WO2015146585A1 - Differential-pressure-design heat exchanger - Google Patents
Differential-pressure-design heat exchanger Download PDFInfo
- Publication number
- WO2015146585A1 WO2015146585A1 PCT/JP2015/057125 JP2015057125W WO2015146585A1 WO 2015146585 A1 WO2015146585 A1 WO 2015146585A1 JP 2015057125 W JP2015057125 W JP 2015057125W WO 2015146585 A1 WO2015146585 A1 WO 2015146585A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- heat exchanger
- differential pressure
- differential
- tube
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims description 23
- 238000010586 diagram Methods 0.000 description 12
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0236—Header boxes; End plates floating elements
- F28F9/0239—Header boxes; End plates floating elements floating header boxes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2265/00—Safety or protection arrangements; Arrangements for preventing malfunction
- F28F2265/12—Safety or protection arrangements; Arrangements for preventing malfunction for preventing overpressure
Definitions
- the present invention relates to a differential pressure design type heat exchanger.
- a shell-and-tube heat exchanger as a self-heating type heat exchanger, and an initially introduced fluid (F 0 ) is first introduced from the outside into the body (shell) and then passes through the heat transfer tube (tube). Heat is exchanged with (F 2 ) and discharged as a fuselage discharge fluid (F 1 ).
- the fuselage discharge fluid (F 1 ) discharged outside becomes, for example, a high-temperature exothermic fluid (F 2 ) introduced into the heat transfer tube by causing an exothermic reaction in a reaction device or the like.
- a self-heat exchanging method in which heat is exchanged between the initially introduced fluid (F 0 ) introduced from the outside into the fuselage by introducing the exothermic fluid (F 2 ) whose temperature has increased into the heat transfer tube.
- a pressure decrease ( ⁇ p) generated by passing through the reactor is designed as a predetermined pressure (for example, 2.0 MPa), and constitutes a high-pressure differential pressure design type heat exchanger.
- Patent Document 1 Japanese Patent Document 1
- the proposal of the prior art can cope with the response when the pressure exceeds the design pressure outside the heat exchanger, but it can respond when the abnormal pressure difference occurs inside the heat exchanger body. There is a problem that it is not possible.
- an object of the present invention is to provide a heat exchanger of a differential pressure design type that can cope with an abnormal pressure difference inside the heat exchanger body.
- a first invention of the present invention for solving the above-mentioned problems is a shell-and-tube heat exchanger of differential pressure design type in which a plurality of heat transfer tubes are housed in a body, When the differential pressure (P 2 -P 1 ) or (P 1 -P 2 ) between the pressure (P 1 ) and the pressure in the heat transfer tube (P 2 ) is equal to or higher than the predetermined pressure of the differential pressure design, There is provided a differential pressure design type heat exchanger characterized in that a pressure release member for releasing the pressure is provided.
- the pressure release member is a fracture plate, the mirror plate or cylinder of the floating head that communicates the fracture plate with the inside of the heat transfer pipe and discharges the fluid in the pipe to the outside. It is in the heat exchanger of the differential pressure design type
- the third invention is the differential pressure design type heat exchanger according to the second invention, wherein the fracture plate is a fracture plate that fractures in one direction or a fracture plate that fractures in both directions.
- the pressure release member uses a part of the plurality of heat transfer tubes as a heat transfer tube of the pressure release tube, and a pressure resistance of the pressure release tube is set to a predetermined design pressure or less. It is a differential pressure design type heat exchanger characterized by
- the pressure release member when a pressure higher than a predetermined differential pressure is generated, the pressure release member is provided. Damage to the vessel can be prevented.
- FIG. 1 is a schematic diagram of a differential pressure design type heat exchanger according to a first embodiment.
- FIG. 2 is a schematic diagram of a main part of the differential pressure design type heat exchanger according to the first embodiment.
- FIG. 3 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a second embodiment.
- FIG. 4 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a third embodiment.
- FIG. 5 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a fourth embodiment.
- FIG. 6 is a main part schematic diagram showing an example of damage of a differential pressure design type heat exchanger.
- FIG. 1 is a schematic diagram of a differential pressure design type heat exchanger according to a first embodiment.
- FIG. 2 is a schematic diagram of a main part of the differential pressure design type heat exchanger according to the first embodiment.
- a differential pressure design type heat exchanger 10 ⁇ / b> A according to this embodiment includes a plurality of heat transfer tubes (tubes) 12 in a body (shell) 11, and a differential pressure design type shell.
- An and tube heat exchanger in which the pressure difference (P 2 -P 1 ) or (P 1 -P 2 ) between the pressure (P 1 ) in the body 11 and the pressure (P 2 ) in the heat transfer tube 12 is A pressure release member is provided for releasing the pressure when the pressure becomes a predetermined pressure (for example, 2.0 MPa) or more (for example, 2.5 MPa) of the differential pressure design.
- a differential pressure design type heat exchanger 10A of this embodiment is a shell and tube type heat exchanger, and an initially introduced fluid having a temperature (T 0 ) from the outside to a body (shell) 11 first.
- F 0 is introduced, heat exchanged with the heat generation fluid F 2 at the temperature (T 2 ) passing through the heat transfer tube (tube) 12, and discharged as the body discharge fluid F 1 at the temperature (T 1 ).
- the fuselage discharge fluid F 1 discharged to the outside becomes, for example, an exothermic fluid F 2 having a high temperature (T 2 ) introduced into the heat transfer tube 12 by causing an exothermic reaction in the reaction device 20.
- the pressure decrease ( ⁇ p) generated by the reaction in the reaction apparatus 20 is designed as a predetermined pressure (for example, 2.0 MPa), and constitutes a high-pressure differential pressure design type heat exchanger.
- the differential pressure design type heat exchanger 10A includes a fixed tube plate 13A and a floating tube plate 13B disposed in the body 11, and a plurality of heat transfer tubes 12 between them. (For example, 2000) are provided.
- the body 11 is formed with an introduction portion 11a for introducing the initial introduction fluid F 0 and a discharge portion 11b for discharging the body discharge fluid F 1 .
- the introduction head 15 for introducing the heat generation fluid F 2 on the fixed tube plate 13A side is provided with an introduction portion 15a.
- a floating head 17 is provided in the discharge head 16 that discharges the heat transfer tube discharge fluid F 3 that has undergone heat exchange from the heat generating fluid F 2 on the floating tube plate 13B side and has become low temperature (T 3 ).
- the floating head 17 is composed of a mirror portion 17a joined to the floating tube plate 13B on the base side, and a floating tube 17b that slides on the discharge portion 16a of the discharge head 16, and is freely movable according to the internal pressure situation. .
- the pressure difference (P 2 -P 1 ) or (P 1 -P 2 ) between the pressure (P 1 ) in the body 11 and the pressure (P 2 ) in the heat transfer tube 12 is used.
- a predetermined pressure for example, 2.0 MPa
- FIG. 6 is a schematic diagram of the main part showing an example of the damage of the heat exchanger of the differential pressure design type.
- the left side in the figure is a normal case before the problem occurs, and the right side in the figure is the differential pressure abnormality after the problem occurs. Occurs when damage occurs.
- the fracture plate 21 when the fracture plate 21 is not provided inside, when the pressure (P 2 -P 1 )> design pressure is applied inside the heat exchanger, the floating tube plate 13B and the mirror portion Damage to the fracture portion X occurred at the joint with 17a.
- the break plate 21 is activated when the pressure exceeds a predetermined design pressure. Therefore, the occurrence of internal damage can be avoided.
- the floating tube plate 13B and the mirror portion 17a cannot be disassembled after being joined once by welding, even if foreign matter or the like exists in the discharge head 16 and a problem occurs in the floating, Although the opening inspection could not be performed, when a floating defect occurs, the internal reinspection can be performed by opening the broken plate 21 portion.
- the breaking plate 21 may be a breaking plate that breaks in one direction or a breaking plate that breaks in both directions.
- FIG. 3 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a second embodiment.
- symbol is attached
- fracture plates 21A and 21B that fracture in one direction are provided at two locations of the mirror portion 17a, and pressure from the body 11 side ( Two types of rupture plates that break according to the pressure in two directions, ie, when P 1 ) is high and when the pressure (P 2 ) on the heat transfer tube 12 side is high, are used.
- the pressure can be released from the fracture plate 21A before (P 1 ⁇ P 2 )> design pressure inside the heat exchanger. Further, the pressure can be released from the fracture plate 21B before (P 2 ⁇ P 1 )> design pressure.
- FIG. 4 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a third embodiment.
- symbol is attached
- the break plate 21 is installed as the mirror portion 17a.
- the present invention is not limited to this, and the differential pressure design type heat exchanger 10C shown in FIG. Then, the fracture
- the floating pipe 17b slides inside the discharge part 16a, it is necessary to provide in the position which does not have the sliding obstruction.
- the breaking plate 21 may be a breaking plate that breaks in one direction or a breaking plate that breaks in both directions. Moreover, you may make it provide the fracture
- FIG. 5 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a fourth embodiment.
- the differential pressure design type heat exchanger 10 ⁇ / b> D of the fourth embodiment uses a pressure release pipe 22 as a pressure release member.
- the pressure release tube 22 is set to a design pressure that breaks below the predetermined pressure (2.0 MPa).
- the heat transfer tube of the pressure release tube 22 when there are 2000 heat transfer tubes 12 for normal heat exchange, a part (for example, 4 to 5) of them is used as the heat transfer tube of the pressure release tube 22 and the pressure resistance of the pressure release tube 22 is set to a predetermined design pressure. By making it breakable as described below, it is possible to cope with an abnormal pressure difference inside the heat exchanger.
- the broken pressure release pipe 22 can be heat exchanged again by keeping the end of the broken pressure release pipe 22 outside the tube plates 13A and 13B.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
This differential-pressure-design heat exchanger (10A) is a differential-pressure-design shell-and-tube heat exchanger that is made by housing a plurality of heat-transfer tubes (tubes) (12) inside a body (shell) (11), the heat exchanger comprising a breaking plate (21) which is a pressure release member that releases pressure when the pressure difference (P2-P1) or (P1-P2) between the pressure (P1) inside the body (11) and the pressure (P2) inside the heat-transfer tubes (12) becomes greater than or equal to a predetermined pressure (2.0 MPa) of the differential-pressure design (for example, the pressure difference reaches 2.5 MPa).
Description
本発明は、差圧設計型の熱交換器に関するものである。
The present invention relates to a differential pressure design type heat exchanger.
例えば、自己発熱型の熱交換器として、シェルアンドチューブ型熱交換器があり、胴体(シェル)に先ず外部より初期導入流体(F0)を導入し、伝熱管(チューブ)を通過する発熱流体(F2)と熱交換させて、胴体排出流体(F1)として排出される。この外部に排出された胴体排出流体(F1)は、例えば反応装置等において発熱反応を生じさせることで、伝熱管内に導入する高温の発熱流体(F2)となる。この温度上昇した発熱流体(F2)を伝熱管内部に導入させることで、外部より胴体内に導入される初期導入流体(F0)を熱交換させる自己熱交換方法がある。
ここで、反応装置を通過することで生じる圧力減少(Δp)分が所定圧(例えば2.0MPa)として設計されており、高圧系の差圧設計型の熱交換器を構成している。 For example, there is a shell-and-tube heat exchanger as a self-heating type heat exchanger, and an initially introduced fluid (F 0 ) is first introduced from the outside into the body (shell) and then passes through the heat transfer tube (tube). Heat is exchanged with (F 2 ) and discharged as a fuselage discharge fluid (F 1 ). The fuselage discharge fluid (F 1 ) discharged outside becomes, for example, a high-temperature exothermic fluid (F 2 ) introduced into the heat transfer tube by causing an exothermic reaction in a reaction device or the like. There is a self-heat exchanging method in which heat is exchanged between the initially introduced fluid (F 0 ) introduced from the outside into the fuselage by introducing the exothermic fluid (F 2 ) whose temperature has increased into the heat transfer tube.
Here, a pressure decrease (Δp) generated by passing through the reactor is designed as a predetermined pressure (for example, 2.0 MPa), and constitutes a high-pressure differential pressure design type heat exchanger.
ここで、反応装置を通過することで生じる圧力減少(Δp)分が所定圧(例えば2.0MPa)として設計されており、高圧系の差圧設計型の熱交換器を構成している。 For example, there is a shell-and-tube heat exchanger as a self-heating type heat exchanger, and an initially introduced fluid (F 0 ) is first introduced from the outside into the body (shell) and then passes through the heat transfer tube (tube). Heat is exchanged with (F 2 ) and discharged as a fuselage discharge fluid (F 1 ). The fuselage discharge fluid (F 1 ) discharged outside becomes, for example, a high-temperature exothermic fluid (F 2 ) introduced into the heat transfer tube by causing an exothermic reaction in a reaction device or the like. There is a self-heat exchanging method in which heat is exchanged between the initially introduced fluid (F 0 ) introduced from the outside into the fuselage by introducing the exothermic fluid (F 2 ) whose temperature has increased into the heat transfer tube.
Here, a pressure decrease (Δp) generated by passing through the reactor is designed as a predetermined pressure (for example, 2.0 MPa), and constitutes a high-pressure differential pressure design type heat exchanger.
ここで、差圧設計以下の圧力の場合には、胴体に配した伝熱管の損傷は無いものの、所定設計差圧以上となった際には、伝熱管の接続部において、破断部が発生するという問題がある。
Here, in the case of the pressure below the differential pressure design, there is no damage to the heat transfer tubes arranged on the fuselage, but when the pressure exceeds the predetermined design differential pressure, a fracture occurs at the connection portion of the heat transfer tubes. There is a problem.
そこで、従来においては、差圧異常がある場合、熱交換器の外部の流体ラインにおいて、流体の流れを制御することで対応していた(特許文献1)。
Therefore, conventionally, when there is a differential pressure abnormality, it has been dealt with by controlling the flow of fluid in the fluid line outside the heat exchanger (Patent Document 1).
しかしながら、従来技術の提案では、外部に設置するため、流体流れを制御する手段の設置には、そのための設置ラインが必要となる、という問題がある。
However, in the proposal of the prior art, since it is installed outside, there is a problem that the installation line for that purpose is necessary for the installation of the means for controlling the fluid flow.
また、従来技術の提案では、熱交換器の外部での設計圧以上となった際の対応には対処できるものの、熱交換器本体内部における差圧異常が発生した場合には、対応することができない、という問題がある。
In addition, the proposal of the prior art can cope with the response when the pressure exceeds the design pressure outside the heat exchanger, but it can respond when the abnormal pressure difference occurs inside the heat exchanger body. There is a problem that it is not possible.
よって、熱交換器本体内部での差圧異常が発生した場合に、損傷を回避することができる差圧設計型の熱交換器の出現が切望されている。
Therefore, the appearance of a heat exchanger of a differential pressure design type capable of avoiding damage when a differential pressure abnormality occurs inside the heat exchanger body is eagerly desired.
本発明は、前記問題に鑑み、熱交換器本体内部での差圧異常が発生した場合に、対応できる差圧設計型の熱交換器を提供することを課題とする。
In view of the above problems, an object of the present invention is to provide a heat exchanger of a differential pressure design type that can cope with an abnormal pressure difference inside the heat exchanger body.
上述した課題を解決するための本発明の第1の発明は、胴体内に複数本の伝熱管を収めてなり、差圧設計型のシェルアンドチューブ型熱交換器であって、前記胴体内の圧力(P1)と前記伝熱管内の圧力(P2)との差圧(P2-P1)又は(P1-P2)が、差圧設計の所定圧以上になった際、圧力を解放する圧力解放部材を設けてなることを特徴とする差圧設計型の熱交換器にある。
A first invention of the present invention for solving the above-mentioned problems is a shell-and-tube heat exchanger of differential pressure design type in which a plurality of heat transfer tubes are housed in a body, When the differential pressure (P 2 -P 1 ) or (P 1 -P 2 ) between the pressure (P 1 ) and the pressure in the heat transfer tube (P 2 ) is equal to or higher than the predetermined pressure of the differential pressure design, There is provided a differential pressure design type heat exchanger characterized in that a pressure release member for releasing the pressure is provided.
第2の発明は、第1の発明において、前記圧力解放部材が、破断板であると共に、前記破断板を、伝熱管内と連通し、外部へ管内流体を排出するフローティングヘッドの鏡部又は円筒部のいずれか一方に設けたことを特徴とする差圧設計型の熱交換器にある。
According to a second invention, in the first invention, the pressure release member is a fracture plate, the mirror plate or cylinder of the floating head that communicates the fracture plate with the inside of the heat transfer pipe and discharges the fluid in the pipe to the outside. It is in the heat exchanger of the differential pressure design type | mold characterized by providing in either one of the parts.
第3の発明は、第2の発明において、破断板が一方向に破断する破断板又は双方向に破断する破断板であることを特徴とする差圧設計型の熱交換器にある。
The third invention is the differential pressure design type heat exchanger according to the second invention, wherein the fracture plate is a fracture plate that fractures in one direction or a fracture plate that fractures in both directions.
第4の発明は、第1の発明において、前記圧力解放部材が、複数の伝熱管の一部を圧力解放管の伝熱管とすると共に、前記圧力解放管の耐圧を所定設計圧以下とすることを特徴とする差圧設計型の熱交換器にある。
According to a fourth invention, in the first invention, the pressure release member uses a part of the plurality of heat transfer tubes as a heat transfer tube of the pressure release tube, and a pressure resistance of the pressure release tube is set to a predetermined design pressure or less. It is a differential pressure design type heat exchanger characterized by
本発明によれば、差圧設計型の熱交換器において、所定差圧以上の圧力が発生した場合、圧力解放部材を設けているので、この圧力解放部材が圧力を解放することで、熱交換器の損傷を防止することができる。
According to the present invention, in the heat exchanger of the differential pressure design type, when a pressure higher than a predetermined differential pressure is generated, the pressure release member is provided. Damage to the vessel can be prevented.
以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.
図1は、実施例1に係る差圧設計型の熱交換器の概略図である。図2は、実施例1に係る差圧設計型の熱交換器の要部概略図である。
図1に示すように、本実施例に係る差圧設計型の熱交換器10Aは、胴体(シェル)11内に複数本の伝熱管(チューブ)12を収めてなり、差圧設計型のシェルアンドチューブ型熱交換器であって、胴体11内の圧力(P1)と伝熱管12内の圧力(P2)との差圧(P2-P1)又は(P1-P2)が、差圧設計の所定圧(例えば2.0MPa)以上(例えば2.5MPa)になった際、圧力を解放する圧力解放部材を設けてなるものである。 1 is a schematic diagram of a differential pressure design type heat exchanger according to a first embodiment. FIG. 2 is a schematic diagram of a main part of the differential pressure design type heat exchanger according to the first embodiment.
As shown in FIG. 1, a differential pressure design type heat exchanger 10 </ b> A according to this embodiment includes a plurality of heat transfer tubes (tubes) 12 in a body (shell) 11, and a differential pressure design type shell. An and tube heat exchanger, in which the pressure difference (P 2 -P 1 ) or (P 1 -P 2 ) between the pressure (P 1 ) in thebody 11 and the pressure (P 2 ) in the heat transfer tube 12 is A pressure release member is provided for releasing the pressure when the pressure becomes a predetermined pressure (for example, 2.0 MPa) or more (for example, 2.5 MPa) of the differential pressure design.
図1に示すように、本実施例に係る差圧設計型の熱交換器10Aは、胴体(シェル)11内に複数本の伝熱管(チューブ)12を収めてなり、差圧設計型のシェルアンドチューブ型熱交換器であって、胴体11内の圧力(P1)と伝熱管12内の圧力(P2)との差圧(P2-P1)又は(P1-P2)が、差圧設計の所定圧(例えば2.0MPa)以上(例えば2.5MPa)になった際、圧力を解放する圧力解放部材を設けてなるものである。 1 is a schematic diagram of a differential pressure design type heat exchanger according to a first embodiment. FIG. 2 is a schematic diagram of a main part of the differential pressure design type heat exchanger according to the first embodiment.
As shown in FIG. 1, a differential pressure design type heat exchanger 10 </ b> A according to this embodiment includes a plurality of heat transfer tubes (tubes) 12 in a body (shell) 11, and a differential pressure design type shell. An and tube heat exchanger, in which the pressure difference (P 2 -P 1 ) or (P 1 -P 2 ) between the pressure (P 1 ) in the
本実施例の差圧設計型の熱交換器10Aは、図1に示すように、シェルアンドチューブ型熱交換器であり、胴体(シェル)11に先ず外部より温度(T0)の初期導入流体F0を導入し、伝熱管(チューブ)12を通過する温度(T2)の発熱流体F2と熱交換させて、温度(T1)の胴体排出流体F1として排出される。この外部に排出された胴体排出流体F1は、例えば反応装置20において発熱反応を生じさせることで、伝熱管12内に導入する高温の温度(T2)の発熱流体F2となる。この温度上昇した発熱流体F2を、伝熱管12内部に導入させることで、外部より胴体内に導入される温度(T0)の初期の導入流体F0を熱交換させる自己熱交換を行っている。ここで、反応装置20での反応により生じる圧力減少(Δp)分が所定圧(例えば2.0MPa)として設計されており、高圧系の差圧設計型の熱交換器を構成している。
As shown in FIG. 1, a differential pressure design type heat exchanger 10A of this embodiment is a shell and tube type heat exchanger, and an initially introduced fluid having a temperature (T 0 ) from the outside to a body (shell) 11 first. F 0 is introduced, heat exchanged with the heat generation fluid F 2 at the temperature (T 2 ) passing through the heat transfer tube (tube) 12, and discharged as the body discharge fluid F 1 at the temperature (T 1 ). The fuselage discharge fluid F 1 discharged to the outside becomes, for example, an exothermic fluid F 2 having a high temperature (T 2 ) introduced into the heat transfer tube 12 by causing an exothermic reaction in the reaction device 20. By introducing the heat-generating fluid F 2 whose temperature has been increased into the heat transfer tube 12, self heat exchange is performed to exchange heat with the initial introduced fluid F 0 at the temperature (T 0 ) introduced from the outside into the fuselage. Yes. Here, the pressure decrease (Δp) generated by the reaction in the reaction apparatus 20 is designed as a predetermined pressure (for example, 2.0 MPa), and constitutes a high-pressure differential pressure design type heat exchanger.
また、差圧設計型の熱交換器10Aは、図1に示すように、胴体11内には固定管板13Aと遊動管板13Bとが配設され、両者の間に伝熱管12が複数本(例えば2000本)設けられている。胴体11には初期の導入流体F0を導入する導入部11aと、胴体排出流体F1を排出する排出部11bとが形成されている。
また、固定管板13A側の発熱流体F2を導入する導入ヘッド15には導入部15aが設けられている。 In addition, as shown in FIG. 1, the differential pressure designtype heat exchanger 10A includes a fixed tube plate 13A and a floating tube plate 13B disposed in the body 11, and a plurality of heat transfer tubes 12 between them. (For example, 2000) are provided. The body 11 is formed with an introduction portion 11a for introducing the initial introduction fluid F 0 and a discharge portion 11b for discharging the body discharge fluid F 1 .
Theintroduction head 15 for introducing the heat generation fluid F 2 on the fixed tube plate 13A side is provided with an introduction portion 15a.
また、固定管板13A側の発熱流体F2を導入する導入ヘッド15には導入部15aが設けられている。 In addition, as shown in FIG. 1, the differential pressure design
The
また、遊動管板13B側の発熱流体F2から熱交換されて低温(T3)となった伝熱管排出流体F3を排出する排出ヘッド16内には、遊動ヘッド17が設けられている。
この遊動ヘッド17は遊動管板13Bと基部側で接合された鏡部17aと排出ヘッド16の排出部16aと摺動する遊動管17bとから構成され、内部の圧力状況に応じて遊動自在としている。 In addition, afloating head 17 is provided in the discharge head 16 that discharges the heat transfer tube discharge fluid F 3 that has undergone heat exchange from the heat generating fluid F 2 on the floating tube plate 13B side and has become low temperature (T 3 ).
Thefloating head 17 is composed of a mirror portion 17a joined to the floating tube plate 13B on the base side, and a floating tube 17b that slides on the discharge portion 16a of the discharge head 16, and is freely movable according to the internal pressure situation. .
この遊動ヘッド17は遊動管板13Bと基部側で接合された鏡部17aと排出ヘッド16の排出部16aと摺動する遊動管17bとから構成され、内部の圧力状況に応じて遊動自在としている。 In addition, a
The
そして、本実施例では、圧力解放部材として胴体11内の圧力(P1)と伝熱管12内の圧力(P2)との差圧(P2-P1)又は(P1-P2)が、差圧設計の所定圧(例えば2.0MPa)以上の例えば2.5MPaになった際、圧力を解放する破断板21を、遊動ヘッド17の鏡部17aに設けている。
そして、所定圧以上の圧力が発生した場合、破断板21が破断することで、熱交換器の損傷を防止している。 In this embodiment, as a pressure release member, the pressure difference (P 2 -P 1 ) or (P 1 -P 2 ) between the pressure (P 1 ) in thebody 11 and the pressure (P 2 ) in the heat transfer tube 12 is used. However, when the pressure becomes a predetermined pressure (for example, 2.0 MPa) or higher, for example, 2.5 MPa, a breaker plate 21 that releases the pressure is provided in the mirror portion 17 a of the floating head 17.
And when the pressure more than predetermined pressure generate | occur | produces, the failure | damage of a heat exchanger is prevented because the fracture |rupture board 21 fractures | ruptures.
そして、所定圧以上の圧力が発生した場合、破断板21が破断することで、熱交換器の損傷を防止している。 In this embodiment, as a pressure release member, the pressure difference (P 2 -P 1 ) or (P 1 -P 2 ) between the pressure (P 1 ) in the
And when the pressure more than predetermined pressure generate | occur | produces, the failure | damage of a heat exchanger is prevented because the fracture |
図6は、差圧設計型の熱交換器の損傷の一例を示す要部概略図であり、図中左側は問題発生前の通常の場合であり、図中右側は問題発生後の差圧異常が発生して損傷が発生した場合である。
図6に示すように、内部に破断板21を設けていない場合には、熱交換器の内部において、圧力(P2-P1)>設計圧がかかった場合、遊動管板13Bと鏡部17aとの継ぎ部において破断部Xの損傷が発生した。 FIG. 6 is a schematic diagram of the main part showing an example of the damage of the heat exchanger of the differential pressure design type. The left side in the figure is a normal case before the problem occurs, and the right side in the figure is the differential pressure abnormality after the problem occurs. Occurs when damage occurs.
As shown in FIG. 6, when thefracture plate 21 is not provided inside, when the pressure (P 2 -P 1 )> design pressure is applied inside the heat exchanger, the floating tube plate 13B and the mirror portion Damage to the fracture portion X occurred at the joint with 17a.
図6に示すように、内部に破断板21を設けていない場合には、熱交換器の内部において、圧力(P2-P1)>設計圧がかかった場合、遊動管板13Bと鏡部17aとの継ぎ部において破断部Xの損傷が発生した。 FIG. 6 is a schematic diagram of the main part showing an example of the damage of the heat exchanger of the differential pressure design type. The left side in the figure is a normal case before the problem occurs, and the right side in the figure is the differential pressure abnormality after the problem occurs. Occurs when damage occurs.
As shown in FIG. 6, when the
これに対し、本実施例のように、差圧設計型の熱交換器10Aの内部の鏡部17aに破断板21を設けることで、所定設計圧以上となった際に、破断板21が作動するので、内部の損傷の発生を回避することができる。
On the other hand, by providing the break plate 21 in the mirror portion 17a inside the differential pressure design type heat exchanger 10A as in this embodiment, the break plate 21 is activated when the pressure exceeds a predetermined design pressure. Therefore, the occurrence of internal damage can be avoided.
また、従来は、遊動管板13Bと鏡部17aとは一度溶接による接合をした後は、分解できないので、排出ヘッド16内に仮に異物等が存在して、遊動に不具合が発生した場合でも、開放点検できなかったが、遊動不具合が発生した場合、破断板21部分を開放することで、内部の再点検を実施することができる。
Further, conventionally, since the floating tube plate 13B and the mirror portion 17a cannot be disassembled after being joined once by welding, even if foreign matter or the like exists in the discharge head 16 and a problem occurs in the floating, Although the opening inspection could not be performed, when a floating defect occurs, the internal reinspection can be performed by opening the broken plate 21 portion.
また、破断板21としては、一方向に破断する破断板であっても、双方向に破断する破断板であってもよい。
Also, the breaking plate 21 may be a breaking plate that breaks in one direction or a breaking plate that breaks in both directions.
次に、本発明の実施例2に係る差圧設計型の熱交換器について、図3を参照して説明する。図3は、実施例2に係る差圧設計型の熱交換器の要部概略図である。なお、実施例1と同様の部材については、同一符号を付してその説明は省略する。
Next, a differential pressure design type heat exchanger according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 3 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a second embodiment. In addition, about the member similar to Example 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
図3に示すように、本実施例の差圧設計型の熱交換器10Bでは一方向に破断する破断板21A、21Bを鏡部17aの2か所に設けると共に、胴体11側からの圧力(P1)が高い場合と、伝熱管12側の圧力(P2)が高い場合との二方向の圧力に応じて破断する2種類の破断板としている。
As shown in FIG. 3, in the differential pressure design type heat exchanger 10B of the present embodiment, fracture plates 21A and 21B that fracture in one direction are provided at two locations of the mirror portion 17a, and pressure from the body 11 side ( Two types of rupture plates that break according to the pressure in two directions, ie, when P 1 ) is high and when the pressure (P 2 ) on the heat transfer tube 12 side is high, are used.
すなわち、熱交換器の内部において、(P1-P2)>設計圧となる前に、破断板21Aから圧を逃がすことができる。また、(P2-P1)>設計圧となる前に、破断板21Bから圧を逃がすことができる。
That is, the pressure can be released from the fracture plate 21A before (P 1 −P 2 )> design pressure inside the heat exchanger. Further, the pressure can be released from the fracture plate 21B before (P 2 −P 1 )> design pressure.
これにより、いずれかの圧力が設計圧以上となった場合において、対応できる。
特に、熱交換器の設置時や検査時において、通常は片圧をかけない差圧設計型の熱交換器に片圧をかけて、所定圧以上となる場合に、損傷を回避することができる。 Thereby, it is possible to cope with a case where any pressure becomes higher than the design pressure.
In particular, at the time of installation or inspection of a heat exchanger, damage can be avoided when a pressure is applied to a heat exchanger of a differential pressure design type that normally does not apply a single pressure and the pressure exceeds a predetermined pressure. .
特に、熱交換器の設置時や検査時において、通常は片圧をかけない差圧設計型の熱交換器に片圧をかけて、所定圧以上となる場合に、損傷を回避することができる。 Thereby, it is possible to cope with a case where any pressure becomes higher than the design pressure.
In particular, at the time of installation or inspection of a heat exchanger, damage can be avoided when a pressure is applied to a heat exchanger of a differential pressure design type that normally does not apply a single pressure and the pressure exceeds a predetermined pressure. .
次に、本発明の実施例3に係る差圧設計型の熱交換器について、図4を参照して説明する。図4は、実施例3に係る差圧設計型の熱交換器の要部概略図である。なお、実施例1と同様の部材については、同一符号を付してその説明は省略する。
Next, a differential pressure design type heat exchanger according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 4 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a third embodiment. In addition, about the member similar to Example 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
実施例1の差圧設計型の熱交換器10Aでは、破断板21の設置を鏡部17aとしたが、本発明はこれに限定されず、図4に示す差圧設計型の熱交換器10Cでは、遊動管17bに破断板21を設置するようにしている。
なお、遊動管17bは排出部16aの内側で摺動するので、その摺動阻害がない位置に設ける必要がある。 In the differential pressure designtype heat exchanger 10A of the first embodiment, the break plate 21 is installed as the mirror portion 17a. However, the present invention is not limited to this, and the differential pressure design type heat exchanger 10C shown in FIG. Then, the fracture | rupture board 21 is installed in the floating pipe 17b.
In addition, since the floatingpipe 17b slides inside the discharge part 16a, it is necessary to provide in the position which does not have the sliding obstruction.
なお、遊動管17bは排出部16aの内側で摺動するので、その摺動阻害がない位置に設ける必要がある。 In the differential pressure design
In addition, since the floating
また、破断板21としては、一方向に破断する破断板であっても、双方向に破断する破断板であってもよい。また、実施例2のように2方向の破断板21A、21Bを設けるようにしてもよい。
Also, the breaking plate 21 may be a breaking plate that breaks in one direction or a breaking plate that breaks in both directions. Moreover, you may make it provide the fracture | rupture board 21A, 21B of 2 directions like Example 2. FIG.
次に、本発明の実施例4に係る差圧設計型の熱交換器について、図5を参照して説明する。図5は、実施例4に係る差圧設計型の熱交換器の要部概略図である。なお、実施例1と同様の部材については、同一符号を付してその説明は省略する。
実施例4の差圧設計型の熱交換器10Dは、図5に示すように、圧力解放部材として圧力解放管22を用いている。そして、通常の熱交換するための伝熱管12を所定設計圧(2.1MPa)とする場合に、圧力解放管22は、この所定圧以下(2.0MPa)で破断するような設計圧としている。 Next, a differential pressure design type heat exchanger according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 5 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a fourth embodiment. In addition, about the member similar to Example 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIG. 5, the differential pressure design type heat exchanger 10 </ b> D of the fourth embodiment uses apressure release pipe 22 as a pressure release member. When the heat transfer tube 12 for normal heat exchange is set to a predetermined design pressure (2.1 MPa), the pressure release tube 22 is set to a design pressure that breaks below the predetermined pressure (2.0 MPa). .
実施例4の差圧設計型の熱交換器10Dは、図5に示すように、圧力解放部材として圧力解放管22を用いている。そして、通常の熱交換するための伝熱管12を所定設計圧(2.1MPa)とする場合に、圧力解放管22は、この所定圧以下(2.0MPa)で破断するような設計圧としている。 Next, a differential pressure design type heat exchanger according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 5 is a schematic diagram of a main part of a differential pressure design type heat exchanger according to a fourth embodiment. In addition, about the member similar to Example 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIG. 5, the differential pressure design type heat exchanger 10 </ b> D of the fourth embodiment uses a
通常の熱交換用の伝熱管12は例えば2000本ある場合、その一部(例えば4~5本)について、圧力解放管22の伝熱管とすると共に、この圧力解放管22の耐圧を所定設計圧以下とすることとして、破断可能とすることで、熱交換器内部での差圧異常に対応することができる。なお、破断した圧力解放管22は、管板13A,13Bの外部において、破断した圧力解放管22の端部を目止めすることで、再度熱交換することができる。
For example, when there are 2000 heat transfer tubes 12 for normal heat exchange, a part (for example, 4 to 5) of them is used as the heat transfer tube of the pressure release tube 22 and the pressure resistance of the pressure release tube 22 is set to a predetermined design pressure. By making it breakable as described below, it is possible to cope with an abnormal pressure difference inside the heat exchanger. The broken pressure release pipe 22 can be heat exchanged again by keeping the end of the broken pressure release pipe 22 outside the tube plates 13A and 13B.
10A~10D 差圧設計型の熱交換器
11 胴体
12 伝熱管
13A 固定管板
13B 遊動管板
15 導入ヘッド
15a 導入部
16 排出ヘッド
16a 排出部
17 遊動ヘッド
17a 鏡部
17b 遊動管
20 反応装置
21、21A、21B 破断板
22 圧力解放管 10A to 10D differential pressure designtype heat exchanger 11 body 12 heat transfer tube 13A fixed tube plate 13B idle tube plate 15 introduction head 15a introduction portion 16 discharge head 16a discharge portion 17 idle head 17a mirror portion 17b idle tube 20 reaction device 21, 21A, 21B Breaking plate 22 Pressure release pipe
11 胴体
12 伝熱管
13A 固定管板
13B 遊動管板
15 導入ヘッド
15a 導入部
16 排出ヘッド
16a 排出部
17 遊動ヘッド
17a 鏡部
17b 遊動管
20 反応装置
21、21A、21B 破断板
22 圧力解放管 10A to 10D differential pressure design
Claims (4)
- 胴体内に複数本の伝熱管を収めてなり、差圧設計型のシェルアンドチューブ型熱交換器であって、
前記胴体内の圧力(P1)と前記伝熱管内の圧力(P2)との差圧(P2-P1)又は(P1-P2)が、差圧設計の所定圧以上になった際、圧力を解放する圧力解放部材を設けてなることを特徴とする差圧設計型の熱交換器。 A shell-and-tube heat exchanger with a differential pressure design type that houses multiple heat transfer tubes in the fuselage,
The differential pressure (P 2 -P 1 ) or (P 1 -P 2 ) between the pressure in the fuselage (P 1 ) and the pressure in the heat transfer tube (P 2 ) is equal to or higher than the predetermined pressure of the differential pressure design. A differential pressure design type heat exchanger, characterized in that a pressure release member for releasing the pressure is provided. - 請求項1において、
前記圧力解放部材が、破断板であると共に、
前記破断板を、伝熱管内と連通し、外部へ管内流体を排出するフローティングヘッドの鏡部又は円筒部のいずれか一方に設けたことを特徴とする差圧設計型の熱交換器。 In claim 1,
The pressure release member is a fracture plate;
A differential pressure design type heat exchanger characterized in that the fracture plate is provided in either the mirror part or the cylindrical part of a floating head which communicates with the inside of the heat transfer pipe and discharges the fluid in the pipe to the outside. - 請求項2において、
破断板が一方向に破断する破断板又は双方向に破断する破断板であることを特徴とする差圧設計型の熱交換器。 In claim 2,
A differential pressure design type heat exchanger, wherein the fracture plate is a fracture plate that fractures in one direction or a fracture plate that fractures in both directions. - 請求項1において、
前記圧力解放部材が、複数の伝熱管の一部を圧力解放管の伝熱管とすると共に、前記圧力解放管の耐圧を所定設計圧以下とすることを特徴とする差圧設計型の熱交換器。 In claim 1,
The pressure release member is a differential pressure design type heat exchanger characterized in that a part of the plurality of heat transfer tubes serves as a heat transfer tube of the pressure release tube, and the pressure release pressure of the pressure release tube is equal to or lower than a predetermined design pressure. .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014067108A JP6335579B2 (en) | 2014-03-27 | 2014-03-27 | Differential pressure design type heat exchanger |
JP2014-067108 | 2014-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015146585A1 true WO2015146585A1 (en) | 2015-10-01 |
Family
ID=54195109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/057125 WO2015146585A1 (en) | 2014-03-27 | 2015-03-11 | Differential-pressure-design heat exchanger |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6335579B2 (en) |
WO (1) | WO2015146585A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017156025A (en) * | 2016-03-02 | 2017-09-07 | 東京電力ホールディングス株式会社 | Heat exchange system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4167968A (en) * | 1977-12-30 | 1979-09-18 | Babcock-Brown Boveri Reaktor Gmbh | Pressure vessel |
US5113928A (en) * | 1989-07-10 | 1992-05-19 | Thermal Transfer Products, Ltd. | Heat exchanger with fluid pressure relief means |
JP2002525552A (en) * | 1998-09-24 | 2002-08-13 | サーク アビエイション リミテッド | Heat exchanger |
-
2014
- 2014-03-27 JP JP2014067108A patent/JP6335579B2/en not_active Expired - Fee Related
-
2015
- 2015-03-11 WO PCT/JP2015/057125 patent/WO2015146585A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4167968A (en) * | 1977-12-30 | 1979-09-18 | Babcock-Brown Boveri Reaktor Gmbh | Pressure vessel |
US5113928A (en) * | 1989-07-10 | 1992-05-19 | Thermal Transfer Products, Ltd. | Heat exchanger with fluid pressure relief means |
JP2002525552A (en) * | 1998-09-24 | 2002-08-13 | サーク アビエイション リミテッド | Heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP2015190663A (en) | 2015-11-02 |
JP6335579B2 (en) | 2018-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11549763B2 (en) | Plate fin heat exchanger and repair method for plate fin heat exchanger | |
CN110892576B (en) | Temperature control device for the temperature control of a battery system, battery system and method for controlling the temperature and/or extinguishing a fire of a battery system | |
US11543187B2 (en) | Heat exchanger with build powder in barrier channels | |
US9810340B2 (en) | Device for opening or closing a seal set of a valve | |
CN203223604U (en) | Serial connection and combination device between anti-backpressure creep-resistant rupture disc and fusible plug | |
CN101614496A (en) | Heating medium double tube plate heat exchanger | |
WO2015146585A1 (en) | Differential-pressure-design heat exchanger | |
US11815270B2 (en) | Heat transmitting system for providing a heat medium with a set temperature and heat transmitting method | |
JP2010096350A (en) | Plug for sealed closing of pipe | |
EP3625510B1 (en) | Double wall printed circuit heat exchanger | |
CN101710531A (en) | System with directional pressure venting | |
JP2011122949A (en) | Emergency condensate system | |
KR200460111Y1 (en) | rupture disc assembly | |
JP4900714B2 (en) | Fusible stopper | |
CN203115208U (en) | Explosion-proof apparatus for high-temperature gas pipeline | |
CN104421467B (en) | Special explosion-proof valve for instrument wind and processing and using method thereof | |
CN111623157A (en) | Shape memory alloy isolating valve | |
JP2018091581A (en) | Refrigeration unit | |
CN101526430A (en) | Safe pressure relief device suitable for online checkout | |
CN207610596U (en) | A connection device between the upper tube sheet and the heat exchange tube of a vertical heat exchanger | |
CN204007221U (en) | A kind of single tube journey movable tube sheets heat exchanger with expansion joint guider | |
KR20190070106A (en) | Primary Surface Heat Exchanger having Improved Internal Pressure and Manufacturing Method Thereof and Heat Exchange System | |
WO2019220607A1 (en) | Stationary induction device | |
JP7319139B2 (en) | Piping structure and heat exchanger | |
CN204007220U (en) | A kind of single tube journey movable tube sheets heat exchanger with expansion joint monitoring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15769852 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15769852 Country of ref document: EP Kind code of ref document: A1 |