WO2015146621A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2015146621A1
WO2015146621A1 PCT/JP2015/057435 JP2015057435W WO2015146621A1 WO 2015146621 A1 WO2015146621 A1 WO 2015146621A1 JP 2015057435 W JP2015057435 W JP 2015057435W WO 2015146621 A1 WO2015146621 A1 WO 2015146621A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
fluorescent member
emitting device
cooling medium
light
Prior art date
Application number
PCT/JP2015/057435
Other languages
French (fr)
Japanese (ja)
Inventor
寛之 清水
隆史 西宮
義正 山口
角見 昌昭
忠仁 古山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2015146621A1 publication Critical patent/WO2015146621A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present invention relates to a light emitting device suitable for a projector.
  • a light emitting device using an LED (Light Emitting Diode) and a phosphor has been proposed.
  • a projector using a light emitting device including a light source that emits excitation light and a fluorescent member that includes a phosphor that converts excitation light from the light source into fluorescence has been proposed.
  • the phosphor when a high-output light source is used as the light source, the phosphor generates heat due to the irradiation of excitation light, and the temperature of the fluorescent member rises. When the temperature of the phosphor rises, problems such as a decrease in emission intensity occur.
  • Patent Documents 1 to 5 it is possible to improve heat dissipation by providing the fluorescent member with a heat sink having high thermal conductivity, a heat radiating fin, or an uneven structure for heat radiating. Proposed.
  • JP 2012-169049 A JP 2001-142146 A JP 2002-90886 A JP 2003-156996 A JP 2011-186350 A
  • the above conventional technique has a problem that the temperature rise of the phosphor cannot be efficiently suppressed.
  • An object of the present invention is to provide a light emitting device capable of efficiently suppressing a temperature rise of a phosphor in a fluorescent member.
  • the light emitting device of the present invention includes a light source that emits excitation light, a fluorescent member that emits fluorescence when incident excitation light from the light source, a cooling medium in which the fluorescent member is immersed, a container that stores the cooling medium, and a container A cooling mechanism for cooling the cooling medium, the container having an incident part for allowing excitation light from the light source to enter the inside of the container, and an emission for emitting the fluorescence from the fluorescent member to the outside of the container Part.
  • the cooling mechanism may cool the cooling medium by circulating the cooling medium.
  • the incident part may have a lens function of condensing excitation light and irradiating the fluorescent member.
  • the emission unit may have a lens function of collecting and emitting fluorescence.
  • the fluorescent member may be a reflective fluorescent member or a transmissive fluorescent member.
  • Examples of the reflective fluorescent member include those having a reflective layer and a phosphor layer provided on the reflective layer.
  • the temperature rise of the phosphor in the fluorescent member used for the light emitting device can be efficiently suppressed.
  • FIG. 1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a light emitting device according to a second embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a light emitting device according to a third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a light emitting device according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a light emitting device according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a light emitting device according to a sixth embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment of the present invention.
  • the light emitting device 1 includes a light source 20 that emits excitation light 2, a fluorescent member 10 that emits fluorescence 3 when the excitation light 2 from the light source 20 is incident, a cooling medium 4 in which the fluorescent member 10 is immersed, and a cooling medium 4.
  • a container 30 to be housed and a cooling mechanism 40 that is connected to the container 30 and cools the cooling medium 4 are provided.
  • the cooling mechanism 40 that circulates and cools the cooling medium 4 includes a radiator 41, a pump 42, a cooling fan 43, and pipes 44, 45, and 46.
  • the pipe 44 and the pipe 46 are connected to the container 30.
  • One end of the pipe 44 is connected to the container 30, and the other end is connected to the radiator 41.
  • One end of the pipe 46 is connected to the container 30, and the other end is connected to the pump 42.
  • One end of the pipe 45 is connected to the pump 42, and the other end is connected to the radiator 41.
  • the radiator 41 is cooled by a cooling fan 43.
  • As the cooling medium 4 a colorless and transparent medium such as water, ethylene glycol, or antifreeze is preferably used.
  • the cooling medium 4 in the container 30 passes through the pipe 44 and is supplied to the radiator 41.
  • the radiator 41 is cooled by a cooling fan 43, and the cooling medium 4 supplied to the radiator 41 is cooled.
  • the cooling medium 4 cooled by the radiator 41 passes through the pipe 45 and is sent to the pump 42.
  • the cooling medium 4 sent to the pump 42 is returned to the container 30 through the pipe 46.
  • the cooling medium 4 in the container 30 is sent to the cooling mechanism 40, cooled by the cooling mechanism 40, and then returned to the container 30.
  • the fluorescent member 10 is immersed in the cooling medium 4 accommodated in the container 30 and is cooled by the cooling medium 4.
  • the fluorescent member 10 is held in the container 30 by a holding member (not shown).
  • the fluorescent member 10 includes a reflective layer 12 and a phosphor layer 11 provided on the reflective layer 12.
  • the reflective layer 12 include metal films such as silver, aluminum, and platinum, and dielectric multilayer films.
  • the dielectric multilayer film is a film composed of a laminate of a high refractive index film and a low refractive index film, and can selectively reflect light having a specific wavelength.
  • the phosphor layer 11 is not particularly limited as long as it includes a phosphor.
  • Examples of the phosphor layer 11 include those composed of a glass matrix and phosphors dispersed therein.
  • the phosphor is not particularly limited as long as it emits fluorescence when incident excitation light is incident.
  • Specific examples of the phosphor include, for example, an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a chloride phosphor, an acid chloride phosphor, a sulfide phosphor, an oxysulfide phosphor, and a halide.
  • examples thereof include inorganic phosphors such as phosphors, chalcogenide phosphors, aluminate phosphors, halophosphate phosphors, and garnet compound phosphors.
  • the glass matrix is not particularly limited as long as it can be used as a phosphor dispersion medium.
  • borosilicate glass or phosphate glass can be used.
  • the softening point of the glass matrix is preferably 250 ° C. to 1000 ° C., more preferably 300 ° C. to 850 ° C.
  • the container 30 has an incident part 31 for causing the excitation light 2 from the light source 20 to enter the inside of the container 30 and an emission part 32 for emitting the fluorescence 3 from the fluorescent member 10 to the outside of the container 30.
  • a light source 20 and a condenser lens 21 are provided outside the container 30 so that the phosphor layer 11 of the fluorescent member 10 is irradiated with the excitation light 2.
  • Specific examples of the light source 20 include an LED light source and a laser light source.
  • the excitation light 2 emitted from the light source 20 is collected by the condenser lens 21, passes through the incident portion 31 of the container 30, and enters the phosphor layer 11 of the fluorescent member 10.
  • the excitation light 2 incident on the phosphor layer 11 excites the phosphor in the phosphor layer 11 and emits fluorescence 3 from the phosphor.
  • a part of the fluorescence 3 is reflected by the reflection layer 12 and is emitted from the phosphor layer 11.
  • a part of the fluorescence 3 is emitted directly from the phosphor layer 11.
  • the fluorescence 3 emitted from the phosphor layer 11 passes through the emission part 32 and is emitted to the outside of the container 30.
  • the fluorescence 3 emitted to the outside of the container 30 is emitted from the light emitting device 1 of the present embodiment.
  • the incident part 31 and the emission part 32 of the container 30 are made of a material that transmits the excitation light 2 and the fluorescence 3. Examples of such a material include glass and transparent resin.
  • the antireflection layer 51 is formed on the outside of the wall portion of the container 30 where the incident portion 31 and the emission portion 32 are formed, and the antireflection layer 52 is formed on the inside.
  • the antireflection layers 51 and 52 for example, a dielectric multilayer film composed of a laminate of a high refractive index film and a low refractive index film, an antireflection structure (moth eye structure) film formed by a nanoimprint method, or the like is used. Can be used.
  • the excitation light 2 is applied to the phosphor layer 11 of the fluorescent member 10, and the fluorescence 3 is emitted from the phosphor layer 11 of the fluorescent member 10.
  • the phosphor layer 11 generates heat by irradiation with the excitation light 2
  • the cooling medium 4 is cooled by the cooling mechanism 40 as described above, the fluorescent member 10 can be cooled by the cooling medium 4 that is always cooled.
  • FIG. 2 is a schematic cross-sectional view showing a light emitting device according to a second embodiment of the present invention.
  • the phosphor layer 11 of the fluorescent member 10 is closely attached to the wall portion of the container 30 in which the incident portion 31 and the emission portion 32 are formed. Since other than that is the same as that of 1st Embodiment, description is abbreviate
  • the cooling medium 4 is not interposed between the phosphor layer 11 and the incidence part 31 and the emission part 32. For this reason, when the excitation light 2 is incident on the phosphor layer 11 and when the fluorescence 3 is emitted from the phosphor layer 11, the excitation light 2 is caused by the refractive index difference between the phosphor layer 11 and the cooling medium 4. And the fluorescence 3 can be prevented from reflecting on the surface of the phosphor layer 11. For this reason, the fall of emitted light intensity can be suppressed.
  • the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
  • FIG. 3 is a schematic cross-sectional view showing a light emitting device according to a third embodiment of the present invention.
  • a transmissive fluorescent member 10 is used.
  • the transmissive fluorescent member 10 include a transparent substrate made of glass or resin and a phosphor layer formed on the transparent substrate.
  • a transparent substrate made of glass or resin
  • a phosphor layer formed on the transparent substrate.
  • the transmissive fluorescent member 10 a fluorescent material dispersed in a glass or resin matrix may be used without using a transparent substrate.
  • the light source 20 and the condenser lens 21 are arranged on one side of the container 30, and the condenser lens 22 is arranged on the other side of the container 30.
  • the excitation light 2 emitted from the light source 20 is collected by the condenser lens 21, passes through the incident portion 31 of the container 30, and enters the fluorescent member 10.
  • the fluorescent light in the fluorescent member 10 is excited by the incident excitation light 2 and the fluorescent light 3 is emitted from the fluorescent material.
  • the fluorescence 3 emitted from the fluorescent member 10 passes through the emission part 32 and is emitted to the outside of the container 30.
  • the fluorescence 3 emitted to the outside of the container 30 is collected by the condenser lens 22 and emitted from the light emitting device 1 of the present embodiment.
  • the incident part 31 and the emission part 32 of the container 30 are made of a material that transmits the excitation light 2 and the fluorescence 3.
  • antireflection layers 51 and 52 are formed on the outside and inside of the incident portion 31, respectively, and antireflection layers 53 and 54 are formed on the inside and outside of the emission portion 32, respectively.
  • the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
  • FIG. 4 is a schematic cross-sectional view showing a light emitting device according to a fourth embodiment of the present invention.
  • the incident part 31 and the emission part 32 of the container 30 are formed in the shape of a convex lens. Thereby, the incident part 31 and the emission part 32 have a lens function. Therefore, the incident part 31 can collect the excitation light 2 and irradiate the fluorescent member 10.
  • the emitting unit 32 can collect the fluorescence 3 and emit it outside the container 30.
  • the antireflection layers 51 and 52 are provided on the outer side and the inner side of the incident part 31, respectively.
  • Antireflection layers 53 and 54 are provided on the inner side and the outer side of the emission part 32, respectively.
  • the entrance part 31 and the exit part 32 each have a lens function, it is not necessary to provide a condensing lens separately. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
  • FIG. 5 is a schematic cross-sectional view showing a light emitting device according to a fifth embodiment of the present invention.
  • the incident part 31 and the emission part 32 of the container 30 are formed so as to swell outwardly in a hemispherical shape.
  • the inner medium is the cooling medium 4 having a refractive index higher than that of air
  • the incident part 31 and the emission part 32 having the above-described shapes have a lens function. Have. Therefore, the incident part 31 can collect the excitation light 2 and irradiate the fluorescent member 10.
  • the emitting unit 32 can collect the fluorescence 3 and emit it outside the container 30.
  • the antireflection layers 51 and 52 are provided on the outer side and the inner side of the incident part 31, respectively.
  • Antireflection layers 53 and 54 are provided on the inner side and the outer side of the emission part 32, respectively.
  • the entrance part 31 and the exit part 32 each have a lens function as in the fourth embodiment, it is not necessary to provide a condensing lens separately. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
  • FIG. 6 is a schematic cross-sectional view showing a light emitting device according to a sixth embodiment of the present invention.
  • the entrance portion 31 and the exit portion 32 of the container 30 are formed in the shape of a convex lens.
  • the incident part 31 and the emission part 32 have a lens function. Therefore, the incident part 31 can collect the excitation light 2 and irradiate the fluorescent member 10.
  • the emitting unit 32 can collect the fluorescence 3 and emit it outside the container 30.
  • the antireflection layers 51 and 52 are provided on the outer side and the inner side of the incident part 31, respectively.
  • Antireflection layers 53 and 54 are provided on the inner side and the outer side of the emission part 32, respectively.
  • the entrance part 31 and the exit part 32 each have a lens function as in the fourth embodiment, it is not necessary to provide a condensing lens separately. Since other configurations are the same as those of the third embodiment, description thereof is omitted.
  • the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
  • the incident portion 31 and the emission portion 32 are formed in the shape of a convex lens.
  • the incidence portion 31 and the emission portion 32 are formed in a hemispherical shape on the outside. It may be formed so as to swell.
  • the cooling mechanism 40 configured to circulate and cool the cooling medium 4 including the radiator 41, the pump 42, the cooling fan 43, and the pipes 44, 45, and 46 has been described as an example. Is not limited to this.
  • the cooling mechanism 40 may be any mechanism that can cool the cooling medium 4 in the container 30.
  • the light-emitting device of the present invention can be used not only for projectors but also for in-vehicle lighting applications such as headlamps and other lighting applications.

Abstract

 The present invention provides a light-emitting device with which it is possible to efficiently suppress a rise in the temperature of a phosphor in a phosphor member. The present invention is characterized in being provided with a light source (20) for radiating excitation light (2), a phosphor member (10) for emitting fluorescence upon incidence of the excitation light (2) from the light source (20), a cooling medium (4) for immersing the phosphor member (10), a container (30) for accommodating the cooling medium (4), and a cooling mechanism (40), connected to the container (30), for cooling the cooling medium (4), the container (30) having an incidence part (31) for letting the excitation light (2) from the light source (20) enter the inside of the container (30) and an emission part (32) for letting the fluorescence (3) from the phosphor member (10) be emitted to the outside of the container (30).

Description

発光デバイスLight emitting device
 本発明は、プロジェクター用として好適な発光デバイスに関するものである。 The present invention relates to a light emitting device suitable for a projector.
 近年、プロジェクターを小型化するため、LED(Light Emitting Diode)と蛍光体とを用いた発光デバイスが提案されている。例えば、励起光を照射する光源と、光源からの励起光を蛍光に変換する蛍光体を含む蛍光部材とを備える発光デバイスを用いたプロジェクターが提案されている。 Recently, in order to reduce the size of a projector, a light emitting device using an LED (Light Emitting Diode) and a phosphor has been proposed. For example, a projector using a light emitting device including a light source that emits excitation light and a fluorescent member that includes a phosphor that converts excitation light from the light source into fluorescence has been proposed.
 ところで、光源として高出力の光源を用いる場合、励起光の照射により蛍光体が発熱し、蛍光部材の温度が上昇する。蛍光体の温度が上昇すると、発光強度が低下するなどの問題を生じる。 By the way, when a high-output light source is used as the light source, the phosphor generates heat due to the irradiation of excitation light, and the temperature of the fluorescent member rises. When the temperature of the phosphor rises, problems such as a decrease in emission intensity occur.
 これらの問題を解消するため、特許文献1~5では、蛍光部材に、高い熱伝導性を有するヒートシンクや、放熱用フィンまたは放熱のための凹凸構造を設けることにより、放熱性を向上させることが提案されている。 In order to solve these problems, in Patent Documents 1 to 5, it is possible to improve heat dissipation by providing the fluorescent member with a heat sink having high thermal conductivity, a heat radiating fin, or an uneven structure for heat radiating. Proposed.
特開2012-169049号公報JP 2012-169049 A 特開2001-142146号公報JP 2001-142146 A 特開2002-90886号公報JP 2002-90886 A 特開2003-156796号公報JP 2003-156996 A 特開2011-186350号公報JP 2011-186350 A
 しかしながら、上記従来の技術では、蛍光体の温度上昇を効率的に抑制することができないという問題があった。 However, the above conventional technique has a problem that the temperature rise of the phosphor cannot be efficiently suppressed.
 本発明の目的は、蛍光部材における蛍光体の温度上昇を効率的に抑制することができる発光デバイスを提供することにある。 An object of the present invention is to provide a light emitting device capable of efficiently suppressing a temperature rise of a phosphor in a fluorescent member.
 本発明の発光デバイスは、励起光を照射する光源と、光源からの励起光の入射により蛍光を出射する蛍光部材と、蛍光部材を浸漬する冷却媒体と、冷却媒体を収納する容器と、容器に接続され、冷却媒体を冷却する冷却機構とを備え、容器が、光源からの励起光を容器の内部に入射させるための入射部と、蛍光部材からの蛍光を容器の外部に出射させるための出射部とを有することを特徴としている。 The light emitting device of the present invention includes a light source that emits excitation light, a fluorescent member that emits fluorescence when incident excitation light from the light source, a cooling medium in which the fluorescent member is immersed, a container that stores the cooling medium, and a container A cooling mechanism for cooling the cooling medium, the container having an incident part for allowing excitation light from the light source to enter the inside of the container, and an emission for emitting the fluorescence from the fluorescent member to the outside of the container Part.
 冷却機構は、冷却媒体を循環させて冷却媒体を冷却するものであってもよい。 The cooling mechanism may cool the cooling medium by circulating the cooling medium.
 入射部は、励起光を集光して蛍光部材に照射するレンズ機能を有していてもよい。 The incident part may have a lens function of condensing excitation light and irradiating the fluorescent member.
 出射部は、蛍光を集光して出射するレンズ機能を有していてもよい。 The emission unit may have a lens function of collecting and emitting fluorescence.
 蛍光部材は、反射型の蛍光部材であってもよいし、透過型の蛍光部材であってもよい。反射型の蛍光部材としては、例えば、反射層と、反射層上に設けられる蛍光体層とを有するものが挙げられる。 The fluorescent member may be a reflective fluorescent member or a transmissive fluorescent member. Examples of the reflective fluorescent member include those having a reflective layer and a phosphor layer provided on the reflective layer.
 本発明によれば、発光デバイスに使用される蛍光部材における蛍光体の温度上昇を効率的に抑制することができる。 According to the present invention, the temperature rise of the phosphor in the fluorescent member used for the light emitting device can be efficiently suppressed.
図1は、本発明の第1の実施形態の発光デバイスを示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態の発光デバイスを示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a light emitting device according to a second embodiment of the present invention. 図3は、本発明の第3の実施形態の発光デバイスを示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a light emitting device according to a third embodiment of the present invention. 図4は、本発明の第4の実施形態の発光デバイスを示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing a light emitting device according to a fourth embodiment of the present invention. 図5は、本発明の第5の実施形態の発光デバイスを示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing a light emitting device according to a fifth embodiment of the present invention. 図6は、本発明の第6の実施形態の発光デバイスを示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing a light emitting device according to a sixth embodiment of the present invention.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.
 (第1の実施形態)
 図1は、本発明の第1の実施形態の発光デバイスを示す模式的断面図である。発光デバイス1は、励起光2を照射する光源20と、光源20からの励起光2の入射により蛍光3を出射する蛍光部材10と、蛍光部材10を浸漬する冷却媒体4と、冷却媒体4を収納する容器30と、容器30に接続され、冷却媒体4を冷却する冷却機構40とを備えている。
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing a light emitting device according to a first embodiment of the present invention. The light emitting device 1 includes a light source 20 that emits excitation light 2, a fluorescent member 10 that emits fluorescence 3 when the excitation light 2 from the light source 20 is incident, a cooling medium 4 in which the fluorescent member 10 is immersed, and a cooling medium 4. A container 30 to be housed and a cooling mechanism 40 that is connected to the container 30 and cools the cooling medium 4 are provided.
 本実施形態において、冷却媒体4を循環させて冷却する冷却機構40は、ラジエーター41、ポンプ42、冷却ファン43、及び配管44,45,46から構成されている。配管44及び配管46は容器30に接続されている。配管44の一方端は、容器30に接続され、他方端はラジエーター41に接続されている。配管46の一方端は、容器30に接続され、他方端はポンプ42に接続されている。配管45の一方端は、ポンプ42に接続され、他方端はラジエーター41に接続されている。ラジエーター41は、冷却ファン43によって冷却されている。冷却媒体4としては、水、エチレングリコール、不凍液等の無色透明な媒体が好ましく用いられる。容器30内の冷却媒体4は、配管44を通り、ラジエーター41に供給される。ラジエーター41は、冷却ファン43により冷却されており、ラジエーター41に供給された冷却媒体4が冷却される。ラジエーター41で冷却された冷却媒体4は、配管45を通り、ポンプ42に送られる。ポンプ42に送られた冷却媒体4は、配管46を通り、容器30に戻される。以上のようにして、容器30内の冷却媒体4は、冷却機構40に送られ、冷却機構40によって冷却された後、容器30内に戻される。 In this embodiment, the cooling mechanism 40 that circulates and cools the cooling medium 4 includes a radiator 41, a pump 42, a cooling fan 43, and pipes 44, 45, and 46. The pipe 44 and the pipe 46 are connected to the container 30. One end of the pipe 44 is connected to the container 30, and the other end is connected to the radiator 41. One end of the pipe 46 is connected to the container 30, and the other end is connected to the pump 42. One end of the pipe 45 is connected to the pump 42, and the other end is connected to the radiator 41. The radiator 41 is cooled by a cooling fan 43. As the cooling medium 4, a colorless and transparent medium such as water, ethylene glycol, or antifreeze is preferably used. The cooling medium 4 in the container 30 passes through the pipe 44 and is supplied to the radiator 41. The radiator 41 is cooled by a cooling fan 43, and the cooling medium 4 supplied to the radiator 41 is cooled. The cooling medium 4 cooled by the radiator 41 passes through the pipe 45 and is sent to the pump 42. The cooling medium 4 sent to the pump 42 is returned to the container 30 through the pipe 46. As described above, the cooling medium 4 in the container 30 is sent to the cooling mechanism 40, cooled by the cooling mechanism 40, and then returned to the container 30.
 蛍光部材10は、容器30内に収納された冷却媒体4中に浸漬されており、冷却媒体4によって冷却される。蛍光部材10は、図示しない保持部材によって、容器30内に保持されている。本実施形態において、蛍光部材10は、反射層12と、反射層12上に設けられる蛍光体層11とを有している。反射層12としては、銀、アルミニウム、白金等の金属膜や、誘電体多層膜等が挙げられる。誘電体多層膜は、高屈折率膜と低屈折率膜との積層体により構成された膜であり、特定波長の光を選択的に反射させることができる。 The fluorescent member 10 is immersed in the cooling medium 4 accommodated in the container 30 and is cooled by the cooling medium 4. The fluorescent member 10 is held in the container 30 by a holding member (not shown). In the present embodiment, the fluorescent member 10 includes a reflective layer 12 and a phosphor layer 11 provided on the reflective layer 12. Examples of the reflective layer 12 include metal films such as silver, aluminum, and platinum, and dielectric multilayer films. The dielectric multilayer film is a film composed of a laminate of a high refractive index film and a low refractive index film, and can selectively reflect light having a specific wavelength.
 蛍光体層11は、蛍光体を含む層であれば特に限定されるものではない。蛍光体層11としては、例えば、ガラスマトリクスと、その中に分散した蛍光体とから構成されているものを挙げることができる。 The phosphor layer 11 is not particularly limited as long as it includes a phosphor. Examples of the phosphor layer 11 include those composed of a glass matrix and phosphors dispersed therein.
 蛍光体は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、ガーネット系化合物蛍光体等の無機蛍光体が挙げられる。 The phosphor is not particularly limited as long as it emits fluorescence when incident excitation light is incident. Specific examples of the phosphor include, for example, an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a chloride phosphor, an acid chloride phosphor, a sulfide phosphor, an oxysulfide phosphor, and a halide. Examples thereof include inorganic phosphors such as phosphors, chalcogenide phosphors, aluminate phosphors, halophosphate phosphors, and garnet compound phosphors.
 ガラスマトリクスは、蛍光体の分散媒として用いることができるものであれば特に限定されない。例えば、ホウ珪酸塩系ガラス、リン酸塩系ガラスなどを用いることができる。ガラスマトリクスの軟化点は、250℃~1000℃であることが好ましく、300℃~850℃であることがより好ましい。 The glass matrix is not particularly limited as long as it can be used as a phosphor dispersion medium. For example, borosilicate glass or phosphate glass can be used. The softening point of the glass matrix is preferably 250 ° C. to 1000 ° C., more preferably 300 ° C. to 850 ° C.
 容器30は、光源20からの励起光2を容器30の内部に入射させるための入射部31と蛍光部材10からの蛍光3を容器30の外部に出射させるための出射部32とを有する。容器30の外部には、蛍光部材10の蛍光体層11に励起光2が照射されるように、光源20及び集光レンズ21が設けられている。光源20の具体例としては、LED光源やレーザー光源などが挙げられる。光源20から出射された励起光2は、集光レンズ21で集光され、容器30の入射部31を通り、蛍光部材10の蛍光体層11に入射する。蛍光体層11に入射した励起光2により、蛍光体層11中の蛍光体が励起され、蛍光体から蛍光3が出射する。蛍光3の一部は、反射層12で反射され、蛍光体層11から出射する。また、蛍光3の一部は、直接蛍光体層11から出射する。蛍光体層11から出射した蛍光3は、出射部32を通り、容器30の外部に出射される。容器30の外部に出射された蛍光3は、本実施形態の発光デバイス1からの発光となる。 The container 30 has an incident part 31 for causing the excitation light 2 from the light source 20 to enter the inside of the container 30 and an emission part 32 for emitting the fluorescence 3 from the fluorescent member 10 to the outside of the container 30. A light source 20 and a condenser lens 21 are provided outside the container 30 so that the phosphor layer 11 of the fluorescent member 10 is irradiated with the excitation light 2. Specific examples of the light source 20 include an LED light source and a laser light source. The excitation light 2 emitted from the light source 20 is collected by the condenser lens 21, passes through the incident portion 31 of the container 30, and enters the phosphor layer 11 of the fluorescent member 10. The excitation light 2 incident on the phosphor layer 11 excites the phosphor in the phosphor layer 11 and emits fluorescence 3 from the phosphor. A part of the fluorescence 3 is reflected by the reflection layer 12 and is emitted from the phosphor layer 11. A part of the fluorescence 3 is emitted directly from the phosphor layer 11. The fluorescence 3 emitted from the phosphor layer 11 passes through the emission part 32 and is emitted to the outside of the container 30. The fluorescence 3 emitted to the outside of the container 30 is emitted from the light emitting device 1 of the present embodiment.
 本実施形態において、容器30の入射部31及び出射部32は、励起光2及び蛍光3を透過させる材料から形成されている。このような材料としては、ガラスや透明樹脂などが挙げられる。本実施形態では、入射部31及び出射部32が形成された容器30の壁部の外側に、反射防止層51が形成され、内側に反射防止層52が形成されている。反射防止層51及び52としては、例えば、高屈折率膜と低屈折率膜の積層体により構成された誘電体多層膜や、ナノインプリント法などにより形成される反射防止構造(モスアイ構造)膜などを用いることができる。 In the present embodiment, the incident part 31 and the emission part 32 of the container 30 are made of a material that transmits the excitation light 2 and the fluorescence 3. Examples of such a material include glass and transparent resin. In the present embodiment, the antireflection layer 51 is formed on the outside of the wall portion of the container 30 where the incident portion 31 and the emission portion 32 are formed, and the antireflection layer 52 is formed on the inside. As the antireflection layers 51 and 52, for example, a dielectric multilayer film composed of a laminate of a high refractive index film and a low refractive index film, an antireflection structure (moth eye structure) film formed by a nanoimprint method, or the like is used. Can be used.
 以上のようにして、蛍光部材10の蛍光体層11に励起光2が照射され、蛍光部材10の蛍光体層11から蛍光3が出射される。励起光2の照射により蛍光体層11が発熱するが、蛍光部材10は冷却媒体4によって冷却されているため、蛍光部材10における蛍光体の温度上昇を抑制することができる。また、冷却媒体4は、上記のように冷却機構40によって冷却されているため、常に冷却された冷却媒体4によって、蛍光部材10を冷却することができる。 As described above, the excitation light 2 is applied to the phosphor layer 11 of the fluorescent member 10, and the fluorescence 3 is emitted from the phosphor layer 11 of the fluorescent member 10. Although the phosphor layer 11 generates heat by irradiation with the excitation light 2, since the fluorescent member 10 is cooled by the cooling medium 4, the temperature rise of the phosphor in the fluorescent member 10 can be suppressed. Further, since the cooling medium 4 is cooled by the cooling mechanism 40 as described above, the fluorescent member 10 can be cooled by the cooling medium 4 that is always cooled.
 (第2の実施形態)
 図2は、本発明の第2の実施形態の発光デバイスを示す模式的断面図である。本実施形態では、蛍光部材10の蛍光体層11を、入射部31及び出射部32が形成された容器30の壁部に密着させている。それ以外は、第1の実施形態と同様であるため、説明を省略する。
(Second Embodiment)
FIG. 2 is a schematic cross-sectional view showing a light emitting device according to a second embodiment of the present invention. In the present embodiment, the phosphor layer 11 of the fluorescent member 10 is closely attached to the wall portion of the container 30 in which the incident portion 31 and the emission portion 32 are formed. Since other than that is the same as that of 1st Embodiment, description is abbreviate | omitted.
 蛍光体層11が入射部31及び出射部32と密着しているため、蛍光体層11と、入射部31及び出射部32との間に冷却媒体4が介在しない。このため、励起光2が蛍光体層11に入射する際及び蛍光3が蛍光体層11から出射する際に、蛍光体層11と冷却媒体4との屈折率差に起因して、励起光2や蛍光3が蛍光体層11表面で反射するのを抑制することができる。このため、発光強度の低下を抑制することができる。 Since the phosphor layer 11 is in close contact with the incident part 31 and the emission part 32, the cooling medium 4 is not interposed between the phosphor layer 11 and the incidence part 31 and the emission part 32. For this reason, when the excitation light 2 is incident on the phosphor layer 11 and when the fluorescence 3 is emitted from the phosphor layer 11, the excitation light 2 is caused by the refractive index difference between the phosphor layer 11 and the cooling medium 4. And the fluorescence 3 can be prevented from reflecting on the surface of the phosphor layer 11. For this reason, the fall of emitted light intensity can be suppressed.
 本実施形態においても、蛍光部材10は冷却媒体4によって冷却されているため、蛍光部材10における蛍光体の温度上昇を抑制することができる。 Also in the present embodiment, since the fluorescent member 10 is cooled by the cooling medium 4, the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
 (第3の実施形態)
 図3は、本発明の第3の実施形態の発光デバイスを示す模式的断面図である。本実施形態では、透過型の蛍光部材10が用いられている。透過型の蛍光部材10としては、ガラスや樹脂などからなる透明基板と、透明基板上に形成された蛍光体層とを有するものが挙げられる。例えば、第1の実施形態における反射層12に代えて透明基板を用いたものを用いることができる。また、透過型の蛍光部材10として、透明基板を用いずに、ガラスや樹脂のマトリクス中に蛍光体を分散させたものを用いてもよい。
(Third embodiment)
FIG. 3 is a schematic cross-sectional view showing a light emitting device according to a third embodiment of the present invention. In the present embodiment, a transmissive fluorescent member 10 is used. Examples of the transmissive fluorescent member 10 include a transparent substrate made of glass or resin and a phosphor layer formed on the transparent substrate. For example, it is possible to use a transparent substrate instead of the reflective layer 12 in the first embodiment. Further, as the transmissive fluorescent member 10, a fluorescent material dispersed in a glass or resin matrix may be used without using a transparent substrate.
 本実施形態では、容器30の一方側に、光源20及び集光レンズ21を配置し、容器30の他方側に、集光レンズ22を配置している。光源20から出射された励起光2は、集光レンズ21で集光され、容器30の入射部31を通り、蛍光部材10に入射する。入射した励起光2により、蛍光部材10中の蛍光体が励起され、蛍光体から蛍光3が出射する。蛍光部材10から出射した蛍光3は、出射部32を通り、容器30の外部に出射される。容器30の外部に出射された蛍光3は、集光レンズ22で集光され、本実施形態の発光デバイス1からの発光となる。 In this embodiment, the light source 20 and the condenser lens 21 are arranged on one side of the container 30, and the condenser lens 22 is arranged on the other side of the container 30. The excitation light 2 emitted from the light source 20 is collected by the condenser lens 21, passes through the incident portion 31 of the container 30, and enters the fluorescent member 10. The fluorescent light in the fluorescent member 10 is excited by the incident excitation light 2 and the fluorescent light 3 is emitted from the fluorescent material. The fluorescence 3 emitted from the fluorescent member 10 passes through the emission part 32 and is emitted to the outside of the container 30. The fluorescence 3 emitted to the outside of the container 30 is collected by the condenser lens 22 and emitted from the light emitting device 1 of the present embodiment.
 本実施形態において、容器30の入射部31及び出射部32は、励起光2及び蛍光3を透過させる材料から形成されている。また、本実施形態では、入射部31の外側及び内側に、反射防止層51及び52がそれぞれ形成され、出射部32の内側及び外側に反射防止層53及び54がそれぞれ形成されている。 In the present embodiment, the incident part 31 and the emission part 32 of the container 30 are made of a material that transmits the excitation light 2 and the fluorescence 3. In this embodiment, antireflection layers 51 and 52 are formed on the outside and inside of the incident portion 31, respectively, and antireflection layers 53 and 54 are formed on the inside and outside of the emission portion 32, respectively.
 本実施形態においても、蛍光部材10は冷却媒体4によって冷却されているため、蛍光部材10における蛍光体の温度上昇を抑制することができる。 Also in the present embodiment, since the fluorescent member 10 is cooled by the cooling medium 4, the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
 (第4の実施形態)
 図4は、本発明の第4の実施形態の発光デバイスを示す模式的断面図である。本実施形態では、容器30の入射部31及び出射部32が、凸レンズの形状に形成されている。このことにより、入射部31及び出射部32は、レンズ機能を有している。したがって、入射部31は、励起光2を集光して蛍光部材10に照射できる。出射部32は、蛍光3を集光して容器30の外部に出射できる。
(Fourth embodiment)
FIG. 4 is a schematic cross-sectional view showing a light emitting device according to a fourth embodiment of the present invention. In this embodiment, the incident part 31 and the emission part 32 of the container 30 are formed in the shape of a convex lens. Thereby, the incident part 31 and the emission part 32 have a lens function. Therefore, the incident part 31 can collect the excitation light 2 and irradiate the fluorescent member 10. The emitting unit 32 can collect the fluorescence 3 and emit it outside the container 30.
 入射部31の外側及び内側には、反射防止層51及び52がそれぞれ設けられている。出射部32の内側及び外側には、反射防止層53及び54がそれぞれ設けられている。 The antireflection layers 51 and 52 are provided on the outer side and the inner side of the incident part 31, respectively. Antireflection layers 53 and 54 are provided on the inner side and the outer side of the emission part 32, respectively.
 本実施形態では、入射部31及び出射部32が、それぞれレンズ機能を有しているため、別個に集光レンズを設ける必要がない。その他の構成は、第1の実施形態と同様であるため、説明を省略する。 In this embodiment, since the entrance part 31 and the exit part 32 each have a lens function, it is not necessary to provide a condensing lens separately. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 本実施形態においても、蛍光部材10は冷却媒体4によって冷却されているため、蛍光部材10における蛍光体の温度上昇を抑制することができる。 Also in the present embodiment, since the fluorescent member 10 is cooled by the cooling medium 4, the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
 (第5の実施形態)
 図5は、本発明の第5の実施形態の発光デバイスを示す模式的断面図である。本実施形態では、容器30の入射部31及び出射部32が、外側に半球面状に膨らむように形成されている。入射部31及び出射部32の外側の媒体が空気であり、内側の媒体が空気より屈折率の高い冷却媒体4であると、上記した形状を有する入射部31及び出射部32は、レンズ機能を有する。したがって、入射部31は、励起光2を集光して蛍光部材10に照射できる。出射部32は、蛍光3を集光して容器30の外部に出射できる。
(Fifth embodiment)
FIG. 5 is a schematic cross-sectional view showing a light emitting device according to a fifth embodiment of the present invention. In this embodiment, the incident part 31 and the emission part 32 of the container 30 are formed so as to swell outwardly in a hemispherical shape. When the medium outside the incident part 31 and the emission part 32 is air and the inner medium is the cooling medium 4 having a refractive index higher than that of air, the incident part 31 and the emission part 32 having the above-described shapes have a lens function. Have. Therefore, the incident part 31 can collect the excitation light 2 and irradiate the fluorescent member 10. The emitting unit 32 can collect the fluorescence 3 and emit it outside the container 30.
 入射部31の外側及び内側には、反射防止層51及び52がそれぞれ設けられている。出射部32の内側及び外側には、反射防止層53及び54がそれぞれ設けられている。 The antireflection layers 51 and 52 are provided on the outer side and the inner side of the incident part 31, respectively. Antireflection layers 53 and 54 are provided on the inner side and the outer side of the emission part 32, respectively.
 本実施形態においても、第4の実施形態と同様に、入射部31及び出射部32が、それぞれレンズ機能を有しているため、別個に集光レンズを設ける必要がない。その他の構成は、第1の実施形態と同様であるため、説明を省略する。 Also in this embodiment, since the entrance part 31 and the exit part 32 each have a lens function as in the fourth embodiment, it is not necessary to provide a condensing lens separately. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 本実施形態においても、蛍光部材10は冷却媒体4によって冷却されているため、蛍光部材10における蛍光体の温度上昇を抑制することができる。 Also in the present embodiment, since the fluorescent member 10 is cooled by the cooling medium 4, the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
 (第6の実施形態)
 図6は、本発明の第6の実施形態の発光デバイスを示す模式的断面図である。本実施形態では、第4の実施形態と同様に、容器30の入射部31及び出射部32が、凸レンズの形状に形成されている。このことにより、入射部31及び出射部32は、レンズ機能を有している。したがって、入射部31は、励起光2を集光して蛍光部材10に照射できる。出射部32は、蛍光3を集光して容器30の外部に出射できる。
(Sixth embodiment)
FIG. 6 is a schematic cross-sectional view showing a light emitting device according to a sixth embodiment of the present invention. In the present embodiment, as in the fourth embodiment, the entrance portion 31 and the exit portion 32 of the container 30 are formed in the shape of a convex lens. Thereby, the incident part 31 and the emission part 32 have a lens function. Therefore, the incident part 31 can collect the excitation light 2 and irradiate the fluorescent member 10. The emitting unit 32 can collect the fluorescence 3 and emit it outside the container 30.
 入射部31の外側及び内側には、反射防止層51及び52がそれぞれ設けられている。出射部32の内側及び外側には、反射防止層53及び54がそれぞれ設けられている。 The antireflection layers 51 and 52 are provided on the outer side and the inner side of the incident part 31, respectively. Antireflection layers 53 and 54 are provided on the inner side and the outer side of the emission part 32, respectively.
 本実施形態においても、第4の実施形態と同様に、入射部31及び出射部32が、それぞれレンズ機能を有しているため、別個に集光レンズを設ける必要がない。その他の構成は、第3の実施形態と同様であるため、説明を省略する。 Also in this embodiment, since the entrance part 31 and the exit part 32 each have a lens function as in the fourth embodiment, it is not necessary to provide a condensing lens separately. Since other configurations are the same as those of the third embodiment, description thereof is omitted.
 本実施形態においても、蛍光部材10は冷却媒体4によって冷却されているため、蛍光部材10における蛍光体の温度上昇を抑制することができる。 Also in the present embodiment, since the fluorescent member 10 is cooled by the cooling medium 4, the temperature rise of the phosphor in the fluorescent member 10 can be suppressed.
 なお、本実施形態では、入射部31及び出射部32が凸レンズの形状に形成されているが、第5の実施形態と同様に、入射部31及び出射部32が、外側に半球面の形状に膨らむように形成されていてもよい。 In the present embodiment, the incident portion 31 and the emission portion 32 are formed in the shape of a convex lens. However, similarly to the fifth embodiment, the incidence portion 31 and the emission portion 32 are formed in a hemispherical shape on the outside. It may be formed so as to swell.
 上記各実施形態では、ラジエーター41、ポンプ42、冷却ファン43、及び配管44,45,46から構成される、冷却媒体4を循環させて冷却する冷却機構40を例にして説明したが、本発明はこれに限定されるものではない。冷却機構40は、容器30内の冷却媒体4を冷却することができるものであればよい。 In each of the above embodiments, the cooling mechanism 40 configured to circulate and cool the cooling medium 4 including the radiator 41, the pump 42, the cooling fan 43, and the pipes 44, 45, and 46 has been described as an example. Is not limited to this. The cooling mechanism 40 may be any mechanism that can cool the cooling medium 4 in the container 30.
 本発明の発光デバイスはプロジェクター用途以外にも、ヘッドランプ等の車載用照明用途やその他の照明用途としても使用することができる。 The light-emitting device of the present invention can be used not only for projectors but also for in-vehicle lighting applications such as headlamps and other lighting applications.
1…発光デバイス
2…励起光
3…蛍光
4…冷却媒体
10…蛍光部材
11…蛍光体層
12…反射層
20…光源
21,22…集光レンズ
30…容器
31…入射部
32…出射部
40…冷却機構
41…ラジエーター
42…ポンプ
43…冷却ファン
44,45,46…配管
51,52,53,54…反射防止層
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 2 ... Excitation light 3 ... Fluorescence 4 ... Cooling medium 10 ... Fluorescent member 11 ... Phosphor layer 12 ... Reflection layer 20 ... Light source 21,22 ... Condensing lens 30 ... Container 31 ... Incident part 32 ... Outer part 40 ... Cooling mechanism 41 ... Radiator 42 ... Pump 43 ... Cooling fans 44, 45, 46 ... Piping 51, 52, 53, 54 ... Antireflection layer

Claims (8)

  1.  励起光を照射する光源と、
     前記光源からの前記励起光の入射により蛍光を出射する蛍光部材と、
     前記蛍光部材を浸漬する冷却媒体と、
     前記冷却媒体を収納する容器と、
     前記容器に接続され、前記冷却媒体を冷却する冷却機構とを備え、
     前記容器が、前記光源からの前記励起光を前記容器の内部に入射させるための入射部と、前記蛍光部材からの前記蛍光を前記容器の外部に出射させるための出射部とを有する、発光デバイス。
    A light source that emits excitation light;
    A fluorescent member that emits fluorescence upon incidence of the excitation light from the light source;
    A cooling medium in which the fluorescent member is immersed;
    A container for storing the cooling medium;
    A cooling mechanism connected to the container and cooling the cooling medium,
    The light emitting device, wherein the container includes an incident part for causing the excitation light from the light source to enter the inside of the container, and an emission part for emitting the fluorescence from the fluorescent member to the outside of the container. .
  2.  前記冷却機構が、前記冷却媒体を循環させて前記冷却媒体を冷却する、請求項1に記載の発光デバイス。 The light emitting device according to claim 1, wherein the cooling mechanism circulates the cooling medium to cool the cooling medium.
  3.  前記入射部が、前記励起光を集光して前記蛍光部材に照射するレンズ機能を有する、請求項1または2に記載の発光デバイス。 The light emitting device according to claim 1, wherein the incident portion has a lens function of condensing the excitation light and irradiating the fluorescent member.
  4.  前記出射部が、前記蛍光を集光して出射するレンズ機能を有する、請求項1~3のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 3, wherein the emitting section has a lens function of collecting and emitting the fluorescence.
  5.  前記蛍光部材は、反射型の蛍光部材である、請求項1~4のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 4, wherein the fluorescent member is a reflective fluorescent member.
  6.  前記蛍光部材は、反射層と、前記反射層上に設けられる蛍光体層とを有する、請求項5に記載の発光デバイス。 The light emitting device according to claim 5, wherein the fluorescent member has a reflective layer and a phosphor layer provided on the reflective layer.
  7.  前記蛍光部材は、透過型の蛍光部材である、請求項1~4のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 4, wherein the fluorescent member is a transmissive fluorescent member.
  8.  プロジェクター用である、請求項1~7のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 7, which is used for a projector.
PCT/JP2015/057435 2014-03-24 2015-03-13 Light-emitting device WO2015146621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014060096A JP2015184434A (en) 2014-03-24 2014-03-24 Light-emitting device
JP2014-060096 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015146621A1 true WO2015146621A1 (en) 2015-10-01

Family

ID=54195144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057435 WO2015146621A1 (en) 2014-03-24 2015-03-13 Light-emitting device

Country Status (3)

Country Link
JP (1) JP2015184434A (en)
TW (1) TW201539106A (en)
WO (1) WO2015146621A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017005809T5 (en) 2016-11-17 2019-08-08 Mitsubishi Electric Corporation LIGHT EMITTING DEVICE, ELECTRONIC DEVICE, LIGHTING APPARATUS AND VEHICLE HEADLAMP

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309877A (en) * 2007-06-12 2008-12-25 Seiko Epson Corp Light source device and projector
JP2009086148A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Projector and optical module for projector
JP2010197500A (en) * 2009-02-23 2010-09-09 Casio Computer Co Ltd Light-emitting device, light source device, and projector using the light source device
JP2010218840A (en) * 2009-03-16 2010-09-30 Casio Computer Co Ltd Light-emitting device, light source device and projector using this light source device
JP2011075657A (en) * 2009-09-29 2011-04-14 Casio Computer Co Ltd Optical conversion device, light source unit and projector
JP2012078707A (en) * 2010-10-05 2012-04-19 Seiko Epson Corp Light source device and projector
JP2012181309A (en) * 2011-03-01 2012-09-20 Seiko Epson Corp Rotary wheel optical system and projector
JP2014503937A (en) * 2010-11-09 2014-02-13 オスラム ゲーエムベーハー Fluorescent assembly with fluorescent element and optical system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309877A (en) * 2007-06-12 2008-12-25 Seiko Epson Corp Light source device and projector
JP2009086148A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Projector and optical module for projector
JP2010197500A (en) * 2009-02-23 2010-09-09 Casio Computer Co Ltd Light-emitting device, light source device, and projector using the light source device
JP2010218840A (en) * 2009-03-16 2010-09-30 Casio Computer Co Ltd Light-emitting device, light source device and projector using this light source device
JP2011075657A (en) * 2009-09-29 2011-04-14 Casio Computer Co Ltd Optical conversion device, light source unit and projector
JP2012078707A (en) * 2010-10-05 2012-04-19 Seiko Epson Corp Light source device and projector
JP2014503937A (en) * 2010-11-09 2014-02-13 オスラム ゲーエムベーハー Fluorescent assembly with fluorescent element and optical system
JP2012181309A (en) * 2011-03-01 2012-09-20 Seiko Epson Corp Rotary wheel optical system and projector

Also Published As

Publication number Publication date
JP2015184434A (en) 2015-10-22
TW201539106A (en) 2015-10-16

Similar Documents

Publication Publication Date Title
JP5487077B2 (en) Light emitting device, vehicle headlamp and lighting device
JP5812520B2 (en) Fluorescent light source device
JP5286393B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD
US10060580B2 (en) Light emitting device
WO2012108291A1 (en) Light source device
JP5373742B2 (en) Light emitting device, vehicle headlamp, lighting device, and laser element
US10877362B2 (en) Wavelength conversion element, light source device, and projector
JP5675248B2 (en) Light source device and lighting device
JP2018180107A5 (en)
JP6476545B2 (en) Fluorescent wheel for projector and light emitting device for projector
TWI598540B (en) Wavelength converting module and light source module using the same
JP5606634B2 (en) Fluorescent assembly with fluorescent element and optical system, light source unit with fluorescent assembly, method for converting light using fluorescent assembly, and use of fluorescent assembly or light source unit
JP5949872B2 (en) Fluorescent light source device
JP6924273B2 (en) Light source device and projection device
JP6323253B2 (en) Fluorescent light source device
WO2015146621A1 (en) Light-emitting device
TWI719706B (en) Wavelength conversion unit and lighting device
WO2017043121A1 (en) Light-emitting device and illumination device
JP2015161882A (en) Light emitting device for projector
JP6266796B2 (en) Light emitting device, lighting device, spotlight, vehicle headlamp, and endoscope
JP6991216B2 (en) Optical converter
JP2016177922A (en) Fluorescent light source device
US20170089562A1 (en) Illumination apparatus
JP5883114B2 (en) Light emitting device, vehicle headlamp and lighting device
JP2016115563A (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768706

Country of ref document: EP

Kind code of ref document: A1