WO2015146295A1 - Valve state diagnosis system - Google Patents

Valve state diagnosis system Download PDF

Info

Publication number
WO2015146295A1
WO2015146295A1 PCT/JP2015/053046 JP2015053046W WO2015146295A1 WO 2015146295 A1 WO2015146295 A1 WO 2015146295A1 JP 2015053046 W JP2015053046 W JP 2015053046W WO 2015146295 A1 WO2015146295 A1 WO 2015146295A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
diagnosis system
degree
feature amount
state diagnosis
Prior art date
Application number
PCT/JP2015/053046
Other languages
French (fr)
Japanese (ja)
Inventor
遼一 高島
洋平 川口
真人 戸上
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2015146295A1 publication Critical patent/WO2015146295A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0229Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions knowledge based, e.g. expert systems; genetic algorithms

Definitions

  • the present invention relates to a valve state diagnosis system, and relates to a diagnosis technique for determining a valve state based on vibration or the like accompanying opening and closing of a valve.
  • Patent Document 1 As background arts in this technical field, there are Patent Documents 1 and 2, etc., and the summary of Patent Document 1 includes a cycle phase for supplying a vibration sensor installed in a fuel supply valve and a signal indicating opening / closing timing of the fuel supply valve.
  • the vibration measurement signal supplied from the supply device and the vibration sensor and the fuel supply valve opening / closing timing display signal are input, the abnormality of the fuel supply valve is determined based on the vibration accompanying the opening and closing of the fuel supply valve, and the abnormality signal is output.
  • An abnormality transmitting device is provided to detect and alarm the abnormality of the fuel supply valve based on the vibration intensity at the time of opening and closing.
  • Patent Document 1 describes an apparatus and a method for diagnosing an abnormality of a fuel supply valve in a gas engine using a vibration intensity observed by a vibration sensor.
  • Patent Document 2 describes a device that detects an abnormality of a fuel injection valve by using a vibration level.
  • JP 2012-132420 A Japanese Patent Laid-Open No. 10-318027
  • Cited Documents 1 and 2 describe a technique for diagnosing and detecting a valve abnormality using the intensity of vibration, but when diagnosing a valve mounted on some device, it is observed by a vibration sensor. Not only the vibration of the valve but also the mechanical vibration of the device itself is mixed in the signal as noise. And, depending on the type of valve and the device on which the valve is mounted, the effect of these noises on the vibration of the valve is large. There is.
  • An object of the present invention is to provide a valve state diagnosis system that can solve the above-described problems and can monitor and diagnose the valve state robustly against the influence of noise.
  • a valve state diagnosis system includes a sensor that reads valve operation information and a feature amount calculation unit that calculates a feature amount representing a time-varying shape of an output signal from the sensor. And a state determination unit that calculates a degree of abnormality from a feature amount representing a time-varying shape and determines a state of the valve based on the degree of abnormality.
  • a valve state diagnosis system a sensor for reading valve operation information, and concentration of energy in a specific frequency band in a frequency spectrum of an output signal from the sensor.
  • a valve state diagnosis system comprising: a feature amount calculation unit that calculates a feature amount based on the degree; and a state determination unit that calculates an abnormality degree from the feature amount based on the concentration degree and determines a state of the valve based on the abnormality degree I will provide a.
  • FIG. It is a figure which shows an example of the hardware block diagram of the valve state diagnostic system of Example 1.
  • FIG. It is a functional block diagram of the valve state diagnostic system of Example 1.
  • FIG. It is a figure which shows an example of the process flowchart of the valve state diagnostic system of Example 1.
  • FIG. It is a figure which shows typically the valve opening / closing section cutout process in the valve opening / closing section cutout part based on Example 1.
  • FIG. It is a figure which shows an example of the waveform of the vibration signal when the valve of a normal state based on Example 1 is closed, and when it is closed in the state where the foreign material was mixed.
  • FIG. 1 It is a figure which shows an example of an acoustic signal waveform when a valve closes to a normal state or a foreign material mixing state based on Example 1. It is a figure for comparing and explaining the vibration signal waveform at the time of occlusion with the presence or absence of a noise signal in the state where a valve is normal concerning Example 1. It is a figure for comparing and explaining the vibration waveform at the time of occlusion with the presence or absence of a noise signal in the occlusion defective state due to foreign matter mixing, according to the first embodiment. It is a figure for demonstrating the process of normal signal database preparation for learning the normal signal model based on Example 1. FIG. It is a figure which shows an example of the process which learns the normal signal model based on Example 1.
  • FIG. It is a figure which shows an example of the user interface part of the valve state diagnostic system based on Example 1.
  • FIG. It is a figure which shows the frequency spectrum which the vibration signal obtained when the valve of the state which concerns on Example 2 and the state in which the foreign material mixed in closed.
  • Embodiment 1 describes an embodiment of a valve state diagnosis system that monitors and diagnoses the state of a valve.
  • FIG. 1 is a diagram illustrating an example of a hardware configuration diagram of the valve state diagnosis system according to the first embodiment.
  • the valve state diagnosis system 100 includes a central processing unit 101, a storage medium 102, a volatile memory 103, a sensor 104, an AD conversion unit 105, a user interface unit 106, and a power source 107.
  • the valve state diagnosis system 100 diagnoses the valve 111 installed in the device 110 to be diagnosed.
  • the diagnosis target device 110 opens and closes the valve 111 through the device control circuit 112.
  • the sensor 104 observes the signal of the valve 111, and the AD converter 105 converts the analog signal observed by the sensor 104 into a digital signal.
  • the central processing unit 101 stores the converted digital signal in the volatile memory 103.
  • the central processing unit 101 uses the reference signal sent by the device control circuit of the diagnosis target device 110 to cut out only the signal in the section where the valve 111 is opened / closed from the signal stored in the volatile memory 103. After that, the central processing unit 101 calculates a time change shape of the amplitude value from the extracted signal, in other words, calculates a feature amount based on the time change shape.
  • the central processing unit 101 reads the normal signal model 205 stored in the storage medium 102 and calculates the degree of abnormality.
  • the central processing unit 101 discriminates the state according to the degree of abnormality, and outputs the discrimination result to the user interface unit 106 together with information about the extracted waveform.
  • the series of processing is executed by the central processing unit 101 based on a valve state diagnosis program stored in the storage medium 102.
  • Examples of the type of sensor 104 used include a vibration sensor and a microphone.
  • the sensor 104 may be directly attached to the valve 111.
  • the sensor 104 may be installed at a location away from the valve 111 as long as the signal of the valve 111 can be observed.
  • a vibration sensor it can be placed in a place where the vibration of the valve 111 is transmitted, and in the case of a microphone, it can be placed in any place within the range where the sound of the valve 111 can reach.
  • the AD converter 105 may not be introduced when the signal obtained from the sensor 104 is a digital signal.
  • the central processing unit 101, the storage medium 102, and the volatile memory 103 may be newly introduced to construct the valve state diagnosis system 100. If the diagnosis target device 110 has its own central processing unit, storage medium, and volatile memory, and the valve 111 is controlled by software, these may be used.
  • the power source 107 may be introduced separately for each of the valve state diagnosis system 100 and the diagnosis target device 110, and the same power source may be used if possible.
  • the user interface unit 106 may be, for example, a monitor provided in the diagnosis target apparatus 110, or may be a monitor via another PC connected via a network.
  • FIG. 2 is a functional block diagram of the valve state diagnosis system 100 of the present embodiment.
  • an analog signal observed by the observation sensor 104 is converted into a digital signal by the AD conversion unit 105.
  • the converted digital signal is cut out only by the valve opening / closing section cutout unit 201 when the valve is opened or closed.
  • the valve opening / closing section cutout unit 201 receives an opening / closing command signal sent from the device control circuit 112 provided in the diagnosis target apparatus 110 as a reference signal, and uses this reference signal to cut out the valve opening / closing section.
  • the switching delay time is calculated by taking the difference between the switching time read from the information of the reference signal and the time when the signal peak is detected at the surrounding time.
  • the noise signal suppression processing unit 202 reads the extracted signal, suppresses the noise signal included in the signal, and outputs it.
  • a normally used band filter (BPF) or the like may be used as the noise signal suppression processing unit 202.
  • the feature amount calculation unit 203 reads the noise-suppressed signal output from the noise signal suppression processing unit 202, calculates a feature amount representing a time-varying shape of the signal, and outputs it.
  • the abnormality degree calculation unit 204 reads the feature amount output from the feature amount calculation unit 203 and the normal signal model 205 stored in the storage medium 102, calculates the abnormality degree, and outputs it.
  • the state determination unit 206 reads the abnormality level output from the abnormality level calculation unit 204, determines the state of the valve 111, and outputs the determination result.
  • the determined result is presented by the diagnosis result presentation unit 207.
  • the information to be presented includes the degree of abnormality output from the abnormality degree calculation unit 204, the value of each feature amount output from the feature amount calculation unit 203, and noise signal suppression processing. Additional information such as a time signal waveform output from the section 202 or the valve opening / closing section cutout section 201 and an opening / closing delay time output from the valve opening / closing section cutout section 201 may be presented.
  • the presentation method includes, for example, image information presentation via the user interface unit 106, presentation by a braille display, presentation by voice, and printing of image information via a printer.
  • the types of valve states to be identified are the state in which the valve 111 is completely stopped, the valve opening / closing inadequate due to a sudden abnormality such as foreign matter entering the valve 111, and the valve opening / closing due to deterioration over time. It is an inadequate opening / closing state that is inadequate, and a state where deterioration over time has progressed to some extent and the replacement time is approaching.
  • FIG. 3 is a process flowchart of the valve state diagnosis system 100 of the present embodiment.
  • the valve state diagnosis system 100 also starts to operate in synchronization (300).
  • the sensor 104 starts observing a signal for the valve 111 (302).
  • the observed signal is converted into a digital signal by AD conversion processing (303).
  • the opening / closing section of the valve 111 is cut out from the converted digital signal (304).
  • a noise signal suppression process (305) is performed on the extracted signal, and the noise signal is suppressed.
  • a feature value is calculated from the signal subjected to the noise signal suppression process (306) by a feature value calculation process.
  • the degree of abnormality is calculated using the obtained feature amount (307).
  • state determination processing (308) of the valve 111 is performed, and the determination result is presented to the diagnosis result presentation unit 207 by the diagnosis result presentation processing (309).
  • the state determination unit 206 determines whether or not the device should be stopped according to the degree of abnormality (301). If it is determined that the device should be stopped, the termination processing (310) of the diagnosis target device 110 and the valve state diagnosis system 100 is performed. And finishes (311).
  • FIG. 4 is a schematic diagram for explaining a valve opening / closing section cutout processing method in the valve opening / closing section cutout section 201 of the present embodiment.
  • the valve 111 is controlled to be opened and closed by the device control circuit 112.
  • an opening / closing command signal sent from the device control circuit 112 toward the valve 111 is also sent to the valve opening / closing section cutout section 201, so that the time of the valve opening / closing section can be selected from the signals sent from the AD conversion section 105.
  • Information can be obtained. For example, as shown in FIG. 4, if the apparatus control circuit 112 outputs a command signal that is 1 when the valve 111 is open and 0 when the valve 111 is closed.
  • the time when the reference signal is switched from 0 to 1 can be cut out as a signal interval when the valve is opened, and the time when the reference signal is switched from 1 to 0 can be cut out as a signal interval when the valve is closed.
  • the valve opening / closing section cutout unit 201 detects the time Tr at which the absolute value of the signal is maximum in the surrounding section T from the valve opening / closing time Ti read from the reference signal (detection of the peak 401). Is cut out and output as a valve closing signal.
  • the difference (Tr ⁇ Ti) between the valve opening / closing time Ti based on the reference signal and the time Tr at which the peak is detected can also be output as the opening / closing delay time.
  • the noise signal is suppressed from the extracted signal by the noise signal suppression processing unit 202 using BPF or the like, and is sent to the feature amount calculation unit 203.
  • Fig. 5 shows (a) the vibration signal when the normal valve (solenoid valve) is closed and (b) the vibration signal when the valve is closed with foreign matter mixed in, using a vibration sensor.
  • the time signal waveform obtained.
  • the horizontal axis represents time (msec)
  • the vertical axis represents amplitude. The same applies to the following signal waveform diagrams.
  • 6 (a) and 6 (b) are time signal waveforms obtained by recording an acoustic signal using a microphone when the valve (solenoid valve) is closed in a normal state or a foreign matter mixed state. is there.
  • the time variation of the amplitude has a sharp and high peak shape (501 in FIG. 5)
  • the peak ( 502 in FIG. 5 is dull and low, that is, the time change of the amplitude is small and gentle. This is because the foreign matter is mixed and the valve is not sufficiently closed, and the impact when the valve is closed is weakened. Not only foreign substances but also occlusion defects due to aging deteriorate in the same manner.
  • a feature amount representing a time-varying shape of the valve signal is calculated, and a state such as a blockage failure is determined using the feature amount.
  • the feature amount expressing the dullness include a peak value, a difference between a maximum value and a minimum value, a half value width, an amplitude value variance, and a kurtosis.
  • the peak value is the maximum absolute value of the amplitude value in the extracted signal, and takes a high value in a normal state and a low value in a switching failure state.
  • the maximum value and the minimum value are obtained by calculating the difference between the maximum value and the minimum value of the amplitude in the extracted signal. This also takes a high value in a normal state, and takes a low value in a switching failure state.
  • the half-value width represents the width of the peak waveform, and takes a low value in a normal state and a high value in a switching failure state.
  • the dispersion value and kurtosis of the amplitude represent the intensity of fluctuation of the amplitude value, and take a high value in the normal state and a low value in the open / close state.
  • the variance var (x) and kurtosis kur (x) of the amplitude value are calculated by the following equations 1 and 2, respectively.
  • x (n) is the amplitude value of the signal at time n
  • m is the average value of x (n) in the peak peripheral section N.
  • the abnormality is detected using only the intensity of the signal such as the peak value, but in the valve state diagnosis system of the present embodiment, not only the peak value but also these signals are detected. It is possible to diagnose the state robustly against the influence of the noise signal by using the feature amount expressing the time-varying shape.
  • the upper left stage and the upper right stage in FIG. 7 respectively show (a) a vibration signal waveform at closing when there is no noise signal and (b) when there is a noise signal when the valve (solenoid valve) is normal.
  • This is a vibration signal at the time of closing when the driving vibrations are mixed as a noise signal.
  • the amplitude value at the time of closing is shifted in the positive direction due to noise. For this reason, a peak value becomes low compared with the case where there is no noise signal.
  • a normal state may be erroneously detected as an open / close failure.
  • the lower part of FIG. 7 is a graph obtained by normalizing and plotting the difference between each feature value in the normal state (with a noise signal) and each feature amount in the normal state (without a noise signal).
  • the difference in feature quantity representing the time-varying shape according to the present embodiment is small with respect to the difference in vibration level (peak value) with and without the noise signal. It shows that the influence is small.
  • the upper left stage and upper right stage in FIG. 8 are (a) a vibration signal waveform at the time of closing when there is no noise signal and (b) a noise signal being mixed, when the valve (solenoid valve) is in a closed state due to foreign matter mixing. It is a vibration signal at the time of occlusion.
  • the lower left column is (c) a vibration waveform when the valve is closed in a normal state when there is no noise signal.
  • the amplitude value is shifted in the negative direction, contrary to the example of FIG. Therefore, the peak value is higher than when there is no noise signal.
  • the lower right row in FIG. 8 is a difference between (d) each feature amount in the blockage failure state (upper left and upper right) and each feature amount in the normal state (lower left). If there is no noise signal, there is a difference between the normal state and the occlusion failure state for any feature value, but if there is a noise signal, the vibration level (peak value) is the difference between the normal state and the occlusion failure state. Is close to zero. That the difference is small means that it is difficult to distinguish between the occlusion failure state and the normal state.
  • the difference is not as small as in the case of the peak value. Note that the calculation of these feature amounts is performed in a section shorter than the time section displayed in (a) and (b) of FIG. From the above, by using not only the peak value but also the feature value representing the time-varying shape of the amplitude value according to the present embodiment, it is possible to diagnose the open / close failure robustly against the influence of the noise signal.
  • the feature amount output from the feature amount calculation unit 203 of the valve state diagnosis system of FIG. 2 and the normal signal model 205 stored in the storage medium 102 are read, and the abnormality degree calculation unit 204 calculates the degree of abnormality. .
  • FIG. 9 shows the process of creating the normal signal database 208 for learning the normal signal model 205.
  • the process of creating the normal signal database 208 may be performed when the user operates the control target device 110 and the valve state diagnosis system 100. Or you may carry out at the time of apparatus production. For the signal of the valve 111 that operates normally, the valve opening / closing section is cut out and the feature amount is calculated in the same manner as the processing so far. At this time, the noise signal suppression processing unit 202 is not necessary if driving of components other than the valve can be stopped. However, when a noise signal is mixed, the noise signal suppression processing unit 202 should be used as necessary. You can also.
  • valve ⁇ Operate the valve a sufficient number of times, collect a sufficient amount of valve signal features, and save it as a normal signal database 208.
  • the storage destination stores in the storage medium 102 if this processing is performed during operation of the apparatus. If it is performed at the time of production, a storage medium can be separately prepared for processing and stored there.
  • FIG. 10 shows processing for learning the normal signal model 205 in the present embodiment. This processing may also be performed at the time of device operation, or at the time of device production, similarly to the processing of the normal signal database 208.
  • the model learning unit 209 learns the normal signal model 205.
  • a model learning method a known technique such as normal distribution, mixed normal distribution, or 1-class support vector machine may be used.
  • the model learning unit 209 stores the learned normal signal model 208 in the storage medium 102.
  • the abnormality degree calculation unit 204 reads the feature amount output from the feature amount calculation unit 203 and the normal signal model 205 learned and stored in the storage medium 102, and calculates the degree of abnormality. For example, if the mixed normal distribution is used for the learning model, the anomaly can be transformed using an appropriate function such as inputting the likelihood for the mixed normal distribution into the sigmoid function or simply multiplying the coefficient. It is sufficient to use a known method such as
  • the state determination unit 206 reads the degree of abnormality output from the degree of abnormality calculation unit 204, and diagnoses the state of the valve based on the degree of abnormality.
  • the state determination unit 206 determines that the valve is normal if the degree of abnormality is equal to or less than the threshold Th1. If the degree of abnormality is greater than or equal to the threshold Th1, it is determined that there is an abnormality. At this time, the difference from the abnormality degree output at the time of the past N diagnoses is calculated, and if the difference in abnormality degree is equal to or greater than Th2, the abnormality degree is suddenly increased, and thus a sudden blockage failure state Judge as. If the difference in the degree of abnormality is equal to or less than Th2, the degree of abnormality gradually increases, so that it is determined as a blockage failure state due to aged deterioration.
  • the state determination unit 206 determines that the valve 111 becomes a definite abnormality due to deterioration over time. Even if it is not yes, it is determined that the degree of abnormality has increased to some extent, and it is determined that the replacement time of the valve 111 is approaching.
  • the result determined by the state determination unit 206 is output to the diagnosis result presentation unit 207.
  • the determination result is output to the diagnosis result presentation unit 207, and at the same time, a device stop command is output to the device control circuit 112, and the diagnosis target device 110 is stopped. It is also possible to make it.
  • FIG. 11 is a diagram illustrating an example of the user interface unit 106 of the valve state diagnosis system according to the present embodiment.
  • the user interface unit 106 includes a display panel 210, an overall waveform presentation unit 211 that shows an overall waveform, a discrimination target signal presentation unit 212 that presents a discrimination target signal, and discrimination information such as an abnormality degree and a feature amount. And a discrimination information presentation unit 213 that presents a discrimination result, and a discrimination result presentation unit 214 that presents a discrimination result, and an area for displaying each information output from each functional block from the AD conversion unit 105 to the status discrimination unit 206 ing.
  • the discrimination result presentation unit 214 corresponds to the diagnosis result presentation unit 207 shown in FIG. Only the determination result output by the state determination unit 206 may be displayed, but by presenting other information, the user can see the information to make the determination result more reliable.
  • an operation input unit 215 may be added to the display panel 210 so that the user can arbitrarily switch between displaying and hiding these pieces of information.
  • the whole waveform presentation unit 211 displays the signal observed by the sensor 104 converted into a digital signal by the AD conversion unit 105 as it is. By viewing this display, the user can visually confirm the overall operation around the valve.
  • the noise signal suppression processing unit 202 suppresses the noise signal and outputs the signal waveform cut out in the valve opening / closing section output from the valve opening / closing section cut-out unit 201 or the signal.
  • a signal is presented (FIG. 2 shows an example in which a signal waveform after noise signal suppression processing is displayed). By displaying this signal, the user can grasp the operation at the time of opening and closing the valve in more detail than looking at the entire waveform.
  • the discrimination information presentation unit 213 displays the opening / closing delay time output from the valve opening / closing section cutout unit 201, the value of each feature amount output from the feature amount calculation unit 203, and the degree of abnormality output from the abnormality degree calculation unit 204. . By viewing this information, the user can know the basis of the result of the valve state diagnosis system 100 diagnosing the valve 111.
  • the discrimination result presentation unit 214 displays the status discrimination result output from the status discrimination unit 206.
  • the displayed states are a complete stop state of the valve, a sudden opening / closing failure state, an opening / closing failure state due to aging deterioration, and a replacement time recommended state due to aging deterioration. As described above, when the peak value is not detected when the valve is opened and closed, it can be determined that the valve is completely stopped.
  • the user interface unit 106 may not include the operation input unit 215, but can be added.
  • the operation input unit 215 may use a touch panel or a button attached to the apparatus. If the user interface unit 106 is a monitor via another personal computer (PC) connected via a network, a mouse or a keyboard may be used. If an operation input part is added, it becomes possible to switch display / non-display of each feature amount or the like when the operation input part receives an input from the user. Further, when the user inputs the current time and the operation input unit 215 accepts the current time and stores it in the storage medium 102, the determination result is output to the determination result presenting unit 214 together with the state determination result. Displayed time can be displayed. As a result, the user can grasp when the abnormality has occurred in the valve.
  • the difference between the present embodiment and the first embodiment is only the processing contents in the feature amount calculation unit 203 in the system shown in FIG.
  • the feature amount calculation unit 203 reads the valve vibration signal or the acoustic signal, and calculates the feature amount that represents and represents the time-varying shape of the signal.
  • the signal is subjected to frequency analysis. Apply and calculate the feature quantity that represents the shape of the frequency spectrum.
  • FIG. 12 is a frequency spectrum obtained by performing frequency analysis on a vibration signal when a valve (solenoid valve) in a normal state and (b) a foreign substance is mixed is closed. Both frequency spectra when the valve is closed are shaped with a single peak. Since the valve vibration in the normal state has a time waveform having a sharp peak as shown in FIG. 5, the frequency spectrum has energy over a wide area as compared with the foreign substance mixed state. On the other hand, since the vibration of the valve in the foreign substance mixed state has a time waveform having a gradual peak, energy is concentrated in a lower frequency region than in the normal state.
  • a feature amount based on the degree of concentration of energy in a specific frequency band in the frequency spectrum is calculated, and the state is determined using this feature amount.
  • the feature amount expressing the degree of concentration for example, a sparse degree using a norm, a ratio of energy in a specific band to energy of the entire spectrum, and the like are known.
  • the sparseness has a high value when the spectrum energy is concentrated only in a specific frequency band and the energy is close to zero in other frequency bands.
  • known methods such as L0 norm, L1 / L2 norm ratio, and entropy can be used.
  • the energy ratio of the specific band to the energy of the entire spectrum for example, the ratio of the sum of the power and amplitude in the specific frequency band such as 0 to 1.5 kHz in FIG. 12 and the sum of the power and amplitude in the entire frequency band is calculated. Can be obtained.
  • the state of the valve is diagnosed using a feature value representing the spectral shape of the vibration signal or acoustic signal of the valve.
  • the noise signal has periodicity, the noise signal components are concentrated in a specific frequency band on the frequency spectrum, so if the frequency band of the noise signal is known in advance, that band is used to calculate the feature value. Processing such as not using it is possible. For this reason, there are cases where the diagnosis of the state can be performed more robustly against noise than when the feature amount calculated on the time waveform as in the first embodiment is used.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • DESCRIPTION OF SYMBOLS 100 Valve state diagnostic system 101 Central processing unit 102 Storage medium 103 Volatile memory 104 Sensor 105 AD conversion part 106 User interface part 107 Power supply 110 Diagnosis target apparatus 111 by Example 1 Valve 112 Apparatus control circuit 201 Valve opening / closing section cutout part 202 Noise Signal suppression processing unit 203 Feature amount calculation unit 204 Abnormality calculation unit 205 Normal signal model 206 State determination unit 207 Diagnosis result presentation unit 208 Normal signal database 209 Normal signal model 210 Display panel 211 Overall waveform presentation unit 212 Discrimination target signal presentation unit 213 Discrimination information presentation unit 214 Discrimination result presentation unit 215 Operation input unit 401 Peak 501 High peak 502 Low peak.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

This invention addresses the problem of providing a system for monitoring and diagnosing the state of a valve in a robust manner against the effect of noise. The valve state diagnosis system has a sensor (104) for reading valve operation information. A signal generated during valve blockage is extracted by a valve opening/closing section extraction unit (210) using a reference signal corresponding to an open/close command, and a feature amount representing the shape of the time change of the signal is calculated by a feature amount calculation unit (203). An abnormality degree is calculated by an abnormality degree calculation unit (204) using the feature amount and a model parameter for a normal signal model (205). A state determining unit (206) determines the valve state by using the abnormality degree, and presents a complete valve stoppage state, a sudden opening/closing fault, a faulty opening/closing state due to aging degradation, a replacement period recommendation state due to aging degradation, etc., to a diagnosis result presentation unit (207).

Description

弁状態診断システムValve condition diagnosis system
 本発明は弁状態診断システムに係り、弁の開閉に伴う振動等に基づき弁状状態の判別を行う診断技術に関する。 The present invention relates to a valve state diagnosis system, and relates to a diagnosis technique for determining a valve state based on vibration or the like accompanying opening and closing of a valve.
 本技術分野の背景技術として、特許文献1、2等があり、特許文献1の要約には、燃料供給弁に設置した振動センサと、燃料供給弁の開閉タイミングを表示する信号を供給するサイクル位相供給装置と、振動センサから供給される振動測定信号と燃料供給弁の開閉タイミング表示信号を入力し燃料供給弁の開閉に伴う振動に基づいて燃料供給弁の異常を判定して異常信号を出力する異常発信装置とを備えて、開閉時の振動強度に基づいて燃料供給弁の異常を検出し警報する、と記載されている。 As background arts in this technical field, there are Patent Documents 1 and 2, etc., and the summary of Patent Document 1 includes a cycle phase for supplying a vibration sensor installed in a fuel supply valve and a signal indicating opening / closing timing of the fuel supply valve. The vibration measurement signal supplied from the supply device and the vibration sensor and the fuel supply valve opening / closing timing display signal are input, the abnormality of the fuel supply valve is determined based on the vibration accompanying the opening and closing of the fuel supply valve, and the abnormality signal is output. An abnormality transmitting device is provided to detect and alarm the abnormality of the fuel supply valve based on the vibration intensity at the time of opening and closing.
 すなわち、特許文献1には、ガスエンジンにおける燃料供給弁の異常を、振動センサで観測された振動の強度を用いて診断する装置および方法が記載されている。また、特許文献2には、振動のレベルを用いて燃料噴射弁の異常を検出する装置が記載されている。 That is, Patent Document 1 describes an apparatus and a method for diagnosing an abnormality of a fuel supply valve in a gas engine using a vibration intensity observed by a vibration sensor. Patent Document 2 describes a device that detects an abnormality of a fuel injection valve by using a vibration level.
特開2012-132420号公報JP 2012-132420 A 特開平10-318027号公報Japanese Patent Laid-Open No. 10-318027
 引用文献1、2には、振動の強度を用いて、弁の異常の診断、検出を行う技術が記載されているが、何らかの装置に装着された弁を診断する場合、振動センサで観測される信号には、弁の振動だけでなく、装置自体の機械振動がノイズとして混入する。そして、弁の種類や、弁が装着された装置によっては、弁の振動に対してそれらノイズの影響が大きいため、単に振動の強度を用いただけでは、異常の誤検出や検出漏れが起こるという課題がある。 Cited Documents 1 and 2 describe a technique for diagnosing and detecting a valve abnormality using the intensity of vibration, but when diagnosing a valve mounted on some device, it is observed by a vibration sensor. Not only the vibration of the valve but also the mechanical vibration of the device itself is mixed in the signal as noise. And, depending on the type of valve and the device on which the valve is mounted, the effect of these noises on the vibration of the valve is large. There is.
 本発明の目的は、上記の課題を解決し、ノイズの影響に対して頑健に弁状態を監視・診断することのできる弁状態診断システムを提供することにある。 An object of the present invention is to provide a valve state diagnosis system that can solve the above-described problems and can monitor and diagnose the valve state robustly against the influence of noise.
 上記の目的を達成するため、本発明においては、弁状態診断システムであって、弁の動作情報を読み取るセンサと、センサからの出力信号の時間変化形状を表わす特徴量を算出する特徴量算出部と、時間変化形状を表わす特徴量から異常度を算出し、当該異常度に基づき、弁の状態判別を行う状態判別部と、を備える弁状態診断システムを提供する。 In order to achieve the above object, according to the present invention, a valve state diagnosis system includes a sensor that reads valve operation information and a feature amount calculation unit that calculates a feature amount representing a time-varying shape of an output signal from the sensor. And a state determination unit that calculates a degree of abnormality from a feature amount representing a time-varying shape and determines a state of the valve based on the degree of abnormality.
 また、上記の目的を達成するため、本発明においては、弁状態診断システムであって、弁の動作情報を読み取るセンサと、センサからの出力信号の周波数スペクトルにおける、エネルギーの特定周波数帯域への集中度合いに基づく特徴量を算出する特徴量算出部と、集中度合いに基づく特徴量から異常度を算出し、当該異常度に基づき、弁の状態判別を行う状態判別部と、を備える弁状態診断システムを提供する。 In order to achieve the above object, according to the present invention, there is provided a valve state diagnosis system, a sensor for reading valve operation information, and concentration of energy in a specific frequency band in a frequency spectrum of an output signal from the sensor. A valve state diagnosis system comprising: a feature amount calculation unit that calculates a feature amount based on the degree; and a state determination unit that calculates an abnormality degree from the feature amount based on the concentration degree and determines a state of the valve based on the abnormality degree I will provide a.
 本発明によれば、ノイズの影響に対して頑健に弁の状態を監視・診断することが可能である。 According to the present invention, it is possible to monitor and diagnose the state of the valve robustly against the influence of noise.
実施例1の弁状態診断システムのハードウェア構成図の一例を示す図である。It is a figure which shows an example of the hardware block diagram of the valve state diagnostic system of Example 1. FIG. 実施例1の弁状態診断システムの機能ブロック図である。It is a functional block diagram of the valve state diagnostic system of Example 1. 実施例1の弁状態診断システムの処理フローチャートの一例を示す図である。It is a figure which shows an example of the process flowchart of the valve state diagnostic system of Example 1. FIG. 実施例1に係る、弁開閉区間切り出し部における、弁開閉区間切り出し処理を模式的に示す図である。It is a figure which shows typically the valve opening / closing section cutout process in the valve opening / closing section cutout part based on Example 1. FIG. 実施例1に係る、正常状態の弁が閉じたとき、及び異物が混入した状態で閉じたときの振動信号の波形の一例を示す図である。It is a figure which shows an example of the waveform of the vibration signal when the valve of a normal state based on Example 1 is closed, and when it is closed in the state where the foreign material was mixed. 実施例1に係る、正常状態あるいは異物混入状態に弁が閉じたときの音響信号波形の一例を示す図である。It is a figure which shows an example of an acoustic signal waveform when a valve closes to a normal state or a foreign material mixing state based on Example 1. 実施例1に係る、弁が正常の状態で、ノイズ信号の有無での閉塞時振動信号波形を比較説明するための図である。It is a figure for comparing and explaining the vibration signal waveform at the time of occlusion with the presence or absence of a noise signal in the state where a valve is normal concerning Example 1. 実施例1に係る、弁が異物混入による閉塞不良状態で、ノイズ信号の有無での閉塞時振動波形を比較説明するための図である。It is a figure for comparing and explaining the vibration waveform at the time of occlusion with the presence or absence of a noise signal in the occlusion defective state due to foreign matter mixing, according to the first embodiment. 実施例1に係る、正常信号モデルを学習するための、正常信号データベース作成の処理を説明するための図である。It is a figure for demonstrating the process of normal signal database preparation for learning the normal signal model based on Example 1. FIG. 実施例1に係る、正常信号モデルを学習する処理の一例を示す図である。It is a figure which shows an example of the process which learns the normal signal model based on Example 1. FIG. 実施例1に係る、弁状態診断システムのユーザインタフェース部の一例を示す図である。It is a figure which shows an example of the user interface part of the valve state diagnostic system based on Example 1. FIG. 実施例2に係る、正常状態と異物が混入した状態の弁が閉じたときの振動信号の得た周波数スペクトルを示す図である。It is a figure which shows the frequency spectrum which the vibration signal obtained when the valve of the state which concerns on Example 2 and the state in which the foreign material mixed in closed.
 以下、本発明の種々の実施例を図面に従い説明する。 Hereinafter, various embodiments of the present invention will be described with reference to the drawings.
 実施例1は弁の状態を監視・診断する弁状態診断システムの実施例を説明する。
  図1は、実施例1の弁状態診断システムのハードウェア構成図の一例を示す図である。同図において、弁状態診断システム100は、中央演算装置101、記憶媒体102、揮発性メモリ103、センサ104、AD変換部105、ユーザインタフェース部106、電源107から構成されている。
Embodiment 1 describes an embodiment of a valve state diagnosis system that monitors and diagnoses the state of a valve.
FIG. 1 is a diagram illustrating an example of a hardware configuration diagram of the valve state diagnosis system according to the first embodiment. In the figure, the valve state diagnosis system 100 includes a central processing unit 101, a storage medium 102, a volatile memory 103, a sensor 104, an AD conversion unit 105, a user interface unit 106, and a power source 107.
 弁状態診断システム100は、診断対象となる装置110に設置されている弁111の診断を行う。診断対象装置110は、装置制御回路112を通じて、弁111の開閉を行っている。センサ104が、弁111の信号を観測し、AD変換部105がセンサ104で観測したアナログ信号をデジタル信号に変換する。中央演算装置101は変換されたデジタル信号を揮発性メモリ103に格納する。 The valve state diagnosis system 100 diagnoses the valve 111 installed in the device 110 to be diagnosed. The diagnosis target device 110 opens and closes the valve 111 through the device control circuit 112. The sensor 104 observes the signal of the valve 111, and the AD converter 105 converts the analog signal observed by the sensor 104 into a digital signal. The central processing unit 101 stores the converted digital signal in the volatile memory 103.
 中央演算装置101は、診断対象装置110の装置制御回路が送る参照信号を利用して、揮発性メモリ103に格納された信号から、弁111が開閉を行っている区間の信号のみを切り出す。その後、中央演算装置101は切り出された信号から振幅値の時間変化形状を表わす、言い替えると時間変化形状に基づく特徴量を算出する。中央演算装置101は記憶媒体102に格納された正常信号モデル205を読み込んで異常度を算出する。そして、中央演算装置101は、異常度に従って状態を判別し、その判別結果を、切り出した波形に関する情報と併せて、ユーザインタフェース部106に出力する。これら一連の処理は、中央演算装置101が、記憶媒体102に格納された、弁状態診断プログラムに基づいて実行する。 The central processing unit 101 uses the reference signal sent by the device control circuit of the diagnosis target device 110 to cut out only the signal in the section where the valve 111 is opened / closed from the signal stored in the volatile memory 103. After that, the central processing unit 101 calculates a time change shape of the amplitude value from the extracted signal, in other words, calculates a feature amount based on the time change shape. The central processing unit 101 reads the normal signal model 205 stored in the storage medium 102 and calculates the degree of abnormality. The central processing unit 101 discriminates the state according to the degree of abnormality, and outputs the discrimination result to the user interface unit 106 together with information about the extracted waveform. The series of processing is executed by the central processing unit 101 based on a valve state diagnosis program stored in the storage medium 102.
 用いるセンサ104の種類としては、例えば振動センサやマイクロフォンがある。センサ104は、弁111に直接装着してもよい。あるいは、弁111の信号を観測できる範囲であれば、弁111から離れた場所に、センサ104を設置してもよい。例えば、振動センサの場合は弁111の振動が伝わる場所、マイクロフォンの場合は弁111の音が届く範囲の任意の場所に置くことができる。AD変換部105は、センサ104から得られる信号がデジタル信号である場合は、導入しなくてもよい。 Examples of the type of sensor 104 used include a vibration sensor and a microphone. The sensor 104 may be directly attached to the valve 111. Alternatively, the sensor 104 may be installed at a location away from the valve 111 as long as the signal of the valve 111 can be observed. For example, in the case of a vibration sensor, it can be placed in a place where the vibration of the valve 111 is transmitted, and in the case of a microphone, it can be placed in any place within the range where the sound of the valve 111 can reach. The AD converter 105 may not be introduced when the signal obtained from the sensor 104 is a digital signal.
 中央演算装置101、記憶媒体102、揮発性メモリ103は、弁状態診断システム100を構築するために新たに導入してもよい。もし、診断対象装置110が、独自に中央演算装置、記憶媒体、揮発性メモリを備えており、ソフトウェアによって弁111を制御しているのであれば、それらを利用してよい。電源107は弁状態診断システム100と、診断対象装置110それぞれに分けて導入してもよく、可能であれば同じ電源を用いてもよい。ユーザインタフェース部106は、例えば診断対象装置110に備え付けたモニタであってもよく、ネットワーク経由で接続された別のPCを経由したモニタなどであっても良い。 The central processing unit 101, the storage medium 102, and the volatile memory 103 may be newly introduced to construct the valve state diagnosis system 100. If the diagnosis target device 110 has its own central processing unit, storage medium, and volatile memory, and the valve 111 is controlled by software, these may be used. The power source 107 may be introduced separately for each of the valve state diagnosis system 100 and the diagnosis target device 110, and the same power source may be used if possible. The user interface unit 106 may be, for example, a monitor provided in the diagnosis target apparatus 110, or may be a monitor via another PC connected via a network.
 図2は、本実施例の弁状態診断システム100の機能ブロック図である。
  同図において、観測センサ104が観測したアナログ信号は、AD変換部105によってデジタル信号に変換される。
FIG. 2 is a functional block diagram of the valve state diagnosis system 100 of the present embodiment.
In the figure, an analog signal observed by the observation sensor 104 is converted into a digital signal by the AD conversion unit 105.
 変換されたデジタル信号は、弁開閉区間切り出し部201によって、弁開放時あるいは閉塞時の区間のみ切り出される。このとき、弁開閉区間切り出し部201は、診断対象装置110に備えられている装置制御回路112から送られる開閉指令信号を、参照信号として受け取り、この参照信号を用いることで、弁開閉区間を切り出す。またこのとき、参照信号の情報から読み取った開閉時刻と、その周辺時刻において信号のピークを検出した時刻との差を取ることで、開閉遅延時間を算出する。 The converted digital signal is cut out only by the valve opening / closing section cutout unit 201 when the valve is opened or closed. At this time, the valve opening / closing section cutout unit 201 receives an opening / closing command signal sent from the device control circuit 112 provided in the diagnosis target apparatus 110 as a reference signal, and uses this reference signal to cut out the valve opening / closing section. . At this time, the switching delay time is calculated by taking the difference between the switching time read from the information of the reference signal and the time when the signal peak is detected at the surrounding time.
 ノイズ信号抑圧処理部202は、切り出された信号を読み込み、信号に含まれるノイズ信号を抑圧して出力する。なお、このノイズ信号抑圧処理部202としては、通常用いられる帯域フィルタ(BPF)等を用いれば良い。特徴量算出部203は、ノイズ信号抑圧処理部202から出力されるノイズ抑圧後の信号を読み込み、信号の時間変化形状を表わす特徴量を算出して出力する。異常度算出部204は、特徴量算出部203から出力された特徴量と、記憶媒体102に格納されている正常信号モデル205を読み込んで、異常度を算出して出力する。
状態判別部206は、異常度算出部204から出力された異常度を読み込み、弁111の状態を判別し、判別結果を出力する。判別した結果は、診断結果提示部207によって提示される。
提示する情報は、状態判別部206から出力される判別結果の他に、異常度算出部204が出力する異常度や、特徴量算出部203から出力される各特徴量の値、ノイズ信号抑圧処理部202あるいは弁開閉区間切り出し部201から出力される時間信号波形、弁開閉区間切り出し部201から出力される開閉遅延時間などの付加情報を提示してもよい。
The noise signal suppression processing unit 202 reads the extracted signal, suppresses the noise signal included in the signal, and outputs it. As the noise signal suppression processing unit 202, a normally used band filter (BPF) or the like may be used. The feature amount calculation unit 203 reads the noise-suppressed signal output from the noise signal suppression processing unit 202, calculates a feature amount representing a time-varying shape of the signal, and outputs it. The abnormality degree calculation unit 204 reads the feature amount output from the feature amount calculation unit 203 and the normal signal model 205 stored in the storage medium 102, calculates the abnormality degree, and outputs it.
The state determination unit 206 reads the abnormality level output from the abnormality level calculation unit 204, determines the state of the valve 111, and outputs the determination result. The determined result is presented by the diagnosis result presentation unit 207.
In addition to the determination result output from the state determination unit 206, the information to be presented includes the degree of abnormality output from the abnormality degree calculation unit 204, the value of each feature amount output from the feature amount calculation unit 203, and noise signal suppression processing. Additional information such as a time signal waveform output from the section 202 or the valve opening / closing section cutout section 201 and an opening / closing delay time output from the valve opening / closing section cutout section 201 may be presented.
 提示方法は、例えば、ユーザインタフェース部106を介した画像情報提示、点字ディスプレイによる提示、音声による提示、プリンタを介した画像情報の印刷などである。
判別する弁状態の種類は、弁111が完全に停止している状態、弁111内に異物が混入などの突発的な異常により弁の開閉が不十分である開閉不良状態、経年劣化によって開閉が不十分になっている開閉不良状態、そして経年劣化がある程度進んでおり交換時期が迫っている状態、である。
The presentation method includes, for example, image information presentation via the user interface unit 106, presentation by a braille display, presentation by voice, and printing of image information via a printer.
The types of valve states to be identified are the state in which the valve 111 is completely stopped, the valve opening / closing inadequate due to a sudden abnormality such as foreign matter entering the valve 111, and the valve opening / closing due to deterioration over time. It is an inadequate opening / closing state that is inadequate, and a state where deterioration over time has progressed to some extent and the replacement time is approaching.
 図3は、本実施例の弁状態診断システム100の処理フローチャートである。
  診断対象の装置110が稼働したときに、それに同期して弁状態診断システム100も稼働開始する(300)。そして、センサ104により弁111についての信号の観測が開始される(302)。観測した信号はAD変換処理によりデジタル信号に変換される(303)。
FIG. 3 is a process flowchart of the valve state diagnosis system 100 of the present embodiment.
When the apparatus 110 to be diagnosed operates, the valve state diagnosis system 100 also starts to operate in synchronization (300). Then, the sensor 104 starts observing a signal for the valve 111 (302). The observed signal is converted into a digital signal by AD conversion processing (303).
 次に、変換されたデジタル信号から、弁111の開閉区間が切り出される(304)。切り出された信号に対して、ノイズ信号抑圧処理(305)が行われ、ノイズ信号が抑圧される。その後ノイズ信号抑圧処理(306)が行われた信号から、特徴量算出処理により特徴量が算出される。そして、得られた特徴量を用いて異常度が算出される(307)。異常度に基づいて弁111の状態判別処理(308)が行われ、その判別結果が、診断結果提示処理によって診断結果提示部207に提示される(309)。その後、状態判別部206は異常度に従って、装置を停止すべきか否かを判断し(301)、停止すべきと判断した場合は、診断対象装置110および弁状態診断システム100の終了処理(310)を行い、終了する(311)。 Next, the opening / closing section of the valve 111 is cut out from the converted digital signal (304). A noise signal suppression process (305) is performed on the extracted signal, and the noise signal is suppressed. Thereafter, a feature value is calculated from the signal subjected to the noise signal suppression process (306) by a feature value calculation process. Then, the degree of abnormality is calculated using the obtained feature amount (307). Based on the degree of abnormality, state determination processing (308) of the valve 111 is performed, and the determination result is presented to the diagnosis result presentation unit 207 by the diagnosis result presentation processing (309). Thereafter, the state determination unit 206 determines whether or not the device should be stopped according to the degree of abnormality (301). If it is determined that the device should be stopped, the termination processing (310) of the diagnosis target device 110 and the valve state diagnosis system 100 is performed. And finishes (311).
 図4は、本実施例の弁開閉区間切り出し部201における、弁開閉区間切り出し処理の方法を説明するための模式図である。
   ほとんどの診断対象装置110において、弁111は、装置制御回路112によって開閉の制御が行われている。このとき、装置制御回路112から弁111に向かって送られる開閉指令信号を、弁開閉区間切り出し部201にも送ることで、AD変換部105から送られた信号の中から、弁開閉区間の時間情報を得ることができる。例えば、図4のように、装置制御回路112から、弁111を開放している間は1に、弁111を閉じている間は0になるような指令信号が出力されている場合であれば、これを参照信号として、参照信号が0から1に切り替わった時刻を弁開放時の信号区間、参照信号が1から0に切り替わった時刻を弁閉塞時の信号区間として切り出すことができる。
FIG. 4 is a schematic diagram for explaining a valve opening / closing section cutout processing method in the valve opening / closing section cutout section 201 of the present embodiment.
In most diagnosis target devices 110, the valve 111 is controlled to be opened and closed by the device control circuit 112. At this time, an opening / closing command signal sent from the device control circuit 112 toward the valve 111 is also sent to the valve opening / closing section cutout section 201, so that the time of the valve opening / closing section can be selected from the signals sent from the AD conversion section 105. Information can be obtained. For example, as shown in FIG. 4, if the apparatus control circuit 112 outputs a command signal that is 1 when the valve 111 is open and 0 when the valve 111 is closed. Using this as a reference signal, the time when the reference signal is switched from 0 to 1 can be cut out as a signal interval when the valve is opened, and the time when the reference signal is switched from 1 to 0 can be cut out as a signal interval when the valve is closed.
 しかし、このとき、弁111を通過する液体の種類や、弁111の状態によっては、装置制御回路112から開閉指令が出力された時刻と、実際に弁111が開閉した時刻の間に遅延が生じる場合がある。そのため、弁開閉区間切り出し部201では、参照信号から読み取った弁開閉時刻Tiから、その周辺の区間T内で、信号の絶対値が最大となる時刻Trを検出(ピーク401の検出)し、Trの周辺区間を切り出して、弁閉塞時信号として出力する。このとき、参照信号による弁開閉時刻Tiと、ピークを検出した時刻Trとの差(Tr-Ti)を開閉遅延時刻として、これも出力することも可能である。 However, at this time, depending on the type of liquid passing through the valve 111 and the state of the valve 111, a delay occurs between the time when the opening / closing command is output from the device control circuit 112 and the time when the valve 111 is actually opened / closed. There is a case. Therefore, the valve opening / closing section cutout unit 201 detects the time Tr at which the absolute value of the signal is maximum in the surrounding section T from the valve opening / closing time Ti read from the reference signal (detection of the peak 401). Is cut out and output as a valve closing signal. At this time, the difference (Tr−Ti) between the valve opening / closing time Ti based on the reference signal and the time Tr at which the peak is detected can also be output as the opening / closing delay time.
 なお、区間T内において、ピーク401が検出出来ない場合は、後で説明する弁の完全停止状態と判断できる。この後、BPF等を用いたノイズ信号抑圧処理部202により、切り出された信号から、ノイズ信号が抑圧され、特徴量算出部203へと送られる。 In addition, in the section T, when the peak 401 cannot be detected, it can be determined that the valve is completely stopped, which will be described later. Thereafter, the noise signal is suppressed from the extracted signal by the noise signal suppression processing unit 202 using BPF or the like, and is sent to the feature amount calculation unit 203.
 図5は、(a)正常状態の弁(電磁弁)が閉じたときの振動信号、および(b)異物が混入した状態で閉じたときの振動信号を、振動センサを用いて収録して得られた時間信号波形である。共に、横軸が時間(msec)、縦軸が振幅を示す。以下の信号波形図においても同様である。 Fig. 5 shows (a) the vibration signal when the normal valve (solenoid valve) is closed and (b) the vibration signal when the valve is closed with foreign matter mixed in, using a vibration sensor. The time signal waveform obtained. In both cases, the horizontal axis represents time (msec), and the vertical axis represents amplitude. The same applies to the following signal waveform diagrams.
 また、図6の(a)、(b)は、同じく正常状態あるいは異物混入状態に弁(電磁弁)が閉じたときの音響信号を、マイクロフォンを用いて収録して得られた時間信号波形である。どちらの信号においても、正常時の弁閉塞時は、振幅の時間変化が、鋭く高いピーク形状(図5の501)を持っているのに対して、異物混入時の弁閉塞時は、ピーク(図5の502)が鈍く低く、つまり振幅の時間変化が少なくかつ緩やかになっている。これは、異物が混入することによって、弁の閉塞が不十分になり、閉じたときの衝撃が弱まったためである。異物混入だけでなく、経年劣化による閉塞不良も同様の振る舞いをする。 6 (a) and 6 (b) are time signal waveforms obtained by recording an acoustic signal using a microphone when the valve (solenoid valve) is closed in a normal state or a foreign matter mixed state. is there. In both signals, when the valve is closed normally, the time variation of the amplitude has a sharp and high peak shape (501 in FIG. 5), whereas when the valve is closed when foreign matter is mixed, the peak ( 502 in FIG. 5 is dull and low, that is, the time change of the amplitude is small and gentle. This is because the foreign matter is mixed and the valve is not sufficiently closed, and the impact when the valve is closed is weakened. Not only foreign substances but also occlusion defects due to aging deteriorate in the same manner.
 そこで、本実施例の弁状態診断システムにおいては、弁の信号の時間変化形状を表わす特徴量を算出し、これを用いて閉塞不良といった状態の判別を行う。鈍り具合を表現する特徴量としては、例えばピーク値、最大値と最小値の差、半値幅、振幅値の分散、尖度がある。 Therefore, in the valve state diagnosis system according to the present embodiment, a feature amount representing a time-varying shape of the valve signal is calculated, and a state such as a blockage failure is determined using the feature amount. Examples of the feature amount expressing the dullness include a peak value, a difference between a maximum value and a minimum value, a half value width, an amplitude value variance, and a kurtosis.
 まず、ピーク値は、切り出された信号における、振幅値の絶対値の最大値であり、正常状態であれば高い値を、開閉不良状態であれば低い値を取る。次に、最大値と最小値は、切り出された信号における、振幅の最大値と最小値の差を計算したものである。これも、正常状態であれば高い値を、開閉不良状態であれば低い値を取る。半値幅はピーク波形の幅を表すものであり、正常状態であれば低い値を、開閉不良状態であれば高い値を取る。 First, the peak value is the maximum absolute value of the amplitude value in the extracted signal, and takes a high value in a normal state and a low value in a switching failure state. Next, the maximum value and the minimum value are obtained by calculating the difference between the maximum value and the minimum value of the amplitude in the extracted signal. This also takes a high value in a normal state, and takes a low value in a switching failure state. The half-value width represents the width of the peak waveform, and takes a low value in a normal state and a high value in a switching failure state.
 振幅の分散値及び尖度は、振幅値の変動の激しさを表すものであり、正常状態であれば高い値を、開閉不良状態であれば低い値を取る。振幅値の分散var(x)、および尖度kur(x)は、それぞれ次に示す数1、数2によって計算される。x(n)は時刻nにおける信号の振幅値、mはピーク周辺区間Nにおけるx(n)の平均値である。 The dispersion value and kurtosis of the amplitude represent the intensity of fluctuation of the amplitude value, and take a high value in the normal state and a low value in the open / close state. The variance var (x) and kurtosis kur (x) of the amplitude value are calculated by the following equations 1 and 2, respectively. x (n) is the amplitude value of the signal at time n, and m is the average value of x (n) in the peak peripheral section N.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 先に説明したように、従来例において、ピーク値のような信号の強度のみを用いて異常を検出しているが、本実施例の弁状態診断システムにおいて、ピーク値だけではなく、これらの信号の時間変化形状を表現する特徴量を用いることで、ノイズ信号の影響に対して頑健に状態を診断することが可能となる。
Figure JPOXMLDOC01-appb-M000002
As described above, in the conventional example, the abnormality is detected using only the intensity of the signal such as the peak value, but in the valve state diagnosis system of the present embodiment, not only the peak value but also these signals are detected. It is possible to diagnose the state robustly against the influence of the noise signal by using the feature amount expressing the time-varying shape.
 図7の左上段と右上段は、それぞれ弁(電磁弁)が正常の状態において、(a)ノイズ信号がない場合の閉塞時振動信号波形と、(b)ノイズ信号が有る場合、すなわち、弁の周辺の部品が駆動したことで、その駆動振動がノイズ信号として混入したときの閉塞時振動信号である。ノイズ信号がある場合では、閉塞時の振幅値が、ノイズによって正の方向へシフトしている。このため、ピーク値はノイズ信号が無い場合に比べて低くなる。これにより、ピーク値のような信号の強度のみを用いると、正常状態のものを開閉不良として誤検出を引き起こすことがある。一方、最大値と最小値の差は、相対量であるため、ノイズによって振幅値がシフトしても変動しにくい。また、分散や尖度も振幅値の時間変化の仕方を表現するものであるため、同様に変動しにくい。 The upper left stage and the upper right stage in FIG. 7 respectively show (a) a vibration signal waveform at closing when there is no noise signal and (b) when there is a noise signal when the valve (solenoid valve) is normal. This is a vibration signal at the time of closing when the driving vibrations are mixed as a noise signal. When there is a noise signal, the amplitude value at the time of closing is shifted in the positive direction due to noise. For this reason, a peak value becomes low compared with the case where there is no noise signal. Thus, if only the signal intensity such as the peak value is used, a normal state may be erroneously detected as an open / close failure. On the other hand, since the difference between the maximum value and the minimum value is a relative amount, even if the amplitude value is shifted by noise, it is difficult to change. In addition, since the variance and kurtosis express how the amplitude value changes with time, it is similarly difficult to change.
 図7の下段は、(c)正常状態(ノイズ信号有り)の各特徴量と、正常状態(ノイズ信号無し)の各特徴量の差を正規化してプロットしたものである。同図の(c)において、ノイズ信号がある場合と無い場合での振動レベル(ピーク値)の差に対して、本実施例に係る時間変化形状を表わす特徴量の差は小さく、ノイズ信号の影響が小さいことを示している。 The lower part of FIG. 7 is a graph obtained by normalizing and plotting the difference between each feature value in the normal state (with a noise signal) and each feature amount in the normal state (without a noise signal). In (c) of the figure, the difference in feature quantity representing the time-varying shape according to the present embodiment is small with respect to the difference in vibration level (peak value) with and without the noise signal. It shows that the influence is small.
 図8の左上段と右上段は、それぞれ弁(電磁弁)が異物混入による閉塞不良状態において、(a)ノイズ信号がない場合の閉塞時振動信号波形と、(b)ノイズ信号が混入した場合の閉塞時振動信号である。左下段は、(c)ノイズ信号がない場合の、正常状態の弁閉塞時振動波形である。この例では、図7の例とは逆に、振幅値が負の方向へシフトしている。そのため、ピーク値はノイズ信号が無い場合に比べて高くなる。これにより、振動の強度のみを用いると、閉塞不良状態のものを正常として判別し、検出漏れを引き起こすことがある。 The upper left stage and upper right stage in FIG. 8 are (a) a vibration signal waveform at the time of closing when there is no noise signal and (b) a noise signal being mixed, when the valve (solenoid valve) is in a closed state due to foreign matter mixing. It is a vibration signal at the time of occlusion. The lower left column is (c) a vibration waveform when the valve is closed in a normal state when there is no noise signal. In this example, the amplitude value is shifted in the negative direction, contrary to the example of FIG. Therefore, the peak value is higher than when there is no noise signal. As a result, if only the vibration intensity is used, it may be determined that the blockage failure state is normal, and detection omission may occur.
 図8の右下段は、(d)閉塞不良状態(左上段および右上段)の各特徴量と正常状態(左下段)の各特徴量の差である。ノイズ信号がない場合であれば、どの特徴量も、正常状態と閉塞不良状態で差が出ているが、ノイズ信号がある場合では、振動レベル(ピーク値)が正常状態と閉塞不良状態の差が0に近くなっている。差が小さいということは、すなわち閉塞不良状態と正常状態の判別がつきにくいという意味である。 The lower right row in FIG. 8 is a difference between (d) each feature amount in the blockage failure state (upper left and upper right) and each feature amount in the normal state (lower left). If there is no noise signal, there is a difference between the normal state and the occlusion failure state for any feature value, but if there is a noise signal, the vibration level (peak value) is the difference between the normal state and the occlusion failure state. Is close to zero. That the difference is small means that it is difficult to distinguish between the occlusion failure state and the normal state.
 一方、本実施例に係る、時間変化形状を表わす特徴量では、ピーク値の場合ほど差が小さくならない。なお、これらの特徴量の算出は、図8の(a)、(b)で表示している時間区間よりも短い区間で行っている。以上のことから、ピーク値だけでなく、本実施例に係る、振幅値の時間変化形状を表す特徴量を使うことで、ノイズ信号の影響に対して頑健に開閉不良を診断することができる。 On the other hand, in the feature amount representing the time-varying shape according to the present embodiment, the difference is not as small as in the case of the peak value. Note that the calculation of these feature amounts is performed in a section shorter than the time section displayed in (a) and (b) of FIG. From the above, by using not only the peak value but also the feature value representing the time-varying shape of the amplitude value according to the present embodiment, it is possible to diagnose the open / close failure robustly against the influence of the noise signal.
 次に、図2の弁状態診断システムの特徴量算出部203から出力される特徴量と、記憶媒体102に格納されている正常信号モデル205を読み込み、異常度算出部204が異常度を計算する。 Next, the feature amount output from the feature amount calculation unit 203 of the valve state diagnosis system of FIG. 2 and the normal signal model 205 stored in the storage medium 102 are read, and the abnormality degree calculation unit 204 calculates the degree of abnormality. .
 図9は、正常信号モデル205を学習するための、正常信号データベース208作成の処理を表すものである。正常信号データベース208の作成処理は、制御対象装置110および弁状態診断システム100をユーザが運用するときに行ってもよい。あるいは、装置生産時に行ってもよい。正常に動作する弁111の信号に対して、これまでの処理と同様にして弁開閉区間の切り出し、特徴量の算出を行う。このとき、弁以外の部品の駆動を止められる状態であれば、ノイズ信号抑圧処理部202は必要ないが、ノイズ信号が混入する場合は、ノイズ信号抑圧処理部202を必要に応じて利用することもできる。 FIG. 9 shows the process of creating the normal signal database 208 for learning the normal signal model 205. The process of creating the normal signal database 208 may be performed when the user operates the control target device 110 and the valve state diagnosis system 100. Or you may carry out at the time of apparatus production. For the signal of the valve 111 that operates normally, the valve opening / closing section is cut out and the feature amount is calculated in the same manner as the processing so far. At this time, the noise signal suppression processing unit 202 is not necessary if driving of components other than the valve can be stopped. However, when a noise signal is mixed, the noise signal suppression processing unit 202 should be used as necessary. You can also.
 弁を十分な回数稼働させ、弁信号の特徴量を十分な数だけ収集し、正常信号データベース208として保存する。保存先は、この処理を装置運用時に行うのであれば、記憶媒体102に格納する。生産時に行うのであれば、処理用に記憶媒体を別途用意して、そこに格納することもできる。 弁 Operate the valve a sufficient number of times, collect a sufficient amount of valve signal features, and save it as a normal signal database 208. The storage destination stores in the storage medium 102 if this processing is performed during operation of the apparatus. If it is performed at the time of production, a storage medium can be separately prepared for processing and stored there.
 図10は、本実施例における、正常信号モデル205を学習する処理を表すものである。この処理も、正常信号データベース208の処理と同様、装置運用時に行ってもよいし、装置生産時に行ってもよい。記憶媒体102、あるいは生産時に行う場合は別の記憶媒体に格納された正常信号データベース208を読み込み、モデル学習部209が正常信号モデル205を学習する。モデル学習の方法は、正規分布や混合正規分布、1-classサポートベクターマシンなどの公知の技術を用いればよい。モデル学習部209は、学習した正常信号モデル208を、記憶媒体102に格納する。 FIG. 10 shows processing for learning the normal signal model 205 in the present embodiment. This processing may also be performed at the time of device operation, or at the time of device production, similarly to the processing of the normal signal database 208. When the normal signal database 208 stored in the storage medium 102 or another storage medium is read at the time of production, the model learning unit 209 learns the normal signal model 205. As a model learning method, a known technique such as normal distribution, mixed normal distribution, or 1-class support vector machine may be used. The model learning unit 209 stores the learned normal signal model 208 in the storage medium 102.
 異常度算出部204は、特徴量算出部203から出力された特徴量と、学習されて記憶媒体102に格納された正常信号モデル205を読み込み、異常度を算出する。異常度は、例えば学習モデルに混合正規分布を用いた場合であれば、混合正規分布に対する尤度をシグモイド関数に入力したり、単純に係数をかけたりするなど、適当な関数を用いて変形して算出するなどの公知の手法用いればよい。 The abnormality degree calculation unit 204 reads the feature amount output from the feature amount calculation unit 203 and the normal signal model 205 learned and stored in the storage medium 102, and calculates the degree of abnormality. For example, if the mixed normal distribution is used for the learning model, the anomaly can be transformed using an appropriate function such as inputting the likelihood for the mixed normal distribution into the sigmoid function or simply multiplying the coefficient. It is sufficient to use a known method such as
 異常度算出部204から出力された異常度を、状態判別部206が読み込み、異常度を元に弁の状態を診断する。状態判別部206は、異常度が閾値Th1以下であれば、弁は正常であると判断する。異常度が閾値Th1以上であれば、異常であると判断する。このとき、過去N回の診断時に出力された異常度との差を計算し、異常度の差がTh2以上であれば、突発的に異常度が上昇しているため、突発的な閉塞不良状態として判断する。異常度の差がTh2以下であれば、緩やかに異常度が上昇しているため、経年劣化による閉塞不良状態として判断する。 The state determination unit 206 reads the degree of abnormality output from the degree of abnormality calculation unit 204, and diagnoses the state of the valve based on the degree of abnormality. The state determination unit 206 determines that the valve is normal if the degree of abnormality is equal to or less than the threshold Th1. If the degree of abnormality is greater than or equal to the threshold Th1, it is determined that there is an abnormality. At this time, the difference from the abnormality degree output at the time of the past N diagnoses is calculated, and if the difference in abnormality degree is equal to or greater than Th2, the abnormality degree is suddenly increased, and thus a sudden blockage failure state Judge as. If the difference in the degree of abnormality is equal to or less than Th2, the degree of abnormality gradually increases, so that it is determined as a blockage failure state due to aged deterioration.
 また、Th1より低い閾値Th3を設けて、異常度の差がTh2以下、異常度がTh3以上かつTh1以下であれば、状態判別部206は弁111について、経年劣化により、決定的な異常とまではいかなくとも、異常度がある程度上昇していると判断し、弁111の交換時期が近付いている状態として判断する。 In addition, when the threshold Th3 lower than Th1 is provided, and the difference in the degree of abnormality is equal to or less than Th2, and the degree of abnormality is equal to or greater than Th3 and equal to or less than Th1, the state determination unit 206 determines that the valve 111 becomes a definite abnormality due to deterioration over time. Even if it is not yes, it is determined that the degree of abnormality has increased to some extent, and it is determined that the replacement time of the valve 111 is approaching.
 状態判別部206で判別された結果は、診断結果提示部207へ出力される。このとき、異常度が閾値Th1よりも高い閾値Th4以上であった場合、判別結果を診断結果提示部207へ出力すると同時に、装置制御回路112に装置停止命令を出力し、診断対象装置110を停止させることも可能である。 The result determined by the state determination unit 206 is output to the diagnosis result presentation unit 207. At this time, if the degree of abnormality is equal to or higher than the threshold Th4 higher than the threshold Th1, the determination result is output to the diagnosis result presentation unit 207, and at the same time, a device stop command is output to the device control circuit 112, and the diagnosis target device 110 is stopped. It is also possible to make it.
 図11は、本実施例の弁状態診断システムのユーザインタフェース部106の一例を示す図である。本例では、ユーザインタフェース部106は、表示パネル210を有し、全体波形を示す全体波形提示部211や、判別対象信号を提示する判別対象信号提示部212、異常度や特徴量などの判別情報を提示する判別情報提示部213、そして判別結果を提示する判別結果提示部214といった、AD変換部105から状態判別部206に到る各機能ブロックから出力される各情報を表示する領域を有している。 FIG. 11 is a diagram illustrating an example of the user interface unit 106 of the valve state diagnosis system according to the present embodiment. In this example, the user interface unit 106 includes a display panel 210, an overall waveform presentation unit 211 that shows an overall waveform, a discrimination target signal presentation unit 212 that presents a discrimination target signal, and discrimination information such as an abnormality degree and a feature amount. And a discrimination information presentation unit 213 that presents a discrimination result, and a discrimination result presentation unit 214 that presents a discrimination result, and an area for displaying each information output from each functional block from the AD conversion unit 105 to the status discrimination unit 206 ing.
 なお、判別結果提示部214は、図2に示した診断結果提示部207に対応している。状態判別部206が出力する判別結果だけを表示しても良いが、他の情報も提示することにより、ユーザはこれらの情報を見ることで、判別結果をより信頼することができる。また、表示パネル210に操作入力部215を付け加えることで、ユーザによりこれらの情報の表示・非表示を任意に切り替えられるようにしても良い。 Note that the discrimination result presentation unit 214 corresponds to the diagnosis result presentation unit 207 shown in FIG. Only the determination result output by the state determination unit 206 may be displayed, but by presenting other information, the user can see the information to make the determination result more reliable. In addition, an operation input unit 215 may be added to the display panel 210 so that the user can arbitrarily switch between displaying and hiding these pieces of information.
 全体波形提示部211では、センサ104で観測された信号をAD変換部105がデジタル信号に変換したものを、そのまま表示する。ユーザはこの表示を見ることで、弁周辺の全体的な動作を目視で確認することができる。判別対象信号提示部212では、弁開閉区間切り出し部201が出力する弁開閉区間で切り出された信号波形、あるいは、その信号に対して、ノイズ信号抑圧処理部202がノイズ信号を抑圧して出力した信号を提示する(なお、図2ではノイズ信号抑圧処理後の信号波形を表示する例を示している)。この信号を表示することで、ユーザは全体波形を見るよりも、弁開閉時の動作をより詳細に把握することができる。 The whole waveform presentation unit 211 displays the signal observed by the sensor 104 converted into a digital signal by the AD conversion unit 105 as it is. By viewing this display, the user can visually confirm the overall operation around the valve. In the discrimination target signal presentation unit 212, the noise signal suppression processing unit 202 suppresses the noise signal and outputs the signal waveform cut out in the valve opening / closing section output from the valve opening / closing section cut-out unit 201 or the signal. A signal is presented (FIG. 2 shows an example in which a signal waveform after noise signal suppression processing is displayed). By displaying this signal, the user can grasp the operation at the time of opening and closing the valve in more detail than looking at the entire waveform.
 判別情報提示部213では、弁開閉区間切り出し部201から出力される開閉遅延時間、特徴量算出部203から出力される各特徴量の値、異常度算出部204から出力される異常度を表示する。ユーザはこの情報を見ることで弁状態診断システム100が弁111を診断した結果の根拠を知ることができる。 The discrimination information presentation unit 213 displays the opening / closing delay time output from the valve opening / closing section cutout unit 201, the value of each feature amount output from the feature amount calculation unit 203, and the degree of abnormality output from the abnormality degree calculation unit 204. . By viewing this information, the user can know the basis of the result of the valve state diagnosis system 100 diagnosing the valve 111.
 判別結果提示部214では、状態判別部206が出力した、状態判別結果を表示する。表示する状態は、弁の完全停止状態、突発的な開閉不良状態、経年劣化による開閉不良状態、経年劣化による交換時期推奨状態である。なお、先に説明したように、弁開閉時にピーク値が検出されない場合、弁の完全停止状態と判断することができる。 The discrimination result presentation unit 214 displays the status discrimination result output from the status discrimination unit 206. The displayed states are a complete stop state of the valve, a sudden opening / closing failure state, an opening / closing failure state due to aging deterioration, and a replacement time recommended state due to aging deterioration. As described above, when the peak value is not detected when the valve is opened and closed, it can be determined that the valve is completely stopped.
 ユーザインタフェース部106には、操作入力部215は無くても良いが、付け加えることもできる。操作入力部215は、例えばユーザインタフェース部106が装置備え付けのモニタである場合はタッチパネルや装置に付けたボタンなどを使用すればよい。ユーザインタフェース部106がネットワーク経由で接続された別のパーソナルコンピュータ(PC)を経由したモニタであれば、マウスやキーボードなどを使用すればよい。操作入力部を付け加えれば、ユーザからの入力を操作入力部が受け付けることで、各特徴量などの表示・非表示を切り替えることが可能となる。また、ユーザが現在の時刻を入力し、操作入力部215がそれを受け付けて記憶媒体102に格納しておくことで、判別結果提示部214に、状態判別結果と併せて、その判別結果が出力された時間を表示することができる。これにより、ユーザは弁に異常が発生したときに、それがいつ起こったのかを把握することができる。 The user interface unit 106 may not include the operation input unit 215, but can be added. For example, when the user interface unit 106 is a monitor provided in the apparatus, the operation input unit 215 may use a touch panel or a button attached to the apparatus. If the user interface unit 106 is a monitor via another personal computer (PC) connected via a network, a mouse or a keyboard may be used. If an operation input part is added, it becomes possible to switch display / non-display of each feature amount or the like when the operation input part receives an input from the user. Further, when the user inputs the current time and the operation input unit 215 accepts the current time and stores it in the storage medium 102, the determination result is output to the determination result presenting unit 214 together with the state determination result. Displayed time can be displayed. As a result, the user can grasp when the abnormality has occurred in the valve.
 実施例2として、弁の状態を監視・診断するシステム100において、弁の振動信号あるいは音響信号のスペクトル形状を表現する特徴量を用いた場合の実施例を説明する。 As a second embodiment, a description will be given of an embodiment in which a feature amount expressing the vibration shape of a valve or the spectral shape of an acoustic signal is used in the system 100 for monitoring and diagnosing a valve state.
 本実施例と実施例1との違いは、図2に示したシステム中の特徴量算出部203における処理内容のみである。実施例1では、特徴量算出部203は弁の振動信号あるいは音響信号を読み込んで、信号の時間変化形状を表現、表わす特徴量を算出していたが、本実施例では、信号に周波数分析を適用し、周波数スペクトルの形状を表現する特徴量を算出する。 The difference between the present embodiment and the first embodiment is only the processing contents in the feature amount calculation unit 203 in the system shown in FIG. In the first embodiment, the feature amount calculation unit 203 reads the valve vibration signal or the acoustic signal, and calculates the feature amount that represents and represents the time-varying shape of the signal. However, in this embodiment, the signal is subjected to frequency analysis. Apply and calculate the feature quantity that represents the shape of the frequency spectrum.
 図12は(a)正常状態,および(b)異物が混入した状態の弁(電磁弁)がそれぞれ閉じたときの振動信号に周波数分析を行って得た周波数スペクトルである。弁が閉じたときの周波数スペクトルはどちらも単一のピークを持つ形状をしている。正常状態の弁の振動は、図5で示されるような、鋭いピークを持つ時間波形をしているため、その周波数スペクトルは、異物混入状態と比べてやや広域に渡ってエネルギーが存在する。一方、異物混入状態の弁の振動は、緩やかなピークを持つ時間波形をしているため、その周波数スペクトルは、正常状態よりも低域にエネルギーが集中する。 FIG. 12 is a frequency spectrum obtained by performing frequency analysis on a vibration signal when a valve (solenoid valve) in a normal state and (b) a foreign substance is mixed is closed. Both frequency spectra when the valve is closed are shaped with a single peak. Since the valve vibration in the normal state has a time waveform having a sharp peak as shown in FIG. 5, the frequency spectrum has energy over a wide area as compared with the foreign substance mixed state. On the other hand, since the vibration of the valve in the foreign substance mixed state has a time waveform having a gradual peak, energy is concentrated in a lower frequency region than in the normal state.
 そこで、周波数スペクトルにおける、エネルギーの特定周波数帯域への集中度合いに基づく特徴量を算出し、これを用いて状態の判別を行う。この集中度合いを表現する特徴量としては、例えばノルムを用いたスパース度、スペクトル全体のエネルギーに対する特定帯域のエネルギーの比率等が知られている。 Therefore, a feature amount based on the degree of concentration of energy in a specific frequency band in the frequency spectrum is calculated, and the state is determined using this feature amount. As the feature amount expressing the degree of concentration, for example, a sparse degree using a norm, a ratio of energy in a specific band to energy of the entire spectrum, and the like are known.
 スパース度は、スペクトルのエネルギーが特定の周波数帯域のみに集中しており、それ以外の周波数帯域ではエネルギーがゼロに近い状態のときに、高い値を持つ。スパース度を計算するためには、L0ノルムやL1・L2ノルム比、エントロピーなどの公知の手法を用いることができる。 The sparseness has a high value when the spectrum energy is concentrated only in a specific frequency band and the energy is close to zero in other frequency bands. In order to calculate the degree of sparseness, known methods such as L0 norm, L1 / L2 norm ratio, and entropy can be used.
 スペクトル全体のエネルギーに対する特定帯域のエネルギー比率は、例えば図12における0~1.5kHzなどの特定周波数帯域のパワーや振幅の総和と、全周波数帯域でのパワーや振幅の総和の比を算出することで求めることができる。 For the energy ratio of the specific band to the energy of the entire spectrum, for example, the ratio of the sum of the power and amplitude in the specific frequency band such as 0 to 1.5 kHz in FIG. 12 and the sum of the power and amplitude in the entire frequency band is calculated. Can be obtained.
 本実施例では、弁の状態を監視・診断するシステム100において、弁の振動信号あるいは音響信号のスペクトル形状を表現する特徴量を用いて弁の状態を診断する。ノイズ信号が周期性を持っている場合は、周波数スペクトル上では特定の周波数帯域にノイズ信号成分が集中するため、あらかじめノイズ信号の周波数帯域が分かっている場合などでは、その帯域を特徴量算出に用いないなどの処理が可能である。そのため、実施例1のような時間波形上で算出する特徴量を用いた場合よりも雑音に頑健に状態の診断が行える場合がある。 In the present embodiment, in the system 100 for monitoring and diagnosing the state of the valve, the state of the valve is diagnosed using a feature value representing the spectral shape of the vibration signal or acoustic signal of the valve. When the noise signal has periodicity, the noise signal components are concentrated in a specific frequency band on the frequency spectrum, so if the frequency band of the noise signal is known in advance, that band is used to calculate the feature value. Processing such as not using it is possible. For this reason, there are cases where the diagnosis of the state can be performed more robustly against noise than when the feature amount calculated on the time waveform as in the first embodiment is used.
 以上種々の実施例を説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although various embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 更に、上述した各構成、機能、処理部等は、それらの一部又は全部を中央演算装置等が実行するプログラムを作成する例を説明したが、それらの一部又は全部を例えば集積回路で設計する等によりハードウェアで実現しても良いことは言うまでもない。 Furthermore, the above-described configurations, functions, processing units, etc. have been described with respect to an example in which a program that is executed by a central processing unit or the like is created by some or all of them. Needless to say, it may be realized by hardware.
100 弁状態診断システム
101 中央演算装置
102 記憶媒体
103 揮発性メモリ
104 センサ
105 AD変換部
106 ユーザインタフェース部
107 電源
110 実施例1による診断対象装置
111 弁
112 装置制御回路
201 弁開閉区間切り出し部
202 ノイズ信号抑圧処理部
203 特徴量算出部
204 異常度算出部
205 正常信号モデル
206 状態判別部
207 診断結果提示部
208 正常信号データベース
209 正常信号モデル
210 表示パネル
211 全体波形提示部
212 判別対象信号提示部
213 判別情報提示部
214 判別結果提示部
215 操作入力部
401 ピーク
501 高いピーク
502 低いピーク。
DESCRIPTION OF SYMBOLS 100 Valve state diagnostic system 101 Central processing unit 102 Storage medium 103 Volatile memory 104 Sensor 105 AD conversion part 106 User interface part 107 Power supply 110 Diagnosis target apparatus 111 by Example 1 Valve 112 Apparatus control circuit 201 Valve opening / closing section cutout part 202 Noise Signal suppression processing unit 203 Feature amount calculation unit 204 Abnormality calculation unit 205 Normal signal model 206 State determination unit 207 Diagnosis result presentation unit 208 Normal signal database 209 Normal signal model 210 Display panel 211 Overall waveform presentation unit 212 Discrimination target signal presentation unit 213 Discrimination information presentation unit 214 Discrimination result presentation unit 215 Operation input unit 401 Peak 501 High peak 502 Low peak.

Claims (15)

  1. 弁状態診断システムであって、
    弁の動作情報を読み取るセンサと、
    前記センサからの出力信号の時間変化形状を表わす特徴量、或いは前記センサからの出力信号の周波数スペクトルにおける、エネルギーの特定周波数帯域への集中度合いに基づく特徴量を算出する特徴量算出部と、
    前記時間変化形状を表わす特徴量、或いは前記エネルギーの特定周波数帯域への集中度合いに基づく特徴量から異常度を算出し、前記異常度に基づき、前記弁の状態判別を行う状態判別部と、を備える、
    ことを特徴とする弁状態診断システム。
    A valve condition diagnosis system,
    A sensor for reading valve operation information;
    A feature amount calculating unit that calculates a feature amount representing a time-varying shape of an output signal from the sensor, or a feature amount based on a degree of concentration of energy in a specific frequency band in a frequency spectrum of the output signal from the sensor;
    A state determination unit that calculates a degree of abnormality from a feature amount representing the time-varying shape, or a feature amount based on a degree of concentration of the energy in a specific frequency band, and performs state determination of the valve based on the degree of abnormality. Prepare
    A valve state diagnosis system characterized by that.
  2. 請求項1に記載の弁状態診断システムであって、
    前記弁の弁開閉指令信号に基づき、開閉区間を切り出す弁開閉区間切り出し部を、更に備える、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 1,
    Based on the valve opening / closing command signal of the valve, further comprising a valve opening / closing section cutout section that cuts out the opening / closing section
    A valve state diagnosis system characterized by that.
  3. 請求項2に記載の弁状態診断システムであって、
    前記弁開閉区間切り出し部は、前記センサからの出力信号のピーク検出を行い、前記弁開閉指令信号による弁開閉時刻と、前記ピーク検出の時刻との差を開閉遅延時間として算出し、前記出力信号の切り出し区間の補正を行う、
    ことを特徴とする、弁状態診断システム。
    The valve state diagnosis system according to claim 2,
    The valve opening / closing section cutout unit performs peak detection of an output signal from the sensor, calculates a difference between a valve opening / closing time by the valve opening / closing command signal and the peak detection time as an opening / closing delay time, and outputs the output signal. To correct the cutout section of
    A valve state diagnosis system.
  4. 請求項1に記載の弁状態診断システムであって、
    前記特徴量算出部は、
    前記センサからの出力信号の前記時間変化形状を表わす特徴量を、分析区間内における前記出力信号の振幅値のピーク値、最大値と最小値の差、前記振幅値の分散、前記出力信号の振幅値の尖度、或いは前記出力信号の振幅値に対する半値幅を用いて算出する、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 1,
    The feature amount calculation unit includes:
    The feature amount representing the time-varying shape of the output signal from the sensor is represented by the peak value of the amplitude value of the output signal in the analysis interval, the difference between the maximum value and the minimum value, the variance of the amplitude value, the amplitude of the output signal Calculate using the kurtosis of the value, or the half width for the amplitude value of the output signal,
    A valve state diagnosis system characterized by that.
  5. 請求項1に記載の弁状態診断システムであって、
    前記特徴量算出部は、
    前記エネルギーの特定周波数帯域への集中度合いに基づく特徴量を、前記周波数スペクトルのノルム、或いは前記周波数スペクトル全体のエネルギーの総和と特定帯域のスペクトルのエネルギーの総和との比を用いて算出する、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 1,
    The feature amount calculation unit includes:
    Calculating a feature amount based on a degree of concentration of the energy in a specific frequency band by using a norm of the frequency spectrum or a ratio of a sum of energy of the entire frequency spectrum and a sum of energy of the spectrum of the specific band;
    A valve state diagnosis system characterized by that.
  6. 請求項1に記載の弁状態診断システムであって、
    前記時間変化形状を表わす特徴量、或いは前記エネルギーの特定周波数帯域への集中度合いに基づく特徴量を提示する提示部を更に備える、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 1,
    A presentation unit that presents a feature amount representing the time-varying shape or a feature amount based on a degree of concentration of the energy in a specific frequency band;
    A valve state diagnosis system characterized by that.
  7. 請求項3に記載の弁状態診断システムであって、
    前記開閉遅延時間を表示する提示部を、更に備える、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 3,
    A presentation unit for displaying the opening / closing delay time;
    A valve state diagnosis system characterized by that.
  8. 請求項1に記載の弁状態診断システムであって、
    弁正常時の、前記時間変化形状を表わす特徴量、あるいは前記エネルギーの特定周波数帯域への集中度合いに基づく特徴量を入力として、正常信号モデルを出力するモデル学習部を更に有する、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 1,
    When the valve is normal, it further includes a model learning unit that outputs a normal signal model by inputting a feature amount representing the time-varying shape or a feature amount based on a degree of concentration of the energy in a specific frequency band.
    A valve state diagnosis system characterized by that.
  9. 請求項8に記載の弁状態診断システムであって、
    前記異常度算出部は、
    前記時間変化形状を表わす特徴量、あるいは前記エネルギーの特定周波数帯域への集中度合いに基づく特徴量と、前記正常信号モデルを入力として、弁の動作の仕方が正常状態のものとかけ離れるほど、高くなる数値を前記異常度として出力する、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 8,
    The abnormality degree calculation unit
    With the feature amount representing the time-varying shape or the feature amount based on the degree of concentration of the energy in a specific frequency band and the normal signal model as input, the higher the distance between the valve operation and the normal state, the higher Is output as the degree of abnormality,
    A valve state diagnosis system characterized by that.
  10. 請求項9に記載の弁状態診断システムであって、
    前記異常度を提示する提示部を、更に備える、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 9,
    A presentation unit for presenting the degree of abnormality;
    A valve state diagnosis system characterized by that.
  11. 請求項9に記載の弁状態診断システムであって、
    前記状態判別部は、
    前記異常度と、少なくとも一つの閾値とを比較することにより、前記弁の状態判別を行う、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 9,
    The state determination unit
    The valve state is determined by comparing the degree of abnormality and at least one threshold value.
    A valve state diagnosis system characterized by that.
  12. 請求項11に記載の弁状態診断システムであって、
    前記状態判別部は、
    前記異常度が第一の閾値以上であり、かつ過去の診断時の異常度との差が第二の閾値以下であれば、経年劣化による弁開閉不良であると判断する、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 11,
    The state determination unit
    If the degree of abnormality is greater than or equal to the first threshold and the difference from the degree of abnormality at the time of past diagnosis is less than or equal to the second threshold, it is determined that there is a valve opening / closing failure due to aging deterioration,
    A valve state diagnosis system characterized by that.
  13. 請求項11に記載の弁状態診断システムであって、
    前記状態判別部は、
    前記異常度が第一の閾値以上であり、かつ過去の診断時の異常度との差が第二の閾値以上であれば、突発的な異常による弁開閉不良であると判断する、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 11,
    The state determination unit
    If the degree of abnormality is greater than or equal to the first threshold and the difference from the degree of abnormality at the time of past diagnosis is greater than or equal to the second threshold, it is determined that the valve opening / closing failure due to a sudden abnormality is caused.
    A valve state diagnosis system characterized by that.
  14. 請求項11に記載の弁状態診断システムであって、
    前記状態判別部は、
    前記異常度が、前記第一の閾値以下であり、前記第一の閾値より低い値の第三の閾値以上であり、かつ過去の診断時の異常度との差が第二の閾値以下であれば、当該弁の交換時期であると判断する、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 11,
    The state determination unit
    The degree of abnormality is not more than the first threshold, not less than a third threshold that is lower than the first threshold, and a difference from the degree of abnormality at the time of past diagnosis is not more than a second threshold. If it is time to replace the valve,
    A valve state diagnosis system characterized by that.
  15. 請求項11に記載の弁状態診断システムであって、
    前記状態判別部は、
    前記異常度が、前記第一の閾値より高い値の第四の閾値以上と判別した場合、診断対象に装置停止命令を出力する、
    ことを特徴とする弁状態診断システム。
    The valve state diagnosis system according to claim 11,
    The state determination unit
    When the abnormality degree is determined to be equal to or higher than a fourth threshold value higher than the first threshold value, an apparatus stop command is output to the diagnosis target.
    A valve state diagnosis system characterized by that.
PCT/JP2015/053046 2014-03-25 2015-02-04 Valve state diagnosis system WO2015146295A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-062396 2014-03-25
JP2014062396A JP2015185021A (en) 2014-03-25 2014-03-25 valve state diagnostic system

Publications (1)

Publication Number Publication Date
WO2015146295A1 true WO2015146295A1 (en) 2015-10-01

Family

ID=54194834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053046 WO2015146295A1 (en) 2014-03-25 2015-02-04 Valve state diagnosis system

Country Status (2)

Country Link
JP (1) JP2015185021A (en)
WO (1) WO2015146295A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153145B1 (en) * 2016-03-29 2017-06-28 巴バルブ株式会社 Valve diagnosis method and valve diagnosis device
US10413270B2 (en) 2016-11-15 2019-09-17 Canon Medical Systems Corporation Medical image diagnostic apparatus
US20210209871A1 (en) * 2020-01-06 2021-07-08 Hyundai Motor Company State diagnosis apparatus and method of moving system part

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085370B2 (en) * 2017-03-16 2022-06-16 株式会社リコー Diagnostic equipment, diagnostic systems, diagnostic methods and programs
CN107728599B (en) * 2017-09-01 2020-12-18 北京中燕信息技术有限公司 Method and device for determining state of refining device valve
JP6763910B2 (en) * 2018-05-30 2020-09-30 横河電機株式会社 Anomaly detection device, anomaly detection method, anomaly detection program and recording medium
JP7294624B2 (en) * 2018-07-31 2023-06-20 株式会社レクザム ophthalmic equipment
CN110926798A (en) * 2019-12-25 2020-03-27 北京航天测控技术有限公司 Method and device for judging on-off state of electromagnetic valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309824A (en) * 1987-06-12 1988-12-16 Hitachi Ltd Abnormality diagnosing method for machine
JPH04296299A (en) * 1991-03-26 1992-10-20 Hitachi Ltd Monitoring method and device for steam trap as well as diagnostic method and device plus manufacturing line thereof
JPH04337180A (en) * 1991-05-15 1992-11-25 Toshiba Corp Motor-operated valve diagnosing device
US5646600A (en) * 1995-01-12 1997-07-08 General Electric Company Instrument for detecting potential future failures of valves in critical control systems
JPH11282523A (en) * 1998-03-26 1999-10-15 Osaka Gas Co Ltd Plant system
JP2002174549A (en) * 2000-12-06 2002-06-21 Tomoe Tech Res Co Device for controlling motor-driven actuator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827928B2 (en) * 2000-08-25 2006-09-27 Ntn株式会社 Monitoring system for machine parts
JP3832365B2 (en) * 2002-03-19 2006-10-11 横河電機株式会社 Process equipment diagnostic method and apparatus
JP4834580B2 (en) * 2007-03-06 2011-12-14 株式会社東芝 Plant condition index management device and computer program for its implementation
JP5735383B2 (en) * 2011-09-02 2015-06-17 アズビル株式会社 Control valve abnormality diagnosis method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309824A (en) * 1987-06-12 1988-12-16 Hitachi Ltd Abnormality diagnosing method for machine
JPH04296299A (en) * 1991-03-26 1992-10-20 Hitachi Ltd Monitoring method and device for steam trap as well as diagnostic method and device plus manufacturing line thereof
JPH04337180A (en) * 1991-05-15 1992-11-25 Toshiba Corp Motor-operated valve diagnosing device
US5646600A (en) * 1995-01-12 1997-07-08 General Electric Company Instrument for detecting potential future failures of valves in critical control systems
JPH11282523A (en) * 1998-03-26 1999-10-15 Osaka Gas Co Ltd Plant system
JP2002174549A (en) * 2000-12-06 2002-06-21 Tomoe Tech Res Co Device for controlling motor-driven actuator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153145B1 (en) * 2016-03-29 2017-06-28 巴バルブ株式会社 Valve diagnosis method and valve diagnosis device
WO2017169849A1 (en) * 2016-03-29 2017-10-05 巴バルブ株式会社 Valve diagnosis method and valve diagnosis device
JP2017181203A (en) * 2016-03-29 2017-10-05 巴バルブ株式会社 Valve diagnosis method and valve diagnosis device
CN108885154A (en) * 2016-03-29 2018-11-23 巴阀门株式会社 Valve diagnostic method and valve diagnosis device
KR20190007418A (en) * 2016-03-29 2019-01-22 토모에 밸브 가부시키가이샤 Valve diagnosis method and valve diagnostic device
KR102118818B1 (en) 2016-03-29 2020-06-03 토모에 밸브 가부시키가이샤 Valve diagnostic method and valve diagnostic device
US10920907B2 (en) 2016-03-29 2021-02-16 Tomoe Valve Co., Ltd. Valve diagnosis method and valve diagnosis device
US10413270B2 (en) 2016-11-15 2019-09-17 Canon Medical Systems Corporation Medical image diagnostic apparatus
US20210209871A1 (en) * 2020-01-06 2021-07-08 Hyundai Motor Company State diagnosis apparatus and method of moving system part
US11741761B2 (en) * 2020-01-06 2023-08-29 Hyundai Motor Company State diagnosis apparatus and method of moving system part

Also Published As

Publication number Publication date
JP2015185021A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2015146295A1 (en) Valve state diagnosis system
JP6272133B2 (en) Valve state diagnosis system and valve state diagnosis method
KR101539896B1 (en) Method for diagnosis of induction motor fault
CN105675306A (en) Self-testing method and system for automobile
JP6200833B2 (en) Diagnostic equipment for plant and control equipment
JP6882397B2 (en) Abnormal noise detection system, equipment, method and program
JP2013061945A (en) Condition monitoring system and method
WO2008040019A3 (en) Abnormal situation prevention in a coker heater
KR101129466B1 (en) Method for condition monitoring of rotating machines via wavelet thresholding function and 4th-order moment
EP3910437B1 (en) Monitoring apparatus, monitoring method, and computer-readable medium
JP2012018066A (en) Device for inspecting abnormality
KR101347606B1 (en) Device and the method thereo for diagnosis of autism based on robot using eeg
Wegerich et al. Nonparametric modeling of vibration signal features for equipment health monitoring
WO2015011791A1 (en) Abnormality detection evaluation system
JP2018189522A (en) Method for diagnosing sign of facility failure
Wegerich Similarity‐based modeling of vibration features for fault detection and identification
JP2672576B2 (en) Diagnosis support system for plants and equipment
JPH04296299A (en) Monitoring method and device for steam trap as well as diagnostic method and device plus manufacturing line thereof
JP2005091103A (en) Method and device for diagnosing gear
JP2003021555A (en) Abnormality monitoring equipment
JP2016113260A (en) Elevator abnormal sound diagnostic system
CN109521100A (en) Integrated acoustic emission transducer device and method
JP2018092403A (en) Diagnostic apparatus and diagnostic method
JPWO2020204043A1 (en) Blast furnace abnormality determination device, blast furnace abnormality determination method, and blast furnace operation method
KR20200034339A (en) Fault diagnosis method for plant using sound signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15767993

Country of ref document: EP

Kind code of ref document: A1