WO2015146396A1 - Engine oil composition - Google Patents

Engine oil composition Download PDF

Info

Publication number
WO2015146396A1
WO2015146396A1 PCT/JP2015/054758 JP2015054758W WO2015146396A1 WO 2015146396 A1 WO2015146396 A1 WO 2015146396A1 JP 2015054758 W JP2015054758 W JP 2015054758W WO 2015146396 A1 WO2015146396 A1 WO 2015146396A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass
engine oil
oil composition
viscosity
Prior art date
Application number
PCT/JP2015/054758
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 悟
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2015146396A1 publication Critical patent/WO2015146396A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/08Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing non-conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/073Star shaped polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • the present invention relates to an engine oil composition that is excellent in fuel saving performance, and particularly excellent in both fuel saving performance and wear resistance.
  • Fuel economy improvement technology using engine oil includes technology that reduces friction in the fluid lubrication region by lowering the viscosity and technology that reduces friction in the boundary lubrication region by blending a friction reducer. It is done.
  • excessively low viscosity leads to shortage of oil film strength, which causes problems such as adverse effects on engine durability and increased friction in the boundary lubrication region. This is a problem common to both gasoline and diesel engines, but particularly in diesel engines, the adverse effect of lowering the viscosity of engine oil is significant.
  • a specific viscosity index improver is contained in a lubricating base oil having a viscosity index of 120 or more as an engine oil having a constant viscosity under high temperature and high shear and good fuel economy performance.
  • Engine oil is disclosed.
  • the subject of this invention is providing the engine oil composition which was excellent in the fuel-saving performance, and was excellent in abrasion resistance.
  • the inventors of the present invention have a lubricant base oil having a specific property, a polymer having a star polymer and a nitrogen-containing group as a viscosity index improver, and an amide compound, an imide compound as a friction modifier, Alternatively, the inventors have found that by containing a mixture of both compounds, excellent wear resistance and fuel saving effect can be expressed at the same time, and the present invention has been completed.
  • a lubricating base oil having a saturation content of 70% by mass or more and a viscosity index of 90 or more and 160 or less, (A) a star polymer A-1 and a weight average molecular weight of 200,000 or more, 400, There is provided an engine oil composition comprising polymer A-2 having a nitrogen-containing group of 000 or less and (B) at least one of an amide compound and an imide compound.
  • the star polymer is preferably a polymer having a core which is a polyalkenyl compound and 4 to 15 arms bonded to the core.
  • a lubricating base oil having a saturated content of 70% by mass or more and a viscosity index of 90 or more and 160 or less, (A) a star polymer A-1 and a weight average molecular weight of 200,000 or more, 400
  • a composition comprising a polymer A-2 having a nitrogen-containing group of 1,000 or less and (B) at least one of an amide compound and an imide compound in the production of engine oil.
  • a lubricating base oil having a saturation content of 70% by mass or more and a viscosity index of 90 or more and 160 or less, (A) a star polymer A-1 and a weight average molecular weight of 200,000 or more, 400 A composition comprising a polymer A-2 having a nitrogen-containing group of 1,000 or less and (B) at least one of an amide compound and an imide compound is circulated in an engine engine as an engine oil.
  • a method for suppressing fuel consumption of an engine such as a diesel engine is provided.
  • the engine oil composition of the present invention contains a specific polymer containing a star polymer in a lubricating base oil having a specific property and a specific wear modifier, so that it has excellent fuel efficiency and extremely good resistance to resistance. Abrasion can be exhibited at the same time.
  • the base oil of the engine oil composition of the present invention is a lubricating base oil having a saturated content of 70% by mass or more and a viscosity index of 90 or more and 160 or less (hereinafter sometimes simply referred to as a base oil).
  • the saturated content of the base oil is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. In particular, it is most preferable that almost all is saturated, specifically 99% by mass or more.
  • the upper limit is 100% by mass.
  • the content of the saturated component of the base oil means a mass% value measured in accordance with ASTM D2007-11.
  • the viscosity index of the base oil is preferably 110 or more, more preferably 120 or more, still more preferably 125 or more, and the upper limit is 160 or less.
  • the viscosity index is less than 90, not only the viscosity-temperature characteristics, thermal oxidation stability and volatilization prevention properties are deteriorated, but also the friction coefficient tends to increase, and the wear prevention properties tend to decrease.
  • the viscosity index exceeds 160, the low-temperature viscosity characteristics tend to decrease.
  • the viscosity index means a viscosity index measured according to JIS K 2283-1993.
  • the base oil% Cp is preferably 60 or more, and more preferably 70 or more. Moreover, 100 or less is preferable and 95 or less is more preferable.
  • The% Cp means a percentage (%) with respect to the total number of carbon atoms constituting the paraffin in the base oil, and is measured in accordance with ASTM D3238.
  • The% C N of the base oil is preferably 40 or less, more preferably 30 or less. Moreover, 1 or more is preferable and 3 or more is more preferable.
  • The% C N denotes the percentage (%) to the total number of carbon atoms of the carbon atoms constituting the naphthene ring in the base oil, measured according to ASTM D3238.
  • % C A is preferably 10 or less of the base oil with 2 or less being more preferred. Moreover, 0 or more are preferable.
  • The% C A denotes the percentage (%) to the total number of carbon atoms of the carbon atoms constituting the aromatic ring in the base oil, measured according to ASTM D3238.
  • the base oil used in the present invention includes mineral oil base oil or synthetic oil base oil. These may be used alone or in combination of two or more.
  • Mineral oil base oils include, for example, a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and vacuum distillation, and solvent removal, solvent extraction, hydrocracking, hydroisomerization, solvent dewaxing, catalytic dewaxing.
  • Examples include paraffinic mineral oil obtained by refining one kind of refining processes such as wax, hydrorefining, sulfuric acid washing, and clay treatment alone or in combination of two or more, or normal paraffinic mineral oil and isoparaffinic mineral oil. It is done.
  • Hydrocracked mineral oil obtained by performing a dewaxing treatment such as wax or by distillation after the dewaxing treatment is particularly preferred. Among these, those subjected to contact dewaxing treatment are more preferable.
  • the pour point of the mineral base oil is preferably ⁇ 12.5 ° C. or less, more preferably ⁇ 15 ° C. or less. Further, it is preferably higher than ⁇ 35 ° C., more preferably ⁇ 30 ° C. or higher, further preferably ⁇ 25 ° C. or higher, and particularly preferably ⁇ 20 ° C. or higher. This is because if the pour point is higher than ⁇ 12.5 ° C., the characteristics at low temperatures deteriorate, and if it is ⁇ 35 ° C. or lower, a sufficient viscosity index cannot be obtained.
  • the pour point means a pour point measured in accordance with JIS K 2269-1987.
  • the NOACK value (NOACK evaporation) in the mineral oil base oil is preferably 15% by mass or less.
  • the NOACK value means an evaporation loss amount (mass%) measured according to ASTMAD 5800-95.
  • the sulfur content of the mineral oil base oil is not particularly limited, but the sulfur content in the base oil is preferably 100 mass ppm or less from the viewpoint of further improving thermal and oxidation stability and reducing sulfur content. 50 mass ppm or less is more preferable, 10 mass ppm or less is still more preferable, and 5 mass ppm or less is especially preferable. This sulfur content is a value measured according to JIS 5S-38-2003.
  • the content of aromatics in mineral base oils is not particularly limited, but the content of aromatics in base oils is 30% by mass or less from the viewpoint of further improving thermal and oxidation stability and reducing sulfur content. Is preferably 10% by mass or less, more preferably 2% by mass or less, and particularly preferably 1% by mass or less. If it exceeds 30% by mass, the oxidation stability is insufficient and the viscosity-temperature characteristics are liable to deteriorate when used under high temperature and high shear lubrication conditions, and the effects of the present invention may not be exhibited.
  • Synthetic oil base oils include, for example, poly ⁇ -olefin or hydride thereof, isobutene oligomer or hydride thereof, isoparaffin, alkylbenzene, alkylnaphthalene, ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl Diesters such as adipate, di-2-ethylhexyl sebacate, polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol pelargonate, polyoxyalkylene glycol, dialkyl Examples thereof include diphenyl ether and polyphenyl ether, and among them, poly ⁇ -olefin is preferable.
  • an ⁇ -olefin oligomer or co-oligomer such as a 1-octene oligomer having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms, a decene oligomer, an ethylene-propylene co-oligomer, and the like.
  • a hydride is mentioned.
  • the base oil has a kinematic viscosity at 100 ° C. of preferably 1 mm 2 / s or more, more preferably 2 mm 2 / s or more, still more preferably 3 mm 2 / s or more, and 3.5 mm 2 / s.
  • the above is particularly preferable.
  • it is preferably 10 mm 2 / s or less, more preferably 5 mm 2 / s or less, particularly preferably 4.5 mm 2 / s. If the 100 ° C. kinematic viscosity exceeds 10 mm 2 / s, the low-temperature viscosity characteristics may deteriorate, and sufficient fuel economy may not be obtained.
  • the kinematic viscosity at 100 ° C. indicates the kinematic viscosity at 100 ° C. as defined in ASTM D-445.
  • any synthetic oil-based, kinematic viscosity is preferably at least 8 mm 2 / s at 40 ° C. of the base oil, more preferably at least 10 mm 2 / s, still more preferably at least 12 mm 2 / s. On the other hand, it is preferably 45 mm 2 / s or less, more preferably 40 mm 2 / s or less, and still more preferably 36 mm 2 / s or less.
  • the kinematic viscosity at 40 ° C. indicates the kinematic viscosity at 40 ° C. as defined in ASTM D-445.
  • the engine oil composition of the present invention comprises a star polymer A-1 and a polymer A having a nitrogen-containing group having a weight average molecular weight of 200,000 or more and 400,000 or less as an essential component (A) of the viscosity index improver. -2.
  • the star polymer A-1 means a polymer having a shape in which a plurality of arms extend outward so as to form a star shape from a molecular center called a core.
  • the star polymer is preferably a polymer having a core which is a polyalkenyl compound and four or more arms bonded to the core.
  • the number of arms coupled to the core is more preferably 5 or more, and even more preferably 6 or more.
  • the number of arms is preferably 20 or less, and more preferably 15 or less. If the number of arms is less than 4, the shear stability is not sufficient, the viscosity decreases with the passage of time of use, and the inherently required viscosity may not be ensured. On the other hand, if the number of arms exceeds 20, the viscosity is not sufficiently lowered under high shear, and there is a possibility that the fuel saving performance that is the object of the present invention cannot be ensured.
  • the core-forming monomer constituting the polyalkenyl compound which is the preferred core, is preferably a monomer having two or more double bonds such as divinylbenzene or polyvinyl aliphatic compound, and particularly preferably divinylbenzene.
  • the arm is a polymer of an arm forming monomer. Examples of the arm forming monomer include aliphatic dienes having two double bonds such as butadiene and isoprene.
  • the arm has a polymer chain extending from the double bond portion in the polyalkenyl compound that is a polymer of the core-forming monomer, and the double bond remaining after the copolymerization reaction is usually hydrogenated ( Hydrogenated).
  • the arm structure is preferably one in which an aromatic monomer or aliphatic monomer such as styrene or alkene is bonded to the end of a hydrogenated polymer chain by block polymerization. More preferably, a structure in which polystyrene is present at the terminal is preferable. Furthermore, a structure in which polystyrene is present at the ends of all the arms in the star polymer is preferable. It is preferable that almost all the double bond portions of the arms are hydrogenated. Such a hydrogenated arm is sometimes referred to as a hydrogenated polydiene, including terminal polystyrene.
  • the content thereof is preferably 2 mol% or more, more preferably 3 mol% or more, based on the total amount of the star polymer. Moreover, 10 mol% or less is preferable, Furthermore, 7 mol% or less is more preferable. If the polystyrene content is less than 2 mol%, a sufficient decrease in high-temperature shear viscosity may not be obtained, and if it is more than 10 mol%, it may be difficult to obtain sufficient solubility in the base oil. .
  • the weight average molecular weight of the arm in the star polymer is usually 5,000 to 600,000, more preferably 10,000 to 500,000, and still more preferably 10,000 to 300,000. This is because the shear stability is good and the wear resistance is excellent.
  • the weight average molecular weight of the star polymer is preferably 10,000 to 1,000,000, more preferably 100,000 to 800,000, still more preferably 300,000 to 600,000. This is because the shear stability is good.
  • the weight average molecular weight can be measured under the following conditions for both the star polymer A-1 and the polymer A-2 described later.
  • Measuring device Alliance 2695 manufactured by Waters Column: Tosoh GMH6 ⁇ 2 (book)
  • Solvent Tetrahydrofuran Detector: RI Standard substance: Polystyrene Measurement conditions: Flow rate 1 mL / min, sample concentration 2.0 mass%, implantation amount 100 ⁇ L
  • the star polymer has a PSSI (Permanent Shear Stability Index) of preferably 45 or less, more preferably 40 or less.
  • PSSI Permanent Shear Stability Index
  • PSSI exceeds 45, the shear stability deteriorates, so that it is necessary to increase the initial kinematic viscosity, which may deteriorate the fuel economy.
  • PSSI is less than 1, the effect of improving the viscosity index when dissolved in the lubricating base oil is small, and not only the fuel economy and low temperature viscosity characteristics are inferior, but also the cost may increase.
  • PSSI Perst al.
  • ASTM D 6022-01 Standard Practice for Calculation of Permanent Shear Stability Index
  • ASTM D 6278-02 Test Method for Shear Stability of Polymer Containing Fluids Using a European Diesel Injector Apparatus.
  • the method for producing the star polymer is not particularly limited. For example, after radical polymerization of divinylbenzene, which is a core-forming monomer, is performed, radical polymerization is similarly performed on diene starting from a double bond existing in the formed core. Followinged by hydrogenation and terminal polystyrene formation. Note that either polystyrene formation or hydrogenation of the arm end may be performed first. Alternatively, after forming a polymer of an arm having a reaction origin at the terminal, it is reacted with a core-forming monomer, and the formation of the core and the bonding of the arm are performed simultaneously, or after the formation of the core and arm polymers, respectively, the reaction origin A method of reacting each other can be employed.
  • the content ratio of the star polymer A-1 in the engine oil composition of the present invention is preferably at least 4% by mass, more preferably 5% by mass or more, based on the total amount of the engine oil composition. On the other hand, 20 mass% or less is preferable, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less.
  • the high temperature high shear viscosity (HTHS viscosity) at 100 ° C. and 1 ⁇ 10 6 s ⁇ 1 which is a source of fuel saving effect, is maintained at 100 ° C. and 1 ⁇ 10
  • the high-temperature high shear viscosity at 7 s -1 cannot be lowered, and if the content exceeds 20% by mass, the shear stability may be deteriorated.
  • the polymer A-2 having a nitrogen-containing group having a specific weight average molecule (hereinafter sometimes abbreviated as polymer A-2), which is an essential component of the viscosity index improver, is a compound containing nitrogen described later And other compounds.
  • the polymer A-2 has a weight average molecular weight (M W ) of 200,000 or more, preferably 250,000 or more. Moreover, it is 400,000 or less, Preferably it is 380,000 or less, More preferably, it is 360,000 or less. When the weight average molecular weight is less than 200,000, there is a possibility that sufficient wear prevention performance cannot be obtained. In addition, when the weight average molecular weight exceeds 400,000, the effect of increasing the viscosity becomes too large, which may be inferior in fuel saving and low temperature viscosity characteristics, and further, shear stability and solubility in lubricating base oil. , Storage stability may be deteriorated.
  • M W weight average molecular weight
  • the nitrogen content in the polymer A-2 is preferably 0.01 to 1.0% by mass based on the total amount of the polymer A-2, more preferably 0.05% by mass or more, and particularly preferably 0.1% by mass or more. . Moreover, 0.5 mass% or less is especially preferable. If it is less than 0.01% by mass, the wear resistance that is the object of the present invention cannot be achieved, and if it exceeds 1.0% by mass, there is a concern that oxidation stability may be concerned.
  • the PSSI of the polymer A-2 is preferably 60 or less, more preferably 55 or less, and still more preferably 50 or less. If PSSI is 60 or less, the shear stability is better and the fuel economy is further improved. Further, PSSI is preferably 1 or more. The reason is that the effect of improving the viscosity index when dissolved in the lubricating base oil is sufficiently exhibited, and the fuel economy and low temperature viscosity characteristics are improved.
  • Polymer A-2 includes, for example, poly (meth) acrylate, hydride of styrene-diene copolymer, ethylene- ⁇ -olefin copolymer or hydride thereof, polyisobutylene or hydride thereof, styrene-maleic anhydride ester copolymer, polyalkyl It can be obtained by copolymerizing a nitrogen-containing compound with a non-nitrogen-containing polymerizable compound such as styrene and a (meth) acrylate-olefin copolymer.
  • Poly (meth) acrylate will be described below as an example of a nitrogen-free polymerizable compound used in the production of the polymer A-2.
  • poly (meth) acrylate means, for example, a generic name of those selected from the group consisting of polyacrylates, polymethacrylates, copolymers of acrylates and methacrylates, and mixtures thereof. Good.
  • the polymer A-2 in the case of using this poly (meth) acrylate the following configuration can be exemplified.
  • Compound M-1 a (meth) acrylate monomer represented by the formula (1) (hereinafter referred to as “Compound M-1”) and at least one compound selected from the formulas (2) and (3) (hereinafter, “ Examples thereof include poly (meth) acrylates having a nitrogen-containing group in the molecule, which are copolymerized with “Compound M-2” and “Compound M-3”.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a linear or branched hydrocarbon group having 1 to 18 carbon atoms
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkylene group having 1 to 18 carbon atoms
  • E 1 represents an amine residue containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms. Indicates a group or a heterocyclic residue.
  • a is 0 or 1
  • R 5 represents a hydrogen atom or a methyl group
  • E 2 represents an amine residue or a heterocyclic residue containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms.
  • the groups represented by E 1 and E 2 specifically include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, and a toluidino group.
  • Xylidino group acetylamino group, benzoylamino group, morpholino group, pyrrolyl group, pyrrolino group, pyridyl group, methylpyridyl group, pyrrolidinyl group, piperidinyl group, quinonyl group, pyrrolidonyl group, pyrrolidono group, imidazolino group, pyrazino group, etc.
  • pyrrolyl group pyrrolino group
  • pyridyl group methylpyridyl group
  • pyrrolidinyl group piperidinyl group
  • quinonyl group pyrrolidonyl group
  • pyrrolidono group imidazolino group
  • pyrazino group etc.
  • compound M-2 or M-3 are specifically dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-methyl-5-vinylpyridine, morpholinomethyl methacrylate, Examples thereof include morpholinoethyl methacrylate, N-vinylpyrrolidone and a mixture thereof.
  • the molar ratio of M-1: M-2 + M-3 is preferably about 99: 1 to 80:20, more preferably 98: 2 to 85:15, and still more preferably 95: 5 to 90:10.
  • a nitrogen-free polymerizable compound for obtaining the polymer A-2 is a hydride of a styrene-diene copolymer.
  • the copolymer is also a copolymer obtained by using M2 + M-3 in addition to styrene and diene as comonomers. Specifically, as the diene, butadiene, isoprene and the like are preferable, and isoprene is particularly preferable. Hydrogenation is carried out after copolymerization.
  • the nitrogen-free polymerizable compound for obtaining the polymer A-2 is an ethylene- ⁇ -olefin copolymer.
  • the copolymer is also copolymerized using M2 + M-3 in addition to ethylene and ⁇ -olefin as a comonomer.
  • Specific examples of the ⁇ -olefin include propylene, isobutylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, and 1-dodecene.
  • the viscosity index improver in the engine oil composition of the present invention contains two types of polymers, the star polymer A-1 and the polymer A-2, which are the above-mentioned component (A) as essential components.
  • Other viscosity index improvers may be included as long as they are not impaired.
  • Examples of the other viscosity index improvers include ester group-containing viscosity index improvers and compounds corresponding to the above exemplified polymer A-2, which do not copolymerize nitrogen-containing compounds.
  • Poly (meth) acrylate is preferable.
  • the viscosity index improver is preferably only the component (A).
  • the ratio (M w / M n : polydispersity) of the weight average molecular weight (M w ) and the number average molecular weight (M n ) of the star polymer A-1 in the component (A), and the M w / Mn (polydispersity) is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.5 or less, and particularly preferably 3.0 or less. Further, M w / M n is preferably 1.0 or more, more preferably 2.0 or more, still more preferably 2.5 or more, and particularly preferably 2.6 or more.
  • M w / M n exceeds 5.0 or less than 1.0, there is a concern that the improvement effect of solubility and viscosity-temperature characteristics may be lowered, and sufficient storage stability and fuel saving performance can be maintained. There is a risk of disappearing.
  • the content of component (A) (star polymer A-1 + polymer A-2) is preferably 0.1 to 50% by mass, more preferably 0.5 to 20% by mass, based on the total amount of the engine oil composition.
  • the amount is preferably 1.0 to 15% by mass, particularly preferably 1.5 to 12% by mass. If the content is less than 0.1% by mass, the low temperature characteristics may be insufficient, and if it exceeds 50% by mass, the shear stability of the composition may be deteriorated.
  • the content of the other viscosity index improver is 10% by mass or less based on the total amount of the engine oil composition. Is preferable, more preferably 5% by mass or less, and still more preferably 3% by mass or less.
  • the engine oil composition of the present invention contains the component (B) as an essential component, and this component (B) is a friction modifier specifically selected from the group consisting of amide compounds, imide compounds and mixtures thereof. is there.
  • amide compound fatty acid amide is preferable
  • imide compound fatty acid imide is preferable, and those derived from linear fatty acid are particularly preferable.
  • fatty acid amides include fatty acid amides having one nitrogen atom and at least one alkyl group or alkenyl group having 10 to 30 carbon atoms.
  • the fatty acid amide includes, for example, a fatty acid having an alkyl group or an alkenyl group having 10 to 30 carbon atoms or an acid chloride thereof, only ammonia, a hydrocarbon group having 1 to 30 carbon atoms or a hydroxyl group-containing hydrocarbon group in the molecule.
  • a fatty acid amide obtained by reacting ammonia with a fatty acid having an alkyl group or alkenyl group having 12 to 24 carbon atoms and having an amide group at the molecular end.
  • fatty acid amides include lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, oleic acid amide, coconut oil fatty acid amide, synthetic mixed fatty acid amides having 12 to 13 carbon atoms, and mixtures thereof. Can be mentioned. These fatty acid amides are particularly preferable because they are excellent in wear prevention effect in addition to friction reduction effect.
  • Examples of other amide compounds include oleic hydrazide, dodecanoic hydrazide, tridecanoic hydrazide, tetradecanoic hydrazide, pentadecanoic hydrazide, hexadecanoic hydrazide, heptadecanoic hydrazide, octadecanoic hydrazide, and olein exemplified in International Publication No. 2005037967.
  • Alkyl groups having 12 to 24 carbon atoms such as acid hydrazide (C 17 H 33 —C ( ⁇ O) —NH—NH 2 ) and erucic acid hydrazide (C 21 H 41 —C ( ⁇ O) —NH—NH 2 )
  • hydrazide compounds having an alkenyl group, and acid-modified derivatives such as boric acid-modified derivatives hydrazide, semicarbazides such as oleyl semicarbazide, oleyl urea, dodecyl urea, tridecyl urea, tetradecyl urea, pentadecyl urea, hexadecyl Urea having alkyl group or alkenyl group having 12 to 24 carbon atoms such as urea, heptadecyl urea, octadecyl urea, oleyl urea (C 18 H 35 —NH—C ( ⁇
  • an amide compound having a hydroxyl group, a carboxylic acid group, or both functional groups in the same molecule can be given.
  • Examples thereof include a hydroxyl group-containing fatty acid amide obtained by reacting a fatty acid having an alkyl or alkenyl group having 10 to 30 carbon atoms or an acid chloride thereof with an amine compound having 1 to 30 carbon atoms having a hydroxyl group.
  • the compound represented by Formula (4) is preferable.
  • R 6 is a hydrocarbon group having 1 to 30 carbon atoms, preferably a hydrocarbon group having 10 to 30 carbon atoms, more preferably an alkyl group or alkenyl group having 12 to 24 carbon atoms, particularly preferably carbon. It is an alkenyl group of formula 12-20.
  • R 7 is a hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom. In the case of a hydrocarbon group, it is preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrocarbon group having 1 to 4 carbon atoms. However, particularly preferred is a hydrogen atom.
  • R 8 is a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrocarbon group having 1 to 4 carbon atoms, still more preferably a hydrocarbon group having 1 to 2 carbon atoms, and most preferably a hydrocarbon group having 1 carbon atom. is there.
  • the compound represented by the formula (4) can be synthesized, for example, by a reaction between a hydroxy acid and an aliphatic amine.
  • hydroxy acids aliphatic hydroxy acids are preferred, and linear aliphatic ⁇ -hydroxy acids are more preferred.
  • glycolic acid is preferable among ⁇ -hydroxy acids.
  • Other preferred specific examples include N-oleoyl sarcosine and the like.
  • the imide compound as the component (B) mono- and / or bissuccinimide having one or two linear or branched, preferably branched hydrocarbon groups, succinimide, boric acid
  • succinimide examples thereof include succinimide-modified compounds obtained by reacting one or more selected from phosphoric acid, carboxylic acids having 1 to 20 carbon atoms, and sulfur-containing compounds.
  • succinimide examples include compounds represented by the formulas (5) and (6).
  • R 9 and R 10 are each independently an alkyl or alkenyl group having 8 to 30 carbon atoms, preferably 12 to 24 carbon atoms
  • R 11 and R 12 are each Individually, an alkylene group having 1 to 4 carbon atoms, preferably 2 to 3 carbon atoms
  • R 13 represents a hydrogen atom or an alkyl group or alkenyl group having 1 to 30 carbon atoms, preferably 8 to 30 carbon atoms.
  • n is an integer of 1 to 7, preferably an integer of 1 to 3.
  • the content of the component (B) that is a friction modifier is preferably 0.01 to 10% by mass, preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total amount of the engine oil composition. In addition, it is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less.
  • the content of the component (B) is less than 0.01% by mass, the effect of reducing friction due to the addition tends to be insufficient, and when it exceeds 10% by mass, effects such as an anti-wear additive are obtained. It tends to be inhibited or the solubility of the additive tends to deteriorate.
  • the content of nitrogen atom in the component (B) is preferably 0.0005 to 0.4% by mass, more preferably 0.001 to 0.3% by mass, particularly preferably as content relative to the total amount of the engine oil composition. Is 0.005 to 0.25% by mass. If it is less than 0.0005% by mass, sufficient anti-wear properties may not be obtained, and if it exceeds 0.4% by mass, the solubility in the engine oil composition will be reduced, resulting in precipitation and turbidity. There is a fear.
  • the engine oil composition of the present invention can contain a metallic detergent.
  • a metallic detergent As metal-based detergents, alkali salts / basic salts such as alkali metal / alkaline earth metal sulfonate, alkali metal / alkaline earth metal phenate, alkali metal / alkaline earth metal salicylate, and alkali metal / alkaline earth metal salicylate Mention may be made of salts.
  • the alkali metal include sodium and potassium
  • examples of the alkaline earth metal include magnesium, calcium and barium. Magnesium or calcium is preferable, and calcium is particularly preferable.
  • alkali metal / alkaline earth metal sulfonate specifically, an alkali metal / alkyl aromatic sulfonic acid obtained by sulfonating an alkyl aromatic compound usually having a molecular weight of 100 to 1500, preferably 200 to 700 is used. Mention may be made of alkaline earth metal salts. Specific examples of the alkyl aromatic sulfonic acid include so-called petroleum sulfonic acid and synthetic sulfonic acid. In the present invention, it is preferable to use an overbased sulfonate and / or a low basic sulfonate.
  • the base number of the overbased sulfonate is usually 150 mgKOH / g or more, preferably 200 mgKOH / g or more, more preferably 250 mgKOH / g or more, most preferably 300 mgKOH / g or more, and preferably 350 mgKOH / g or less.
  • the base number of the engine oil composition is usually 2 mgKOH / g or more, preferably 3 mgKOH / g or more, preferably 10 mgKOH / g or less, more preferably 7 mgKOH / g or less, more preferably It is preferable to contain so that it may become 5 mgKOH / g or less.
  • the base number 2 mgKOH / g or more By making the base number 2 mgKOH / g or more, the oxidation stability required for the engine oil composition of the present invention can be improved, and by making it 10 mgKOH / g or less, the amount of ash is reduced, The combustion chamber deposit can be reduced.
  • the base number is usually 50 mgKOH / g or less, preferably 30 mgKOH / g or less, more preferably 20 mgKOH / g or less, preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g. g or more.
  • the low basic sulfonate has a base number of the engine oil composition of usually 0.01 mgKOH / g or more, preferably 0.02 mgKOH / g or more, preferably 2 mgKOH / g or less, more preferably 1 mgKOH / g or less. Furthermore, it is preferable to contain so that it may become 0.5 mgKOH / g or less.
  • the above base number is determined according to JIS K2501 “Petroleum products and lubricants—neutralization number test method”. Means the base number measured by the perchloric acid method according to the above.
  • the alkali metal / alkaline earth metal phenate includes an alkylphenol having at least one linear or branched alkyl group having 4 to 30 carbon atoms, preferably 6 to 18 carbon atoms, the alkylphenol and sulfur. Or an alkali metal / alkaline earth metal salt of a Mannich reaction product of an alkylphenol obtained by reacting the alkylphenol with formaldehyde.
  • the alkali metal / alkaline earth metal phenate has a base number of usually 150 mgKOH / g or more, preferably 200 mgKOH / g or more, more preferably 250 mgKOH / g or more, and preferably 350 mgKOH / g or less.
  • the alkali metal / alkaline earth metal phenate has a base number of the engine oil composition of usually 0.3 mgKOH / g or more, preferably 0.7 mgKOH / g or more, more preferably 1 mgKOH / g or more, and preferably 5 mgKOH. / G or less, more preferably 3 mgKOH / g or less, still more preferably 2 mgKOH / g or less.
  • the base number 0.3 mgKOH / g or more the oxidation stability of the engine oil composition of the present invention is improved, and the effect does not increase even if it exceeds 5 mgKOH / g, so that it exceeds 5 mgKOH / g. There is no advantage to contain.
  • alkali metal / alkaline earth metal salicylate specifically, an alkali metal / alkali of alkyl salicylic acid having at least one linear or branched alkyl group having 4 to 30 carbon atoms, preferably 6 to 18 carbon atoms. Mention may be made of earth metal salts.
  • the base number of the alkali metal / alkaline earth metal salicylate is usually 150 mgKOH / g or more, preferably 200 mgKOH / g or more, more preferably 250 mgKOH / g or more, particularly preferably 300 mgKOH / g or more, and 350 mgKOH / g or less. Is preferred.
  • the alkali metal / alkaline earth metal salicylate has a base number of the engine oil composition of usually 2 mgKOH / g or more, preferably 3 mgKOH / g or more, preferably 10 mgKOH / g or less, more preferably 7 mgKOH / g or less, More preferably, the oxidation stability can be expected to be improved by setting the base number to be 2 mgKOH / g or more so as to be 5 mgKOH / g or less, and the ash content is suppressed by being 10 mgKOH / g or less. Reduction of combustion chamber deposit can be expected.
  • the alkali metal / alkaline earth metal sulfonate, alkali metal / alkaline earth metal phenate, and alkali metal / alkaline earth metal salicylate are not only neutral salts (normal salts) but also low basic salts, basic salts and excess salts. It may be a basic salt (super basic salt) or a mixture thereof. In the engine oil composition of the present invention, it is preferable to use a combination of an overbased sulfonate, a low basic sulfonate, an overbased phenate, and an overbased salicylate having a base number in the above range.
  • a combination of the three types of metal detergents is such that the base number of the engine oil composition is usually 2 mgKOH / g or more, preferably 3 mgKOH / g or more, preferably 10 mgKOH / g or less, more preferably Is contained at 7 mgKOH / g or less, more preferably 5 mgKOH / g or less. This makes it possible to achieve a balance between cleanliness required for engine oil and fuel efficiency.
  • the content is preferably 500 ppm by mass or more, more preferably 800 ppm by mass or more in terms of metal elements, based on the total amount of the engine oil composition. More preferably, it is 1000 mass ppm or more. Moreover, Preferably it is 3500 mass ppm or less, More preferably, it is 3000 mass ppm or less, More preferably, it is 2600 mass ppm or less.
  • 500 ppm by mass or more sufficient base number maintenance and high temperature cleanliness can be expected.
  • 3500 ppm by mass or less the amount of sulfated ash produced by use is suppressed, and an exhaust gas purification catalyst. It can be expected to prevent clogging of the filter.
  • the engine oil composition of the present invention can contain an ashless dispersant.
  • the ashless dispersant include nitrogen-containing compounds having at least one linear or branched alkyl group or alkenyl group having 40 to 400 carbon atoms or derivatives thereof.
  • Specific examples include succinimide, alkenyl succinimide, and modified products thereof. One or two or more arbitrarily selected from these can be blended.
  • the carbon number of the alkyl group or alkenyl group of the ashless dispersant is preferably 40 to 400, more preferably 60 to 350. Setting the number of carbon atoms of the alkyl group or alkenyl group to 40 or more suppresses a decrease in solubility in the lubricating base oil, while setting it to 400 or less suppresses deterioration in low-temperature fluidity of the engine oil composition. Is possible.
  • the alkyl group or alkenyl group may be linear or branched, but preferred examples include branched olefins derived from olefin oligomers such as propylene, 1-butene and isobutylene, and ethylene and propylene co-oligomers. An alkyl group and a branched alkenyl group.
  • succinimide examples include a so-called mono-type succinimide in which succinic anhydride is added to one end of the polyamine, and a so-called bis-type succinimide in which succinic anhydride is added to both ends of the polyamine.
  • monotype and bis type succinimide may be contained, or both may be contained.
  • Benzylamine can also be used as another ashless dispersant.
  • preferable benzylamine include compounds represented by the formula (7).
  • R 14 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably an alkyl group or alkenyl group having 60 to 350 carbon atoms
  • Ph represents a phenylene group.
  • p represents an integer of 1 to 5, preferably 2 to 4.
  • Polyamine can also be used as another ashless dispersant.
  • Specific examples of the polyamine include a compound represented by the formula (8).
  • R 15 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably an alkyl group or alkenyl group having 60 to 350 carbon atoms.
  • q is an integer of 1 to 5, preferably 2 to 4.
  • derivatives of the above nitrogen-containing compounds that can be used as ashless dispersants include monocarboxylic acids having 1 to 30 carbon atoms such as fatty acids, oxalic acid, phthalic acid, trimellitic acid, pyromellitic acid, etc.
  • an oxygen-containing compound such as polycarboxylic acid having 2 to 30 carbon atoms or hydroxy (poly) alkylene carbonate
  • a modified compound by an organic acid or the like or a sulfur-modified compound obtained by allowing a sulfur compound to act on the aforementioned nitrogen-containing compound.
  • a boronated ashless dispersant modified with a boron compound is also included.
  • the boronated ashless dispersant is a borated version of any ashless dispersant used in lubricating oils. Boronation is generally performed by allowing boric acid or the like to act on the nitrogen-containing compound described above to neutralize part or all of the remaining amino group and / or imino group.
  • a boronated succinimide for example, JP-B-42-8013, JP-B-42-8014, JP-A-51-52381, JP-A-51-130408, etc. Is disclosed.
  • the boron compound can be mixed and heat-treated under appropriate conditions.
  • the boron content in the boronated succinimide thus obtained can usually be 0.1 to 4.0% by mass.
  • the content of the ashless dispersant is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, based on the total amount of the engine oil composition. It is. Furthermore, it is more preferably 2.5% by mass or more, and most preferably 5% by mass or more.
  • the content of the ashless dispersant 0.1% by mass or more, the effect of improving friction reduction is sufficiently obtained.
  • the low temperature fluidity of the engine oil composition is deteriorated. It can be greatly suppressed.
  • the boron content in the engine oil composition is usually 0.01% by mass or more, preferably 0.02% by mass based on the total amount of the engine oil composition. % Or more, more preferably 0.025 mass% or more, and 0.15 mass% or less, preferably 0.1 mass% or less, particularly preferably 0.05 mass% or less. In the present invention, it is preferable to contain both a boronated succinimide and a non-borated succinimide as an ashless dispersant.
  • the ratio of the boronated succinimide to the non-borated succinimide is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.3 or more. Moreover, 0.6 or less is preferable, 0.5 or less is more preferable, and 0.4 or less is still more preferable. When the ratio is 0.1 or more, the heat resistance and wear resistance effect of the boronated succinimide can be maintained, and when the ratio is 0.6 or less, cleanliness is maintained. Can do.
  • the engine oil composition of the present invention can contain an antioxidant.
  • Antioxidants can be used as long as they are commonly used in lubricating oils, such as ashless antioxidants such as phenolic antioxidants and amine antioxidants, and organometallic antioxidants. It is. By adding the antioxidant, the antioxidant property of the engine oil composition can be further improved, and not only the corrosion or corrosion wear prevention performance can be improved, but also the base number maintenance property can be further improved.
  • phenolic antioxidants examples include 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2,6-di-tert-butylphenol), 4,4 ′.
  • amine antioxidants include aromatic amine antioxidants such as phenyl- ⁇ -naphthylamine, alkylphenyl- ⁇ -naphthylamine, and dialkyldiphenylamine. You may use these in mixture of 2 or more types.
  • the above phenolic antioxidants and amine antioxidants can be used alone, but are preferably combined in combination.
  • the amine antioxidant is preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 40% by mass or more with respect to the total amount of the phenolic antioxidant and the amine antioxidant. Is more preferable. Moreover, 80 mass% or less is preferable, and 60 mass% or less is more preferable.
  • Examples of other friction modifiers include friction modifiers selected from organic molybdenum compounds and ashless friction modifiers.
  • organic molybdenum compounds include sulfur-containing organic molybdenum compounds such as molybdenum dithiophosphate and molybdenum dithiocarbamate, complexes of molybdenum compounds with sulfur-containing organic compounds or other organic compounds, molybdenum sulfide, and sulfurized molybdenum acid.
  • a complex of a sulfur-containing molybdenum compound such as alkenyl succinimide.
  • the content is not particularly limited, but is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, particularly preferably 0.01% by mass or more, in terms of molybdenum element, based on the total amount of the engine oil composition.
  • it is 0.03 mass% or more, Preferably it is 0.2 mass% or less, More preferably, it is 0.1 mass% or less, More preferably, it is 0.08 mass% or less.
  • any compound usually used as a friction modifier for lubricating oils can be used.
  • an amine compound, a fatty acid ester, a fatty acid amide, a fatty acid having at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, in particular, a linear alkyl group or linear alkenyl group having 6 to 30 carbon atoms in the molecule
  • Examples include ashless friction modifiers such as aliphatic alcohols and aliphatic ethers.
  • 1 or more types of compounds chosen from the group which consists of a nitrogen-containing compound and its acid modification derivative, and various ashless friction modifiers illustrated by the international publication 2005/037967 pamphlet are mentioned.
  • the content thereof is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.3% by mass, based on the total amount of the engine oil composition. Further, it is preferably 3% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less.
  • any antiwear agent / extreme pressure agent used for lubricating oil can be used.
  • sulfur-based, phosphorus-based, and sulfur-phosphorus extreme pressure agents can be used.
  • zinc alkyldithiophosphate is effective. Alkyl groups having 3 to 12 carbon atoms are usually used.
  • the ratio of primary to secondary is preferably 0.3 or more, more preferably 0.5 or more, and most preferably 0.55 or more.
  • 0.8 or less is preferable and 0.7 or less is more preferable.
  • the oxidation stability may be insufficient, and if it exceeds 0.8, the extreme pressure property may be insufficient.
  • the combined use of primary and secondary alkyl groups may be within the same zinc alkyldithiophosphate, or may be a mixture of different zinc alkyldithiophosphates.
  • the content thereof is preferably 0.02% by mass or more, more preferably 0.05% by mass, and more preferably 0.08% by mass or more in terms of phosphorus element, based on the total amount of the engine oil composition. Is more preferable. Moreover, 0.2 mass% or less is preferable, 0.15 mass% or less is more preferable, and 0.1 mass% or less is further more preferable. Sufficient extreme pressure property is obtained by setting it as 0.02 mass% or more, and the bad influence to an exhaust-gas aftertreatment apparatus can be suppressed by setting it as 0.2 mass% or less.
  • corrosion inhibitor examples include benzotriazole, tolyltriazole, thiadiazole, imidazole, and epoxy compounds.
  • rust preventive examples include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.
  • demulsifier examples include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, or polyoxyethylene alkyl naphthyl ether.
  • metal deactivator examples include imidazoline, pyrimidine derivatives, alkylthiadiazole, mercaptobenzothiazole, benzotriazole or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bis.
  • metal deactivator examples include dialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, or ⁇ - (o-carboxybenzylthio) propiononitrile.
  • the content is usually preferably 0.01 to 10% by mass based on the total amount of the engine oil composition.
  • the pour point depressant for example, a polymethacrylate polymer compatible with the lubricating base oil to be used can be used.
  • the weight average molecular weight is preferably 150,000 or less, more preferably 100,000 or less, and still more preferably 80,000 or less.
  • 20,000 or more are preferable and 40,000 or more are more preferable.
  • the target product viscosity can be ensured and the function as a pour point depressant can be maintained by setting it as 20,000 or more.
  • the content thereof is usually selected from the range of 0.005 to 5% by mass based on the total amount of the engine oil composition of the present invention.
  • antifoaming agents examples include silicone oils having a kinematic viscosity at 25 ° C. of 1,000 to 100,000 mm 2 / s, alkenyl succinic acid derivatives, esters of polyhydroxy aliphatic alcohols and long chain fatty acids, methyl salicylates, o-Hydroxybenzyl alcohol.
  • the content is usually preferably 0.0001 to 0.01% by mass based on the total amount of the engine oil composition.
  • the viscosity index of the engine oil composition of the present invention is preferably 140 or more, more preferably 150 or more, and still more preferably 160 or more. By setting the viscosity index to 140 or more, sufficient fuel saving performance can be expected even at low temperatures. There is no particular limitation on the upper limit of the viscosity index.
  • Kinematic viscosity at 100 ° C. of the engine oil composition of the present invention is preferably at least 5.6 mm 2 / s, more preferably at least 9.3 mm 2 / s. Moreover, 12.5 mm ⁇ 2 > / s or less is preferable and 11.5 mm ⁇ 2 > / s or less is more preferable.
  • the high temperature and high shear viscosity measured at 100 ° C. with a shear rate of 1 ⁇ 10 7 s ⁇ 1 against the high temperature and high shear viscosity (a) of the engine oil composition measured at 100 ° C. with a shear rate of 1 ⁇ 10 6 s ⁇ 1 (The ratio (b / a) of b) is preferably 0.85 or less, particularly preferably less than 0.80, so that a reduction in fuel economy can be suppressed.
  • the lower limit of (b / a) is not particularly limited, but is usually about 0.77.
  • the former is 6.0 mPa ⁇ s or more, particularly 6.4 mPa ⁇ s or more, and the latter is 5.5 mPa ⁇ s or less, particularly 5.2 mPa ⁇ s or less.
  • the engine oil composition of the present invention can be applied to various engine engines, and is not particularly limited, but is preferably used for diesel engine engines.
  • High temperature and high shear viscosity and abrasion resistance were measured and evaluated as shown below as indicators of fuel economy. 1.
  • High temperature high shear viscosity (HTHS viscosity) of engine oil composition High temperature and high shear viscosity at shear rates of 1 ⁇ 10 6 s ⁇ 1 and 1 ⁇ 10 7 s ⁇ 1 , which affect fuel economy, were measured as follows.
  • the high temperature and high shear viscosity at a shear rate of 1 ⁇ 10 6 s ⁇ 1 was measured according to ASTM D4683-10, and the high temperature and high shear viscosity at a shear rate of 1 ⁇ 10 7 s ⁇ 1 was manufactured by PCS Instruments. Of USV viscometer. The measurement temperature is 100 ° C. for all.
  • good fuel economy can be exhibited by keeping the viscosity at a shear rate of 1 ⁇ 10 6 s ⁇ 1 constant and reducing the viscosity at 1 ⁇ 10 7 s ⁇ 1 .
  • the former is 6.0 mPa ⁇ s or more and the latter is 5.5 mPa ⁇ s or less.
  • Abrasion resistance of engine oil composition The wear resistance of the engine oil composition was evaluated using a shell four-ball test apparatus. The test method conformed to ASTM D2266. However, the test conditions are a rotation speed of 1800 rpm, a load of 492 N, an oil temperature of 120 ° C., and a test time of 1 minute.
  • Example 1 Using the components shown below, an engine oil composition according to Example 1 having a formulation composition (parts by mass) shown in Table 1 was prepared. About the engine oil composition of Example 1, the above 1. 1. high temperature high shear viscosity, and Abrasion resistance was evaluated. The evaluation results are shown in Table 1.
  • Lubricating base oil Base oil A; hydrocracking, catalytic dewaxing base oil. Details are shown in the margin of Table 1.
  • Examples 2-5 The base oil and each additive were mix
  • components other than the above-described components are as follows.
  • Lubricating base oil Base oil B; hydrocracking, catalytic dewaxing base oil. Details are shown in the margin of Table 1.
  • Comparative Examples 1-9 The base oil and each additive were mix
  • the engine oil of each example using the components of star polymer A-1, polymer A-2, and (B) was significantly superior to the engine oils of comparative examples 1-9. Achieves both fuel saving and wear resistance. That is, the engine oil composition of each example has a low high-temperature high-shear viscosity characteristic equivalent to that of Comparative Examples 1 to 8 and exhibits performance excellent in fuel saving performance, while being significantly better than Comparative Examples 1 to 8. It also has excellent wear resistance.
  • the wear resistance of each of the examples is equivalent to that of Comparative Example 9 having high high temperature and high shear viscosity characteristics in which fuel saving performance cannot be expected. Therefore, both fuel saving performance and wear resistance are highly compatible. You can see that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Provided is an engine oil composition which can achieve both excellent fuel-saving performance and excellent wear resistance. The composition comprises a lubricant oil base oil having a specified property, both a star polymer and a polymer having a specific nitrogen-containing group as essential viscosity index improvers, and an amide compound and/or an imide compound as an essential friction modifier, and can be used particularly suitably as a diesel engine oil.

Description

エンジン油組成物Engine oil composition
 本発明は、省燃費性能に優れ、特に、省燃費性能と耐摩耗性の両者に優れたエンジン油組成物に関する。 The present invention relates to an engine oil composition that is excellent in fuel saving performance, and particularly excellent in both fuel saving performance and wear resistance.
 近年、地球温暖化などの環境問題への対応として、エンジン油に対しても省燃費性能が求められてきている。エンジン油による省燃費性向上技術としては、低粘度化することにより流体潤滑領域での摩擦を低減する技術と、摩擦低減剤を配合することにより境界潤滑領域での摩擦を低減する技術とが挙げられる。
 しかしながら、過度な低粘度化は、油膜強度の不足を招き、エンジン耐久性への悪影響や境界潤滑領域での摩擦増大が問題となる。これは、ガソリン及びディーゼルの両エンジンに共通する問題であるが、特にディーゼルエンジンにおいて、エンジン油の低粘度化の悪影響が大きい。
In recent years, as a countermeasure to environmental problems such as global warming, fuel efficiency has been demanded for engine oil. Fuel economy improvement technology using engine oil includes technology that reduces friction in the fluid lubrication region by lowering the viscosity and technology that reduces friction in the boundary lubrication region by blending a friction reducer. It is done.
However, excessively low viscosity leads to shortage of oil film strength, which causes problems such as adverse effects on engine durability and increased friction in the boundary lubrication region. This is a problem common to both gasoline and diesel engines, but particularly in diesel engines, the adverse effect of lowering the viscosity of engine oil is significant.
 特許文献1~3は、高温・高剪断下において一定の粘度を有すると共に省燃費性能の良好なエンジン油として、粘度指数が120以上の潤滑油基油に特定の粘度指数向上剤を含有させたエンジン油を開示している。 In Patent Documents 1 to 3, a specific viscosity index improver is contained in a lubricating base oil having a viscosity index of 120 or more as an engine oil having a constant viscosity under high temperature and high shear and good fuel economy performance. Engine oil is disclosed.
特開2010-095662号公報JP 2010-095662 A 特開2010-095663号公報JP 2010-095663 A 特開2010-095664号公報JP 2010-095664 A
 特許文献1~3に係るエンジン油は、一定の燃費低減効果を有するものの、いまだ満足のいく性能ではない。
 本発明の課題は、省燃費性能に優れ、かつ耐摩耗性に優れたエンジン油組成物を提供することにある。
Although the engine oils according to Patent Documents 1 to 3 have a certain fuel consumption reduction effect, they are still not satisfactory.
The subject of this invention is providing the engine oil composition which was excellent in the fuel-saving performance, and was excellent in abrasion resistance.
 本発明者らは前記課題について鋭意研究した結果、特定の性状を有する潤滑油基油に、粘度指数向上剤としてスターポリマー及び窒素含有基を有するポリマー、並びに摩擦調整剤としてアミド化合物、イミド化合物、又は両化合物の混合物を含有させることにより、優れた耐摩耗性と省燃費効果を同時に発現できることを見出し、本発明を完成するに至った。 As a result of diligent research on the above problems, the inventors of the present invention have a lubricant base oil having a specific property, a polymer having a star polymer and a nitrogen-containing group as a viscosity index improver, and an amide compound, an imide compound as a friction modifier, Alternatively, the inventors have found that by containing a mixture of both compounds, excellent wear resistance and fuel saving effect can be expressed at the same time, and the present invention has been completed.
 本発明によれば、飽和分が70質量%以上、及び粘度指数が90以上、160以下の潤滑油基油と、(A)スターポリマーA-1及び重量平均分子量が200,000以上、400,000以下の窒素含有基を有するポリマーA-2と、(B)アミド化合物及びイミド化合物の少なくとも1種と、を含むエンジン油組成物が提供される。
 前記スターポリマーは、ポリアルケニル化合物であるコア、及び該コアに結合する4~15のアームを有するポリマーであることが好ましい。
 また本発明によれば、飽和分が70質量%以上、及び粘度指数が90以上、160以下の潤滑油基油と、(A)スターポリマーA-1及び重量平均分子量が200,000以上、400,000以下の窒素含有基を有するポリマーA-2と、(B)アミド化合物及びイミド化合物の少なくとも1種と、を含む組成物の、エンジン油製造における使用が提供される。
 更に本発明によれば、飽和分が70質量%以上、及び粘度指数が90以上、160以下の潤滑油基油と、(A)スターポリマーA-1及び重量平均分子量が200,000以上、400,000以下の窒素含有基を有するポリマーA-2と、(B)アミド化合物及びイミド化合物の少なくとも1種と、を含む組成物を、エンジン油としてエンジン機関内に循環させることを特徴とする、ディーゼルエンジン等のエンジンの燃費抑制方法が提供される。
According to the present invention, a lubricating base oil having a saturation content of 70% by mass or more and a viscosity index of 90 or more and 160 or less, (A) a star polymer A-1 and a weight average molecular weight of 200,000 or more, 400, There is provided an engine oil composition comprising polymer A-2 having a nitrogen-containing group of 000 or less and (B) at least one of an amide compound and an imide compound.
The star polymer is preferably a polymer having a core which is a polyalkenyl compound and 4 to 15 arms bonded to the core.
Further, according to the present invention, a lubricating base oil having a saturated content of 70% by mass or more and a viscosity index of 90 or more and 160 or less, (A) a star polymer A-1 and a weight average molecular weight of 200,000 or more, 400 There is provided the use of a composition comprising a polymer A-2 having a nitrogen-containing group of 1,000 or less and (B) at least one of an amide compound and an imide compound in the production of engine oil.
Further, according to the present invention, a lubricating base oil having a saturation content of 70% by mass or more and a viscosity index of 90 or more and 160 or less, (A) a star polymer A-1 and a weight average molecular weight of 200,000 or more, 400 A composition comprising a polymer A-2 having a nitrogen-containing group of 1,000 or less and (B) at least one of an amide compound and an imide compound is circulated in an engine engine as an engine oil. A method for suppressing fuel consumption of an engine such as a diesel engine is provided.
 本発明のエンジン油組成物は、特定性状の潤滑油基油中にスターポリマーを含む特定のポリマーと、特定の摩耗調整剤とを組み合わせて含有するので、優れた省燃費性能と極めて良好な耐摩耗性とを同時に発揮することができる。 The engine oil composition of the present invention contains a specific polymer containing a star polymer in a lubricating base oil having a specific property and a specific wear modifier, so that it has excellent fuel efficiency and extremely good resistance to resistance. Abrasion can be exhibited at the same time.
 以下、本発明について詳述する。
 本発明のエンジン油組成物の基油は、飽和分が70質量%以上、粘度指数が90以上、160以下の潤滑油基油(以後、単に基油と称する場合もある)である。
Hereinafter, the present invention will be described in detail.
The base oil of the engine oil composition of the present invention is a lubricating base oil having a saturated content of 70% by mass or more and a viscosity index of 90 or more and 160 or less (hereinafter sometimes simply referred to as a base oil).
 当該基油の飽和分は80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。特に、ほぼ全てが飽和分、具体的には飽和分が99質量%以上であることが最も好ましい。その上限値は100質量%である。飽和分が70質量%未満では、高温高剪断の潤滑条件で使用されるには、酸化安定性が十分でなく、また粘度-温度特性が悪く本発明の性能を実現できない。
 上記基油の飽和分の含有量は、ASTM D2007-11に準拠して測定される質量%の値を意味する。
The saturated content of the base oil is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. In particular, it is most preferable that almost all is saturated, specifically 99% by mass or more. The upper limit is 100% by mass. When the saturated content is less than 70% by mass, the oxidation stability is not sufficient for use under high temperature and high shear lubrication conditions, and the performance of the present invention cannot be realized due to poor viscosity-temperature characteristics.
The content of the saturated component of the base oil means a mass% value measured in accordance with ASTM D2007-11.
 上記基油の粘度指数は110以上が好ましく、より好ましくは120以上、さらに好ましくは125以上であり、その上限は160以下である。粘度指数が90未満であると、粘度-温度特性、熱酸化安定性、揮発防止性が悪化するだけでなく、摩擦係数が上昇する傾向にあり、また、摩耗防止性が低下する傾向にある。粘度指数が160を超えると、低温粘度特性が低下する傾向にある。
 上記粘度指数は、JIS K 2283-1993に準拠して測定される粘度指数を意味する。
The viscosity index of the base oil is preferably 110 or more, more preferably 120 or more, still more preferably 125 or more, and the upper limit is 160 or less. When the viscosity index is less than 90, not only the viscosity-temperature characteristics, thermal oxidation stability and volatilization prevention properties are deteriorated, but also the friction coefficient tends to increase, and the wear prevention properties tend to decrease. When the viscosity index exceeds 160, the low-temperature viscosity characteristics tend to decrease.
The viscosity index means a viscosity index measured according to JIS K 2283-1993.
 上記基油の%Cpは60以上が好ましく、70以上がより好ましい。また、100以下が好ましく、95以下がより好ましい。上記%Cpは、基油中のパラフィンを構成する炭素の全炭素数に対する百分率(%)を意味し、ASTM D3238に準拠して測定される。
 上記基油の%CNは40以下が好ましく、30以下がより好ましい。また、1以上が好ましく、3以上がより好ましい。上記%CNは、基油中のナフテン環を構成する炭素の全炭素数に対する百分率(%)を意味し、ASTM D3238に準拠して測定される。
 上記基油の%CAは10以下が好ましく、2以下がより好ましい。また、0以上が好ましい。上記%CAは、基油中の芳香環を構成する炭素の全炭素数に対する百分率(%)を意味し、ASTM D3238に準拠して測定される。
The base oil% Cp is preferably 60 or more, and more preferably 70 or more. Moreover, 100 or less is preferable and 95 or less is more preferable. The% Cp means a percentage (%) with respect to the total number of carbon atoms constituting the paraffin in the base oil, and is measured in accordance with ASTM D3238.
The% C N of the base oil is preferably 40 or less, more preferably 30 or less. Moreover, 1 or more is preferable and 3 or more is more preferable. The% C N denotes the percentage (%) to the total number of carbon atoms of the carbon atoms constituting the naphthene ring in the base oil, measured according to ASTM D3238.
% C A is preferably 10 or less of the base oil with 2 or less being more preferred. Moreover, 0 or more are preferable. The% C A denotes the percentage (%) to the total number of carbon atoms of the carbon atoms constituting the aromatic ring in the base oil, measured according to ASTM D3238.
 本発明に用いる基油としては、鉱油系基油又は合成油系基油が挙げられる。これらは単独で使用しても、2種以上を混合して使用しても良い。 The base oil used in the present invention includes mineral oil base oil or synthetic oil base oil. These may be used alone or in combination of two or more.
 鉱油系基油としては、例えば、原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、水素化異性化、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理のうちの1種を単独で又は2種以上を組み合わせて精製して得られるパラフィン系鉱油、あるいはノルマルパラフィン系鉱油、イソパラフィン系鉱油が挙げられる。
 特に、常圧蒸留ボトム油や減圧蒸留装置から回収された潤滑油留分を水素化分解し、その生成物またはその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または当該脱ろう処理後に蒸留することによって得られる水素化分解鉱油が特に好ましい。なかでも、接触脱ろう処理をしたものがより好ましい。
Mineral oil base oils include, for example, a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and vacuum distillation, and solvent removal, solvent extraction, hydrocracking, hydroisomerization, solvent dewaxing, catalytic dewaxing. Examples include paraffinic mineral oil obtained by refining one kind of refining processes such as wax, hydrorefining, sulfuric acid washing, and clay treatment alone or in combination of two or more, or normal paraffinic mineral oil and isoparaffinic mineral oil. It is done.
In particular, hydrocracking lube oil fractions recovered from atmospheric distillation bottom oil and vacuum distillation equipment, and solvent dewaxing and catalytic desorption of the product or lube oil fractions recovered from the product by distillation or the like. Hydrocracked mineral oil obtained by performing a dewaxing treatment such as wax or by distillation after the dewaxing treatment is particularly preferred. Among these, those subjected to contact dewaxing treatment are more preferable.
 前記鉱油系基油の流動点は-12.5℃以下が好ましく、-15℃以下がより好ましい。また-35℃より高いことが好ましく、-30℃以上がより好ましく、-25℃以上がさらに好ましく、-20℃以上が特に好ましい。これは流動点が-12.5℃よりも高いと低温時の特性が悪化し、-35℃以下では十分な粘度指数が得られないためである。上記流動点とは、JIS K 2269-1987に準拠して測定される流動点を意味する。 The pour point of the mineral base oil is preferably −12.5 ° C. or less, more preferably −15 ° C. or less. Further, it is preferably higher than −35 ° C., more preferably −30 ° C. or higher, further preferably −25 ° C. or higher, and particularly preferably −20 ° C. or higher. This is because if the pour point is higher than −12.5 ° C., the characteristics at low temperatures deteriorate, and if it is −35 ° C. or lower, a sufficient viscosity index cannot be obtained. The pour point means a pour point measured in accordance with JIS K 2269-1987.
 鉱油系基油におけるNOACK値(NOACK蒸発量)は15質量%以下が好ましい。なお、NOACK値とは、ASTM D 5800-95に準拠して測定された蒸発損失量(質量%)を意味する。 The NOACK value (NOACK evaporation) in the mineral oil base oil is preferably 15% by mass or less. The NOACK value means an evaporation loss amount (mass%) measured according to ASTMAD 5800-95.
 鉱油系基油の硫黄分含有量については特に制限はないが、熱・酸化安定性の更なる向上及び低硫黄化の点から、基油中の硫黄分の含有量は100質量ppm以下が好ましく、50質量ppm以下がより好ましく、10質量ppm以下が更に好ましく、5質量ppm以下が特に好ましい。この硫黄分はJIS 5S-38-2003に準拠して測定される値である。 The sulfur content of the mineral oil base oil is not particularly limited, but the sulfur content in the base oil is preferably 100 mass ppm or less from the viewpoint of further improving thermal and oxidation stability and reducing sulfur content. 50 mass ppm or less is more preferable, 10 mass ppm or less is still more preferable, and 5 mass ppm or less is especially preferable. This sulfur content is a value measured according to JIS 5S-38-2003.
 鉱油系基油の芳香族分の含有量は特に制限はないが、熱・酸化安定性の更なる向上及び低硫黄化の点から、基油中の芳香族分の含有量は30質量%以下が好ましく、10質量%以下がより好ましく、2質量%以下が更に好ましく、1質量%以下が特に好ましい。30質量%を超すと、高温高剪断の潤滑条件での使用時に、酸化安定性が十分でなく、また粘度-温度特性が悪化し易く本発明の効果を発揮できないおそれがある。 The content of aromatics in mineral base oils is not particularly limited, but the content of aromatics in base oils is 30% by mass or less from the viewpoint of further improving thermal and oxidation stability and reducing sulfur content. Is preferably 10% by mass or less, more preferably 2% by mass or less, and particularly preferably 1% by mass or less. If it exceeds 30% by mass, the oxidation stability is insufficient and the viscosity-temperature characteristics are liable to deteriorate when used under high temperature and high shear lubrication conditions, and the effects of the present invention may not be exhibited.
 合成油系基油としては、例えば、ポリα-オレフィン又はその水素化物、イソブテンオリゴマー又はその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート等のジエステル、トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール-2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等のポリオールエステル、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテルが挙げられ、中でも、ポリα-オレフィンが好ましい。ポリα-オレフィンとしては、典型的には、炭素数2~32、好ましくは6~16の1-オクテンオリゴマー、デセンオリゴマー、エチレン-プロピレンコオリゴマー等のα-オレフィンのオリゴマー又はコオリゴマー及びそれらの水素化物が挙げられる。 Synthetic oil base oils include, for example, poly α-olefin or hydride thereof, isobutene oligomer or hydride thereof, isoparaffin, alkylbenzene, alkylnaphthalene, ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl Diesters such as adipate, di-2-ethylhexyl sebacate, polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol pelargonate, polyoxyalkylene glycol, dialkyl Examples thereof include diphenyl ether and polyphenyl ether, and among them, poly α-olefin is preferable. As the poly α-olefin, typically, an α-olefin oligomer or co-oligomer such as a 1-octene oligomer having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms, a decene oligomer, an ethylene-propylene co-oligomer, and the like. A hydride is mentioned.
 鉱油系、合成油系いずれも、基油の100℃における動粘度は1mm2/s以上が好ましく、2mm2/s以上がより好ましく、3mm2/s以上がさらに好ましく、3.5mm2/s以上が特に好ましい。一方、10mm2/s以下が好ましく、5mm2/s以下がさらに好ましく、4.5mm2/s以下が特に好ましい。100℃動粘度が10mm2/sを超える場合には、低温粘度特性が悪化し、また十分な省燃費性が得られないおそれがあり、1mm2/s未満の場合は潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、またエンジン油組成物の蒸発損失が大きくなるおそれがある。
 上記100℃における動粘度は、ASTM D-445に規定される100℃での動粘度を示す。
In both mineral and synthetic oils, the base oil has a kinematic viscosity at 100 ° C. of preferably 1 mm 2 / s or more, more preferably 2 mm 2 / s or more, still more preferably 3 mm 2 / s or more, and 3.5 mm 2 / s. The above is particularly preferable. On the other hand, it is preferably 10 mm 2 / s or less, more preferably 5 mm 2 / s or less, particularly preferably 4.5 mm 2 / s. If the 100 ° C. kinematic viscosity exceeds 10 mm 2 / s, the low-temperature viscosity characteristics may deteriorate, and sufficient fuel economy may not be obtained. If it is less than 1 mm 2 / s, an oil film is formed at the lubrication point. Is insufficient, the lubricity is inferior, and the evaporation loss of the engine oil composition may increase.
The kinematic viscosity at 100 ° C. indicates the kinematic viscosity at 100 ° C. as defined in ASTM D-445.
 鉱油系、合成油系いずれも、基油の40℃における動粘度は8mm2/s以上が好ましく、10mm2/s以上がより好ましく、12mm2/s以上がさらに好ましい。一方、45mm2/s以下が好ましく、40mm2/s以下がより好ましく、36mm2/s以下がさらに好ましい。40℃における動粘度が8mm2/s未満だと潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、またエンジン油組成物の蒸発損失が大きくなる恐れがあり、45mm2/sを超えると低温粘度特性が悪化し、十分な省燃費性が得られない恐れがある。
 上記40℃における動粘度は、ASTM D-445に規定される40℃での動粘度を示す。
Mineral, any synthetic oil-based, kinematic viscosity is preferably at least 8 mm 2 / s at 40 ° C. of the base oil, more preferably at least 10 mm 2 / s, still more preferably at least 12 mm 2 / s. On the other hand, it is preferably 45 mm 2 / s or less, more preferably 40 mm 2 / s or less, and still more preferably 36 mm 2 / s or less. Kinematic viscosity at 40 ° C. is poor in lubricity due its insufficient oil film formation at lubricating sites and less than 8 mm 2 / s, also there is a possibility that the evaporation loss of the engine oil composition is increased, the 45 mm 2 / s If it exceeds, the low-temperature viscosity characteristics deteriorate, and there is a risk that sufficient fuel saving performance cannot be obtained.
The kinematic viscosity at 40 ° C. indicates the kinematic viscosity at 40 ° C. as defined in ASTM D-445.
 本発明のエンジン油組成物は、粘度指数向上剤のうちの必須成分(A)として、スターポリマーA-1と重量平均分子量が200,000以上、400,000以下の窒素含有基を有するポリマーA-2とを含有する。 The engine oil composition of the present invention comprises a star polymer A-1 and a polymer A having a nitrogen-containing group having a weight average molecular weight of 200,000 or more and 400,000 or less as an essential component (A) of the viscosity index improver. -2.
 スターポリマーA-1は、コアと称される分子中心部から星形を形成するように複数のアームが外方に伸びている形状のポリマーを意味する。
 該スターポリマーは、ポリアルケニル化合物であるコア、及び該コアに結合する4以上のアームを有するポリマーであることが好ましい。コアに結合するアームの数は、より好ましくは5以上、更に好ましくは6以上である。またアーム数は20以下が好ましく、15以下がより好ましい。
 アーム数が4未満では剪断安定性が十分でなく、使用時間の経過に伴い粘度が低下し、本来必要な粘度を確保できないおそれがある。またアーム数が20を超えると、高剪断下における粘度低下が十分ではなく、本発明の目的である省燃費性を確保できなくなるおそれがある。
The star polymer A-1 means a polymer having a shape in which a plurality of arms extend outward so as to form a star shape from a molecular center called a core.
The star polymer is preferably a polymer having a core which is a polyalkenyl compound and four or more arms bonded to the core. The number of arms coupled to the core is more preferably 5 or more, and even more preferably 6 or more. The number of arms is preferably 20 or less, and more preferably 15 or less.
If the number of arms is less than 4, the shear stability is not sufficient, the viscosity decreases with the passage of time of use, and the inherently required viscosity may not be ensured. On the other hand, if the number of arms exceeds 20, the viscosity is not sufficiently lowered under high shear, and there is a possibility that the fuel saving performance that is the object of the present invention cannot be ensured.
 前記好ましいコアであるポリアルケニル化合物を構成するコア形成モノマーとしては、ジビニルベンゼンやポリビニル脂肪族化合物など、2重結合を2つ以上持つモノマーが好ましく、特に、ジビニルベンゼンが好ましい。前記アームは、アーム形成モノマーの重合体である。アーム形成モノマーとしては、例えば、ブタジエン、イソプレン等、2重結合を2つ持つ脂肪族ジエンが挙げられる。アームは、コア形成モノマーの重合体であるポリアルケニル化合物中の2重結合部を起点として、共重合反応により重合鎖が伸びており、当該共重合反応後に残存する2重結合は通常水添(水素添加)される。 The core-forming monomer constituting the polyalkenyl compound, which is the preferred core, is preferably a monomer having two or more double bonds such as divinylbenzene or polyvinyl aliphatic compound, and particularly preferably divinylbenzene. The arm is a polymer of an arm forming monomer. Examples of the arm forming monomer include aliphatic dienes having two double bonds such as butadiene and isoprene. The arm has a polymer chain extending from the double bond portion in the polyalkenyl compound that is a polymer of the core-forming monomer, and the double bond remaining after the copolymerization reaction is usually hydrogenated ( Hydrogenated).
 アームの構造としては、水添された重合鎖の末端に、スチレンやアルケン等の芳香族モノマー又は脂肪族モノマーがブロック重合により結合しているものが好ましい。より好ましくは、上記末端にポリスチレンが存在する構造が好ましい。さらには、スターポリマー中の全てのアームの末端にポリスチレンが存在する構造であることが好ましい。
 アームの2重結合部分はほぼ全てが水添されていることが好ましい。このような水添されたアームを、末端のポリスチレン等も含めて水添ポリジエンと称することもある。
The arm structure is preferably one in which an aromatic monomer or aliphatic monomer such as styrene or alkene is bonded to the end of a hydrogenated polymer chain by block polymerization. More preferably, a structure in which polystyrene is present at the terminal is preferable. Furthermore, a structure in which polystyrene is present at the ends of all the arms in the star polymer is preferable.
It is preferable that almost all the double bond portions of the arms are hydrogenated. Such a hydrogenated arm is sometimes referred to as a hydrogenated polydiene, including terminal polystyrene.
 上記ポリスチレンを有する場合、その含有量は、スターポリマー全量基準で2mol%以上が好ましく、3mol%以上がより好ましい。また、10mol%以下が好ましく、さらには7mol%以下がより好ましい。ポリスチレンの含有量が2mol%未満では十分な高温剪断粘度の低下が得られない恐れがあり、10mol%より多い場合は、基油に対して十分な溶解性を得ることが困難になる恐れがある。 When the above polystyrene is contained, the content thereof is preferably 2 mol% or more, more preferably 3 mol% or more, based on the total amount of the star polymer. Moreover, 10 mol% or less is preferable, Furthermore, 7 mol% or less is more preferable. If the polystyrene content is less than 2 mol%, a sufficient decrease in high-temperature shear viscosity may not be obtained, and if it is more than 10 mol%, it may be difficult to obtain sufficient solubility in the base oil. .
 スターポリマー中のアームの重量平均分子量は、通常5,000~600,000、より好ましくは10,000~500,000、さらに好ましくは10,000~300,000である。剪断安定性が良好で、耐摩耗性に優れるからである。 The weight average molecular weight of the arm in the star polymer is usually 5,000 to 600,000, more preferably 10,000 to 500,000, and still more preferably 10,000 to 300,000. This is because the shear stability is good and the wear resistance is excellent.
 スターポリマーの重量平均分子量は、好ましくは10,000~1,000,000、より好ましくは100,000~800,000、さらに好ましくは300,000~600,000である。剪断安定性が良好だからである。
 重量平均分子量は、スターポリマーA-1及び後述するポリマーA-2ともに、次の条件で測定できる。
 測定装置: Waters社製 Alliance 2695
 カラム: 東ソーGMH6×2(本)
 溶媒: テトラヒドロフラン
 検出器: RI
 標準物質: ポリスチレン
 測定条件: 流速1mL/min、サンプル濃度2.0質量%、打込量 100μL
The weight average molecular weight of the star polymer is preferably 10,000 to 1,000,000, more preferably 100,000 to 800,000, still more preferably 300,000 to 600,000. This is because the shear stability is good.
The weight average molecular weight can be measured under the following conditions for both the star polymer A-1 and the polymer A-2 described later.
Measuring device: Alliance 2695 manufactured by Waters
Column: Tosoh GMH6 × 2 (book)
Solvent: Tetrahydrofuran Detector: RI
Standard substance: Polystyrene Measurement conditions: Flow rate 1 mL / min, sample concentration 2.0 mass%, implantation amount 100 μL
 スターポリマーのPSSI(Permanent Shear Stability Index)は45以下が好ましく、より好ましくは40以下である。PSSIが45を超える場合は剪断安定性が悪化するため、初期の動粘度を高める必要が生じ、省燃費性を悪化させるおそれがある。また、PSSIが1未満の場合には潤滑油基油に溶解させた場合の粘度指数向上効果が小さく、省燃費性や低温粘度特性に劣るだけでなく、コストが上昇するおそれがある。
 上記「PSSI」は、ASTM D 6022-01(Standard Practice for Calculation of Permanent Shear Stability Index)に準拠し、ASTM D 6278-02(Test Method for Shear Stability of Polymer Containing Fluids Using a European Diesel Injector Apparatus)により測定されたデータに基づいて計算された、ポリマーの永久剪断安定性指数を意味する。
The star polymer has a PSSI (Permanent Shear Stability Index) of preferably 45 or less, more preferably 40 or less. When PSSI exceeds 45, the shear stability deteriorates, so that it is necessary to increase the initial kinematic viscosity, which may deteriorate the fuel economy. Further, when PSSI is less than 1, the effect of improving the viscosity index when dissolved in the lubricating base oil is small, and not only the fuel economy and low temperature viscosity characteristics are inferior, but also the cost may increase.
The above “PSSI” conforms to ASTM D 6022-01 (Standard Practice for Calculation of Permanent Shear Stability Index) and is measured by ASTM D 6278-02 (Test Method for Shear Stability of Polymer Containing Fluids Using a European Diesel Injector Apparatus). Means the permanent shear stability index of the polymer, calculated based on the data obtained.
 上記スターポリマーの製造方法は、特に制限されず、例えば、コア形成モノマーであるジビニルベンゼン等をラジカル重合した後、形成された該コア中に存在する2重結合を起点としてジエンを同様にラジカル重合させ、次いで水添及び末端のポリスチレンの形成を行うことにより製造することができる。なお、アーム末端のポリスチレン形成と水添は、どちらを先に行ってもよい。
 あるいは、末端に反応起点を有するアームのポリマーを形成後、コア形成モノマーと反応させ、コアの形成とアームの結合とを同時に行う方法、又は、コアとアームのポリマーをそれぞれ形成後、その反応起点同士を反応させる方法を採用することができる。
 より具体的には、例えば、米国特許第4116917号明細書、同第4141847号明細書、同第4346193号明細書、同第4409120号明細書、あるいは特表2002-504589号公報、特開2013-129835号公報に示される方法を適用することができる。
 また、上記スターポリマーA-1として、各種市販品を用いることもできる。
The method for producing the star polymer is not particularly limited. For example, after radical polymerization of divinylbenzene, which is a core-forming monomer, is performed, radical polymerization is similarly performed on diene starting from a double bond existing in the formed core. Followed by hydrogenation and terminal polystyrene formation. Note that either polystyrene formation or hydrogenation of the arm end may be performed first.
Alternatively, after forming a polymer of an arm having a reaction origin at the terminal, it is reacted with a core-forming monomer, and the formation of the core and the bonding of the arm are performed simultaneously, or after the formation of the core and arm polymers, respectively, the reaction origin A method of reacting each other can be employed.
More specifically, for example, US Pat. No. 4,116,917, US Pat. No. 4,141,847, US Pat. No. 4,346,193, US Pat. No. 4,409,120, or JP 2002-504589A, The method disclosed in Japanese Patent No. 129835 can be applied.
Various commercial products can also be used as the star polymer A-1.
 本発明のエンジン油組成物における、スターポリマーA-1の含有割合は、エンジン油組成物全量基準で、少なくとも4質量%以上が好ましく、さらに好ましくは5質量%以上である。一方、20質量%以下が好ましく、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。含有量が4質量%より少ない場合には、省燃費効果の源泉である、100℃、1×106-1における高い高温高剪断粘度(HTHS粘度)を保ちながら、100℃、1×107-1における高温高剪断粘度を低くすることができず、また含有量が20質量%を超える場合には剪断安定性が悪化するおそれがある。 The content ratio of the star polymer A-1 in the engine oil composition of the present invention is preferably at least 4% by mass, more preferably 5% by mass or more, based on the total amount of the engine oil composition. On the other hand, 20 mass% or less is preferable, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less. When the content is less than 4% by mass, the high temperature high shear viscosity (HTHS viscosity) at 100 ° C. and 1 × 10 6 s −1 , which is a source of fuel saving effect, is maintained at 100 ° C. and 1 × 10 The high-temperature high shear viscosity at 7 s -1 cannot be lowered, and if the content exceeds 20% by mass, the shear stability may be deteriorated.
 前記粘度指数向上剤のうちの必須成分である、特定の重量平均分子を有する窒素含有基を有するポリマーA-2(以下、ポリマーA-2と略すことがある)は、後述する窒素を含む化合物と他の化合物とを共重合させたポリマーである。 The polymer A-2 having a nitrogen-containing group having a specific weight average molecule (hereinafter sometimes abbreviated as polymer A-2), which is an essential component of the viscosity index improver, is a compound containing nitrogen described later And other compounds.
 上記ポリマーA-2の重量平均分子量(MW)は、200,000以上、好ましくは250,000以上である。また、400,000以下、好ましくは380,000以下であり、より好ましくは360,000以下である。重量平均分子量が200,000未満の場合には十分な摩耗防止性能を得ることができないおそれがある。また、重量平均分子量が400,000を超える場合には、粘度増加効果が大きくなりすぎ、省燃費性や低温粘度特性に劣るおそれがあり、さらに、剪断安定性や潤滑油基油への溶解性、貯蔵安定性が悪くなるおそれがある。 The polymer A-2 has a weight average molecular weight (M W ) of 200,000 or more, preferably 250,000 or more. Moreover, it is 400,000 or less, Preferably it is 380,000 or less, More preferably, it is 360,000 or less. When the weight average molecular weight is less than 200,000, there is a possibility that sufficient wear prevention performance cannot be obtained. In addition, when the weight average molecular weight exceeds 400,000, the effect of increasing the viscosity becomes too large, which may be inferior in fuel saving and low temperature viscosity characteristics, and further, shear stability and solubility in lubricating base oil. , Storage stability may be deteriorated.
 上記ポリマーA-2中の窒素含有量は、ポリマーA-2全量基準で0.01~1.0質量%が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が特に好ましい。また、0.5質量%以下が特に好ましい。0.01質量%未満では、本発明の目的である耐摩耗性を達成することができず、また1.0質量%を超えると、酸化安定性に懸念が生ずる恐れがある。
 上記ポリマーA-2のPSSIは60以下が好ましく、より好ましくは55以下、さらに好ましくは50以下である。PSSIが60以下であれば、剪断安定性がより良好で省燃費性がより向上する。
 また、PSSIは1以上が好ましい。その理由は、潤滑油基油に溶解させた場合の粘度指数向上効果が十分に発揮され、省燃費性や低温粘度特性が向上するからである。
The nitrogen content in the polymer A-2 is preferably 0.01 to 1.0% by mass based on the total amount of the polymer A-2, more preferably 0.05% by mass or more, and particularly preferably 0.1% by mass or more. . Moreover, 0.5 mass% or less is especially preferable. If it is less than 0.01% by mass, the wear resistance that is the object of the present invention cannot be achieved, and if it exceeds 1.0% by mass, there is a concern that oxidation stability may be concerned.
The PSSI of the polymer A-2 is preferably 60 or less, more preferably 55 or less, and still more preferably 50 or less. If PSSI is 60 or less, the shear stability is better and the fuel economy is further improved.
Further, PSSI is preferably 1 or more. The reason is that the effect of improving the viscosity index when dissolved in the lubricating base oil is sufficiently exhibited, and the fuel economy and low temperature viscosity characteristics are improved.
 ポリマーA-2は、例えば、ポリ(メタ)アクリレート、スチレン-ジエンコポリマーの水素化物、エチレン-α-オレフィンコポリマー又はその水素化物、ポリイソブチレン又はその水素化物、スチレン-無水マレイン酸エステルコポリマー、ポリアルキルスチレン、及び(メタ)アクリレート-オレフィンコポリマー等の窒素を含有しない重合性化合物と、窒素含有化合物とを共重合させることにより得ることができる。 Polymer A-2 includes, for example, poly (meth) acrylate, hydride of styrene-diene copolymer, ethylene-α-olefin copolymer or hydride thereof, polyisobutylene or hydride thereof, styrene-maleic anhydride ester copolymer, polyalkyl It can be obtained by copolymerizing a nitrogen-containing compound with a non-nitrogen-containing polymerizable compound such as styrene and a (meth) acrylate-olefin copolymer.
 上記ポリマーA-2の製造に用いる窒素を含有しない重合性化合物の例として、ポリ(メタ)アクリレートについて以下に説明する。ここで、ポリ(メタ)アクリレートとは、例えば、ポリアクリレート、ポリメタクリレート、アクリレートとメタクリレートとのコポリマー、及びこれらの混合物からなる群より選択されるものの総称を意味し、これらのいずれであってもよい。
 このポリ(メタ)クリレートを用いた場合のポリマーA-2として、次のような構成を例示することができる。すなわち、式(1)で表される(メタ)アクリレートモノマー(以下、「化合物M-1」という。)と、式(2)及び(3)から選ばれる少なくとも1種の化合物(以下、それぞれ「化合物M-2」、「化合物M-3」という。)を共重合させた、窒素含有基を分子内に有するポリ(メタ)アクリレートを例示できる。
Poly (meth) acrylate will be described below as an example of a nitrogen-free polymerizable compound used in the production of the polymer A-2. Here, poly (meth) acrylate means, for example, a generic name of those selected from the group consisting of polyacrylates, polymethacrylates, copolymers of acrylates and methacrylates, and mixtures thereof. Good.
As the polymer A-2 in the case of using this poly (meth) acrylate, the following configuration can be exemplified. That is, a (meth) acrylate monomer represented by the formula (1) (hereinafter referred to as “Compound M-1”) and at least one compound selected from the formulas (2) and (3) (hereinafter, “ Examples thereof include poly (meth) acrylates having a nitrogen-containing group in the molecule, which are copolymerized with “Compound M-2” and “Compound M-3”.
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R1は水素原子又はメチル基を、R2は炭素数1~18の直鎖状又は分岐状の炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R3は水素原子又はメチル基を、R4は炭素数1~18のアルキレン基を示し、E1は窒素を1~2個、酸素を0~2個含有するアミン残基又は複素環残基を示す。aは0又は1である。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、R5は水素原子又はメチル基を、E2は窒素を1~2個、酸素を0~2個含有するアミン残基又は複素環残基を示す。
Figure JPOXMLDOC01-appb-C000001
In the formula (1), R 1 represents a hydrogen atom or a methyl group, and R 2 represents a linear or branched hydrocarbon group having 1 to 18 carbon atoms.
Figure JPOXMLDOC01-appb-C000002
In the formula (2), R 3 represents a hydrogen atom or a methyl group, R 4 represents an alkylene group having 1 to 18 carbon atoms, E 1 represents an amine residue containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms. Indicates a group or a heterocyclic residue. a is 0 or 1;
Figure JPOXMLDOC01-appb-C000003
In formula (3), R 5 represents a hydrogen atom or a methyl group, and E 2 represents an amine residue or a heterocyclic residue containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms.
 式(2)又は式(3)において、E1及びE2で表される基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、アニリノ基、トルイジノ基、キシリジノ基、アセチルアミノ基、ベンゾイルアミノ基、モルホリノ基、ピロリル基、ピロリノ基、ピリジル基、メチルピリジル基、ピロリジニル基、ピペリジニル基、キノニル基、ピロリドニル基、ピロリドノ基、イミダゾリノ基、及びピラジノ基等が例示できる。 In the formula (2) or (3), the groups represented by E 1 and E 2 specifically include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, and a toluidino group. , Xylidino group, acetylamino group, benzoylamino group, morpholino group, pyrrolyl group, pyrrolino group, pyridyl group, methylpyridyl group, pyrrolidinyl group, piperidinyl group, quinonyl group, pyrrolidonyl group, pyrrolidono group, imidazolino group, pyrazino group, etc. Can be illustrated.
 化合物M-2若しくはM-3の好ましい例としては、具体的には、ジメチルアミノメチルメタクリレート、ジエチルアミノメチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、2-メチル-5-ビニルピリジン、モルホリノメチルメタクリレート、モルホリノエチルメタクリレート、N-ビニルピロリドン及びこれらの混合物等が例示できる。 Preferable examples of compound M-2 or M-3 are specifically dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-methyl-5-vinylpyridine, morpholinomethyl methacrylate, Examples thereof include morpholinoethyl methacrylate, N-vinylpyrrolidone and a mixture thereof.
 化合物M-2若しくはM-3、又はこの両者(以下、M-2+M-3と表す)と化合物M-1との共重合体の共重合モル比については特に制限はないが、共重合体中のモル比として、M-1:M-2+M-3=99:1~80:20程度が好ましく、より好ましくは98:2~85:15、さらに好ましくは95:5~90:10である。 There is no particular limitation on the copolymerization molar ratio of the compound M-2 or M-3, or both of these (hereinafter referred to as M2 + M-3) and the compound M-1, but in the copolymer The molar ratio of M-1: M-2 + M-3 is preferably about 99: 1 to 80:20, more preferably 98: 2 to 85:15, and still more preferably 95: 5 to 90:10.
 ポリマーA-2を得るための窒素を含有しない重合性化合物の他の例としては、スチレン-ジエンコポリマーの水素化物を挙げることができる。当該コポリマーも、コモノマーとしてスチレン及びジエンに加えて上記M-2+M-3を用いて、共重合されたものである。ジエンとしては、具体的には、ブタジエン、イソプレン等が好ましく、特にイソプレンが好ましい。なお、水素化は共重合後に行う。 Another example of a nitrogen-free polymerizable compound for obtaining the polymer A-2 is a hydride of a styrene-diene copolymer. The copolymer is also a copolymer obtained by using M2 + M-3 in addition to styrene and diene as comonomers. Specifically, as the diene, butadiene, isoprene and the like are preferable, and isoprene is particularly preferable. Hydrogenation is carried out after copolymerization.
 ポリマーA-2を得るための窒素を含有しない重合性化合物の別の例としては、エチレン-α-オレフィンコポリマーを挙げることができる。当該コポリマーも、コモノマーとしてエチレン及びα-オレフィンに加えて上記M-2+M-3を用いて、共重合されたものである。α-オレフィンとしては、具体的にプロピレン、イソブチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、又は1-ドデセンが例示される。 Another example of the nitrogen-free polymerizable compound for obtaining the polymer A-2 is an ethylene-α-olefin copolymer. The copolymer is also copolymerized using M2 + M-3 in addition to ethylene and α-olefin as a comonomer. Specific examples of the α-olefin include propylene, isobutylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, and 1-dodecene.
 本発明のエンジン油組成物中の粘度指数向上剤は、上述した(A)成分であるスターポリマーA-1及びポリマーA-2の2種のポリマーを必須として含むものであるが、本発明の効果を損なわない限りにおいて他の粘度指数向上剤を含有してもよい。
 当該他の粘度指数向上剤としては、例えば、エステル基含有粘度指数向上剤、及び上記例示したポリマーA-2に対応する化合物であって、窒素含有化合物を共重合させないものを例示できる。好ましくは、ポリ(メタ)アクリレートである。本発明の効果を最大限に発揮する点において粘度指数向上剤は、(A)成分のみが好ましい。
The viscosity index improver in the engine oil composition of the present invention contains two types of polymers, the star polymer A-1 and the polymer A-2, which are the above-mentioned component (A) as essential components. Other viscosity index improvers may be included as long as they are not impaired.
Examples of the other viscosity index improvers include ester group-containing viscosity index improvers and compounds corresponding to the above exemplified polymer A-2, which do not copolymerize nitrogen-containing compounds. Poly (meth) acrylate is preferable. In view of maximizing the effects of the present invention, the viscosity index improver is preferably only the component (A).
 (A)成分中のスターポリマーA-1の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn:多分散度)、並びにポリマーA-2のMw/Mn(多分散度)は、いずれも、5.0以下が好ましく、より好ましくは4.0以下、さらに好ましくは3.5以下、特に好ましくは3.0以下である。また、Mw/Mnはいずれも1.0以上が好ましく、より好ましくは2.0以上、さらに好ましくは2.5以上、特に好ましくは2.6以上である。Mw/Mnが5.0を超え、若しくは1.0未満になると、溶解性と粘度-温度特性の向上効果が低下する懸念があり、十分な貯蔵安定性や、省燃費性が維持できなくなるおそれがある。 The ratio (M w / M n : polydispersity) of the weight average molecular weight (M w ) and the number average molecular weight (M n ) of the star polymer A-1 in the component (A), and the M w / Mn (polydispersity) is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.5 or less, and particularly preferably 3.0 or less. Further, M w / M n is preferably 1.0 or more, more preferably 2.0 or more, still more preferably 2.5 or more, and particularly preferably 2.6 or more. When M w / M n exceeds 5.0 or less than 1.0, there is a concern that the improvement effect of solubility and viscosity-temperature characteristics may be lowered, and sufficient storage stability and fuel saving performance can be maintained. There is a risk of disappearing.
 (A)成分(スターポリマーA-1+ポリマーA-2)の含有量は、エンジン油組成物全量基準で、0.1~50質量%が好ましく、より好ましくは0.5~20質量%、さらに好ましくは1.0~15質量%、特に好ましくは1.5~12質量%である。含有量が0.1質量%より少ない場合には低温特性が不十分となるおそれがあり、また50質量%を超える場合には組成物の剪断安定性が悪化するおそれがある。 The content of component (A) (star polymer A-1 + polymer A-2) is preferably 0.1 to 50% by mass, more preferably 0.5 to 20% by mass, based on the total amount of the engine oil composition. The amount is preferably 1.0 to 15% by mass, particularly preferably 1.5 to 12% by mass. If the content is less than 0.1% by mass, the low temperature characteristics may be insufficient, and if it exceeds 50% by mass, the shear stability of the composition may be deteriorated.
 本発明のエンジン油組成物が、(A)成分以外の他の粘度指数向上剤を含むときは、当該他の粘度指数向上剤の含有量は、エンジン油組成物全量基準で、10質量%以下が好ましく、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。 When the engine oil composition of the present invention contains a viscosity index improver other than the component (A), the content of the other viscosity index improver is 10% by mass or less based on the total amount of the engine oil composition. Is preferable, more preferably 5% by mass or less, and still more preferably 3% by mass or less.
 本発明のエンジン油組成物は、必須成分として(B)成分を含有し、この(B)成分は、具体的にはアミド化合物、イミド化合物及びこれら混合物からなる群より選択される摩擦調整剤である。アミド化合物としては、脂肪酸アミドが好ましく、イミド化合物としては、脂肪酸イミドが好ましく、特に、直鎖脂肪酸由来のものが好ましい。 The engine oil composition of the present invention contains the component (B) as an essential component, and this component (B) is a friction modifier specifically selected from the group consisting of amide compounds, imide compounds and mixtures thereof. is there. As the amide compound, fatty acid amide is preferable, and as the imide compound, fatty acid imide is preferable, and those derived from linear fatty acid are particularly preferable.
 脂肪酸アミドの具体例としては、窒素原子を一つと、炭素数10~30のアルキル基又はアルケニル基を少なくとも1つ有する脂肪酸アミドが挙げられる。当該脂肪酸アミドは、例えば、炭素数10~30のアルキル基又はアルケニル基を有する脂肪酸やその酸塩化物を、アンモニアや、炭素数1~30の炭化水素基又は水酸基含有炭化水素基のみを分子中に含有するアミン化合物等と反応させることによって得られる。アンモニアと炭素数12~24のアルキル基又はアルケニル基を有する脂肪酸とを反応させた、分子末端がアミド基である脂肪酸アミドが特に好ましい。 Specific examples of fatty acid amides include fatty acid amides having one nitrogen atom and at least one alkyl group or alkenyl group having 10 to 30 carbon atoms. The fatty acid amide includes, for example, a fatty acid having an alkyl group or an alkenyl group having 10 to 30 carbon atoms or an acid chloride thereof, only ammonia, a hydrocarbon group having 1 to 30 carbon atoms or a hydroxyl group-containing hydrocarbon group in the molecule. It is obtained by reacting with an amine compound contained in Particularly preferred is a fatty acid amide obtained by reacting ammonia with a fatty acid having an alkyl group or alkenyl group having 12 to 24 carbon atoms and having an amide group at the molecular end.
 脂肪酸アミドの具体的化合物例として、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、オレイン酸アミド、ヤシ油脂肪酸アミド、炭素数12~13の合成混合脂肪酸アミド、及びこれらの混合物等を挙げることができる。これらの脂肪酸アミドは摩擦低減効果に加え、摩耗防止効果に優れるので特に好ましい。 Specific examples of fatty acid amides include lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, oleic acid amide, coconut oil fatty acid amide, synthetic mixed fatty acid amides having 12 to 13 carbon atoms, and mixtures thereof. Can be mentioned. These fatty acid amides are particularly preferable because they are excellent in wear prevention effect in addition to friction reduction effect.
 その他のアミド化合物としては、国際公開第2005037967号に例示される、オレイン酸ヒドラジド、ドデカン酸ヒドラジド、トリデカン酸ヒドラジド、テトラデカン酸ヒドラジド、ペンタデカン酸ヒドラジド、ヘキサデカン酸ヒドラジド、ヘプタデカン酸ヒドラジド、オクタデカン酸ヒドラジド、オレイン酸ヒドラジド(C1733-C(=O)-NH-NH2)、エルカ酸ヒドラジド(C2141-C(=O)-NH-NH2)等の炭素数12~24のアルキル基又はアルケニル基を有するヒドラジド化合物、及びそれらのホウ酸変性誘導体等の酸変性誘導体ヒドラジド、オレイルセミカルバジド等のセミカルバジド、オレイルウレア、ドデシルウレア、トリデシルウレア、テトラデシルウレア、ペンタデシルウレア、ヘキサデシルウレア、ヘプタデシルウレア、オクタデシルウレア、オレイルウレア(C1835-NH-C(=O)-NH2)等の炭素数12~24のアルキル基又はアルケニル基を有するウレア、及びそれらのホウ酸変性誘導体等の酸変性誘導体、オレイルウレイド等のウレイド、オレイルアロファン酸アミド等のアロファン酸アミド及びこれらの誘導体等が挙げられる。 Examples of other amide compounds include oleic hydrazide, dodecanoic hydrazide, tridecanoic hydrazide, tetradecanoic hydrazide, pentadecanoic hydrazide, hexadecanoic hydrazide, heptadecanoic hydrazide, octadecanoic hydrazide, and olein exemplified in International Publication No. 2005037967. Alkyl groups having 12 to 24 carbon atoms such as acid hydrazide (C 17 H 33 —C (═O) —NH—NH 2 ) and erucic acid hydrazide (C 21 H 41 —C (═O) —NH—NH 2 ) Or hydrazide compounds having an alkenyl group, and acid-modified derivatives such as boric acid-modified derivatives hydrazide, semicarbazides such as oleyl semicarbazide, oleyl urea, dodecyl urea, tridecyl urea, tetradecyl urea, pentadecyl urea, hexadecyl Urea having alkyl group or alkenyl group having 12 to 24 carbon atoms such as urea, heptadecyl urea, octadecyl urea, oleyl urea (C 18 H 35 —NH—C (═O) —NH 2 ), and their boric acid modification Examples thereof include acid-modified derivatives such as derivatives, ureides such as oleyl ureido, allophane amides such as oleyl allophanic amide, and derivatives thereof.
 アミド化合物の他の形態として、水酸基、カルボン酸基、又はこの両官能基を、同一分子内に有するアミド化合物を挙げることができる。例えば、炭素数10~30のアルキル基又はアルケニル基を有する脂肪酸やその酸塩化物と、水酸基を有する炭素数1~30のアミン化合物とを反応させて得られる水酸基含有脂肪酸アミド等が挙げられる。
 これらの中で、式(4)で表される化合物が好ましい。
As another form of the amide compound, an amide compound having a hydroxyl group, a carboxylic acid group, or both functional groups in the same molecule can be given. Examples thereof include a hydroxyl group-containing fatty acid amide obtained by reacting a fatty acid having an alkyl or alkenyl group having 10 to 30 carbon atoms or an acid chloride thereof with an amine compound having 1 to 30 carbon atoms having a hydroxyl group.
Among these, the compound represented by Formula (4) is preferable.
Figure JPOXMLDOC01-appb-C000004
 式(4)において、R6は炭素数1~30の炭化水素基、好ましくは炭素数10~30の炭化水素基、より好ましくは炭素数12~24のアルキル基又はアルケニル基、特に好ましくは炭素数12~20のアルケニル基である。R7は、炭素数1~30の炭化水素基又は水素原子であり、炭化水素基の場合は、好ましくは炭素数1~10の炭化水素基、より好ましくは炭素数1~4の炭化水素基であるが、特に好ましくは水素原子である。R8は炭素数1~10の炭化水素基、より好ましくは炭素数1~4の炭化水素基、さらに好ましくは炭素数1~2の炭化水素基、最も好ましくは炭素数1の炭化水素基である。
Figure JPOXMLDOC01-appb-C000004
In the formula (4), R 6 is a hydrocarbon group having 1 to 30 carbon atoms, preferably a hydrocarbon group having 10 to 30 carbon atoms, more preferably an alkyl group or alkenyl group having 12 to 24 carbon atoms, particularly preferably carbon. It is an alkenyl group of formula 12-20. R 7 is a hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom. In the case of a hydrocarbon group, it is preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrocarbon group having 1 to 4 carbon atoms. However, particularly preferred is a hydrogen atom. R 8 is a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrocarbon group having 1 to 4 carbon atoms, still more preferably a hydrocarbon group having 1 to 2 carbon atoms, and most preferably a hydrocarbon group having 1 carbon atom. is there.
 式(4)で表される化合物は、例えば、ヒドロキシ酸と脂肪族アミンとの反応により合成することができる。ヒロドキシ酸のうち脂肪族ヒドロキシ酸が好ましく、さらに直鎖状脂肪族α-ヒドロキシ酸が好ましい。特に、α-ヒドロキシ酸の中でもグリコール酸が好ましい。その他、好ましい具体例として、N-オレオイルサルコシン等が挙げられる。 The compound represented by the formula (4) can be synthesized, for example, by a reaction between a hydroxy acid and an aliphatic amine. Of the hydroxy acids, aliphatic hydroxy acids are preferred, and linear aliphatic α-hydroxy acids are more preferred. In particular, glycolic acid is preferable among α-hydroxy acids. Other preferred specific examples include N-oleoyl sarcosine and the like.
 (B)成分としてのイミド化合物としては、直鎖状、又は分岐状、好ましくは分岐状の炭化水素基を1つ又は2つ有するモノ及び/又はビスコハク酸イミド、当該コハク酸イミドに、ホウ酸、リン酸、炭素数1~20のカルボン酸あるいは硫黄含有化合物から選ばれる1種又は2種以上を反応させたコハク酸イミド変性化合物等が例示できる。 As the imide compound as the component (B), mono- and / or bissuccinimide having one or two linear or branched, preferably branched hydrocarbon groups, succinimide, boric acid Examples thereof include succinimide-modified compounds obtained by reacting one or more selected from phosphoric acid, carboxylic acids having 1 to 20 carbon atoms, and sulfur-containing compounds.
 上記コハク酸イミドの具体例としては、式(5)及び(6)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000005
Specific examples of the succinimide include compounds represented by the formulas (5) and (6).
Figure JPOXMLDOC01-appb-C000005
 式(5)及び(6)において、R9及びR10は、それぞれ個別に、炭素数8~30、好ましくは炭素数12~24のアルキル基又はアルケニル基を、R11及びR12は、それぞれ個別に、炭素数1~4、好ましくは炭素数2~3のアルキレン基を、R13は水素原子又は炭素数1~30、好ましくは炭素数8~30のアルキル基又はアルケニル基を示す。nは1~7の整数、好ましくは1~3の整数である。 In the formulas (5) and (6), R 9 and R 10 are each independently an alkyl or alkenyl group having 8 to 30 carbon atoms, preferably 12 to 24 carbon atoms, and R 11 and R 12 are each Individually, an alkylene group having 1 to 4 carbon atoms, preferably 2 to 3 carbon atoms, and R 13 represents a hydrogen atom or an alkyl group or alkenyl group having 1 to 30 carbon atoms, preferably 8 to 30 carbon atoms. n is an integer of 1 to 7, preferably an integer of 1 to 3.
 摩擦調整剤である(B)成分の含有量は、エンジン油組成物全量基準で好ましくは0.01~10質量%、好ましくは0.1質量%以上、より好ましくは0.3質量%以上であり、また、好ましくは3質量%以下、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。(B)成分の含有量が0.01質量%未満であると、その添加による摩擦低減効果が不十分となる傾向にあり、また10質量%を超えると、耐摩耗性添加剤などの効果が阻害されやすく、あるいは添加剤の溶解性が悪化する傾向にある。 The content of the component (B) that is a friction modifier is preferably 0.01 to 10% by mass, preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total amount of the engine oil composition. In addition, it is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less. When the content of the component (B) is less than 0.01% by mass, the effect of reducing friction due to the addition tends to be insufficient, and when it exceeds 10% by mass, effects such as an anti-wear additive are obtained. It tends to be inhibited or the solubility of the additive tends to deteriorate.
 (B)成分中の窒素原子含有量は、エンジン油組成物全量基準に対する含有量として、0.0005~0.4質量%が好ましく、より好ましくは0.001~0.3質量%、特に好ましくは0.005~0.25質量%である。0.0005質量%未満であると十分な摩耗防止性が得られないおそれがあり、また0.4質量%を超えると、エンジン油組成物中への溶解性が低下し、沈澱や濁りが生じるおそれがある。 The content of nitrogen atom in the component (B) is preferably 0.0005 to 0.4% by mass, more preferably 0.001 to 0.3% by mass, particularly preferably as content relative to the total amount of the engine oil composition. Is 0.005 to 0.25% by mass. If it is less than 0.0005% by mass, sufficient anti-wear properties may not be obtained, and if it exceeds 0.4% by mass, the solubility in the engine oil composition will be reduced, resulting in precipitation and turbidity. There is a fear.
 本発明のエンジン油組成物は、金属系清浄剤を含有することができる。
 金属系清浄剤としては、アルカリ金属/アルカリ土類金属スルホネート、アルカリ金属/アルカリ土類金属フェネート、アルカリ金属/アルカリ土類金属サリシレート、及びアルカリ金属/アルカリ土類金属サリシレート等の正塩又は塩基性塩を挙げることができる。アルカリ金属としてはナトリウム、カリウム等、アルカリ土類金属としてはマグネシウム、カルシウム、バリウム等が挙げられるが、マグネシウム又はカルシウムが好ましく、特にカルシウムが好ましい。これら各金属系清浄剤は任意に組み合わせて配合してもよい。
The engine oil composition of the present invention can contain a metallic detergent.
As metal-based detergents, alkali salts / basic salts such as alkali metal / alkaline earth metal sulfonate, alkali metal / alkaline earth metal phenate, alkali metal / alkaline earth metal salicylate, and alkali metal / alkaline earth metal salicylate Mention may be made of salts. Examples of the alkali metal include sodium and potassium, and examples of the alkaline earth metal include magnesium, calcium and barium. Magnesium or calcium is preferable, and calcium is particularly preferable. These metal detergents may be combined in any combination.
 上記アルカリ金属/アルカリ土類金属スルホネートとしては、具体的には、通常分子量100~1500、好ましくは200~700のアルキル芳香族化合物をスルホン化することによって得られるアルキル芳香族スルホン酸のアルカリ金属/アルカリ土類金属塩を挙げることができる。アルキル芳香族スルホン酸としては、具体的にはいわゆる石油スルホン酸や合成スルホン酸等が挙げられる。本発明においては、過塩基性のスルホネート及び/又は低塩基性のスルホネートを用いることが好ましい。 As the alkali metal / alkaline earth metal sulfonate, specifically, an alkali metal / alkyl aromatic sulfonic acid obtained by sulfonating an alkyl aromatic compound usually having a molecular weight of 100 to 1500, preferably 200 to 700 is used. Mention may be made of alkaline earth metal salts. Specific examples of the alkyl aromatic sulfonic acid include so-called petroleum sulfonic acid and synthetic sulfonic acid. In the present invention, it is preferable to use an overbased sulfonate and / or a low basic sulfonate.
 過塩基性のスルホネートの塩基価は通常150mgKOH/g以上、好ましくは200mgKOH/g以上、さらに好ましくは250mgKOH/g以上、もっとも好ましくは300mgKOH/g以上であり、また、350mgKOH/g以下が好ましい。
 当該過塩基性のスルホネートを、該エンジン油組成物の塩基価が通常2mgKOH/g以上、好ましくは3mgKOH/g以上、また、好ましくは10mgKOH/g以下、より好ましくは7mgKOH/g以下、さらに好ましくは5mgKOH/g以下となるように含有することが好ましい。塩基価を2mgKOH/g以上とすることで、本発明のエンジン油組成物に要求される酸化安定性を向上させることができ、また、10mgKOH/g以下とすることで、灰分量を少なくし、燃焼室デポジットの低減が可能となる。
The base number of the overbased sulfonate is usually 150 mgKOH / g or more, preferably 200 mgKOH / g or more, more preferably 250 mgKOH / g or more, most preferably 300 mgKOH / g or more, and preferably 350 mgKOH / g or less.
In the overbased sulfonate, the base number of the engine oil composition is usually 2 mgKOH / g or more, preferably 3 mgKOH / g or more, preferably 10 mgKOH / g or less, more preferably 7 mgKOH / g or less, more preferably It is preferable to contain so that it may become 5 mgKOH / g or less. By making the base number 2 mgKOH / g or more, the oxidation stability required for the engine oil composition of the present invention can be improved, and by making it 10 mgKOH / g or less, the amount of ash is reduced, The combustion chamber deposit can be reduced.
 低塩基性のスルホネートの場合は、その塩基価が通常50mgKOH/g以下、好ましくは30mgKOH/g以下、さらに好ましくは20mgKOH/g以下であり、また、好ましくは5mgKOH/g以上、さらに好ましくは10mgKOH/g以上である。
 当該低塩基性のスルホネートを、該エンジン油組成物の塩基価が通常0.01mgKOH/g以上、好ましくは0.02mgKOH/g以上、また、好ましくは2mgKOH/g以下、より好ましくは1mgKOH/g以下、さらに好ましくは0.5mgKOH/g以下となるように含有することが好ましい。塩基価を0.01mgKOH/g以上とすることで、エンジン油組成物に要求されるクランクケースの清浄性の向上が期待でき、また、2mgKOH/gを超えても効果が増大せず、2mgKOH/gを超えるように含有させる利点が無い。
 上記塩基価は、JIS K2501「石油製品及び潤滑油-中和価試験法」の7.に準拠して測定される過塩素酸法による塩基価を意味する。
In the case of a low basic sulfonate, the base number is usually 50 mgKOH / g or less, preferably 30 mgKOH / g or less, more preferably 20 mgKOH / g or less, preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g. g or more.
The low basic sulfonate has a base number of the engine oil composition of usually 0.01 mgKOH / g or more, preferably 0.02 mgKOH / g or more, preferably 2 mgKOH / g or less, more preferably 1 mgKOH / g or less. Furthermore, it is preferable to contain so that it may become 0.5 mgKOH / g or less. By making the base number 0.01 mgKOH / g or more, improvement in crankcase cleanliness required for the engine oil composition can be expected, and even if it exceeds 2 mgKOH / g, the effect does not increase and 2 mgKOH / g There is no advantage of containing in excess of g.
The above base number is determined according to JIS K2501 “Petroleum products and lubricants—neutralization number test method”. Means the base number measured by the perchloric acid method according to the above.
 上記アルカリ金属/アルカリ土類金属フェネートとしては、具体的には、炭素数4~30、好ましくは6~18の直鎖状又は分岐状のアルキル基を少なくとも1個有するアルキルフェノール、このアルキルフェノールと硫黄とを反応させて得られるアルキルフェノールサルファイド、又はこのアルキルフェノールとホルムアルデヒドを反応させて得られるアルキルフェノールのマンニッヒ反応生成物のアルカリ金属/アルカリ土類金属塩を挙げることができる。
 当該アルカリ金属/アルカリ土類金属フェネートは、その塩基価が通常150mgKOH/g以上、好ましくは200mgKOH/g以上、さらに好ましくは250mgKOH/g以上であり、また、350mgKOH/g以下が好ましい。
 該アルカリ金属/アルカリ土類金属フェネートを、該エンジン油組成物の塩基価が通常0.3mgKOH/g以上、好ましくは0.7mgKOH/g以上、さらに好ましくは1mgKOH/g以上、また、好ましくは5mgKOH/g以下、より好ましくは3mgKOH/g以下、さらに好ましくは2mgKOH/g以下となるように含有することが好ましい。塩基価を0.3mgKOH/g以上とすることで、本発明のエンジン油組成物の酸化安定性が改善され、また、5mgKOH/gを超えても効果が増大せず、5mgKOH/gを超えるように含有させる利点が無い。
Specifically, the alkali metal / alkaline earth metal phenate includes an alkylphenol having at least one linear or branched alkyl group having 4 to 30 carbon atoms, preferably 6 to 18 carbon atoms, the alkylphenol and sulfur. Or an alkali metal / alkaline earth metal salt of a Mannich reaction product of an alkylphenol obtained by reacting the alkylphenol with formaldehyde.
The alkali metal / alkaline earth metal phenate has a base number of usually 150 mgKOH / g or more, preferably 200 mgKOH / g or more, more preferably 250 mgKOH / g or more, and preferably 350 mgKOH / g or less.
The alkali metal / alkaline earth metal phenate has a base number of the engine oil composition of usually 0.3 mgKOH / g or more, preferably 0.7 mgKOH / g or more, more preferably 1 mgKOH / g or more, and preferably 5 mgKOH. / G or less, more preferably 3 mgKOH / g or less, still more preferably 2 mgKOH / g or less. By making the base number 0.3 mgKOH / g or more, the oxidation stability of the engine oil composition of the present invention is improved, and the effect does not increase even if it exceeds 5 mgKOH / g, so that it exceeds 5 mgKOH / g. There is no advantage to contain.
 上記アルカリ金属/アルカリ土類金属サリシレートとしては、具体的には、炭素数4~30、好ましくは6~18の直鎖状又は分岐状のアルキル基を少なくとも1個有するアルキルサリチル酸のアルカリ金属/アルカリ土類金属塩を挙げることができる。
 当該アルカリ金属/アルカリ土類金属サリシレートの塩基価は通常150mgKOH/g以上、好ましくは200mgKOH/g以上、さらに好ましくは250mgKOH/g以上、特に好ましくは300mgKOH/g以上であり、また、350mgKOH/g以下が好ましい。
 該アルカリ金属/アルカリ土類金属サリシレートを、該エンジン油組成物の塩基価を通常2mgKOH/g以上、好ましくは3mgKOH/g以上、また、好ましくは10mgKOH/g以下、より好ましくは7mgKOH/g以下、さらに好ましくは5mgKOH/g以下となるように含有する塩基価を2mgKOH/g以上とすることで、酸化安定性の向上が期待でき、また、10mgKOH/g以下とすることで、灰分量を抑制し、燃焼室デポジットの減少が期待できる。
As the alkali metal / alkaline earth metal salicylate, specifically, an alkali metal / alkali of alkyl salicylic acid having at least one linear or branched alkyl group having 4 to 30 carbon atoms, preferably 6 to 18 carbon atoms. Mention may be made of earth metal salts.
The base number of the alkali metal / alkaline earth metal salicylate is usually 150 mgKOH / g or more, preferably 200 mgKOH / g or more, more preferably 250 mgKOH / g or more, particularly preferably 300 mgKOH / g or more, and 350 mgKOH / g or less. Is preferred.
The alkali metal / alkaline earth metal salicylate has a base number of the engine oil composition of usually 2 mgKOH / g or more, preferably 3 mgKOH / g or more, preferably 10 mgKOH / g or less, more preferably 7 mgKOH / g or less, More preferably, the oxidation stability can be expected to be improved by setting the base number to be 2 mgKOH / g or more so as to be 5 mgKOH / g or less, and the ash content is suppressed by being 10 mgKOH / g or less. Reduction of combustion chamber deposit can be expected.
 上記アルカリ金属/アルカリ土類金属スルホネート、アルカリ金属/アルカリ土類金属フェネート及びアルカリ金属/アルカリ土類金属サリシレートは、中性塩(正塩)だけでなく、低塩基性塩、塩基性塩や過塩基性塩(超塩基性塩)であってもよく、これらの混合物でも良い。
 本発明のエンジン油組成物においては、上記の範囲の塩基価を有する過塩基性スルホネート、低塩基性スルホネート、過塩基性フェネート、及び過塩基性サリシレートを組み合わせて用いることが好ましい。最も好ましくは当該三種類の金属系清浄剤を組み合わせたものを、該エンジン油組成物の塩基価が通常2mgKOH/g以上、好ましくは3mgKOH/g以上、また、好ましくは10mgKOH/g以下、より好ましくは7mgKOH/g以下、さらに好ましくは5mgKOH/g以下となるように含有する。これにより、エンジン油として要求される清浄性と、省燃費性をバランスよく達成することが可能となる。
The alkali metal / alkaline earth metal sulfonate, alkali metal / alkaline earth metal phenate, and alkali metal / alkaline earth metal salicylate are not only neutral salts (normal salts) but also low basic salts, basic salts and excess salts. It may be a basic salt (super basic salt) or a mixture thereof.
In the engine oil composition of the present invention, it is preferable to use a combination of an overbased sulfonate, a low basic sulfonate, an overbased phenate, and an overbased salicylate having a base number in the above range. Most preferably, a combination of the three types of metal detergents is such that the base number of the engine oil composition is usually 2 mgKOH / g or more, preferably 3 mgKOH / g or more, preferably 10 mgKOH / g or less, more preferably Is contained at 7 mgKOH / g or less, more preferably 5 mgKOH / g or less. This makes it possible to achieve a balance between cleanliness required for engine oil and fuel efficiency.
 本発明のエンジン油組成物において金属系清浄剤を含有する場合、その含有量は、エンジン油組成物全量を基準として、金属元素換算で500質量ppm以上が好ましく、より好ましくは800質量ppm以上、さらに好ましくは1000質量ppm以上である。また好ましくは3500質量ppm以下、より好ましくは3000質量ppm以下、さらに好ましくは2600質量ppm以下である。500質量ppm以上とすることで、十分な塩基価維持性、高温清浄性の発揮が期待でき、一方、3500質量ppm以下とすることで、使用によって生成する硫酸灰分量を抑制し、排ガス浄化触媒のフィルター詰まりを防止することが期待できる。 When the metal detergent is contained in the engine oil composition of the present invention, the content is preferably 500 ppm by mass or more, more preferably 800 ppm by mass or more in terms of metal elements, based on the total amount of the engine oil composition. More preferably, it is 1000 mass ppm or more. Moreover, Preferably it is 3500 mass ppm or less, More preferably, it is 3000 mass ppm or less, More preferably, it is 2600 mass ppm or less. By making it 500 ppm by mass or more, sufficient base number maintenance and high temperature cleanliness can be expected. On the other hand, by making it 3500 ppm by mass or less, the amount of sulfated ash produced by use is suppressed, and an exhaust gas purification catalyst. It can be expected to prevent clogging of the filter.
 本発明のエンジン油組成物は、無灰分散剤を含有することができる。
 無灰分散剤としては、炭素数40~400の直鎖若しくは分岐状のアルキル基又はアルケニル基を分子中に少なくとも1個有する含窒素化合物又はその誘導体を挙げることができる。具体的にはコハク酸イミド、アルケニルコハク酸イミド、あるいはそれらの変性品等が挙げられる。これらの中から任意に選ばれる1種あるいは2種以上を配合することができる。
The engine oil composition of the present invention can contain an ashless dispersant.
Examples of the ashless dispersant include nitrogen-containing compounds having at least one linear or branched alkyl group or alkenyl group having 40 to 400 carbon atoms or derivatives thereof. Specific examples include succinimide, alkenyl succinimide, and modified products thereof. One or two or more arbitrarily selected from these can be blended.
 無灰分散剤が有するアルキル基又はアルケニル基の炭素数は、好ましくは40~400、より好ましくは60~350である。アルキル基又はアルケニル基の炭素数を40以上とすることで、潤滑油基油に対する溶解性の低下を抑制し、一方、400以下とすることで、エンジン油組成物の低温流動性の悪化を抑制することが可能である。このアルキル基又はアルケニル基は、直鎖状でも分岐状でもよいが、好ましいものとしては、例えば、プロピレン、1-ブテン、イソブチレン等のオレフィンのオリゴマーや、エチレンとプロピレンのコオリゴマーから誘導される分岐状アルキル基や分岐状アルケニル基が挙げられる。 The carbon number of the alkyl group or alkenyl group of the ashless dispersant is preferably 40 to 400, more preferably 60 to 350. Setting the number of carbon atoms of the alkyl group or alkenyl group to 40 or more suppresses a decrease in solubility in the lubricating base oil, while setting it to 400 or less suppresses deterioration in low-temperature fluidity of the engine oil composition. Is possible. The alkyl group or alkenyl group may be linear or branched, but preferred examples include branched olefins derived from olefin oligomers such as propylene, 1-butene and isobutylene, and ethylene and propylene co-oligomers. An alkyl group and a branched alkenyl group.
 好ましいコハク酸イミドとして、ポリアミンの一端に無水コハク酸が付加した、いわゆるモノタイプのコハク酸イミド、ポリアミンの両端に無水コハク酸が付加した、いわゆるビスタイプのコハク酸イミドを例示できる。なお、モノタイプ及びビスタイプのコハク酸イミドのいずれか一方を含有してもよく、あるいは双方を含有してもよい。 Preferred examples of the succinimide include a so-called mono-type succinimide in which succinic anhydride is added to one end of the polyamine, and a so-called bis-type succinimide in which succinic anhydride is added to both ends of the polyamine. In addition, either one of monotype and bis type succinimide may be contained, or both may be contained.
 その他の無灰分散剤として、ベンジルアミンを用いることもできる。好ましいベンジルアミンとしては、具体的には、式(7)で表される化合物が例示できる。
 R14-Ph-CH2NH-(CH2CH2NH)p-H (7)
 式(7)において、R14は、炭素数40~400のアルキル基又はアルケニル基、好ましくは炭素数60~350のアルキル基又はアルケニル基を、Phはフェニレン基を示す。pは1~5、好ましくは2~4の整数を示す。
Benzylamine can also be used as another ashless dispersant. Specific examples of preferable benzylamine include compounds represented by the formula (7).
R 14 —Ph—CH 2 NH— (CH 2 CH 2 NH) p —H (7)
In the formula (7), R 14 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably an alkyl group or alkenyl group having 60 to 350 carbon atoms, and Ph represents a phenylene group. p represents an integer of 1 to 5, preferably 2 to 4.
 別の無灰分散剤として、ポリアミンを用いることもできる。ポリアミンとしては、具体的には、式(8)で表される化合物が例示できる。
  R15‐NH-(CH2CH2NH)q-H  (8)
 式(8)において、R15は、炭素数40~400のアルキル基又はアルケニル基、好ましくは60~350のアルキル基又はアルケニル基を示す。qは1~5、好ましくは2~4の整数である。
Polyamine can also be used as another ashless dispersant. Specific examples of the polyamine include a compound represented by the formula (8).
R 15 —NH— (CH 2 CH 2 NH) q —H (8)
In the formula (8), R 15 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably an alkyl group or alkenyl group having 60 to 350 carbon atoms. q is an integer of 1 to 5, preferably 2 to 4.
 無灰分散剤として使用できる上記含窒素化合物の誘導体の具体例は、該含窒素化合物に、脂肪酸等の炭素数1~30のモノカルボン酸、シュウ酸、フタル酸、トリメリット酸、ピロメリット酸等の炭素数2~30のポリカルボン酸、又はヒドロキシ(ポリ)アルキレンカーボネート等の含酸素化合物を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和したもの、アミド化した有機酸等による変性化合物、又は前述の含窒素化合物に硫黄化合物を作用させた硫黄変性化合物等が挙げられる。さらに、ホウ素化合物で変性したホウ素化無灰分散剤も挙げられる。 Specific examples of derivatives of the above nitrogen-containing compounds that can be used as ashless dispersants include monocarboxylic acids having 1 to 30 carbon atoms such as fatty acids, oxalic acid, phthalic acid, trimellitic acid, pyromellitic acid, etc. A product obtained by reacting an oxygen-containing compound such as polycarboxylic acid having 2 to 30 carbon atoms or hydroxy (poly) alkylene carbonate to neutralize part or all of the remaining amino group and / or imino group, amidation Examples thereof include a modified compound by an organic acid or the like, or a sulfur-modified compound obtained by allowing a sulfur compound to act on the aforementioned nitrogen-containing compound. Furthermore, a boronated ashless dispersant modified with a boron compound is also included.
 ホウ素化無灰分散剤は、潤滑油に用いられる任意の無灰分散剤をホウ素化したものである。ホウ素化は、一般に、前述の含窒素化合物にホウ酸等を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和することにより行われる。
 例えば、ホウ素化コハク酸イミドの製造方法としては、例えば、特公昭42-8013号公報、特公昭42-8014号公報、特開昭51-52381号公報、及び特開昭51-130408号公報等に開示されている。具体的には例えば、アルコール類、ヘキサン、キシレン等の有機溶媒、軽質潤滑油基油等の存在下、ポリアミンとポリアルケニルコハク酸(無水物)にホウ酸、ホウ酸エステル、又はホウ酸塩等のホウ素化合物を混合し、適当な条件で加熱処理することにより得ることができる。なお、この様にして得られるホウ素化コハク酸イミド中のホウ素含有量は、通常0.1~4.0質量%とすることができる。
The boronated ashless dispersant is a borated version of any ashless dispersant used in lubricating oils. Boronation is generally performed by allowing boric acid or the like to act on the nitrogen-containing compound described above to neutralize part or all of the remaining amino group and / or imino group.
For example, as a method for producing a boronated succinimide, for example, JP-B-42-8013, JP-B-42-8014, JP-A-51-52381, JP-A-51-130408, etc. Is disclosed. Specifically, for example, boric acid, boric acid ester, borate, etc. in the presence of organic solvents such as alcohols, hexane and xylene, light lubricating base oil, polyamine and polyalkenyl succinic acid (anhydride), etc. The boron compound can be mixed and heat-treated under appropriate conditions. The boron content in the boronated succinimide thus obtained can usually be 0.1 to 4.0% by mass.
 本発明のエンジン油組成物が無灰分散剤を含有する場合、無灰分散剤の含有量は、エンジン油組成物全量基準で、好ましくは0.1~20質量%、より好ましくは1~10質量%である。またさらに好ましくは2.5質量%以上、最も好ましくは5質量%以上である。無灰分散剤の含有量を0.1質量%以上とすることで、摩擦低減性向上効果が十分得られ、一方、20質量%以下とすることで、エンジン油組成物の低温流動性の悪化を大幅に抑制することができる。 When the engine oil composition of the present invention contains an ashless dispersant, the content of the ashless dispersant is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, based on the total amount of the engine oil composition. It is. Furthermore, it is more preferably 2.5% by mass or more, and most preferably 5% by mass or more. By making the content of the ashless dispersant 0.1% by mass or more, the effect of improving friction reduction is sufficiently obtained. On the other hand, by making it 20% by mass or less, the low temperature fluidity of the engine oil composition is deteriorated. It can be greatly suppressed.
 上記ホウ素化コハク酸イミド等のホウ素化無灰分散剤を用いる場合、エンジン油組成物中のホウ素含有量は、エンジン油組成物全量基準で、通常0.01質量%以上、好ましくは0.02質量%以上、より好ましくは0.025質量%以上であり、また、0.15質量%以下、好ましくは0.1質量%以下、特に好ましくは0.05質量%以下である。
 本発明においては、無灰分散剤としてホウ素化コハク酸イミド及び非ホウ素化コハク酸イミドの両者を含有することが好ましい。ホウ素化コハク酸イミドの非ホウ素化コハク酸イミドに対する比率は、0.1以上が好ましく、0.2以上がより好ましく、さらに0.3以上が好ましい。また0.6以下が好ましく、0.5以下がさらに好ましく、0.4以下がさらにより好ましい。上記比率を0.1以上とすることで、ホウ素化コハク酸イミドの耐熱性と、耐摩耗性の効果を維持することができ、また0.6以下とすることで、清浄性を維持することができる。
When a boronated ashless dispersant such as the boronated succinimide is used, the boron content in the engine oil composition is usually 0.01% by mass or more, preferably 0.02% by mass based on the total amount of the engine oil composition. % Or more, more preferably 0.025 mass% or more, and 0.15 mass% or less, preferably 0.1 mass% or less, particularly preferably 0.05 mass% or less.
In the present invention, it is preferable to contain both a boronated succinimide and a non-borated succinimide as an ashless dispersant. The ratio of the boronated succinimide to the non-borated succinimide is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.3 or more. Moreover, 0.6 or less is preferable, 0.5 or less is more preferable, and 0.4 or less is still more preferable. When the ratio is 0.1 or more, the heat resistance and wear resistance effect of the boronated succinimide can be maintained, and when the ratio is 0.6 or less, cleanliness is maintained. Can do.
 本発明のエンジン油組成物は、酸化防止剤を含有することができる。
 酸化防止剤としては、フェノール系酸化防止剤やアミン系酸化防止剤等の無灰系酸化防止剤や有機金属系酸化防止剤等、潤滑油に一般的に使用されているものであれば使用可能である。酸化防止剤の添加により、エンジン油組成物の酸化防止性をより高められ、腐食又は腐食摩耗防止性能を高めるだけでなく、塩基価維持性をより高めることができる。
The engine oil composition of the present invention can contain an antioxidant.
Antioxidants can be used as long as they are commonly used in lubricating oils, such as ashless antioxidants such as phenolic antioxidants and amine antioxidants, and organometallic antioxidants. It is. By adding the antioxidant, the antioxidant property of the engine oil composition can be further improved, and not only the corrosion or corrosion wear prevention performance can be improved, but also the base number maintenance property can be further improved.
 フェノール系酸化防止剤としては、例えば、4,4'-メチレンビス(2,6-ジ-tert-ブチルフェノール)、4,4'-ビス(2,6-ジ-tert-ブチルフェノール)、4,4'-ビス(2-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4'-イソプロピリデンビス(2,6-ジ-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-ノニルフェノール)、2,2'-イソブチリデンビス(4,6-ジメチルフェノール)、2,2'-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,4-ジメチル-6-tert-ブチルフェノール、2,6-ジ-tert-α-ジメチルアミノ-p-クレゾール、2,6-ジ-tert-ブチル-4(N,N'-ジメチルアミノメチルフェノール)、4,4'-チオビス(2-メチル-6-tert-ブチルフェノール)、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2'-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3-メチル-4-ヒドロキシ-5-tert-ブチルベンジル)スルフィド、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、2,2'-チオ-ジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、3-メチル-5-tert-ブチル-4-ヒドロキシフェニル置換脂肪酸エステル類を好ましい例として挙げることができる。これらは二種以上を混合して使用してもよい。 Examples of phenolic antioxidants include 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2,6-di-tert-butylphenol), 4,4 ′. -Bis (2-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-isopropylidenebis (2,6-di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6) -Nonylphenol), 2,2'-isobutylidenebis (4,6-dimethylphenol), 2,2'-methylenebis (4-methyl-6-cyclo (Hexylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,4-dimethyl-6-tert-butylphenol, 2,6- Di-tert-α-dimethylamino-p-cresol, 2,6-di-tert-butyl-4 (N, N′-dimethylaminomethylphenol), 4,4′-thiobis (2-methyl-6-tert) -Butylphenol), 4,4'-thiobis (3-methyl-6-tert-butylphenol), 2,2'-thiobis (4-methyl-6-tert-butylphenol), bis (3-methyl-4-hydroxy-) 5-tert-butylbenzyl) sulfide, bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 2,2′-thio- Diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tridecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythrityl- Tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, octadecyl-3- ( Preferred examples include 3,5-di-tert-butyl-4-hydroxyphenyl) propionate and 3-methyl-5-tert-butyl-4-hydroxyphenyl substituted fatty acid esters. You may use these in mixture of 2 or more types.
 アミン系酸化防止剤としては、例えば、芳香族系アミン系酸化防止剤であるフェニル-α-ナフチルアミン、アルキルフェニル-α-ナフチルアミン、及びジアルキルジフェニルアミンを挙げることができる。これらは二種以上を混合して使用してもよい。 Examples of amine antioxidants include aromatic amine antioxidants such as phenyl-α-naphthylamine, alkylphenyl-α-naphthylamine, and dialkyldiphenylamine. You may use these in mixture of 2 or more types.
 上記フェノール系酸化防止剤、アミン系酸化防止剤を単独で使用することができるが、組み合わせて配合することが好ましい。配合割合としては、フェノール系酸化防止剤とアミン系酸化防止剤の合計量に対し、アミン系酸化防止剤が10質量%以上であることが好ましく、20質量%以上がより好ましく、40質量%以上がさらに好ましい。また80質量%以下が好ましく、60質量%以下がより好ましい。 The above phenolic antioxidants and amine antioxidants can be used alone, but are preferably combined in combination. As a blending ratio, the amine antioxidant is preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 40% by mass or more with respect to the total amount of the phenolic antioxidant and the amine antioxidant. Is more preferable. Moreover, 80 mass% or less is preferable, and 60 mass% or less is more preferable.
 本発明のエンジン油組成物においては、その性能をさらに向上させる目的で、必要に応じて、上記添加剤の他に、(B)成分以外の他の摩擦調整剤、さらには摩耗防止剤(極圧剤とも称す)腐食防止剤、防錆剤、抗乳化剤、金属不活性化剤、流動点降下剤、ゴム膨潤剤、消泡剤、着色剤等の各種添加剤を単独で又は数種類組み合わせて配合しても良い。 In the engine oil composition of the present invention, for the purpose of further improving the performance, if necessary, in addition to the above additives, other friction modifiers other than the component (B), and further, an antiwear agent (extra pole) (Also called pressure agent) Corrosion inhibitors, rust inhibitors, demulsifiers, metal deactivators, pour point depressants, rubber swelling agents, antifoaming agents, colorants, etc. You may do it.
 他の摩擦調整剤としては、有機モリブデン化合物及び無灰摩擦調整剤から選ばれる摩擦調整剤等が挙げられる。
 有機モリブデン化合物としては、例えば、モリブデンジチオホスフェート、モリブデンジチオカーバメート等の硫黄を含有する有機モリブデン化合物、モリブデン化合物と、硫黄含有有機化合物あるいはその他の有機化合物との錯体、あるいは、硫化モリブデン、硫化モリブデン酸等の硫黄含有モリブデン化合物とアルケニルコハク酸イミドとの錯体を挙げることができる。
Examples of other friction modifiers include friction modifiers selected from organic molybdenum compounds and ashless friction modifiers.
Examples of organic molybdenum compounds include sulfur-containing organic molybdenum compounds such as molybdenum dithiophosphate and molybdenum dithiocarbamate, complexes of molybdenum compounds with sulfur-containing organic compounds or other organic compounds, molybdenum sulfide, and sulfurized molybdenum acid. And a complex of a sulfur-containing molybdenum compound such as alkenyl succinimide.
 有機モリブデン化合物を用いる場合、その含有量は特に制限されないが、エンジン油組成物全量を基準として、モリブデン元素換算で、好ましくは0.005質量%以上、さらに好ましくは0.01質量%以上、特に好ましくは0.03質量%以上であり、また、好ましくは0.2質量%以下、より好ましくは0.1質量%以下、更に好ましくは0.08質量%以下である。その含有量を0.005質量%以上とすることで、エンジン油組成物の熱・酸化安定性を維持でき、特に、長期間に渡って優れた清浄性を維持させることが期待できる。一方、含有量が0.2質量%を超える場合、含有量に見合う効果が得られず、また、エンジン油組成物の貯蔵安定性が低下する傾向にある。 When the organic molybdenum compound is used, the content is not particularly limited, but is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, particularly preferably 0.01% by mass or more, in terms of molybdenum element, based on the total amount of the engine oil composition. Preferably it is 0.03 mass% or more, Preferably it is 0.2 mass% or less, More preferably, it is 0.1 mass% or less, More preferably, it is 0.08 mass% or less. By setting the content to 0.005% by mass or more, it is possible to maintain the heat and oxidation stability of the engine oil composition, and in particular, it can be expected to maintain excellent cleanliness over a long period of time. On the other hand, when content exceeds 0.2 mass%, the effect corresponding to content will not be acquired and it exists in the tendency for the storage stability of an engine oil composition to fall.
 無灰摩擦調整剤としては、潤滑油用の摩擦調整剤として通常用いられる任意の化合物が使用可能である。例えば、炭素数6~30のアルキル基またはアルケニル基、特に炭素数6~30の直鎖アルキル基または直鎖アルケニル基を分子中に少なくとも1個有する、アミン化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル等の無灰摩擦調整剤が挙げられる。また窒素含有化合物及びその酸変性誘導体からなる群より選ばれる1種以上の化合物や、国際公開第2005/037967号パンフレットに例示される各種無灰摩擦調整剤が挙げられる。 As the ashless friction modifier, any compound usually used as a friction modifier for lubricating oils can be used. For example, an amine compound, a fatty acid ester, a fatty acid amide, a fatty acid, having at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, in particular, a linear alkyl group or linear alkenyl group having 6 to 30 carbon atoms in the molecule, Examples include ashless friction modifiers such as aliphatic alcohols and aliphatic ethers. Moreover, 1 or more types of compounds chosen from the group which consists of a nitrogen-containing compound and its acid modification derivative, and various ashless friction modifiers illustrated by the international publication 2005/037967 pamphlet are mentioned.
 無灰摩擦調整剤を用いる場合、その含有量は、エンジン油組成物全量を基準として、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、また、好ましくは3質量%以下、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。無灰摩擦調整剤の含有量を0.01質量%以上とすることで、その添加による摩擦低減効果が得られ、また3質量%以下とすることで、耐摩耗性添加剤などの効果に影響を及ぼさず、あるいは添加剤の溶解性を確保できる。 When using an ashless friction modifier, the content thereof is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.3% by mass, based on the total amount of the engine oil composition. Further, it is preferably 3% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less. By making the content of the ashless friction modifier 0.01% by mass or more, an effect of reducing friction by adding the ashless friction modifier can be obtained, and by making it 3% by mass or less, the effect of the antiwear additive etc. is affected. The solubility of the additive can be ensured.
 摩耗防止剤としては、潤滑油に用いられる任意の摩耗防止剤・極圧剤が使用できる。例えば、硫黄系、リン系、硫黄-リン系の極圧剤が使用できる。
 本発明においてはアルキルジチオリン酸亜鉛が有効である。アルキル基は炭素数3から12のものが通常使用される。本発明においては、1級アルキル基と2級アルキル基をもつアルキルジチオリン酸亜鉛を使用することが、極圧性と酸化安定性のバランスを取るために好ましい。1級の2級に対する比率は、0.3以上が好ましく、より好ましくは0.5以上、最も好ましくは0.55以上である。また0.8以下が好ましく0.7以下がより好ましい。0.3未満では酸化安定性が不足する可能性があり、0.8を超えると極圧性が不足する可能性がある。なお、1級と2級のアルキル基の併用は、同一アルキルジチオリン酸亜鉛内であってもよいし、異なるアルキルジチオリン酸亜鉛の混合物であってもよい。
As the antiwear agent, any antiwear agent / extreme pressure agent used for lubricating oil can be used. For example, sulfur-based, phosphorus-based, and sulfur-phosphorus extreme pressure agents can be used.
In the present invention, zinc alkyldithiophosphate is effective. Alkyl groups having 3 to 12 carbon atoms are usually used. In the present invention, it is preferable to use a zinc alkyldithiophosphate having a primary alkyl group and a secondary alkyl group in order to balance extreme pressure and oxidation stability. The ratio of primary to secondary is preferably 0.3 or more, more preferably 0.5 or more, and most preferably 0.55 or more. Moreover, 0.8 or less is preferable and 0.7 or less is more preferable. If it is less than 0.3, the oxidation stability may be insufficient, and if it exceeds 0.8, the extreme pressure property may be insufficient. In addition, the combined use of primary and secondary alkyl groups may be within the same zinc alkyldithiophosphate, or may be a mixture of different zinc alkyldithiophosphates.
 アルキルジチオリン酸亜鉛を用いる場合、その含有量は、エンジン油組成物全量を基準として、リン元素量で0.02質量%以上が好ましく、0.05質量%がより好ましく、0.08質量%以上がさらに好ましい。また0.2質量%以下が好ましく、0.15質量%以下がより好ましく、0.1質量%以下がさらに好ましい。0.02質量%以上とすることで十分な極圧性が得られ、0.2質量%以下とすることで、排気ガス後処理装置への悪影響を抑制できる。 In the case of using a zinc alkyldithiophosphate, the content thereof is preferably 0.02% by mass or more, more preferably 0.05% by mass, and more preferably 0.08% by mass or more in terms of phosphorus element, based on the total amount of the engine oil composition. Is more preferable. Moreover, 0.2 mass% or less is preferable, 0.15 mass% or less is more preferable, and 0.1 mass% or less is further more preferable. Sufficient extreme pressure property is obtained by setting it as 0.02 mass% or more, and the bad influence to an exhaust-gas aftertreatment apparatus can be suppressed by setting it as 0.2 mass% or less.
 腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、又はイミダゾール系、エポキシ系化合物が挙げられる。 Examples of the corrosion inhibitor include benzotriazole, tolyltriazole, thiadiazole, imidazole, and epoxy compounds.
 防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、又は多価アルコールエステルが挙げられる。 Examples of the rust preventive include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.
 抗乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、又はポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤が挙げられる。 Examples of the demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, or polyoxyethylene alkyl naphthyl ether.
 金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾール又はその誘導体、1,3,4-チアジアゾールポリスルフィド、1,3,4-チアジアゾリル-2,5-ビスジアルキルジチオカーバメート、2-(アルキルジチオ)ベンゾイミダゾール、又はβ-(o-カルボキシベンジルチオ)プロピオンニトリルが挙げられる。 Examples of the metal deactivator include imidazoline, pyrimidine derivatives, alkylthiadiazole, mercaptobenzothiazole, benzotriazole or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bis. Examples include dialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, or β- (o-carboxybenzylthio) propiononitrile.
 これらの添加剤を本発明のエンジン油組成物に含有させる場合の含有量は、エンジン油組成物全量基準で、通常それぞれ0.01~10質量%が好ましい。 When these additives are contained in the engine oil composition of the present invention, the content is usually preferably 0.01 to 10% by mass based on the total amount of the engine oil composition.
 上記流動点降下剤としては、例えば、使用する潤滑油基油に適合するポリメタクリレート系のポリマーが使用できる。重量平均分子量としては150,000以下が好ましく、100,000以下がより好ましく、80,000以下がさらに好ましい。また20,000以上が好ましく、40,000以上がより好ましい。150,000以下とすることで、目的の製品粘度が確保でき20,000以上とすることで流動点降下剤としての機能を維持できる。本発明の潤滑油組成物に流動点降下剤を含有させる場合、その含有量は、本発明のエンジン油組成物全量基準で、通常0.005~5質量%の範囲から選ばれる。 As the pour point depressant, for example, a polymethacrylate polymer compatible with the lubricating base oil to be used can be used. The weight average molecular weight is preferably 150,000 or less, more preferably 100,000 or less, and still more preferably 80,000 or less. Moreover, 20,000 or more are preferable and 40,000 or more are more preferable. By setting it as 150,000 or less, the target product viscosity can be ensured and the function as a pour point depressant can be maintained by setting it as 20,000 or more. When the pour point depressant is contained in the lubricating oil composition of the present invention, the content thereof is usually selected from the range of 0.005 to 5% by mass based on the total amount of the engine oil composition of the present invention.
 消泡剤としては、例えば、25℃における動粘度が1,000~100,000mm2/sのシリコーンオイル、アルケニルコハク酸誘導体、ポリヒドロキシ脂肪族アルコールと長鎖脂肪酸のエステル、メチルサリチレート、o-ヒドロキシベンジルアルコールが挙げられる。
 消泡剤を本発明のエンジン油組成物に含有させる場合の含有量は、エンジン油組成物全量基準で、通常0.0001~0.01質量%が好ましい。
Examples of antifoaming agents include silicone oils having a kinematic viscosity at 25 ° C. of 1,000 to 100,000 mm 2 / s, alkenyl succinic acid derivatives, esters of polyhydroxy aliphatic alcohols and long chain fatty acids, methyl salicylates, o-Hydroxybenzyl alcohol.
When the antifoaming agent is contained in the engine oil composition of the present invention, the content is usually preferably 0.0001 to 0.01% by mass based on the total amount of the engine oil composition.
 本発明のエンジン油組成物の粘度指数は140以上が好ましく、150以上がより好ましく、160以上がさらに好ましい。粘度指数を140以上とすることで、低温時においても十分な省燃費性の発揮が期待できる。粘度指数の上限については特に制限はない。 The viscosity index of the engine oil composition of the present invention is preferably 140 or more, more preferably 150 or more, and still more preferably 160 or more. By setting the viscosity index to 140 or more, sufficient fuel saving performance can be expected even at low temperatures. There is no particular limitation on the upper limit of the viscosity index.
 本発明のエンジン油組成物の100℃における動粘度は5.6mm2/s以上が好ましく、9.3mm2/s以上がより好ましい。また12.5mm2/s以下が好ましく、11.5mm2/s以下がより好ましい。100℃における動粘度を12.5mm2/s以下とすることで、省燃費効果に影響を与えず、5.6mm2/s以上とすることで、エンジン油圧の低下を抑制し、焼付きの発生を抑えることができる。 Kinematic viscosity at 100 ° C. of the engine oil composition of the present invention is preferably at least 5.6 mm 2 / s, more preferably at least 9.3 mm 2 / s. Moreover, 12.5 mm < 2 > / s or less is preferable and 11.5 mm < 2 > / s or less is more preferable. By setting the kinematic viscosity at 100 ° C. to 12.5 mm 2 / s or less, the fuel economy effect is not affected, and by setting it to 5.6 mm 2 / s or more, a decrease in engine oil pressure is suppressed, and seizure occurs. Occurrence can be suppressed.
 エンジン油組成物の、剪断速度1×106-1、100℃で測定した高温高剪断粘度(a)に対する、剪断速度1×107-1、100℃で測定した高温高剪断粘度(b)の比(b/a)は、好ましくは0.85以下、特に好ましくは0.80未満となるようにすることで、省燃費性の低下を抑制することができる。上記(b/a)の下限値は特に限定されないが、通常0.77程度である。また、剪断速度1×106-1での粘度を一定に保ち、1×107-1での粘度を低減することにより良好な省燃費性を発揮することができる。具体的には、前者が6.0mPa・s以上、特に6.4mPa・s以上、後者が5.5mPa・s以下、特に5.2mPa・s以下の値を両立することが好ましい。 The high temperature and high shear viscosity measured at 100 ° C. with a shear rate of 1 × 10 7 s −1 against the high temperature and high shear viscosity (a) of the engine oil composition measured at 100 ° C. with a shear rate of 1 × 10 6 s −1 ( The ratio (b / a) of b) is preferably 0.85 or less, particularly preferably less than 0.80, so that a reduction in fuel economy can be suppressed. The lower limit of (b / a) is not particularly limited, but is usually about 0.77. Moreover, good fuel economy can be exhibited by keeping the viscosity at a shear rate of 1 × 10 6 s −1 constant and reducing the viscosity at 1 × 10 7 s −1 . Specifically, it is preferable that the former is 6.0 mPa · s or more, particularly 6.4 mPa · s or more, and the latter is 5.5 mPa · s or less, particularly 5.2 mPa · s or less.
 本発明のエンジン油組成物は、種々のエンジン機関に適用でき、特に限定されないが、ディーゼルエンジン機関に用いることが好ましい。 The engine oil composition of the present invention can be applied to various engine engines, and is not particularly limited, but is preferably used for diesel engine engines.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 省燃費性の指標として高温高剪断粘度、及び耐摩耗性について、以下に示すようにして測定し、評価した。
1.エンジン油組成物の高温高剪断粘度(HTHS粘度)
 省燃費性に影響を及ぼす、剪断速度1×106-1及び1×107-1での高温高剪断粘度を次のようにして測定した。なお、剪断速度1×106-1での高温高剪断粘度はASTM D4683-10に準拠して測定し、剪断速度1×107-1での高温高剪断粘度は、PCS Instruments社製のUSV粘度計を用いて測定した。測定温度はいずれも100℃である。
 なお、剪断速度1×106-1での粘度を一定に保ち、1×107-1での粘度を低減することにより良好な省燃費性を発揮することができる。具体的には、前者が6.0mPa・s以上、後者が5.5mPa・s以下の値を両立することが好ましい。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
High temperature and high shear viscosity and abrasion resistance were measured and evaluated as shown below as indicators of fuel economy.
1. High temperature high shear viscosity (HTHS viscosity) of engine oil composition
High temperature and high shear viscosity at shear rates of 1 × 10 6 s −1 and 1 × 10 7 s −1 , which affect fuel economy, were measured as follows. The high temperature and high shear viscosity at a shear rate of 1 × 10 6 s −1 was measured according to ASTM D4683-10, and the high temperature and high shear viscosity at a shear rate of 1 × 10 7 s −1 was manufactured by PCS Instruments. Of USV viscometer. The measurement temperature is 100 ° C. for all.
In addition, good fuel economy can be exhibited by keeping the viscosity at a shear rate of 1 × 10 6 s −1 constant and reducing the viscosity at 1 × 10 7 s −1 . Specifically, it is preferable that the former is 6.0 mPa · s or more and the latter is 5.5 mPa · s or less.
2.エンジン油組成物の耐摩耗性
 シェル四球試験装置を使用してエンジン油組成物の耐摩耗性を評価した。試験法としてはASTM D2266に準拠した。ただし、試験条件は回転速度1800rpm、荷重492N、油温120℃、試験時間1分間である。
2. Abrasion resistance of engine oil composition The wear resistance of the engine oil composition was evaluated using a shell four-ball test apparatus. The test method conformed to ASTM D2266. However, the test conditions are a rotation speed of 1800 rpm, a load of 492 N, an oil temperature of 120 ° C., and a test time of 1 minute.
 実施例1
 以下に示す成分を使用し、表1に示す配合組成(質量部)の実施例1に係るエンジン油組成物を調製した。この実施例1のエンジン油組成物について、上記1.高温高剪断粘度、及び2.耐摩耗性を評価した。評価結果を表1に示す。
(1)潤滑油基油:基油A;水素化分解、接触脱ろう基油。詳細は、表1の欄外に示す。
(2-1)スターポリマーA-1:VM-A;SV261(インフィニアム社製);Mw 430,000、PSSI 25
(2-2)ポリマーA-2:VM-B;窒素含有基を有するポリメタクリレート、Mw260,000、PSSI 50、窒素含有量0.1質量%
(3-1)(B)成分:オレイルアミド
(4)金属系清浄剤及び酸化防止剤:表2に示す成分を有する組成物(以下、パッケージ添加剤と称する)。なお、表2に示す各成分の含有量は、(1)のエンジン油組成物全量を100質量部としたときの質量部である。
Example 1
Using the components shown below, an engine oil composition according to Example 1 having a formulation composition (parts by mass) shown in Table 1 was prepared. About the engine oil composition of Example 1, the above 1. 1. high temperature high shear viscosity, and Abrasion resistance was evaluated. The evaluation results are shown in Table 1.
(1) Lubricating base oil: Base oil A; hydrocracking, catalytic dewaxing base oil. Details are shown in the margin of Table 1.
(2-1) Star polymer A-1: VM-A; SV261 (manufactured by Infinium); Mw 430,000, PSSI 25
(2-2) Polymer A-2: VM-B; polymethacrylate having nitrogen-containing group, Mw 260,000, PSSI 50, nitrogen content 0.1% by mass
(3-1) Component (B): Oleylamide (4) Metal-based detergent and antioxidant: A composition having the components shown in Table 2 (hereinafter referred to as package additive). In addition, content of each component shown in Table 2 is a mass part when the engine oil composition whole quantity of (1) is 100 mass parts.
 実施例2~5
 基油と各添加剤を表1及び表2に示す配合量で配合し、各実施例のエンジン油組成物を調製した。各エンジン油組成物について、実施例1と同様、上記1.高温高剪断粘度、及び2.耐摩耗性を評価した。結果を表1に示す。
 ここで、上記した成分以外の成分は次の通りである。
(1)潤滑油基油:基油B;水素化分解、接触脱ろう基油。詳細は、表1の欄外に示す。
(5)流動点降下剤(PPD):ポリメタクリレート、重量平均分子量55800
Examples 2-5
The base oil and each additive were mix | blended with the compounding quantity shown in Table 1 and Table 2, and the engine oil composition of each Example was prepared. Each engine oil composition is the same as in Example 1 above. 1. high temperature high shear viscosity, and Abrasion resistance was evaluated. The results are shown in Table 1.
Here, components other than the above-described components are as follows.
(1) Lubricating base oil: Base oil B; hydrocracking, catalytic dewaxing base oil. Details are shown in the margin of Table 1.
(5) Pour point depressant (PPD): polymethacrylate, weight average molecular weight 55800
 比較例1~9
 基油と各添加剤を表1及び表2に示す配合量で配合し、各比較例のエンジン油組成物を調製した。各エンジン油組成物について、実施例1と同様、上記1.高温高剪断粘度、及び2.耐摩耗性を評価した。評価結果を表1に示す。
 なお、比較例1~8は省燃費性を優先させて、高温高剪断粘度を設定したものであり、各実施例とほぼ同等の高温高剪断粘度特性となっている。一方、比較例9は、耐摩耗性を優先して設定したもので、実施例及び他の比較例より高い高温高剪断粘度となっており、特に1×107-1での粘度が5.5mPa・sを大きく超えている。
 ここで、上記した成分以外の成分は次の通りである。
(2-3)(A)成分以外の粘度指数向上剤:
 VM-C;窒素含有基を有するポリメタクリレート、Mw100,000、PSSI 5、窒素含有量0.2質量%
 VM-D;ポリメタクリレート、Mw430,000、PSSI 5
 VM-E; ポリメタクリレート、Mw450,000、PSSI 5
 VM-F;ポリメタクリレート、Mw380,000、PSSI 25
(3-2)(B)成分以外の摩擦調整剤:オレイルアミン又はグリセリンモノオレート(旭電化工業株式会社製のアデカキクルーブ FM210)を使用した。
Comparative Examples 1-9
The base oil and each additive were mix | blended with the compounding quantity shown in Table 1 and Table 2, and the engine oil composition of each comparative example was prepared. Each engine oil composition is the same as in Example 1 above. 1. high temperature high shear viscosity, and Abrasion resistance was evaluated. The evaluation results are shown in Table 1.
In Comparative Examples 1 to 8, priority is given to fuel saving, and high temperature and high shear viscosity is set. The high temperature and high shear viscosity characteristics are almost the same as those of the examples. On the other hand, Comparative Example 9 is set with priority on wear resistance, and has a higher high-temperature and high-shear viscosity than the examples and other comparative examples. Particularly, the viscosity at 1 × 10 7 s −1 is 5 Greatly exceeds 5 mPa · s.
Here, components other than the above-described components are as follows.
(2-3) Viscosity index improver other than component (A):
VM-C: polymethacrylate having nitrogen-containing groups, Mw 100,000, PSSI 5, nitrogen content 0.2% by mass
VM-D; polymethacrylate, Mw 430,000, PSSI 5
VM-E; polymethacrylate, Mw 450,000, PSSI 5
VM-F; polymethacrylate, Mw 380,000, PSSI 25
(3-2) Friction modifier other than component (B): oleylamine or glycerin monooleate (Adeka Cruve FM210 manufactured by Asahi Denka Kogyo Co., Ltd.) was used.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1から明らかなように、スターポリマーA-1、ポリマーA-2、及び(B)成分を使用した各実施例のエンジン油は、比較例1~9のエンジン油に比して顕著に優れた省燃費性と耐摩耗性の両立を達成している。
 すなわち、各実施例のエンジン油組成物は、比較例1~8と同等の低い高温高剪断粘度特性を有し、省燃費性に優れる性能を発揮しつつ、比較例1~8より顕著に良好な耐摩耗性も有している。この各実施例の耐摩耗性は、省燃費性を期待できない高い高温高剪断粘度特性を持つ比較例9と同等の性能であり、このことから、省燃費性と耐摩耗性が高度に両立されていることが判る。
As is apparent from Table 1, the engine oil of each example using the components of star polymer A-1, polymer A-2, and (B) was significantly superior to the engine oils of comparative examples 1-9. Achieves both fuel saving and wear resistance.
That is, the engine oil composition of each example has a low high-temperature high-shear viscosity characteristic equivalent to that of Comparative Examples 1 to 8 and exhibits performance excellent in fuel saving performance, while being significantly better than Comparative Examples 1 to 8. It also has excellent wear resistance. The wear resistance of each of the examples is equivalent to that of Comparative Example 9 having high high temperature and high shear viscosity characteristics in which fuel saving performance cannot be expected. Therefore, both fuel saving performance and wear resistance are highly compatible. You can see that

Claims (6)

  1.  飽和分が70質量%以上、及び粘度指数が90以上、160以下の潤滑油基油と、
     (A)スターポリマーA-1及び重量平均分子量が200,000以上、400,000以下の窒素含有基を有するポリマーA-2と、
     (B)アミド化合物及びイミド化合物の少なくとも1種と、を含むエンジン油組成物。
    A lubricating base oil having a saturated content of 70% by mass or more and a viscosity index of 90 or more and 160 or less,
    (A) a star polymer A-1 and a polymer A-2 having a nitrogen-containing group having a weight average molecular weight of 200,000 or more and 400,000 or less,
    (B) An engine oil composition comprising at least one of an amide compound and an imide compound.
  2.  前記スターポリマーA-1が、ポリアルケニル化合物であるコア、及び該コアに結合する4~15のアームを有するポリマーである、請求項1に記載のエンジン油組成物。 The engine oil composition according to claim 1, wherein the star polymer A-1 is a polymer having a core which is a polyalkenyl compound and 4 to 15 arms bonded to the core.
  3.  前記潤滑油基油の100℃動粘度が1.0~10.0mm2/sである、請求項1又は2に記載のエンジン油組成物。 The engine oil composition according to claim 1 or 2, wherein the lubricating base oil has a kinematic viscosity at 100 ° C of 1.0 to 10.0 mm 2 / s.
  4.  前記エンジン油組成物の100℃動粘度が5.6mm2/s以上、12.5mm2/s以下であり、剪断速度1×106-1、100℃で測定した高温高剪断粘度が6.0mPa・s以上である、請求項1~3のいずれかに記載のエンジン油組成物。 The engine oil composition has a kinematic viscosity at 100 ° C. of 5.6 mm 2 / s to 12.5 mm 2 / s, a shear rate of 1 × 10 6 s −1 , and a high temperature high shear viscosity measured at 100 ° C. of 6 The engine oil composition according to any one of claims 1 to 3, wherein the engine oil composition is 0.0 mPa · s or more.
  5.  前記エンジン油組成物の、剪断速度1×106-1、100℃で測定した高温高剪断粘度(a)に対する、剪断速度1×107-1、100℃で測定した高温高剪断粘度(b)の比(b/a)が0.85以下である、請求項1~4のいずれかに記載のエンジン油組成物。 High temperature high shear viscosity measured at 100 ° C. with a shear rate of 1 × 10 7 s −1 with respect to the high temperature high shear viscosity (a) measured at 100 ° C. with a shear rate of 1 × 10 6 s −1 of the engine oil composition. The engine oil composition according to any one of claims 1 to 4, wherein the ratio (b / a) of (b) is 0.85 or less.
  6.  ディーゼルエンジン用であることを特徴とする、請求項1~5のいずれかに記載のエンジン油組成物。 6. The engine oil composition according to claim 1, wherein the engine oil composition is used for a diesel engine.
PCT/JP2015/054758 2014-03-24 2015-02-20 Engine oil composition WO2015146396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-059669 2014-03-24
JP2014059669A JP6249845B2 (en) 2014-03-24 2014-03-24 Engine oil composition

Publications (1)

Publication Number Publication Date
WO2015146396A1 true WO2015146396A1 (en) 2015-10-01

Family

ID=54194931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054758 WO2015146396A1 (en) 2014-03-24 2015-02-20 Engine oil composition

Country Status (2)

Country Link
JP (1) JP6249845B2 (en)
WO (1) WO2015146396A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518051A (en) * 2004-10-25 2008-05-29 ザ ルブリゾル コーポレイション Methods for preparing polymers and compositions thereof
WO2011077811A1 (en) * 2009-12-24 2011-06-30 Jx日鉱日石エネルギー株式会社 System lubricant oil composition for crosshead-type diesel engine
JP2012532958A (en) * 2009-07-08 2012-12-20 ザ ルブリゾル コーポレイション Polymer blends useful as viscosity modifiers
WO2013046484A1 (en) * 2011-09-27 2013-04-04 Jx日鉱日石エネルギー株式会社 System-oil composition for crosshead diesel engine
JP2013512313A (en) * 2009-11-24 2013-04-11 ザ ルブリゾル コーポレイション Lubricating composition comprising a combination of viscosity modifiers
WO2014017556A1 (en) * 2012-07-24 2014-01-30 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
WO2014156306A1 (en) * 2013-03-28 2014-10-02 Jx日鉱日石エネルギー株式会社 Fuel-efficient engine oil composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518051A (en) * 2004-10-25 2008-05-29 ザ ルブリゾル コーポレイション Methods for preparing polymers and compositions thereof
JP2012532958A (en) * 2009-07-08 2012-12-20 ザ ルブリゾル コーポレイション Polymer blends useful as viscosity modifiers
JP2013512313A (en) * 2009-11-24 2013-04-11 ザ ルブリゾル コーポレイション Lubricating composition comprising a combination of viscosity modifiers
WO2011077811A1 (en) * 2009-12-24 2011-06-30 Jx日鉱日石エネルギー株式会社 System lubricant oil composition for crosshead-type diesel engine
WO2013046484A1 (en) * 2011-09-27 2013-04-04 Jx日鉱日石エネルギー株式会社 System-oil composition for crosshead diesel engine
WO2014017556A1 (en) * 2012-07-24 2014-01-30 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
WO2014156306A1 (en) * 2013-03-28 2014-10-02 Jx日鉱日石エネルギー株式会社 Fuel-efficient engine oil composition

Also Published As

Publication number Publication date
JP6249845B2 (en) 2017-12-20
JP2015183058A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP5565999B2 (en) Lubricating oil composition
JP5829374B2 (en) Lubricating oil composition
JP7198748B2 (en) Lubricating oil composition for internal combustion engine
JP5689592B2 (en) Lubricating oil composition
JP5809582B2 (en) Lubricating oil composition
WO2010140446A1 (en) Lubricant oil composition
WO2009090921A1 (en) Lubricant composition
WO2011083601A1 (en) Lubricant composition
CN112888769B (en) Lubricating oil composition
WO2011083602A1 (en) Lubricant composition
JPWO2014010462A1 (en) Lubricating oil composition for internal combustion engines
JP5744771B2 (en) Lubricating oil composition
WO2014156306A1 (en) Fuel-efficient engine oil composition
WO2019221296A1 (en) Lubricating oil composition for internal combustion engines
EP3636730B1 (en) Internal combustion engine lubricating oil composition
JP7442287B2 (en) Lubricating oil composition for internal combustion engines
JP5564204B2 (en) Lubricating oil composition
JP2011021056A (en) Lubricating oil composition
JP6310798B2 (en) Lubricating oil composition
JP5815809B2 (en) Lubricating oil composition
JP6249845B2 (en) Engine oil composition
JP5750218B2 (en) Lubricating oil composition
WO2019221295A1 (en) Lubricating oil composition for internal combustion engines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768507

Country of ref document: EP

Kind code of ref document: A1