20 ステアリング装置
12、22 タイロッド
42 モード切替手段
53、54 ラックバー
55 同期ギア
60 ラックバー動作手段
62 第一ピニオンギア
63 連結機構
65 第二ピニオンギア
70 制御装置(電子制御ユニット(ECU))
71 傾斜角測定手段
FL 左前輪
FR 右前輪
RL 左後輪
RR 右後輪
w 車輪
DESCRIPTION OF SYMBOLS 1 Vehicle 10, 20 Steering device 12, 22 Tie rod 42 Mode switching means 53, 54 Rack bar 55 Synchronous gear 60 Rack bar operating means 62 First pinion gear 63 Connection mechanism 65 Second pinion gear 70 Control device (electronic control unit (ECU) ))
71 Inclination angle measuring means FL Left front wheel FR Right front wheel RL Left rear wheel RR Right rear wheel w Wheel

Claims (7)

  1.  左右の前輪(FL、FR)又は後輪(RL、RR)の少なくとも一方を所定方向に転舵するようにモード切替手段を操作するステップと、
     車体に搭載された傾斜角測定手段(71)によって得られた前記車体の傾斜角度の測定結果が、予め定めた所定角度以上の場合に、前記操作を取り消し、あるいは、前記操作の受け付けを拒否するステップと、
     前記測定結果が、前記所定角度よりも小さい場合に、前記操作に従って転舵を行うステップと、
    を有する車両(1)の走行モードの切り替え制御方法。
    Operating the mode switching means to steer at least one of the left and right front wheels (FL, FR) or the rear wheels (RL, RR) in a predetermined direction;
    When the measurement result of the inclination angle of the vehicle body obtained by the inclination angle measuring means (71) mounted on the vehicle body is greater than a predetermined angle, the operation is canceled or the acceptance of the operation is rejected. Steps,
    When the measurement result is smaller than the predetermined angle, turning according to the operation,
    A control method for switching the travel mode of the vehicle (1) having the following.
  2.  全ての車輪(w)で転舵がなされ、前記所定方向が、左右の前輪(FL、FR)で左右逆方向であり、左右の後輪(RL、RR)で左右逆方向かつ前記左右の前輪(FL、FR)と左右それぞれ逆方向である請求項1に記載の車両の走行モードの切り替え制御方法。 All the wheels (w) are steered, and the predetermined direction is the left and right front wheels (FL, FR) and the left and right rear wheels, the left and right rear wheels (RL, RR) are the left and right reverse directions and the left and right front wheels The vehicle travel mode switching control method according to claim 1, wherein each direction is opposite to the left and right directions of (FL, FR).
  3.  前記傾斜角測定手段(71)によって得られた前記車体(1)の前後方向及び左右方向の傾斜角度の測定結果から、前記車両(1)の傾斜方向を算出し、前記測定結果が、この傾斜方向ごとに予め定めた前記所定角度以上の場合に、前記操作を取り消し、あるいは、前記操作の受け付けを拒否するステップを適用する請求項1又は2に記載の車両の走行モードの切り替え制御方法。 The inclination direction of the vehicle (1) is calculated from the measurement results of the inclination angle in the front-rear direction and the left-right direction of the vehicle body (1) obtained by the inclination angle measurement means (71). The vehicle travel mode switching control method according to claim 1 or 2, wherein a step of canceling the operation or rejecting the reception of the operation is applied when the angle is equal to or larger than the predetermined angle predetermined for each direction.
  4.  前記所定角度が5度である請求項1から3のいずれか1項に記載の走行モードの切り替え制御方法。 The traveling mode switching control method according to any one of claims 1 to 3, wherein the predetermined angle is 5 degrees.
  5.  前記所定角度が3度である請求項1から3のいずれか1項に記載の走行モードの切り替え制御方法。 The traveling mode switching control method according to any one of claims 1 to 3, wherein the predetermined angle is 3 degrees.
  6.  走行モードを切り替えるモード切替手段(42)と、
     前記モード切替手段(42)の操作によって、左右の前後輪(FL、FR、RL、RR)を左右同方向又は逆方向に転舵可能なステアリング装置(10、20)と、
     車体に搭載され、この車体の傾斜角度を測定する傾斜角測定手段(71)と、
     前記傾斜角測定手段(71)によって得られた測定結果が、傾斜方向ごとに予め定めた所定角度以上の場合に、前記転舵を行わない判断を行う制御装置(70)と、
    を有する車両。
    Mode switching means (42) for switching the running mode;
    Steering devices (10, 20) capable of steering left and right front and rear wheels (FL, FR, RL, RR) in the same direction in the left or right direction or in the reverse direction by operation of the mode switching means (42);
    An inclination angle measuring means (71) mounted on the vehicle body for measuring the inclination angle of the vehicle body;
    A control device (70) for determining that the steering is not performed when the measurement result obtained by the tilt angle measuring means (71) is equal to or greater than a predetermined angle predetermined for each tilt direction;
    Vehicle with.
  7.  前記ステアリング装置(10、20)が、
     左右車輪(w)に接続され、その左右車輪(w)を転舵するタイロッド(12、22)と、
     前記左右車輪(w)のタイロッド(12、22)にそれぞれ接続された対のラックバー(53、54)と、
     前記対のラックバー(53、54)にそれぞれ噛み合い、一方のラックバー(53)のラックの歯の並列方向に対する一方向への動きを他方のラックバー(54)の他方向への動きに変換する同期ギア(55)と、
     前記一方のラックバー(53)に噛み合う第一ピニオンギア(62)と、前記他方のラックバー(54)に噛み合う第二ピニオンギア(65)と、前記第一及び第二ピニオンギア(62、65)の回転軸(61、64)を結合又は分離する連結機構(63)と、を有し、前記対のラックバー(53、54)をそれぞれのラックバー(53、54)のラックの歯の並列方向に沿って、左右反対方向へ移動させることが可能なラックバー動作手段(60)と、
    を備えた請求項6に記載の車両。
    The steering device (10, 20)
    Tie rods (12, 22) connected to the left and right wheels (w) and steering the left and right wheels (w);
    A pair of rack bars (53, 54) respectively connected to the tie rods (12, 22) of the left and right wheels (w);
    The pair of rack bars (53, 54) mesh with each other, and the movement of one rack bar (53) in one direction with respect to the parallel direction of the rack teeth is converted into the movement of the other rack bar (54) in the other direction. A synchronous gear (55) to
    A first pinion gear (62) meshing with the one rack bar (53); a second pinion gear (65) meshing with the other rack bar (54); and the first and second pinion gears (62, 65). A connecting mechanism (63) for connecting or separating the rotating shafts (61, 64) of the rack bars (53, 54) to the rack teeth of the rack bars (53, 54). Rack bar operating means (60) capable of moving in the opposite direction along the parallel direction;
    The vehicle according to claim 6 provided with.
PCT/JP2015/058332 2014-03-25 2015-03-19 Driving mode switch control method and vehicle WO2015146803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-061652 2014-03-25
JP2014061652A JP6382544B2 (en) 2014-03-25 2014-03-25 Travel mode switching control method and vehicle

Publications (1)

Publication Number Publication Date
WO2015146803A1 true WO2015146803A1 (en) 2015-10-01

Family

ID=54195323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058332 WO2015146803A1 (en) 2014-03-25 2015-03-19 Driving mode switch control method and vehicle

Country Status (2)

Country Link
JP (1) JP6382544B2 (en)
WO (1) WO2015146803A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545980A (en) * 2015-11-11 2017-07-05 Ford Global Tech Llc Hill parking aid
CN114056334A (en) * 2021-11-12 2022-02-18 上汽通用五菱汽车股份有限公司 Driving mode linkage method and device, vehicle and computer readable storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112724A (en) * 1989-09-25 1991-05-14 Aisin Aw Co Ltd Wiring for vehicle motor and piping device
JPH0558330A (en) * 1991-08-27 1993-03-09 Komatsu Ltd Omnidirectional travel type vehicle
JP2600374Y2 (en) * 1992-09-04 1999-10-12 富士重工業株式会社 Rear wheel steering device for four-wheel steering vehicle
JP2002079925A (en) * 2000-09-05 2002-03-19 Aichi Corp Safety device for working vehicle
JP2003127876A (en) * 2001-10-26 2003-05-08 Nissan Motor Co Ltd Steering device
JP2005297782A (en) * 2004-04-12 2005-10-27 Toyota Motor Corp Toe angle adjustment mechanism
JP4635754B2 (en) * 2005-07-12 2011-02-23 日産自動車株式会社 Steering device
JP2011208742A (en) * 2010-03-30 2011-10-20 Toshiba Mitsubishi-Electric Industrial System Corp Positioning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262971A (en) * 1990-12-28 1992-09-18 Aisin Aw Co Ltd Steering device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112724A (en) * 1989-09-25 1991-05-14 Aisin Aw Co Ltd Wiring for vehicle motor and piping device
JPH0558330A (en) * 1991-08-27 1993-03-09 Komatsu Ltd Omnidirectional travel type vehicle
JP2600374Y2 (en) * 1992-09-04 1999-10-12 富士重工業株式会社 Rear wheel steering device for four-wheel steering vehicle
JP2002079925A (en) * 2000-09-05 2002-03-19 Aichi Corp Safety device for working vehicle
JP2003127876A (en) * 2001-10-26 2003-05-08 Nissan Motor Co Ltd Steering device
JP2005297782A (en) * 2004-04-12 2005-10-27 Toyota Motor Corp Toe angle adjustment mechanism
JP4635754B2 (en) * 2005-07-12 2011-02-23 日産自動車株式会社 Steering device
JP2011208742A (en) * 2010-03-30 2011-10-20 Toshiba Mitsubishi-Electric Industrial System Corp Positioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545980A (en) * 2015-11-11 2017-07-05 Ford Global Tech Llc Hill parking aid
CN114056334A (en) * 2021-11-12 2022-02-18 上汽通用五菱汽车股份有限公司 Driving mode linkage method and device, vehicle and computer readable storage medium

Also Published As

Publication number Publication date
JP2015182637A (en) 2015-10-22
JP6382544B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6382545B2 (en) Steering device and vehicle equipped with the same
JP6351944B2 (en) Steering device
JP6335486B2 (en) vehicle
JP6297306B2 (en) vehicle
JP6452944B2 (en) Steering device
JP2016022756A (en) Steering system with in-wheel motor of amphibious vehicle
JP6246010B2 (en) Switching method of vehicle and running mode
JP6382544B2 (en) Travel mode switching control method and vehicle
WO2015050190A1 (en) Steering device
WO2015076209A1 (en) Drive/turn module, and vehicle provided with drive/turn module
JP6437189B2 (en) Steering device and steering device system
WO2016121677A1 (en) Steering device and vehicle equipped with same
WO2016117585A1 (en) Steering apparatus
RU2565631C2 (en) Automotive steering control system
WO2016098639A1 (en) Vehicle control method and vehicle
JP2016124475A (en) Steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769555

Country of ref document: EP

Kind code of ref document: A1